
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 238–247,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Knowledge Tracing in Sequential Learning of Inflected Vocabulary

Adithya Renduchintala and Philipp Koehn and Jason Eisner

Department of Computer Science
Johns Hopkins University

{adi.r,phi,eisner}@jhu.edu

Abstract

We present a feature-rich knowledge

tracing method that captures a student’s

acquisition and retention of knowledge dur-

ing a foreign language phrase learning task.

We model the student’s behavior as making

predictions under a log-linear model, and

adopt a neural gating mechanism to model

how the student updates their log-linear

parameters in response to feedback. The

gating mechanism allows the model to learn

complex patterns of retention and acquisi-

tion for each feature, while the log-linear

parameterization results in an interpretable

knowledge state. We collect human data

and evaluate several versions of the model.

1 Introduction

Knowledge tracing attempts to reconstruct when

a student acquired (or forgot) each of several

facts. Yet we often hear that “learning is not just

memorizing facts.” Facts are not atomic objects

to be discretely and independently manipulated.

Rather, we suppose, a student who recalls a fact in a

given setting is demonstrating a skill—by solving a

structured prediction problem that is akin to recon-

structive memory (Schacter, 1989; Posner, 1989)

or pattern completion (Hopfield, 1982; Smolensky,

1986). The attempt at structured prediction may

draw on many cooperating feature weights, some

of which may be shared with other facts or skills.

In this paper, for the task of foreign-language vo-

cabulary learning, we will adopt a specific structured

prediction model and learning algorithm. Different

knowledge states correspond to model parameter

settings (feature weights). Different learning styles

correspond to different hyperparameters that govern

the learning algorithm.1 As we interact with each

student through a simple online tutoring system, we

1In the present paper, we assume that all students share the
same hyperparameters (same learning style), although each stu-
dent will have their own parameters, which change as they learn.

would like to track their evolving knowledge state

and identify their learning style. That is, we would

like to discover parameters and hyperparameters

that can explain the evidence so far and predict how

the student will react in future. This could help

us make good future choices about how to instruct

this student, although we leave this reinforcement

learning problem to future work. In this paper, we

show that we can predict the student’s next answer.

In short, we expand the notion of a knowledge

tracing model to include representations for a

student’s (i) current knowledge, (ii) retention of

knowledge, and (iii) acquisition of new knowledge.

Our reconstruction of the student’s knowledge

state remains interpretable, since it corresponds to

the weights of hand-designed features (sub-skills).

Interpretability may help a future teaching system

provide useful feedback to students and to human

teachers, and help it construct educational stimuli

that are targeted at improving particular sub-skills,

such as features that select correct verb suffixes.

Our present paper considers a verb conjugation

task, where a foreign language learner learns

the verb conjugation paradigm by reviewing and

interacting with a series of flash cards. This

task is a good testbed, as it needs the learner to

deploy sub-word features and to generalize to

new examples. For example, a student learning

Spanish verb conjugation might encounter pairs

such as (tú entras, you enter), (yo miro,

I watch). Using these examples, the student

needs to recognize suffix patterns and apply them to

new pairs seen such as (yo entro, I enter).

Vocabulary learning presents a challenging

learning environment due to the large number of

skills (words) that need to be traced. Learning

vocabulary in conjunction with inflection further

complicates the challenge due to the number of new

sub-skills that are introduced. Huang et al. (2016)

suggest that modeling sub-skill interaction is crucial

to several knowledge tracing domains. For our

domain, a log-linear formulation elegantly allows

for arbitrary sub-skills via feature functions.

238

2 Related Work

Bayesian knowledge tracing (Corbett and Anderson,

1994) (BKT) has long been the standard method to

infer a student’s knowledge from his or her perfor-

mance on a sequence of task items. In BKT, each

skill is modeled by an HMM with two hidden states

(“known” or “not-known”), and the probability of

success on an item depends on the state of the skill it

exercises. Transition and emission probabilities are

learned from the performance data using Expecta-

tion Maximization (EM). Many extensions of BKT

have been investigated, including personalization

(e.g., Lee and Brunskill, 2012; Khajah et al., 2014a)

and modeling item difficulty (Khajah et al., 2014b).

Our approach could be called Parametric

Knowledge Tracing (PKT) because we take a

student’s knowledge to be a vector of prediction

parameters (feature weights) rather than a vector

of skill bits. Although several BKT variants

(Koedinger et al., 2011; Xu and Mostow, 2012;

González-Brenes et al., 2014) have modeled the

fact that related skills share sub-skills or features,

that work does not associate a real-valued weight

with each feature at each time. Either skills are still

represented with separate HMMs, whose transition

and/or emission probabilities are parameterized in

terms of shared features with time-invariant weights;

or else HMMs are associated with the individual

sub-skills, and the performance of a skill depends

on which of its subskills are in the “known” state.

Our current version is not Bayesian since it

assumes deterministic updates (but see footnote 4).

A closely related line of work with deterministic

updates is deep knowledge tracing (DKT) (Piech

et al., 2015), which applied a classical LSTM model

(Hochreiter and Schmidhuber, 1997) to knowledge

tracing and showed strong improvements over

BKT. Our PKT model differs from DKT in that

the student’s state at each time step is a more

interpretable feature vector, and the state update rule

is also interpretable—it is a type of error-correcting

learning rule. In addition, the student’s state is

able to predict the student’s actual response and

not merely whether the response was correct.

We expect that having an interpretable feature

vector has better inductive bias (see experiment in

section 7.1), and that it may be useful to plan future

actions by smart flash card systems. Moreover, in

this work we test different plausible state update

rules and see how they fit actual student responses,

in orer to gain insight about learning.

Most recently, Settles and Meeder (2016)’s half-

life regression assumes that a student’s retention

of a particular skill exponentially decays with time

and learns a parameter that models the rate of decay

(“half-life regression”). Like González-Brenes et al.

(2014) and Settles and Meeder (2016), our model

leverages a feature-rich formulation to predict the

probability of a learner correctly remembering a

skill, but can also capture complex spacing/retention

patterns using a neural gating mechanism. Another

distinction between our work and half-life regres-

sion is that we focus on knowledge tracing within

a single session, while half-life regression collapses

a session into a single data point and operates on

many such data points over longer time spans.

3 Verb Conjugation Task

We devised a flash card training system to teach

verb conjugations in a foreign language. In this

study, we only asked the student to translate from

the foreign language to English, not vice-versa.2

3.1 Task Setup

We consider a setting where students go through

a series of interactive flash cards during a training

session. Figure 1 shows the three types of cards:

(i) Example (EX) cards simply display a foreign

phrase and its English translation (for 7 seconds).

(ii) Multiple-Choice (MC) cards show a single

foreign phrase and require the student to select one

of five possible English phrases shown as options.

(iii) Typing (TP) cards show a foreign phrase and a

text input box, requiring the student to type out what

they think is the English translation. g Our system

can provide feedback for each student response.

(i) Indicative Feedback: This refers to marking a

student’s answer as correct or incorrect (Fig. 1c, 1d

and 1h). Indicative feedback is always shown for

both MC and TP cards. (ii) Explicit Feedback: If

the student makes an error on a TP card, the system

has a 50% chance of showing them the true answer

(Fig. 1g). (iii) Retry: If the student makes an error on

a MC card, the system has a 50% chance of allowing

them to try again, up to a maximum of 3 attempts.

3.2 Task Content

In this particular task we used three verb lemmas,

each inflected in 13 different ways (Table 1). The

inflections included three tenses (simple past,

2We would regard these as two separate skills that share pa-
rameters to some degree, an interesting subject for future study.

239

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1: Screen grabs of card modalities during training. These examples show cards for a native English speaker learning
Spanish verb conjugation. Fig 1a is an EX card, Fig 1b shows a MC card before the student has made a selection, and Fig 1c and 1d
show MC cards after the student has made an incorrect or correct selection respectively, Fig 1e shows a MC card that is giving
the student another attempt (the system randomly decides to give the student up to three additional attempts), Fig 1f shows a TP
card where a student is completing an answer, Fig 1g shows a TP card that has marked a student answer wrong and then revealed
the right answer (the reveal is decided randomly), and finally Fig 1h shows a card that is giving a student feedback for their answer.

Categories Inf SPre,1,N SPre,2,N SPre,3,M SPre,3,F SF,1,N SF,2,N SF,3,M SF,3,F SP,1,N SP,2,N SP,3,M SP,3,F

acceptar yo acepto tú aceptas él acepta ella acepta yo aceptaré tú aceptarás él aceptará ella aceptará yo acepté tú aceptaste él aceptó ella aceptó

to accept I accept you accept he accepts she accepts I will accept you will accept* he will accept she will accept I accepted* you accepted he accepted she accepted

entrar yo entro tú entras él entra ella entra yo entraré tú entrarás él entrará ella entrará yo entré tú entraste él entró ella entró
Lemma

to enter I enter you enter he enters she enters I will enter you will enter he will enter she will enter I entered you entered he entered she entered

mirar yo miro tú miras él mira ella mira yo miraré tú mirarás él mirará ella mirará yo miré tú miraste él miró ella miró

to watch I watch* you watch* he watches* she watches I will watch you will watch* he will watch she will watch I watched you watched he watched* she watched

Table 1: Content used in training sequences. Phrase pairs with * were used for the quiz at the end of the training sequence. This
Spanish content was then transformed using the method in section 6.1.

present, and future) in each of four persons (first,

second, third masculine, third feminine), as well

as the infinitive form. We ensured that each surface

realization was unique and regular, resulting in 39

possible phrases.3 Seven phrases from this set were

randomly selected for a quiz, which is shown at

the end of the training session, leaving 32 phrases

that a student may see in the training session. The

student’s responses on the quiz do not receive

any feedback from the system.We also limited the

training session to 35 cards (some of which may

require multiple rounds of interaction, owing to

retries). All of the methods presented in this paper

could be applied to larger content sets as well.

4 Notation

We will use the following conventions in this paper.

System actions at, student responses yt, and feed-

back items a′t are subscripted by a time 1≤ t≤ T .

Other subscripts pick out elements of vectors or ma-

trices. Ordinary lowercase letters indicate scalars

3The inflected surface forms included explicit pronouns.

(α, β, etc.), boldfaced lowercase letters indicate

vectors (θ, y, wzx), and boldfaced uppercase letters

indicate matrices (Φ, Whh, etc.). The roman-font

superscripts are part of the vector or matrix name.

5 Student Models

5.1 Observable Student Behavior

A flash card is a structured object a=(x,O), where

x ∈ X is the foreign phrase and O is a set of al-

lowed responses. For an MC card, O is the set of 5

multiple-choice options on that card (or fewer on a

retry attempt). For a EX or TP card,O is the set of all

39 English phrases (the TP user interface prevents

the student from submitting a guess outside this set).

For non-EX cards, we assume the student samples

their response y∈O from a log-linear distribution

parameterized by their knowledge state θ∈R
d:

p(y |a;θ)=p(y |x,O;θ)

=
exp(θ ·φ(x,y))∑

y′∈O exp(θ ·φ(x,y′))
(1)

240

where φ(x,y) ∈ R
d is a feature vector extracted

from the (x,y) pair.

5.2 Feature Design

The student’s knowledge state is described by the

weights θ placed on the features φ(x,y) in equa-

tion (1). We assume the following binary features

will suffice to describe the student’s behavior.

• Phrasal features: We include a unique indicator

feature for each possible (x,y) pair, yielding 392

features. For example, there exists a feature that

fires iff x=yo miro∧y=I enter.

• Word features: We include indicator features for

all (source word, target word) pairs: e.g.,yo∈x∧
enter∈y. (These words need not be aligned.)

• Morpheme features: We include indicator

features for all (w,mc) pairs, wherew is a word

of the source phrase x, andm is a possible tense,

person, or number for the target phrase y (drawn

from Table 1). For example, m might be 1st

(first person) or SPre (simple present).

• Prefix and suffix features: For each word or

morpheme feature that fires, 8 backoff features

also fire, where the source word and (if present)

the target word are replaced by their first or last

i characters, for i∈{1,2,3,4}.

These templates yield about 4600 features in all, so

the knowledge state has d≈4600 dimensions.

5.3 Learning Models

We now turn to the question of modeling how the

student’s knowledge state changes during their

session. θt denotes the state at the start of round t.
We take θ1 =0 and assume that the student uses a

deterministic update rule of the following form:4

θt+1 =βt ⊙θt+αt ⊙ut (2)

where ut is an update vector that depends on the

student’s experience (at,yt,a
′
t) at round t.

Why this form? First imagine that the student

is learning by stochastic gradient descent on some

L2-regularized loss function C· ‖θ ‖2 +
∑

tLt(θ).
This algorithm’s update rule has the simplified form

θt+1 =βt ·θt+αt ·ut (3)

4Since learning is not perfectly predictable, it would
be more realistic to compute θt by a stochastic update—or
equivalently, by a deterministic update that also depends on a
random noise vector ǫt (which is drawn from, say, a Gaussian).
These noise vectors are “nuisance parameters,” but rather than
integrating over their possible values, a straightforward approxi-
mation is to optimize them by gradient descent—along with the
other update parameters—so as to locally maximize likelihood.

where ut = −∇Lt(θ) is the steepest-descent

direction on example t, αt>0 is the learning rate at

time t, and βt =1−αtC handles the weight decay

due to following the gradient of the regularizer.

Adaptive versions of stochastic gradient

descent—such as AdaGrad (Duchi et al., 2011) and

AdaDelta (Zeiler, 2012)—are more like our full

rule (2) in that they allow different learning rates

for different parameters.

In general, we can regardαt∈(0,1)d as modeling

the rates at which the learner updates the various pa-

rameters according to ut, and βt∈(0,1)d as model-

ing the rates at which those parameters are forgotten.

These vectors correspond respectively to the input

gates and forget gates in recurrent neural network

architectures such as the LSTM (Hochreiter and

Schmidhuber, 1997) or GRU (Cho et al., 2014). As

in those architectures, we will use neural networks to

chooseαt,βt at each time step t, so that they may be

sensitive in nonlinear ways to the context at round t.

5.3.1 Schemes for the Update Vector ut

We assume that ut is the gradient of some log-

probability, so that the student learns by trying to

increase the log-probability of the correct answer.

However, the student does not always observe the

correct answer y. For example, there is no output

label provided when the student only receives

feedback that their answer is incorrect. Even in such

cases, the student can change their knowledge state.

In this section, we define schemes for defining

ut from the experience (at,yt,a
′
t) at round t. Recall

that at =(xt,Ot). We omit the t subscripts below.

Suppose the student is told that a particular

phrase y∈O is the correct translation of x (via an

EX card or via feedback on an answer to an MC or

TP card). Then an apt strategy for the student would

be to use the following gradient:5

∆✓ =∇θ logp(y |x,O;θ) (4)

=φ(x,y)−
∑

y′∈O

p(y′ |x)φ(x,y′)

If the student is told that y is incorrect, an apt strat-

egy is to move probability mass collectively to the

other available options, increasing their total prob-

ability, since one of those options must be correct.

5An objection is that for an EX or TP card, the student may
not actually know the exact set of optionsO in the denominator.
We attempted setting O to be the set of English phrases the
student has seen prior to the current question. Though intuitive,
this setting performed worse on all the update and gating
schemes.

241

We call this the redistribution gradient (RG):

∆✗ =∇θ logp(O−{y}|x,O;θ) (5)

=
∑

y′∈O−{y}

p(y′ |x,y′ 6=y)φ(x,y′) (6)

−
∑

y′∈O

p(y′ |x)φ(x,y′)

where p(y′ |x,y′ 6=y) is a renormalized distribution

over just the options y′∈O−{y}. Note that if the

student selects two wrong answers y1,y2 in a row

on an MC card, the first update will subtract the

average features of O and add those of O−{y1};

the second update will subtract the average features

of O−{y1} and add those of O−{y1,y2}. The

intermediate addition and subtraction cancel out if

the sameα vector is used at both rounds, so the net

effect is to shift probability mass from the 5 initial

options to the 3 remaining ones.6

An alternate scheme for incorrect y is to use

−∆✓. We call this negative gradient (NG).

Since the RG and NG update vectors both worked

well for handling incorrect y, we also tried linearly

interpolating them (RNG), with ut = γt ⊙∆✗ +
(1−γt)⊙−∆✓. The interpolation vector γt has el-

ements in (0,1), and may depend on the context (pos-

sibly different for MC and EX cards, for example).

Finally, the feature vector (FG) scheme simply

adds the features φ(x, y) when y is correct or

subtracts them when y is incorrect. This is

appropriate for a student who pays attention only

to y, without bothering to note that the alternative

options in O are (respectively) incorrect or correct.

Recall from section 3.1 that the system some-

times gives both indicative and explicit feedback,

telling the student that one phrase is incorrect and

a different phrase is correct. We treat these as two

successive updates with update vectors ut and ut+1.

Notice that in the FG scheme, adding this pair of

update vectors resembles a perceptron update.

Table 2 summarizes our update schemes.

5.3.2 Schemes for the Gatesαt,βt,γt

We characterize each update t by a 7-dimensional

context vector ct, which summarizes what the

student has experienced. The first three elements

in ct are binary indicators of the type of flash card

6Arguably, a zeroth update should be allowed as well: upon
first viewing the MC card, the student should have the chance
to subtract the average features of the full set of possibilities
and add those of the 5 options in O, since again, the system
is implying that one of those 5 options must be correct.

Update Scheme Correct Incorrect

redistribution (RG) ut =∆
✓

ut =∆
✗

negative grad. (NG) ut =∆
✓

ut =−∆
✓

feature vector (FG) ut =φ(x,y) ut =−φ(x,y)

Table 2: Summary of update schemes (other than RNG).

(EX, MC or TP). The next three elements are binary

indicators of the type of information that caused the

update: correct student answer, incorrect student

answer, or revealed answer (via an EX card or

explicit feedback). As a reminder, the system can

respond with an indication that the answer is correct

or incorrect, or it can reveal the answer. Finally, the

last element of ct is 1/|O|, the chance probability

of success on this card. From ct, we define

αt =σ(Wαct +bα1) ∈(0,1)d (7)

βt =σ(Wβct−1+bβ1) ∈(0,1)d (8)

γt =σ(Wγct +bγ1) ∈(0,1)d (9)

where c0 =0. Each gate vector is now parameter-

ized by a weight matrix W∈R
d×7, where d is the

dimensionality of the gradient and knowledge state.

We also tried simpler versions of this model. In

the vector model (VM), we defineαt =σ(bα), and

βt,γt similarly. These vectors do not vary with time

and simply reflect that some parameters are more

labile than others. Finally, the scalar model (SM) de-

finesαt =σ(bα1), so that all parameters are equally

labile. One could also imagine tying the gates for

features derived from the same template, meaning

that some kinds of features (in some contexts) are

more labile than others, or reducing the number of

parameters by learning low-rank W matrices.

While we also tried augmenting the context

vector ct with the knowledge state θt, this resulted

in far too many parameters to train well, and did not

help performance in pilot tests.

5.4 Parameter Estimation

We tune the W and b parameters of the model by

maximum likelihood, so as to better predict the

students’ responses yt. The likelihood function is

p(y1,...yT |at,...aT)=

T∏

t=1

p(yt |a1:t,y1:t−1,a
′
1:t−1)

=
T∏

t=1

p(yt |at;θt) (10)

where we take p(yt | ···) = 1 at steps where the

student makes no response (EX cards and explicit

242

feedback). Note that the model assumes that θt is a

sufficient statistic of the student’s past experiences.

For each (update scheme, gating scheme)

combination, we trained the parameters using SGD

with RMSProp updates (Tieleman and Hinton,

2012) to maximize the regularized log-likelihood

∑

t,τt=0

logp(yt |xt;θt)−C·‖W‖2 (11)

summed over all students. Note that θt depends on

the parameters through the gated update rule (2).

The development set was used for early stopping

and to tune the regularization parameterC.7

6 Data Collection

We recruited 153 unique “students” via Amazon Me-

chanical Turk (MTurk). MTurk participants were

compensated $1 for completing the training and test

sessions and a bonus of $10 was given to the three

top scoring students. In our dataset, we retained

only the 121 students who answered all questions.

6.1 Language Obfuscation

Fig. 1 shows a few example flash cards for a native

English speaker learning Spanish. Fig. 1 shows

all our Spanish-English phrase pairs. In our actual

task, however, we invented an artificial language

for the MTurk students to learn, which allowed us

to ignore the problem of students with different

initial knowledge levels. We generated our artificial

language by enciphering the Spanish orthographic

representations. We created a mapping from the true

source string alphabet to an alternative, manually

defined alphabet, while attempting to preserve pro-

nounceability (by mapping vowels to vowels, etc.).

For example, mirarwas transformed into melil

and tú aceptas became pi icedpiz.

6.2 Card Ordering Policy

In the future, we expect to use planning or reinforce-

ment learning to choose the sequence of stimuli

for the student. For the present study of student

behavior, however, we hand-designed a simple

stochastic policy for choosing the stimuli.

The policy must decide what foreign phrase and

card modality to use at each training step. Our pol-

icy likes to repeat phrases with which participants

7We searched C ∈ {0.00025, 0.0005, 0.001, ..., 0.01,
0.025, 0.05, 0.1} for each gating model and update scheme
combination. C=0.0025 gave best results for the CM models,
0.01 for VM and 0.0005 for SM.

had trouble—in hopes that these already-taught

phrases are on the verge of being learned. It also

likes to pick out new phrases. This was inspired by

the popular Leitner (1972) approach, which devised

a system of buckets that control how frequently an

item is reviewed by a student. Leitner proposed

buckets with review frequency rates of every day,

every 2 days, every 4 days and so on.

For each foreign phrase x ∈ X , we maintain a

novelty score vx, which is a function of the number

of times the phrase is exposed to a student and an

error score ex, which is a function of the number

of times the student incorrectly responded to the

phrase. These scores are initialized to 1 and updated

as follows:8

vx←vx−1whenx is viewed

ex←

{

2ex when student getsxwrong

0.5ex when student getsx right

x∼
g(v)+g(e)

2
(12)

On each round, we sample a phrase x from ei-

ther Pv or Pe (equal probability); these distribu-

tions are computed by applying a softmax g(.)
over the vectors v and e respectively (see Eq. 12).

Once the phrase x is decided, the modality (EX,

MC, TP) is chosen stochastically using probabili-

ties (0.2,0.4,0.4), except that probabilities (1,0,0)
are used for the first example of the session, and

(0.4,0.6,0) if x is not “TP-qualified.” A phrase is

TP-qualified if the student has seen bothx’s pronoun

and x’s verb lemma on previous cards (even if their

correct translation was not revealed). For an MC

card, the distractor phrases are sampled uniformly

without replacement from the 38 other phrases.

7 Results & Experiments

We partitioned the students into three groups: 80

students for training, 20 for development, and 21

for testing. Most students found the task difficult;

the average score on the 7-question quiz—was

2.81 correct, with maximum score of 6. (Recall

from section 3.2 that the quiz questions were typing

questions, not multiple choice questions.)

After constructing each model, we evaluated it

on the held-out data: the 728 responses from the

21 testing students. We measure the log-probability

under the model of each actual response (“cross-

entropy”), and also the fraction of responses that

8Arguably we should have updated ex instead by
adding/subtracting 1, since it will be exponentiated later.

243

were correctly predicted if our prediction was the

model’s max-probability response (“accuracy”).

Table 3 shows the results of our experiment. All

of our models were predictive, doing far better than

a uniform baseline that assigned equal probability

1/|O| to all options. Our best models are shown in

the final two lines, RNG+VM and RNG+CM.

Which update scheme was best? Interestingly,

although the RG update vector is principled from a

machine learning viewpoint, the NG update vector

sometimes achieved better accuracy—though

worse perplexity—when predicting the responses

of human learners.9 We got our best results on both

metrics by interpolating between RG and NG (the

RNG scheme). Recall that the NG scheme was

motivated by the notion that students who guessed

wrong may not study the alternative answers (even

though one is correct), either because it is too much

trouble to study them or because (for a TP card)

those alternatives are not actually shown.

Which gating mechanism was best? In almost all

cases, we found that more parameters helped, with

CM>VM>SM on accuracy, and a similar pattern

on cross-entropy (with VM sometimes winning

but only slightly). In short, it helps to use different

learning rates for different features, and it probably

helps to make them sensitive to the learning context.

Surprisingly, the simple FG scheme outper-

formed both RG and NG when used in conjunction

with a scalar retention and acquisition gate. This,

however, did not extend to more complex gates.

Fig. 2 shows a breakdown of the prediction

accuracy measures according to whether the card

was MC or TP, and according to whether the

student’s answer was correct (C) or incorrect (IC).

Unsurprisingly, all the models have an easier time

predicting the student’s guess when the student is

correct, since the predicted parameters θt will often

pick the correct answer. However, this is where the

vector and context gates far outperform the scalar

gates. All the models find predicting the incorrect

answers of the students difficult. Moreover, when

predicting these incorrect answers, the RG models

do slightly better than the NG models.

The models obviously have higher accuracy

when predicting student answers for MC cards

than for TP cards, as MC cards have fewer options.

Again, within both of these modalities, the vector

and context gates outperform the scalar gate.

9Even the FG vector sometimes won (on both metrics!),
but this happened only with the worst gating mechanism, SM.

Update Scheme Gating Mechanism accuracy cross-ent.

(Uniform baseline) 0.133 2.459

FG SM 0.239∗ 2.362

FG VM 0.357† 2.130

FG CM 0.401 2.025

RG SM 0.135 3.194

RG VM 0.397† 1.909

RG CM 0.405 1.938

NG SM 0.185∗ 4.674

NG VM 0.394† 2.320

NG CM 0.449†∗ 2.244

RNG (mixed) SM 0.183 3.502

RNG (mixed) VM 0.427 1.855

RNG (mixed) CM 0.449 1.888

Table 3: Table summarizing prediction accuracy and cross-
entropy (in nats per prediction) for different models. Larger
accuracies and smaller cross-entropies are better. Within
an update scheme, the † indicates significant improvement
(McNemar’s test, p < 0.05) over the next-best gating
mechanism. Within g a gating mechanism, the ∗ indicates
significant improvement over the next-best update scheme. For
example, NG+CM is significantly better than NG+VM, so it
receives a †; it is also significantly better than RG+CM, and
receives a ∗ as well. These comparisons are conducted only
among the pure update schemes (above the double line). All
other models are significantly better than RG+SM (p<0.01).

Finally, Fig. 3 examines how these models behave

when making specific predictions over a training

sequence for a single student. At each step we plot

the difference in log-probability between our model

and a uniform baseline model. Thus, a marker above

0 means that our model assigned the student’s an-

swer a probability higher than chance.10 To con-

trast the performance difference, we show both the

highest-accuracy model (RNG+CM) and the lowest-

accuracy model (RG+SM). For a high-scoring stu-

dent (Fig. 3a), we see RNG+CM has a large margin

over RG+SM and a slight upward trend. A higher

probability than chance is noticeable even when the

student makes mistakes (indicated by hollow mark-

ers). In contrast, for an average student (Fig. 3b), the

margin between the two models is less perceptible.

While the CM+NG model is still above the SM+RG

line, there are some answers where CM+NG does

very poorly. This is especially true for some of the

wrong answers, for example at training steps 25, 29

and 33. Upon closer inspection into the model’s er-

ror in step 33, we found the prompt received at this

training step was ekki melü as a MC card, which

had been shown to the student on three prior occa-

sions, and the student even answered correctly on

one of these occasions. This explains why the model

10For MC cards, the chance probability is in { 1

5
, 1

4
, 1

3
}—

depending on how many options remain—while for TP cards
it is 1

39
.

244

MC MC­C MC­IC TP TP­C TP­IC
0.0

0.2

0.4

0.6

0.8
ac
cu
ra
cy

SM
VM
CM
RG
FV
NG

Figure 2: Plot comparing the models on test data under different conditions. Conditions MC and TP indicate Multiple-choice and
Typing questions respectively. These are broken down to the cases where the student answers them correctly C and incorrectly IC.
SM, VM, and CM represent scalar, vector, and context retention and acquisition gates (shown with different colors), respectively,
while RG, NG and FG are redistribution, negative and feature vector update schemes(shown with different hatching patterns).

0 10 1 20 2 30 3 40

t s�

−8

−6

−4

−2

0

2

4

�

�

r

�

(

�

(a) a student with quiz score 6/7

0 10 � 20 � 30 � 40 4

� 	

−8

−6

−4

−2

0

2

4

�

�

�

�

�

(b) a student with quiz score 2/7
Figure 3: Predicting a specific student’s responses. For each response, the plot shows our model’s improvement in log-probability
over the uniform baseline model. TP cards are the square markers connected by solid lines (the final 7 squares are the quiz), while
MC cards—which have a much higher baseline—are the circle markers connected by dashed lines. Hollow and solid markers
indicate correct and incorrect answers respectively. The RNG+CM model is shown in blue and the FG+SM model in red.

was surprised to see the student make this error.

7.1 Comparison with Less Restrictive Model

Our parametric knowledge tracing architecture

models the student as a typical structured prediction

system, which maintains weights for hand-designed

features and updates them roughly as an online

learning algorithm would. A natural question

is whether this restricted architecture sacrifices

performance for interpretability, or improves

performance via useful inductive bias.

To consider the other end of the spectrum, we

implemented a flexible LSTM model in the style

of recent deep learning research. This alternative

model predicts each response by a student (i.e., on

an MC or TP card) given the entire history of pre-

vious interactions with that student as summarized

by an LSTM. The LSTM architecture is formally

capable of capturing update rules exactly like those

of PKT, but it is far from limited to such rules.

Much like equation (1), at each time twe predict

p(yt =y |at)=
exp(ht ·ψ(y))∑

y′∈Ot
exp(ht ·ψ(y))

(13)

for each possible response y in the set of options

Ot, where ψ(y) ∈ R
d is a learned embedding of

response y. Here ht∈R
d denotes the hidden state

of the LSTM, which evolves as the student interacts

with the system and learns. ht depends on the LSTM

inputs for all times < t, just like the knowledge

state θt in equations (1)–(2). It also depends on the

LSTM input for time t, since that specifies the flash

card at to which we are predicting the response yt.

Each flash card a = (x,O) is encoded by a

concatenation a of three vectors: a one-hot 39-

dimensional vector specifying the foreign phrase

x, a 39-dimensional binary vector O indicating the

possible English options in O, and a one-hot vector

indicating whether the card is EX, MC, or TP.

When reading the history of past interactions, the

LSTM input at each time step t concatenates the vec-

tor representation at of the current flash card with

vectors at−1,yt−1,f t−1 that describe the student’s

experience in round t− 1: these respectively en-

code the previous flash card, the student’s response

to it (a one-hot 39-dimensional vector), and the re-

sulting feedback (a 39-dimensional binary vector

that indicates the remaining options after feedback).

Thus, if the student receives no feedback, then

f t−1 =Ot−1. Indicative feedback sets f t−1 =yt−1

245

Model Parameters Accuracy(test) Cross-Entropy

RNG+CM ≈ 97K 0.449 1.888

LSTM ≈ 25K 0.429 1.992

Table 4: Comparison of our best-performing PKT model
(RNG+CM) to our LSTM model. On our dataset, PKT outper-
forms the LSTM both in terms of accuracy and cross-entropy.

or f t−1 =Ot−1−yt, according to whether the stu-

dent was correct or incorrect. Explicit feedback

(including for an EX card) sets f t−1 to a one-hot rep-

resentation of the correct answer. Thus, f t−1 gives

the set of “positive” options that we used in the RG

update vector, while Ot−1 gives the set of “negative”

options, allowing the LSTM to similarly update its

hidden state from ht−1 to ht to reflect learning.11

As in section 5.4, we train the parameters by

L2-regularized maximum likelihood, with early

stopping on development data. The weights for

the LSTM were initialized uniformly at random

∼ U(−δ,+δ), where δ = 0.01, and RMSProp

was used for gradient descent. We settled on a

regularization coefficient of 0.002 after a line search.

The number of hidden units dwas also tuned using

line search. Interestingly, a dimensionality of just

d=10 performed best on dev data:12 at this size, the

LSTM has fewer parameters than our best model.

The result is shown in Table 4. These results favor

our restricted PKT architecture. We acknowledge

that the LSTM might perform better when a larger

training set was available (which would allow a

larger hidden layer), or using a different form of

regularization (Srivastava et al., 2014).

Intermediate or hybrid models would of course

also be possible. For example, we could predict

p(y | at) via (1), defining θt as h⊤
t M , a learned

linear function of ht. This variant would again have

access to our hand-designed features φ(x,y), so

that it would know which flash cards were similar.

In fact θt ·φ(x,y) in (1) equals ht ·(Mφ(x,y)), so

11This architecture is formally able to mimic PKT. We would
store θ in the LSTM’s vector of cell activations, and configure
the LSTM’s “input” and “forget” gates to update this according
to (2) where ut is computed from the input. Observe that each
feature in section 5.2 has the form φij(x,y) = ξi(x) ·ψj(y).
Consider the hidden unit in h corresponding to this feature,
with activation θij . By configuring this unit’s “output” gate
to be ξi(x) (where x is the current foreign phrase given in the
input), we would arrange for this hidden unit to have output
ξi(x)·θij , which will be multiplied byψj(y) in (13) to recover
θij ·φij(x,y) just as in (1). (More precisely, the output would
be sigmoid(ξi(x) ·θij), but we can evade this nonlinearity if
we take the cell activations to be a scaled-down version of θ
and scale up the embeddingsψ(y) to compensate.)

12We searched 0.001,0.002,0.005,0.01,0.02,0.05 for the
regularization coefficient, and 5,10,15,20,50,100,200 for the
number of hidden units.

M can be regarded as projecting φ(x,y) down to

the LSTM’s hidden dimension d, learning how to

weight and use these features. In this variant, the

LSTM would no longer need to take at as part of

its input at time t: rather, ht (just like θt in PKT)

would be a pure representation of the student’s

knowledge state at time t, capable of predicting

yt for any at. This setup more closely resembles

PKT—or the DKT LSTM of Piech et al. (2015).

Unlike the DKT paper, however, it would still

predict the student’s specific response, not merely

whether they were right or wrong.

8 Conclusion

We have presented a cognitively plausible model

that traces a human student’s knowledge as he or she

interacts with a simple online tutoring system. The

student must learn to translate very short inflected

phrases from an unfamiliar language into English.

Our model assumes that when a student recalls or

guesses the translation, he or she is attempting to

solve a structured prediction problem of choosing

the best translation, based on salient features of the

input-output pair. Specifically, we characterize the

student’s knowledge as a vector of feature weights,

which is updated as the student interacts with the sys-

tem. While the phrasal features memorize the trans-

lations of entire input phrases, the other features can

pick up on the translations of individual words and

sub-words, which are reusable across phrases.

We collected and modeled human-subjects

data. We experimented with models using several

different update mechanisms, focusing on the

student’s treatment of negative feedback and the

degree to which the student tends to update or

forget specific weights in particular contexts. We

also found that in comparison to a less constrained

LSTM model, we can better fit the human behavior

by using weight update schemes that are broadly

consistent with schemes used in machine learning.

In the future, we plan to experiment with more

variants of the model, including variants that allow

noise and personalization. Most important, we mean

to use the model for planning which flash cards, feed-

back, or other stimuli to show next to a given student.

Acknowledgments

This material is based upon work supported by a

seed grant from the Science of Learning Institute

at Johns Hopkins University.

246

References

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, pages 1724–
1734. http://www.aclweb.org/anthology/D14-1179.

Albert T Corbett and John R Anderson. 1994. Knowl-
edge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted
interaction 4(4):253–278.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

José González-Brenes, Yun Huang, and Peter
Brusilovsky. 2014. General features in knowledge
tracing to model multiple subskills, temporal item re-
sponse theory, and expert knowledge. In Proceedings
of the 7th International Conference on Educational
Data Mining. University of Pittsburgh, pages 84–91.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

J. J. Hopfield. 1982. Neural networks and physical
systems with emergent collective computational
abilities. In Proceedings of the National Academy of
Sciences of the USA. volume 79, pages 2554–2558.

Yun Huang, J Guerra, and Peter Brusilovsky. 2016.
Modeling skill combination patterns for deeper
knowledge tracing. In Proceedings of the 6th Work-
shop on Personalization Approaches in Learning
Environments (PALE 2016). 24th Conference on User
Modeling, Adaptation and Personalization, Halifax,
Canada.

Mohammad Khajah, Rowan Wing, Robert Lindsey,
and Michael Mozer. 2014a. Integrating latent-factor
and knowledge-tracing models to predict individual
differences in learning. In Proceedings of the 7th In-
ternational Conference on Educational Data Mining.

Mohammad M Khajah, Yun Huang, José P González-
Brenes, Michael C Mozer, and Peter Brusilovsky.
2014b. Integrating knowledge tracing and item
response theory: A tale of two frameworks. In
Proceedings of Workshop on Personalization Ap-
proaches in Learning Environments (PALE 2014) at
the 22th International Conference on User Modeling,
Adaptation, and Personalization. University of
Pittsburgh, pages 7–12.

K. R. Koedinger, P. I. Pavlick Jr., J. Stamper, T. Nixon,
and S. Ritter. 2011. Avoiding problem selection
thrashing with conjunctive knowledge tracing. In
Proceedings of the 4th International Conference on

Educational Data Mining. Eindhoven, NL, pages
91–100.

Jung In Lee and Emma Brunskill. 2012. The impact
on individualizing student models on necessary
practice opportunities. International Educational
Data Mining Society .

Sebastian Leitner. 1972. So lernt man lernen: der Weg
zum Erfolg. Herder, Freiburg.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. In Advances in Neural Information Processing
Systems. pages 505–513.

Michael I Posner. 1989. Foundations of cognitive
science. MIT press Cambridge, MA.

D. L. Schacter. 1989. Memory. In M. I. Postner, editor,
Foundations of Cognitive Science, MIT Press, pages
683–725.

Burr Settles and Brendan Meeder. 2016. A trainable
spaced repetition model for language learning. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1848–1858.
http://www.aclweb.org/anthology/P16-1174.

Paul Smolensky. 1986. Information processing in
dynamical systems: Foundations of harmony theory.
In D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group, editors, Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition, MIT Press/Bradford Books, Cambridge,
MA, volume 1: Foundations, pages 194–281.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A simple way to prevent
neural networks from overfitting. Journal
of Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
networks for machine learning 4(2).

Yanbo Xu and Jack Mostow. 2012. Comparison of
methods to trace multiple subskills: Is LR-DBN best?
In Proceedings of the 5th International Conference
on Educational Data Mining. pages 41–48.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701 .

247

