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Abstract—We consider the concatenation of a convolutional
code (CC) with an optimized cyclic redundancy check (CRC) code
as a promising paradigm for good short blocklength codes. The
resulting CRC-aided convolutional code naturally permits the
use of serial list Viterbi decoding (SLVD) to achieve maximum-
likelihood decoding. The convolutional encoder of interest is of
rate-1/ω and the convolutional code is either zero-terminated
(ZT) or tail-biting (TB). The resulting CRC-aided convolutional
code is called a CRC-ZTCC or a CRC-TBCC. To design a
good CRC-aided convolutional code, we propose the distance-
spectrum optimal (DSO) CRC polynomial. A DSO CRC search
algorithm for the TBCC is provided. Our analysis reveals that the
complexity of SLVD is governed by the expected list rank which
converges to 1 at high SNR. This allows a good performance
to be achieved with a small increase in complexity. In this
paper, we focus on transmitting 64 information bits with a
rate-1/2 convolutional encoder. For a target error probability
10−4, simulations show that the best CRC-ZTCC approaches the
random-coding union (RCU) bound within 0.4 dB. Several CRC-
TBCCs outperform the RCU bound at moderate SNR values.

Index Terms—Convolutional code, cyclic redundancy check
code, list Viterbi decoding, negative acknowledgement, unde-
tected errors.

I. INTRODUCTION

RECENTLY, the coding theory community has witnessed
a growing interest in designing powerful short block-

length codes (e.g., codes with a thousand or fewer information
bits). This renewed interest is mainly driven by the stringent
requirement of new ultra-reliable low-latency communication
in 5G [4], and advances in the finite-blocklength informa-
tion theory developed by Polyanskiy, Poor and Verdú [5].
The basic question of finite-blocklength information theory
asks: what is the maximal channel coding rate achievable at
a given blocklength n and error probability ϵ? To answer
this question, Polyanskiy et al. developed the random-coding
union (RCU) bound rcu(n,M) [5, Theorem 16] and the
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meta-converse (MC) bound mc(n,M)) [5, Theorem 27] that
provide, respectively, tight upper and lower bounds on the error
probability P ∗

e (n,M) of the best (n,M) code of length n and
M codewords. Namely,

mc(n,M) ≤ P ∗
e (n,M) ≤ rcu(n,M). (1)

They also provide the normal approximation [5, Eq. 223] that
tightly approximates the performance of the best (n,M) code.
Thereafter, these bounds serve as benchmarks to assess the per-
formance of a given finite-blocklength code over a broad class
of channels, including the discrete memoryless channel (DMC)
and the additive white Gaussian noise (AWGN) channel. Due
to the prohibitive complexity of an exact computation of the
RCU and MC bounds, saddlepoint approximations of these
two bounds were developed that are shown to be numerically
accurate [6].

For coding theorists, a central task is to construct structured
short-blocklength codes for the binary-input AWGN channel
such that the probability of error falls into the region delimited
by the RCU bound and the MC bound at a reasonable decoding
complexity. There are numerous approaches to achieve this
goal. As a comprehensive overview, Coşkun et al. surveyed
in detail the contemporary short-blocklength code designs
developed in recent decades [7]. Important examples include
extended BCH codes under ordered statistics decoding (OSD)
[8], [9], tail-biting convolutional codes under wrap-around
Viterbi algorithm (WAVA) [10], non-binary low-density parity-
check codes [11], [12], non-binary turbo codes [13], [14]
and polar codes [15], [16]. Recent advances also include the
polarization-adjusted convolutional codes proposed by Arıkan
[17], [18]. It is worth noting that if no restrictions are imposed
on what kind of codes should be used for the AWGN channel,
Shannon [19] has ingeniously shown that the optimal (n,M)
code should be placed on a sphere in the n-dimensional
Euclidean space such that the total solid angle is evenly split
between the M Voronoi regions and every Voronoi region
is a perfect circular cone in order to achieve the minimum
probability of error.

While there are many possible structures for short-
blocklength coding, this paper focuses on the concatenation of
a convolutional code with a cyclic redundancy check (CRC)
code. The resulting concatenated code is called the CRC-aided
convolutional code. Convolutional codes were first introduced
by Elias [20]. Viterbi decoding of convolutional codes was
developed by Viterbi [21] and its maximum-likelihood (ML)
nature was recognized by Forney [22], [23]. Advantages of
convolutional codes include low decoding latency [24], [25]
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and good error correction performance at short blocklength.
The term “CRC” stems from the use of cyclic codes for error
detection [26], where the cyclic codeword can be put into
systematic form with the parity bits easily generated by a
linear sequential circuit. As explained in [27], CRC codes are
possibly shortened cyclic codes generated by a polynomial
whose leading and zero coefficients are nonzero. The order
of the generator polynomial defines the blocklength of the
associated cyclic code. However, in practice, the CRC code is
a subcode of this cyclic code whose blocklength is less than
the polynomial order.

The structure of concatenating a convolutional code with
a CRC code was first proposed in the context of hybrid
automatic repeat request (ARQ) [28] and is used in numerous
practical systems where the convolutional code serves as an
inner error-correcting code to combat channel errors and the
CRC code serves as an error-detecting code to verify if a
codeword has been correctly received. Examples include the
3GPP cellular communication standards of both 3G [29] and
4G LTE [30].

The classical decoding approach for a CRC-aided convolu-
tional code in a hybrid ARQ setting is Viterbi decoding with
CRC verification. The input sequence identified by Viterbi
decoding is checked to determine whether it is divisible by
the CRC polynomial. This indicates whether a valid message
has been decoded. If the decoded sequence is divisible by
the CRC polynomial, the message segment of the decoded
sequence is declared as the most likely message. Otherwise, a
negative acknowledgement (NACK) is declared and perhaps a
retransmission request is sent to the transmitter.

Unfortunately, the classical approach of Viterbi decoding
with CRC verification conceals the true potential of the CRC-
aided convolutional code. Performing a single Viterbi decoding
step causes the decoder to give up too early, often before
encountering a convolutional codeword whose input sequence
passes the CRC verification. To unleash the power of the CRC-
aided convolutional code, we consider the serial list Viterbi
decoding (SLVD) pioneered by Seshadri and Sundberg [31].
SLVD sequentially produces a rank ordered list of codewords
according to their likelihoods. Hence, CRC verification can
naturally be used as a termination criterion for this list
decoding.

Practical implementation of the SLVD typically assumes a
constrained maximum list size Ψ to limit the peak decod-
ing complexity. The SLVD terminates either when an input
sequence passes the CRC verification or when the list rank
reaches Ψ. The list rank at which the decoder stops is called
the terminating list rank L. However, it is not always possible
to have L = Ψ. This is because Ψ can be set arbitrarily large,
yet only finitely many codewords exist. This implies that L
has an intrinsic maximum achievable value independent of Ψ
which is referred to as the supremum list rank λ. Consequently,
L is a bounded random variable between 1 and min{λ,Ψ}.
Since the decoding complexity is a function of L, the average
decoding complexity is a function of the average list rank E[L].

Assume that Ψ < λ. In this case, there are three possible
outcomes associated with the SLVD: 1) a correct decoding if
SLVD identifies the transmitted message within Ψ trials; 2) an

undetected error (UE) if an erroneous input sequence found
by SLVD passes the CRC verification within Ψ trials; and 3) a
NACK and the forced termination of the decoder if the SLVD
fails to find an input sequence that passes CRC verification
within Ψ trials. In contrast, any value of Ψ with Ψ ≥ λ gives
the same decoder behavior where no NACK is produced. In
this case, the SLVD is an implementation of ML decoding of
the CRC-aided convolutional code. In the extreme case where
Ψ = 1, the SLVD reduces to the classical Viterbi decoding
with CRC verification.

A classical list decoder [32] assumes a fixed list size
and declares decoding success as long as the transmitted
codeword is in the list. In contrast, the SLVD has a more
stringent requirement for success that can lead to a higher error
probability than for the classical list decoder. Several upper
bounds on error probability were developed for the classical
list decoder, e.g., [33], [34]. However, these results are not
directly applicable to the SLVD.

This paper focuses on the concatenation of a rate-1/ω con-
volutional code with an optimized CRC code. We explore both
zero-terminated convolutional code (ZTCC) and tail-biting
convolutional code (TBCC) [35]. The resulting concatenated
code is called a CRC-ZTCC in the first case and a CRC-TBCC
in the second case. For CRC-ZTCCs, Lou et al. [36] realized
that previous designs of CRC polynomials typically ignore
the structure of the inner error-correcting code, which leads
to suboptimal performance. Lou et al. designed optimal CRC
polynomials for a given ZTCC such that the probability of UE
is minimized for a single Viterbi decoding attempt followed by
CRC verification. A key point in their analysis is that when the
target probability of UE is low enough, the design principle is
equivalent to maximizing the minimum distance of the CRC-
ZTCC. However, Lou et al. did not address the optimal CRC
design for a TBCC and did not consider SLVD.

Compared to the ZTCC, the TBCC has the advantage of
avoiding the rate loss incurred by the overhead associated
with the zero tail that follows the information sequence, but
this overhead reduction comes with an increase in decoding
complexity. A TB codeword requires that the initial and
terminating states be the same, which can be achieved, for
example, by setting the initial encoder memory to be the final
bits of the information sequence. However, this requirement
increases the difficulty of efficiently identifying the ML path
on the trellis because the common value of the initial and
terminating states is unknown at the decoder.

One approach to ML decoding of a TBCC is to perform
Viterbi decoding from every possible initial state [35]. Various
approximate algorithms are proposed for decoding the TBCC
based on either ML or maximum a posteriori probability
criterion, e.g., [37]–[40]. Among these algorithms, the WAVA
[40] proves to be both efficient and near-ML. Shankar et al.
[41] introduced an efficient, iterative, two-phase algorithm
for exact ML decoding of TBCC, where an A* algorithm
is applied in the second phase, using information from the
first phase to compute the heuristic function. To make the
exact SLVD of TBCC possible and efficient, this paper ex-
tends Shankar et al.’s algorithm to accommodate the CRC
polynomial. Specifically, if a traceback identifies a TB path,
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the CRC of the corresponding input sequence is checked. If
the input sequence passes the CRC verification, the algorithm
terminates. Otherwise, the algorithm locates the next rank
ordered path.

A. Contributions

This paper provides a design paradigm for both CRC-
ZTCCs and CRC-TBCCs, a suite of tools for performance
analysis of these codes, and a complexity analysis showing
that SLVD allows low-complexity decoding at low probability
of UE for Ψ ≥ λ, i.e., an average decoding complexity
similar to standard Viterbi decoding of the convolutional code
alone. These contributions combine to yield, for example,
CRC-aided convolutional codes that closely approach the RCU
bound while requiring decoding complexity similar to Viterbi
decoding on a convolutional code trellis with 28 states.

The main contributions of this paper are summarized below.
1) CRC-Aided Convolutional Code Design: This paper

introduces the concept of the distance-spectrum optimal (DSO)
CRC polynomial, which minimizes the theoretical union bound
of the probability of UE for Ψ ≥ λ. Theorem 1 shows
that for high SNR, the DSO CRC polynomial reduces to the
one that obtains the best minimum distance dlmin. Theorem 2
provides a sharp upper bound on the achievable dlmin based
on the distance spectrum of the convolutional code. For low
target probability of UE, we present an efficient algorithm
for finding DSO CRC polynomials for TBCCs of arbitrary
rate, and provide these polynomials for ZTCCs and TBCCs
for optimum rate-1/2 convolutional encoders in [42] at 64
information bits.

2) CRC-Aided Convolutional Code Performance Analysis:
The performance of a CRC-aided convolutional code with
the constrained maximum list size Ψ is measured by three
probabilities: probability of correct decoding Pc,Ψ, probabil-
ity of UE Pe,Ψ and probability of NACK PNACK,Ψ, where
Pc,Ψ + Pe,Ψ + PNACK,Ψ = 1. This paper provides bounds,
approximations, and simulation results characterizing how
these probabilities vary with Ψ and with SNR. Theorems 4
– 6 describe how performance evolves as Ψ increases, the
existence and behavior of the supremum list rank λ, and
performance (in terms of Pc,Ψ, Pe,Ψ, and PNACK,Ψ) as a
function of SNR for extreme values of Ψ = 1 and Ψ = λ.

3) CRC-Aided Convolutional Code Decoding Complexity:
This paper provides expressions for the complexity of SLVD
for CRC-ZTCCs and CRC-TBCCs. These expressions reveal
that complexity is a function of the expected list rank E[L].
This paper characterizes E[L] including a new approach to
computing E[L] in the limit of low SNR, a new analysis of con-
ditional expected list rank given the noise magnitude, and two
new approaches for approximating the conditional expected
list rank. Our parametric approximation on the conditional
expected list rank naturally leads to an accurate approximation
of E[L] as a function of Pe,λ which shows that as Pe,λ

converges to 0, E[L] converges to 1 (see Approximation 3 to
follow). We see that for practically interesting operating points
of Pe,λ such as 10−6, E[L] ≈ 1 for typical CRC lengths. This
implies that for an interesting range of CRC lengths, the CRC
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or NACK

Soft SLVD
with CRC p(x)

u ∈ Fk
2 v ∈ Fk+m

2
c ∈ Fn

2 x ∈ {−A,A}n

y ∈ Rnû ∈ Fk
2

Fig. 1. Block diagram of the CRC-aided list decoding of convolutional codes.

length can be increased with negligible impact on complexity.
Moreover, for these CRC lengths, the complexity of SLVD
for the CRC-aided convolutional code is very similar to that
of standard Viterbi decoding of the convolutional code alone.

4) Achieving the RCU Bound with Practical Complexity:
This paper focuses on designing good CRC-aided convolu-
tional codes for transmitting 64 information bits. Simulation
results show that the CRC-ZTCC with 8 memory elements
can approach the RCU bound within 0.4 dB with decoding
complexity similar to standard Viterbi decoding of the ZTCC.
The best CRC-TBCC with 8 memory elements essentially
achieves the RCU bound, but requires increased decoding
complexity.

B. Organization

This paper is organized as follows: Section II introduces
notation, the system architecture, TB trellises, Polyanskiy et
al.’s finite-blocklength bounds, and the related saddlepoint
approximations. Section III introduces the concept of the
DSO CRC polynomial, shows that at high SNR the DSO
CRC can be obtained by maximizing dlmin, provides an upper
bound on dlmin, and gives a DSO CRC design algorithm for
TBCCs of arbitrary rate at high SNR. Section IV presents
the performance and complexity analyses of SLVD of a given
CRC-aided convolutional code. Section V presents simulation
results of our designed CRC-aided convolutional codes and
a comparison of (128, 64) linear block codes. Section VI
concludes the paper.

II. PRELIMINARIES

A. Notation

Let F2 = {0, 1} denote the binary field. Fn
2 denotes the

set of n-dimensional binary sequences. F2[x] denotes the
set of binary polynomials. The indicator function 1E takes
the value 1 if the event E occurs, and 0 otherwise. The
polynomial u(x) =

∑n−1
i=0 uix

i ∈ F2[x] and its row vector
form u = [u0, u1, . . . , un−1] ∈ Fn

2 are used interchangeably.
The CRC polynomial is represented in hexadecimal when its
binary coefficients are written from the highest to lowest order.
For instance, 0xD represents x3 + x2 + 1. The convolutional
generator polynomial is represented in octal when the binary
coefficients of each generator polynomial are written from
the lowest to highest order. For instance, (13, 17) represents
(1+x2+x3, 1+x+x2+x3). Let wH(·), dH(·, ·) and ∥·∥ denote
the Hamming weight, Hamming distance, and Euclidean norm
respectively. Finally, cl(S) and ∂(S) denote the closure and
the boundary of a subset S ⊆ Rn, respectively.
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B. Architecture

This paper considers CRC-aided list decoding of convolu-
tional codes, as depicted in Fig. 1. Let u(x) =

∑k−1
i=0 uix

i ∈
F2[x] denote the k-bit binary information sequence, where
uk−1 is the first bit entering the CRC encoder. The information
sequence u(x) is first encoded with a degree-m CRC generator
polynomial p(x) = 1+p1x+· · ·+pm−1x

m−1+xm ∈ F2[x] to
obtain m parity check bits r(x) = xmu(x) mod p(x). Thus,
we obtain v∗(x) = xmu(x) + r(x) which is divisible by the
CRC polynomial p(x). The final CRC-coded sequence v(x)
is produced by reversing v∗(x), i.e., v(x) = xk+m−1v∗(x−1).
This guarantees that the first bit entering the encoder, namely,
uk−1 in u(x), is always the lowest degree term of v(x), consis-
tent with common representation. The concatenated codeword
c ∈ Fn

2 of blocklength n is obtained by convolutionally
encoding v with a minimal, feedforward, (ω, 1, ν) encoder
g(x) = [g1(x), g2(x), . . . , gω(x)], gi(x) =

∑ν
j=0 gi,jx

j , with
ν memory elements. To terminate a convolutional code into a
linear block code, we consider either the ZT or TB method.

This paper focuses on CRC-aided convolutional codes, but
our analysis also involves the higher-rate convolutional code
for which the CRC codeword v is the input message. To
describe the two codes of interest as concisely as possible,
define the higher-rate code Ch and the lower-rate code Cl,
where the latter is the CRC-aided convolutional code, as
follows:

Ch ≜
{
c ∈ Fn

2 : c = vG, ∀v ∈ Fk+m
2

}
, (2)

Cl ≜
{
c ∈ Fn

2 : c = vG, ∀v ∈ Fk+m
2 s.t. p(x)|v∗(x)

}
, (3)

where G ∈ F(k+m)×n
2 is the matrix representation of the

convolutional encoder. Intuitively, the effect of p(x) is to
obtain a subcode Cl from the given higher-rate code Ch. The
exact definition of Ch and Cl require the specification of the
ZTCC or TBCC. For a ZTCC, n = ω(k +m+ ν) and

G =


G0 G1 · · · Gν

G0 G1 · · · Gν

. . . . . . . . . . . .
G0 G1 · · · Gν

 ,
where

Gi =
[
g1,i g2,i · · · gω,i

]
, i = 1, 2, . . . , ν.

Similarly, for a TBCC, n = ω(k +m) and

G =



G0 G1 · · · · · · Gν

G0 G1 · · · · · · Gν

. . . . . . . . . . . .
G0 G1 · · · · · · Gν

Gν G0 G1 · · · Gν−1

Gν−1 Gν
. . . . . .

...
...

. . . . . . G1

G1 G2 · · · Gν G0


.

Clearly, Cl ⊆ Ch, |Ch| = 2k+m and |Cl| = 2k. The rate of
the CRC-aided convolutional code (i.e., the lower-rate code)
R = k/n. A fundamental quantity associated with a linear

block code is its minimum distance. To aid our discussion,
we define

dhmin ≜ min{wH(c) : c ∈ Ch \ {0}}, (4)

dlmin ≜ min{wH(c) : c ∈ Cl \ {0}}. (5)

As a corollary, 0 < dhmin ≤ dlmin. Note that for a ZTCC, dhmin

is in fact an order-(k +m − 1) row distance and is thus no
less than the free distance of the convolutional code [43].

The binary phase shift keying (BPSK) modulated sequence
x = [x0, x1, . . . , xn−1] for codeword c is obtained via
xi = (1 − 2ci)A, where A is the BPSK amplitude, and is
then transmitted over the AWGN channel with channel SNR
γs. Therefore, the channel model is

yi = xi + zi, i = 0, 1, . . . , n− 1, (6)

where zi’s are independent and identically distributed (i.i.d.)
according to the standard normal distribution. Thus, γs = A2

or A =
√
γs.

Upon receiving the channel observations y, the (soft)
SLVD with a constrained maximum list size Ψ using CRC
polynomial p(x) is employed to determine the most likely
information sequences û(x) from the trellis of the higher-rate
code Ch based on y in a sequential manner using a maximum
of Ψ trials. We assume that the SLVD sequentially produces
rank ordered codewords1 that are also higher-rate codewords
in Ch. This is true when Ch is a ZTCC and may not be
true when it is a TBCC in practice. If an input sequence
v̂∗(x) associated with a higher-rate codeword passes the CRC
verification, decoding terminates and the list stops growing.
The corresponding list rank is marked as the terminating list
rank L and the most likely information sequence û(x) is
recovered from the last k bits of v̂∗(x). If an input sequence
divisible by p(x) is not found after Ψ attempts, the decoder
terminates at list rank Ψ with a NACK as the output. As
mentioned earlier, there exists a supremum list rank λ (whose
formal definition will be given in (44)) which is independent
of Ψ. If Ψ ≥ λ, no NACK will occur. Consequently, L is
always bounded between 1 and min{λ,Ψ}.

A UE occurs if the SLVD erroneously identifies an input
sequence v̂∗(x) that is divisible by p(x) and v̂∗(x) ̸= v∗(x).
This is equivalent to the case where the UE polynomial
v̂∗(x) − v∗(x) ∈ F2[x] is nonzero and is divisible by p(x).
Hence, an error event is given by the input-output pair
(v̂(x)− v(x), ĉ(x)− c(x)), where v̂(x) ̸= v(x) and ĉ(x) is a
higher-rate codeword associated with v̂(x). By linearity, each
error event corresponds to a pair of a nonzero input sequence
v(x) and its corresponding codeword c(x). When restricted to
convolutional codes, we can also use a trellis path to represent
an error event.

The performance of the CRC-aided convolutional code is
measured by three probabilities: probability of correct decod-
ing Pc,Ψ, probability of UE Pe,Ψ, and probability of NACK
PNACK,Ψ, where Pc,Ψ + Pe,Ψ + PNACK,Ψ = 1. In the special
case where Ψ ≥ λ, Pc,Ψ + Pe,Ψ = 1. For ease of reference,
we use Pe,λ to represent Pe,Ψ for which Ψ ≥ λ.

1The input sequence that generates this higher-rate codeword is also known
simultaneously.
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C. Tail-Biting Trellises

We follow [44] in describing a TB trellis. Let V be a set of
vertices (or states). The set A is the output alphabet, and E
is the set of edges described as ordered triples (v, a, v′) with
v, v′ ∈ V , and a ∈ A. In words, (v, a, v′) ∈ E denotes an
edge that starts at v, ends at v′ and has output a.

Definition 1 (Tail-biting trellises). A tail-biting trellis T =
(V,E,A) of depth N is an edge-labeled directed graph with
the following property: the vertex set V can be partitioned as

V = V0 ∪ V1 ∪ · · · ∪ VN−1 (7)

such that every edge in T either begins at a vertex of Vi and
ends at a vertex of Vi+1 for some i = 0, 1, . . . , N − 2, or
begins at a vertex of VN−1 and ends at a vertex of V0.

Geometrically, a TB trellis can be viewed as a cylinder of
N sections defined on some circular time axis. Alternatively,
we can also define a TB trellis on a sequential time axis I =
{0, 1, . . . , N} with the restriction that V0 = VN so that we
obtain a conventional trellis.

For a trellis T of depth N , a trellis section connecting time
i and i+1 is a subset Ti ⊆ Vi×A× Vi+1 ⊆ E that specifies
the allowed combination (si, ai, si+1) of state si ∈ Vi, output
symbol ai ∈ A, and state si+1 ∈ Vi+1, i = 0, 1, . . . , N − 1.
Such allowed combinations are called trellis branches. A trellis
path (s,a) ∈ T is a state/output sequence pair, where s ∈
V0 × V1 × · · · × VN , a ∈ AN . Since s equivalently specifies
the input sequence, an error event can also be described by its
corresponding trellis path (s,a).

For a TB trellis T of depth N , a TB path (s,a) of length N
on T is a closed path through N vertices. If T is defined on
a sequential time axis I = {0, 1, . . . , N}, then any TB path
(s,a) of length N satisfies s0 = sN .

D. Finite-Blocklength Bounds and Approximations

In [5], Polyanskiy et al. derived the RCU bound and the MC
bound that upper and lower bound the probability of error of
the best (n,M) code. These two bounds serve as benchmarks
to assess the performance of a given finite-blocklength code.

We follow the notation in [6] to introduce the RCU bound
and the MC bound. Let Wn(·|·) denote a length-n channel. Let
αβ(P,Q) denote the smallest type-I error probability among
all tests discriminating between distributions P and Q, with
a type-II error probability at most β [45, Chapter 11.7]. For
a random-coding ensemble defined over distribution Pn, the
RCU bound is given by

rcu(n,M) ≜ E[min{1, (M − 1) pep(Xn, Y n)], (8)

where (Xn, Y n) ∼ Pn ×Wn and the pairwise error proba-
bility pep(xn, yn) is defined as

pep(xn, yn) ≜ P
(
Wn(yn|X̄n) ≥Wn(yn|xn)

)
,

with X̄n ∼ Pn. The MC bound is a minimax of a particular
smallest type-I error probability

mc(n,M) ≜ min
Pn

max
Qn

{
α 1

M
(Pn ×Wn, Pn ×Qn)

}
, (9)

where the minimization is over all input distributions Pn, and
the maximization is over a set of auxiliary, independent of the
input, output distributions Qn.

An exact evaluation of the RCU bound and the MC bound
involves integrating tail probabilities of n-dimensional random
variables, which is computationally difficult even for simple
channels and moderate values of n. In [6], the authors provided
saddlepoint approximations of these two bounds for memo-
ryless symmetric channels, including the binary-input AWGN
channel. These approximations are shown to be tight for a wide
range of rates and blocklengths. Section V uses saddlepoint
approximations to evaluate the RCU bound and the MC bound
for the binary-input AWGN channel.

Approximation 1 (MC bound, [6]). For memoryless symmet-
ric channels for which Y ∼W (·|x) is independent of x,

mc(n,M) ≈ max
ρ≥0

{
e−n(E0(ρ)−ρE′

0(ρ))·(
ψ
(√

nU(ρ)
)
+ ψ

(
ρ
√
nU(ρ)

)
− e−n(R−E′

0(ρ))
)}
, (10)

where

E0(ρ, P ) = − log

∫
Y

(∑
x∈X

P (x)W (y|x) 1
1+ρ

)1+ρ

dy, (11)

E0(ρ) = max
P

E0(ρ, P ), (12)

ψ(x) =
1

2
erfc

( |x|√
2

)
e

x2

2 sign(x), (13)

U(ρ) = −(1 + ρ)E′′
0 (ρ), (14)

where X and Y denote the input and output alphabets of the
channel, and the maximization in (12) is over all possible
probability distributions on X .

Approximation 2 (RCU bound, [6]). For memoryless sym-
metric channels for which Y ∼W (·|x) is independent of x,

rcu(n,M) ≈ ξ̃n(ρ̂) + φn(ρ̂)e
−n(E0(ρ̂,P )−ρ̂R), (15)

where ρ̂ is the value for which E′
0(ρ, P ) = R, and

Qρ(y) =
1

e−E0(ρ,P )

(∑
x∈X

P (x)W (y|x) 1
1+ρ

)1+ρ

, (16)

ω̄′′(ρ̂) =

∫
Y
Qρ̂(y)

[
∂2

∂τ2

(
log
∑
x∈X

P (x)W (y|x)τ
)∣∣∣

τ=τ̂

]
dy,

(17)

θn(ρ̂) =
1√
1 + ρ̂

(
1 + ρ̂√
2πnω̄′′(ρ̂)

)ρ̂

, (18)

ξ̃n(ρ̂) =


1, ρ̂ < 0

0, 0 ≤ ρ̂ ≤ 1

e−n(E0(1,P )−R)θn(1), ρ̂ > 1,

(19)

V (ρ̂) = −E′′
0 (ρ̂, P ), (20)

φn(ρ̂) = θn(ρ̂)
(
ψ
(
ρ̂
√
nV (ρ̂)

)
+ ψ

(
(1− ρ̂)

√
nV (ρ̂)

))
.

(21)
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III. THE SEARCH FOR THE DSO CRC POLYNOMIAL

In this section, we seek to design good CRC-aided con-
volutional codes that provide the lowest possible probability
of UE Pe,λ. To this end, for a given convolutional code, we
design CRC polynomials that minimize the union bound on
the probability of undetected error Pe,λ. The resulting CRC
polynomial is known as the DSO CRC polynomial.

A. General Theory

For a given convolutional code and a desired CRC degree
m, we wish to identify the degree-m CRC polynomial

p(x) = 1 + p1x+ · · ·+ pm−1x
m−1 + xm ∈ F2[x] (22)

that minimizes the probability of UE Pe,λ. Since the exact
probability Pe,λ has no closed-form expression that can fa-
cilitate a design procedure, we use the union bound as an
objective function that only involves the distance spectrum,
Cdl

min
, . . . , Cn, of the lower-rate code Cl, where Cd denotes

the number of codewords in Cl of Hamming weight d, dlmin ≤
d ≤ n. The distance spectrum of the lower-rate code Cl is a
function of both the CRC polynomial p(x) and the higher-rate
code Ch. For any candidate polynomial p(x), the union bound
on Pe,λ is given by

Pe,λ ≤
∑

c∈Cl\{c̄}

P
(
Z >

1

2
∥x(c)− x(c̄)∥

∣∣X = x(c̄)
)

=
n∑

d=dl
min

CdQ
(
A
√
d
)
, (23)

where c̄ ∈ Cl is the transmitted codeword, x(c) ∈ {−A,A}n
is the BPSK-modulated point for codeword c, Z ∼ N (0, 1),
and

Q(x) ≜
∫ ∞

x

1√
2π
e−u2/2 du (24)

is the complementary Gaussian cumulative distribution func-
tion. Q

(
A
√
d
)

computes the pairwise error probability of two
codewords at distance d. For a given higher-rate code Ch, a
given SNR γs (i.e., A =

√
γs), and a CRC degree m, we

define the degree-m DSO CRC polynomial as the one that
minimizes the union bound on Pe,λ. Namely, the degree-
m DSO CRC polynomial is the solution to the following
optimization problem:

min
p(x)

n∑
d=dl

min

CdQ
(
A
√
d
)
. (25)

Theoretically, the distance spectrum Cdl
min
, . . . , Cn of Cl can

be found through Viterbi search of the trellis of the higher-rate
code Ch, retaining only codewords whose input sequences are
divisible by the candidate CRC polynomial p(x). However,
this approach requires the calculation of distance spectra
for 2m−1 candidate CRC polynomials and quickly becomes
computationally expensive as the information length k gets
large. The degree-m DSO CRC polynomial depends on the
specific higher-rate code and the SNR at which Pe,λ is being

minimized. Note that the DSO CRC polynomial can be differ-
ent for different values of k. In [36], Lou et al. investigated
how DSO CRC polynomials vary with information length k.
Their essential finding is that a DSO CRC polynomial for
a large k is usually “good” for shorter k. If the SNR is
not sufficiently high, the CRC polynomial that minimizes the
union bound in (23) may not minimize the actual Pe,λ.

Nevertheless, when SNR is sufficiently high or equivalently
if the target probability of UE Pe,λ is sufficiently low (typically
less than 10−6), the union bound (23) will be dominated by its
first term Cdl

min
Q
(
A
√
dlmin

)
which becomes asymptotically

tight to Pe,λ. Furthermore, in most cases at high SNR where
the operating A is large enough, the first term in (23) is
only dominated by dlmin. The following theorem justifies this
statement.

Theorem 1. For a given higher-rate code Ch, let
Cdl

min,1
, . . . , Cn and C ′

dl
min,2

, . . . , C ′
n be two distance spectra

associated with lower-rate codes generated by CRC polyno-
mials p1(x) and p2(x), respectively. If dlmin,1 < dlmin,2, there
exists a positive threshold A∗ such that if A > A∗,

n∑
d=dl

min,1

CdQ
(
A
√
d
)
>

n∑
d=dl

min,2

C ′
dQ
(
A
√
d
)
. (26)

In the special case where dlmin,1 = dlmin,2 and Cdl
min,1

>

C ′
dl
min,2

, the above conclusion still holds.

Proof: Assume that dlmin,1 < dlmin,2. Since coefficients
Cdl

min,1
, C ′

dl
min,2

are positive and bounded,

lim
A→∞

∑n
d=dl

min,1
CdQ(A

√
d)∑n

d=dl
min,2

C ′
dQ(A

√
d)

(27)

= lim
A→∞

Cdl
min,1

exp
(
− A2dl

min,1

2

)
C ′

dl
min,2

exp
(
− A2dl

min,2

2

)

·

[
1 +

∑n
d=dl

min,1+1
Cd

C
dl
min,1

exp
(
− A2(d−dl

min,1)

2

)]
[
1 +

∑n
d=dl

min,2+1
C′

d

C′
dl
min,2

exp
(
− A2(d−dl

min,2)

2

)] (28)

= lim
A→∞

Cdl
min,1

C ′
dl
min,2

exp

(
A2

2
(dlmin,2 − dlmin,1)

)
(29)

=∞.
Hence, there exists a threshold A∗ such that when A > A∗,∑n

d=dl
min,1

CdQ(A
√
d) >

∑n
d=dl

min,2
C ′

dQ(A
√
d). In the spe-

cial case where dlmin,1 = dlmin,2 and Cdl
min,1

> C ′
dl
min,2

, the
limit in (29) is still greater than 1. Thus, the same conclusion
follows.

For sufficiently low target Pe,λ, the operating amplitude A
is typically large enough such that A > A∗ is easily met in
practice. In these common situations, the DSO CRC design
principle reduces to maximizing the minimum distance dlmin

of the lower-rate code.
As an illustrative example, Fig. 2 shows the union bounds

(23) for three degree-5 CRC polynomials among the 16
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Fig. 2. Comparison of the DSO CRC polynomials for k = 10, m = 5 and
ZTCC (13, 17). The blocklength of the CRC-ZTCC n = 36. The threshold
value is −0.2398 dB.

candidates for k = 10 and ZTCC (13, 17). The CRC 0x37
minimizes the union bound at low SNR, whereas the CRC
0x2D minimizes the union bound at high SNR. On the
contrary, the CRC 0x33 yields the worst possible union bound
among all candidates. A detailed computation reveals that
dlmin = 11, Cdl

min
= 17 for 0x37, dlmin = 12, Cdl

min
= 76

for 0x2D. Thus, the DSO CRC may not necessarily have the
best minimum distance. The worst CRC polynomial 0x33 has
dlmin = 8, Cdl

min
= 10. In this example, the threshold at which

the DSO CRC polynomial switches from 0x37 to 0x2D is
−0.2398 dB. However, the gap between the performance of
the two CRC polynomials is minimal, especially at low SNR.
Nevertheless, both 0x37 and 0x2D achieve a gain of 0.5 dB
compared to 0x33 at 10−2, showing that the optimal CRC
polynomial is crucial to achieving good performance.

For a given convolutional code and a specified CRC degree
m, one may ask: how large can dlmin be? The next theorem
gives a tight upper bound on dlmin in terms of the distance
spectrum of the higher-rate code Ch.

Theorem 2. Given a specified CRC degree m and a higher-
rate code Ch with distance spectrum Bdh

min
, . . . , Bn, define

w∗ as the minimum w for which
∑w

d=dh
min

Bd ≥ 2m. For any
degree-m CRC polynomial, we have dlmin ≤ 2w∗.

Proof: Define the set V (c) to be the set of codewords
from the higher-rate code Ch that unambiguously decode to
codeword c of the lower-rate code Cl. Specifically, for each
c ∈ Cl, define

V (c) ≜ {r ∈ Ch : dH(r, c) < dH(r, c′), ∀c′ ∈ Cl}. (30)

Hence, by linearity of the higher-rate code, the cardinality of
V (c) for every c ∈ Cl is exactly the same. Hence,

|V (c)| ≤ |Ch||Cl|
= 2m, (31)

where (31) is an inequality because some codewords r ∈ Ch
may be equidistant from two or more lower-rate codewords.

Next, we show that for a given c ∈ Cl, dH(r, c) < 1
2d

l
min

implies that r ∈ V (c). By definition of the minimum distance,

TABLE I
COMPARISON BETWEEN dlmin ASSOCIATED WITH THE DSO CRC

POLYNOMIAL AND 2w∗ COMPUTED FROM THEOREM 2 FOR k = 64

m
ZTCC (13, 17) TBCC (13, 17)

p(x) dlmin 2w∗ p(x) dlmin 2w∗

0 0x1 6 12 0x1 6 12
3 0x9 10 12 0xF 8 12
4 0x1B 10 12 0x1F 9 12
5 0x2D 12 12 0x2D 10 12
6 0x43 12 12 0x63 12 12
7 0xB5 13 14 0xED 12 14
8 0x107 14 14 0x107 12 14
9 0x313 14 16 0x349 14 16

10 0x50B 15 18 0x49D 14 18

for two arbitrary distinct codewords c, c′ ∈ Cl, dH(c, c′) ≥
dlmin. Hence, for any r ∈ Ch, by triangle inequality,

dH(r, c) + dH(r, c′) ≥ dH(c, c′) ≥ dlmin. (32)

Thus, if dH(r, c) < 1
2d

l
min, this implies that dH(r, c′) >

1
2d

l
min for any other c′ ∈ Cl, i.e., dH(r, c) < dH(r, c′) for all

c′ ∈ Cl. By definition of V (c), we conclude that r ∈ V (c).
By law of contraposition, if r /∈ V (c), then dH(r, c) ≥

1
2d

l
min. Indeed, when

∑w
d=dh

min
Bd ≥ 2m (i.e.,

∑w
d=0Bd ≥

2m + 1), by pigeonhole principle, there exists a codeword
r ∈ Ch that is outside of V (c) and whose distance from c
satisfies dH(r, c) ≤ w. Therefore, for this codeword r, w ≥
dH(r, c) ≥ 1

2d
l
min or equivalently, dlmin ≤ 2dH(r, c) ≤ 2w.

Since this holds for any w satisfying
∑w

d=dh
min

Bd ≥ 2m, the
minimum such value w∗ yields the tightest upper bound.

Table I shows the comparison between dlmin and the upper
bound 2w∗ in Theorem 2 for both ZTCC and TBCC generated
with the rate-1/2 convolutional encoder (13, 17) at k = 64.
We see that the upper bound is sharp as there exist DSO CRC
polynomials that achieve this bound.

B. A Two-Phase DSO CRC Design Algorithm for TBCCs

We focus on finding the DSO CRC polynomial for low
target Pe,λ. As discussed earlier, the design principle under
this circumstance conveniently reduces to maximizing the dlmin

of the lower-rate code. Thus, the optimal CRC polynomial
depends on the convolutional code but not the SNR.

In principle, the DSO CRC design algorithm for low target
Pe,λ comprises a collection phase that gathers error events of
the higher-rate code Ch up to a certain distance d̃, and a search
phase that identifies the degree-m DSO CRC polynomial
using the error events gathered in the collection phase. In this
section, we propose a two-phase DSO CRC design algorithm
particularized to TBCCs of arbitrary rate (including rate 1/ω).
Later, we point out that our algorithm is also applicable to
ZTCCs of arbitrary rate with a few distinctions.

The difficulty of designing DSO CRC polynomials for
a TB trellis lies in the fact that a TB trellis is a union
of 2ν subtrellises that share trellis branches in the middle.
Thus, to collect error events that meet the TB condition, a
straightforward collection method is to perform Viterbi search
separately at each possible start state to identify the irreducible
error event (IEE) that leaves the start state once and rejoins it
once, and then use them to reconstruct length-N TB paths with
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distance less than d̃. These IEEs constitute the error events
of interest. However, this scheme will be inefficient in that
for each nonzero start state, there exists a catastrophic IEE
that spends a majority of time in the self-loop of the zero
state. Such an IEE has the catastrophic property that its length
grows unbounded with a finite weight. As a consequence, they
are rarely used during reconstruction yet occupy a significant
portion of total IEEs.

The algorithm we are about to propose follows the straight-
forward algorithm with the distinction in collecting IEEs. To
circumvent the aforementioned catastrophic IEEs, we wish to
identify IEEs whose weight is proportional to its length. To
this end, we first partition the TB trellis into several sets that
are closed under cyclic shifts. Next, all elements in each set
are reconstructed via the concatenation of the corresponding
IEEs and circular shifts of the resulting path.

For a given length-N TB trellis associated with a minimal
convolutional encoder g(x), let V0 = {0, 1, . . . , 2ν − 1} be
the set of possible encoder states. We seek a partition of the
TB trellis, i.e., mutually exclusive sets that, together, contain
all length-N TB paths. To do this, we define TBP(0) as the
set that contains all TB paths that traverse state 0; TBP(1)
contains the TB paths that traverse state 1 but not state 0; and
so on. In general, the set TBP(σ) for σ ∈ V0 is defined as
follows:

TBP(σ) ≜
{
(s,a) ∈ V N+1

0 ×AN : s0 = sN ;

∃i ∈ I s.t. si = σ; ∀i ∈ I, si /∈ {0, 1, . . . , σ − 1}
}
. (33)

An important property of the above decomposition is that
each set TBP(σ) is closed under cyclic shifts, as circularly
shifting a TB path preserves the sequence of states that
it traverses. Furthermore, such a partition of the TB trellis
motivates the following IEE.

Definition 2 (Irreducible error events). For a TB trellis T on
sequential time axis I = {0, 1, . . . , N}, the set of irreducible
error events (s,a) at state σ ∈ V0 is defined as

IEE(σ) ≜
⋃

i=1,2,...,N

IEE(σ, i), (34)

where

IEE(σ, i) ≜{(s,a) ∈ V i+1
0 ×Ai : s0 = si = σ;

∀j, 0 < j < i, sj /∈ {0, 1, . . . , σ}}. (35)

For ZTCCs, Lou et al. [36] considered finding IEEs that
start and end at the zero state and counting the allowed
combinations. Hence, The IEE defined above generalizes Lou
et al.’s IEEs. Since for a nonzero start state, no IEE can
traverse the zero state, this guarantees that the weight of the
IEE grows proportionally with its length, thus avoiding the
catastrophic IEEs incurred in the straightforward algorithm.

With the sets TBP(σ) defined as above, the following
theorem describes how to efficiently find all elements in each
TBP(σ) via the corresponding IEEs.

Theorem 3. Every TB path (s,a) ∈ TBP(σ) can be
constructed from the IEEs in IEE(σ) via concatenation and
subsequent cyclic shifts.

Algorithm 1 The Collection Procedure

Input: The TB trellis T , threshold d̃
Output: The list of IEEs LIEE(d̃) = {(s,a,v)}

1: Initialize lists Lσ to be empty for all σ ∈ V0;
2: for σ ← 0, 1, . . . , |V0| − 1 do
3: Perform Viterbi search at σ on T to collect list Lσ(d̃)

of all IEEs of distances less than d̃;
4: end for
5: return LIEE(d̃)←

⋃
σ∈V0

Lσ(d̃);

Algorithm 2 The Search Procedure

Input: The trellis length N , degree m, list of IEEs LIEE(d̃)
Output: The degree-m DSO CRC polynomial p(x)

1: Initialize the list LCRC of 2m−1 CRC candidates and
empty lists LTBP(d) of TBPs, d = 1, . . . , d̃− 1;

2: for d← 1, 2 . . . , d̃− 1 do
3: Construct all TBPs (s,a,v) from LIEE(d̃) s.t.
wH(a) = d, |v| = N , via concatenation and cyclic shifts;

4: For each TBP, LTBP(d)← LTBP(d) ∪ {(s,a,v)};
5: end for
6: Candi(1)← LCRC;
7: for d← 1, . . . , d̃− 1 do
8: for pi(x) ∈ Candi(d) do
9: Pass all v(x) ∈ LTBP(d) to pi(x);

10: C(i) ← the number of divisible v(x) of dist. d;
11: end for
12: C∗ ← mini∈Candi(d) C

(i)

13: Candi(d+ 1)← {pi(x) ∈ Candi(d) : C(i) = C∗};
14: if |Candi(d+ 1)| = 1 then
15: return Candi(d+ 1);
16: end if
17: end for

Proof: Let us consider T as a TB trellis defined on a
sequential time axis I = {0, 1, . . . , N}. For any TB path
(s,a) ∈ TBP(σ) of length N on T , we can first circularly
shift it to some other TB path (s(0),a(0)) ∈ TBP(σ) on T

such that s(0)0 = s
(0)
N = σ.

Now, we examine s(0) over I. If s(0) is already an element
of IEE(σ), then there is nothing to prove. Otherwise, there
exists a time index j, 0 < j < N , such that sj = σ. In this
case, we break the TB path (s(0),a(0)) at time j into two
sub-paths (s(1),a(1)) and (s(2),a(2)), where

s(1) =(s0, s1, . . . , sj), a(1) = (a0, a1, . . . , aj−1),

s(2) =(sj , sj+1, . . . , sN ), a(2) = (aj , aj+1, . . . , aN−1).

Note that after segmentation of (s(0),a(0)), the resultant
two sub-paths, (s(1),a(1)) and (s(2),a(2)), still meet the TB
condition. Repeat the above procedure on (s(1),a(1)) and
(s(2),a(2)). Since the length of a new sub-path is strictly
decreasing after each segmentation, the boundary case is the
atomic sub-path (s,a) of some length j∗ satisfying s0 =
sj∗ = σ, sj′ ̸= σ, ∀j′ ∈ (0, j∗). Clearly, this atomic path
is an element of IEE(σ). Thus, we successfully decompose a
length-N TB path into elements of IEE(σ). Hence, reversing
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TABLE II
OPTIMUM RATE-1/2 ZTCCS AND THEIR DSO CRC POLYNOMIALS FOR

k = 64 AT SUFFICIENTLY LOW PROBABILITY OF UE Pe,λ

ν ZTCC g(x)
DSO CRC Polynomials

m = 3 4 5 6 7 8 9 10
3 (13, 17) 9 1B 2D 43 B5 107 313 50B
4 (27, 31) F 15 33 4F D3 13F 2AD 709
5 (53, 75) 9 11 25 49 EF 131 23F 73D
6 (133, 171) F 1B 23 41 8F 113 2EF 629
7 (247, 371) 9 13 3F 5B E9 17F 2A5 61D
8 (561, 753) F 11 33 49 8B 19D 27B 4CF
9 (1131, 1537) D 15 21 51 B7 1D5 20F 50D

10 (2473, 3217) F 13 3D 5B BB 105 20D 6BB

the above procedure will turn elements of IEE(σ) into a
length-N TB path.

We now present our two-phase DSO CRC polynomial
design algorithm for TBCCs of arbitrary rate (including rate
1/ω) at low target Pe,λ that consists of the collection procedure
as described in Algorithm 1 and the search procedure as
described in Algorithm 2. In the collection procedure, (s,a,v)
denotes the triple of states s, outputs a and inputs v, where
the inputs v are uniquely determined by state transitions
si → si+1, i = 0, 1, . . . , N − 1. The TB trellis considered in
the collection procedure should set a sufficiently large trellis
length so that IEEs with bounded distance less than d̃ are
fully collected. Once the collection procedure is done, one can
reuse the collected IEEs in the search procedure for various
trellis lengths. For a given higher-rate code Ch and a specified
CRC degree m, according to Theorem 2, it suffices to consider
distance threshold d̃ ≤ 2w∗ + 1, where w∗ is the minimum
weight determined in the theorem, to identify the degree-m
DSO CRC polynomial.

In the search procedure, let |v| denote the length of v. Steps
from lines 2 to 5 use the IEEs to build all length-N trellis paths
with distance less than d̃. In practice, this can be accomplished
using dynamic programming. Specifically, for a given state
σ ∈ V0, let Lσ(w, l) denote the list of TB paths of weight w,
of length l, and with initial state σ, 0 ≤ w < d̃, 1 ≤ l ≤ N .
Then, the update rule of Lσ(w, l) is as follows: given an IEE
(s,a,v) ∈ IEE(σ) with wH(a) ≤ w and |v| < l,

Lσ(w, l)←Lσ(w, l) ∪ {Lσ(w − wH(a), l − |v|)⊕ (s,a,v)},
where Lσ(w, l)⊕ (s,a,v) denotes appending (s,a,v) to the
rear of each element in Lσ(w, l). The update rule inherently
requires that w, l be enumerated in ascending order and
wH(a), |v| in descending order. Finally, the set of length-N
TB paths of distance less than d̃ via direct concatenation are
given by

⋃
σ∈V0

Lσ(d̃−1, N). The rest of the TB paths are ob-
tained by circularly shifting elements in

⋃
σ∈V0

Lσ(d̃− 1, N).
We remark that our algorithm can be generalized to ZTCCs

of arbitrary rate yet comes with the following distinctions: the
collection procedure only collects IEEs that start and terminate
at the zero state; the search procedure only performs dynamic
programming to reconstruct all ZT paths with the target trellis
length N and distances less than d̃; termination tails of each
ZT path should be removed before CRC verification. For
interested readers, the MATLAB routines are available for
ZTCCs [46] and for TBCCs [47].

TABLE III
OPTIMUM RATE-1/2 TBCCS AND THEIR DSO CRC POLYNOMIALS FOR

k = 64 AT SUFFICIENTLY LOW PROBABILITY OF UE Pe,λ

ν TBCC g(x)
DSO CRC Polynomials

m = 3 4 5 6 7 8 9 10
3 (13, 17) F 1F 2D 63 ED 107 349 49D
4 (27, 31) F 11 33 4F B5 1AB 265 4D1
5 (53, 75) 9 11 3F 63 BD 16D 349 41B
6 (133, 171) F 1B 3D 7F FF 145 2BD 571
7 (247, 371) F 11 33 63 EF 145 3A1 5D7
8 (561, 753) F 11 33 7F FF 1AB 301 4F5
9 (1131, 1537) D 15 33 51 C5 1FF 349 583

10 (2473, 3217) F 1B 33 79 BB 199 217 4DD

Table II presents the DSO CRC polynomials of degree
m from 3 to 10 that maximize dlmin of CRC-ZTCCs based
on a family of optimum rate-1/2 convolutional encoders in
[42, Table 12.1(c)] with constraint length v from 3 to 10 for
k = 64. These DSO CRC polynomials are for a sufficiently
low Pe,λ. Table III presents the TBCC counterpart in the same
setting. The code generated by the DSO CRC polynomial
and convolutional encoder in the above tables is our designed
CRC-aided convolutional code. In Section V, we will present
the performance and complexity trade-off of these codes.

IV. PERFORMANCE AND COMPLEXITY OF SLVD

This section explores the performance and complexity of
SLVD. For a specified CRC-aided convolutional code, per-
formance under SLVD is characterized by three probabilities:
Pc,Ψ, Pe,Ψ and PNACK,Ψ. The average decoding complexity of
SLVD is a function of expected list rank E[L]. In order to un-
derstand the performance-complexity trade-off, we investigate
how these quantities vary with system parameters including
the SNR γs and the constrained maximum list size Ψ.

Geometrically speaking, the process of SLVD is to draw a
list decoding sphere around the received sequence y with an
increasing radius until the sphere touches the closest lower-
rate codeword. To formalize this procedure, let us consider
the set of received sequences y ∈ Rn \ N where N is the
probability-zero set defined by N ≜ {y ∈ Rn : ∃ c1, c2 ∈
Ch s. t. ∥y − x(c1)∥ = ∥y − x(c2)∥}. For every y ∈ Rn\N ,
let

c1(y), c2(y), . . . , c|Ch|(y) (36)

be an enumeration of Ch such that

∥y−x(c1(y))∥ < ∥y−x(c2(y))∥< · · ·< ∥y−x(c|Ch|(y))∥.

Using the above enumeration, we formally define the termi-
nating list rank L(y) and the terminating Euclidean distance
dt(y) for y as follows:

L(y) ≜ min{s ∈ {1, 2, . . . , |Ch|} : cs(y) ∈ Cl}, (37)

dt(y) ≜ min
c∈Cl

∥y − x(c)∥. (38)

Thus, the list decoding sphere of y can be expressed as

BSLVD(y) = {c ∈ Ch : ∥y − x(c)∥ ≤ dt(y)}. (39)

Clearly, L(y) = |BSLVD(y)|.
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The concepts above are defined for each individual received
point y ∈ Rn \ N . Alternatively, we can also consider the
decoding region Y(c) (i.e., the Voronoi region) of each lower-
rate codeword c ∈ Cl:

Y(c) ≜
{
y ∈ Rn \ N : ∥y − x(c)∥ < ∥y − x(c′)∥,
∀c′ ∈ Cl \ {c}

}
. (40)

For SLVD, the decoding region Y(c) can be further decom-
posed into finer subsets according to the list rank. Namely,
for each c ∈ Cl and a particular list rank s ∈ {1, 2, . . . , |Ch|−
|Cl|+ 1},

Zs(c) ≜
{
y ∈ Rn \ N : ∃c1, . . . , cs−1 ∈ Ch \ Cl s. t.
∥y − x(c)∥ > max

j=1,2,...,s−1
∥y − x(cj)∥ and

∥y − x(c)∥ < min
c′ /∈Ch\{c,c1,...,cs−1}

∥y − x(c′)∥
}
.

(41)

Here, each Zs(c) is referred to as the order-s decoding region
of c. Obviously, for each c ∈ Cl, we have

Zs1(c) ∩ Zs2(c) = ∅, if s1 ̸= s2 (42)

Y(c) =
⋃

s=1,2,...,|Ch|−|Cl|+1

Zs(c). (43)

By linearity of the code, the order-s decoding regions of all
lower-rate codewords are isomorphic. With BPSK modulation,
the bisection hyperplane of any two codewords passes through
the origin of Rn, making each order-s decoding region a
polyhedron. Note that there exists a supremum list rank λ

λ ≜ max{s : Zs(c) ̸= ∅, ∀c ∈ Cl}. (44)

Here, the supremum list rank λ only depends on Cl and Ch
and is independent of Ψ. Hence, if Ψ ≥ λ, the possible
outcomes of SLVD include only correct decoding or UE.
Namely, NACKs are not possible.

A. Performance Analysis

We first give our results on how Pc,Ψ, Pe,Ψ and PNACK,Ψ

vary with Ψ for a fixed SNR. Each of these probabilities may
be understood as the probability of an event defined as a set
of received sequences y. For example, with c̄ ∈ Cl as the
transmitted codeword, by linearity, we have

Pc,Ψ = P

 ⋃
s=1,2...,λ∧Ψ

Zs(c̄)

∣∣∣∣X = x(c̄)


=

λ∧Ψ∑
s=1

P
(
Zs(c̄)|X = x(c̄)

)
, (45)

Pe,Ψ =
∑

c∈Cl\{c̄}

P

 ⋃
s=1,2,...λ∧Ψ

Zs(c)

∣∣∣∣X = x(c̄)


=

λ∧Ψ∑
s=1

∑
c∈Cl\{c̄}

P
(
Zs(c)|X = x(c̄)

)
, (46)

where λ ∧Ψ ≜ min{λ,Ψ}.

Theorem 4. For a given CRC-aided convolutional code de-
coded with SLVD at a fixed SNR, Pc,Ψ and Pe,Ψ are both
strictly increasing in Ψ and will converge to Pc,λ and Pe,λ

respectively, where Pc,λ + Pe,λ = 1.

Proof: According to (45) and (46), Pc,Ψ and Pe,Ψ are
summations of the order-s decoding regions P(Zs(c)|X =
x(c̄)), thus are non-decreasing in Ψ. For each c ∈ Cl and
s = 1, 2, . . . , λ, P(Zs(c)|X = x(c̄)) is solely determined by
the SNR value and is independent of Ψ. Since every order-
s decoding region Zs(c) is the intersection of halfplanes, it
follows that each Zs(c) is an open set. Hence, it suffices
to show that each Zs(c) is nonempty. To this end, we use
induction to show that all Zs(c), s = 1, 2, . . . , λ, are open
and nonempty.

By definition, Zλ(c) is open and nonempty. Assume Zs(c)
is open and nonempty for some fixed s ≤ λ. Hence, there
exists y ∈ Zs(c) with c1, c2, . . . , cs ∈ BSLVD(y), where
c1, . . . , cs−1 ∈ Ch \ Cl and cs ∈ Cl. Next, we show that
with probability 1, a point y′ can be constructed from y
such that c1, c2, . . . , cj−1, cj+1, . . . , cs−1, cs ∈ BSLVD(y

′) for
some j ∈ {2, 3, . . . , s− 2}.

The new point y′ is constructed as y′ = y+ t(x(cs)− y),
where t ∈ [0, 1]. Hence,

∥x(cs)− y′∥ = (1− t)∥y − x(cs)∥. (47)

Therefore, it is equivalent to showing that there exists t ∈
(0, 1) such that for some j ∈ {1, 2, . . . , s− 1},

∥y′ − x(cj)∥ > (1− t)∥y − x(cs)∥ (48)
max

i∈{1,...,s−1}\{j}
∥y′ − x(ci)∥ < (1− t)∥y − x(cs)∥. (49)

To this end, we show that the set of y for which no such t
exists has a probability of zero. First, consider function

F (t) ≜ max
i=1,2,...,s−1

∥y′ − x(ci)∥ − (1− t)∥y − x(cs)∥.

Since each ∥y′ − x(ci)∥, i = 1, 2, . . . , s − 1, is a continuous
function in t, F (t) is also a continuous function in t ∈ [0, 1].
Note that

F (0) = max
i=1,2,...,s−1

∥y − x(ci)∥ − ∥y − x(cs)∥ < 0 (50)

F (1) = max
i=1,2,...,s−1

∥x(cs)− x(ci)∥ > 0. (51)

By the intermediate value theorem, there exists a t∗ ∈ (0, 1)
such that

max
i=1,2,...,s−1

∥y′ − x(ci)∥ = (1− t∗)∥y − x(cs)∥. (52)

Hence, the converse case can only occur if there exist two
codewords cj1 and cj2 , j1 ̸= j2, such that

∥y′ − x(cj1)∥ = ∥y′ − x(cj2)∥ = (1− t∗)∥y − x(cs)∥.
(53)

If (53) holds, this implies that y′ lies on the intersection of
two hyperplanes: one that bisects x(cj1)x(cs) and the other
that bisects x(cj2)x(cs). Namely, y′ lies on an (n − 2)-
dimensional hyperplane that crosses the origin. Hence, such y′

only occurs if line segment yx(cs) intersects with any of these
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Fig. 3. 1− Pc,Ψ, PNACK,Ψ, Pe,Ψ vs. the constraint maximum list size Ψ at
SNR γs = 3 dB for ZTCC (13, 17), degree-6 DSO CRC polynomial 0x43
and k = 64 in Table II. The black, dashed line represents Pe,λ.

(n − 2)-dimensional hyperplanes. Therefore, the set of y for
which the converse case occurs is the union of finitely many
(n− 1)-dimensional hyperplanes, and thus has probability of
zero. Hence, we can construct a y′ from y ∈ Zs(c) such that
L(y′) = s − 1 with probability 1. Namely, Zs−1(c) is open
and nonempty.

By induction, every order-s decoding region Zs(c), s =
1, 2, . . . , λ, is open and nonempty. Thus, Pc,Ψ and Pe,Ψ are
both strictly increasing in Ψ and will converge to Pc,λ and
Pe,λ respectively provided that Ψ ≥ λ.

As an example, Fig. 3 shows the probability of UE Pe,Ψ and
probability of NACK PNACK,Ψ vs. the constrained maximum
list size Ψ for k = 64, degree-6 DSO CRC polynomial 0x43
and ZTCC (13, 17). It can be seen that Pe,Ψ quickly increases
and converges to Pe,λ when Ψ is relatively small.

The monotone property of Pe,Ψ with Ψ in Theorem 4
indicates that for a fixed SNR value,

Pe,1 ≤ Pe,Ψ ≤ Pe,λ, ∀Ψ ∈ N+. (54)

The proof of Theorem 4 also implies that the closure of the
order-λ decoding region must intersect with the boundary of
Y(c), c ∈ Cl. We formalize this notion in Theorem 5.

Theorem 5. For any lower-rate codeword c ∈ Cl, cl(Zλ(c))∩
∂Y(c) ̸= ∅.

Proof: Fix a lower-rate codeword c ∈ Cl. Let y ∈ Zλ(c).
Consider y′ = y + t(y − x(c)), t ≥ 0. By the proof in
Theorem 4, if y′ ∈ Y(c), L(y′) ≥ L(y) = λ. Since λ is
the maximum list rank, L(y′) = λ for all 0 ≤ t < t∗, where
t∗ is the threshold at which y′ ∈ ∂Y(c). This implies that
cl(Zλ(c)) ∩ ∂Y(c) ̸= ∅.

Theorem 5 indicates that one can find λ by following along
the boundary of Y(c) and making a slight deviation towards
the decoding region Y(c). This approach is computationally
challenging in Rn for interesting values of n. While λ ≤ |Ch|−
|Cl| + 1 provides an initial upper bound on λ, it remains an
open problem to identify a tighter bound on λ and to develop
an efficient algorithm to compute λ.

We next direct our attention to quantifying Pe,1, Pe,λ in
terms of the SNR (or equivalently in terms of amplitude A)
and the distance spectra of both the lower-rate code Cl and the
higher-rate code Ch.

Theorem 6. Under SLVD of a CRC-aided convolutional code
with higher-rate distance spectrum Bdh

min
, . . . , Bn and lower-

rate distance spectrum Cdl
min
, . . . , Cn,

Pe,1 ≤ min

{
2−m,

n∑
d=dl

min

CdQ
(
A
√
d
)}

(55)

≈ min

{
2−m, Cdl

min
Q
(
A
√
dlmin

)}
, (56)

Pe,λ ≤ min

{
1,

n∑
d=dl

min

CdQ
(
A
√
d
)}

(57)

≈ min

{
1,

d̃∑
d=dl

min

CdQ
(
A
√
d
)}
, (58)

PNACK,1 ≈ min

{
1− 2−m,

d̃∑
d=dh

min

BdQ
(
A
√
d
)
− Cdl

min
Q
(
A
√
dlmin

)}
,

(59)

where the second approximation in braces in (56) is called
the nearest neighbor approximation, and the second approxi-
mation in (58) is called the truncated union bound (TUB) at
distance d̃.

Proof: First, note that Pe,Ψ is a monotonically decreasing
function of A for any Ψ. This can be seen from (46) where as
A increases, the center of the Gaussian density is moving away
from every x(c) for c ∈ Cl \ {c̄}. Hence, the corresponding
probability P(Zs(c)|X = x(c̄)) decreases with A, causing
Pe,Ψ to decrease with A.

Now we focus on the Ψ = 1 case. The previous paragraph
reveals that Pe,1 has its maximum value at A = 0. As A→ 0,
the transmitted point converges to the origin O in Rn. At the
limit where x(c̄) = O, the symmetry of the Gaussian density
and linearity of the code ensures that each order-1 decoding
region has a probability of 2−(k+m). Hence,

Pe,1 =
∑

c∈Cl\{c̄}

P(Z1(c)|X = x(c̄)) (60)

≤ lim
A→0

∑
c∈Cl\{c̄}

P(Z1(c)|X = x(c̄)) (61)

=
∑

c∈Cl\{c̄}

P(Z1(c)|X = O)) (62)

= (2k − 1)2−(k+m) ≤ 2−m. (63)

For any SNR value, Pe,1 < Pe,λ so that the union bound
(23) is also an upper bound for Pe,1. Hence, the minimum
between the two is an upper bound on Pe,1. As SNR increases,
the majority of probability will concentrate on the nearest
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Fig. 4. PNACK,1, Pe,λ and Pe,1 vs. SNR γs for ZTCC (13, 17), degree-6
DSO CRC polynomial 0x43 and k = 64 in Table II. The TUBs in (58) and
(59) are obtained at d̃ = 24. The TS bound on PNACK,1 is plotted using [48,
Eq. (14)].

neighbors of c̄, hence, we can approximate Pe,1 only using
the nearest neighbors.

For Pe,λ, we upper bound it by the union bound (23).
For ease of computation, we can consider the TUB up to a
sufficient distance d̃ to approximate the original union bound.

For PNACK,1, in the extremely low SNR regime (i.e., when
A is close to 0), Pc,1 ≈ 2−(k+m) and Pe,1 ≈ 2−m(1− 2−k).
It follows that

PNACK,1 = 1− Pe,1 − Pc,1 ≈ 1− 2−m. (64)

For an arbitrary SNR, invoking the union bound on PNACK,1+
Pe,1 yields

PNACK,1 + Pe,1 ≤
n∑

d=dh
min

BdQ
(
A
√
d
)
≈

d̃∑
d=dh

min

BdQ
(
A
√
d
)
.

Hence,

PNACK,1 ≈
d̃∑

d=dh
min

BdQ
(
A
√
d
)
− Cdl

min
Q
(
A
√
dlmin

)
. (65)

This concludes the proof of Theorem 6.
Fig. 4 shows simulation results and approximations for the

three probabilities addressed in Theorem 6: PNACK,1, Pe,1,
and Pe,λ. As SNR increases, all three approximations become
asymptotically tight to the respective Pe,1, PNACK,1, and Pe,λ.
The nearest neighbor approximation of the union bound on
Pe,λ eventually will become asymptotically tight for Pe,λ, but
is a tight approximation for Pe,1 at a much lower SNR.

We remark that improved upper bounds on PNACK,1 and Pe,λ

can be derived using Gallager’s first bounding technique [49],
provided that the full distance spectra of Ch and Cl are known,
respectively. Some classical examples include the tangential
bound [50], the tangential sphere (TS) bound [48], [51], and
the added-hyperplane bound [52]. These bounds provide a
tight estimation at high noise levels and converge to the union
bound at low noise levels. As an example, in Fig. 4, we plot the

O
x̄

yp

A
√
n

y

w

θ

Fig. 5. An illustration of the projection method.

minimum between (1 − 2−m) and the TS bound for PNACK,1

following [48, Eq. (14)]. It can be seen that the TS bound
quickly converges to the TUB as SNR increases. Since this
paper mainly focuses on low target error probability, we only
consider the TUB for estimating PNACK,1 and Pe,λ.

B. Analysis of the Expected List Rank

For a fixed transmitted point x̄, observe that P(L =
s|X = x̄) =

∑
c∈Cl

P(Zs(c)|X = x̄) is independent of
Ψ. Combining with the linearity E[L] = E[L|X = x̄], it
follows that E[L] is a strictly increasing function in Ψ. In
the subsequent analysis, we assume that Ψ ≥ λ and the
terminating list rank L ranges from 1 to λ unless otherwise
specified.

Theorem 7. For a given CRC-aided convolutional code de-
coded with SLVD, limγs→0 E[L] = E[L|X = O].

Proof: We use the projection method to show the conver-
gence of E[L] in the low SNR regime.

For ease of discussion, let B(a, r) denote the spherical
surface of center a ∈ Rn and radius r in Rn. With BPSK mod-
ulation, all codewords sit on the codeword sphere B(O, A√n),
whereas the received point y lies on the noise sphere B(x̄, w)
for some noise vector with Euclidean norm w added to
the transmitted point x̄. The projection method projects the
received point y onto the codeword sphere. Namely, the
projected point yp of y is given by yp = (A

√
n/∥y∥)y. Fig.

5 illustrates the geometry of the projection method.
The significance of the projection method introduced above

lies in the fact that it preserves the order of list decoded
codewords. By law of cosines at angle θ in Fig. 5, we obtain

∥yp − x̄∥ =


√

∥y−x̄∥2−∥y−yp∥2

1+
∥y−yp∥

A
√

n

, if yp in between O, y√
∥y−x̄∥2−∥y−yp∥2

1− ∥y−yp∥
A

√
n

, otherwise.

(66)

Hence, the monotone relation between ∥yp − x̄∥ and ∥y − x̄∥
ensures that performing SLVD using y is equivalent to that
using yp. The essential motivation of projecting points onto
the codeword sphere is to transfer the computation on the noise
sphere to the codeword sphere.



13

To see how the projection method helps to show the
convergence of E[L], we first decompose the expected list rank
E[L] according to the noise vector norm W = w. By linearity
of the code,

E[L] = E[L|X = x̄]

=

∫ ∞

0

fW (w)E[L|W = w,X = x̄] dw, (67)

where fW (w) denotes the density function of norm W = w.
To find fW (w), let

ϕn(w) ≜
1

(
√
2π)n

exp

(
−w

2

2

)
, (68)

Sn−1(w) ≜
2π

n
2

Γ(n2 )
wn−1 (69)

be the n-dimensional standard normal density function and the
spherical area of B(x̄, w) in Rn, respectively. Then,

fW (w) = ϕn(w)Sn−1(w) =
wn−1

2
n−2
2 Γ(n2 )

exp

(
−w

2

2

)
. (70)

For a given norm W = w, it follows that

E[L|W = w,X = x̄] =
1

Sn−1(w)

∫
y∈B(x̄,w)\N

L(y) dσ,

(71)

where σ denotes the spherical measure on B(x̄, w). Using
the projection method, the integral in (71) can be transformed
to the codeword sphere at the cost of introducing an induced
density function gw(yp). Namely,

E[L|W = w,X = x̄] =

∫
yp∈B(O,A

√
n)\N

L(yp)gw(yp) dσ.

(72)

In Appendix A, the induced density function, for w ≥ A
√
n,

is given by

gw(yp) =

(∥y(yp)∥
w

)n−1
1

cos∠x̄y(yp)O

1

Sn−1(A
√
n)
,

(73)

where y(yp) is the pre-image of yp on the noise sphere
B(x̄, w). Note that gw(yp) is rotationally symmetric with
respect to axis Ox̄. Appendix A also shows that

gw(yp) ≥
1

Sn−1(A
√
n)

(
1− A

√
n

w

)n−1

, (74)

gw(yp) ≤
1

Sn−1(A
√
n)

(
1 +

A
√
n

w

)n−1

. (75)

This implies that for a fixed norm w,

lim
A→0

gw(yp)

(Sn−1(A
√
n))−1

= 1. (76)

Hence, for a fixed norm w, it follows that

lim
A→0

E[L|W = w,X = x̄]

= lim
A→0

∫
yp∈B(O,A

√
n)\N

L(yp)gw(yp) dσ (77)

= lim
A→0

∫
yp∈B(O,A

√
n)\N

L(yp)
1

Sn−1(A
√
n)

dσ (78)

= lim
A→0

E[L|W = A
√
n,X = O] (79)

=E[L|X = O], (80)

where we have used the fact that E[L|W = w,X = O] =
E[L|X = O] for all w > 0. Similarly, we can also show that,
for a fixed amplitude A,

lim
w→∞

E[L|W = w,X = x̄] = E[L|X = O]. (81)

As a consequence,

lim
γs→0

E[L] = lim
A→0

∫ ∞

0

fW (w)E[L|W = w,X = x̄] dw

=

∫ ∞

0

f(w) lim
A→0

E[L|W = w,X = x̄] dw

=

∫ ∞

0

f(w)E[L|X = O] dw

= E[L|X = O]. (82)

This completes the proof.
The proof above implies that in the low SNR regime,

most of the probability will concentrate on the limit of
E[L|W = w,X = x̄] as w → ∞, i.e., E[L|X = O]. In
general, E[L|X = O] depends on the geometric structure
of the lower-rate code Cl and the higher-rate code Ch on
B(O, A√n) and it is not easy to obtain an analytic expression.
Still, using a simple random coding argument, we show that
a good concatenated code could achieve E[L|X = O] ≤ 2m.

Theorem 8. For a given higher-rate code Ch with |Ch| =
2k+m, let Al ≜ {C′ ⊂ Ch : |C′| = 2k}. Let P(C′) = 1

|Al| be
the uniform distribution defined over Al. Assume C′ is drawn
according to P(C′). Then,

EC′
[
E[L|X = O, C′]

]
≤ 2m. (83)

This implies that there exists a lower-rate code C′ (which may
not be a linear code) such that E[L|X = O, C′] ≤ 2m.

Proof: Let L(y, C′) be the terminating list rank for
received point y ∈ Rn when a lower-rate code is selected
as C′ ∈ Al

2. Hence, we obtain

EC′
[
E[L|X = O, C′]

]
=
∑

C′∈Al

P(C′) 1

Sn−1(A
√
n)

∫
y∈B(O,A

√
n)

L(y, C′) dσ

=
1

Sn−1(A
√
n)

∫
y∈B(O,A

√
n)

∑
C′∈Al

P(C′)L(y, C′) dσ

=
1

Sn−1(A
√
n)

∫
y∈B(O,A

√
n)

EC′ [L(y, C′)|y] dσ. (84)

2If there exist two codewords cj1 and cj2 that are equidistant from y, the
decoder adopts a pre-determined order relation between cj1 and cj2 .
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Fig. 6. The conditional expected list rank E[L|W = η,X = x̄e] vs. the
normalized norm η for the CRC-ZTCC generated with the degree-3 DSO
CRC polynomial 0x9 and ZTCC (13, 17).

Next, we show that for any y ∈ B(O, A√n),

EC′ [L(y, C′)|y] ≤ 2m (85)

for C′ uniformly drawn from Al. Fix a y ∈ B(O, A√n) and
let c1(y), c2(y), . . . , c|Ch|(y) be an enumeration of Ch such
that

∥y − x(c1(y))∥ ≤ · · · ≤ ∥y − x(c|Ch|(y))∥.

Hence, the terminating list rank L(y, C′) of y is given by

L(y, C′) = min{s : cs(y) ∈ C′}. (86)

For C′ uniformly drawn in Al, computing EC′ [L(y, C′)|y] is
equivalent to solving the following problem: there are |Ch|
balls in a basket, among which |C′| of them are red and the rest
are white. Balls are picked up |Ch| times without replacement
and the time at which the first red ball emerges is marked as
the terminating list rank. Since every ordering of ball picking
is equiprobable and is bijective with Al, the expected list rank
in ball picking problem is equal to EC′ [L(y, C′)|y]. Hence,

EC′ [L(y, C′)|y] =
|Ch|−|C′|+1∑

s=1

s

(|Ch|−s
|C′|−1

)(|Ch|
|C′|
) (87)

=
|Ch|+ 1

|C′|+ 1
(88)

≤ 2m,

where (88) follows from a variant of the Chu-Vandermonde
identity.

Finally, substituting (85) into (84) proves Theorem 8.
In (67), it is shown that E[L] can be fully characterized by

its conditional expectation E[L|W = w,X = x̄]. For a given
w and A, let x̄e = x̄/A be the transmitted point with unit
amplitude per dimension. Then it can be shown that

E[L|W = w,X = x̄] = E[L|W = η,X = x̄e], (89)

Fig. 7. The expected list rank E[L] vs. SNR for various CRC-ZTCCs, where
ZTCC is (13, 17) and the DSO CRC polynomials are from Table II with
degree m = 3, 4, . . . , 6. The information length k = 64.

where η ≜ w/A is called the normalized norm. Hence,
it suffices to compute E[L|W = η,X = x̄e]. The SNR
(equivalently, the BPSK amplitude A) only exhibits a scaling
effect. To evaluate E[L|W = η,X = x̄e], let C−l ≜ Cl \ {c̄}
and define the conditional probability of UE conditioned on
the sphere B(x̄e, η) as

Pe,λ(η) ≜
∑
c∈C−

l

P(Y(c)|W = η,X = x̄e). (90)

In general, it is difficult to know the conditional probability of
UE Pe,λ(η). Assuming the knowledge of parametric informa-
tion Pe,λ(η), we first show an approximation that represents
E[L|W = η,X = x̄e] as a linear combination between L = 1
and L = L̄ with coefficient given by Pe,λ(η).

Approximation 3 (Parametric approximation). For a CRC-
aided convolutional code with corresponding parameters of L̄
and Pe,λ(η), where L̄ ≜ E[L|X = O],

E[L|W = η,X = x̄e] ≈ 1− Pe,λ(η) + Pe,λ(η)L̄. (91)

Furthermore, averaging over W = η on both sides of (91)
yields the approximation of E[L], i.e.,

E[L] ≈ 1− Pe,λ + Pe,λE[L|X = O]. (92)

Justification: For ease of discussion, we use the short-
hand notation P(·|η, x̄e) ≜ P(·|W = η,X = x̄e) and
P(·|O) = P(·|X = O). Let us consider η for which
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Pe,λ(η) > 0. Hence,

E[L|W = η,X = x̄e]

=
λ∑

s=1

sP(L = s|η, x̄e)

=P(Y(c̄)|η, x̄e) +
λ∑

s=1

sP(L = s|η, x̄e)−
λ∑

s=1

P(Zs(c̄)|η, x̄e)

≥1− Pe,λ(η) +
λ∑

s=1

s
(
P(L = s|η, x̄e)− P(Zs(c̄)|η, x̄e)

)
=1− Pe,λ(η) + Pe,λ(η)

(
λ∑

s=1

s

∑
c∈C−

l
P(Zs(c)|η, x̄e)∑

c∈C−
l
P(Y(c)|η, x̄e)

)
(93)

≈1− Pe,λ(η) + Pe,λ(η)

(
λ∑

s=1

sP(L = s|O)

)
(94)

=1− Pe,λ(η) + Pe,λ(η)L̄,

where (94) follows from the substitution below. Consider the
conditional list rank distribution

Pη =
(∑

c∈C−
l
P(Z1(c)|η, x̄e)∑

c∈C−
l
P(Y(c)|η, x̄e)

, . . . ,

∑
c∈C−

l
P(Zλ(c)|η, x̄e)∑

c∈C−
l
P(Y(c)|η, x̄e)

)
.

(95)

Using the fact that limη→∞ gη(yp) = 1/Sn−1(
√
n), the

conditional list rank distribution Pη will converge to

P∞ =

(
P(Z1(c)|O)

P(Y(c)|O)
, . . . ,

P(Zλ(c)|O)

P(Y(c)|O)

)
(96)

=

(∑
c∈Cl

P(Z1(c)|O)∑
c∈Cl

P(Y(c)|O)
, . . . ,

∑
c∈Cl

P(Zλ(c)|O)∑
c∈Cl

P(Y(c)|O)

)
= (P(L = 1|O), . . . ,P(L = λ|O)), (97)

where c is any lower-rate codeword in (96). Hence, we directly
replace Pη with the limit distribution P∞ in (93). Finally,
averaging over W = η on both sides of (91) yields (92).

Fig. 6 shows the simulation results of the conditional
expected list rank E[L|W = η,X = x̄e] vs. the normalized
norm η for CRC-ZTCCs with various information lengths. The
corresponding parametric approximation is also provided. We
see that the parametric approximation exhibits a remarkable
accuracy that improves as k increases. Observe that for large
values of k, the convergent E[L|W = η,X = x̄e] is close to
2m.

Using (67) and (89), we can produce E[L] as a function of
SNR γs. Fig. 7 shows E[L] vs. SNR along with its parametric
approximations for ZTCC (13, 17) and various DSO CRC
polynomials of degree m = 3, 4, . . . , 6. We see that the
parametric approximation on E[L] remains extremely tight.

The parametric approximation provides a practically useful
quantitative connection between performance and complexity.
Specifically, for CRC-ZTCCs with a target probability of UE
P ∗
e,λ and L̄ ≈ 2m for CRC degree m, (92) implies that a

CRC with degree m ≤ − log(P ∗
e,λ) is sufficient to maintain

E[L] ≤ 2, which ensures that the average complexity for SLVD

to achieve P ∗
e,λ is at most one more traceback than the standard

Viterbi decoding.
As an alternative to Approximation 3, we provide a higher-

order approximation formula for a good CRC-aided convolu-
tional code that only requires knowledge of E[L|X = O]. This
alternative approximation is motivated by Shannon’s observa-
tion [19] that an optimal (n,M) code places its codewords
on the surface of a sphere such that the total solid angle
Ω0 is evenly divided among the M Voronoi regions, one for
each codeword, and that each Voronoi region is a circular
cone. Hence, if the CRC-aided convolutional code is good
enough, the union of order-1 to order-µ decoding regions
Zs(c) for a lower-rate codeword c ∈ Cl should resemble
circular cones, where µ is a parameter to be optimized. From
this perspective, we propose the onion model for the order-1
decoding region to the order-µ decoding region based on the
following assumptions.

1) The union
⋃s

i=1Zi(c) of order-1 to order-s decoding
regions, 1 ≤ s ≤ µ, is a circular cone with half-angle
αs. This implies that each order-s decoding region, 2 ≤
s ≤ µ is an annulus in between two circular cones.

2) The solid angle Ω(αs) of
⋃s

i=1Zi(c) is equal to
s

2k+mΩ0, 1 ≤ s ≤ µ, where Ω0 is the total solid angle
(i.e., the area of a unit sphere in Rn).

3) The conditional expected list rank beyond
⋃µ

i=1Zi(c̄)
is equal to L̄ (i.e., E[L|X = O]).

Approximation 4 (Higher-order approximation). For a given
CRC-aided convolutional code, let L̄ = E[L|X = O]. With the
onion model assumptions and parameter µ, µ ∈ N, E[L|W =
η,X = x̄e] is approximated by

E[L|W = η,X = x̄e]

≈



1, if η <
√
n sinα1

. . .

s−∑s−1
i=1 Fx̄e

(i), if
√
n sinαs−1 ≤ η <

√
n sinαs

. . .

L̄− (L̄− µ)Fx̄e
(µ)−∑µ−1

i=1 Fx̄e
(i), if η ≥ √n sinαµ,

(98)

where assuming η ≥ √n sinαs,

Fx̄e
(s) =

Γ
(
n
2

)
√
πΓ
(
n−1
2

)
·
(∫ βs,1

0

sinn−2 θ dθ +

∫ βs,2

0

sinn−2 θ dθ

)
, (99)

βs,1 =
π

2
+ αs − arcsin

(√
η2 − n sin2 αs

η

)
, (100)

βs,2 =

(
π

2
− αs − arcsin

(√
η2 − n sin2 αs

η

))
1{η≤

√
n},

(101)

and αs is the half-angle for which

Ω(αs)

Ω0
=

Γ
(
n
2

)
√
πΓ
(
n−1
2

) ∫ αs

0

sinn−2 θ dθ =
s

2k+m
. (102)
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O x̄e

αs βs,1βs,2

Fig. 8. The geometry of the cumulative probability function Fx̄e (s),
assuming that

√
n sinαs ≤ η ≤

√
n.

Justification: The onion model assumptions implies that
each higher order decoding region Zs(c), 2 ≤ s ≤ µ, is an
annulus in between two circular cones. Hence, P(L = s|W =
η,X = x̄e) is simply the spherical area of B(x̄e, η) cut out by
the annulus. To evaluate this quantity, consider the cumulative
probability function of L = s,

Fx̄e
(s) ≜ P(L ≤ s,X = x̄e). (103)

Thus,

P(L = s|W = η,X = x̄e) = Fx̄e(s)− Fx̄e(s− 1). (104)

By the onion model assumptions, for η ≥ √n sinαµ,

E[L|W = η,X = x̄e] (105)

≈
µ∑

i=1

i(Fx̄e
(i)− Fx̄e

(i− 1)) + L̄(1− Fx̄e
(µ)) (106)

=L̄− (L̄− µ)Fx̄e
(µ)−

µ−1∑
i=1

Fx̄e
(i). (107)

In the similar fashion, for
√
n sinαs−1 ≤ η <

√
n sinαs,

1 ≤ s ≤ µ,

E[L|W = η,X = x̄e] ≈ s−
s−1∑
i=1

Fx̄e(i). (108)

Next, we derive the cumulative probability function Fx̄e
(s).

Geometrically, Fx̄e(s) is the fraction of the spherical area
of B(x̄e, η) cut out by the circular cone

⋃s
i=1Zs(c̄) with

half-angle αs to the total noise spherical area. Assume that√
n sinαs ≤ η ≤ √n. Fig. 8 shows the side view of this

scenario in R3, in which the blue arc represents the spherical
area contained in

⋃s
i=1Zs(c̄). It can be seen that αs will

induce two possible half-angles βs,1 and βs,2. By law of
cosines,

β =
π

2
± αs − arcsin

(
r2 − r1
2η

)
(109)

=
π

2
± αs − arcsin

(√
η2 − n sin2 αs

η

)
, (110)

where r1, r2 are solutions to

r2 − (2
√
n cosαs)r + (n− η2) = 0. (111)

The induced half-angle β becomes unique once η >
√
n.

Fig. 9. The parametric and higher-order approximations of E[L|W = η,X =
x̄e] for ZTCC (561, 753) used with the degree-10 DSO CRC polynomial
0x4CF at k = 64. Both higher-order approximations assume the knowledge
of L̄ = 1017.

Fig. 10. The expected list rank E[L] vs. SNR via (67) and (89) for ZTCC
(561, 753), degree-10 DSO CRC polynomial 0x4CF at k = 64.

From [19, Eq. (21)], the solid angle Ω(α) of a circular cone
with center O and half-angle α in n-dimensional Euclidean
space is given by

Ω(α) =
2π

n−1
2

Γ
(
n−1
2

) ∫ α

0

sinn−2 θ dθ. (112)

The total solid angle Ω0 in n-dimensional Euclidean space is
given by

Ω0 =
2π

n
2

Γ
(
n
2

) . (113)

Thus, using (112), (113), we can solve αs from assumption 2
of the onion model. Namely, αs is the solution to

Ω(α)

Ω0
=

Γ
(
n
2

)
√
πΓ
(
n−1
2

) ∫ α

0

sinn−2 θ dθ =
s

2k+m
. (114)
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By geometry in Fig. 8, Fx̄e
(s) in (103) is given by

Fx̄e(s) =
Ω(βs,1) + Ω(βs,2)

Ω0
. (115)

This concludes the justification of Approximation 4.
To demonstrate the tightness of the proposed approximation

for good enough CRC-aided convolutional codes, Fig. 9 shows
the approximations of E[L|W = η,X = x̄e] for ZTCC
(561, 753) used with the degree-10 DSO CRC polynomial
0x4CF at k = 64 with µ = 3 and 90. This concatenated code
has a minimum distance dlmin = 20 and thus can be deemed
as good enough. When µ = 3, our approximation accurately
gives the smaller values of the actual conditional expected list
rank. As µ increases, the accuracy of the approximation will
shift towards large values of conditional expected list rank.
Fig. 10 illustrates the approximation of E[L] vs. SNR via (67)
and (89). The 3rd-order and 90-th order approximations still
behave in the similar fashion as in Fig. 9.

C. Complexity Analysis

There are a variety of implementations of list decoding
of convolutional codes as described in, e.g., [53]–[57]. In
this paper, the SLVD implementation maintains a list of path
metric differences by using a red-black tree as described in
[55], which provides the fastest runtime we found among the
data structures that support full floating-point precision. The
literature mentioned above also analyzed the number of bit
operations or the asymptotic complexity of the algorithms pre-
sented, but those complexity metrics are not directly connected
with actual runtime. To explore how the additional complexity
of SLVD of CRC-ZTCCs relative to the standard soft Viterbi
(SSV) decoding, we develop an average complexity expression
that closely approximates our empirical runtimes.

For our specific implementation, three components comprise
the average complexity of SLVD, given by

CSLVD = CSSV + Ctrace + Clist. (116)

The first component CSSV is the complexity required to
perform the add-compare-select (ACS) operations on the trellis
of the given convolutional code and perform the initial trace-
back associated with SSV. Specifically, for CRC-ZTCCs, this
quantity is given by

CSSV = (2ν+1 − 2) + 1.5(2ν+1 − 2) + 1.5(k +m− ν)2ν+1

+ c1[2(k +m+ ν) + 1.5(k +m)]. (117)

For CRC-TBCCs, this quantity is given by

CSSV = 1.5(k +m)2ν+1 + 2ν + 3.5c1(k +m). (118)

In order to measure the decoding complexity, define 1 unit
of complexity as the complexity required by performing one
addition. In (117) and (118), we assign 1 unit of complexity to
each addition per branch and 0.5 units of complexity to each
compare-select operation per branch. In the first and second
terms of (117), (2ν+1 − 2) counts the number of edges in the
initial ν sections and the final ν termination sections of a ZT
trellis. In the third term of (117), (k+m− ν)2ν+1 counts the
number of edges in the middle (k +m− ν) sections of a ZT

Fig. 11. The complexity of SLVD with different constrained maximum list
sizes for ZTCC (27, 31), and degree-10 DSO CRC polynomial 0x709, with
k = 64 at SNR γs = 2 dB. All variables are normalized by the time or
complexity of the SSV algorithm. In the simulation, c1 = 1.5 and c2 = 2.2.

trellis. The fourth term in (117) approximates the complexity
of the traceback operation, assigning 2 units of complexity
for accessing the parent node per trellis stage and 1.5 units of
complexity per codeword symbol for the CRC verification on
the decoded sequence v̂. In (118), the second term is because
it takes 2ν operations to identify the optimal termination state
with minimum metric before the first traceback.

The second component Ctrace represents the complexity
of the additional traceback operations required by SLVD.
Specifically, for a given CRC-ZTCC,

Ctrace = c1(E[L]− 1)[2(k +m+ ν) + 1.5(k +m)]. (119)

For CRC-TBCCs,

Ctrace = 3.5c1(E[L]− 1)(k +m). (120)

The third component Clist represents the average complexity
of inserting new elements to maintain an ordered list of path
metric differences. For both CRC-ZTCCs and CRC-TBCCs,

Clist = c2E[I] log(E[I]), (121)

where E[I] is the expected number of insertions to maintain
the sorted list of path metric differences. According to the
mechanism of insertion, for CRC-ZTCCs,

E[I] ≤ (k +m)E[L], (122)

and for CRC-TBCCs,

E[I] ≤ (k +m)E[L] + 2ν − 1, (123)

where 2ν − 1 denotes the number of path metric differences
between the optimal terminating state and any other of the
2ν − 1 terminating states.

In (117), (118), (119), (120), and (121) the constants c1
and c2 characterize implementation-specific differences in
the implemented complexity of traceback and list insertion,
respectively, as compared to the ACS operations of Viterbi
decoding. For our implementation, we found c1 = 1.5 and
c2 = 2.2.
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Fig. 12. The SNR gap to the RCU bound vs. the average complexity of
SLVD for the family of CRC-ZTCCs in Table II at target Pe,λ = 10−4.
Each color represents a specific ZTCC shown in parenthesis. Markers from
top to bottom with the same color correspond to the DSO CRC polynomials
with m = 3, 4, . . . , 10 in Table II. The information length and blocklength
are given by k = 64 and n = 2(64 +m+ ν), respectively.

The additional complexity of the SLVD over SSV decoding
is completely characterized by the additional tracebacks along
the trellis and the maintenance of an ordered list of path metric
differences. We define the normalized complexity C̄SLVD as
the complexity of SLVD divided by the complexity of SSV
decoding, i.e.,

C̄SLVD =
CSLVD

CSSV
= 1 + C̄trace + C̄list. (124)

The normalized complexity provides a measure for the ad-
ditional complexity of operations associated with the SLVD
relative to the complexity of the SSV algorithm.

We recorded the runtime TSLVD, TSSV, Ttrace, and Tlist on
an Intel i7-4720HQ using Visual C++. We then divided all
of these terms by TSSV to compute a normalized runtime T̄ .
Fig. 11 shows normalized complexity based on equation (124)
and normalized runtime. In both cases, the normalization is
computed by dividing by the complexity or run-time asso-
ciated with SSV, i.e., performing all ACS operations on the
trellis and a traceback from the state with the best metric.
The normalized complexity and normalized runtime curves
are indistinguishable. Fig. 11 also shows that the additional
complexity of SLVD is primarily from maintaining an ordered
list of path metric differences.

V. SIMULATION RESULTS

In this section, we present our simulation results of CRC-
ZTCCs in Table II and CRC-TBCCs in Table III for k =
64. Finally, we compare the (128, 64) punctured CRC-TBCC
designed in our precursor conference paper [2] with several
(128, 64) short blocklength codes presented in [7].

A. Simulation Results for CRC-ZTCCs

Fig. 12 shows the trade-off between the SNR gap to the
RCU bound and the average decoding complexity computed
using (116) for target probability of UE Pe,λ = 10−4. It is

Fig. 13. The average complexity vs. SNR for ZTCC (247, 371) used with its
DSO CRC polynomials. The ZTCC with no CRC using soft Viterbi decoding
is also given as a reference.

shown that for a given ZTCC, increasing the degree m of DSO
CRC polynomials can significantly diminish the SNR gap to
the RCU bound at a relatively small complexity increase.
This SNR gap reduction is especially considerable when ν
is small and becomes less significant as ν becomes large. For
all ZTCCs, the complexity cost of increasing m from 3 to 10
is within a factor of 2. This is consistent with Fig. 11 in which
the complexity increases by a factor less than 1.5 even for a
very large constrained maximum list size Ψ.

A CRC-ZTCC could be decoded using Viterbi alone, with-
out list decoding, on a trellis with 2m+ν states per trellis stage.
The dashed lines in Fig. 12 show that the gap to the RCU
bound remains roughly constant for a constant value of m+ν.
However, list decoding with a well chosen (m, ν) pair achieves
this performance with a minimum complexity CSLVD. Thus, for
a given target Pe,λ and a fixed value of m+ ν, the inclusion
of CRC-aided list decoding will generally reduce complexity
over using Viterbi decoding alone on a convolutional code
with 2m+ν states per trellis stage.

Fig. 13 shows the complexity CSLVD computed using (116)
as a function of SNR for ZTCC (247, 371) and its DSO CRC
polynomials with degree m from 3 to 10 from Table II. The
ZTCC using soft Viterbi decoding with no CRC is also shown.
Here, the target probabilities of UE at 10−2, 10−3, 10−4 for
each CRC-ZTCC are marked by squares, diamonds, and stars,
respectively. For each target probability of UE, the correspond-
ing complexity is within a factor of 2 compared to the soft
Viterbi decoding of ZTCC (247, 371).

The termination overhead associated with ZTCC induces a
gap from the RCU bound, which can be closed by using the
corresponding TBCC as we will see below.

B. Simulation Results for CRC-TBCCs

In Section II we use the fact that for a CRC-ZTCC, each
SLVD operation yields a valid higher-rate codeword, i.e., a
ZT codeword. However, for a CRC-TBCC, SLVD operations
do not always yield a valid higher rate codeword, i.e., a TB
codeword, because the TB condition is often not met. Because
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Fig. 14. The SNR gap to the RCU bound vs. the average complexity of
SLVD for the family of CRC-TBCCs in Table III at target Pe,λ = 10−4.
Each color represents a specific TBCC shown in parenthesis. Markers from
top to bottom with the same color correspond to the DSO CRC polynomials
with m = 3, 4, . . . , 10 in Table III. The information length and blocklength
are given by k = 64 and n = 2(64 +m), respectively.

of this, we can no longer assume that L̄ ≈ 2m. Nevertheless,
Approximations 3 and 4 still apply for an accurate value of L̄
which can be obtained from simulation.

The increased value of L̄ may be understood by considering
the higher-rate code Ch to be the pseudo code represented by
all paths on the trellis regardless of whether they meet the TB
condition. Due to the additional complexity required to check
the TB condition, E[I] is significantly increased compared to
the CRC-ZTCC. While we identified the empirical value of
E[I] for CRC-ZTCCs, in this section we simply assume E[I]
attains the upper bound in (123) for CRC-TBCCs. Hence,
using (118), (120) with c1 = 1.5, (121) with c2 = 2.2,
together with the aforementioned assumption on E[I], we can
compute an estimate of the average complexity CSLVD of our
implementation of SLVD of CRC-TBCCs.

Fig. 14 shows the SNR gap to the RCU bound vs. the aver-
age complexity for target probability of UE Pe,λ = 10−4 for
all CRC-TBCCs designed in Table III. Compared to Fig. 12,
TB encoding significantly reduces the SNR gap to the RCU,
because the overhead of termination is avoided. However, this
reduction of the gap comes at the expense of a slight increase
in average complexity for checking the TB condition. Note the
exciting result that some CRC-TBCCs outperform the RCU
bound for ν = 9 and 10. Another phenomenon distinct from
CRC-ZTCCs is that for TBCCs with large ν, increasing the
DSO CRC polynomial degree from m = 3 to 10 only provides
a small benefit. Note, however, that the degree-3 DSO CRC
polynomial does provide a benefit over a TBCC used with no
CRC at all.

To illustrate the performance of the best CRC-TBCCs de-
signed in Table III, we select ν = 9 and ν = 10 TBCCs as an
example. Fig. 15 shows two cases: R = 64/134 corresponding
to m = 3 and R = 64/146 corresponding to m = 9. The MC
bound and the RCU bounds for these rates are plotted using
the saddlepoint approximations provided in Approximations
1 and 2, respectively. We see that in these two cases, the

Fig. 15. Comparison between Pe,λ and RCU and MC bounds at rates R =
64/134 (m = 3) and R = 64/146 (m = 9) for the CRC-TBCCs designed
in Table III. For the sake of clarity, only ν = 9, 10 TBCCs are displayed.

Fig. 16. Comparison between Pe,λ and RCU and MC bounds at rate R =
64/148 (i.e., m = 10) for the CRC-TBCCs designed in Table III.

CRC-TBCCs in Fig. 15 beat the RCU bound at low SNR
values. However, this superiority gradually fades away as SNR
increases, although for m = 9, the performance is very close
to the RCU bound even at Pe,λ = 10−5. Simulations also
suggest that it is extremely difficult to further improve the code
performance once beyond the RCU bound at low probability
of UE.

Fig. 16 shows the family of CRC-TBCCs with k = 64
and n = 148 (corresponding to m = 10). For small ν,
we see a visible improvement as ν increases. However, once
performance reaches the RCU bound, further increases in ν
provide little benefit. For example with m = 10, the CRC-
TBCC with ν = 9 attains similar performance to that with
ν = 10.

C. Comparison of (128, 64) Linear Block Codes

Direct comparison of CRC-TBCCs with other codes often
requires puncturing to match rates. For simplicity, we have
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Fig. 17. Comparison of (128, 64) linear block codes.

excluded puncturing from analysis in this paper. However, our
precursor conference paper [2] designed a v = 8, m = 10
punctured CRC-TBCC with k = 64 and n = 128 whose FER
performance can be directly compared to the (128, 64) linear
block codes presented in [7], as shown in Fig. 17.

At SNR of 3 dB, the v = 8, m = 10 punctured CRC-TBCC
in [2] and the best codes studied in [7] all perform similarly.
Specifically, the four codes in [7] with similar performance
at 3 dB to the v = 8, m = 10 punctured CRC-TBCC are
the following: the v = 14 and v = 11 TBCCs decoded
with WAVA, the extended BCH code with order-4 OSD, and
a non-binary LDPC code over F256 with order-4 OSD. As
shown in Fig. 17, at higher SNR, the FER performance is
more differentiated with the best performance provided by the
v = 14 TBCC, slightly worse performance provided by the
v = 8, m = 10 punctured CRC-TBCC and the extended BCH
code with order-4 OSD and further degraded performance by
the v = 11 TBCC and the non-binary LDPC code over F256

with order-4 OSD.
We now consider the decoding complexity of the three

best codes described above at 3 dB, excluding the discussion
of the non-binary LDPC code due to its further degraded
performance. Actual complexity depends on specific imple-
mentation choices, here we consider the total number of
computations per codeword as a way to give some flavor of
the complexity differences between these approaches. At SNR
of 3 dB, simulation shows that E[L] = 44.41 for the v = 8,
m = 10 punctured CRC-TBCC. Using (118), (120), (121)
together with (123), we obtain CSLVD ≤ 1.67× 105.

In terms of WAVA complexity, let I be the number of
iterations in WAVA. By assuming 0.5 units of complexity for
compare/select operation per branch and 1 unit of complexity
for one addition, the WAVA complexity for a rate-1/ω TBCC
with ν memory elements at information length k is given by

CWAVA = kI(0.5 · 2ν + 2ν+1). (125)

Using (125), the complexity of 3-round WAVA for v = 11
TBCC in [7] is 9.83× 105, which is higher than for the v =

8,m = 10 punctured CRC-TBCC. The best v = 14 TBCC in
[7] under 3-round WAVA achieves a complexity of 7.86×106.

A direct complexity comparison of SLVD with OSD is more
difficult, but Table V in [8] indicates that at 3 dB, the order-3
OSD of the (128, 64) extended BCH code requires 2.83×105

operations per codeword on average, which indicates that the
order-4 OSD would likely have a higher complexity than the
SLVD of v = 8, m = 10 punctured CRC-TBCC. Based on this
analysis, the CRC-TBCC paradigm appears to be competitive
with the existing approaches that provide similarly excellent
FER performance at short blocklength.

VI. CONCLUSION

In this paper, we consider the CRC-aided convolutional
code as a promising short blocklength code. The concatenated
nature permits the use of SLVD that allows the code to
attain the ML decoding performance at low complexity. For
k = 64, we identified the DSO CRC polynomial for a family
of ZTCCs and TBCCs generated with the optimum rate-
1/2 convolutional encoders identified by [42] at sufficiently
low target probability of UE. Several CRC-TBCCs beat the
RCU bound at practically interesting values of SNR. In a
recent work [58], Schiavone confirmed that the CRC-TBCC
is indeed a powerful short blocklength code by showing that
its performance matches the expurgated ensemble.

All CRC-aided convolutional codes considered in this paper
are designed based on an optimum convolutional encoder.
It would be interesting to investigate whether a suboptimal
convolutional code used with the DSO CRC polynomial can
also lead to a good concatenated code. Another interesting
direction is to explore the performance of CRC-aided con-
volutional codes in the moderately short blocklength regime,
e.g., 256 ≤ n < 1000. If puncturing is introduced in the
code design, it remains open as to how to jointly design the
puncturing pattern and the optimal CRC polynomial for a
given convolutional code.

The beauty of SLVD lies in the fact that its average com-
plexity is governed by its expected list rank E[L], a quantity
that is inversely proportional to the SNR value. This allows a
huge complexity reduction at interesting operating SNR values
that guarantee a low target probability of UE. In particular,
the parametric approximation of E[L] provides an explicit
characterization of the performance-complexity trade-off. It
shows that for CRC-ZTCCs with a target error probability P ∗

e,λ

and L̄ ≈ 2m, a CRC degree m ≤ − log(P ∗
e,λ) is sufficient to

maintain E[L] ≤ 2. However, several problems are still open,
for instance, how to upper bound E[L|X = O], and how to
upper bound Pe,1 using the weight spectrum. In addition, the
behavior of the supremum list rank λ is also less understood
and is worth future investigation.

APPENDIX A
DERIVATION OF THE INDUCED DENSITY FUNCTION

Let B(a, r) denote the spherical surface of center a ∈ Rn

and radius r in Rn. In this section, we derive the induced den-
sity function gw(yp) incurred when projecting a received point
y uniformly distributed on B(x̄, w) to point yp = (r/∥y∥)y
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Fig. 18. Derivation of the induced density function gw(yp) in Rn.

that lies on the codeword sphere B(O, A√n) in Rn. As
an illustration, Fig. 18 depicts this scenario in R2. For our
purposes, we assume that w ≥ A

√
n to ensure the bijective

relationship between y and yp.
Let us consider a circular cone Qα in Rn with apex at the

origin O, axis along Oyp and half-angle α. Algebraically,
define the direction vectors

ye ≜
y

∥y∥ , (126)

ze ≜
y − x̄

∥y − x̄∥ . (127)

Hence, the circular cone Qα is given by

Qα =

{
r ∈ Rn :

r⊤ye

∥r∥ ≥ cosα

}
=
{
r ∈ Rn : (r − 0)⊤(I − ϵ2(α)yey

⊤
e )(r − 0) ≤ 0

}
,

(128)

where ϵ(α) ≜ 1/ cosα denotes the eccentricity of the cone.
Cone Qα intersects with the noise sphere B(x̄, w), thus
producing a surface area Qα∩B(x̄, w) delimited by J and K
on Fig. 18. Thus, the induced density at yp is given by

gw(yp) = lim
α→0

S(Qα ∩ B(x̄, w))/Sn−1(w)

S(Qα ∩ B(O, A
√
n))

, (129)

where S(·) denotes the surface area in Rn. Note that for suf-
ficiently small α, the spherical surface around y is equivalent
to the tangent hyperplane at y, given by

H =
{
r ∈ Rn : z⊤

e (r − y) = 0
}

=
{
r ∈ Rn : z⊤

e (r − 0) = ĥ
}
, (130)

where ĥ ≜ z⊤
e y. Define ρ ≜

√
1− (z⊤

e ye)2. Thus, using the
result by Dearing [59, Eq. (15)], if ϵ(α)ρ < 1, the intersection
of hyperplane H and cone Qα is an ellipsoid of dimension
(n − 1), which, after proper rotation T around O, can be
written as

T (Qα) ∩ T (H)

=
{
(r1, . . . , rn−1, ĥ) :

(r1 − ĉ1)2
â2

+

∑n−1
j=2 (rj − ĉj)2

b̃
= 1
}
,

where

σ = z⊤
e ye, (131)

ĉ1 =
ϵ2(α)ρσĥ

1− ϵ2(α)ρ2 , ĉj = 0, j = 2, . . . , n− 1, (132)

â2 =
(ϵ2(α)− 1)ĥ2

(1− ϵ2(α)ρ2)2 , (133)

b̃ = â2(1− ϵ2(α)ρ2). (134)

Since ze and ye are non-orthogonal, 1/ρ > 1. Hence, for
sufficiently small α, ϵ(α) < 1/ρ and thus Dearing’s result
follows. Summarizing the analysis above, we obtain

lim
α→0

S
(
Qα ∩ B(x̄, w)

)
= lim

α→0
S
(
T (Qα) ∩ T (H)

)
(135)

= lim
α→0

π
n−1
2

Γ(n+1
2 )

â
(√

b̃
)n−2

(136)

= lim
α→0

π
n−1
2

Γ(n+1
2 )

(
(ϵ2(α)− 1)ĥ2

(1− ϵ2(α)ρ2)2

)n−1
2 (

1− ϵ2(α)ρ2
)n−2

2

(137)

= lim
α→0

π
n−1
2

Γ(n+1
2 )

2
n−1
2 (ϵ(α)− 1)

n−1
2 ĥn−1(z⊤

e ye)
−n (138)

= lim
α→0

π
n−1
2

Γ(n+1
2 )

2
n−1
2

(1− cosα

cosα

)n−1
2
( z⊤

e y

z⊤
e ye

)n−1 1

z⊤
e ye

(139)

= lim
α→0

π
n−1
2

Γ(n+1
2 )

2
n−1
2

(
2 sin2

(α
2

))n−1
2 ∥y∥n−1

cos∠x̄yO
(140)

= lim
α→0

π
n−1
2

Γ(n+1
2 )

αn−1 ∥y∥n−1

cos∠x̄yO
, (141)

where (135) follows since for sufficiently small half-angle,
the spherical surface around y is equivalent to that of the
tangent hyperplane H at y. From [19, Eq. (21)], the area of
the spherical cap S(Qα ∩ B(O, A

√
n)) is given by

S(Qα ∩ B(O, A
√
n))

=
(n− 1)π

n−1
2 (A

√
n)n−1

Γ
(
n+1
2

) ∫ α

0

sinn−2 θ dθ. (142)

Substituting (141), (142) into (129), we obtain

gw(yp) = lim
α→0

S(Qα ∩ B(x̄, w))
S(Qα ∩ B(O, A

√
n))

Sn−1(A
√
n)

Sn−1(w)Sn−1(A
√
n)

= lim
α→0

αn−1 ∥y(yp)∥n−1

cos∠x̄y(yp)O

(n− 1)
∫ α

0
θn−2 dθ

1

wn−1

1

Sn−1(A
√
n)

=
(∥y(yp)∥

w

)n−1 1

cos∠x̄y(yp)O

1

Sn−1(A
√
n)
,

(143)

where y(yp) is the pre-image of yp on the noise sphere
B(x̄, w). Here, (143) is the induced density function of
yp ∈ B(O, A

√
n). Observe that it is rotationally symmetric

with respect to axis Ox̄.
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Next, we give an alternative expression of gw(yp) to derive
its upper bound and lower bound. First, we rotate the coordi-
nate system such that axis Ox̄ is the first coordinate and the
remaining (n−1) coordinates are orthogonal to Ox̄. In the new
coordinate system, let x̄ = (A

√
n, 0, . . . , 0) ∈ Rn. Hence,

for an arbitrary projected point yp = (y1, y2, . . . , yn) ∈
B(O, A√n), assume that ρ ≜ ∥y(yp)∥. Thus,

y(yp) =
ρ

A
√
n
(y1, y2, . . . , yn). (144)

Since y(yp) ∈ B(x̄, w),(
ρ

A
√
n
y1 −A

√
n

)2

+

(
ρ

A
√
n

)2 n∑
i=2

y2i = w2. (145)

Solving for ρ yields

ρ = y1 +
√
y21 + w2 −A2n. (146)

By law of cosines, it is shown that

cos∠x̄yO =
ρ2 + w2 −A2n

2ρw
=

√
y21 + w2 −A2n

w
. (147)

Hence, substituting (146) and (147) into (143) and expressing
gw(yp) in terms of y1 ∈ [−A√n,A√n], we obtain

gw(y1) =
1

Sn−1(A
√
n)

(y1 +
√
y21 + w2 −A2n)n−2

wn−2

·
(
1 +

y1√
y21 + w2 −A2n

)
. (148)

Clearly, gw(y1) is monotonically increasing in y1. Hence,

gw(y1) ≥ gw(−A
√
n) =

1

Sn−1(A
√
n)

(
1− A

√
n

w

)n−1

(149)

gw(y1) ≤ gw(A
√
n) =

1

Sn−1(A
√
n)

(
1 +

A
√
n

w

)n−1

.

(150)

Geometrically, this implies that the maximum induced density
is attained at the transmitted point x̄, whereas the minimum
induced density is attained at −x̄.
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