
1.  Introduction
In his classic treatise on sediment transport, Hans Albert Einstein presented a definition of suspended sediments 
(SS) and the role of turbulence in maintaining suspension as follows (Einstein, 1950):

“The characteristic definition of a suspended solid particle is that its weight is supported by the surround-
ing fluid during its entire motion. While being moved by the fluid, the solid particle, which is heavier than 
the fluid, tends to settle in the surrounding fluid. If the fluid flow has only horizontal velocities, it is impos-
sible to explain how any sediment particle can be permanently suspended. Only if the irregular motion 
of the fluid particles, called turbulence, is introduced can one show that sediment may be permanently 
suspended.”

This operational definition of SS has become de facto standard in textbooks and research articles alike (Dey, 2014; 
Dey & Ali, 2020; Green & Coco, 2014). Despite some 80 years of research, the dominant factors controlling 
suspended sediment concentration (SSC) in streams continue to draw interest due to its multiple connections 
to ecosystem benefits and water quality degradation issues (Dai et  al.,  2016; Huai et  al.,  2019,  2020; Huai 
et al., 2021; Long & Pavelsky, 2013; Muste et al., 2005; Nazeer et al., 2014; Tseng & Tinoco, 2020). High SSC 
can intercept photosynthetically active radiation necessary for sustaining submerged aquatic plants in lakes and 
rivers. The presence of high SSC is also related to eutrophication and corollary water quality issues (Kellogg 
et al., 2014; Yujun et al., 2008), clogging of gills of fish and other aquatic organisms, and accelerating the deni-
trification process (Liu et al., 2013). In certain cases, sediments provide necessary nutrients to aquatic plants and 
are of primary significance to sustaining nearshore ecosystems such as floodplains and marshes. The role of SS in 
element-cycling has been highlighted in several studies (Lupker et al., 2011; Mohtar et al., 2020) as well. Another 
issue is the connection between SSC and micro/nano-plastics in saline environments. Recent work has shown that 
SS can promote polystyrene nano plastics settling in the presence of saline conditions, prompting further interest 
in SSC distribution in natural waters (Li, Katul, & Huai, 2019).

Even in the most idealized flow condition with a balance between the gravitational settling flux and the verti-
cal turbulent sediment flux, the description of SSC remains a recalcitrant problem. A model for the turbulent 
vertical flux is required and is often derived using Reynolds' analogy (Dey, 2014) where eddies are assumed 
to transport momentum and SS similarly. This analogy was the cornerstone of the well-celebrated Rouse's 
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formula (Rouse, 1939) that assumes sediment diffusivity is proportional to eddy viscosity. Since the early work 
of O’Brien  (1933), Prandtl, and von Karman  (1934), these analogies have spawned numerous theories and 
closure models for the mixing length (Bombardelli & Jha, 2009; Bombardelli & Moreno, 2012; Dey, 2014; Nie 
et  al.,  2017; Vanoni,  1984). However, these models make no explicit contact with turbulent eddies and their 
associated kinetic energy distribution in the vertical direction. It is precisely the vertical turbulent kinetic energy 
component in eddies of varying sizes that maintains sediments in suspension (Dey, 2014; Mazumder & Ghos-
hal, 2006; Scully & Friedrichs, 2003).

The turbulent vertical flux of SS is directly modeled in this work from the spectrum of turbulent eddies thereby 
providing a new perspective on Reynold's analogy, the multiple length scales involved in describing SSC, and the 
emergence of Reynolds, Rouse, Schmidt, and Stokes numbers when linking eddy viscosity with eddy diffusivity 
for SS. The role of the Reynolds number has been introduced in prior studies as a damping correction to the 
mixing length (Nezu & Azuma, 2004; Van Driest, 1956; Wallin & Johansson, 2000) whereas the Rouse number 
is operationally used in the classification of sediment load. The proposed approach uses a co-spectral budget 
model (CSB) derived from an approximated Navier-Stokes equation in spectral form for the Reynolds stress and 
SS turbulent flux. It uses a spectral Rotta scheme modified to include the isotropization of the production term 
for the pressure decorrelation effect (Katul et al., 2013) and a Schmidt number effect similar in form to van Rijin's 
bulk formulation (van Rijn, 1984) for linking the fluid and particle velocity decorrelation time scales, explicitly 
made here scale-dependent. The newly proposed formulation tested with several published experiments that span 
a wide range of flow conditions and grain properties (diameter and density). A comparison against the widely 
used Rouse formula is discussed with a focus on the conditions where the CSB recovers Rouses's formula.

2.  Theory
2.1.  Definitions and General Considerations

As a starting point to review models for SSC profiles in streams, a prismatic rectangular channel with constant 
width B and bed slope So is considered. The flow is assumed to be steady and uniform with constant water depth 
H and flow rate Q. For small slopes, a balance between gravitational and frictional forces for a length segment 
Δx along the flow direction x yields

𝜌𝜌(𝐵𝐵𝐵𝐵Δ𝑥𝑥)𝑔𝑔𝑔𝑔𝑜𝑜 = 2𝜏𝜏𝑠𝑠(𝐻𝐻Δ𝑥𝑥) + 𝜏𝜏𝑜𝑜(𝐵𝐵Δ𝑥𝑥),� (1)

where τs is the side stress, τo is the bed stress, g is the gravitational acceleration, and ρ is the fluid density. This 
expression can be re-arranged as

𝑢𝑢2∗ =
𝜏𝜏𝑜𝑜

𝜌𝜌
= 𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜

(

1 +
2𝐻𝐻

𝐵𝐵

𝜏𝜏𝑠𝑠

𝜏𝜏𝑜𝑜

)−1

,� (2)

where u* is the friction (or shear) velocity. For the case where τs = τo, 𝐴𝐴 𝐴𝐴2∗ = 𝑔𝑔𝑔𝑔ℎ𝑆𝑆𝑜𝑜 with Rh = H(1 + 2H/B) −1 being 
the hydraulic radius. When H/B ≪ 1 (i.e., a wide-channel approximation), Rh = H and the bed stress dominates 
the total frictional stress strictly based on a geometric consideration. In many SS laboratory experiments, the wide 
channel approximation may not hold with 2H/B being of order unity. However, in these experiments, the channel 
bed is covered with sediments whereas the channel sides remain smooth (plastic or glass) to permit optical access. 
This difference in roughness between sides and bed leads to τs/τo ≪ 1. Hence, 2H/B may be of order unity in 
some experiments but τs/τo ≪ 1 allowing τo/ρ ≈ gHSo. Fully turbulent flow conditions are also assumed to prevail 
so that the bulk Reynolds number Reb = UbH/ν > 500, where ν is the kinematic viscosity and Ub is the bulk or 
depth-averaged velocity given as

𝑈𝑈𝑏𝑏 =
𝑄𝑄

𝐵𝐵𝐵𝐵
≈

1

𝐻𝐻 ∫
𝐻𝐻

0

𝑢𝑢(𝑧𝑧)𝑑𝑑𝑑𝑑𝑑� (3)

where 𝐴𝐴 𝑢𝑢(𝑧𝑧) is the mean velocity at vertical distance z from the channel bed (positive upwards), and overline indi-
cates ensemble-averaging usually determined from time averaging. For such a flow, the Reynolds-averaged mean 
continuity equation for SSC in steady and planar homogeneous flow at high Reb and small stokes number yields 
(Richter & Chamecki, 2018)
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𝜕𝜕𝐶𝐶(𝑧𝑧)

𝜕𝜕𝜕𝜕
= 0 = −

𝜕𝜕

𝜕𝜕𝜕𝜕

[

𝑤𝑤′𝐶𝐶 ′ −𝑤𝑤𝑠𝑠𝐶𝐶

]

+ 𝑆𝑆𝑒𝑒(𝑧𝑧),� (4)

where t is time, 𝐴𝐴 𝐴𝐴 = 𝐶𝐶 + 𝐶𝐶 ′ is the instantaneous volumetric SSC in the flow, primed quantities are the fluctuating 
component, w is the instantaneous vertical velocity component with 𝐴𝐴 𝑤𝑤 = 0 (assuming water is of constant ρ), 

𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ is the turbulent vertical flux that requires a closure model, ws is the terminal velocity of sediment grains, 
and Se(z) is the sediment source presumed to be situated in a thin region above the channel bed known as the 
emission layer. By restricting the analysis to a plane just above the emission layer (i.e., z = 0 is set just above the 
emission layer), Se(z) = 0 throughout. The SSC mean continuity equation above also assumes that the instanta-
neous particle vertical advection velocity wp = w − ws (i.e., imbalance between the fluid vertical velocity and ws) 
thereby ignoring any particle inertial effects. In a regime where particle inertia is weak but finite, to a leading 
approximation, an inertial correction can be added and given by wp = w − ws − τp(Dw/Dt), where D(.)/Dt is the 
material derivative (local and advective) along a fluid particle trajectory, and τp = ws/g is a particle time scale. 
Including these inertial effects in the mean SS particle continuity equation leads to (Ferry & Balachandar, 2001; 
Richter & Chamecki, 2018)

[

𝑤𝑤′𝐶𝐶 ′ −𝑤𝑤𝑠𝑠𝐶𝐶

]

− Φ(𝑧𝑧) = 0; Φ(𝑧𝑧) = 𝜏𝜏𝑝𝑝

[

𝐶𝐶
𝐷𝐷𝐷𝐷′

𝐷𝐷𝐷𝐷

]

=
1

2
𝜏𝜏𝑝𝑝𝐶𝐶

𝜕𝜕𝜕𝜕2
𝑤𝑤

𝜕𝜕𝜕𝜕
+ 𝜏𝜏𝑝𝑝

[

𝐶𝐶 ′
𝐷𝐷𝐷𝐷′

𝐷𝐷𝐷𝐷

]

,� (5)

where 𝐴𝐴 𝐴𝐴2
𝑤𝑤 = 𝑤𝑤′𝑤𝑤′ is the fluid vertical velocity variance at z and Φ(z) is the sum of a turbophoretic effect that 

arises due to finite 𝐴𝐴 𝐴𝐴𝐴𝐴2
𝑤𝑤∕𝜕𝜕𝜕𝜕 in in-homogeneous flows such as channels (Johnson et al., 2020; Reeks, 1983; Sardina 

et al., 2012) and a turbulent concentration-vertical acceleration interaction terms. Thus, the revision to the widely 
used Equation 4 depends on the overall significance of Φ(z) at any z. The magnitude of Φ(z) varies with the local 
Stokes number St(z) = τp/τK(z) where τK(z) = [ν/ϵ(z)] 1/2 is the Kolmogorov time scale formed by the local turbu-
lent kinetic energy dissipation rate ϵ(z) and ν as reviewed elsewhere (Bragg et al., 2021). An associated length 
scale to τK is 𝐴𝐴 𝐴𝐴 =

(

𝜈𝜈3∕𝜖𝜖
)1∕4 , which is the Kolmogorov micro-scale representing eddy sizes impacted by viscous 

effects at z. Upon defining the Kolmogorov velocity as vk = η/τK, the Kolmogorov micro-scale Reynolds number 
Rek = vkη/ν = 1, meaning that both turbulence and viscous effects are equally important at scales commensurate to 
η (Tennekes & Lumley, 1972). In the limit St → 0, the particle vertical velocity is w − ws and Φ(z) can be ignored 
relative to the turbulent flux at z, an assumption routinely invoked in operational models for SSC. To allow for a 
“bulk” Stokes number Stb to be formulated thereby facilitating comparisons across experiments, 𝐴𝐴 𝐴𝐴𝐾𝐾𝐾𝐾𝐾 = (𝜈𝜈∕𝜖𝜖𝑏𝑏)

1∕2 
is proposed where ϵb is the over-all bulk dissipation rate in clear water. Thermodynamic considerations alone 
allow for an estimate of ϵb from bulk variables. The work per unit mass per unit time necessary to move clear 
water at Ub is (gSo)Ub. For steady-state conditions (i.e., turbulent kinetic energy is stationary), this mechanical 
work produces turbulence that is then dissipated by the action of viscosity leading to an increase in the internal 
energy of the fluid. Hence,

𝜖𝜖𝑏𝑏 = (𝑔𝑔𝑔𝑔𝑜𝑜)𝑈𝑈𝑏𝑏; 𝜏𝜏𝐾𝐾𝐾𝐾𝐾 =

√

𝜈𝜈

𝜖𝜖𝑏𝑏
; and 𝑆𝑆𝑆𝑆𝑏𝑏 =

(

𝑤𝑤𝑠𝑠

𝑔𝑔

)

𝜏𝜏−1
𝐾𝐾𝐾𝐾𝐾

.� (6)

It is assumed that Φ is small and can be ignored when Stb ≪ 1 (although, more precisely, Φ can only be ignored 
when max[Stb, St] ≪ 1). Another estimate of bulk Stokes number is St+ = τp(u*/H) (Greimann et al., 1999; Grei-
mann & Holly, 2001), where (H/u*) is presumed to represent a large eddy turnover time given its dependency 
on H. Noting that 𝐴𝐴 𝐴𝐴𝐴𝐴𝑜𝑜 = 𝑢𝑢2∗∕𝐻𝐻 , the two bulk Stokes numbers can be related using 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 = 𝑆𝑆𝑆𝑆+(𝑅𝑅𝑅𝑅𝑏𝑏)

1∕2 . A critique 
for using St + as a bulk Stokes number measure to discard Φ everywhere has already been discussed (Greimann 
et al., 1999; Richter & Chamecki, 2018).

With regards to the terminal sediment velocity, a simplified expression for ws that recovers many prior formulae 
(W. Huai et al., 2020; Tan et al., 2018) is used here and is given by (Cheng, 1997)

𝑤𝑤𝑠𝑠 =
𝜈𝜈

𝑑𝑑𝑠𝑠

⎡

⎢

⎢

⎣

√

25 + 1.2𝑑𝑑2
𝑠𝑠

(

𝜌𝜌𝑠𝑠 − 𝜌𝜌

𝜌𝜌

𝑔𝑔

𝜈𝜈2

)2∕3

− 5

⎤

⎥

⎥

⎦

3∕2

,� (7)

where ρs is the sediment grain density with ρs/ρ > 1, and ds is the sediment grain diameter. This ws is smaller than 
the Stokes settling velocity (wst)
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𝑤𝑤𝑠𝑠𝑠𝑠 =
1

18

𝑔𝑔

𝜈𝜈

(

𝜌𝜌𝑠𝑠 − 𝜌𝜌

𝜌𝜌

)

𝑑𝑑2
𝑠𝑠 ,� (8)

except when the sediment particle Reynolds number Resp = wsds/ν ≪ 1. The 
difference between the two settling velocity formulations can be understood 
when the balance between the gravitational force and a quadratic drag force 
acting on a spherical grain is considered. This balance is given by

(𝜌𝜌𝑠𝑠 − 𝜌𝜌) 𝑔𝑔
4

3
𝜋𝜋

(

𝑑𝑑𝑠𝑠

2

)3

=
1

2
𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑

[

𝜋𝜋

(

𝑑𝑑𝑠𝑠

2

)2
]

𝑤𝑤2
𝑠𝑠 ,� (9)

where Cd,p is the drag coefficient of the sediment particle. The Stoke's formu-
lation is recovered when 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑 = 24𝑅𝑅𝑅𝑅−1𝑠𝑠𝑠𝑠  for creeping flow whereas Equation 7 
assumes a non-linear relation between Cd,p and 𝐴𝐴 𝐴𝐴𝐴𝐴−1𝑠𝑠𝑠𝑠  derived from published 
experiments for sediments across a wide range of Resp and ds. The functional 

form of this non-linear relation is given by 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑 =

[

(𝐴𝐴𝑝𝑝∕𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠)
1∕𝑛𝑛′

+ (𝐵𝐵𝑝𝑝)
1∕𝑛𝑛′

]𝑛𝑛′

 , 
where Ap = 32 (instead of 24 for smooth spheres), Bp = 1, and n′ = 3/2. As 
Resp becomes large, form drag instead of viscous drag dominates and Cd,p →  
1 (a constant) whereas the Stokes formulation extrapolation predicts a  
Cd,p → 0 (or the viscous sublayer thickness becomes infinitely thin on a 

perfectly smooth sphere). The comparison between the two settling velocities is shown in Figure 1 for reference. 
Since wst only applies to creeping flow past a sphere, Equation 7 is used as it covers a wider range of wsds/ν.

The mode of sediment transport is operationally related to ws and some measure of the strength of turbulence 
based on bulk flow properties. One such measure is the Rouse number R or “unit” Rouse number R* given by

𝑅𝑅∗ =
1

𝜅𝜅

𝑤𝑤𝑠𝑠

𝑢𝑢∗
; 𝑅𝑅 =

1

𝛽𝛽
𝑅𝑅∗;� (10)

where κ = 0.41 is the von Kármán constant and β = Sc −1 is an inverse turbulent Schmidt number (Sc). The Rouse 
number is routinely used for classifying sediment load: R > 2.5 for bedload, 0.8 < R < 2.5 for SS (the focus here), 
and R < 0.8 for washload. To solve for 𝐴𝐴 𝐶𝐶  , models linking 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ to 𝐴𝐴 𝐶𝐶  as well as estimates for Sc (and Φ, though 
this is ignored here) are required in Equation 4, and those models are to be briefly covered.

2.2.  Conventional Formulations and Revisions

Conventional approaches (O’Brien, 1933; Rouse, 1939) for modeling SSC begin by ignoring Φ(z) and employing 
a gradient-diffusion approximation (or some non-Fickian revision to it) given as

𝑤𝑤′𝐶𝐶 ′ = −𝐷𝐷𝑠𝑠
𝑑𝑑𝐶𝐶

𝑑𝑑𝑑𝑑
,� (11)

where Ds is the sediment turbulent diffusivity. To estimate Ds(z), existing theories approximate Ds(z) by νt/Sc or 
βνt, where νt is the turbulent or eddy viscosity (νt/ν ≫ 1). When the mixing length hypothesis is further invoked 
to model νt as a product of a characteristic length and velocity, it yields

𝜈𝜈𝑡𝑡 = 𝑙𝑙𝑜𝑜

(

𝑙𝑙𝑜𝑜
|

|

|

|

𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑

|

|

|

|

)

,� (12)

where lo is a generic mixing length to be externally supplied that can vary with z (can be piecewisely determined 
in different flow and channel conditions as in Li & Katul, 2020). Dimensional analysis and similarity theory 
represent

𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
=

√

−𝑢𝑢′𝑤𝑤′(𝑧𝑧)

𝑙𝑙𝑜𝑜(𝑧𝑧)
,� (13)

Figure 1.  Comparison between the empirical sediment settling velocity ws 
used here and the Stokes settling velocity wst for different sediment to fluid 
density ratios. The one-to-one line is presented for reference. The comparison 
between ws and wst for the data sets explored here is also featured as inset.
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where u′ is the longitudinal velocity fluctuation, and 𝐴𝐴 𝑢𝑢′𝑤𝑤′ is the momentum turbulent flux at height z that can be 
estimated from the mean momentum balance using (Dey, 2014)

−𝑢𝑢′𝑤𝑤′(𝑧𝑧)

𝑢𝑢2∗
= (1 − 𝑧𝑧𝑛𝑛) ,� (14)

where zn = z/H is the normalized water depth. With this estimate of 𝐴𝐴 𝑢𝑢′𝑤𝑤′(𝑧𝑧) , it follows directly that

𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
=

𝑢𝑢∗

𝑙𝑙𝑜𝑜
(1 − 𝑧𝑧𝑛𝑛)

1∕2
; 𝜈𝜈𝑡𝑡 = 𝑢𝑢∗𝑙𝑙𝑜𝑜(1 − 𝑧𝑧𝑛𝑛)

1∕2
;𝐷𝐷𝑠𝑠 = 𝛽𝛽𝛽𝛽∗𝑙𝑙𝑜𝑜(1 − 𝑧𝑧𝑛𝑛)

1∕2
.� (15)

These expressions ensure that as zn → 1, 𝐴𝐴 𝐴𝐴𝑢𝑢∕𝑑𝑑𝑑𝑑 → 0 , νt → 0, and Ds → 0. For zn ≪ 1 but z + > 50 (i.e., above the 
buffer layer) where z + = zu*/ν is a normalized distance in wall units (Pope, 2000) that can also be interpreted as a 
local Reynolds number (Res), lo is constrained by the channel bottom so that lo = κz. In this case, 𝐴𝐴 𝐴𝐴𝑢𝑢∕𝑑𝑑𝑑𝑑 ≈ 𝑢𝑢∗∕(𝜅𝜅𝜅𝜅) 
and 𝐴𝐴 𝑢𝑢(𝑧𝑧) varies logarithmically with z, νt = κzu*, and Ds = βκzu* (i.e., linear in z). As zn → 1, the largest eddies 
are restricted by H so that lo ∝ H instead of z. Combining these two arguments using 𝐴𝐴 𝐴𝐴𝑜𝑜 = 𝜅𝜅𝜅𝜅(1 − 𝑧𝑧𝑛𝑛)

1∕2 yields the 
quadratic diffusivity profile reported in a number of stream flow studies (Fischer et al., 2013) and direct numer-
ical simulations (DNS) of stratified atmospheric flows on inclined planes (Giometto et  al.,  2017). Assuming 
β = Sc −1 = 1, the SSC profiles associated with the linear and quadratic Ds(z) are

𝐶𝐶 (𝑧𝑧𝑛𝑛)

𝐶𝐶𝑏𝑏

=

(

𝑧𝑧𝑛𝑛

𝑧𝑧𝑛𝑛𝑛𝑛𝑛

)−𝑅𝑅∗

, linear diffusivity, Prandtl
′

s formula

𝐶𝐶 (𝑧𝑧𝑛𝑛)

𝐶𝐶𝑏𝑏

=

(

𝑧𝑧𝑛𝑛

1 − 𝑧𝑧𝑛𝑛

1 − 𝑧𝑧𝑛𝑛𝑛𝑛𝑛

𝑧𝑧𝑛𝑛𝑛𝑛𝑛

)−𝑅𝑅∗

, quadratic diffusivity, Rouse
′

s formula,

� (16)

where 𝐴𝐴 𝐶𝐶𝑏𝑏 is a reference concentration at height zn,b = zb/H and R* = R when setting β = 1. The R* in Equation 16 is 
commonly replaced by a fitted R (or β is no longer unity) as discussed elsewhere (Dey, 2014; Muste et al., 2005). 
The analysis using fitted R is termed here as ’fitted’ Rouse's formula. Other models for lo have been introduced 
but only two are singled out here for illustrating differences in approaches to adjusting conventional formulations 
(usually for κz): (a) lo = κzVn(zn), where Vn = 1 − exp(−z +/26) (labeled as the van Driest damping function); (b) 

𝐴𝐴 𝐴𝐴𝑜𝑜 = 𝜅𝜅𝜅𝜅(1 − 𝑧𝑧𝑛𝑛)
𝑚𝑚1 , where

𝑚𝑚1 =
1

2

[

1 + 𝑎𝑎𝑒𝑒

(

𝐶𝐶

𝐶𝐶𝑅𝑅

)]

,� (17)

CR is some reference concentration and ae is an empirical coefficient (Castro-Orgaz et al., 2012; Mazumder & 
Ghoshal, 2006; Umeyaina, 1992). In the second case, the mixing length is assumed to vary with SSC and recovers 

𝐴𝐴 𝐴𝐴𝑜𝑜 = 𝜅𝜅𝜅𝜅(1 − 𝑧𝑧𝑛𝑛)
1∕2 only for clear water. However, in the presence of sediments, m1 varies with zn (and R). In the 

first case, deviations from a linear mixing length is made to dependent on z + (instead of H), which is appropriate 
in the viscous and buffer regions of smooth boundary layers. Another revision to Equation 11 is to recast turbulent 
transport in fractional derivatives to emphasize its non-Fickian aspect (Nie et al., 2017). In this approach, the frac-
tional order becomes a parameter that must be determined from experiments depending on how SS trajectories 
deviate from Brownian trajectories (Sun et al., 2020). In practice, the order of the fractional derivative is set as a 
’free’ parameter and must implicitly include the Sc effect. This approach is not pursued further here.

2.3.  Turbulent Stress and SS Flux Budgets

Simplified turbulent stress and SS flux budgets are now considered. For a stationary and planar homogeneous 
flow in the absence of subsidence 𝐴𝐴

(

𝑤𝑤 = 0
)

 , these budgets reduce to

��′�′
��

= 0 = −�′�′ ��
��

− ��′�′�′
��

+ �′ ��
′

��
− ���,

��′� ′

��
= 0 = −�′�′ ��

��
− ��′�′� ′

��
+ �′ ��

′

��
− ��� −��

(

�′ ��
′

��

)

,
� (18)
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where p′ is the turbulent pressure, ϵwu and ϵwc are molecular destruction terms assumed to be small when 
compared to the pressure-decorrelation terms at high Reynolds numbers (Katul et al., 2013). The turbulence-par-
ticle interaction term requires closure. Here, a new closure approach is proposed that commences with a local 
decomposition given by

𝑤𝑤𝑠𝑠

(

𝑤𝑤′
𝜕𝜕𝜕𝜕 ′

𝜕𝜕𝜕𝜕

)

= 𝑤𝑤𝑠𝑠

[(

𝜕𝜕𝑤𝑤′𝐶𝐶 ′

𝜕𝜕𝜕𝜕

)

−

(

𝐶𝐶 ′
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕

)]

.� (19)

When assuming Φ(z) = 0 (i.e., no particle inertia), 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ = 𝑤𝑤𝑠𝑠𝐶𝐶  thereby allowing one of the two terms in the 
difference shown in Equation  19 to be linked to variables that are explicitly modeled. The other term (i.e., 

𝐴𝐴 𝐶𝐶 ′𝜕𝜕𝜕𝜕′∕𝜕𝜕𝜕𝜕 ) still necessitates a closure. A heuristic model that maintains maximum simplicity is now proposed 
by setting

𝐶𝐶 ′
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
= 𝑏𝑏1

𝜕𝜕𝑤𝑤′𝐶𝐶 ′

𝜕𝜕𝜕𝜕
,� (20)

where b1 is a positive or a negative constant. Upon setting 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ = 𝑤𝑤𝑠𝑠𝐶𝐶  , this heuristic closure model recovers a 
similar closure scheme used for particles (Huang et al., 2014) and is given by

𝑤𝑤𝑠𝑠

(

𝑤𝑤′
𝜕𝜕𝜕𝜕 ′

𝜕𝜕𝜕𝜕

)

= 𝑤𝑤𝑠𝑠

[(

𝜕𝜕𝜕𝜕𝑠𝑠𝐶𝐶

𝜕𝜕𝜕𝜕

)

− 𝑏𝑏1

(

𝜕𝜕𝜕𝜕𝑠𝑠𝐶𝐶

𝜕𝜕𝜕𝜕

)]

= 𝛼𝛼′𝑤𝑤2
𝑠𝑠

𝜕𝜕𝐶𝐶

𝜕𝜕𝜕𝜕
,� (21)

where α′ = 1 − b1 is assumed to be a constant. When |b1| ≪ 1, then α′ = 1 and

𝑤𝑤𝑠𝑠

(

𝑤𝑤′
𝜕𝜕𝜕𝜕 ′

𝜕𝜕𝜕𝜕

)

= 𝑤𝑤2
𝑠𝑠

𝜕𝜕𝐶𝐶

𝜕𝜕𝜕𝜕
.� (22)

Whether b1 or α′ are strictly closure constants independent of sediment and/or flow conditions cannot be a priori 
ascertained. To do so requires another scaling analysis based on different assumptions and approximations. In 
this proposed scaling analysis, C′ is assumed to vary with a turbulent quantity such as σc, and w′ to vary with σw. 
Hence,

(

𝐶𝐶 ′
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕

)

= 𝐴𝐴𝐹𝐹 [𝜎𝜎𝑐𝑐(𝑧𝑧)]
𝜕𝜕𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
= 𝐴𝐴𝐹𝐹

[

𝑤𝑤′𝐶𝐶

𝑢𝑢∗
𝐹𝐹1 (𝑧𝑧𝑛𝑛)

]

𝜕𝜕𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
,� (23)

where AF is a flux-variance (Albertson et al., 1995) similarity constant that can be positive or negative depending 
on the sign of the correlation coefficient between C′ and ∂w′/∂z, and F1(zn) is an unknown dimensionless function 
describing the sediment concentration variance with zn above and beyond the 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ variations with zn. Since the 
goal is to determine the minimum governing variables impacting b1 or α′ while assuming b1 is independent of zn, 
Equations 23 and 20 can be equated to yield

𝐴𝐴𝐹𝐹

[

𝑤𝑤′𝐶𝐶 ′ (𝑧𝑧𝑛𝑛)

𝑢𝑢∗
𝐹𝐹1 (𝑧𝑧𝑛𝑛)

]

𝜕𝜕𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
= 𝑏𝑏1

𝜕𝜕𝑤𝑤′𝐶𝐶 ′ (𝑧𝑧𝑛𝑛)

𝜕𝜕𝜕𝜕
.� (24)

Re-arranging to infer b1 results in

𝑏𝑏1 = 𝐴𝐴𝐹𝐹

[

𝑤𝑤′𝐶𝐶 ′

(

𝜕𝜕𝑤𝑤′𝐶𝐶 ′

𝜕𝜕𝜕𝜕

)−1
]

[

1

𝑢𝑢∗
𝐹𝐹1 (𝑧𝑧𝑛𝑛)

𝜕𝜕𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕

]

.� (25)

With the assumption that b1 is not dependent on zn, additional order of magnitude arguments must now be invoked 
to assess the sediment/flow variables that impact its magnitude: (a) ∂σw/∂z ∼ −u*/H (likely valid except near the 
channel bottom), (b) F1 is roughly a constant, (c) 𝐴𝐴 𝐴𝐴𝑤𝑤′𝐶𝐶 ′∕𝜕𝜕𝜕𝜕 = 𝑤𝑤𝑠𝑠𝜕𝜕𝐶𝐶∕𝜕𝜕𝜕𝜕 , and (d) 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′∕

(

𝜕𝜕𝐶𝐶∕𝜕𝜕𝜕𝜕

)

∼ −𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

where 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (1∕𝐻𝐻) ∫𝐻𝐻
0
𝐷𝐷𝑠𝑠(𝑧𝑧)𝑑𝑑𝑑𝑑 ∼ 𝑢𝑢∗𝐻𝐻 . Inserting these order of magnitude arguments into Equation  25 

result  in

𝑏𝑏1 ∼ sgn (𝐴𝐴𝑓𝑓 )
𝑢𝑢∗𝐻𝐻

𝑤𝑤𝑠𝑠

[

1

𝑢𝑢∗

𝑢𝑢∗

𝐻𝐻

]

∼ sgn (𝐴𝐴𝑓𝑓 )
𝑢𝑢∗

𝑤𝑤𝑠𝑠

,� (26)
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where sgn indicates the sign of the variable. Equation 19 is used to suggest a pragmatic closure in Equation 21 
that applies to only one of two terms, and this one term itself is only one term in the overall flux budget. Given 
the interplay between these multiple terms, the overall model results for 𝐴𝐴 𝐶𝐶  may be robust to uncertainties in this 
closure vis-a-vis externally imposing Sc or β −1 directly on the eddy diffusivity as common in prior models (e.g., 
Rouse-O’Brien).

Upon ignoring the flux transport terms (triple moments), and closing the pressure decorrelation terms using a 
linear Rotta scheme that accounts for the isotropization of the production simplify Equation 19 to

− (1 − 𝐶𝐶𝐼𝐼 ) 𝜎𝜎
2
𝑤𝑤

𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
− 𝐴𝐴𝑅𝑅

𝑤𝑤′𝑢𝑢′

𝜏𝜏
= 0,

[

− (1 − 𝐶𝐶𝐼𝐼 ) − 𝛼𝛼′
𝑤𝑤2

𝑠𝑠

𝜎𝜎2
𝑤𝑤

]

𝜎𝜎2
𝑤𝑤

𝜕𝜕𝐶𝐶

𝜕𝜕𝜕𝜕
− 𝐴𝐴𝑅𝑅

𝑤𝑤′𝐶𝐶 ′

𝜏𝜏
= 0,� (27)

where τ is a turbulent relaxation time scale, CI = 3/5 is the isotropization of the production constant determined 
from rapid distortion theory (Pope, 2000), and AR = 1.8 (Katul et al., 2013; Katul & Manes, 2014) is the Rotta 
constant assumed to be the same for momentum and SS. It directly follows from these simplified budgets that a 
model of maximum simplicity for Sc may be derived as

𝑆𝑆𝑆𝑆−1 (𝑧𝑧𝑛𝑛) =
𝐷𝐷𝑠𝑠

𝜈𝜈𝑡𝑡
= 1 + 𝛼𝛼

(

𝑤𝑤𝑠𝑠

𝜎𝜎𝑤𝑤

)2

,� (28)

where α = α′/(1 − CI), though α′ or b1 can vary themselves with u*/ws as noted earlier. It is necessary to point 
out that when α ≥ 0, Equation 28 is opposite to what is predicted by the so-called ’crossing-trajectories’ effect 
for heavy particles settling in a turbulent flow. The crossing trajectories arise when particle trajectories cross 
trajectories of fluid elements under the influence of gravity. This effect invariably forces particles to move from a 
region of highly correlated flow to another less correlated region (Wells & Stock, 1983). In this manner, particles 
lose velocity correlation more rapidly than the corresponding fluid points and thus must disperse less. Thus, the 
crossing trajectories effect requires Sc > 1 (Csanady, 1963; Duman et al., 2016).

To summarize, Equation 27 demonstrates how the turbulent fluxes of momentum and SSC can be modeled as a 
function of the mean gradients as

𝑤𝑤′𝑢𝑢′ = −
(1 − 𝐶𝐶𝐼𝐼 )

𝐴𝐴𝑅𝑅

𝜏𝜏𝜏𝜏2
𝑤𝑤

𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
; 𝑤𝑤′𝐶𝐶 ′ = −

(1 − 𝐶𝐶𝐼𝐼 )

𝐴𝐴𝑅𝑅

[

1 + 𝛼𝛼
𝑤𝑤2

𝑠𝑠

𝜎𝜎2
𝑤𝑤

]

𝜏𝜏𝜏𝜏2
𝑤𝑤

𝜕𝜕𝐶𝐶

𝜕𝜕𝜕𝜕
,� (29)

where the eddy diffusivity for momentum varies with 𝐴𝐴 𝐴𝐴𝐴𝐴2
𝑤𝑤 requiring specification with zn. The same analysis is 

now revisited in spectral space thereby allowing models for τ, 𝐴𝐴 𝐴𝐴2
𝑤𝑤 , and Sc to be formulated based on the canonical 

shape of the spectrum of vertical velocity in turbulent boundary layers and a local balance between turbulent 
kinetic energy generation and destruction at any zn.

2.4.  The Co-Spectral Budget Model

The models so far make no explicit contact with the phenomenon they perpetrate to represent: turbulent eddies 
and their energy distribution. The proposed approach here uses a CSB to establish such a link. The CSB is derived 
from an approximated Navier-Stokes equation in a spectral form that links turbulent eddies of different sizes to 

𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ . The CSB derivation commences by noting that 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ and 𝐴𝐴 𝑢𝑢′𝑤𝑤′ both satisfy the normalizing properties,

−𝑤𝑤′𝐶𝐶 ′ = ∫
∞

0

𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘)𝑑𝑑𝑑𝑑𝑑 −𝑢𝑢′𝑤𝑤′ = ∫
∞

0

𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘)𝑑𝑑𝑑𝑑𝑑� (30)

where ϕwc(k) and ϕwu(k) are the co-spectral density functions of the turbulent vertical velocity-turbulent sediment 
concentration and turbulent vertical-longitudinal velocities, respectively, and k is the wavenumber or inverse 
eddy size. The co-spectral budgets associated with Equation 19 have been derived elsewhere and simplify to (Bos 
et al., 2004; Cava & Katul, 2012; Katul et al., 2013; Katul & Manes, 2014; Li & Katul, 2021),

𝜕𝜕

𝜕𝜕𝜕𝜕
𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘) = 0 = 𝑃𝑃𝑤𝑤𝑤𝑤(𝑘𝑘) + 𝑇𝑇𝑤𝑤𝑤𝑤(𝑘𝑘) + 𝜋𝜋𝑤𝑤𝑤𝑤(𝑘𝑘) − 2𝜈𝜈𝜈𝜈2𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘),� (31)

𝜕𝜕

𝜕𝜕𝜕𝜕
𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘) = 0 = 𝑃𝑃𝑤𝑤𝑤𝑤(𝑘𝑘) + 𝑇𝑇𝑤𝑤𝑤𝑤(𝑘𝑘) + 𝜋𝜋𝑤𝑤𝑤𝑤(𝑘𝑘) − 𝜈𝜈

(

1 + 𝑆𝑆𝑆𝑆−1𝑚𝑚

)

𝑘𝑘2𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘),� (32)
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where 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤(𝑘𝑘) =
(

𝑑𝑑𝑢𝑢∕𝑑𝑑𝑑𝑑
)

𝐸𝐸𝑤𝑤𝑤𝑤(𝑘𝑘) and 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤(𝑘𝑘) =

(

𝑑𝑑𝐶𝐶∕𝑑𝑑𝑑𝑑

)

𝐸𝐸𝑤𝑤𝑤𝑤(𝑘𝑘) are the stress and flux production terms at k, 
Eww(k) is the vertical velocity spectrum satisfying the normalizing relation 𝐴𝐴 𝐴𝐴2

𝑤𝑤 = ∫∞
0
𝐸𝐸𝑤𝑤𝑤𝑤(𝑘𝑘)𝑑𝑑𝑑𝑑 , Twu(k) and Twc(k) 

are turbulent transfer terms, πwu(k) and πwc(k) are pressure-velocity and pressure-scalar decorrelation terms, and 
Scm is the molecular Schmidt number (not related to Sc). Invoking a spectral-based Rotta model that includes the 
isotropization of the production as before, the pressure-scalar co-variance in k-space can be modeled as

𝜋𝜋𝑤𝑤𝑤𝑤(𝑘𝑘) = −𝐴𝐴𝑅𝑅
1

𝑡𝑡𝑤𝑤𝑤𝑤(𝑘𝑘)
𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘) − 𝐶𝐶𝐼𝐼𝑃𝑃𝑤𝑤𝑤𝑤(𝑘𝑘), 𝜋𝜋𝑤𝑤𝑤𝑤(𝑘𝑘) = −𝐴𝐴𝑅𝑅

1

𝑡𝑡𝑟𝑟(𝑘𝑘)
𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘) − 𝐶𝐶𝐼𝐼𝑃𝑃𝑤𝑤𝑤𝑤(𝑘𝑘),� (33)

where AR ≈ 1.8 and CI = 3/5 are as before, tww(k) and tr(k) are the decorrelation time-scale of the turbulent stress 
and particle concentration. Because of inertia, the tr(k) differs from tww(k) in a number of ways as already fore-
shadowed from Equation 28. A model of maximum simplicity is to assume that these two wavenumber dependent 
time scales are related using a wavenumber-dependent Sc(k) given by,

𝑡𝑡𝑟𝑟(𝑘𝑘) = 𝑡𝑡𝑤𝑤𝑤𝑤(𝑘𝑘)𝑆𝑆𝑆𝑆
−1(𝑘𝑘), with 𝑆𝑆𝑆𝑆−1(𝑘𝑘) = 1 + 𝛼𝛼(𝑤𝑤𝑠𝑠 𝑘𝑘 𝑘𝑘𝑤𝑤𝑤𝑤)

2
,� (34)

where twc  =  min(tww, fo tK,b) with fo being a constant (a plausibility argument to such twc(k) representation is 
discussed later), and Sc(k) is modeled in analogy to Equation 28 albeit in spectral form. That is, Sc is based on 
a local scale-wise characteristic turbulent velocity estimated by 𝐴𝐴 (𝑘𝑘𝑘𝑘𝑤𝑤𝑤𝑤)

−1 using a one-way coupling approach 
(Elghobashi, 1994). The tww(k) ∝ϵ −1/3k −2/3 is interpreted as a characteristic time scale derived from dimensional 
analysis assuming ϵ is the conserved quantity across the energy cascade of Eww(k), and ϵ is the turbulent kinetic 
energy dissipation rate. One plausible choice for the proportionality constant is 𝐴𝐴 𝐴𝐴

−1∕2

𝑜𝑜  so as to recover a Kolmog-
orov time scale in the inertial subrange, where Co = 0.65 is the Kolmogorov constant for the vertical velocity 
component.

For scalewise integration, it is also necessary to maintain a bounded tr(k) as k → 0 for any zn. We set tr(k) = tr(kc) 
when k  <  kc, where kc is the smallest inverse length scale where Eww(k) increases with increasing k. The 
viscous-destruction terms are negligible when compared to the Rotta terms for kη ≪ 1. Since Twu(k) and Twc(k) do 
not contribute to the net production or destruction of ϕwu(k) and ϕwc(k) but only redistribute them across scales 
(i.e., 𝐴𝐴 ∫∞

0
𝑇𝑇𝑤𝑤𝑤𝑤(𝑘𝑘)𝑑𝑑𝑑𝑑 = 0 , and 𝐴𝐴 ∫∞

0
𝑇𝑇𝑤𝑤𝑤𝑤(𝑘𝑘)𝑑𝑑𝑑𝑑 = 0 ), they are ignored for simplicity (Bonetti et al., 2017). Adopting 

these simplifications,

𝜙𝜙𝑢𝑢𝑢𝑢(𝑘𝑘) =

(

1 − 𝐶𝐶𝐼𝐼

𝐴𝐴𝑅𝑅

)

𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
[𝐸𝐸𝑤𝑤𝑤𝑤(𝑘𝑘)𝑡𝑡𝑤𝑤𝑤𝑤(𝑘𝑘)] , 𝜙𝜙𝑤𝑤𝑤𝑤(𝑘𝑘) =

(

1 − 𝐶𝐶𝐼𝐼

𝐴𝐴𝑅𝑅

)

𝑑𝑑𝐶𝐶

𝑑𝑑𝑑𝑑
[𝐸𝐸𝑤𝑤𝑤𝑤(𝑘𝑘)𝑡𝑡𝑟𝑟(𝑘𝑘)] .� (35)

To integrate these equations across k and derive turbulent shear stress and sediment flux at any height zn, an 
expression for Eww(k) is required. A model for Eww(k) that captures known spectral features at an arbitrary zn is 
shown in Figure 2.

The Eww(k) is now piece-wise approximated as

���(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

���� (��) �−2
� �2, if 0 ≤ � ≤ ��

���� (��) , if �� ≤ � ≤ ��

����(�), if �� ≤ � ≤ ��

,� (36)

where kc = H −1, ko = (κz) −1 and ke = η −1 are three characteristic wavenumbers that mark the key transitions in 
Eww(k) between H and the characteristic eddy scales bounding the inertial subrange (Ayet & Katul 2020; Bonetti 
et al., 2017; Katul et al., 2013; S. Li & Katul, 2019), and Ekol(k) = Coϵ(z) 2/3k −5/3 is the Kolmogorov spectrum. In 
the case of Ekol(k), the transfer of energy across scales shapes the energy cascade and is necessary for obtaining 
the k −5/3 scaling. The transfer of stress across scales, as given by Twu(k), was ignored in the CSB model here. 
The inclusion of the transfer term in the energy cascade (indirectly specified by Eww(k)) but not in the CSB may 
appear paradoxical. This is not so as the role and significance of the transfer terms are quite different when 
analyzing scale-wise energy and stress budgets (Bos et al., 2004). In the inertial subrange where Ekol(k) ∼ k −5/3, a 
ϕuw(k) ∼ k −7/3 has also been reported and confirmed in numerous boundary layer experiments and simulations of 
wall-bounded flows (Pope, 2000). A balance between production and dissipation terms in the CSB model leads 
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to a 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢(𝑘𝑘) ∼
(

𝑑𝑑𝑢𝑢∕𝑑𝑑𝑑𝑑
)

𝐸𝐸𝑤𝑤𝑤𝑤(𝑘𝑘)𝑡𝑡𝑤𝑤𝑤𝑤(𝑘𝑘) , which recovers the 𝐴𝐴
[(

𝑑𝑑𝑢𝑢∕𝑑𝑑𝑑𝑑
)

𝜖𝜖1∕3
]

𝑘𝑘−7∕3 scaling in the inertial subrange. 
Inclusion of Twu(k) necessarily leads to ϕuw(k) that must deviate from a k −7/3 scaling in the inertial subrange as 
discussed elsewhere (Li et al., 2015). Moreover, the constants emerging from a production balancing dissipation 
in the scale-wise CSB model for the inertial subrange, 𝐴𝐴

[

(1 − 𝐶𝐶𝐼𝐼 ) ∕𝐴𝐴𝑅𝑅

]

𝐶𝐶
1∕2

𝑜𝑜 = 0.18 , does recover the accepted 
co-spectral similarity constant whose numerical value was determined at 0.15–0.16 from wind tunnel studies, 
atmospheric surface layer studies, and DNS (Katul et al., 2013). For these reasons (i.e., Twu(k) ignored within the 
inertial subrange) and because 𝐴𝐴 ∫∞

0
𝑇𝑇𝑤𝑤𝑤𝑤(𝑘𝑘)𝑑𝑑𝑑𝑑 = 0 , Twu(k) is ignored at all k. This assumption is also compatible 

with ignoring the triple moments in Equation 19.

The only remaining term needed to describe the magnitude of Eww(k) at all k is ϵ(z). A model of maximum 
simplicity is to relate ϵ(z) to the mechanical production PTKE(z) of the turbulent kinetic energy budget using 
(Pope, 2000)

𝜖𝜖(𝑧𝑧) =
𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇(𝑧𝑧)

𝜙𝜙 (𝑧𝑧𝑛𝑛)
= 𝜙𝜙−1 (𝑧𝑧𝑛𝑛)

(

−𝑢𝑢′𝑤𝑤′
𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑

)

= 𝜙𝜙−1 (𝑧𝑧𝑛𝑛) 𝑢𝑢
2
∗

(

1 −
𝑧𝑧

𝐻𝐻

)

𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
,� (37)

where ϕ(zn) is a modification function to account for the imbalance between the local mechanical production and 
local dissipation terms in the turbulent kinetic energy budget. For stationary and planar-homogeneous flow condi-
tions without any mean vertical advection and in the absence of any transport terms, ϵ(z) ≈ PTKE(z) and ϕ(zn) ≈ 1. 
While this estimate may be acceptable in the log-region describing 𝐴𝐴 𝑢𝑢(𝑧𝑧) , deviations near the channel bottom 
(ϕ(zn) > 1) and near the water surface (ϕ(zn) < 1) are expected. Hence, ϕ(zn) must be viewed as a depth-dependent 
function (Kim et al., 1987; Pope, 2000) though its variation from unity is not considered here to maintain maxi-
mum simplicity. A plausibility argument for ignoring its variation from unity is that 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ ∝ [𝜙𝜙 (𝑧𝑧𝑛𝑛)]

−1∕3 (shown 
later), which makes the SSC calculations less sensitive to ϕ(zn) deviations from unity. This point is considered 
later in the context of modeling 𝐴𝐴 𝐴𝐴2

𝑤𝑤 (𝑧𝑧𝑛𝑛) based on the assumed Eww(k) shape.

Returning to the choice of twc = min(tww, fo tK,b) and the choice fo, as zn → 1, 𝐴𝐴 𝑤𝑤′𝑢𝑢′ → 0 , PTKE(zn) → 0, and thus ϵ → 
0 (i.e., no turbulence) near the free water surface. With ϵ → 0, tww(k) → ∞ (along with τk → ∞ and ηk → ∞). That 
tww(k) → ∞ is not problematic for the closure scheme of πwu(k) and πwc(k) as those terms are expected to decay 
near the free water surface and this decay remains compatible with tww(k) → ∞. The problem of ϵ → 0 arises in 
maintaining a finite Sc −1(k) dominated by turbulent processes thereby necessitating a finite ϵ in the calculation 
of Sc −1(k) that cannot be readily inferred from PTKE(zn). To ensure that the particle interaction time scale twc 
remains bounded in Sc −1(k), an adhoc minimal value of ϵ, set to be 0.1% ϵb, is proposed. This choice of minimal 
ϵb prevents ϵ → 0 as zn → 1 in the Sc(k) formulation only. This minimal threshold set to ensure a finite ϵ in Sc(k) 

Figure 2.  Left: A typical Eww(k) at zn from the channel bottom. The very low wavenumber range are assumed to follow the 
Saffman spectrum (Eww(k) ∝ k 2) until kc = 1/H. The Saffman spectrum is then connected using a flat transition (i.e., wall 
effects introduce energy splashing) to the inertial subrange at ko ∝ 1/z where Eww(k) ∝ k −5/3. The black curves are extracted 
from measurements (Nikora & Goring, 2002) with different flow conditions using acoustic Doppler velocity and do not 
resolve the viscous dissipation range in the vicinity of ke = 1/η or the presumed Saffman spectrum. Right: The 𝐴𝐴 𝐴𝐴2

𝑤𝑤∕𝑢𝑢
2
∗ profile 

modeled from scale-wise integration of Eww(k) and its simplified form (Eww1(k), that is, ignoring the Saffman contribution 
and extending the inertial subrange indefinitely to fine scales). The measured 𝐴𝐴 𝐴𝐴2

𝑤𝑤∕𝑢𝑢
2
∗ profiles are from experiments described 

elsewhere (Heisel et al., 2020; Nikora & Goring, 2002; Raupach, 1981). They include field experiments and wind-tunnel 
experiments over a wide range of roughness types and Reynolds number conditions. The direct numerical simulations (DNS) 
for a smooth channel (red) are also included for comparisons (Heisel et al., 2020).
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(mainly near the free water surface) leads to 𝐴𝐴 𝐴𝐴𝑜𝑜 =
√

1000 ≈ 31 . Changing the threshold 0.1% ϵb to smaller values 
simply reduces the thickness of the region directly impacted by the free water surface in the vicinity of zn = 1 but 
the solution in all other regions is not directly impacted by this choice.

3.  Results and Discussion
3.1.  Co-Spectral Budget Model

By scale-wise integrating ϕuw(k) and using 𝐴𝐴 𝐴𝐴2∗ (1 − 𝑧𝑧𝑛𝑛) = ∫ 𝑘𝑘𝑒𝑒
𝑜𝑜

𝜙𝜙𝑢𝑢𝑢𝑢(𝑘𝑘) dk, the velocity gradient 𝐴𝐴 𝐴𝐴𝑢𝑢∕𝑑𝑑𝑑𝑑 at z is 
obtained as

𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
= 𝐴𝐴

−3∕4

𝜋𝜋 𝜙𝜙1∕4 (𝑧𝑧𝑛𝑛)

(

1 −
𝑧𝑧

𝐻𝐻

)1∕2

[

15

4
−

8

3

(

𝑘𝑘𝑐𝑐

𝑘𝑘𝑜𝑜

)1∕3

−
3

4

(

𝑘𝑘𝑜𝑜

𝑘𝑘𝑒𝑒

)4∕3
]−3∕4

(𝑘𝑘𝑜𝑜𝑢𝑢∗) ,� (38)

where 𝐴𝐴 𝐴𝐴𝜋𝜋 = (1 − 𝐶𝐶𝐼𝐼 )
√

𝐶𝐶𝑜𝑜∕𝐴𝐴𝑅𝑅 ≈ 0.18 , and the vertical velocity variance can be derived by scale-wise integrating 
Eww(k) as,

𝜎𝜎2
𝑤𝑤

𝑢𝑢2∗
=

5

2
𝐶𝐶𝑜𝑜𝐴𝐴

−1∕2

𝜋𝜋 𝜙𝜙−1∕2 (𝑧𝑧𝑛𝑛)

[

1 −
4

15

𝑘𝑘𝑐𝑐

𝑘𝑘𝑜𝑜

−
3

5

(

𝑘𝑘𝑒𝑒

𝑘𝑘𝑜𝑜

)−2∕3
][

15

4
−

8

3

(

𝑘𝑘𝑐𝑐

𝑘𝑘𝑜𝑜

)1∕3

−
3

4

(

𝑘𝑘𝑒𝑒

𝑘𝑘𝑜𝑜

)−4∕3
]−1∕2

(1 − 𝑧𝑧𝑛𝑛) .� (39)

Likewise, the SSC turbulent flux is solved as

−𝑤𝑤′𝐶𝐶 ′ = 𝐴𝐴𝜋𝜋𝜙𝜙
−1∕3 (𝑧𝑧𝑛𝑛) Ω (𝑧𝑧𝑛𝑛) 𝑢𝑢

2∕3

∗

[

(

1 −
𝑧𝑧

𝐻𝐻

)

𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑

]1∕3
𝑑𝑑𝐶𝐶

𝑑𝑑𝑑𝑑
= −𝑤𝑤𝑠𝑠𝐶𝐶𝐶� (40)

with Ω(zn) given by

Ω (𝑧𝑧𝑛𝑛) = ∫
𝑘𝑘𝑐𝑐

0

𝑆𝑆𝑆𝑆−1 (𝑘𝑘𝑐𝑐) 𝑘𝑘
−8∕3

𝑐𝑐 𝑘𝑘
−5∕3

𝑜𝑜 𝑘𝑘2𝑑𝑑𝑑𝑑 + ∫
𝑘𝑘𝑜𝑜

𝑘𝑘𝑐𝑐

𝑘𝑘
−5∕3

𝑜𝑜 𝑆𝑆𝑆𝑆−1(𝑘𝑘)𝑘𝑘−2∕3𝑑𝑑𝑑𝑑 + ∫
𝑘𝑘𝑒𝑒

𝑘𝑘𝑜𝑜

𝑆𝑆𝑆𝑆−1(𝑘𝑘)𝑘𝑘−7∕3𝑑𝑑𝑑𝑑𝑑� (41)

The turbulent Schmidt number at any zn can be determined from νt(zn) in Equation 38 and from Ds(zn) in Equa-
tion 40 using

𝑆𝑆𝑆𝑆 (𝑧𝑧𝑛𝑛) =
𝜈𝜈𝑡𝑡

𝐷𝐷𝑠𝑠

= Ω−1 (𝑧𝑧𝑛𝑛)

[

15

4
−

8

3

(

𝑘𝑘𝑐𝑐

𝑘𝑘𝑜𝑜

)1∕3

−
3

4

(

𝑘𝑘𝑜𝑜

𝑘𝑘𝑒𝑒

)4∕3
]

𝑘𝑘
−4∕3

𝑜𝑜 .� (42)

Because the determination of ke = 1/η (where 𝐴𝐴 𝐴𝐴 =
(

𝜈𝜈3∕𝜖𝜖
)1∕4 ) requires an estimate of ϵ(zn) = Puw(zn) and thus 

an estimate of 𝐴𝐴 𝐴𝐴𝑢𝑢∕𝑑𝑑𝑑𝑑 , an iterative scheme is needed to determine 𝐴𝐴 𝐴𝐴𝑢𝑢∕𝑑𝑑𝑑𝑑 and ke at every zn from Equation 38. 
Once determined, the Eww(k), Sc(zn), 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ and the subsequent SSC profile can be computed at each zn by solving 
Equations 39, 40 and 42 for 𝐴𝐴 𝐴𝐴2

𝑤𝑤 , 𝐴𝐴 𝑤𝑤′𝐶𝐶 ′ and Sc. Since there is no analytical solution to this system, a numerical 
integration using a third-order Adams–Bashforth method is employed.

Before proceeding to the analysis of SSC, an assessment of the assumed shape of Eww(k), its transition wavenum-
bers, as well as the consequence of the assumption of ϕ(zn) ≈ 1 is conducted in Figure 2. The predicted 𝐴𝐴 𝐴𝐴2

𝑤𝑤∕𝑢𝑢
2
∗ 

from Equation 39, and its simplified version using Eww1(k) without the Saffman spectrum and assuming ke/kc → 
∞ are compared against two sets of experiments: (a) wind tunnel experiments conducted over a wide range of 
surface roughness types (Raupach, 1981) and (b) field experiments (Nikora & Goring, 2002) of the sediment flow 
in the Balmoral Irrigation Canal (New Zealand). The wind-tunnel experiments used a hot-wire probe whereas 
the field experiments used ADV measurements that do not resolve the viscous dissipation regime. As expected, 
the predicted 𝐴𝐴 𝐴𝐴2

𝑤𝑤∕𝑢𝑢
2
∗ here exceeds the measurements because the spectral shapes assumed in Eww(k) account for 

a much broader range of eddy sizes than the experiments interrogate. Specifically, the Saffman and dissipation 
ranges are not resolved by the flume experiments whereas the wind tunnel experiments resolve a limited dissipa-
tion range but are not conducted over a sufficiently long enough sampling period to cover the Saffman spectrum. 
The inclusion of the Saffman spectrum here ensures that 𝐴𝐴 𝐴𝐴2

𝑤𝑤 remains finite near the water surface whereas the 
turbulent stress is not. The simplified model for Eww(k), when integrated at any zn, recovers key features of the 

𝐴𝐴 (𝜎𝜎𝑤𝑤∕𝑢𝑢∗)
2 profile: a rapid increase with zn near the surface, a peak at 𝐴𝐴 (𝜎𝜎𝑤𝑤∕𝑢𝑢∗)

2
= 1.9 , and a quasi-linear decline as 
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zn → 1. The peak 𝐴𝐴 (𝜎𝜎𝑤𝑤∕𝑢𝑢∗)
2
= 1.9 is compatible with near-neutral atmospheric surface layer measurements (= 1.8) 

where lateral confinements of the flow are absent (unlike flumes and wind tunnels) and where H/η far exceeds 
those obtained in laboratory studies.

Now the comparisons of the CSB results in Section  3.1 with α temporarily set as a free parameter with (a) 
Prandtl's power law solution and (b) Rouse's formula are shown in Figure 3.

The computed SSC and Sc profiles are also presented when the flow conditions and sediment properties are 
provided. For Prandtl's power-law and Rouse's formula, the bulk Schmidt number was set to unity. However, the 
CSB model allows for a depth-dependent Sc(zn), which is set by α. When α = 0, Sc(zn) = 1 in the entire channel, 
consistent with Equation 28. When α > 0, Sc(zn) varies with depth and is generally greater in the near-bed region 
and becomes smaller with increasing zn. However, because of the imposition of a finite ϵ near the water surface 
(=0.001ϵb), Sc(zn) increases back to near unity when zn → 1. Rouse's equation and CSB models exhibit different 
behavior near the water surface. Rouse's equation yields a zero-concentration at zn = 1 whereas the CSB model 
does not. One advantage to the CSB approach is its ability to resolve the dependence of 𝐴𝐴 𝐶𝐶∕𝐶𝐶𝑏𝑏 on Reynolds 
number. Using different ν, variations in Re* = u*H/ν can be generated and their effects on CSB model predictions 
tracked. Recall that H/ηb (modeled in the CSB) scales as 𝐴𝐴 𝐴𝐴𝐴𝐴

3∕4

∗  , and the effects of this scale separation on the 
shape of the vertical velocity spectrum, sediment flux co-spectrum, and the resulting 𝐴𝐴 𝐶𝐶∕𝐶𝐶𝑏𝑏 profiles are explicitly 
determined. The effects of α are much more significant than the effects of Re*, which is heuristically supportive 
for using Direct Numerical Simulation runs (lower Re*) to further explore the CSB approach. As earlier noted, 
the implications of setting twc = min(tww, fo tK,b) with 𝐴𝐴 𝐴𝐴𝑜𝑜 =

√

1000 are most visible on the Sc(zn) profile near the 
free water interface. Altering fo primarily modifies the thickness of the region near the water interface impacted 
by the imposed finite twc (or finite ϵ in the Sc(k) determination). However, the CSB model itself is not expected 
to be valid in this zone as the assumed shape of Eww(k) is not realistic, the flux transport terms can be finite, and 
turbo-phoretic effects may also be large in this vicinity. In sum, predictions from the CSB model near the free 
water surface must be treated with skepticism and caution.

Figure 3.  The predicted suspended sediment concentration (SSC), Sc, and Ds profiles based on the co-spectral budget (CSB) model of Section 3.1 when setting 
ds = 1 mm, ρs = 1.2 g cm −3, u* = 3 cm s −1, and Ub/u* = 10. The reference position is at zn,b = 0.01. Different α values and Reynolds numbers (Re* = u*H/ν) are featured 
to illustrate overall sensitivity of the normalized SSC profile to these parameters. The Prandtl and Rouse model predictions of SSC are shown for reference in the 
top-left panel. The Reynolds number is varied by altering ν.
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3.2.  Recovery of the Rouse and Prandtl Equations

Whether a Rouse equation can be recovered from the CSB model under 
certain simplifications is now examined. Any explicit model must include 
Sc and approximations to Equation 42. Assuming kc/ko → 0 and ko/ke → 0 in 
Ω(zn) only (i.e., setting the area under the Saffman spectrum to zero that is 
then partially compensated for by extending the inertial subrange to ke → ∞), 
the Schmidt number derived from Equation 42 can be approximated as

𝑆𝑆𝑆𝑆−1 ≈ 1 + 𝐵𝐵𝜋𝜋

(

𝑤𝑤𝑠𝑠

𝑢𝑢∗

)2

, with 𝐵𝐵𝜋𝜋 =

√

15𝐴𝐴𝜋𝜋

3𝐶𝐶𝑜𝑜

𝛼𝛼 ≈ 0.84𝛼𝛼𝛼� (43)

which directly recovers the quadratic model for Sc −1 reported elsewhere 
(Bombardelli & Moreno, 2012; van Rijn, 1984) as expected. With R ≈ 0, 
Equation  43 indicate β  =  Sc −1 → 1 thereby recovering Rouse's original 
assumption (i.e., SS resemble passive scalars in this case). This estimate of β 
also allows for the determination of the model coefficient α using a separate 
data set and model runs shown in Figure 4.

Figure 4 shows different predictions of β, including 𝐴𝐴 𝐴𝐴 = 1 + 2(𝑤𝑤𝑠𝑠∕𝑢𝑢∗)
2 (van 

Rijn, 1984) and 𝐴𝐴 𝐴𝐴 = 1.3 + 3(𝑤𝑤𝑠𝑠∕𝑢𝑢∗)
2 (Jha & Bombardelli, 2009) for model 

results that explicitly consider particle-fluid interactions. Moreover, with Sc provided in Equation 43, the SS 
diffusivity is derived as,

𝐷𝐷𝑠𝑠(𝑧𝑧)

𝜅𝜅𝜅𝜅𝜅𝜅∗
=

1

𝑆𝑆𝑆𝑆
(1 − 𝑧𝑧𝑛𝑛) =

[

1 + 𝐵𝐵𝜋𝜋

(

𝑤𝑤𝑠𝑠

𝑢𝑢∗

)2
]

(1 − 𝑧𝑧𝑛𝑛)� (44)

where κzu* is the eddy viscosity in the log-region of 𝐴𝐴 𝑢𝑢(𝑧𝑧) . Depending on choices made for α or Bπ, a number of 
empirical relations can be recovered including the widely used Rouse's equation and variants on it (Hunt, 1954). 
For a given α, an analytical solution for the SSC can be derived and compared with published experiments. The 
SSC solution for an arbitrary α is given as

𝐶𝐶 (𝑧𝑧𝑛𝑛)

𝐶𝐶𝑏𝑏

=

(

𝑧𝑧𝑛𝑛

1 − 𝑧𝑧𝑛𝑛

1 − 𝑧𝑧𝑛𝑛𝑛𝑛𝑛

𝑧𝑧𝑛𝑛𝑛𝑛𝑛

)−𝑅𝑅+

.� (45)

Where the power exponent R+ is defined as

𝑅𝑅+ =
1

1 + 𝐵𝐵𝜋𝜋(𝑤𝑤𝑠𝑠∕𝑢𝑢∗)
2

𝑤𝑤𝑠𝑠

𝜅𝜅𝜅𝜅∗
.� (46)

When α  =  0 (or Bπ  =  0), a quadratic diffusivity profile (O′Brien,  1933) as well as Rouse's formula 
(Rouse, 1937, 1939) for SSC given in Equation 16 are recovered. Furthermore, in the limit of (zn ≪ 1) a linear 
diffusivity profile (von Karman, 1934) along with the classic power law solution are also recovered from Equa-
tion 45. The consequences on 𝐴𝐴 𝐴𝐴2

𝑤𝑤 of setting the Saffman spectrum to zero and extending the inertial subrange to k 
→ ∞ on 𝐴𝐴 𝐴𝐴2

𝑤𝑤 are briefly discussed using Figure 2. As expected, these approximation over-estimate 𝐴𝐴 (𝜎𝜎𝑤𝑤∕𝑢𝑢∗)
2 in the 

near-wall region and underestimate 𝐴𝐴 (𝜎𝜎𝑤𝑤∕𝑢𝑢∗)
2 in the outer layer when compared to a Eww(k) that accommodates 

the Saffman spectrum (i.e., large scale effects) but truncates the inertial subrange at 1/ke. These effects cannot be 
readily ignored and may influence the choices made about α.

3.3.  Comparison With Experiments

The CSB model given by Equations 40 and 38 and its simplified version featured in Equation 45 are compared 
with published experiments (Greimann & Holly, 2001; Tseng & Tinoco, 2020; Vanoni, 1984) summarized in 
Table 1. We assume Φ(z) = 0 thereby neglecting inertial effects for compatibility with operational models (e.g., 
the Rouse model). The comparisons with published experiments are shown in Figure 5. For these experiments, all 

Figure 4.  The model coefficient β based on different formulae, experiments, 
and model runs. The experiments and model runs presented here are described 
elsewhere (Jha & Bombardelli, 2009).
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the reported parameters including measured u*, ds, and ρs and the fitted β (needed for assessing the fitted Rouse 
equation) and α (needed for evaluating the numerical CSB model) are presented in Table 1.

In the experiments, the sediments covered the bed and were assumed to have reached an equilibrium state where 
Equation 4 applies (Tseng & Tinoco, 2020). The densimetric Froude number Frd and the critical densimetric 
Froude number Frdc whose formulation is described elsewhere (Ali & Dey, 2017, 2018; Li & Katul, 2019) are 
also presented in Table 1. In all cases, the Ub, ρs/ρ, and d/H result in Frd > Frdc meaning that sediments can be 
released from the bed and must be balanced by sediments depositing onto the bed. Thus, the experiments here do 
not strictly abide by H.A. Einstein's definition of SS as sediments cannot remain permanently suspended. Across 
the experiments, the flow variables Ub and u* varied from 10 cm s −1 to 40 cm s −1 and 0.8–8 cm s −1, respectively. 
However, 𝐴𝐴 𝐴𝐴𝑏𝑏∕𝑢𝑢∗ = (8∕𝑓𝑓𝑑𝑑𝑑𝑑)

1∕2 , related to the Darcy-Weisbach friction factor fdw, varied much less (15–25) as may 
be anticipated in fully rough flow over a channel bed covered by grains of similar ds. The particle properties ρs/ρ 

Run (a) (b) (c) (d) (e) (f)

Flow properties

  H (m) 0.10 0.52 0.50 0.10 0.10 0.10

  B (m) − 0.84 0.84 0.15 0.15 0.15

  Ub (measured, m s −1) 1.98 3.95 3.63 0.31 0.22 0.17

  Reb = UbH/ν × 10 −4 18.7 193 170 2.9 2.1 1.6

  Repa = u*ds/ν 103 169 166 16 13 7

  u* (cm s −1) 7.67 20.0 20.0 1.7 1.4 0.8

  zn,b × 10 2 (measured) 6.3 2.6 3.0 5.0 3.8 5.6

 𝐴𝐴 𝐴𝐴+
𝑛𝑛𝑛𝑛𝑛

(= 𝑢𝑢∗𝑧𝑧𝑏𝑏∕𝜈𝜈)  456 2,747 2,988 85 53 45

  Ub/u* (measured) 25.8 19.4 18.2 18.2 15.7 21.3

Sediment properties

  ρs/ρ 1.05 2.65 2.65 1.20 1.20 1.20

  ds (mm) 1.42 0.88 0.88 1.00 1.00 1.00

  ws (cm s −1) 1.7 10 10 2.9 2.9 2.9

Dimensionless model parameters

  R* = ws/(κu*) 0.5 1.2 1.2 4.3 5.2 9.1

  α 27.7 14.5 16.3 0.6 0.4 0.2

  β (Rouse) 1.3 1.6 1.8 2.2 2.2 2.8

  R = ws/(βκu*) 0.4 0.8 0.7 1.9 2.4 3.2

  β (Prandtl) 0.9 1.1 1.2 1.4 1.5 1.9

  R = ws/(βκu*) 0.6 1.1 1.0 3.0 3.5 4.8

 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏

(

= 𝑤𝑤𝑠𝑠∕𝑔𝑔
√

𝑔𝑔𝑔𝑔𝑜𝑜𝑈𝑈𝑏𝑏∕𝜈𝜈

)

  0.57 5.63 5.4 0.09 0.06 0.03

 𝐴𝐴 𝐴𝐴𝐴𝐴+
(

= 𝜏𝜏𝑝𝑝𝑢𝑢∗∕𝐻𝐻
)

× 103  1.3 4.0 4.1 0.5 0.4 0.2

 𝐴𝐴 𝐴𝐴𝐴𝐴𝑑𝑑

(

= 𝑈𝑈𝑏𝑏∕
√

(𝜌𝜌𝑠𝑠∕𝜌𝜌 − 1) 𝑔𝑔𝑔𝑔𝑠𝑠

)

  75 33 30 7 5 4

  Frdc 3 4 4 3 3 3

  Ub/u* (CSB rough bed) 12.4 15.2 15.6 13.0 14.0 13.5

  Ub/u* (CSB smooth bed) 27.2 33.1 33.5 23.5 23.7 22.4

Note. When setting Sc = 1, not all runs are classified as SS (or 0.8 ≤ R* ≤ 2.5) even though sediments were reported as 
suspended. While Stb is not very small for (b) and (c), St+ ≪ 1. Calculated densimetric and critical Froude numbers (Frd and 
Frdc) are presented along with the roughness Reynolds number Repa. All experiments lie in the fully rough (Repa > 100) or 
transitional (3 < Repa < 100) regimes in fully developed turbulence (Reb ≥ 500). The ratio between the sediment diameter 
and the Kolmogorov length scale varies from 3 to 25 across all the measurements used here.

Table 1 
Summary of Published Experiments and Parameters Used in Model-Data Comparisons
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and ds varied from 1.05 to 2.65 and 0.88–1.4 mm, respectively. The consequence of these variations is that the 
empirically derived settling velocity ws is much smaller than the Stokes settling velocity as shown in the inset 
of Figure 1. Collectively, these experiments span wide-ranging particle sizes (in the SS range) and flow prop-
erties from different sources. The lowest measured sediment concentration near the channel bottom is close to 
the surface (zn,b ∈ [0.026, 0.063]) but remains above the buffer region z + = u*zb/ν > 30 as shown in Table 1. For 
some runs, the z + < 100 and wall-blockage effects (not considered here) can impact Eww(k) and 𝐴𝐴 𝐴𝐴𝑢𝑢(𝑧𝑧)∕𝑑𝑑𝑑𝑑 (McColl 
et al., 2016), which introduce obvious uncertainties. As shown in Table 1, experiments (a)-(c) are characterized 
by Stb > 0.5, which may be indicative that Φ(z) is not small. Experiments (d)-(f) are characterized by a small Stb 
as assumed by the CSB and Rouse's formula.

Figure 5 confirms that the fitted Rouse formula and fitted Prandtl formula (i.e., the R model, allowing β to be 
fitted) offer good agreements with some measurements (for (a)-(b) and (d)-(f) respectively) at all depths. Given 
that the simplified CSB model is identical to Rouse's formula, an agreement between the fitted Rouses's formula 
and the measurements can also be juxtaposed to the simplified CSB model. However, the numerical CSB model 
provides reasonable agreements for all the runs when allowing α to vary. Allowing α to be a free parameter has 
several advantages when compared to β in the fitted Rouse equation. Setting β as constant implies Sc is constant 
at all zn while setting α as constant incorporates some of the local variations in Sc with zn (albeit near the free 
water surface, maintaining a finite ϵ can be problematic without adjustments). The impact of minor variations in 
particle sizes is shown in the shaded area: the particle sizes are increased/decreased by 20% to illustrate model 
sensitivity to ds. Uncertainty in sediment composition (and thus ds and ws) can be a factor in determining SSC 
uncertainty but not in all cases (runs d–f). While the SSC model does not require 𝐴𝐴 𝑢𝑢 (only 𝐴𝐴 𝐴𝐴𝑢𝑢∕𝑑𝑑𝑑𝑑 ), the predicted 
Ub from the CSB turbulent stress budget can be compared against measured Ub for a plausibility check. The 
modeled Ub requires u* along with a boundary condition specified here as 𝐴𝐴 𝑢𝑢 (𝑧𝑧𝑛𝑛𝑛𝑛𝑛) ∕𝑢𝑢∗ at zn,b. A number of choices 
can be made about this boundary condition. Given that zn,b is sufficiently distant from the wall, the most direct of 

Figure 5.  The predicted suspended sediment concentration profiles normalized by Cb selected at the measurement height with the highest reported concentration. The 
panel labeling follows Table 1 with the top panel showing the comparisons from earlier measurement that is, (a) (Greimann & Holly, 2001; Wang & Qian, 1992) and 
(b)–(c) (Vanoni, 1984), and the bottom panel showing the comparisons using recent experiments (d)–(f) (Tseng & Tinoco, 2020). For experiments in panels (a)–(c), the 
Stb is not small (>0.5).
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those choices is the log-law for two end-member cases: (a) fully rough with 
an externally imposed surface roughness and (b) hydrodynamically smooth. 
In both cases, the mean velocity at zn,b is approximated as

𝑢𝑢 (𝑧𝑧𝑏𝑏)

𝑢𝑢∗
=

1

𝜅𝜅
log

(

𝑧𝑧𝑏𝑏

𝑧𝑧𝑜𝑜

)

;
𝑢𝑢 (𝑧𝑧𝑏𝑏)

𝑢𝑢∗
=

1

𝜅𝜅
ln
(

𝑧𝑧+
𝑛𝑛𝑛𝑛𝑛

)

+ 5,� (47)

where zo is the momentum roughness length. The zo can be related to ds by 
zo ≈ ds/30 where the grain diameter is assumed constant. In all cases, the 
particle roughness Reynolds number Repa = u*ds/ν > 3 but in some cases, 
the flow is not fully rough (i.e., transitional with 3 < Repa < 100). For this 
reason, the CSB model forced by both rough and smooth surface boundary 
conditions at zn,b are featured in Table 1. The agreement between measured 
and the range of CSB modeled Ub/u* for these two end-member cases appears 
reasonable. Runs (a) and (f) are closer to a smooth-wall case whereas runs 
(b), (c), and (e) are better approximated by a rough-wall boundary condition. 
Run (d) falls in-between these two end-member cases. While Run (f) had the 
smallest Repa = 8 and a near-smooth wall approximation may be justifiable, 
run (a) had a Repa > 100. We do not have a clear explanation as to why Ub in 
run (a) is better approximated by a smooth wall boundary condition.

An investigation of the relation between fitted α (and β) and ws/u* is under-
taken and shown in Figure 6. A near-linear relation between α −1 and ws/u* 
indirectly supports the heuristic closure adopted for 𝐴𝐴 𝐶𝐶 ′𝜕𝜕𝜕𝜕′∕𝜕𝜕𝜕𝜕 with some 
caveats.

In the regime ws/u* ≫ 1, the closure model with b1 ∼ sgn(Af)u*/ws leads to an α −1 ∼ − sgn(Af)(1 − CI)(ws/u*) 
and β ∼ − sgn(Af)/(1 − CI)(ws/u*), both of which are negative unless sgn(Af) is negative. The relation in Figure 6 
indicates a positive slope between fitted α −1 and ws/u*, suggesting that the coefficient Af in the flux-variance 
similarity closure (i.e., Equation 22) is negative. More broadly, to what extent this closure is general and how 
robust are its results in the context of SSC profile predictions cannot be unpacked from the experiments here and 
is better kept for a future research topic.

4.  Model Limitations
The treatment of suspended sediments as a dilute mixture is an obvious model limitation. This assumption 
requires particles to settle independently and that the solid volume can be ignored relative to the water volume. 
For the experiments considered here, this assumption is reasonable. Another restrictive assumption is setting 
Φ = 0 (Chamecki et al., 2007; Kind, 1992). A Φ = 0 also leads to 𝐴𝐴 𝐶𝐶 = 𝑤𝑤′𝐶𝐶 ′∕𝑤𝑤𝑠𝑠 → 0 at zn → 1, which may 
not be general. Given the large vertical gradients in 𝐴𝐴 𝐴𝐴2

𝑤𝑤 near the channel bottom and near the free water surface, 
turbophoretic effects can be significant in these two regions (Caporaloni et  al., 1975; Chamecki et  al., 2007; 
Guha, 1997; Katul et al., 2010; Marchioli & Soldati 2002; Zhao & Wu, 2006). The turbophoretic effect act to 
increase the SS concentration near the water surface; however, the measurements here (runs a–c) suggest that 
for the Stb > 1 cases, the SS concentrations near the water surface experience a decline as zn → 1 instead of an 
increase. This finding can be used to suggest that Φ = 0 may be plausible as the turbophoretic term was shown to 
dominate Φ near the water surface (Bragg et al., 2021; Richter & Chamecki, 2018). The CSB budget formulation 
here (i.e., Equation 32) ignored the flux transfer term and their vertical variation. In the case of the turbulent 
stress, ignoring the flux transfer term (and its vertical gradients) altogether guarantees that the co-spectrum 
between w′ and u′ in the inertial subrange maintains a k −7/3 scaling. This k −7/3 scaling has been observed in 
numerous boundary layer studies reporting co-spectra thereby offering indirect justification for this assumption. 
The flux transport terms (i.e., the vertical gradients of triple moments in the Reynolds averaged equations) have 
also been ignored. These terms have been studied less for stress and sediment flux turbulent budgets compared to 
their turbulent kinetic energy budget counterparts. The work here highlights the need for an assessment of these 
terms relative to their mechanical production terms. The CSB model also assumes that the linear Rotta scheme 
(slow component) with an isotropization of production (rapid component) applies equally to SS and momentum 

Figure 6.  The dependence of fitted α and β on the ws/u*. The red, blue and 
black dashed lines show the fitted trend-lines of α −1 and β from Rouse and 
Prandtl equations respectively. The cyan dashed line is β = 𝐴𝐴 1 + 2(𝑤𝑤𝑠𝑠∕𝑢𝑢∗)

2 (van 
Rijn, 1984) extrapolated for large ws/u*.
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fluxes without adjustments in constants (i.e., AR = 1.8 and CI = 3/5). Hence, any departure from these established 
constants must be absorbed by tww(k)/tr(k), which manifests itself as a Schmidt number effect (or α variations).

The assumed shape of Eww(k) is also over-simplified and certainly not reflective of what is known about the 
energetics near the surface (z + < 100) such as wall-blockage. Moving away from the wall region itself, other 
’shape issues' arise. For example, near the spectral transition from inertial to viscous regimes, usually occurring 
at around kη ≈ 0.1, Eww(k) experiences a bottleneck that is absent here (Katul et al., 2015; Saddoughi & Veer-
avalli, 1994). Likewise, as kη > 0.1 and increases further into the viscous regime, Eww(k) decays exponentially 
(Pope, 2000). Hence, extending the inertial subrange to kη = 1 is not intended to capture all such mechanisms 
impacting the vertical velocity spectrum. Instead, it allows for some compensation of loss in energy due to 
censoring Eww(k) at kη = 1 while introducing extra energy due to an expected overestimation of the extrapo-
lated inertial subrange spectrum in this vicinity. On a more positive note, while the full details of the turbulent 
kinetic energy cascade across scales are not explicitly considered, their effects remain implicitly contained in 
the assumed shape of Eww(k). As such, some of these effects can be accommodated (e.g., the bottleneck, viscous 
cutoff, etc…) by various revisions to Eww(k) (e.g., including a bump around kη = 0.1, resolving the viscous cutoff 
region using the Pao spectral shape or variants (Pope, 2000) on it, etc…). The co-spectral budget is integrated 
scale-wise, which means that the precise shape of Eww(k) in the vicinity of kη ≈ 1 is less crucial. Moving beyond 
the shape issues of Eww(k) and focusing on its primary input variable ϵ(zn), the approach assumes turbulent kinetic 
energy production is balanced by its dissipation at every zn (i.e., ϕ(zn) = 1), which is certainly not realistic for 
all zn. However, as previously mentioned, deviations from unity in ϕ(zn) may be ameliorated by the sub-unity 
exponent (−1/3) dependence in the SSC budget. An exception to this statement is the particle time scale twc(k) 
in Sc(k). A ϕ(zn) = 1 as zn → 1 leads to an unbounded Sc −1(k) and thus an uncertain Ds shape in the vicinity of 
the free surface. A plausible adjustment to the Sc −1(k) calculations based on maintaining a minimal ϵ (=0.001ϵb) 
was introduced here though this correction remains ad-hoc. Last, the turbulent SS flux from the CSB model(s) 
follows the same form as gradient-diffusion closure upon ignoring both - turbulent flux transport and scale-wise 
transfer terms. However, a key advantage here is that the effective diffusion coefficient Ds from the CSB model 
contains contributions from turbulent eddies and Schmidt numbers at all scales. The proposed Schmidt number 
(or α) is consistent with bulk Schmidt number formulations such as those by van Rijin's and other one-way 
coupling schemes (i.e., particle transport does not impact the flow) when Sc < 1 (Bombardelli & Moreno, 2012). 
For dense mixture or other aeolian particles in the atmosphere, the particle Schmidt number can be larger than 
unity (Csanady, 1963) implying other particle-fluid interaction models are required. When using the CSB model, 
the α used for the determination of the Schmidt number is treated as a single fitted parameter. Hence, the CSB 
model offers the same number of free parameters as the fitted Rouse equation. What was found here is that α −1 
varies linearly with ws/u* when combining all the experiments. A plausibility argument as to why α depends on 
ws/u* was also offered. In some instances, the addition of a single fitted parameter may be desirable in hydraulic 
models as discussed elsewhere (Battiato & Rubol, 2014; Li, Katul, & Huai, 2019; Papke & Battiato, 2013; Rubol 
et al., 2018), but an increasing number of free model parameters does not necessarily lead to a better physical 
understanding. The sediment settling velocity estimated in Equation 7 is commonly based on a mass-median-di-
ameter from particle size distribution measurements, which however may not be an optimized characteristic size 
as shown by some in-situ measurements (Williams et al., 2007). Large variations in ds can have a substantial 
impact on SSC profiles, which may be more significant than models for α.

5.  Conclusion
Operational modeling of SSC in turbulent flows continues to be a formidable challenge in hydraulics, hydrol-
ogy, ecology, and water quality control. The work here establishes a new link between the spectrum of vertical 
velocity and SS turbulent flux, which was then used to arrive at expressions for the SSC profile. The spectrum of 
vertical velocity is characterized by multiple scaling regimes that include the Saffman spectrum (Eww(k) ∼ k +2), 
the “energy splashing” effect due to the presence of a wall (Eww(k) ∼ k 0), and the much-studied inertial subrange 
regime (Eww(k) ∼ k −5/3). Finite Reynolds effects are accommodated through a scale separation between z and the 
Kolmogorov microscale η terminating the scale-wise extent of the inertial subrange (as a first approximation). 
This dependence can be noted when considering the scaling argument 𝐴𝐴 𝐴𝐴𝑒𝑒∕𝑘𝑘𝑜𝑜 = 𝑧𝑧∕𝜂𝜂 ∼ (𝑧𝑧𝑧𝑧∗∕𝜈𝜈)

3∕4 (Tennekes & 
Lumley, 1972). Hence, increasing Res = (zu*/ν) by either increasing z or u* leads to a widening of the scale-wise 
extent of the inertial subrange, which then impacts all subsequent expressions such as Ω(zn) and 𝐴𝐴 𝐴𝐴𝑢𝑢∕𝑑𝑑𝑑𝑑 . As such, 
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the proposed model is responsive to finite Reynolds number, Schmidt number, and Rouse number effects. Prior 
ad-hoc efforts such as correcting lo by Vn (i.e., the van Driest damping function) can now be interpreted from this 
new spectral perspective (i.e., Res effects become large for small z or u*). A simplified solution to the CSB model 
in which the Saffman spectrum is truncated but the inertial subrange is now extended to infinite wave-numbers 
(i.e., Res → ∞) was shown to recover earlier theories (e.g., Rouse's formula). The fitted Rouse's equation (and by 
extension the simplified CSB solution) also describes the measured SSC profiles in all the experiments consid-
ered here provided α (or β) is allowed to vary with ws/u*. Thus, one of the main novelties here is to provide a 
spectral link between the energy distribution in eddies and the SSC shape. Interactions between turbulent eddies 
and suspended sediment grains at various heights were also proposed, resulting in a scale-dependent Sc captured 
by a single parameter α that varies with ws/u*. Such Sc variations were formulated in spectral space but recover 
expected bulk relations between R and Sc identified by other models, experiments, and simulation studies. When 
all these findings are taken together, future extension of this work must focus on upgrading the particle-turbu-
lence interaction scheme and its signature in a scale-dependent Schmidt number. Such extension will benefit from 
targeted DNS runs where all the terms in the particle co-spectrum as well as Eww(k) can be computed or deter-
mined. Likewise, an exploration of where the sediment flux transport term is significant relative to the mechan-
ical production term and how to incorporate its effects can be undertaken from the aforementioned DNS runs.

Data Availability Statement
All the data used were digitized from the published literature (Greimann & Holly, 2001; Jha & Bombardelli, 2009; 
Tseng & Tinoco, 2020; Vanoni, 1984).
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