Efficient Computation of Viterbi Decoder Reliability
with an Application to Variable-Length Coding

A. Baldauf, A. Belhouchat, S. Kalantarmoradian, A. Sung-Miller, D. Song, N. Wong, R. D. Wesel
University of California, Los Angeles, CA
{ambaldaufl9, abelhouchat,dansong0729}@gmail.com
{shakehk, aletheasm, nsc.wong,wesel}@ucla.edu

Abstract—This paper compares the accuracy and complexity
of Raghavan and Baum’s Reliability Output Viterbi Algorithm
(ROVA), Polyanskiy’s accumulated information density (AID),
and Fricke and Hoeher’s lower complexity approximation of
ROVA. It turns out that AID is far less accurate than ROVA
in practice. This paper proposes codeword information density
(CID), which modifies AID to improve its accuracy and leads to
a lower-complexity implementation of ROVA. The paper includes
an analytical expression for the random variable describing the
correct decoding probability computed by ROVA and uses this
expression to characterize how the probabilities of correct de-
coding, undetected error, and negative acknowledgement behave
as a function of the selected threshold for reliable decoding. This
paper examines both the complexity and the simulation time of
ROVA, CID, AID, and the Fricke and Hoeher approximation
to ROVA. This paper also derives an expression for the union
bound on the frame error rate for zero-terminated trellis codes
with punctured symbols and uses it to optimize the order of
symbol transmission in an incremental retransmission scheme.
This paper concludes by comparing the performance of an
incremental retransmission scheme using ROVA as a stopping
condition to one that uses a CRC as a stopping condition.

I. INTRODUCTION

Cyclic redundancy checks (CRCs) are often used to de-
tect errors in convolutional codewords [2]-[6]. CRCs play
an important role in many incremental redundancy hybrid
automatic repeat requests (ARQ) [6]-[10] but add overhead
that can be significant for short block-lengths. As pointed
out by [10], an alternative to using a CRC is to directly
consider the reliability of the Viterbi decoder output as was
proposed by Yamamoto and Itoh [11]. Ragavan and Baum
[12] proposed the reliability-output Viterbi algorithm (ROVA)
as an improvement to [11]. ROVA explicitly computes the
probability that a Viterbi decoding decision is in error. This
allows the receiver to set a threshold on the ROVA-computed
probability to achieve a target undetected (codeword) error rate
(UER) without requiring a CRC.

ROVA was used in [13]-[15] to decide whether to request
additional redundancy in a hybrid ARQ without the need for
a CRC. For [13], ROVA was adapted as described in [16]
for tail-biting convolutional codes. Although ROVA calculates
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codeword error probability exactly, it suffers from high com-
plexity. Fricke and Hoeher [15] developed an approximation
of ROVA that reduces complexity.

A. Overview

For zero-terminated convolutional codes (ZTCCs), this pa-
per explores an alternative to ROVA for controlling an incre-
mental redundancy hybrid ARQ that is based on information
density [17]. Symbol-wise accumulated information density
(AID) as proposed by Polyanskiy et al. [17] sums the infor-
mation density of each received symbol to provide a metric
of codeword reliability with a much lower complexity than
ROVA.

For ZTCCs, this paper compares the accuracy of ROVA with
that of symbol-wise AID as well as the ROVA approximation.
After observing the low accuracy of symbol-wise AID, we
propose codeword information density (CID) as a modification
to symbol-wise AID. The CID also computes an information
density, but instead of adding the density of each symbol, it
computes a single information density for the entire received
codeword. CID gives better accuracy than AID and turns out to
be equivalent to ROVA. The ROVA approximation has similar
accuracy to ROVA, but lacks the exactness of CID.

We develop an analytical expression for the distribution of
ZTCC ROVA values over an additive white gaussian noise
(AWGN) channel with a fixed signal-to-noise ratio (SNR).
From this distribution, the probability of correct, probability of
error, and probability of negative acknowledgement (NACK)
are computed using Monte Carlo simulation and shown to
match the Viterbi simulation results. The complexity of each
of the four reliability metrics examined in this paper are then
compared.

We derive a method of computing the frame error rate
union bound for punctured codes, where puncturing refers to
decreasing the blocklength by withholding certain symbols
from transmission as discussed in [18]—-[20]. We use this
method to optimize the order of additional symbol transmis-
sion in incremental retransmission schemes. We then extend
the work by Williamson [13] to demonstrate that ROVA can
be used as a reliability metric for incremental retransmission
schemes at short blocklengths for 8 phase-shift keying (8-PSK)
modulation. Additionally, we demonstrate that using ROVA as
a reliability metric for incremental retransmission outperforms
using a CRC as a reliability metric at short blocklengths.



B. Contributions and Organization

The contributions in this paper are summarized as follows:
We note that the last three bullets are new material compared
with our precursor conference paper. Our current paper also
provides a more in-depth complexity comparison between each
reliability metric.

o This paper offers a method of exactly computing the
probability that a Viterbi decoder has selected the cor-
rect codeword. The new method has reduced complexity
compared to the method of ROVA introduced by [12].

o This paper examines symbol and codeword information
density metrics, respectively AID and CID, for deciding
whether to accept a Viterbi decoder decision.

o This paper derives an analytical expression for ROVA
over an AWGN channel with a fixed SNR and demon-
strates how to compute the probability of correct decod-
ing, probability of incorrect decoding, and probability of
NACK for a given ROVA threshold.

o This paper compares the complexity and accuracy of
ROVA, the Fricke and Hoeher ROVA approximation,
AID, and the CID implementation of ROVA.

o This paper derives an expression for the union bound on
the frame error rate for ZTCCs with punctured symbols.

o This paper details a method of optimizing the order of ad-
ditional symbol transmissions in retransmission schemes
by performing a greedy search utilizing a union bound
on the frame error rate for ZTCCs.

o This paper shows that using ROVA in a reliability-
based retransmission scheme can achieve higher through-
put than both the variable length coding with feedback
achieveability and the CRC-based method at short block-
lengths using 8PSK modulation.

Sec. II reviews the ROVA algorithm of [12]. Sec. I
reviews AID of [17] and shows that it is much less predictive
of reliable decoding than ROVA. Sec. IV proposes CID as
a modification of AID, shows that CID is equivalent to
ROVA, and uses the CID perspective to compute ROVA with
significantly less complexity than [12]. Sec. V presents an
analytical expression for the random variable describing the
correct decoding probability computed by ROVA and uses
this expression to characterize how the probabilities of correct
decoding, undetected error, and negative acknowledgement
behave as a function of the selected threshold for reliable
decoding. Sec. VI analyzes and compares the complexity of
each of the four reliability metrics presented in this paper.
Sec. VII develops the union bound on the frame error rate
(FER) for ZTCCs with punctured symbols and describes a
method to optimize the order of symbol transmission for the
results shown in Sec. VIII. Sec. VIII produces an analogous
plot for short-blocklength performance of a reliability-based
retransmission scheme using either a CRC or ROVA as shown
in [13], but for a higher order modulation compared to BPSK.
Sec. IX concludes the paper.
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Fig. 1: Graph of empirical and expected undetected codeword error rate (UER)
as a function of the ROVA threshold for 100,000 decodings of the 4-state,
rate-1/2 convolutional code with £ = 128 message bits at SNR 4.5 dB.

II. THE RELIABILITY OUTPUT VITERBI ALGORITHM

Most implementations of the Viterbi algorithm are per-
formed in the logarithmic domain so that the products of
the path metrics become a sum of products. This reduces
complexity and enables fixed-point implementation. However,
operating in the logarithmic domain makes the computation of
exact probabilities such as ROVA more difficult, as the sum
of products of the path metrics must be tracked in addition to
the product. This paper does not use the logarithmic domain
for this reason. There are approximation methods that could
be employed for the logarithmic domain as described in [21],
but this remains a possible topic for future research.

As described in [12], ROVA finds the probability that the
nc-symbol codeword 2" selected by maximum likelihood
Viterbi decoding is also the transmitted codeword z}°. In
general, this paper uses z" as a shorthand for the sequence
Z1,...,Zn. Given a received noisy sequence y"c = x° +z",

the probability that 2™ = z}'° can be expressed as follows:
P(i") fy|x (y"e[2")
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where C is the set of valid codewords and fy|x (y"<|z"<)
is the conditional probability density for y™c if a2™¢ were
the transmitted sequence. The simplification from (1) to (2)
follows from the assumption that all codewords are a priori
equally likely.

A natural application of ROVA is to set a threshold on the
ROVA value (2) computed as in [12] and consider codewords
with a ROVA value below the threshold as erasures because
they are not sufficiently reliable. Fig. 1 shows how varying
the threshold can control the UER for an example 4-state
rate-1/2 convolutional code with {101,111}, which is (5,7)
in octal, as described in [22]. The empirical UER achieved
with a ROVA threshold is shown for threshold values from
P(3" = 2}¢|y™) = 0.7 to 1 — 10~* in increments of 10~%.

Also shown is the expected UER associated with the
threshold, which is computed as the UER implied by the
empirical average of observed ROVA values that exceed the
threshold. There is excellent agreement between the observed
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and expected UER. The average P(i"e = zy<|y™) will be
substantially higher than the threshold because the threshold
is the lowest acceptable value. As a result, the empirical
UER achieved when applying a particular UER threshold is
significantly below that UER threshold.

A. Computing ROVA as in [12]

Algorithm 1 describes the procedure for computing the
ROVA value (2) as described in [12]. Consider a trellis with
2Y states defined by the set S = {0,1,...2Y — 1}. Let sy,
be the trellis state after the m!* transmitted symbol. Let
the trellis be initialized to state sy = 0 and assume that
terminating input bits drive the state back to s, = 0 at the
last transmitted symbol z,,.. For each received symbol y,,, for
m € {1,2,...n.} and for every possible value i of the trellis
state s,,, in S, two probabilities are computed in [12]: P/ and
P™. We now define these two probabilities.

Algorithm 1: An algorithmic adaptation of the ROVA Algo-

rithm described in [12].

Initialization: For ¢,j € S, let 7, be the set of valid trellis
branches possible during transmission of the m‘* symbol.
Each such trellis branch is defined by the ordered pair (4, j)
where ¢ is the origin state and j is the destination state. Note
that this set is smallest at m = 1 when there are only 2
branches emanating from sy = 0 to s; and at m = n. when
there are only 2" branches entering s,, = 0. Initialize m = 0,
P)=1and P{ =0
Iterations: The calculation of (2) in [12] proceeds as follows:

) m=m+1
2) For each valid branch (4, j) € T, compute metrics

Y1, 5) = [ (Ym|2m (i, 7)) 3)

where x,,(7,7) is the symbol transmitted on branch
(i,), and f(ym|zm (i, 7)) is the conditional probability
that we receive sequence y,, at stage m if x,, (i, j) were
transmitted.

3) Compute the scaling factor

Ap= Y ()P +PMY . @
(4,)€Tm

4) For each j € S with branches (4, j) € Ty, where Viterbi
has identified branch (i*, j) to be the survivor branch to

j compute
P = ALy (i, )P (5)
Pt =AY (i, )(P 4+ P = P(6)
{i:(4,5)ETm }

5) if m = n. conclude by reporting the ROVA value of Py
and the probability of codeword error as Py’ = 1— Py,
otherwise, go to step 1.

Let ™ (i) be the symbol sequence corresponding to the
Viterbi survivor path terminating at state i after the m"

transmitted symbol. P is P(s,, = i,2™(i) = x/|y™),

which is the probability that i is the correct state after the m?!"
transmitted symbol and that the Viterbi algorithm has correctly
identified the survivor path to state i so that ™ (i) = x}". P/
is P(sy, = 1,2™(i) # x*|y™), which is the probability that
i is the correct state at symbol m but the Viterbi algorithm
has not correctly identified the survivor path to state ¢ so that
2™ (i) # o™, Thus P/™ is the probability that Viterbi decoding
has incorrectly pruned away the transmitted sequence zj,
which is a path to state 4, after the m‘" transmitted symbol.
For each m, Algorithm 1 makes use of the scaling factor

A = 2TV Y
m T 9
ZTVl’Y? <o Ym—1

where 7, is the branch metric for the m*" symbol associated
with one of the paths in the trellis 7 so that v1y2...vm,
is a path metric for one of the paths in the trellis 7 and
> 77172 .- Ym is the sum of all the path metrics in the first
m stages of trellis 7 regardless of whether they are survivors
in the Viterbi algorithm.

For a ZTCC, when m = n., the state is forced to zero by
terminating input bits so that P}'* + P}’ = 1, and PJ'° is the
probability that the codeword selected by Viterbi is incorrect.
For m < n. and a particular state i € S, P/ + P will
generally be less than one. These values must be summed
over all states to account for all the probability:

(7

2v -1
Z (Pm+Pm) =1. (8)
i=0
Let Ny = |S| be the number of states, and let NV}, be the
number of branches entering each state. Table II describes
the complexity of Algorithm 1 for processing one trellis stage
assuming all branches in the trellis are active. Step 2 requires
NgNp metric computations. Step 3 requires N additions to
compute P! + P/"~! and NyN, additional multiplications
and additions to compute A,,,. Step 4 requires one multiplica-
tive inverse computation to produce A, ! and then 2 x Nj
multiplications to compute P} and NN, multiplications and
additions to compute P

B. Fricke and Hoeher Approximation

Fricke and Hoeher [15] developed an approximation of
ROVA that reduces complexity. The computations utilize the
path metric '/, = ~172...vm, which is the product of the
path metrics v = f (y|x(z, j )) that have been selected for the
survivor path that concludes at state s,, = j. The Fricke and
Hoeher approximation computes, for each surviving branch,
the probability P, (i*, j*) that the survivor branch to j* was
correctly selected, assuming that the state ¢* is the correct
state (corresponding to the transmitted codeword) and that the
survivor path to ¢* was correctly selected. Fricke and Hoeher’s
algorithm is presented as Algorithm 2 below.

Table III describes the complexity of the Fricke & Hoeher
approximation for one stage assuming all branches in the trellis
are active.

To understand the inaccuracy introduced by the approxi-
mation proposed in [15] as compared to the original ROVA



Algorithm 2: An algorithmic adaptation of the Approximate
ROVA Algorithm from [15].
Initialization: Let 7,, be the set of valid trellis branches as
defined in Alg. 1. Initialize m = 0, and Fg =1.
Iterations:

) m=m+1

2) For symbol m compute the branch metric

Vm(i’j) = f(ym‘xm(zaj)) )

for each valid branch (4, j) in Ty, as in Algorithm 1.

3) For each j € S with branches (i, j) € 7,, where Viterbi
has identified branch (i*, j) to be the survivor branch to
j compute

P-Zn = F::L717m(2*7j) ’
N TJ
P (i, j) = T .
Z(z J)ETm Fm—lrym(l’j)
4) if m = n. conclude by reporting the probability of
codeword error as 1 —[["<_, P,,(i*, j) for the branches

(i*,7) of the winning path selected by Viterbi, other-
wise, go to step 1.

(10)

(1)

proposed in [12], consider the simple example shown in Fig.
2. Applying Algorithm I, produces the result

Y1 (07 0)’72 (07 0)’)/3 (Oa 0)’74 (07 0)
ZT V1727374

Py = ) (12)

where for this trellis,

> 1727371 =71(0,0)72(0, 0)75(0,0)74(0, 0)

=
+71(0, 1)72(1,2)73(2,0)74(0, 0)
+71(0, 1)y2(1, 3)73(3, 2)74(2, 0)
+71(0,0)72(0, 1)v3(1,2)74(2,0)

Equation (12) is precisely the probability given in (2) that the
codeword has been correctly decoded.
In contrast, applying Algorithm 2, produces the result

T & (e oy 71(0,0)72(0,0)73(0,0)74(0, 0)
ml'z[lpm(z ) = D3 . (13)

where D = (0,0)7v2(0,0)7v3(0,0)v4(0,0)

+71(0,1)72(1, 2)73(2, 0)74(0,0)

+71(0, 1)72(1, 3)73(3, 2)74(2,0)

+71(0, 1)72(1, 3)73(3,2)74(2, 0)x

In this example the ~1(0,0)7v2(0,1)v5(1,2)v4(2,0) term
of > 771727374 computed by ROVA is replaced by a
different term that scales the “available” alternative path

Y1 (07 1)72(17 3)’73(37 2)74(27 O) by
_ 710, 1)75(1,2)73
71(0,0)72(0,0)73

(2,0)
(0,0)

(14)
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Fig. 2: A four-state trellis that begins at state so = 0 and terminates at state
s4 = 0 after four symbol transmissions. Solid branches represent survivor
paths while dashed branches were rejected by the Viterbi algorithm

As this example illustrates, the limitation of the Fricke-
Hoeher approximation is that it does not have access to certain
paths in 7 that were pruned away by states that are not on the
final winning path. The denominator in (11) is a sum of the
path metrics of the surviving paths at stage m — 1 that enter
state j at stage m. Thus, the probability of codeword error
1 - 11, P,.(i*,7) will only have access to the winning
path and (N, — 1)(n. — v) terminated paths out of the total
(ne—v)™* paths. To the extent that the pruned paths have low
probability, the Fricke-Hoeher approximation can be accurate.

IIT. ACCUMULATED INFORMATION DENSITY

Polyanskiy et al. [17] used a threshold on information den-
sity at the receiver to decide when to terminate random codes.
This termination approach provides bounds on achievable
throughput for codes with finite blocklength. The information
density of a received symbol y; with respect to a selected
codeword symbol Z; is computed as

Ty x (y5l25)

fr (y;) (>

i(y;, ;) = logy

In (15), fy(y;) is computed assuming that each possible
symbol z € X is drawn i.i.d. according to an input dis-
tribution, either a probability density function (PDF) fx (z)
or a probability mass function (PMF) Px(x). For practical
communication systems in which a convolutional code is used
in conjunction with a constellation of possible transmitted
symbols, the input alphabet X is finite and is exactly the
constellation. For a typical encoder (without probabilistic
shaping [23]), each constellation point is equally likely so that
Px(.’L‘) = |X‘_1.

Following the termination approach of [17], accumulated
information density (AID) sums (15) for each symbol in the



codeword to produce iap(y™e, ™) as follows:

iam (Y, &7) = > iy, &) (16)
=1

- fY|X(Z/j|i"j)>

= 1 il b A A 17

;og2< fY(yj) 1n
IT50 fvix (yil;)

—1 J=L 18

o8 [T52: fv(y;) (1%)

= log ( Jyx (y"e|ame) )

? D arecane | X" fyx (yne|zne)
(19)

where X" is the set of all sequences of n. symbols. For
AID, the denominator in (19) includes every possible sequence
of n. symbols from the alphabet (constellation) X. However,
only sequences that are actually codewords could have been
transmitted. Including all possible sequences allows the com-
putation of AID to be symbol-wise and thus much simpler
than ROVA, but it introduces an inaccuracy.

Algorithm 3: Computation of iap.
Initialization: Let 7,, be the set of valid trellis branches as
defined in Alg. 1. Initialize m = 0, ') = 1, I1(0) = 1.
Iterations:

1) m=m+1

2) Compute branch metrics 7, (7, 7) as in Alg. 1.

3) For each j € S with branches (¢, j) € T, where Viterbi

has identified survivor branch (i*,j) compute

L4, =T 1m0, ) - (20)
4) Compute fy (ym) = Y ex [X7 f(yml|z) and
(m) = T(m — 1) fy (ym) 2D
5) if m = n. conclude by reporting
o
iam(y",2"°) = logy H(ZL) ; (22)

otherwise, go to step 1.

Algorithm 3, above, provides a procedure for computing
iam- Let Ny be the number of states |S| and N, be the
number of branches entering each state. For the common
scenario where N = 2, Algorithm 1 (ROVA) requires about
6.N; multiplications per trellis stage, but Algorithm 3 (AID)
requires only about Ny multiplications.

Figs. 3 and 4 compare the efficacy of ROVA and AID
by plotting the probability density function of metric values
for correctly and incorrectly decoded sequences. For AID,
the sequences are organized by the AID metric, which is
the accumulated information density. For ROVA, they are
organized by the ROVA metric of word-error probability. In
Figs. 3 and 4, a smaller overlap between the density functions
for correctly and incorrectly decoded sequences indicates a
better ability for the metric to indicate when a sequence should
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Fig. 3: Probability density of ROVA error values for correct and incorrect
decodings for the same conditions as in Fig. 1. The minimal overlap between
the incorrect and correct decodings indicates that setting a decision threshold
using ROVA is an effective way to reduce undetected errors.
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Fig. 4: Probability density of AID values for correct and incorrect decodings
for the same scenario as Fig. 1. There is considerable overlap between
the incorrect and correct decodings, which suggests that using AID is an
ineffective way to reduce undetected errors.

be deemed unreliable. The better separation (smaller overlap
area) seen in Fig. 3 as compared to Fig. 4 shows how ROVA
is more effective than AID in this example.

Fig. 5 shows the UER versus throughput for ROVA, the
ROVA approximation by Frick and Hoeher, and AID, where
the throughput is a function of the threshold that determines
whether to accept the Viterbi result as reliable. Throughput
is defined as the ratio of correctly decoded sequences that
passed the threshold to the total number of received sequences.
Fig. 5 confirms the relatively poor performance of AID that
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Fig. 5: Undetected error rate (UER) as a function of throughput for ROVA,
approximate ROVA, AID, and CID showing the operating points of (through-
put, UER) achievable with thresholds on ROVA, approximate ROVA AID, and
CID metrics for the same scenario as Fig. 1. ROVA and CID give identical
performance as expected by (32). Approximate ROVA has near identical
performance to ROVA and CID.



was suggested in Figs. 3 and 4 . For a given target UER,
AID supports a much lower throughput than ROVA. Despite
its lower complexity, AID turns out to be too inaccurate to
use as a decoder reliability metric in practice. The ROVA
approximation performs similarly to ROVA, suggesting that
either of these could be used as a decoder reliability metric.

To generate Figs. 3 and 4, it was necessary to simulate
a sufficient number of incorrectly decoded sequences in the
tail of the distribution, which posed a challenge as these
events are much less likely to occur. In order to reduce
overall simulation time, importance sampling was utilized
to increase the likelihood of the decoder choosing incorrect
codewords. The probability of incorrect decoding increases
with the Euclidean norm of the Gaussian noise. Noise points
with a large Euclidean distance were drawn with higher
probability than with the Gaussian noise distribution according
to an importance-sampling bias function.

The distribution of the norm of an N-dimensional IID
zero-mean Gaussian noise vector with variance o2 in each
dimension is equivalent to the Nakagami distribution with
N/2 and Q@ = No?. Fig. 6 shows the noise norm
distribution after the importance-sampling bias function. It is a
mixture distribution including two equally-likely components:
the above Nakagami distribution and a uniform distribution on
the interval [9, 14].

The combination of these two distributions provides suffi-
cient data samples in both the body and tail of the distribution.
Following the importance-sampling paradigm, each generated
data sample is weighted by the ratio of the original proba-
bility distribution to the biased probability distribution. The
weighted data is then used to generate a weighted cumulative
distribution, which is then used to approximate a probability
density curve by taking the local derivative.

The proof that the AWGN vector norm for BPSK modula-
tion follows a Nakagami distribution is as follows: The noise
vector norm ||g|| is defined as

m =

N
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Fig. 6: The original Nakagami distribution which describes the distribution of
the noise vector norms compared to the bias distribution for the same scenario
as Fig. 1. The bias distribution is a mixture distribution composed of one half
of the original Nakagami distribution with one half of a uniform distribution
on the interval [9, 14].

where each g is an i.i.d. normal variable with mean 0 and
standard deviation oy.

9i ~ Ni(0,07) = 25 ~ N (0,1) (24)
(g) ~ (N:(0,1)% = X2(1) =T (2,2> (25)

where X2(1) is a chi-squared random variable with 1 degree
of freedom and T (k,0) is the gamma distribution random
variable with shape k and scale 6.

1 1
2 2 2
~o =2 =T =, 20;
i ™~ 9 (2, > (27 UZ)

Each g; has the same standard deviation o, which leads to the
following simplification.

L, o)\ _ L, o
F<2,20i> —F<2,2J )

The sum of independent Gamma distributions with the same
rate is equivalent to a single Gamma distribution with indi-
vidual shapes summed together. Therefore, ||g|| is the square

(26)

27)

root of a gamma distribution random variable with > shape

and 202 scale, which is a Nakagami distribution.

IV. CODEWORD INFORMATION DENSITY: ROVA REDUX

As an improvement to AID, we propose a new metric,
the codeword information density (CID), which similar to
AID but computed for an entire codeword rather than for a
single symbol. The CID metric is computed for the codeword
selected by Viterbi as follows:

fyx (y"e|ane)

Dameee D) fyix (yme|zne)
CID operates on the complete sequences y™ and ™ and
is limited to only consider valid codewords x™ € C. This
gives a higher complexity, but higher accuracy relative to AID.
Algorithm 4 below provides a procedure for computing icip.

Comparing (2) and (28), we find that ROVA and CID
have almost the same formula. Starting with (2), including
a P(2") term in the denominator and taking a logarithm
produces (28). Consequently, CID and ROVA have a one-to-
one transformation given by

- Ne AN Py
icip(y"e, ") = log, (P(;M) .

Thus, CID and ROVA turn out to be identical metrics.
However, the journey from AID to CID and the recognition
that CID computes exactly the same value as ROVA reveals a
lower-complexity approach to computing ROVA. The original
ROVA implementation computes the normalization factor A,,
for each trellis stage, which in turn requires the additional
computation of Pjm for each surviving trellis branch. The
algorithm we propose for computing CID does not require
these computations.

As an example, consider the number of multiplications
required for the common case of a rate-1/n convolutional

Ne

7§7nc) = logQ

(28)

iCID (y

(32)



Algorithm 4: Computation of proposed icip (and ROVA).
Initialization: For i,j € S, let 7, be the set of valid trellis
branches as defined in Algorithm I. Initialize m = 0, F8 =1,
70— 1.
Iterations:

) m=m+1

2) Compute branch metrics 7,, (¢, 7) as in Algorithm 1.

3) Compute I'/, as in Algorithm 2.

4) For each j € S compute

= 2>z

(4,5)€Tm

—17m(8,]). (29)

5) if m = n. conclude by reporting either

N n N I‘?Z
ico(y"e, 2"¢) = log, (W) , Or (30)

n F(”)L
Pye = 70 31
otherwise, go to Step 1.
code where N, = 2, excluding the number of multiplica-

tions necessary for the branch metric 7, (4, 7). The original
ROVA algorithm requires approximately (3 + 2N,)N; =
7N, multiplications per trellis stage. AID requires only N,
multiplications per trellis stage, but is inaccurate. The CID-
inspired ROVA computation in Algorithm 4 requires only
(1 + Np)Ns = 3N, multiplies per trellis stage and computes
the identical ROVA value of FPj'* as in Algorithm 1. It is noted
that the total complexity savings are not directly proportional
to the difference in the listed number of operations, as each
algorithm must still separately compute ., (%, 7).

V. ANALYTICAL EXPRESSION FOR THE P(?“ DISTRIBUTION

An analytical expression for the distribution of Py reveals
the relationship between the selected threshold and the induced
UER (as shown in Fig. 1) and between the selected threshold
and the induced throughput. The analysis below assumes
BPSK symbols 1 and -1 are transmitted over an additive white
Gaussian noise (AWGN) channel with noise variance o2.

Consider the computed conditional pdf fy |y (y"|2"<) in
(2) as a random variable F' and recall that for an AWGN

channel it is computed as

T (33)

where n; is the number of binary symbols in z™¢. For
example, with a rate-1/3 convolutional code, n, = 3n.. If
Z"e = x'*, using a subscript to denote the Hamming distance
dH( e a: )— 0,

ny

21_[1 vV 271'02

loobo

27 (34)

where z; is the AWGN in the i* symbol If dg (87, a2}
with the one difference bit in the j*" symbol, then

=1,

1 et 1 =
= 7\/We 252 AL We 252 (35
Atz 1 =
=e 22 11 Tro?e 202 (36)
— e TR 37)
where the mean of Gaussian describing the ;" symbol in

(35) is shifted by the difference between the true and decoded
values of z;. For our BPSK modulation, this difference is
always 2. This can be generalized to any Hamming distance.
For dp (", 27¢) = m,

Am+43 7 | 4z

F,=e 202 Fy (38)

Because Viterbi decoding only considers valid codewords
AN S 7' the multiplicity of each possible value of
dpr (2™, zy<) is a function of the specific convolutional code
used to encode the message, and for a terminated trellis
dp (2™, zy) has some maximum value D. Let A,, be the
number of valid codewords &"c with dg(&",zy¢) = m,
which by linearity is the number of valid codewords with
Hamming weight u:

= [{@" €T :du(@",25°) = u}|,

where x(° is the transmitted codeword for the all-zeros input.
Viterbi selects the correct codeword with high probability,
and when it doesn’t the selected "< usually has similar value

(39)

of fy|x(y"e|2"=). Thus we can approximate fy|x (y"<|2")
with Fj so that
Fo
Py~ = e (40)
Fo X o Aue 207
which can also be expressed as
v aut kL az, !
P~ (1 +Y A ) @1)
u=1

The expression for Py given in (41) includes a sum of U
log-normal random variables. Because the magnitude of the
terms decreases rapidly, summing a few of the most significant
terms gives a good estimate. For a convolutional code with
{117, 127, 155} as described in [24] as well as Table 12.1 of
[25], Fig. 7 compares the cumulative histogram of Py found
by a simulation of Viterbi decoding with Pg'® computed as
described in Algorithm 4 with the cumulative histogram of
Pg'e given in (41) generated by Monte Carlo using U = 21,
using seven active terms for © = 15 to v = 21 and neglects
terms with v > 21. These seven active terms provide an
excellent approximation in Fig. 7.

For the following analysis, P(C) is the probability of Viterbi
selecting the correct codeword a.k.a. the throughput, P(E) is
the probability of Viterbi selecting an incorrect codeword, i.e.,
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Fig. 7: Cumulative histogram of ROVA metric computed by simulation of
Viterbi/Algorithm 4 and by Monte Carlo of (41) with U truncated to 21 for
64-state, rate-1/3 convolutional code with n = 32 at SNR 1.0 dB.
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Fig. 8: Comparison of throughput P(C), P(E), and P(NACK) between
ROVA probabilities obtained by simulation for the code and channel of Fig.
7 and Monte Carlo using (41) with U = 21.

UER, and P(NACK) is probability of negative acknowledge-
ment, i.e. rejecting the selected codeword because P(;LC <T,
where T is the ROVA threshold.

The expression of (41) indicates a probability distribution
fp on the computed probability of correct decoding Py'e. The
corresponding computed probability of incorrect decoding is
1 — Pj. Thus, with Pj'e > T required to accept the Viterbi
decoding result, we have the following expressions:

1
PO = [ ptol)ip )

P(E) = /p 1_T

P(NACK) = /

p=0

(1 —p)fe(p)dp (43)

T
fe(p)dp. (44)
Fig. 8 compares the application of (42), (43), and (44) using

the cumulative histogram of Pj'¢ generated by Monte Carlo

using U = 21 (shown in Fig. 7) to the values of P(C), P(E),

and P(NACK) obtained by simulation of Viterbi decoding

with Pj'e computed as described in Algorithm 4 and then
applying the threshold 7" to decide if the codeword selected
by Viterbi should be accepted.

The Monte Carlo prediction is very close to the simulated
values except for P(NACK) for values of log(1 — T') above

-0.5. As shown in Fig. 3 (for a different code), when log(1 —
T) is sufficiently large, the fraction of incorrectly decoded
codewords increases significantly causing the approximation
of fy|x(y"|2™) with Fy to be inaccurate.

VI. COMPLEXITY ANALYSIS OF RELIABILITY METRICS

This section analyzes the additional complexity beyond
standard Viterbi decoding required by each reliability metric in
a ZTCC with N states, IV, branches per state, k trellis stages,
and ng4 transmitted dimensions per transmitted symbol, i.e. per
trellis stage.

For analysis, the trellis stages are decomposed into three
sections:

1) The initialization section where the number of active

trellis states is increasing from one to Nj.

2) The regular transmission section where all Ny states are

trellis active.

3) The termination section where the number of active

trellis states is decreasing from Ny to one.

The decoder performs reliability metric computations along
each branch. For each of the three sections we will compute
the total number of branches on which reliability metric
computations are performed.

The initialization section begins in only one state, the zero
state. With each subsequent stage, the number of active states
increases by a factor of IV,. Thus, the number of stages needed
to activate all available trellis states is given by logy, (V).
The number of branches in the initialization section on which
reliability metric computations are performed is given by

IOng(Ns)
(Np)" =

log n, (Ns)+1
Nb Ny - N,

Ny —1

(45)

i=1

There are k — 2logy, (N,) stages in the regular trans-
mission section. Each stage in this section contains NN
branches connecting the previous states to the current states.
The decoder must therefore perform NN, (k — 2logy, (Ns))
reliability metric branch computations in this section.

The termination section begins with all Ny states active.
With each subsequent stage, the number of active states
decreases by a factor of IV, until only the zero state is active
at the end of the transmission. Thus, the number of stages in
the termination section is given by log y, (IVs). The number of
branches in the termination section on which reliability metric
computations are performed is the same as for the initialization
section, as described in (45).

Thus, the total number of reliability metric computations
performed throughout the decoding process is given by

Q(N;Ong (N5)+1 _ Nb)

(40)

Nsz(k_Qlong(Ns))+ Nb—l
Neglecting overhead computations that occur once per code-
word or once per stage, the computational complexity required
by a reliability metric can be estimated by multiplying (46)
by the number of operations needed per branch for that
reliability metric. The initialization and termination sections



each occupy logy, (Ns) trellis stages. If k& is much greater
than 2logy, (N,), then the regular transmission section will
dominate the overall complexity.

As shown in step 2 of each of Algs. 1-4, each reliability
metric requires the computation of branch metric ~,, along
every branch in the trellis. For an AWGN channel, v, is
computed for each branch by multiplying the conditional
densities for each dimension of the symbol corresponding to
that branch as follows:

e 1 (wi=4)?
= _— 202
Yrm ];[1 — 47)
If the SNR of the channel is fixed, the terms involving o can
be treated as a constants and precomputed.

For all the algorithms considered, in addition to computing
Ym, the reliability metric algorithm requires steps that need to
be performed either along every branch within the trellis stage
Tm, or along the surviving branches chosen by the Viterbi
algorithm. For the Raghavam and Baum implementation of
ROVA [12], the computation of A,, in (4) must be performed
once per stage using values from all valid branches, while
the computation of ij and ij in (5)-(6) only needs to be
performed along the surviving branches. The Frick and Hoeher
Approximation of ROVA [15] requires the computation of I/,
in (10) along every valid branch as those values are necessary
for the computation of the denominator in (11) for the winning
branches. The AID algorithm only requires the computation of
I/ in (20) on the surviving branches chosen by Viterbi, and
II(m) in (21) can be computed once for every stage. The CID
implementation of ROVA requires the computation of ZJ in
(29) for each state and I'J, for each surviving path.

Table I shows the number of operations per stage necessary
to compute each reliability metric using the most efficient
implementation we could devise. Fig. 9 illustrates how the
additional computation required for each reliability metric
compares with the computations required for Viterbi decoding

TABLE I: Operations per trellis stage (OPTS) for the Viterbi algorithm and the
additional complexity beyond Viterbi for each of the four considered reliability
metrics, when all trellis states are active. The Example OPTS value is the
value of OPTS for the example where « = 2, Ny = 4, N, = 2, and
ng = 2. Additional Time is the average additional time needed to simulate
the chosen reliability metric in addition to the Viterbi algorithm per 100
decoding simulations. Simulations are performed with a 4 state rate-1/2 BPSK
modulated decoder where o = 2, Ng = 4, Ny, = 2, and ng = 2 on an Intel
i7-4720HQ processor.

Example Add
Algorithm | Operations per trellis stage OPTS Timé ©
value
Viterbi NsNy(5ng + 1) 38 0
ROVA NpNs(dng + 4)
(R&B) FAN, + 2ng + 6ngo 140 0317
NsNy(4ng + 2)
F&H +2ng4 + 6nga 108 0.280
Ns(4ng +1)
AID +dng + bnga 68 0.203
ROVA NsNy(4ng + 2)
(CID) +2ng + 6nga 108 0.281

ROVA(R&B) F&H AID
Simulated Reliability Metric

ROVA(CID)

Number of Operations per Stage

W Viterbi ®WROVA F&H AID mCID

Fig. 9: Number of operations needed per stage to implement Viterbi alongside
the chosen reliability metric. Number of operations is based on a 4 state, 128
information bit, rate 1/2 decoder.

) F&H AID

Simulated Reliability Metric
m ROVA(R&B) F&H AID mROVA(CID)
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ROVA(R&B

Simulation TIme (s)

ROVA(CID)

M Initialization W Viterbi

Fig. 10: Simulation time per 100 decodings with Viterbi and the chosen
reliability metric. Initialization includes everything that was simulated that was
not a part of the Viterbi algorithm or the chosen reliability metric. Initialization
includes tasks such as creation of the trellis structure, encoding the input
sequence, and computing every state transition bit sequence in the trellis.

for the example of a = 2, Ny =4, N, = 2, and ng = 2. Fig.
10 shows the simulation time results for this same example.
While Viterbi requires only squared Euclidean distance as
a metric, the various reliability metrics all require the compu-
tation of (47) over all branches. This is the most expensive
step in each metric evaluation. A straightforward approach
requires 7ng operations per branch. However, pre-computing
each multiplicand in (47) once per stage can significantly
reduce the computation. For each unique symbol value in each
dimension of the mapped symbol alphabet, the term

1 _wi—#5)?
e 552
V2mo?

can be computed for a received symbol 2. This requires 614
calculations « times, where « represents the number of unique
values of the mapped symbol alphabet in each dimension. Thus
the overall reduction is from 7ny N, N, computations per stage
to ngNs Ny + 6nga computations per stage.

For example, a code that uses BPSK modulation would
have an « of 2, while 8PSK modulation would have an «
of 5, corresponding to the five possible values per dimension

(48)



{—1,-1/+/2,0,1/4/2,1}. Thus, (48) can be computed once
for each of these five values, and the results can be cached
and accessed when they are multiplied together in (47). Each
metric computation now requires nq + 1 steps per branch to
multiply the cached values together and incorporate the result
into I'7, .

The implementation of each metric contains an additional
3ng overhead operations per branch and 2n4 operations per
stage. ROVA as in [12] has an additional 3N, N, and 4N,
term necessary to compute (4)-(6) of Algorithm 1. The ROVA
approximation [15] and ROVA computed as CID have an
additional Ny N term necessary to compute (11) and (29)
respectively. After these optimizations, AID [17] is the fastest
metric, ROVA computed as CID and the ROVA approximation
share the same complexity, and ROVA computed as in [12] has
the highest complexity. Although the ROVA approximation is
very accurate in our simulation, ROVA computed as CID offers
the exact reliability at no additional complexity as compared
to the approximation.

VII. APPROXIMATELY OPTIMAL ORDERING OF SYMBOL
TRANSMISSION FOR INCREMENTAL RETRANSMISSION

The techniques described in this section will optimize the
order of additionally transmitted symbols when a retransmis-
sion request occurs in an incremental retransmission scheme.
The results of this section will be applied to Sec. VIIL

Let €, 4+ denote the event of decoding codeword 2’ when
x is sent, and let e, ,» denote the event that codeword z’ is
more likely than codeword = given the received y. We have
the union bound

FER =P U €$7I/ =P U exw’ (49)
z,2' €C z,x’€C
r#z’ x#x’
< > Plesa). (50)
z,x’eC
z#x’

We denote P (e, ,) as the pairwise error probability. We have
the Q-function approximation:

d? x,x’
Ploew) =0 2(T0) p(z) (51
?ree aF e d3(za’)
< Q ——— | e*Noe 4Ng p(x), (52)

2N,

where d?(x,z’) denotes the squared Euclidean distance be-
tween codewords x and z’, and

p(x) = [ alze) (53)
=1
is the probability that the codeword z is sent, where ¢(-) is
input distribution chosen for the channel.
Let

W =e ™5 . (54)

Using the additivity of squared Euclidean distance over com-
ponents, we have

d? (z, ')
> exp (—4N0) p(x) (55)
z,x’ €C
x#x’
1 . 2 /

= Z exp (—4NOZd (xg,xe)> p(x) (56)

xz,x’ €C (=1

x#x’

no 2 ’ ]

= > [ {w g @) 57)

za'eCcl=1 " )

r#x’

| =TT )] s8)

T (=1

_Wd2 ({L’Z,‘T;)q (xz)

I
N
—

-1, (59)

I
N
—

,Wd2 (ml,mi})q (1'[)-

We convert the sum over codewords into a sum over paths
through the trellis. In order to compute (59), it is necessary
to compute W (@) for each branch in each codeword. All
paths that start and end at the zero state are valid for a zero-
terminated convolutional code. Since the decoded codeword
is always zero-terminated, the starting and ending states are
always correct.

Previous work in [26] describes a symmetry-based tech-
nique for reducing the size of state-diagrams necessary to
describe trellis codes with standard constellations and labeling.
The minimal state transition diagram as a function of W takes

the form
d c
b A

where A specifies the transition labels from errored states to
errored states, b specifies the transitions from correct states to
errored states, c specifies the transitions from errored states to
correct states, and d specifies the transitions from correct states
to correct states. Each element in the minimal state transition
diagram is a linear combination of the W (@e2h) terms for
each equivalence class associated with that state transition as
defined by [26]. We can rewrite (59) as the following transfer
function

(60)

T(W)=[d c E ﬂ e {ﬁ] ~1, 61)

Noting that the Hamming weight does not appear in (59),
we can combine (52) and (61) as the bound

d2
FER < Q (/54
0

where dy,.. is the free distance of the code. For punctured
trellis codes, [27] states that the transfer function in (62)

(62)



should not be evaluated with a single W. Each magrix in
(61) must be evaluated separately with W = e 4% for
transmitted symbols and W = 1 for punctured symbols. For
an 8-PSK zero-terminated trellis code with constraint length
v and puncturing, (62) becomes the following:

2

FER < Q |/ 5%
0

2
™ T (W), (63)
where r is the residual Euclidean distance of the punctured
code and W* is the set of all W; = exp —4%- from i =
1 to £ where a; is 1 if the i-th symbol from the end of the
transmission is transmitted and O if it is punctured. The transfer

function with puncturing is given by

I (T =

(64)
A greedy search algorithm detailed in Algorithm 5 is
performed in Section VIII to select the order of addition-
ally transmitted symbols. Greedy algorithms are in general
not globally optimal, but are approximations of the globally
optimal solution. The algorithm uses (63) to lower bound
the FER for every valid additional transmitted symbol when
a retransmission request occurs. The additional symbol that
results in the lowest FER is the locally optimal symbol to
transmit for that request given the previous selections. This
process starts with the most aggressive puncturing pattern and
repeats until all symbols have been transmitted.

TWY =[d c

Algorithm 5: Greedy search algorithm to determine the order
of additionally transmitted symbols.

Initialization: Compute the minimal state transition diagram
as in eq. (60). Select the most aggressive puncturing pattern
to be considered as the initial puncturing pattern. Initialize m
to be equal the number of punctured symbols in the initial
pattern.

Iterations:

) m=m-—1

2) Select a punctured symbol in the puncturing pattern.

3) Compute (63) for the current puncturing pattern if the
selected symbol were additionally transmitted. Store the
result.

4) Return to step 2 until all punctured symbols have been
evaluated.

5) Update the puncturing pattern so that the additional sym-
bol that results in the lowest FER bound is transmitted.

6) If m # 0, return to step 1.

VIII. NUMERICAL RESULTS FOR HIGHER ORDER
MODULATION FOR VARIABLE LENGTH CODING WITH A
COMPARISON TO A CRC-BASED APPROACH

Previous work by Williamson [13] has demonstrated the
performance of reliability-based retransmission schemes over
the AWGN channel using ROVA as the reliability metric for
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Fig. 11: Short-blocklength performance of the m = N ROVA-based retransmis-
sion scheme over the AWGN channel with SNR 6.00 dB and target probability
of error ¢ = 1073 using a 64 state rate 1/3 code with 8-PSK modulation.
The ROVA for terminated convolutional codes is used. The performance of a
CRC-based retransmission scheme with the same characteristics is also shown.
Each code shares the same set of the total number of input bits processed by
the code: 15, 20, 25, 30, 35, 40, 50, 75, 100, 125.

BPSK modulation. This section demonstrates using ROVA as
a reliability metric in an incremental transmission scheme for
8-PSK modulation and compares it to using a CRC as the
reliability metric.

Fig. 11 shows the performance of both a ROVA-based and a
CRC-based incremental transmission scheme over the AWGN
channel at an SNR of 6 dB and target error rate ¢ = 1073
using 8-PSK modulation and convolutional code {173,46,133}
as described in [28] with soft-decision decoding and feedback
of the selected metric after every symbol to determine when to
terminate the transmission. Every CRC polynomial was chosen
from [29] such that each data point in Fig. 11 achieves a
frame error rate less than target e. Fig. 12 shows the observed
frame error rates for each of the simulated data points in Fig.
11. It can be seen that ROVA is able to target specific error
rates much more precisely than the CRC. Both schemes utilize
the techniques in Section VII to determine the optimal order
of symbol transmission. The performance of the ROVA-based
approach when additional symbols are chosen randomly is also
shown. The optimal-order ROVA achieves a higher throughput
at similar average blocklengths compared to the random-order
ROVA.

The throughput R; of the channel is plotted against the
average blocklength A for various values of the message length
k, which is a hidden parameter of Fig. 11. The total number
of symbols processed is k + v for ROVA and k£ 4+ v + m for
the CRC, where m is the number of CRC bits. The variables
A and R; are defined as the following:

A< L Puck ()
~  1— Puack(V)
k

Rt = X(l — PUE)

where Pyack (%) is the probability that the receiver generates a
NACK due to ROVA metric being below the threshold when
1 coded symbols have been received. Py is the probability of
undetected error. The achievability curve for variable-length

(65)

(66)
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Fig. 12: Frame error rate plotted against the average blocklength for each of
the simulated points in Fig. 11. Each ROVA threshold and CRC polynomial
is chosen such that the frame error rate is below target error rate €. ROVA is
able to target desired error rates more precisely than the CRC.

coding with feedback represents the random coding lower
bound as defined in [13] according to [17]. Similar to the
results shown in [13], the simulations in Fig. 11 demonstrate
that the throughput of this convolutional code exceeds the
random-coding lower bound at short blocklengths. Fig. 11 also
demonstrates that the CRC-based retransmission scheme per-
forms poorly compared to ROVA at lower average blocklength.
This is expected, as the additional bits required for the CRC
are expensive when the number of transmitted symbols is low.
It is possible to form a hybrid scheme by combining ROVA
and a CRC. If this decoder receives a message and the
CRC does not pass, then the decoder choice is selected. If
the message passes the CRC, then computations similar to
the ROVA computations described in this paper can aid in
determining if the decoding is sufficiently reliable.

IX. CONCLUSION

This paper compares the ROVA algorithm of [12] to AID
from [17] and found that AID is less accurate because it
considers all ™ sequences as possible rather than restricting
attention only to valid codewords. When AID is modified
to consider only valid codewords, it becomes equivalent to
ROVA, and reveals a lower complexity approach to ROVA
as compared to the algorithm presented in [12]. The Fricke
and Hoeher approximation was shown to have comparable
accuracy to ROVA, but the CID implementation of ROVA
achieves similar complexity reduction as Fricke and Hoeher
while computing the exact probability rather than an approx-
imation.

This paper also derives an expression for the random
variable that describes the codeword reliability according to
ROVA. The distribution of the ROVA metric can be used to
accurately model how the probabilities of correct decoding,
undetected error, and negative acknowledgement depend on
the choice of ROVA threshold.

Additionally, this paper derives an expression for the union
bound on the frame error rate for ZTCCs with punctured sym-
bols. An optimal ordering of additional symbols to transmit in
an incremental retransmission scheme is achieved by utilizing
this union bound in a greedy search algorithm.

Finally, this paper shows that ROVA can be used in a
reliability-based retransmission scheme using 8PSK modu-
lation to achieve higher throughput than the achievability
lower bound of [17] at short average blocklengths. Based
on the data in Fig. 11, ROVA allows us to significantly
exceed Polyanskiy’s random coding union bound for very short
blocklengths. However, the CRC performs better than ROVA
after a certain average blocklength. The reason for this is that
the CRC provides an additional coding benefit, as well as the
fact that the penalty of the additional bits required by the CRC
decreases with increased blocklength.
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APPENDIX

TABLE II: Complexity of a ROVA iteration when all trellis states are active.

TABLE VI: Implementation details of the comparison between incremental
retransmission schemes utilizing either ROVA or the CRC in Fig. 11. k is
the number of information bits for ROVA, m is the number of CRC bits, k’
is the number of information bits for the CRC, A is the average blocklength,
and Ry is the throughput. Both the ROVA and CRC process an additional v

[ Algorithm Step |

Complexity

l

Step 2 N Ny metric computations
Step 3 Ns(Np + 1) additions and NN, multiplications
Step 4 Computation of one multiplicative inverse: AT

2 x N multiplications to compute P].'Q
Ns(Np +1) multiplications and
2Ns Ny adds to compute P]T

TABLE III: Complexity of an iteration of the Fricke and Hoeher approxima-
tion of ROVA when all trellis states are active.

[ Algorithm Step |

Complexity

Step 2 N Np metric computations

Step 3 N, multiplications to compute I'7,
Ng(Np — 1) adds. and mults. for denom. of (11)
N, divisions to compute (11) for each state

Step 4 nc multiplies to compute []7e | P (i*, ).

TABLE IV: Complexity of an iteration of the AID algorithm when all trellis

states are active.

[ Algorithm Step [ Complexity

Step 2 N Np metric computations
Step 3 N, multiplications to compute I'7,
Step 4 |X| metric computations to compute fy (ym|z)

|X| adds. and mults. to compute fy (ym)
1 multiply to compute II(m)

TABLE V: Complexity of an iteration of the CID implementation of ROVA
when all trellis states are active.

[ Algorithm Step [ Complexity ]

Step 2 NNy metric computations
Step 3 N, multiplications to compute I'7,
Step 4 Ns Ny, adds. and mults. to compute Z3,.

termination bits.

ROVA with optimal ordering CRC with optimal ordering

E T X ] Rt m [ K=k—m] X [ Rr
9 6.39 1.409 5 4 6.04 | 0.662
14 9.34 1.499 6 8 8.15 | 0.982
19 12.22 1.555 8 11 10.31 | 1.067
24 | 15.19 1.580 8 16 12.55 | 1.275
29 18,16 1.597 8 21 14.87 | 1.413
34 | 21.30 1.596 9 25 17.26 | 1.448
44 | 2744 1.603 10 34 22.19 | 1.532
69 | 43.51 1.590 12 57 3523 | 1.618
94 | 59.34 1.584 12 82 48.75 | 1.682
119 | 75.78 1.570 13 106 62.47 | 1.697




