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e Hydrothermal carbonization converts
various food wastes into hydrochar.

e Hydrochars are separated into primary
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Hydrothermal carbonization is a thermochemical process that converts wet waste biomass into hydrochar, a
renewable solid fuel that comprises a coal-like primary phase and an oily secondary phase. The varying oxidation
rates of these phases may result in an inefficient energy recovery when combusting the hydrochar, as secondary
char is more reactive. Brewer’s spent grain, dairy cheese whey and food waste were hydrothermally carbonized
at 250 °C. The hydrochars were extracted using six solvents to evaluate the hydrochar partitioning between
primary and secondary char phases. Feedstock nature and solvent selection impact the amount and composition

of these phases detected. For lipid-rich feedstocks, ethanol extracts up to 50 wt% secondary char enriched in
liquid fuel precursors from a solid primary char with enhanced coal-like characteristics. For substrates rich in
carbohydrates, proteins, and lignocellulose, less secondary char is produced. Acetone and dichloromethane
remove the oily secondary char and maximize primary char yield.

1. Introduction

The U.S. landfilled 35 million of the over 70 million tons of food
waste produced in 2018 (Environment Protection Agency, 2018).
Landfilled food waste generates greenhouse gas emissions during
decomposition and potentially toxic leachates as rainwater percolates
through the landfill. Hydrothermal carbonization (HTC) is a promising
management strategy to convert wet biomasses such as food waste into a
renewable solid fuel.

* Corresponding author.

HTC is a thermochemical process where a carbonaceous substrate is
heated between 180 and 250 °C under (usually) autogenous pressure in
aqueous media. During HTC, the solid feed undergoes a series of dehy-
dration, hydrolysis, decarboxylation, and decarbonylation reactions to
create water-soluble organic products and a gas phase largely comprised
of COy (Libra et al., 2011). The remaining solid carbonizes into a solid
hydrochar (HC), a coal-like material with potential applications as soil
amendments (Hitzl et al., 2018), adsorbents, (Zhang et al., 2019) acti-
vated carbon precursors (Jain et al., 2016), and renewable solid fuels
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(Mihajlovic et al., 2018).

The composition and thermophysical properties of HC depend on the
feedstock properties and processing conditions (Lucian et al., 2018),
which in turn guide the HC’s end-use application. Several hydrothermal
carbonization studies have identified positive energy recoveries using
HCs as a solid fuel. For example, under certain processing conditions,
Danso-Boateng et al. (Danso-Boateng et al., 2015) estimated a net en-
ergy generation of 600 kJ/kg using an 85% moisture fecal feedstock.
HTC also reduces the ash content in the HC compared to the raw feed-
stock, improving the suitability of HC for use as a solid fuel (Liu et al.,
2014; Sharma and Dubey, 2020).

HCs comprise two phases; a primary char (PC) phase produced from
solid-solid carbonization reactions within the original solid feedstock
matrix and a secondary char (SC) phase formed at the solid-liquid
interface via aqueous phase (re)polymerization and condensation re-
actions. The secondary char phase often condenses on the PC surface as
spheres. Prior work demonstrates the extractability of secondary char
using of a mixture of methanol and acetone as the solvent (Lucian et al.,
2018; Volpe et al., 2018).

Owing to a lack of systematic analysis of the effect of solvent selec-
tion on the extraction of SC from HCs, it is difficult to gauge whether the
condensed phase is best separated to reclaim potential biofuel pre-
cursors, or if the as-carbonized HC should be used as a solid fuel. Prior
literature demonstrates a high pyrolytic and oxidative reactivity of HCs,
which could result in early burn-out and inefficient combustion pro-
cesses (Gao et al., 2019). The objective of this work is to assess the
interplay between feedstock composition and solvent selection on the
extractability of SC and the properties of PC and SC produced from HTC
of three biomass feedstocks available at an industrial scale: food waste,
dairy cheese whey, and brewer’s spent grain. Such fundamental data
will shed insight into how each char phase influences the apparent
properties of the HC product and the potential to isolate products as a
function of solvent selection.

2. Materials and methods
2.1. Feedstocks

A representative retail-level food waste was created by weighing and
mixing the ingredients shown in Table 1 (Buzby Jean et al., 2014) in a

Table 1
Composition of SRU feedstock moisture used for HTC.

Food Waste Composition Products used (equal quantities, by mass, of
Category [wt %] each item were used for each category)
Grain products 16.7 Rice, dry pasta, bread, biscuits, harvest
wheat crackers, plain bagels
Fresh fruit 10.2 Banana, apples, tangerines, strawberries,
grapes
Processed fruit 3.7 Raspberry jam, applesauce, seedless raisins
Fresh 12.1 Iceberg lettuce, baking potatoes, carrots, bell
vegetables pepper, broccoli
Processed 4.2 Canned sweet peas, corn, kidney beans,
vegetables tomato sauce
Milk 15.1 2% milk
Dairy (not 6.5 Plain low-fat yogurt, cheddar cheese, small
milk) curd cottage cheese
Meat 3.3 Ground beef, uncured bacon
Poultry 2.1 Chicken (whole rotisserie), breaded chicken
nuggets
Fish and 0.9 Canned tuna, fresh salmon, raw shrimp, pre-
seafood frozen tilapia
Eggs 1.6 Grade AA large eggs
Nuts 0.5 Lightly salted dry roasted peanuts
Sweeteners 10.5 Pepsi, Hostess cupcakes, candy (KitKat), raw
sugar cookie dough
Fats and oils 12.6 Beef tallow, all-vegetable shortening, canola
oil
Total 100.0
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household blender. The mixture represents typical food waste from
producers like Supermarkets, Restaurants, and Universities and is
therefore named SRU. Dairy cheese whey (DCW), a semi-transparent
aqueous waste from the cheese production process, was sourced from
the Cornell University Dairy. Brewers’ spent grains (BSG) were obtained
from a local brewery in Ithaca, NY, USA. Each material was preserved in
a freezer at —4°C and defrosted just prior to experiments. The moisture
content of each feedstock was assessed gravimetrically by repeated
drying in a laboratory oven at 90 °C until constant weight was reached in
at least triplicate measurements. A portion of each feedstock was dried
for further analyses and solvent extraction.

2.2. Hydrothermal carbonization of feedstocks

HTC was performed using a 1-liter Parr reactor. For each run, the
reactor was loaded with the substrate and then water was added to reach
a biomass/water ratio of 0.15. The only exception was DCW which was
used as-received, with a biomass to water ratio of 0.05. A reactor filling
ratio of 0.5 was adopted, which meant approximately 500 g of material
(water included) were used in each run. Before the run, the reactor was
purged 3 times with high purity nitrogen (Airgas) and then pressurized
to 0.55-0.58 MPa. The impeller speed was set to 400 rpm. The reactor
was heated to 250 °C and held for 1 h (the timer was started when the
reactor temperature reached the setpoint minus a threshold of 2.5%).
The ramp time was between 120 and 134 min for all cases except the run
with DCW, which lasted only 97 min (likely due to the higher water
content and therefore lower heat capacity of the substrate). The reactor
was quenched in an ice bath, reaching a temperature of 70 °C in about 5
min. The reactor was further cooled to 20 °C, then the gas was purged,
and the reactor was opened. The liquid and solid slurry was vacuum
filtered on 45 pm ashless cellulose filter paper. The HC was oven dried at
85 °C for at least 24 h and stored in plastic containers. The HC yield was
obtained as the dry mass of HC divided by the dry feedstock mass. The
liquid yield was obtained by subtracting the final mass of liquid by the
initial water and the feedstock moisture and dividing the results by the
dry feedstock mass. The gas was considered to be 100% CO; (Libra et al.,
2011) and its mass was obtained using Eq. (1), where Py;iq; and Peoojing
are the pressure in the reactor before HTC and after cooling the reactor
to a temperature value of Teooling, Vreactor is the reactor volume and ffping is
the fraction occupied by the feedstock, MMco, is the molar mass of COg,
and Rg; is the universal gas constant. To obtain the gas yield, mg,, was
divided by the dry feedstock mass. The reactor was also weighed after
degassing on a 5-gram precision scale as a check for the computed gas
value. Losses were calculated as 100 % minus the sum of HC, liquid, and
gas yields.

MM,

Rga: : Tcooling

Mgas = (Pcooling - Pinirial)'(Vmactorffilling) (1)

2.3. Hydrochar solvent extraction

Six different solvents were used to extract the SC from the HCs:
isopropyl alcohol (IPA, 99 % purity from Ward’s Science), methanol
(MET, 99.8 % purity from Alfa Aesar), ethanol (ETH, 200 Proof from
Decon Labs, Inc), acetone (ACE, HPLC purity from Fisher Chemical),
dichloromethane (DCM, 98 % purity from Acros Organics), and hexanes
(HEX, HPLC purity from Fisher Chemical). For each sample, 0.3 g of HC
were loaded into a vial (V1) with 10 mL of solvent and shaken for 3 h.
After shaking, the contents were poured over ashless cellulose filter
paper through a glass funnel, then another 10 mL aliquot of solvent was
poured into V1, rinsed, then poured through the sample on the filter
paper. The filtrate was collected in another vial (V2), held in a cold bath.
After filtration, the filter paper and its contents were placed inside V1,
which was then oven or air dried in a fume hood, depending on the
solvent flammability. A few mL from V2 were air dried in an aluminum
boat, then V2 was capped and stored at 4 °C. The untreated
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(unextracted) solid phase is referred to as HC, the post-extraction solid
dried residue inside V1 as primary char (PC), and the extracted material,
in its dry form inside the aluminum boats or solubilized in the solvent
inside V2, as secondary char (SC). The fraction of PC was obtained by
gravimetric analysis, while the SC recovery was determined by differ-
ence of as-carbonized HC minus PC.

2.4. Analysis of chars

Proximate analysis of HC and PC samples was performed through
thermogravimetric analysis (TGA) using a TA Instruments Simultaneous
Thermal Analyzer 650 and a TA Instruments TGA 5500. Approximately
5 mg of sample was heated to 110 °C in high purity N3 (100 mL/min for
the 650 TGA, 20 mL/min for the 5500 TGA, scaled by the considerably
reduced volume of the 5550 vs 650 instruments per manufacture’s
recommendation) and held for at least 30 min to remove moisture. Then
the temperature was raised to 900 °C at 10 °C min and held constant for
60 min; loss is attributed to volatile matter (VM). The gas flow of Ny was
then switched to dry air, while the temperature was increased to 925 °C
while heated at the same rate, 10 °C/min, and held for 60 min.
Oxidizable matter lost over this step is the fixed carbon (FC). Residual
mass is loosely termed “ash”. The reproducibility between the two in-
struments was checked running some of the samples on both TGAs and
comparing the results, which were within 5 %. Proximate analyses were
performed at least in duplicates.

Ultimate analysis of the HC and PC was performed using a Vario
MACRO Cube (Elementar) elemental analyzer, calibrated using sulfa-
nilamide. For each char sample, carbon, hydrogen, and nitrogen content
were measured in triplicate. Oxygen was determined by difference.

The Higher Heating Values (HHV) of the dried HC samples were
obtained using a 6200 Isoperibol Calorimeter equipped with a 6510
Water Handling system, Parr, USA. The combustion vessels were cali-
brated using benzoic acid pellets. Each HHV measurement was per-
formed in triplicate. Since primary and secondary char quantities were
too small to evaluate their HHV using the 6200 Isoperibol Calorimeter,
for energy recovery determination, their HHV values were estimated
using Dulong’s formula, in MJ/kg:

HHV = 0.338. [C] + 1.428+ ([H] - 1/8[0]) (2)

The [C], [H] and [O] values are carbon, hydrogen and oxygen
elemental contents, respectively. The Energy recovery (ER) of the HC
was then calculated using the following formula:

ER = YHC'HHVHC / HHVFeed +100% (3)

Where Yy is the HC yield, HHVy is the HHV of the HC, and HHVpeeq
is the HHV of the feedstock, with all variables on a dry basis. The same
equation can be used to determine the energy recovery of the PC and SC
phases based on the relative yields and their corresponding energy
contents (HHV).

To survey the functional groups on the char surfaces, HC, PC, and SC
samples were dried and mixed with approximately 200 mg of KBr at a ~
1-2:100 sample to KBr ratio. The mixture was pelletized on a Carver
press under 6 MPa of pressure and analyzed on a Bruker Vertex 70
Fourier Transform Infrared Spectrometer (FT-IR). Infrared spectra were
obtained in diffraction mode with 64 scans at a 4 cm ™! resolution over a
wavenumber range of 4000 — 400 cm ™. Spectra were baseline corrected
and normalized to the O-H band between 3000 and 3800 cm ..

Gas chromatography — mass spectrometry (GC-MS) was employed to
identify the compounds comprising the secondary char in each of the
extracted samples. The solubilized SC samples were mixed with excess
anhydrous MgSO4 to remove water, centrifuged, and the supernatant
diluted 1:1 with the same solvent used for the extraction. The solutions
were analyzed on a Shimadzu Single Quadrupole Gas Chromatograph-
Mass Spectrometer (GCMS-QP2020) with a 30 m long Rxi-5MS capil-
lary column having an internal diameter of 0.25 mm and film thickness
of 0.25 pm. The initial oven temperature was 40 °C with an injection
temperature of 250 °C and a split ratio of 1:10 using ultra high purity
helium as a carrier gas. After a 5-minute residence time the column
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temperature was increased at a rate of 2 °C/min to 300 °C and held for
40 min. Ion source and interface temperatures were set at 230 °C and
250 °C, respectively. The mass spectrometer scanned from 15 to 500 m/z
after a solvent cut time of 6 min. Extracted compounds were identified
via a NIST library with greater than 90% match.

3. Results and discussion

A series of carbonization experiments were performed on three
representative waste mixtures, denoted as SRU for a mixture of
commonly disposed of consumer food items as described in Table 1, BSG
for brewers spent grain, and DCW for dairy cheese whey. The three
waste mixtures are known to contain different fractions of lipids, pro-
teins, and carbohydrates. Previous studies have determined BSG is
largely comprised of lignocellulosic material (~60-70%) with a smaller
fraction (~10%) of both protein and lipids (Lynch et al., 2016; Mussatto
et al., 2006). Compared to the BSG feedstock, the SRU mixture used in
this study has a relatively greater fraction of lipids (29 wt%) and car-
bohydrates (60 wt%) based on the USDA nutritional database (Ahuja
et al.,, 2018). The third feedstock used in this study, DCW, has the
greatest intrinsic moisture content and is estimated to contain 11.5 %
protein, 1.4 % lipid, 9.2 % ash, and 77.6 % carbohydrates on a dry basis
(“USDA Database,” 2020).

3.1. HTC of wet wastes

Mass yields of HC, aqueous, and gas products from HTC are provided
in Fig. 1 on a dry basis. HTC of BSG resulted in 15% less solid HC and
19% more aqueous phase product than the SRU-HC. HTC of DCW had
the least solid and greatest aqueous phase yield of the three feedstocks.
The varying product distributions at identical operating conditions
shown in Fig. 1 is consistent with the HTC feedstock dependency shown
in numerous studies (Lang et al., 2019, 2018; Saba et al., 2017; Wang
etal., 2020). Similar HTC operating conditions have resulted in HC mass
yields ranging between 14 and 39% to convert SRU (Sharma and Dubey,
2020; Wang et al., 2020, 2018a, 2018b), 45-58% to convert BSG
(Arauzo et al., 2018; Baskyr et al., 2014; de Aradjo et al., 2020; Jack-
owski et al., 2020; Olszewski et al., 2020; Ulbrich et al., 2017), and
46-51% for DCW feedstocks (Escala et al., 2013).

The energy content, represented as a HHV, of both the raw feedstock
and HC of different feedstocks is provided in Table 2. Compared to the
HHVs for DCW and BSG feedstocks which range between 18 and 20 MJ/
kg, SRU has a greater HHV of 26 MJ/kg, which is in agreement with
prior studies (Sharma and Dubey, 2020). It is important to note that
although SRU resulted in the greatest HHV of the three feedstocks, it also
had the least increase in energy content, with DCW and BSG having over
a 50% increase relative to their initial feedstocks. This is reflected in the
overall energy balance, as the energy densification from the HTC of BSG
results in a similar energy recovery as SRU-HC, despite having a reduced
HC yield.

Table 2 provides proximate and elemental analysis of both raw
feedstocks and HCs, which reveals feedstock-dependent compositional
changes. Although SRU-HC is slightly more carbon-rich and DCW-HC is
more oxygenated, the HTC process changed all three HC’s elemental
content to a similar extent. However, changes in the proximate analysis
upon carbonization differed with feedstock. HTC of SRU resulted in a
relatively small change in FC and VM proximate composition, while HCs
from BSG and DCW resulted in 25% less VM and twice as much FC
relative to their initial feedstocks. Therefore, although HTC provided
similar percentage changes in elemental content, the biochemical
composition of the initial feed plays a large role in carbonization,
degradation, and hydrolysis rates during hydrothermal treatment (Li
et al., 2019).

Comparing the ash content in the initial feedstock relative to the HC
after HTC reveals both increasing and decreasing trends depending on
the feedstock. SRU was found to have a 56% decrease in ash content,
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Fig. 1. Mass distribution of products from HTC at 250 °C for 1 hr, including HC, aqueous, and gas phase with different initial feedstocks. The test using SRU was

triplicated, and its standard deviation is reported as error bars for al tests.

Table 2

Chemical and physical properties of SRU, DCW, and BSG. Moisture is given as
received, all other properties on dry basis. Confidence intervals represent stan-
dard deviation of duplicates for ash, VM, and FC; or triplicates for moisture, C, H,
N, O, HHV. Energy recovery confidence was propagated.

Property SRU DCW BSG SRU-HC  DCW- BSG-HC
(db.) HC(d.b.) (d.b.)
Moisture [% 52.9 + 94.9 + 68.7 + - - -
wt] 2.5 0.1 0.4
Ash [%wt] 1.4+ 4.5+ 2.3+ 0.60 + 53+ 1.6 +
0.0 0.0 0.0 0.0 0.1 0.0
VM [%wt] 84.8 + 79.5 + 85.1 + 86.3 + 56.6 + 64.0 +
0.8 0.2 0.6 1.1 0.2 0.5
FC [%wt] 13.8 + 18.9 + 15.0 £ 145 £ 39.5 + 35.5 &+
0.7 0.1 0.5 1.2 0.3 0.6
C [%wt] 53.9 + 44.8 + 48.8 + 75.7 + 69.8 + 71.5 +
2.3 0.3 0.2 0.2 0.2 0.2
H [%wt] 8.9 + 7.0 & 7.4+ 10.2 £ 6.0 £ 57 £
0.4 0.1 0.1 0.2 0.1 0.1
N [%wt] 1.7 £ 22+ 2.8 £ 19+ 3.5+ 3.8+
0.1 0.1 0.1 0.1 0.0 0.0
O [%wt] 33.7 + 41.3 = 38.3 + 115+ 15.1 £ 16.9 +
3.0 0.7 0.6 0.5 0.3 0.2
HHV [MJ 26.0 + 18.5 + 19.7 + 36.0 + 30.5 + 30.2 +
kg1 0.3 0.1 0.2 0.1 0.2 0.1
Energy N/A N/A N/A 80.0 & 62.0 &+ 72.0 =
Recovery 1.6 1.6 1.5

[%]

which would help reduce fouling and slagging risk when combusting the
HC within a combustor (Jenkins et al., 1998). A similar reduction in ash
content was noted in prior food waste HTC studies with varying com-
positions (Bhakta Sharma et al., 2021; Gupta et al., 2020; Theppitak
et al., 2020). Prior work indicates that the rate of solubilization of ash
relative to organics is writ large feedstock dependent, (Smith et al.,
2016). This likely holds for vastly different sources of food waste (e.g.,
dairy versus brewery) but that mixtures of retail level food waste (e.g.,
supermarket, restaurant, or university canteens wastes) may be similar
“enough” to show minimal variation in at least proximate analysis,
despite global differences in diets.

The extent of organic solubilization contributes to observed changes
in HTC product yields and composition. Benchtop studies have charac-
terized two phases of HCs resulting from HTC; a core-shell structure
with a more graphitic primary char (PC) coated with a reactive and
labile secondary char (SC) phase condensed on the surface of the PC
(Lucian et al., 2018). Often, HCs are extracted with solvents (Fang et al.,

2015; Liu et al., 2020) or dried in an oven after HTC (Gupta et al., 2020;
Jackowski et al., 2020; Sharma and Dubey, 2020), which can lead to
significant variability in apparent char characteristics such as organic
recovery rate, heating value and combustion efficiency (Jenkins et al.,
1998; Kumar et al., 2020). Structural differences between the residual
PC and solvent extracted SC phase may be significant in terms of HTC-to-
fuel process decision making.

3.2. Solvent comparison

The amount of PC and SC extracted using the different six solvents
are plotted in Fig. 2. The solvent-extracted PC and SC fractions of each
HC product are stacked in the same column and denoted with different
hatchings. The fraction of extracted SC was the greatest for the alcohol
solvents, while relatively nonpolar, hydrophobic DCM and HEX solvents
extracted half as much SC, at most. Therefore, the SC fraction was ex-
pected to comprise more polar and hydrophilic compounds; similar
properties into which it preferentially solvates. This is supported by
FTIR analysis of HC, PC, and SC (see supplementary material). In
addition, the amount of extractable SC in HC differs by feedstock. HTC
of SRU produced the most HC by mass of the three feedstocks, but the
least PC by mass of the three feedstocks after every solvent extraction. In
contrast, HC from DCW and BSG retain most of their solid mass in the PC
phase with minimal extractable SC with DCM and HEX. Therefore, SRU-
HC comprises a greater labile fraction of extractable organics that
partition into a SC.

The DTG curves of HCs and PCs (see supplementary material) reveal
two main peaks in VM region, the first between 150 and 300 °C and the
second between 300 and 500 °C. The DTG curves illustrate how the low-
temperature volatile nature of SRU-HC is due to labile organics present
in the SC. The low-temperature peak corresponds to the considerable
fraction of volatile extractables present in the SC phase. In the context of
HC being used as a solid fuel, the large quantity of highly volatile
compounds can be problematic in combustion scenarios. These com-
pounds devolatilize quickly and potentially lower the flame tempera-
ture, leading to poor ignition and incomplete combustion of the solid
residue. The two domains shown in the DTG curves have different
oxidation rates, which may result in an inefficient overall energy re-
covery (Jenkins et al., 1998; Muthuraman et al., 2010).

Solvent extractions using HEX and IPA reduce the relative height of
the low-temperature peak, similarly to DTG curves of hydrothermally
carbonized oil-extracted food wastes (Su et al., 2021). For alcohol sol-
vents, the high-temperature peak becomes the most dominant. The more
volatile and oxygenated SC fraction of HC derived from SRU is consistent
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Fig. 2. Distribution of PC and SC in the samples (HCs produced at 250 °C, 1 h using SRU, DCW, and BSG) depending on the solvent used. The sum of PC and SC gives

the overall HC yield. Error bars calculated as the standard deviation of HC yield.

with the lighter, hydrophilic fraction identified in other studies (Li et al.,
2020; Lucian et al., 2018). Polar solvents best partition HC into two
phases having distinct thermal stabilities. The same behavior was found
for DCW and BSG, but in these cases the low temperature peak was
already smaller than the high-temperature peak, which can be attributed
to a lower volatile fraction in the PC due to DCW and BSG lower lipid
content, compared to SRU.

HTC solid composition and elemental content was measured after
each solvent extraction (see supplementary material), and the percent-
age change due to extraction is provided in Table 3. The SRU-PC solids
have the greatest percent elemental and proximate change of the three
feedstocks, consistent with SRU-HC containing the highest mass fraction
of extractable products. All extraction solvents led to a more oxygenated
and less carbonaceous SRU-PC phase. This relative increase in oxygen
content and corresponding decrease in elemental carbon content has the
following trend with solvent selection: ACE ~ DCM > MET ~ ETH >
HEX ~ IPA. Proximate analysis reveals a differing trend for SRU-PC
phases than elemental trends, with a relative decrease in VM and cor-
responding increase in FC with solvent selection occurring with a trend
of: MET = ETH = ACE > DCM > IPA ~ HEX. The trends seen for SRU-HC
are not observed for BSG PCs, which have similar increases in oxygen
and decreases in carbon content after solvent extraction, except for HEX.
For both DCW-PC and BSG-PC, the relative changes are not as significant
as SRU-PC, consistent with the extractability of SC compounds shown in
Fig. 2.

Table 3 further shows that solvent extraction reduces the energy
content in the SRU-PC phase by approximately 25-28% using ETH,
MET, ACE and DCM solvents. For DCW-HC and BSG-HC, solvent
extraction led to HHV changes ranging between 2 and 11%. A decrease
in HHV in the PC phase suggests that the extracted SC is comprised of
more energy dense compounds that can be further used as fuel. To best
show the energy content across phases, Table 4 provides energy re-
coveries of both the PC and SC phases after solvent extraction. Table 4
shows that for HC created from the representative food waste mixture,
the SC phase has a higher energy content than the PC phase following
extraction with all solvents except HEX, highlighting the poor extract-
ability of this unbranched, relatively nonpolar alkane for SC compo-
nents. On the other hand, the alcohol extracts from SRU contain more
than 70% of the energy content of the initial feedstock; a recovery that is
similar to or better than many HTC studies (Sharma and Dubey, 2020; Su
et al., 2021; Theppitak et al., 2020).Therefore, alcohol extraction of
SRU-HC will effectively partition the as-carbonized HC to an energy-
dense secondary char phase, from which it may be possible to recover
liquid fuel precursors.

Table 3

Percentage change in chemical and physical properties of HCs after solvent
extractionon a dry basis. Confidence intervals are propagated from the standard
deviation of duplicates for ash, VM, and FC; or triplicates for C, H, N, O, and
HHV.

Sample Ash VM FC C H N o HHV
[%] [%] [%] [%] [%] [%] [%] [%]
SRU-PC 426 -35 182 -9 —46 132 54 —26
(MET) + 27 +2 + 26 +0 +2 + 10 +6 +2
SRU-PC 277 -33 181 -8 —45 130 53 -25
(ETH) + 60 +1 + 20 +0 +2 + 10 +5 +2
SRU-PC 216 —-28 154 -6 -39 120 42 -21
(IPA) +0 +1 +16 +0 +1 +6 +3 +1
SRU-PC 144 —34 188 -10 —45 131 75 -28
(ACE) + 10 +1 + 21 +0 +1 +7 +4 +1
SRU-PC 225 -32 176 -10 —46 137 68 —28
(DCM) +12 +1 + 20 +0 +1 +7 +7 +2
SRU-PC 129 -25 144 -6 —34 110 43 -19
(HEX) +9 +1 + 17 +0 +1 +6 +2 +1
DCW-PC 27 + -12 11 + -2 -19 13+ 4+ -8+
(MET) 1 +0 0 +0 +1 0 0 2
DCW-PC 34 + -15 15 + -5 -17 9+0 15 -11
(ETH) 2 +0 0 +0 +1 +1 +2
DCW-PC 15+ -5 4+0 -2 -13 70 8+ -6 +
(IPA) 0 +0 +0 +1 0 2
DCW-PC 24 + -11 9+0 -5 -15 11 + 19 -11
(ACE) 1 +0 +0 +0 0 +1 +1
DCW-PC 23+ -10 9+0 -5 -13 9+0 17 -9+
(DCM) 1 +0 +0 +0 +0 1
DCW-PC 14 £ -5 3+0 -0 -5 5+0 -2 -2+
(HEX) 1 +0 +0 +0 +0 2
BSG-PC 45 + -13 19+ -2 —6 6+0 5+ -3+
(MET) 4 +1 1 +0 +0 0 1
BSG-PC 50 + -13 18 + -2 -6 5+£0 6+ -4+
(ETH) 0 +0 0 +0 +0 0 2
BSG-PC 0+0 —4 5+0 -2 0+0 4+0 6+ -2+
(IPA) +0 +0 0 1
BSG-PC 50 + -11 16 + -3 -6 4+0 10 -5+
(ACE) 6 +0 0 +0 +0 +0 1
BSG-PC 42 + -10 13 + -3 0+0 5+0 7%+ -3+
(bCM) 2 +0 0 +0 0 1
BSG-PC -2 -3 4+0 -0 8+0 1+0 -1 2+1
(HEX) +0 +0 +0 +0

Fig. 3 are representative stacked GC-MS chromatograms of the
extracted secondary char from SRU and DCW feeds. Despite the six
solvents extract different mass of SC from the same HC (see Fig. 2), the
SC compositions is mildly influenced by the solvent selection compared
to the feedstock nature. MET has the most significant influence on the SC
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Table 4 acid peak is the most prominent in terms of peak area of all the com-
Energy recovery of PC and SC fractions after solvent extraction. Energy recovery pounds identified in SC from SRU, while palmitic acid peak is the most
calculations based on HHVs estimated using Dulong’s formulate from elemental prominent peak area in DCW and BSG (see supplementary material).
composition. Approximately 68% of the GC-MS peak area is comprised of oleic acid
Extraction Solvent Energy Recovery [ER, %] for SRU derived SC phase, while only 8 and 37% of the GC-MS peak area
SRU-  SRU-  DCW-  DCW-  BSG-  BSG- are comprised of oleic acid for extracted secondary chars of DCW and

rC s¢ rC s¢ PC s¢ BSG, respectively. The greater long chain fatty acid content identified in

Methanol (MET) 12.0 72.8 32.0 28.0 43.6 29.2 the SRU-SC phase, compared to DCW and BSG, is consistent with the
Ethanol (ETH) 129 719 330 26.9 467 261 hydrolysis of lipids, which are found in high concentrations in U.S. su-
IS‘E?;:‘)JYI Aleohol 141 70.7 352 248 471 7 permarket and food service waste (Lee et al., 2020; Li et al., 2020). These
Acetone (ACE) 328 52.0 53.1 6.9 64.9 7.9 oily compounds have a high energy density (Fassinou, 2012), and can be
Dichloromethane 35.4 49.4 55.1 4.9 72.8 0.0 converted into biodiesel through transesterification (Maghrebi et al.,
(DCM) 2021), into diesel-range hydrocarbons through hydrodeoxygenation
Hexane (HEX) 48.8 36.0 56.1 39 728 0.0 (Serrano et al., 2019), or into other added value bio-products (e.g.

biodiesel cold-properties enhancers, lubricants, fabric conditioners,
surfactants, paint driers, vinyl stabilizer, and cosmetics) through isom-
erization (Maghrebi et al., 2021).

SRU and DCW derived SC show more peaks related to short chain

composition, extracting a smaller fraction of C18 oleic acid relative to
C14 myristic and C16 palmitic acid (see supplementary material).
Concerning the effect of feedstock nature on SC composition, an oleic
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Fig. 3. GC-MS chromatograms for SC extracted using DCM, ACE, MET, and ETH from SRU (a and b) and DCW (c and d), divided in short (a and c), and long retention
time regions (b and d).
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compounds (Fig. 3) compared to BSG, which can be attributed to their
greater carbohydrate and protein contents.

The smaller fraction but similar nature for BSG-SC compared to
DCW-SC, suggests this phase derives from the reaction of proteins,
carbohydrates, while the lignocellulosic fraction tends to partition in the
PC phase.

3.3. Summary of results

HTC effectively converts food waste into a valuable HC that can be
separated via solvent extraction into PC and SC. The PC has improved
coal-like characteristics with respect to the original HC, and the
extracted SC could be used as a source of liquid fuel precursors. Both
feedstock nature and solvent selection importantly impact the amount
and composition of these phases.

In terms of feedstock composition, the lipid content directly corre-
sponds to an increased production of long chain fatty acids, whereas
carbohydrates and proteins favor the production of shorter-chain com-
pounds in the SC. The lignocellulosic fraction preferentially forms PC.
Concerning the solvent selection, alcohols extract the largest mass of
secondary char among all options. ETH, ACE and DCM maximize the
content of long chain fatty acid in the SC and remove the volatilization
peak at low temperature visible during PC oxidation that may result in
an inefficient overall energy recovery. Also, ETH produce PC with the
highest FC fraction among all solvents.

In summary, for lipid-rich substrates like retail level food waste
(SRU), up to 50 wt% of the original feedstock can be converted into a SC
phase mainly composed of long chain fatty acids using HTC followed by
ETH extraction. These compounds represent valuable liquid fuels and
chemical precursors, while the solid PC shows improved coal-like
characteristics. For carbohydrates and proteins-rich substrates like
dairy cheese whey DCW, HTC produces a smaller fraction of SC richer in
short chain compounds, while for lignocellulosic ones, it preferentially
produces PC. In this case, a solvent extraction using DCM or ACE min-
imizes the SC mass extracted (thus maximizing the PC one) but removes
the low temperature volatilization peak in PC oxidation, possibly
avoiding potentially undesirable combustion behavior for the solid PC.

4. Conclusions

Brewer’s spent grain, dairy cheese whey and a representative food
waste mixture were hydrothermally carbonized. The resulting hydro-
chars were separated via solvent extraction into a solid primary char and
an oily secondary char. Feedstock nature and solvent selection impact
the amount and composition of the char phases. For lipid-rich substrates,
ethanol separates a secondary char phase rich in fuel precursors from a
solid primary char with improved coal-like characteristics. Carbohy-
drates and proteins-rich substrates produces less secondary char, richer
in short chain compounds. Lignocellulosic substrates preferentially
produce primary char. Acetone and dichloromethane maximize primary
char yield and mitigate potential combustion problems.
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