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Multichannel Analysis of Surface Waves (MASW) is a technique frequently used in geotechnical engineering and
engineering geophysics to infer 1D layered models of seismic shear wave velocities in the top tens to hundreds of
meters of the subsurface. We aim to accelerate MASW calculations by capitalizing on modern computer hardware

I?::;llel computin available in the workstations of most engineers: multiple cores and graphics processing units (GPUs). We propose
MPI puting new parallel and GPU accelerated algorithms for computing 1D MASW inversion, and provide software imple-

mentations in C using Message Passing Interface (MPI) and CUDA. These algorithms take advantage of sparsity
that arises in the problem, and the work balance between processes considers typical data trends. We compare
our methods to an existing open source Matlab MASW tool. Our serial C implementation achieves a 2x speedup
over the Matlab software, and we continue to see improvements by parallelizing the problem with MPI. We see
nearly perfect strong and weak scaling for uniform data, and improve strong scaling for realistic data by
repartitioning the problem to process mapping. By utilizing GPUs available on most modern workstations, we
observe an additional 1.3x speedup over the serial C implementation on the first use of the method. We typically
repeatedly evaluate theoretical dispersion curves as part of an optimization procedure, and on the GPU the kernel
can be cached for faster reuse on later runs. We observe a 3.2x speedup on the cached GPU runs compared to the
serial C runs. This work is the first open-source parallel or GPU-accelerated software tool for MASW imaging, and
should enable geotechnical engineers to fully utilize all computer hardware at their disposal.

1. Introduction and background

Multichannel Analysis of Surface Waves (MASW) is a seismic
exploration technique used to infer a layered 1D model of the subsur-
face. In MASW a seismic source is recorded by a linear array of geo-
phones or other vibration sensors, then a dispersion curve is calculated
from that data, indicating that Rayleigh waves at each of the wave-
lengths of interest, W, travel at phase velocities, C, (Park et al., 1999),
(Louie, 2001). To infer whether any one-dimensional test velocity model
of the subsurface would explain the observed surface wave dispersion,
C,, a theoretical dispersion curve, C; is modeled based on how surface
waves would be expected to propagate in that test velocity model. This
procedure is repeated many times in an optimization loop, minimizing
the difference between C, and C;, the current test velocity’s theoretical
dispersion curve. This technique is widely used in geotechnical
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engineering for site investigation, particularly because it does not
require drilling cores or samples, permitting is simpler, and it can be
applied to 15 both active controlled-source and passively recorded
seismic signals (Park et al., 2007).

There exists open-source code available to geotechnical engineers,
for example, MASWaves which is implemented in Matlab (Olafsd ottir
et al., 2018). However, to our knowledge there is not currently any
open-source MASW software that specifically focuses on optimizing
performance of the theoretical dispersion curve calculation present in
MASW inversion. There have been algorithms developed to improve the
outer optimization problem that determines the order in which velocity
models are tested, particularly linearization with a priori information,
swarm or genetic algorithms, and pattern matching (Cercato, 2009;
Song et al., 2008, 2015). Thus we are motivated to implement MASW
inversion in C with a focus on fast performance in the theoretical
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dispersion curve analysis, which could then be matched with any
improved optimization search technique. Faster analysis of MASW data
means that a single theoretical dispersion curve could be evaluated
faster, but more importantly it would reduce the cost of repeated eval-
uations of theoretical dispersion curves. We always perform MASW
inversion as part of a larger optimization problem to find the “best”
velocity model to explain our data. Further, engineers are interested in
quantifying the uncertainty in subsurface velocity models. Both sce-
narios require repeated evaluations of MASW inversion, so any in-
efficiencies in existing codes repeatedly accumulate into significant
additional electricity cost and wait time for engineers.

As we expand our problem sizes to larger datasets (potentially having
finer scale dispersion curves, or extending over wider frequency ranges),
we can take advantage of computer clusters which have many cores to
drastically reduce the time to actionable solutions. A cluster environ-
ment is already the current scenario for rapidly evaluating uncertainty
in dispersion images (Dou et al., 2017). Further, the majority of laptops
today have multiple cores, so parallelizing MASW will allow larger
datasets to be analyzed in the field. In addition to parallelizing algo-
rithms over CPUs, we can take advantage of other hardware: graphics
cards. General purpose graphics processing units (GPUs), can be pro-
grammed to perform scientific computing simulations with significantly
lower electricity cost and time per unit of computation. The majority of
engineering workstations in offices today have a graphics card, even
many gaming laptops that could be brought into the field, so a typical
engineer could benefit from MASW software running on a GPU.

In this paper, we propose new algorithms to accelerate MASW
inversion using MPI and GPUs, and introduce MASWAccelerated, a new
open-source software package implementing these algorithms. In sec-
tion 2, we give an overview of the serial algorithm for MASW, the MPI
parallel algorithm, and the GPU accelerated algorithm. In section 3, we
report on performance tests to show the speedup compared to the
existing Matlab code MASWaves (Olafsd’ottir et al., 2018), to show the
scalability of the MPI algorithm, and to show speedups when utilizing a
uniform velocity dispersion curve and a more typical variable velocity
dispersion curve. Further, we describe performance optimizations uti-
lizing the sparsity structure of stiffness matrices, strategies to tackle load
imbalancing which account for typical dispersion curve trends, and
improved GPU performance when repeatedly evaluating the kernel as
part of an optimization procedure. With these optimizations, the serial C
implementation obtains a 2x speedup over MASWaves, the MPI imple-
mentation shows near perfect strong and weak scalability with uniform
data, a modified partition of the problem for more realistic data shows
near-perfect strong scaling up to 8 processes, and the GPU imple-
mentation obtains a 3.2x speedup over the serial C implementation.
These speedups will enable engineers to perform MASW inversion
significantly faster, potentially even in the field.

2. Overview of algorithms

Multichannel Analysis of Surface Waves (MASW) consists of two
separate processes. In MASW dispersion, an array of receivers record the
surface wave energy that travels along the ground, called the ground
roll, that is generated by an impulsive source. Spectral analysis is per-
formed on the recorded ground roll to generate a dispersion curve,
which plots the relationship between its frequencies and velocities. This
is possible because the ground roll consists primarily of Rayleigh waves
and exhibits dispersion: each of its frequency components has a different
propagation velocity. Methods to automate dispersion curve selection
are being developed. One approach is to test an unsupervised machine
learning technique using the Gaussian mixture model clustering method
to identify points of dispersion energy within the image, and then apply
spatial clustering to determine the dispersion curve (Wang et al., 2021).
Another is to apply narrow filtering to the signal data to make identi-
fying curves within the dispersion image easier (Granados et al., 2019).
However, MASW dispersion currently requires manual selection to
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identify the dispersion curve within a two-dimensional plot of the
dispersion image, and is typically done only once per site and its cor-
responding data. Thus, it is not in the scope of our software.

In MASW inversion, we test the viability of a proposed ground model
for the near surface by generating a dispersion curve of the ground roll
using the model parameters. This theoretical dispersion curve is
compared to the experimental dispersion curve produced in MASW
dispersion; if the numerical error between the two dispersion curves is
small, then the proposed model is likely an accurate estimate of the near
surface. MASW inversion is a suitable method for parallelization, and is
typically run many times for a single site, thus it is the focus of our
software.

We review the standard serial algorithm for MASW inversion from
(Olafsd’ottir et al., 2018), and note optimizations we have made. We
propose new algorithms that parallelize MASW modeling using MPI, and
that perform MASW modeling on GPUs.

2.1. Serial implementation

Before parallelizing the algorithm for MASW inversion, we need to
implement a C serial version of the code which can then be modified
with MPI and CUDA. We used MASWaves, an existing implementation
written in Matlab as our reference to compare against (Olafsdottir et al.,
2018). Initially our C serial implementation was a simple port of MASW
to C modeled after the MASWaves implementation, but we later made a
number of changes to the algorithm to improve its efficiency.

The model evaluation process in MASW inversion consists of two
main algorithms. First, the model parameter inputs are used to compute
the most likely velocities for each wavelength in the experimentally
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Fig. 1. Visualization of original MPI partition. Darker colors correspond to
determinants that were computed, with the darkest highlighting the theoretical
curve. Each rank has its own color scheme. Note the number of computed de-
terminants varies heavily for each rank.
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Fig. 2. Visualization of modular MPI partition, with the same color rules in
place. In this case the computed determinants are balanced more evenly.
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derived dispersion curve. This is done in the function MASW Theoretical
Dispersion Curve, illustrated in Algorithm 1. The model parameter in-
puts (M) are the number of finite thickness layers, the thickness and
density of each layer, and the compressional (P) and shear (S) wave
velocities through each layer.

Algorithm 1. MASW Theoretical Dispersion Curve
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each test velocity (in V) in increasing order, until one has a determinant
(dnew) with a different sign than its predecessor. This test velocity (V [n])
is then stored as the theoretical velocity corresponding to that particular
wavelength, i.e. it is stored as C{{w]. The process is repeated for each
wavelength in the experimental dispersion curve to generate a theo-
retical dispersion curve of Rayleigh wave velocities and their
wavelengths.

Algorithm 1 MASW Theoretical Dispersion Curve

1: M = Guessed model parameters

2: W = Wavelength values from experimental dispersion curve

3: Cy = Velocity corresponding to each wavelength given M

4: V = Range of potential velocity values to test
5: dojq = Determinant value for previous entry in V

6: dpeyw = Determinant value for current entry in V

7: for w in W do

8: dolqg = stiffness matrix(M, V[0])

9: dpew = stiffnessmatrix(M, V[1])

10: n=1

11: while sign(d,iq) == sign(dnew) do

12: n=n+1

13: dotg = dpew

14: dpew = stiffnessmatrix(M, V(n])
15: end while

16: Cilw] = V[n]

17: end for

MASWaves, like many implementations of MASW, utilizes the stiff-
ness matrix method (Kausel, 1981) to compute the theoretical dispersion
curve. Given a wavelength, sparse stiffness matrices are computed for

CPU GPU

Model parameters,
wavelengths, test
velocities, experimental
dispersion curve

Data transfer Allocate and form stiffness

(step 1) matrices (step 2)

Compute sparse stiffness
matrix determinants (step
)

Linear search of
determinants, get
theoretical dispersion
curve (step 4)

Data transfer
(step 6)

Theoretical dispersion
curve, misfit

Compute misfit (step 5)

Fig. 3. General outline of GPU implementation.

A stiffness matrix may be generated for each wavelength and each
test velocity. Realistically a dispersion curve may have up to 100
wavelengths and 1000 test velocities, requiring a total of 100,000
stiffness matrices to be generated (in practice this number is often lower,
since the ideal test velocity is usually found before all velocities are
checked for a given wavelength). These stiffness matrices also have a
sparse banded structure, which is not utilized by MASWaves but is in our
algorithms.

The algorithm also requires the determinants for each of these
matrices to be computed. The stiffness matrices are of size 2(N + 1) x 2
(N + 1), where N is the number of finite-thickness layers in M. Since they
have a symmetric banded structure, computing the entries of a stiffness
matrix and its determinant requires O(N) operations.

Once the theoretical dispersion curve C; is computed, the second part
of the algorithm compares its velocities to the velocities experimentally
derived from the data, labelled C,. The average relative error is labelled
the misfit, and indicates how accurate M serves as a model of the ground
structure. Essentially the misfit behaves as a loss function for MASW.

The model parameters M, along with the given test velocity and
wavelength, are used to compute each stiffness matrix. If the theoretical
velocity for each wavelength is close to the experimental velocity (i.e.
the misfit is small), then the model parameters are more likely to be a
good approximation of the ground truth.
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Algorithm2. MASW Misfit
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need to be computed if the first sign change (and thus correct test ve-
locity) has already been found. Thus this approach may lead to several

Algorithm 2 MASW Misfit

C; = Velocity corresponding to each wavelength given M

2: C, = Experimentally derived velocities

e = Relative errors
4: [ = Length of W, C;, and C,
m = the average misfit
6: fori=1tol do
e=e+ \Ct[g:[ic]’e[i]\

8: end for

_ e
m=7

A downside to MASW is that it is nonlinear and does not have any
form of backpropagation to accompany its loss function. Therefore the
only way to minimize the misfit is to compute theoretical dispersion
curves for a large quantity of plausible model parameters, each of which
require forming and finding the determinants of up to 100,000 small
matrices. While methods have been used to more efficiently select which
models should be tested, such as linearized algorithms based on
inequality constraints, pattern search algorithms, and bee swarm algo-
rithms, these still require a large number of model theoretical dispersion
curves to be computed (Cercato, 2009; Song et al., 2008, 2015). Since
each of these curves and their misfits can be computed independently,
this algorithm can benefit from parallelization, both between different
test models and within individual models.

2.2. MPI parallelism

It is possible to visualize MASW inversion as a mesh computation,
although it is not a literal ground mesh. Stiffness matrices must be
computed with several different values of wavelengths and test veloc-
ities and the same values of model parameters. If the wavelength and
velocity values are thought of as the x and y axis, then MASW Theo-
retical Dispersion Curve can be viewed as computing data points along a
two dimensional “grid”. It is reasonable to partition this grid of com-
putations into multiple processes in an MPI implementation. This design
philosophy is analogous to mesh computations in some parallel finite-
difference method implementations, where each process is assigned
one subsection of the mesh covering a specific range of spatial (x and y)
coordinates (Londhe et al., 2021).

There are two obvious ways to partition this grid. The stiffness matrix
method heavily utilizes the test velocities in computing the individual
matrices. Therefore, one could partition the grid along the velocity axis:
given S processes and V test velocities, compute stiffness matrix de-
terminants for all wavelengths and the first § velocities in process 0, then
the next ¥ velocities in process 1, and so on. This approach would allow
components of the stiffness matrix dependent on the test velocity to be
pre-computed, reducing the number of repetitive computations.

Partitioning along the velocity axis would have significant draw-
backs, however. Once the determinants are computed, a linear search
must be performed along each wavelength to find the first sign change.
Since the determinants for each wavelength are split along multiple
processes, a significant amount of communication would be required
between each process to find the first sign change.

In addition, determinants for higher test velocities might not even

unnecessary computations.

Because of these difficulties, the method used was partitioning along
the wavelength axis, shown in Fig. 1. The stiffness matrix computations
do not feature the wavelength input as much as the test velocity, so there
is little potential to precompute components of the matrices for each
wavelength. But finding the ideal test velocity for a given wavelength
has no dependence on other wavelength values, so no communication
between processes is required for the dispersion curve. In addition, once
the ideal test velocity is found for a particular wavelength, the process
can begin computing matrix determinants for the next wavelength. This
preserves the serial implementation’s advantage of avoiding unnec-
essary matrix and determinant computations. Partitioning along the
wavelengths makes computing the misfit parallel as well, with only one
reduction operation required to combine the errors from each process.

Since the algorithm does not require communication between
different wavelengths of the dispersion curve, there is freedom to choose
exactly how to partition the problem along the wavelength axis. The
original approach was to assign wavelengths contiguously: given s
processes and wavelengths, assign wave-lengths 0, 1,...,%¥ to process 0,
wavelengths W + 1, ... Z¥ to process 1, and so on. We determined a more
efficient approach was to partition wavelengths in a modular pattern:
assign every wavelength equivalent to 0 mod s to rank 0, every wave-
length equivalent to 1 mod s to rank 1, and so on. This partition is
visualized in Fig. 2.

2.3. GPU acceleration

Many workstations used by geotechnical engineers contain CPUs
with multiple cores as well as graphics cards. Thus, in addition to writing
MASW inversion for MPI, we have also implemented the MASW inver-
sion algorithm for graphics processing units (GPUs). MASW requires
calculating many determinants of sparse matrices, a problem which has
not previously been adapted to GPUs.

There are five main steps to the GPU implementation that are distinct
from the serial and MPI versions of MASW.

First, the initial input values to the algorithm - wavelengths, test
velocities, experimental dispersion curve, and the ground model pa-
rameters - are transferred from the CPU “host” to the GPU “device” as
shown in step 1 of Fig. 3.

Copying memory between the host and device is costly, but the
volume of data copied here is relatively small (the test velocity array
may have ~ 1000 entries, and the other inputs are scalars or much
shorter arrays), so this transfer is not problematic.

Once the inputs are on the device, the stiffness matrices are allocated
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Fig. 4. Outline of GPU determinant search along one wavelength. The first sign change within each block is found, then a search over the blocks finds the first overall

sign change.

as global device memory and their entries are filled in based on the
model parameters M, shown in step 2 of Fig. 3. Forming the stiffness
matrices is one of the most costly steps in MASW inversion, so effective
parallelization is critical. Since a GPU contains thousands of cores (as
opposed to the dozens that may be available on one or more CPUs), it is
feasible to partition the problem along both the wavelength and velocity
axis dimensions of the grid. In fact, it is reasonable to compute all the
stiffness matrices concurrently since they are mutually independent.
Using CUDA, each thread is assigned to fill in the entries for one stiffness
matrix.

Computing values for a stiffness matrix is O(N) as described in the
serial implementation, where N (the number of finite thickness layers in
M) is typically small (N < 10). Entries in the stiffness matrices are
incrementally increased multiple times, so trying to compute a stiffness
matrix across multiple threads can lead to race conditions. Thus
assigning a single thread to each stiffness matrix is reasonable.

Once the stiffness matrices are formed, Gaussian elimination is per-
formed so their determinants can be easily computed, shown in step 3 of
Fig. 3.

This is roughly equal to forming the stiffness matrices in terms of
time cost.

Initially, we used the function cublasZgetrfBatched() to perform LU
factorizations on the stiffness matrices. This function took over 50% of
the runtime of the GPU implementation, most likely because it did not
take advantage of the stiffness matrices’ banded structure and was
therefore O(N®) for each factorization. Because of this, we replaced it
with a kernel that assigned one thread to each stiffness matrix to perform
a banded Gaussian elimination. This function was roughly ten times
faster than cublasZgetrfBatched(), and approximately equal in runtime
to the kernel that formed the stiffness matrices.

The next step is to find the first test velocity whose corresponding

Dispersion Curve Results for Different MASW Methods
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Fig. 5. Results from different implementations of MASW show that all imple-
mentations accurately calculate the same dispersion curve.

determinant is the opposite sign of its predecessor for each wavelength,
which is step 4 in Fig. 3. Normally this would require a linear search
along all the test velocities for each wavelength - a serial O(N) process
that does not lend well to GPU architecture. However, there is still some
potential to partition the problem along the device cores. The search
kernel breaks up the stiffness matrices along its blocks by wavelength,
and along threads within each block by test velocity.

This is illustrated in Fig. 4:

Each wavelength will be paired with multiple blocks, since the block
size is assumed to be 256 (for compatibility with older GPUs) and often
MASW is run with >500 test velocities. Within each block, thread i
computes the determinant of its respective stiffness matrix by multi-
plying the diagonal entries, then compares it to the determinant of
thread i+1. It then stores the result of the sign comparison into shared
memory.

Once this is complete for all threads, the first thread of each block
then performs a linear search for the first sign change in its shared
memory block, and stores this as the index of the first sign change within
that range of test velocities. These results are placed in an [xb matrix,
where [ is the number of wavelengths and b is the number of blocks
assigned to each wavelength. The next kernel then iterates over S to find
the first recorded sign change for each wavelength, which is a small
linear search over approximately 4 entries. The test velocity whose
stiffness matrix determinant produced the first sign change is then
labelled as the velocity corresponding to that wavelength in the theo-
retical dispersion curve.

The final steps are to average the errors between the theoretical
dispersion curve and experimental curve to get the overall misfit, and to
send the theoretical dispersion curve and misfit to the host, which are
steps 5 and 6 of Fig. 3. The former is effectively equivalent to a vector
dot product (in terms of number of FLOPs), which is straightforward to
implement in CUDA. The latter is simply a CUDA memory copy
involving a vector of length <100 and a scalar. Steps 1 and 6 require

Run Times of Matlab and C Implementations

0.5
0.52826

0.4 4

0.42867

0.3 4

RunTime(sec)

0.2 4
0.21368

0.0

C (sparse) C (precomputed)

Fig. 6. Comparison of Matlab and C on a variable dataset.
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only a small amount of data to be transferred between the host and
device, while the stiffness matrices, which take up much more memory,
are allocated and freed exclusively on the device.

3. Test results and performance optimizations

We developed a variety of tests for correctness of the code (unit tests
and end-to-end tests), as well as performance and scalability tests to
understand code efficiency. All of our new implementations of MASW
inversion - serial C, MPI, and CUDA - appear to compute theoretical
dispersion curves correctly. A plot of each of their results for one set of
model parameters is shown in Fig. 5. Since the stiffness matrix method
only uses the signs of matrix determinants to determine the entries of the
theoretical dispersion curve and is not dependent on the determinants’
actual values, it is robust to potential sources of error. Each imple-
mentation selected the same test velocities for every wavelength of the
theoretical dispersion curve as MASWaves, which we treat as our
baseline MASW implementation.

We used two main test cases to evaluate MASWAccelerated’s per-
formance. A synthetic dispersion curve of identical wavelength values
was used to provide a “uniform” dataset. This is useful because of the
design of the serial and MPI algorithms - since every test velocity is
evaluated in increasing order, varying wavelengths with different
theoretical velocities will have different runtimes. Thus a uniform test
allows us to observe other factors that may affect how MASWAccel-
erated scales with more data. The second test case was a more realistic
“variable” dataset, with decreasing wavelengths, matching a typical
dispersion curve. We present these test cases in the code as testScaling
and testProcess, respectively. Both of these functions also have wrappers
(testScaling_full and testProcess_full) that enable test cases to be run
multiple times in a loop.

3.1. Serial tests

The primary purpose of the serial C implementation is to enable
usage of MPI and CUDA to parallelize MASW inversion. However, it is
still useful to compare its speed to the original Matlab version, MAS-
Waves. We timed the speed of MASWaves on our realistic dataset, and
compared it to MASWAccelerated’s speed on the variable dataset when
run in serial. Both of these tests were run ten times on a laptop with a 3.1
GHz Intel Core i7 CPU, and the mean results are shown in Fig. 6, along
with errors denoting one sample standard deviation.

Initially the serial C implementation, while mathematically correct,
was slower than MASWaves, which is not ideal. This is likely because
MASWaves made use of Matlab’s vectorized operations to compute
stiffness matrix determinants, while the initial Gaussian elimination

MPI Strong Scaling: Uniform Dataset
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Fig. 7. MPI strong scaling on uniform data.
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MPI Strong Scaling: Variable Dataset
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Fig. 8. MPI strong scaling on variable data, using different partitions. The
variable data highlights the two features that can make MASW problematic for
MPI: large variations in wavelength values for the dispersion curve, and short
dispersion curve length.

algorithm written for MASWAccelerated was not vectorized.

The stiffness matrices formed by MASW are always sparse, and
moreover have a banded heptadiagonal structure (nonzero entries only
on the main diagonal and the three above and below it). We used this
fact to improve the Gaussian elimination algorithm to be only O(N)
instead of O(N®), which increased the algorithm’s speed by 2.0 times, as
shown in the C (sparse) column. We also noticed components of the
entries in the stiffness matrices could be pre-computed before iterating
over the matrix entries in a loop, reducing the number of arithmetic
operations required and increasing the algorithm speed a further 18% as
shown in the time for C (precomputed). These improvements enable the
serial C implementation to be over twice as fast as MASWaves without
any parallelization or vectorization calls. The precomputed serial C
version is used as the basis for the MPI algorithm, and for performance
comparison with the GPU algorithm.

It is worth noting the runtime for the first instance of MASWaves was
significantly slower than subsequent runs, causing the increased error.
This may be due to some type of caching effect in Matlab, which is not
present in C.

MPI Weak Scaling

RunTime(seconds)
IS
1

(o] 5 10 15 20 25
Number of Processes

Fig. 9. MPI weak scaling on uniform data, with a dispersion curve of length
1000 x number of processes.
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3.2. MPI tests

As the MPI implementation with one process is virtually identical to
the serial implementation, the main purpose of testing is to evaluate how
it scales with more processes and larger datasets. For this purpose we ran
a few strong and weak scaling studies.

For the strong scaling study, we first tested the algorithm on the
uniform dataset with 1000 wavelengths, allowing for distinctions in
runtime to be more noticeable. The results are shown in Fig. 7, which
shows the average runtime for each process count on ten runs.

This test was run on the NewRiver computing cluster at Virginia
Tech, using two Haswell E5-2680v3 2.5 GHz processors with 12 cores
each. The algorithm scaled almost exactly linearly with more cores
(except at 22 cores, which may be due to some error), which is expected
given the minimal amount of communication required between pro-
cesses and the highly parallel method used to partition MASW.

In practice, dispersion curves usually have a couple features that
make the MPI algorithm scale less than linearly, as seen in the strong
scaling test for the uniform dataset.

One problem is that dispersion curves do not have identical wave-
length values throughout, but rather varying wavelength values which
correspond to different velocities. Since MASW must evaluate test ve-
locities in increasing order to identify the determinant sign change,
entries with larger velocities will require more stiffness matrix de-
terminants to be computed, resulting in a longer run time. Because of
this, the MPI algorithm is prone to load imbalancing on realistic data,
even though the entries of the dispersion curve are partitioned evenly.

For near-surface imaging, most dispersion curves are decreasing in
both wavelength and velocity, and usually resemble a continuous curve
(this is called a normally dispersive profile, and is guaranteed in the
common condition where deeper layers have increasing shear and
compressional wave velocities (Foti et al., 2018)). A naive contiguous
partition of the dispersion curve will place entries with similar wave-
lengths and velocities on the same process, thus resulting in a few pro-
cesses receiving all of the high-velocity entries, exacerbating the load
imbalance. The modular partition of the dispersion curve mitigates this
problem, and improves the MPI algorithm’s strong scaling as a result.
The comparison of speedup for these partitions on the variable dataset
can be seen in Fig. 8. A line has been added to compare both to ideal
linear scaling.

This test was run on the same hardware as the uniform strong
scaling, and again the average of ten runs per size was used. Although
still not linear, the modular partition scales significantly better than the
original contiguous partition: with 3 processes it has a speedup of nearly
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Fig. 10. Comparison of CPU and GPU run times on the variable dataset. The
light blue bars show the time for the first run of the MASW implementation,
while the dark blue bars show the typical run times excluding the first run.
Running the GPU implementation multiple times in a for-loop produces sig-
nificant speedup for all runs after the first.
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2.8 compared to 1.9 for the naive approach, and with 8 processes it has a
speedup of nearly 7.0 compared to only 4.2. Overall, the MPI algorithm
with a modular partition will have near-linear scaling for most datasets
with relatively few processes.

The reduction in speedup with more processes is likely due to
another problem - most dispersion curves have a relatively short length
(the variable dispersion curve has 40 entries, which is fairly typical).
When the size of the partition is small, approximately 10 or less, each
additional process reduces the number of dispersion curve entries
computed for all of the other processes. For example, at size 3 each
process is computing velocities for 13 or 14 wavelengths, while at size 4
each process is computing velocities for only 10 wavelengths. This is a
significant reduction in workload and results in major speedup as seen in
Fig. 8. But at larger sizes there is not a reduction in workload for every
process. For example, at size 20 each process is computing 2 entries,
while at size 24 16 processes are still computing 2 entries and the last 8
are computing 1. Since many processes have no reduction in workload,
the overall runtime of the algorithm is not reduced. Therefore, the MPI
partition scales near linearly with relatively few processes (depending
on the size of the dispersion curve), but experiences diminishing returns
with more processes.

A weak scaling study was also performed on the NewRiver cluster
using the uniform dataset, again with the same hardware and taking the
average of ten runs per size. The size of the dispersion curve was 1000 x
the number of processes. As seen in Fig. 9, the MPI implementation
scaled efficiently by this measure, having no significant increase in time
with more data and processes. There are a few sizes with marginally
higher runtimes - 7, 10, and 15 - but these are minor and likely due to
external factors. Like the strong scaling study with uniform data, this test
highlights the minimal communication requirements for the MPI
implementation.

3.3. GPU tests

First we compared the CPU and GPU implementations on the vari-
able dataset. This was done eleven times in the wrapper loop testPro-
cess_full using the MPI implementation (with one process), then eleven
times both in a loop and separately with the CUDA implementation. The
resultant run times are shown in Fig. 10. Note the light blue bars are the
first run for each method, while the dark blue bars are the means of
subsequent runs with their sample standard deviation posted. The CPU
algorithm is unchanged from the serial and MPI tests, but its runtime is
different since it was run on a different machine.

All three of these implementations were run on the same desktop,
using an Intel Xeon CPU E3-1271 v3 @ 3.60 GHz and an Nvidia Quadro
K620 GPU. The first run is the run time of the first instance of
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MASW _inversion, while the subsequent runs denote the mean runtime of
all other instances. The error bars denote one standard deviation for the
subsequent runs. The GPU implementation of MASW _inversion is about
25% faster than the CPU implementation when run once, but over 3.2
times faster when it is run multiple times in a for loop. This is likely
because of just-in-time compilation, used by Nvidia to allow CUDA
kernels to benefit from new device architectures. When a kernel is run
multiple times within a function call, it only needs to be compiled for the
first kernel run while it is “cached” for subsequent runs. Since MASW
inversion is often run multiple times with different test velocity models,
it is reasonable to design MASWAccelerated to run inversions on mul-
tiple models to take advantage of this caching effect. It is worth noting
that, while not as dramatic, there is still roughly 8% speedup when
running the inversion multiple times individually on the GPU, but no
significant speedup for the CPU implementation.

We next use the uniform dispersion curve to evaluate how the GPU
implementation performs on progressively larger datasets. This test ran
the MPI (one rank) and CUDA implementations of MASW _inversion on
dispersion curves of lengths 50-500. The wavelength values of these
curves were designated to match test velocities of 72, 238, and 256 (each
implementation and each dispersion length was run three times with
three different wavelength values). The results are shown in Fig. 11, run
on the same desktop used for the previous test.

As expected, the CPU implementation scaled linearly with the length
of the dispersion curve. The exact run time is highly dependent on the
theoretical velocity values, as shown in the MPI scaling studies. The GPU
implementation was significantly faster (since the caching effect was
recognized in testing the variable data, we made use of it here), and had
no dependence on the theoretical velocities since all stiffness matrices
are computed regardless.

It is worth noting that too large a dispersion curve or too many test
velocities can overload the GPU memory on the CUDA implementation,
since all the stiffness matrices are formed concurrently in global memory
and the dispersion curve and test velocities determine the number of
stiffness matrices. The exact upper limit depends on the memory space
of the GPU and the number of finite thickness layers in the model M
(which determines the size of the stiffness matrices), but typical problem
sizes for MASW will not take up too much memory, even for older GPUs.
We found dispersion curves larger than 500 typically caused memory
problems for the Quadro K620 GPU, which has 2 GB of global memory.
This is because each stiffness matrix has 196 entries, each of which is a
CuDoubleComplex datatype that takes 16 bytes, so 500 wavelengths x
1000 test velocities x 3136 bytes ~ 1.6 GB, close to the memory limit of
the GPU.

4. Discussion and conclusions

There are two major priorities to improve the usability of
MASWACccelerated.

First, an I/0 system would make it much easier to input model data
and collect results from the inversion process. It would also eliminate the
need to recompile the code each time new data is being inputted. The
other priority is enabling command line arguments, such as the option to
evaluate multiple input files (with separate data models) at once, or to
run the suite of test functions. These two enhancements are necessary to
enable the next step of MASWAccelerated being easily applied to a wide
variety of use cases.

Another useful enhancement would be integrating the MPI and Cuda
implementations of MASWAccelerated into one program. Theoretically,
this is feasible, as each process in MPI is essentially MASW inversion
carried out only on a portion of the dispersion curve, which can still be
done by a GPU. Solving this problem would enable further optimization
of the algorithm to various hardware configurations.

In this paper, we have proposed two new algorithms for MASW
inversion: one using MPI parallelism, and one accelerating the code with
Cuda for GPUs.
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We provide an open-source implementation called MASWAccel-
erated, along with test cases to verify code correctness and efficiency.
Our comparisons show significant speedups over the existing MASWaves
code, and we show several optimizations that take advantage of the
problem structure (both typical trends in data and sparsity structure of
stiffness matrices) to further improve code efficiency. These modifica-
tions will help engineers to perform rapid data analysis by taking
advantage of all computer hardware available to them, ideally even
performing analysis in the field as data are acquired.

Computer code availability

The MASWACccelerated software, along with examples to produce the
results in this paper, are publicly available at https://github.com/j
1k9/MASWA under an MIT license. The code was primarily developed
by Joseph Kump, who can be reached by email at josek97@vt.edu. The
MASWAccelerated code was first made publicly available in 2020 upon
submission of this paper. Hardware and software requirements, as well
as other code features, are available in the repository’s README file.
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