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Abstract—In communication networks, the usage of
multiple-input multiple-output (MIMO) systems may give
advantages such as enhanced rates or diversity. This article
investigates the performance of blind signal separation and
symbol detection under the assumption of unavailable receiver
information and the absence of a training sequence to aid in
detection. The Constant Modulus Adaptive (CMA) method
is assessed as the foundation technique for discussing blind
source recovery in MIMO systems, demonstrating its powerful
capabilities in source recovery without a training sequence.
The performance and convergence speed of the Multi-Modulus
Adaptive (MMA) algorithm are then compared to the CMA
algorithm’s low efficiency in recovering Quadrature Amplitude
Modulation (QAM) signals. The Simplified Constant Modulus
Adaptive (SCMA) algorithm’s performance in MIMO struc-
tures with low computational complexity and a reasonable
efficiency in signal estimation is further investigated as a well-
known solution to reduce the computational complexity of
CMA and MMA algorithms in MIMO systems with a large
number of receiving antennas. Finally, using the Cross Cor-
relation Simplified Constant Modulus Adaptive (CC-SCMA)
algorithm, the non-uniqueness of the signals recovered by
CMA, MMA, and SCMA algorithms is addressed.

Index Terms—Adaptive Algorithm, Blind Source Separa-
tion, MIMO, Inter-symbol Interference

I. INTRODUCTION

MIMO communication systems connect M transmit-
ters and N receivers via M × N wireless links. These
connections can be used in two distinct ways. The first
approach (space multiplexing gain) [1] transmits a unique
data stream from each antenna, resulting in a considerable
boost in the communication system’s throughput. In the
second approach, a single stream of data is diverted and
sent to two or more antennas and the user can enhance link
reliability utilizing appropriate gain combination solutions
on the receiving side. A primary challenge for such systems
is detecting data signals in the receiver while dealing
with multi-stream interference. This can be accomplished
by using a machine learning (ML) capable receiver with
a high computational complexity, as well as by utilizing
MMSE, SIC-MMSE, and ZF equalizers [1]–[4]. All of these
techniques necessitate precise channel information on the
receiver’s side.

While the availability of channel state information en-
ables precise blind signal separation, obtaining the CSI is
not always attainable in practice. For mobile links, for ex-
ample, the channel behavior is constantly changing, making
it impracticable to have CSI readily available for blind
separation. Additionally, the transmitter must cooperate in
order to accurately measure CSI. Nonetheless, there are cir-
cumstances in which the transmitter may be uncooperative.
Synchronizing the transmitter and receiver is not desirable
in covert communications since it may betray the existence
of the communication link. Another, more difficult, sce-

nario is when the receiver wishes to intercept the signal
without alerting the transmitter. In this case, the receiver
must decode the signals without having access to complete
knowledge of the modulation details employed by the target
transmitter. These circumstances compel the analysis of
blind signal separation when the CSI is unavailable, the
transmitter’s modulation schemes are unknown in whole or
in part, and only a generic description of the modulation
method applied is accessible at the receiver.

The purpose of this paper is to assess the ability of
the existing blind signal separation algorithms to eliminate
Inter-Symbol Interference in MIMO systems, as well as to
compare their convergence speed and performance, as well
as their robustness, when different numbers of transmitting
and receiving antennas are used. We presume that the re-
ceiver employed in the covert communication link does not
have access to channel state information. Additionally, it is
assumed that no training sequence is available to assist with
channel estimates or identification. For signal detection in
the presence of multi-stream interference, constant modulus
blind algorithms are used. Among the contributions of our
work are the following:
• We investigate the effect of changing the number of

transmitting and receiving antennas on the conver-
gence speed of blind signal detection algorithms and
the Signal to Noise Interference Ratio (SINR) when
recovering Phase Shift Keying (PSK) or Quadrature
Amplitude Modulation (QAM) signals transmitted over
a MIMO channel with flat fading.

• The performance and computational complexity of
the well-known CMA, SCMA, MMA, CC-CMA, and
MCC-SCMA algorithms for blind detection of PSK
and QAM digital signals under multi-stream interfer-
ence are analyzed.

• The impact of received Signal to Noise Ratio (SNR)
on the convergence speed of blind detection algorithms
is investigated.

• We determine the optimal number of transmitting and
receiving antennas in order to increase SINR while
lowering blind detection convergence speed without
imposing excessive computational or implementation
costs on the transmitter or receiver.

II. CONSTANT MODULUS ALGORITHM

The use of multiple antennas on both ends of the com-
munication link considerably improves spectral efficiency,
even more so when blind approaches are used. Numerous
strategies have been proposed in the literature, each of
which offers a different trade-off between complexity and
performance. The constant modulus algorithm (CMA) is
an excellent approach [5] that is extremely resilient and
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Fig. 1. Structure of an Adaptive Signal Recovery Filter at MIMO receivers

performs efficiently when estimating transmitted signals
blindly. This section introduces CMA and evaluates its
high convergence speed and performance under different
scenarios, most notably when employing varying numbers
of transmitting and receiving antennas. To enhance the
effectiveness of CMA in recovering signals with a QAM
constellation, the MMA algorithm is introduced as a solu-
tion [5], [6]. We examine the effectiveness of this technique
and compare the SINR obtained when the total number of
receiving or transmitting antennas is increased. The linear
additive model for the MIMO system with flat fading can
be stated as follows:

y(n) = Ha(n) + b(n) (1)

where a(n) = [a1(n), . . . , aM (n)]T is the M × 1 vector
of the source signals, HN×M is the MIMO channel matrix
without linear memory, and M and N respectively show the
number of transmitter and receiver antennas in the MIMO
system. y(n) = [y1(n), . . . , yN (n)]T is the (N × 1) vector
of the received signals and b(n) = [b1(n), . . . , bN (n)]T is
the (N×1) noise vector. We assume that H has a complete
column rank of M and noise taking the form of additive
white Gaussian noise independent of the source signals. The
source signals are assumed independent and identically dis-
tributed. They are mutually independent (E[aaH ] = σ2

aIM )
and are obtained from the PSK or QAM constellation. To
simulate the flat channel fading in the MIMO system, the
channel matrix H implements elements from a complex
Gaussian distribution while the elements of the noise vector
b(n) have a complex Gaussian distribution as well.

The received signal y(n) is processed by the receiving
matrix W to recover the source signals. Hence, the trans-
mitter output can be written as [7], [8]:

z(n) = WT y(n) = WTHa(n) +WT b(n)

= GTa(n) + b̃(n)
(2)

where z(n) = [z1(n), . . . , zM (n)]T is the M × 1 vector
of the receiver output, G = [g1, . . . , gM ] = HTW is the
M × M global system matrix, and b̃(n) is the filtered
noise at the receiver output. As shown in Fig. 1, The
WN×M = [w1, . . . , wM ] matrix is the N × M matrix
of the filter coefficient bank used to recover the source
signals (up to the threshold of a probable phase rotation
ambiguity which can be resolved by utilizing Differential
Phase Shift Keying (DPSK) instead of PSK constellation
at the transmitter). Blind source separation aims to find the
W matrix such that z(n) = ã(n) becomes an estimate of
the source signals. To adaptively obtain the W matrix, the
CMA cost function should be optimized as discussed below.

The cost function that should be minimized is:

min
w`

ϑ (w`) = E

[(
|z`(n)|2 −R

)2]
, ` = 1, . . . ,M (3)

where |z`(n)| is the modulus of the `th output of the
equalizer z`(n) = wT

` y(n) and R is the scattering constant.
It is critical to note that the only information available at
the receiver is the type of modulation technique employed
at the transmitter (PSK or QAM), and the receiver’s CSI
is absolutely unknown. As a result, given a PSK-modulated
transmitted symbol stream, we have implicit knowledge that
the constellation of the received signal should converge to a
fixed value. Thus, the objective is to decrease the dispersion
of the incoming symbols such that their modulus approaches
a constant iteratively during the equalization process. The
optimal value for this constant R is determined using the
zero forcing approach (ZF), which is based on complete
equalization [8], [9]:

R =
E
[
|a(n)|4

]
E
[
|a(n)|2

] . (4)

The CMA algorithm attempts to map the equalizer’s
output’s absolute values onto a circle with a radius of

√
R.

This is apparent when examining the cost function in Eq.
3. Then, using the Stochastic Gradient Algorithm (SGA) to
execute CMA adaptively results in an adaptive relationship
for the coefficients of adaptive filter banks (Fig. 1) utilized
to recover the sources. The classical SGA algorithm used
to create a recovery adaptive filter with the objective of
minimizing the cost function stated in Eq. 3 is as follows:

W (k + 1) = W (k)− 1

2
µOw(J) (5)

where Ow(J) represents the gradient of the cost function
versus the adaptive coefficients of the recovery filter and W
represents the adaptive filter bank that recovers the signals.
The parameter µ can be changed to alter the convergence
speed of the proposed algorithm’s cost function. Increased µ
allows for faster convergence at the cost of instability. The
equation for upgrading the equalizer recovery filter bank at
the kth iteration using Eq. 5 in the CMA algorithm is as
follows [7], [8]:

W (k + 1) = W (k)− µy∗(k) [∆1(k) . . .∆M (k)]

∆i(k) =
(
|zi(k)|2 −RCMA

)
zi(k)

(6)

where y(k) is the (N×1) vector of the received signals, W
is the (N ×M ) matrix of the adaptive recovery filter bank,
|zi(k)| is the ith output of the equalizer at the kth iteration
where zi(k) = wT

i y(k), wi is the ith column of the (N×M )
matrix of the adaptive recovery filter bank (W ), and R is
obtained from Eq. 4. Then, CMA is simulated using Eqs. 3
and 6.
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A. Constant Multi-Modulus Algorithms Cost Function

The previously described cost function can simply be
changed to allow for the reception of QAM modulated
symbols with changing amplitudes despite PSK signals.
Multi-Modulus Adaptive Algorithms (MMA or CMMA) [6]
are the related algorithms that minimize the cost function
below.

min
w`

ϑ (w`) = E
[(
zR,`(n)2 −R

)2
+ (zI,`(n)2 −R)2

]
,

` = 1, . . . ,M
(7)

where zR,`(n) denotes the real part of the `th output of the
equalizer z`(n) = wT

` y(n) and zI,`(n) is the imaginary part
of the `th output of the equalizer. To obtain a less computa-
tionally difficult recovery filter, the scattering constant (R)
is determined using the zero forcing method on the received
signal’s real part:

R =
E[aR(n)4]

E[aR(n)2]
(8)

where aR(n) represents the real part of the source signal
a(n). The filter bank (Eq. 9) for simulating MMA is
obtained using the cost function (Eq. 7) and SGA [6], [7]

W (k + 1) = W (k)− µy∗(k) [∆1(k) . . .∆M (k)]

∆i(k) =
(
z2R,i −R

)
zR,i + j

(
z2f,i −R

)
zlj

(9)

where y(k) is the (N × 1) vector of the received signals.
The parameters zR,`(n) and zI,`(n) respectively represent
the real and imaginary parts of the lth output of the equalizer
at the nth iteration. The parameter R is given by Eq. 8 and
W is the N ×M matrix of the adaptive filter bank used
to recover the transmitted signals. Later in Section III, the
simulation of this algorithm using the coefficients obtained
from Eq. 9 is first discussed. Then, this method is compared
with CMA to indicate its superiority over CMA for blind
recovery of QAM shaped sources.

B. Simplified Constant Modulus Algorithm

For the `th equalizer, the cost function in Eq. 10 is
introduced for the first time in [7] to be minimized:

min
w`

ϑ (w`) = E
[(
zR,`(n)2 −R

)2]
, ` = 1, . . . ,M

(10)
where zR,`(n) is the symbol of the real part of the `th output
of the equalizer z`(n) = wT

` y(n) and R is the scattering
constant calculated according to Eq. (8). The term on the
right hand of Eq. 10 prevents the squared real part of the
output of the equalizer from deviating from the constant R.
Minimizing Eq. 10 allows the recovery of only one signal
at each output of the equalizer. By implementing the cost
function for the coefficients of the adaptive filter bank used
for source recovery:

W (k + 1) = W (k)− 1

2
µ∇w(J) (11)

W (k + 1) = W (k)− µY ∗(k) [∆1(k)..∆M (k)]
∆i(k) =

(
z2R,t −R

)
zR,t

(12)

where W is an N×M matrix of the adaptive filter bank used
for signal recovery; and Y is an N×1 vector received before
processing with the adaptive algorithm; then the parameter
µ is selected to make the cost function convergent.

C. Cross-Correlation Constant Modulus Algorithm
The cost function proposed for CC-CMA [7], [8] is:

min
w`

ϑ (w`) =E

[(
|Z`(n)|2 −R

)2]
+ α

`−1∑
|r`i(n)|2 , ` = 1, . . . ,M, (13)

where α ∈ R+ is a composite parameter determining
the significance of the cross-correlation term in the cost
function, R is defined by Eq. 4, a(n) is the M × 1
vector of transmitted PSK or QAM signals, and r`i(n) =
E(z`(n)z∗i (n)) is the cross-correlation of the `th and ith

output of the equalizer which prevents identical signal
estimates in numerous outputs. Therefore, the first term in
Eq. 13 guarantees recovery of only a single signal at each
output branch of the equalizer while the cross-correlation
term determines that each output of the equalizer is different
from the other output of the equalizer. Hence, all source
signals can be recovered.

To implement the cost function (13), the classical SGA
is utilized. The general form of SGA is:

W (k + 1) = W (k)− 1

2
µOw(J) (14)

where Ow(J) is the J gradient versus W and J is the cost
function of the algorithm. For CC-CMA, the coefficients
for adaptive filter banks used for signal recovery in the nth

iteration are obtained from Eq. 15 using Eq. 12:

w`(n+ 1) = w`(n)− µe`(n)y∗(n), ` = 1, . . . ,M (15)

where e`(n) is the instantaneous error for the `th equalizer.
For CC-CMA, it is given by [6], [10]–[12]:

e`(n) =
(
|z`(n)|2 −R

)
z`(n) +

α

2

`−1∑
m=1

r̂`m(n)zm(n)

(16)
where R is given by Eq. 4. The scalar parameter r̂bm is the
r`m estimation calculated recursively using:

r̂bn(n+ 1) = λr̂`m(n) + (1− λ)z`(n)z∗m(n) (17)

where λ ∈ [0, 1] is the parameter controlling the window
length of the data factored into the estimation and r̂`m(n) =
E[z`(n)z∗m(n)]. Below, Eqs. 15, 16, and 17 are used to
simulate CC-CMA for blind recovery.

D. CC-SCMA Cost Function and Adaptive Implementation
Projecting the output of the equalizers on a single dimen-

sion (real or imaginary) gives the cost function (Eq. 18) for
CC-SCMA [6], [7], [11]:

min
w`

ϑ (we) =E
[(
zR,`(n)2 −R

)2]
+ α

`−1∑
i=1

|rei(n)| , ` = 1, . . . ,M (18)
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where α ∈ R+ is a parameter used to calculate the weight
of the cross-correlation term in the cost function, R is
defined by Eq. 8, and r`i(n) = E(z`(n)z∗i (n)) is the
cross-correlation between the equalizers’ outputs `th and ith.
This term precludes the use of identical signal estimates
across multiple outputs. Thus, the first term in Eq. 18
assures that only one signal is recovered at each equalizer’s
output, while the cross-correlation term ensures that each
equalizer’s output is unique. As a result, all source signals
are recoverable. Additionally, zR,`(n) is the real part of
the equalizer’s `th output at the nth iteration. Due to the
symmetric arrangement of QAM and PSK, the imaginary
portion can likewise be employed in Eq. 18. Using the SGA
algorithm, the coefficients of the filter utilized for signal
recovery at the nth iteration of CC-SCMA are as follows:

w`(n+ 1) = w`(n)− µe`(n)y∗(n), ` = 1, . . . ,M (19)

where e`(n) is the instantaneous error in the `th equalizer.
For CC-SCMA, this is given by:

e`(n) =
(
z2R,`(n)−R

)
zR,`(n) +

α

2

`−1∑
m=1

r̂`m(n)zm(n)

(20)
where the scalar quantity r̂`m denotes the estimated r`m
that can be recursively calculated as

r̂`m(n+ 1) = λr̂`m(n) + (1− λ)z(n)z∗m(n) (21)

In the above equation, λ ∈ [0, 1] is the control parameter
of the window length for effective estimation data while
E[r̂`m(n)] = E[z`(n)z∗m(n)].

E. The Cost Function of the MCC-SCMA

The cost function in Eq. 22 is provided in [5], [8] to be
minimized for MCC-SCMA:

min
w`

ϑ (w`) = E
[(
zR,`(n)2 −R

)2]
+

α
`−1∑
m=1

(
E2 [zR,`(n)zR,m(n)] + E2 [zR,`(n)zl,m(n)]

)
,

` = 1, . . . ,M
(22)

where α ∈ R+ is a composite parameter for determining
the significance of the cross-correlation term in the cost
function. MCC-SCMA [6], [7] is obtained by optimizing
CC-SCMA. The addition of another cross-correlation term
to the CC-SCMA cost function facilitates this optimization.
This extra term considerably simplifies the filter bank coef-
ficients while preserving the CC-SCMA performance.

III. SIMULATION RESULTS

In this section, for the first time, we assess and compare
the convergence speed of all of the methods discussed
previously, as well as their resulting SINR, in MIMO
systems with varying numbers of transmitting and receiving
antennas. The followings are used to calculate SINR:

SINRk =
|gkk|2∑

`,`6=k |g`k|2 + wT
KRbw∗k

(23)

Fig. 2. The effect of the number of receiving and transmitting antennas
on SINR-Iteration for 16-PSK constellation using CMA.

SINR =
1

M

M∑
k=1

SINRk (24)

where SINRk is the SINR for the kth output. In gij =
hTi wj , parameters wj and hi respectively represent the jth

and ith column vector of the W and H matrices and Rb =
E|bbH | = σ2

b IN is the noise covariance matrix. SINR is
estimated by calculating the mean of 1000 independent tests.
Each estimate is presented by the model assuming uniformly
distributed and independent system inputs acquired from 16-
QAM or 16-PSK constellation. The system noise is of the
complex white Gaussian noise variety with a mean of zero
where the noise variance is obtained based on the desired
SNR.

A. SINR-Iteration Performance

Fig. 2 shows the SINR as a function of iteration for
different numbers of transmitting and receiving antennas.
The uniformly distributed independent system inputs are
obtained from a 16-PSK modulation scheme. The system
noise is of the complex white Gaussian type with a zero
mean. The noise variance is obtained based on an SNR
of 30 dB. The signals with the 16-PSK constellation are
transmitted by M and received by N antennas. As shown
in Fig. 2, an increase in the number of transmitting antennas
detrimentally affects the SINR, as it adds extra interference.
However, it increases the convergence speed of the adaptive
detection algorithm (Fig. 5(a)). Further, it is observed that as
we increase the total number of receiving antennas, we can
obtain higher SINR; however, the SINR will eventually be
saturated and adding extra receiving antennas (i.e., N > 6)
then only adds unnecessary cost to the receiver’s hardware.

B. CMA and MMA for 16-QAM Constellation

Fig. 3 shows SINR for CMA and MMA, where Eqs. (6)
and (9) are used as W (i.e., Filter Bank matrix), respectively.
Each estimate is based on independent system inputs with
uniform distribution and 16-QAM constellation. A noise
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Fig. 3. Comparing SINR and Learning Curve-iteration in CMA and MMA
for 16-QAM constellation in a 2×3 MIMO system at received SNR = 18
dB

of the complex white Gaussian type is considered with a
zero mean. A noise variance of 18 dB is set according
to the SNR. Fig. 3 shows the results for the signals with
16-QAM modulation transmitted by 2 and received by 3
antennas. The channel matrix H is modeled as an N ×M
matrix with complex Gaussian elements and a zero mean to
represent the flat fading of the MIMO channel. A µ value of
0.005 is considered in CMA (Eq. (6)) and MMA (Eq. (9))
to make the CMA and MMA cost functions convergent.
As demonstrated, when used to recover digital signals
with a QAM constellation, the MMA algorithm performs
comparably to the CMA method in terms of convergence
speed and steady-state received SINR.

C. Computational Complexity

Table I shows the comparison of computational complex-
ity among CMA, MMA, SCMA, CC-CMA, CC-SCMA, and
MCC-SCMA. According to Table I, the following results are
obtained:
• The computational complexities of MMA and CMA

are identical, except that MMA outperforms CMA in
the blind recovery of QAM signals.

• The computational complexities of CMA and CC-
CMA were derived using Eqs. 6, 15, 16, and 17. The
computational complexity of CC-CMA is more than
that of CMA. However, CC-CMA performs well and

TABLE I
COMPUTATIONAL COMPLEXITY OF CMA AND MMA

Algorithm Number of multi-
plications

Number of additions

MMA 2(4N + 3)×M 8M ×N
CMA 2(4N + 3)×M 8M ×N
SCMA (4N + 3)×M 4×M ×N
CC-CMA 4M(M+2N−1) 2M(3M+4N+1)−2
CC-SCMA 6M(M +N)− 2 M(4M + 6N − 5) + 1
MCC-SCMA 4M(M +N)− 1 2M(M + 2N − 1)

nearly identically to CMA. The edge provided by CC-
CMA is in rectifying the non-uniqueness of recovery
filter output W against CMA, MMA, and SCMA.

• The computational complexity of MCC-SCMA is
less than that of CC-CMA and CC-SCMA. The use
of CC-SCMA and MCC-SCMA eliminates the non-
uniqueness of the output of recovery filter W in CMA,
MMA, and SCMA with low computational complexity.

D. Learning Speed in CMA and MMA

Fig. 3 further demonstrates the learning curves of CMA
and MMA. To generate learning curve vs. iteration for
CMA, for each `th output of the equalizer, the (|z`(n)|2 −
R)2 is computed in 1000 tests. By averaging the results
of these tests, the learning curve of the `th column of the
adaptive filter bank matrix W for recovering the `th original
signal from the mixed signals y(n) is obtained.

To generate the learning curve-iteration figure for MMA
for the `th output of the equalizer, the expression (zR,`(n)2−
R)2+(zI,`(n)2−R)2 is computed 1000 times. The learning
curve is then plotted by averaging the results of the 1,000
tests. In Fig. 3, the 16-QAM signals are transmitted by 2
and received by 3 antennas. After setting the power of the
additive complex white Gaussian noise (Eq. 1), the SNR is
adjusted to 18 dB. The channel matrix H is modeled as an
N ×M matrix with complex Gaussian elements and a zero
mean to represent the flat fading of the MIMO channel. A µ
value of 0.005 is considered in CMA (Eq. 6) and MMA (Eq.
9) to make their cost functions convergent. This convergence
is observable after 2000 iterations in Fig. 3. As shown in
Fig. 3, the convergence speed of MMA is less than that of
CMA while the steady state cost function of MMA after
2000 iterations is higher than with CMA.

E. CC-CMA, CC-SMCA, MCC-SCMA Learning Speed

According to Fig. 4, the cost functions of CMA, CC-
CMA, CC-SCMA, and MCC-SCMA converge to their
respective minima. The convergence speed of the MCC-
SCMA cost function surpasses that of all others, which

Fig. 4. Comparing SINR-iteration and Learning Curve-iteration curves of
CMA, CC-CMA, CC-SCMA, and MCC-SCMA for 16-PSK constellation
in a 2 × 3 MIMO system at received SNR=30 dB
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gives it an edge. Despite this higher convergence speed,
MCC-SCMA also has a larger steady-state cost function
compared to others, which is a drawback. The steady-state
cost function of the CC-SCMA nearly equals that of MCC-
SCMA. Further, the fluctuations in the MCC-SCMA cost
function are less than in other algorithms. Concerning MCC-
SCMA, its low computational complexity, high convergence
speed, and successful performance in the blind recovery
of transmitted signals indicate its superiority over other
adaptive algorithms in this study.

F. Learning Speed sensitivity vs. Number of transmitting
antennas and received signal to noise ratio

As shown in Fig. 5(a), increasing the number of trans-
mitting antennas delays the convergence of the CMA while
decreasing the SINR as shown in Fig. 2(b). Furthermore,
Fig. 5(b) demonstrates that in the presence of higher re-
ceived signal strength, the CMA’s cost function can achieve
a lower steady-state level and therefore achieve detection
performance with lower Bit Error Rate (BER). Fig. 6 shows
the successful performance of CC-SCMA in recovering
the transmitted signals. The advantage offered by using
CC-SCMA and MCC-SCMA is in eliminating the non-
uniqueness of the recovery filter output W in CMA, MMA,
and SCMA with low computational complexity.

IV. CONCLUSION

The performance of a family of constant-modulus adap-
tive algorithms for blind adaptive separation of signals
with QAM and PSK signals in MIMO communication
systems was investigated in this article. The criteria for
developing CMA algorithms were to minimize the scattering
of the equalizer’s output and to ensure convergence to a
constant R. Due to CMA’s inability to recover non-constant
modulated signals such as QAM, MMA was used. This
algorithm performed well in recovering QAM signals due to
its simultaneous minimization of the equalizer’s imaginary
and real parts. CMA and MMA, on the other hand, suffered
from high computational complexity and the possibility of
non-unique signals being recovered from the recovery filter
output. SCMA was extensively evaluated as a solution to the
first issue. Rather than utilizing both the real and imaginary
parts of the equalizer’s output, SCMA recovers signals by
minimizing the scattering of either the real or imaginary
part of the output and converging it to a fixed value. This
results in a reduction in computational complexity. SCMA,
however, continued to suffer from the second disadvantage,
which led us back to CC-CMA and MCC-SCMA. This
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Fig. 5. The effect of (a) the number of the transmitting antennas
(received SNR=30 dB) and (b) received signal to noise ratio (SNR) (M=2,
N=3) on convergence speed of the Learning Curve-Iteration for 16-PSK
constellation using CMA.
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Fig. 6. The scattering diagram for 16-PSK constellation using CC-SCMA
at SNR =30dB. Left: the constellation of the transmitted signals using
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(mixed) signals (N=3); Right: the constellation of recovered signals.

algorithm was created by multiplying the cost function of
CMA by a cross-correlation term. The resulting algorithm
was capable of successfully recovering unique signals as
adaptive recovery filter outputs. However, the algorithm
retained the first flaw, and its high computational complexity
made implementation difficult. As a result, the CC-SCMA
cost function was constructed by adding a cross-correlation
term to the SCMA cost function. As a result of SCMA’s
lower complexity in comparison to CMA, the computa-
tional complexity of CC-SCMA was reduced overall when
compared to CC-CMA. Additionally, the additional cross-
correlation term resolved the second issue.
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