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Abstract

Lexical ambiguity makes it difficult to com-

pute various useful statistics of a corpus. A

given word form might represent any of sev-

eral morphological feature bundles. One can,

however, use unsupervised learning (as in EM)

to fit a model that probabilistically disam-

biguates word forms. We present such an ap-

proach, which employs a neural network to

smoothly model a prior distribution over fea-

ture bundles (even rare ones). Although this

basic model does not consider a token’s con-

text, that very property allows it to operate on a

simple list of unigram type counts, partitioning

each count among different analyses of that un-

igram. We discuss evaluation metrics for this

novel task and report results on 5 languages.

1 Introduction

Inflected lexicons—lists of morphologically in-

flected forms—are commonplace in NLP. Such

lexicons currently exist for over 100 languages

in a standardized annotation scheme (Kirov et al.,

2018), making them one of the most multi-lingual

annotated resources in existence. These lexicons

are typically annotated at the type level, i.e., each

word type is listed with its possible morphological

analyses, divorced from sentential context.

One might imagine that most word types are

unambiguous. However, many inflectional sys-

tems are replete with a form of ambiguity termed

syncretism—a systematic merger of morphological

slots. In English, some verbs have five distinct in-

flected forms, but regular verbs (the vast majority)

merge two of these and so distinguish only four.

The verb ⑩s➋✐❸♥❹❣ has the past tense form sang but the

participial form sung; the verb ⑧t❹❛❺❧❺❦, on the other

hand, employs talked for both functions. The form

talked is, thus, said to be syncretic. Our task is to

partition the count of talked in a corpus between the

past-tense and participial readings, respectively.

SG PL SG PL

NOM Wort Wörter Herr Herren

GEN Wortes Wörter Herrn Herren

ACC Wort Wörter Herrn Herren

DAT Worte Wörtern Herrn Herren

Table 1: Full paradigms for the German nouns ❲❿♦✫r✪t
(“word”) and ❍❡❸r✫r★ (“gentleman”) with abbreviated and

tabularized UniMorph annotation. The syncretic forms

are bolded and colored by ambiguity class. Note that,

while in the plural the nominative and accusative are

always syncretic across all paradigms, the same is not

true in the singular.

In this paper, we model a generative probabil-

ity distribution over annotated word forms, and

fit the model parameters using the token counts of

unannotated word forms. The resulting distribu-

tion predicts how to partition each form’s token

count among its possible annotations. While our

method actually deals with all ambiguous forms in

the lexicon, it is particularly useful for syncretic

forms because syncretism is often systematic and

pervasive.

In English, our unsupervised procedure learns

from the counts of irregular pairs like sang–sung

that a verb’s past tense tends to be more frequent

than its past participle. These learned parameters

are then used to disambiguate talked. The method

can also learn from regular paradigms. For exam-

ple, it learns from the counts of pairs like runs–run

that singular third-person forms are common. It

then uses these learned parameters to guess that

tokens of run are often singular or third-person

(though never both at once, because the lexicon

does not list that as a possible analysis of run).
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2 Formalizing Inflectional Morphology

We adopt the framework of word-based morphol-

ogy (Aronoff, 1976; Spencer, 1991). In the present

paper, we consider only inflectional morphology.

An inflected lexicon is a set of word types. Each

word type is a 4-tuple of a part-of-speech tag, a

lexeme, an inflectional slot, and a surface form.

A lexeme is a discrete object (represented by

an arbitrary integer or string, which we typeset in

❶❝➆✉❸r★s➋✐❸✈✤) that indexes the word’s core meaning and

part of speech. A part-of-speech (POS) tag is a

coarse syntactic category such as VERB. Each POS

tag allows some set of lexemes, and also allows

some set of inflectional slots such as “1st-person

present singular.” Each allowed 〈tag, lexeme, slot〉
triple is realized—in only one way—as an inflected

surface form, a string over a fixed phonological or

orthographic alphabet Σ. In this work, we take Σ
to be an orthographic alphabet.

A paradigm π(t, ℓ) is the mapping from tag t’s

slots to the surface forms that “fill” those slots for

lexeme ℓ. For example, in the English paradigm

π(VERB, ⑧t❹❛❺❧❺❦), the past-tense slot is said to be

filled by talked, meaning that the lexicon contains

the tuple 〈VERB, ⑧t❹❛❺❧❺❦, PAST, talked〉.1

We will specifically work with the UniMorph

annotation scheme (Sylak-Glassman, 2016). Here

each slot specifies a morpho-syntactic bundle of

inflectional features (also called a morphological

tag in the literature), such as tense, mood, person,

number, and gender. For example, the German sur-

face form Wörtern is listed in the lexicon with tag

NOUN, lemma ❲❿♦✫r✪t, and a slot specifying the fea-

ture bundle
[

NUM=PL, CASE=DAT
]

. An example

of UniMorph annotation is found in Table 1.

2.1 What is Syncretism?

We say that a surface form f is syncretic if two

slots s1 6= s2 exist such that some paradigm π(t, ℓ)
maps both s1 and s2 to f . In other words, a sin-

gle form fills multiple slots in a paradigm: syn-

cretism may be thought of as intra-paradigmatic

ambiguity. This definition does depend on the ex-

act annotation scheme in use, as some schemes

collapse syncretic slots. For example, in Ger-

man nouns, no lexeme distinguishes the nomi-

native, accusative and genitive plurals. Thus, a

1Lexicographers will often refer to a paradigm by its
lemma, which is the surface form that fills a certain designated
slot such as the infinitive. We instead use lexemes because
lemmas may be ambiguous: bank is the lemma for at least two
nominal and two verbal paradigms.

human-created lexicon might employ a single slot
[

NUM=PL, CASE=NOM/ACC/GEN
]

and say that

Wörter fills just this slot rather than three separate

slots. For a discussion, see Baerman et al. (2005).

2.2 Inter-Paradigmatic Ambiguity

A different kind of ambiguity occurs when a sur-

face form belongs to more than one paradigm.

A form f is inter-paradigmatically ambiguous if

〈t1, ℓ1, s1, f〉 and 〈t2, ℓ2, s2, f〉 are both in the lex-

icon for lexemes 〈t1, ℓ1〉 6= 〈t2, ℓ2〉.

For example, talks belongs to the English

paradigms π(VERB, ⑧t❹❛❺❧❺❦) and π(NOUN, ⑧t❹❛❺❧❺❦).
The model we present in §3 will resolve both syn-

cretism and inter-paradigmatic ambiguity. How-

ever, our exposition focuses on the former, as it is

cross-linguistically more common.

2.3 Disambiguating Surface Form Counts

The previous sections §2.1 and §2.2 discussed two

types of ambiguity found in inflected lexicons. The

goal of this paper is the disambiguation of raw sur-

face form counts, taken from an unannotated text

corpus. In other words, given such counts, we seek

to impute the fractional counts for individual lexi-

cal entries (4-tuples), which are unannotated in raw

text. Let us assume that the word talked is observed

c (talked) times in a raw English text corpus. We do

not know which instances of talked are participles

and which are past tense forms. However, given

a probability distribution pθ(t, ℓ, s | f), we may

disambiguate these counts in expectation, i.e., we

attribute a count of

c (talked) · pθ(VERB, ⑧t❹❛❺❧❺❦, PAST_PART | talked)

to the past participle of the VERB ⑧t❹❛❺❧❺❦. Our aim

is the construction and unsupervised estimation of

the distribution pθ(t, ℓ, s | f).

While the task at hand is novel, what applications

does it have? We are especially interested in sam-

pling tuples 〈t, ℓ, s, f〉 from an inflected lexicon.

Sampling is a necessity for creating train-test splits

for evaluating morphological inflectors, which has

recently become a standard task in the literature

(Durrett and DeNero, 2013; Hulden et al., 2014;

Nicolai et al., 2015; Faruqui et al., 2016), and has

seen two shared tasks (Cotterell et al., 2016, 2017).

Creating train-test splits for training inflectors in-

volves sampling without replacement so that all

test types are unseen. Ideally, we would like more

frequent word types in the training portion and less
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frequent ones in the test portion. This is a realistic

evaluation: a training lexicon for a new language

would tend to contain frequent types, so the system

should be tested on its ability to extrapolate to rarer

types that could not be looked up in that lexicon,

as discussed by Cotterell et al. (2015). To make

the split, we sample N word types without replace-

ment, which is equivalent to collecting the first N

distinct forms from an annotated corpus generated

from the same unigram distribution.

The fractional counts that our method estimates

may also be useful for corpus linguistics—for ex-

ample, tracking the frequency of specific lexemes

over time, or comparing the rate of participles in

the work of two different authors.

Finally, the fractional counts can aid the train-

ing of NLP methods that operate on a raw corpus,

such as distributional embedding of surface form

types into a vector space. Such methods sometimes

consider the morphological properties (tags, lex-

emes, and slots) of nearby context words. When

the morphological properties of a context word f

are ambiguous, instead of tagging (which may not

be feasible) one could fractionally count the oc-

ccurrences of the possible analyses according to

pθ(t, ℓ, s | f), or else characterize f ’s morphology

with a single soft indicator vector whose elements

are the probabilities of the properties according to

pθ(t, ℓ, s | f).

3 A Neural Latent Variable Model

In general, we will only observe unannotated word

forms f . We model these as draws from a distri-

bution over form types pθ(f), which marginalizes

out the unobserved structure of the lexicon—which

tag, lexeme and slot generated each form. Training

the parameters of this latent-variable model will

recover the posterior distribution over analyses of

a form, pθ(t, ℓ, s | f), which allows us to disam-

biguate counts at the type level.

The latent-variable model is a Bayesian network,

pθ(f) =
∑

〈t,ℓ,s〉∈T ×L×S

pθ(t) pθ(ℓ | t) pθ(s | t) δ(f | t, ℓ, s)

(1)

where T ,L,S range over the possible tags, lex-

emes, and slots of the language, and δ(f | t, ℓ, s)
returns 1 or 0 according to whether the lexicon lists

f as the (unique) realization of 〈t, ℓ, s〉. We fix

pθ(s | t) = 0 if the lexicon lists no tuples of the

form 〈t, ·, s, ·〉, and otherwise model

pθ(s | t) ∝ exp
(

u
⊤ tanh (W · vt,s)

)

> 0 (2)

where vt,s is a multi-hot vector whose “1”

components indicate the morphological features

possessed by 〈t, s〉: namely attribute-value pairs

such as POS=VERB and NUM=PL. Here u ∈ R
d

and W is a conformable matrix of weights. This

formula specifies a neural network with d hidden

units, which can learn to favor or disfavor specific

soft conjunctions of morphological features.

Finally, we define pθ(t) ∝ expωt for t ∈ T , and

pθ(ℓ | t) ∝ expωt,ℓ or 0 if the lexicon lists no

tuples of the form 〈t, ℓ, ·, ·〉. The model’s parameter

vector θ specifies u,W, and the ω values.

3.1 Inference and Learning

We maximize the regularized log-likelihood

∑

f∈F

c(f) log pθ(f) +
λ

2
||θ||22 (3)

where F is the set of surface form types and pθ(f)
is defined by (1). It is straightforward to use a

gradient-based optimizer, and we do. However,

(3) could also be maximized by an intuitive EM

algorithm: at each iteration, the E-step uses the cur-

rent model parameters to partition each count c(f)
among possible analyses, as in (2.3), and then the

M step improves the parameters by following the

gradient of supervised regularized log-likelihood

as if it had observed those fractional counts.

On each iteration, either algorithm loops through

all listed (t, s) pairs, all listed (t, ℓ) pairs, and all

observed forms f , taking time at most proportional

to the size of the lexicon. In practice, training com-

pletes within a few minutes on a modern laptop.

3.2 Baseline Models

To the best of our knowledge, this disambiguation

task is novel. Thus, we resort to comparing three

variants of our model in lieu of a previously pub-

lished baseline. We evaluate three simplifications

of the slot model, to investigate whether the com-

plexity of equation (2) is justified.

UNIF: p(s | t) is uniform over the slots s that are

listed with t. This involves no learning.

FREE: p(s | t) ∝ expωt,s: a model with a single

parameter ωt,s ∈ R per slot. This can capture

any distribution, but it has less inductive bias:
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slots that share morphological features do not

share parameters.

LINEAR: p(s | t) ∝ exp(u⊤
vt,s): a linear model

with no conjunctions between morphologi-

cal features. This chooses the features or-

thogonally, in the sense that (e.g.) if ver-

bal paradigms have a complete 3-dimensional

grid of slots indexed by their PERSON, NUM,

and TENSE attributes, then sampling from

p(s | VERB) is equivalent to independently

sampling these three coordinates. More-

over, p(NUM=PL | NOUN) = p(NUM=PL |
VERB).

4 Experiments

4.1 Computing Evaluation Metrics

We first evaluate perplexity. Since our model is a

tractable generative model, we may easily evaluate

its perplexity on held-out tokens. For each lan-

guage, we randomly partition the observed surface

tokens into 80% training, 10% development, and

10% test. We then estimate the parameters of our

model by maximizing (3) on the counts from the

training portion, selecting hyperparameters such

that the estimated parameters2 minimize perplex-

ity on the development portion. We then report

perplexity on the test portion.

Using the same hyperparameters, we now train

our latent-variable model pθ without supervision

on 100% of the observed surface forms f . We now

measure how poorly, for the average surface form

type f , we recovered the maximum-likelihood dis-

tribution p̂(t, ℓ, s | f) that would be estimated with

supervision in terms of KL-divergence:

∑

f

p̂(f) KL(p̂(· | f) || pθ(· | f)) (4)

=
1

N

N
∑

i=1

log2
p̂(ti, ℓi, si | fi)

pθ(ti, ℓi, si | fi)

We can see that this formula reduces to a simple

average over disambiguated tokens i.

4.2 Training Details and Hyperparameters

We optimized on training data using batch gradi-

ent descent with a fixed learning rate. We used

perplexity on development data to jointly choose

2Our vocabulary and parameter set are determined from the
lexicon. Thus we create a regularized parameter ωℓ, yielding
a smoothed estimate p(ℓ), even if the training count c(ℓ) = 0.

the learning rate, the initial random θ (from among

several random restarts), the regularization coeffi-

cient λ ∈ {10−1, 10−2, 10−3, 10−4} and the neu-

ral network architecture. The NEURAL architecture

shown in eq. (2) has 1 hidden layer, but we ac-

tually generalized this to consider networks with

k ∈ {1, 2, 3, 4} hidden layers of d = 100 units

each. In some cases, the model selected on de-

velopment data had k as high as 3. Note that the

LINEAR model corresponds to k = 0.

4.3 Datasets

Each language constitutes a separate experiment.

In each case we obtain our lexicon from the Uni-

Morph project and our surface form counts from

Wikipedia. To approximate supervised counts to

estimate p̂ in the KL evaluation, we analyzed the

surface form tokens in Wikipedia (in context) us-

ing the tool in Straka et al. (2016), as trained on

the disambiguated Universal Dependencies (UD)

corpora (Nivre et al., 2016). We wrote a script3

to convert the resulting analyses from UD format

into 〈t, ℓ, s, f〉 tuples in UniMorph format for five

languages—Czech (cs), German (de), Finnish (fi),

Hebrew (he), Swedish (sv)—each of which dis-

plays both kinds of ambiguity in its UniMorph lex-

icon. Lexicons with these approximate supervised

counts are provided as supplementary material.

4.4 Results

Our results are graphed in Fig. 1, exact numbers

are found in Table 2. We find that the NEURAL

model slightly outperforms the other baselines on

languages except for German. The LINEAR model

is quite competitive as well.

NEURAL NET FREE LINEAR UNIFORM

lang perp KL perp KL perp KL perp KL

cs 621 0.56 643 0.58 637 0.67 896 1.19

de 776 2.39 775 2.25 776 2.33 813 3.03

fi 300 0.99 319 1.18 304 1.03 889 2.61

he 96 0.27 130 0.69 97 0.29 675 3.69

sv 547 0.06 565 0.14 568 0.08 1025 1.5

Table 2: Results for the best performing neural network

(hyperparameters selected on dev) and the three base-

lines under both performance metrics. Best are bolded.

UNIF would have a KL divergence of 0 bits if all

forms were either unambiguous or uniformly am-

biguous. Its higher value means the unsupervised

task is nontrivial. Our other models substantially

3The script discarded up to 31% of the tokens because
the UD analysis could not be successfully converted into an
UniMorph analysis that was present in the lexicon.
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Figure 1: Unsupervised and supervised test results

under each model, averaged over 50 training-dev-test

splits.

outperform UNIF. NEURAL matches the supervised

distributions reasonably closely, achieving an aver-

age KL of < 1 bit on all languages but German.

5 Related Work

By far the closest work to ours is the seminal paper

of Baayen and Sproat (1996), who asked the follow-

ing question: “Given a form that is previously un-

seen in a sufficiently large training corpus, and that

is morphologically n-ways ambiguous [...] what is

the best estimator for the lexical prior probabilities

for the various functions of the form?” While we

address the same task, i.e., estimation of a lexical

prior, Baayen and Sproat (1996) assume supervi-

sion in the form of an disambiguated corpus. We

are the first to treat the specific task in an unsuper-

vised fashion. We discuss other work below.

Supervised Morphological Tagging. Morpho-

logical tagging is a common task in NLP; the

state of the art is currently held by neural mod-

els (Heigold et al., 2017). This task is distinct from

the problem at hand. Even if a tagger obtains the

possible analyses from a lexicon, it is still trained

in a supervised manner to choose among analyses.

Unsupervised POS Tagging. Another vein of

work that is similar to ours is that of unsupervised

part-of-speech (POS) tagging. Here, the goal is

map sequences of forms into coarse-grained syn-

tactic categories. Christodoulopoulos et al. (2010)

provide a useful overview of previous work. This

task differs from ours on two counts. First, we

are interested in finer-grained morphological dis-

tinctions: the universal POS tagset (Petrov et al.,

2012) makes 12 distinctions, whereas UniMorph

has languages expressing hundreds of distinctions.

Second, POS tagging deals with the induction of

syntactic categories from sentential context.

We note that purely unsupervised morphological

tagging, has yet to be attempted to the best of our

knowledge.

6 Conclusion

We have presented a novel generative latent-

variable model for resolving ambiguity in unigram

counts, notably due to syncretism. Given a lexicon,

an unsupervised model partitions the corpus count

for each ambiguous form among its analyses listed

in a lexicon. We empirically evaluated our method

on 5 languages under two evaluation metrics.

The code is availabile at https://sjmielke.

com/papers/syncretism, along with type-

disambiguated unigram counts for all lexicons pro-

vided by the UniMorph project (100+ languages).
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