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Abstract

For general modeling methods applied to di-
verse languages, a natural question is: how
well should we expect our models to work on
languages with differing typological profiles?
In this work, we develop an evaluation frame-
work for fair cross-linguistic comparison of
language models, using translated text so that
all models are asked to predict approximately
the same information. We then conduct a study
on 21 languages, demonstrating that in some
languages, the textual expression of the infor-
mation is harder to predict with both n-gram
and LSTM language models. We show com-
plex inflectional morphology to be a cause of
performance differences among languages.

1 Introduction

Modern natural language processing practitioners
strive to create modeling techniques that work well
on all of the world’s languages. Indeed, most meth-
ods are portable in the following sense: Given ap-
propriately annotated data, they should, in princi-
ple, be trainable on any language. However, despite
this crude cross-linguistic compatibility, it is un-
likely that all languages are equally easy, or that
our methods are equally good at all languages.

In this work, we probe the issue, focusing on lan-
guage modeling. A fair comparison is tricky. Train-
ing corpora in different languages have different
sizes, and reflect the disparate topics of discussion
in different linguistic communities, some of which
may be harder to predict than others. Moreover,
bits per character, a standard metric for language
modeling, depends on the vagaries of a given ortho-
graphic system. We argue for a fairer metric based
on the bits per utterance using utterance-aligned
multi-text. That is, we train and test on “the same”
set of utterances in each language, modulo transla-
tion. To avoid discrepancies in out-of-vocabulary
handling, we evaluate open-vocabulary models.

We find that under standard approaches, text
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tends to be harder to predict in languages with fine-
grained inflectional morphology. Specifically, lan-
guage models perform worse on these languages,
in our controlled comparison. Furthermore, this
performance difference essentially vanishes when
we remove the inflectional markings.!

Thus, in highly inflected languages, either the ut-
terances have more content or the models are worse.
(1) Text in highly inflected languages may be in-
herently harder to predict (higher entropy per utter-
ance) if its extra morphemes carry additional, un-
predictable information. (2) Alternatively, perhaps
the extra morphemes are predictable in principle—
for example, redundant marking of grammatical
number on both subjects and verbs, or marking of
object case even when it is predictable from seman-
tics or word order—and yet our current language
modeling technology fails to predict them. This
might happen because (2a) the technology is bi-
ased toward modeling words or characters and fails
to discover intermediate morphemes, or because
(2b) it fails to capture the syntactic and semantic
predictors that govern the appearance of the extra
morphemes. We leave it to future work to tease
apart these hypotheses.

2 Language Modeling

A traditional closed-vocabulary, word-level lan-
guage model operates as follows: Given a fixed set
of words V, the model provides a probability distri-
bution over sequences of words with parameters to
be estimated from data. Most fixed-vocabulary lan-
guage models employ a distinguished symbol UNK
that represents all words not present in V; these
words are termed out-of-vocabulary (OOV).
Choosing the set V is something of a black
art: Some practitioners choose the £ most com-

'One might have expected a priori that some difference
would remain, because most highly inflected languages can
also vary word order to mark a topic-focus distinction, and
this (occasional) marking is preserved in our experiment.
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mon words (e.g., Mikolov et al. (2010) choose
k = 10000) and others use all those words that
appear at least twice in the training corpus. In gen-
eral, replacing more words with UNK artificially
improves the perplexity measure but produces a
less useful model. OOVs present something of a
challenge for the cross-linguistic comparison of lan-
guage models, especially in morphologically rich
languages, which simply have more word forms.

2.1 The Role of Inflectional Morphology

Inflectional morphology can explode the base vo-
cabulary of a language. Compare, for instance, En-
glish and Turkish. The nominal inflectional system
of English distinguishes two forms: a singular and
plural. The English lexeme BOOK has the singular
form book and the plural form books. In contrast,
Turkish distinguishes at least 12: kitap, kitablar,
kitabi, kitabin, etc.

To compare the degree of morphological inflec-
tion in our evalation languages, we use count-
ing complexity (Sagot, 2013). This crude metric
counts the number of inflectional categories distin-
guished by a language (e.g., English includes a cat-
egory of 3rd-person singular present-tense verbs).
We count the categories annotated in the language’s
UniMorph (Kirov et al., 2018) lexicon. See Table 1
for the counting complexity of evaluated languages.

2.2 Open-Vocabulary Language Models

To ensure comparability across languages, we re-
quire our language models to predict every charac-
ter in an utterance, rather than skipping some char-
acters because they appear in words that were (arbi-
trarily) designated as OOV in that language. Such
models are known as “open-vocabulary” LMs.

Notation. Let U denote disjoint union, i.e., A J
B=Ciff AUB=Cand AN B = (). Let X be
a discrete alphabet of characters, including a dis-
tinguished unknown-character symbol x.> A char-
acter LM then defines p(c) = H‘Zc:l;rl p(e | e<i),
where we take ¢|¢|41 to be a distinguished end-of-
string symbol EOS. In this work, we consider two
open-vocabulary LMs, as follows.

Baseline n-gram LM. We train “flat” hybrid
word/character open-vocabulary n-gram models
(Bisani and Ney, 2005), defined over strings T

The set of graphemes in these languages can be assumed
to be closed, but external graphemes may on rare occasion
appear in random text samples. These are rare enough to not
materially affect the metrics.

from a vocabulary 3 with mutually disjoint subsets:
Y = WUuCUS, where single characters ¢ € C are
distinguished in the model from single character
full words w € W, e.g., a versus the word a. Spe-
cial symbols S = {EOW, EOS} are end-of-word
and end-of-string, respectively. N-gram histories
in H are either word-boundary or word-internal
(corresponding to a whitespace tokenization), i.e.,
H = Hyp U H;. String-internal word boundaries are
always separated by a single whitespace character.’
For example, if foo,baz € W but bar ¢ W,
then the string foo bar baz would be gener-
atedas: foo b a r EOW baz EOS. Possible
3-gram histories in this string would be, e.g., [foo
bl € H;,[r EOW] € Hy, and [EOW baz] € Hy.

Symbols are generated from a multinomial given
the history h, leading to a new history i’ that now
includes the symbol and is truncated to the Markov
order. Histories h € H} can generate symbols
s € WU C U{Eos}. If s = EOS, the string is
ended. If s € W, it has an implicit EOW and the
model transitions to history h' € Hy. If s € C,
it translitions to A’ € H;. Histories h € H; can
generate symbols s € C'U {EOW} and transition
to h' € Hy if s = EOW, otherwise to b’ € H;.

We use standard Kneser and Ney (1995) model
training, with distributions at word-internal histo-
ries h € H; constrained so as to only provide prob-
ability mass for symbols s € C'U{EOW}. We train
7-gram models, but prune n-grams hs where the
history h € Wk, for k > 4,i.e., 6- and 7-gram his-
tories must include at least one s ¢ W. To establish
the vocabularies W and C, we replace exactly one
instance of each word type with its spelled out ver-
sion. Singleton words are thus excluded from W,
and character sequence observations from all types
are included in training. Note any word w € W
can also be generated as a character sequence. For
perplexity calculation, we sum the probabilities for
each way of generating the word.

LSTM LM. While neural language models can
also take a hybrid approach (Hwang and Sung,
2017; Kawakami et al., 2017), recent advances indi-
cate that full character-level modeling is now com-
petitive with word-level modeling. A large part of
this is due to the use of recurrent neural networks
(Mikolov et al., 2010), which can generalize about

3The model can be extended to handle consecutive whites-
pace characters or punctuation at word boundaries; for this pa-
per, the tokenization split punctuation from words and reduced
consecutive whitespaces to one, hence the simpler model.
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Figure 1: The primary findings of our paper are evinced in these plots. Each point is a language. While the LSTM outperforms
the hybrid n-gram model, the relative performance on the highly inflected languages compared to the more modestly inflected
languages is almost constant; to see this point, note that the regression lines in Fig. 1c are almost identical. Also, comparing Fig. 1a
and Fig. 1b shows that the correlation between LM performance and morphological richness disappears after lemmatization of
the corpus, indicating that inflectional morphology is the origin for the lower BPEC.

how the distribution p(¢; | ¢<;) depends on c.;.

We use a long short-term memory (LSTM) LM
(Sundermeyer et al., 2012), identical to that of
Zaremba et al. (2014), but at the character-level.
To achieve the hidden state h; € R at time step
1, one feeds the left context c;_1 to the LSTM:
h; = LSTM (¢q, . .., ¢;—1) where the model uses
a learned vector to represent each character type.
This involves a recursive procedure described in
Hochreiter and Schmidhuber (1997). Then, the
probability distribution over the i character is
p(er | e<;) = softmax (W h; + b), where W €
RI®*d and b € RI*! are parameters.

Parameters for all models are estimated on the
training portion and model selection is performed
on the development portion. The neural models
are trained with SGD (Robbins and Monro, 1951)
with gradient clipping, such that each component
has a maximum absolute value of 5. We optimize
for 100 iterations and perform early stopping (on
the development portion). We employ a character
embedding of size 1024 and 2 hidden layers of size
1024.* The implementation is in PyTorch.

3 A Fairer Evaluation: Multi-Text

Effecting a cross-linguistic study on LMs is com-
plicated because different models could be trained
and tested on incomparable corpora. To avoid this
problem, we use multi-text: k-way translations of
the same semantic content.

4 As Zaremba et al. (2014) indicate, increasing the number
of parameters may allow us to achieve better performance.

What’s wrong with bits per character? Open-
vocabulary language modeling is most commonly
evaluated under bits per character (BPC) =
|c|1+1 ‘;‘Tl logp(c; | €<;).> Even with multi-
text, comparing BPC is not straightforward, as it
relies on the vagaries of individual writing systems.
Consider, for example, the difference in how Czech
and German express the phoneme /tf/: Czech uses
¢, whereas German tsch. Now, consider the Czech
word puc and its German equivalent Putsch. Even
if these words are both predicted with the same
probability in a given context, German will end up
with a lower BPC. ¢

Bits per English Character. Multi-text allows
us to compute a fair metric that is invariant to
the orthographic (or phonological) changes dis-
cussed above: bits per English character (BPEC).
_ 1 |e[+1 . A

BPEC = o —"ry Y ity logp(ci | e<i), where
Cenglish 18 the English character sequence in the
utterance aligned to c¢. The choice of English is
arbitrary, as any other choice of language would
simply scale the values by a constant factor.

Note that this metric is essentially capturing the
overall bits per utterance, and that normalizing
using English characters only makes numbers in-
dependent of the overall utterance length; it is not
critical to the analysis we perform in this paper.

5To aggregate this over an entire test corpus, we replace
the denominator and also the numerator by summations over
all utterances c.

®Why not work with phonological characters, rather than
orthographic ones, obtaining /put// for both Czech and Ger-
man? Sadly this option is also fraught with problems as many

languages have perfectly predictable phonological elements
that will artificially lower the score.



\ BPEC / ABPC (-e-2)
LSTM

‘data (M)‘ ‘ hybrid n-gram ‘

lang‘ st/ch‘MCC‘ form ‘ lemma ‘ form ‘ lemma

bg |0.71/43 | 96 |1.13/ 4|1.03/ 1[0.95/ 3]0.80/ 1
cs |0.65/3.9| 195 |1.20/ -8|1.05/-12|10.97/ -6|0.83/ -9
da |0.70/4.1| 15 |1.10/ -1]1.06/ -4{0.85/ -1|0.82/ -3
de |0.74/4.8| 38 |1.25/17|1.18/ 13]1.04/ 14|0.90/ 10
el |0.75/4.6| 50 |1.18/13|1.08/ 5]0.90/10|0.82/ 4
en |0.75/4.1| 6 |[1.10/ 0]1.08/ -3|{0.85/ 0]0.83/ -3
es |0.81/4.6| 71 |1.15/12|1.07/ 7/0.87/ 9|0.80/ 5
et* |0.55/3.9| 110 [1.20/ -8|1.11/-15|0.97/ -6|0.89/-12
fi* 10.52/4.2| 198 |1.18/ 2|1.02/-11|1.05/ 1|0.79/ -9
fr |0.88/4.9| 30 |1.13/17|1.06/ 13|0.92/ 14{0.78/ 10
hu* | 0.63/4.3| 94 |1.25/ 5|1.12/ -9]1.09/ 5|0.89/ -7
it |0.85/4.8| 52 [1.15/16]1.08/ 14|0.96/ 14|0.79/ 10
It |0.59/3.9| 152 [1.17/ -6|1.12/ -7|0.93/ -5|0.88/ -6
Iv [0.61/3.9| 81 |1.15/ -6]1.04/ -9/0.91/ -5|0.81/ -7
nl |0.75/45| 26 |1.20/11|1.16/ 4|0.92/ 8|091/ 4
pl 0.65/43| 112 |1.21/ 6|1.09/ -1|0.97/ 5|0.84/ -1
pt |0.89/48| 77 |1.17/16|1.09/ 9|0.88/12|0.82/ 7
ro [0.74/44| 60 |1.17/ 8|1.09/ 0(0.90/ 6]0.84/ 0
sk [0.64/3.9| 40 |1.16/ -6|1.06/-11|0.92/ -5(0.87/ -9
sl |0.64/3.8 | 100 |1.15/-10|1.02/-10|0.90/ -8|0.80/ -7
sv |0.66/4.1| 35 |1.11/ -2|1.06/ -8|0.86/ -2|0.83/ -7

Table 1: Results for all configurations and the typological
profile of the 21 Europarl languages. All languages are Indo-
European, except for those marked with * which are Uralic.
Morpholical counting complexity (MCC) is given for each
language, along with bits per English character (BPEC) and
the ABPC, which is BPEC minus bits per character (BPC).
This is blue if BPEC > BPC and red if BPEC < BPC.

A Potential Confound: Translationese. Work-
ing with multi-text, however, does introduce a new
bias: all of the utterances in the corpus have a
source language and 20 translations of that source
utterance into target languages. The characteris-
tics of translated language has been widely studied
and exploited, with one prominent characteristic of
translations being simplification (Baker, 1993).
Note that a significant fraction of the original
utterances in the corpus are English. Our analysis
may then have underestimated the BPEC for other
languages, to the extent that their sentences consist
of simplified “translationese.” Even so, English had
the lowest BPEC from among the set of languages.

4 Experiments and Results

Our experiments are conducted on the 21 languages
of the Europarl corpus (Koehn, 2005). The corpus
consists of utterances made in the European par-
liament and are aligned cross-linguistically by a
unique utterance id. With the exceptions (noted in
Table 1) of Finnish, Hungarian and Estonian, which
are Uralic, the languages are Indo-European.

While Europarl does not contain quite our de-
sired breadth of typological diversity, it serves our
purpose by providing large collections of aligned
data across many languages. To create our experi-
mental data, we extract all utterances and randomly
sort them into train-development-test splits such
that roughly 80% of the data are in train and 10%
in development and test, respectively.” We also
perform experiments on lemmatized text, where we
replace every word with its lemma using the UD-
Pipe toolkit (Straka et al., 2016), stripping away
its inflectional morphology. We report two evalua-
tion metrics: BPC and BPEC (see §3). Our BPEC
measure always normalizes by the length of the
original, not lemmatized, English.

Experimentally, we want to show: (i) When eval-
uating models in a controlled environment (multi-
text under BPEC), the models achieve lower per-
formance on certain languages and (ii) inflectional
morphology is the primary culprit for the perfor-
mance differences. However, we repeat that we do
not in this paper tease apart whether the models are
at fault, or that certain languages inherently encode
more information.

5 Discussion and Analysis

We display the performance of the n-gram LM and
the LSTM LM under BPC and BPEC for each of
the 21 languages in Fig. 1 with full numbers listed
in Table 1. There are several main take-aways.

The Effect of BPEC. The first major take-away
is that BPEC offers a cleaner cross-linguistic com-
parison than BPC. Were we to rank the languages
by BPC (lowest to highest), we would find that
English was in the middle of the pack, which is
surprising as new language models are often only
tuned on English itself. For example, BPC surpris-
ingly suggests that French is easier to model than
English. However, ranking under BPEC shows that
the LSTM has the easiest time modeling English it-
self. Scandinavian languages Danish and Swedish
have BPEC closest to English; these languages are
typologically and genetically similar to English.

n-gram versus LSTM. As expected, the LSTM
outperforms the baseline n-gram models across
the board. In addition, however, n-gram modeling
yields relatively poor performance on some lan-
guages, such as Dutch, with only modestly more
complex inflectional morphology than English.

"Characters appearing < 100 times in train are *.



Other phenomena—e.g., perhaps, compounding—
may also be poorly modeled by n-grams.

The Impact of Inflectional Morphology. An-
other major take-away is that rich inflectional mor-
phology is a difficulty for both n-gram and LSTM
LMs. In this section we give numbers for the
LSTMs. Studying Fig. la, we find that Spear-
man’s rank correlation between a language’s BPEC
and its counting complexity (§2.1) is quite high
(p = 0.59, significant at p < 0.005). This clear
correlation between the level of inflectional mor-
phology and the LSTM performance indicates that
character-level models do not automatically fix the
problem of morphological richness. If we lemma-
tize the words, however (Fig. 1b), the correlation
becomes insignificant and in fact slightly negative
(p = —0.13, p = 0.56). The difference of the two
previous graphs (Fig. 1¢) shows more clearly that
the LM penalty for modeling inflectional endings
is greater for languages with higher counting com-
plexity. Indeed, this penalty is arguably a more
appropriate measure of the complexity of the in-
flectional system. See also Fig. 2.

The differences in BPEC among languages are
reduced when we lemmatize, with standard devia-
tion dropping from 0.065 bits to 0.039 bits. Zoom-
ing in on Finnish (see Table 1), we see that Finnish
forms are harder to model than English forms, but
Finnish lemmata are easier to model than English
ones. This is strong evidence that it was primarily
the inflectional morphology, which lemmatization
strips, that caused the differences in the model’s
performance on these two languages.

6 Related Work

Recurrent neural language models can effec-
tively learn complex dependencies, even in open-
vocabulary settings (Hwang and Sung, 2017;
Kawakami et al., 2017). Whether the models are
able to learn particular syntactic interactions is an
intriguing question, and some methodologies have
been presented to tease apart under what circum-
stances variously-trained models encode attested
interactions (Linzen et al., 2016; Enguehard et al.,
2017). While the sort of detailed, construction-
specific analyses in these papers is surely informa-
tive, our evaluation is language-wide.

MT researchers have investigated whether an En-
glish sentence contains enough information to pre-
dict the fine-grained inflections used in its foreign-
language translations (see Kirov et al., 2017).

0.95

0.90

0.85

BPEC (LSTM over lemmata)

0.80

0.9 1.0 1.1
BPEC (LSTM over forms)

Figure 2: Each dot is a language, and its coordinates are the
BPEC values for the LSTM LMs over words and lemmata.
The top and right margins show kernel density estimates of
these two sets of BPEC values. All dots follow the blue
regression, but stay below the green line (y = z), and the
darker dots—which represent languages with higher counting
complexity—tend to fall toward the right but not toward the
top, since counting complexity is correlated only with the
BPEC over words.

Sproat et al. (2014) present a corpus of close
translations of sentences in typologically diverse
languages along with detailed morphosyntactic
and morphosemantic annotations, as the means
for assessing linguistic complexity for compara-
ble messages, though they expressly do not take an
information-theoretic approach to measuring com-
plexity. In the linguistics literature, McWhorter
(2001) argues that certain languages are less com-
plex than others: he claims that Creoles are simpler.
Miiller et al. (2012) compare LMs on EuroParl, but
do not compare performance across languages.

7 Conclusion

We have presented a clean method for the cross-
linguistic comparison of language modeling: We
assess whether a language modeling technique can
compress a sentence and its translations equally
well. We show an interesting correlation between
the morphological richness of a language and the
performance of the model. In an attempt to explain
causation, we also run our models on lemmatized
versions of the corpora, showing that, upon the
removal of inflection, no such correlation between
morphological richness and LM performance exists.
It is still unclear, however, whether the performance
difference originates from the inherent difficulty of
the languages or with the models.
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