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Optimal Target Shape for LiDAR Pose Estimation
Jiunn-Kai Huang, William Clark, and Jessy W. Grizzle

Abstract—Targets are essential in problems such as object
tracking in cluttered or textureless environments, camera (and
multi-sensor) calibration tasks, and simultaneous localization and
mapping (SLAM). Target shapes for these tasks typically are
symmetric (square, rectangular, or circular) and work well for
structured, dense sensor data such as pixel arrays (i.e., image).
However, symmetric shapes lead to pose ambiguity when using
sparse sensor data such as LiDAR point clouds and suffer from
the quantization uncertainty of the LiDAR. This paper introduces
the concept of optimizing target shape to remove pose ambiguity
for LiDAR point clouds. A target is designed to induce large
gradients at edge points under rotation and translation relative to
the LiDAR to ameliorate the quantization uncertainty associated
with point cloud sparseness. Moreover, given a target shape,
we present a means that leverages the target’s geometry to
estimate the target’s vertices while globally estimating the pose.
Both the simulation and the experimental results (verified by
a motion capture system) confirm that by using the optimal
shape and the global solver, we achieve centimeter error in
translation and a few degrees in rotation even when a partially
illuminated target is placed 30 meters away. All the implemen-
tations and datasets are available at https://github.com/UMich-
BipedLab/global_pose_estimation_for_optimal_shape.

I. INTRODUCTION

Targets have been widely employed as fiducial markers [1]–
[9] and for target-based sensor calibration [10]–[21]. Fiducial
markers (artificial landmarks or targets) help robots estimate
their pose by estimating the target pose and are applied
to simultaneous localization and mapping (SLAM) systems
for robot state estimation and loop closures. Additionally,
it can facilitate human-robot interaction, allowing humans
to give commands to a robot by showing an appropriate
marker. Extrinsic target-based calibration between sensors
(cameras, Light Detection and Ranging (LiDAR) sensors,
Inertial Measurement Units (IMU), etc) is crucial for mod-
ern autonomous navigation [22]. Particularly in target-based
LiDAR-camera calibration, one seeks to estimate a set of
corresponding features of a target (e.g., edge lines, normal
vectors, vertices, or plane equations) in the LiDAR’s point
cloud and the camera’s image plane.

The targets applied in these critical tasks are typically
symmetric (square, diamond, rectangle, or circle). A single
symmetric target, such as a square [1], [3], leads to an
ambiguous pose. This can be solved by adding an observable
pattern to the target or by assuring that several asymmetrically-
placed symmetric targets can be observed in a single scene.
Furthermore, estimating the pose or features of a target of
injudicious design suffers from the quantization uncertainty of
a sensor, especially for LiDAR sensors. A high-end LiDAR,
such as 32-Beam Velodyne ULTRA Puck LiDAR, still has
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Fig. 1: Illustration of the vertex and pose estimation using the proposed
optimal target shape placed 30 meters away from a LiDAR in the atrium
of the Ford Robotics Building at the University of Michigan. The red frame
is the proposed optimal shape that induces large gradients at edge points
under translation and rotation. The pose and vertices of the target are jointly
estimated by a global solver that uses known target geometry. The bottom two
figures show the front view and a side view of the fitting results, respectively.
The blue and the green dots are the LiDAR returns on the target. Only the
blue dots are used for pose estimation while to demonstrate robustness of
the approach, the green dots are considered missing. If one were to apply
RANSAC — a commonly used method — to regress the target boundaries and
subsequently estimate the vertices by line intersections, the method would fail
due to the sparsity of inliers.

roughly six centimeters of quantization error at 10 meters,
and 18 centimeters at 30 meters. The quantization uncertainty
in the LiDAR point cloud leads to rotation errors greater than
15 degrees for targets farther away than 15 meters.

In this paper, we propose the concept of optimizing tar-
get shape to ameliorate problems caused by quantization
uncertainty and sparsity of the LiDAR image of a target.
Specifically, we propose that a “good target shape” is one that
possesses large gradients at edge points when the target under-
goes rotations or translations. Moreover, we present a means
that exploits target geometry to extract target vertices while
estimating pose. The pose estimation problem is formulated
so that an existing Semidefinite programming (SDP) global
solver can be modified to globally and efficiently compute the
target’s pose. Figure 1 shows the obtained pose estimation of a
partially illuminated target placed 30 meters away and having
only nine returns (blue dots) from a 32-Beam Velodyne ULTRA
Puck LiDAR, and three LiDAR rings on the target after the
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green dots are considered missing.

A. Contributions

In particular, this work presents the following contributions:
1) We propose the concept of target shape optimization

for estimating pose and vertices from LiDAR point
clouds. Specifically, we design a target so that its edge
points induced by LiDAR rings are “highly” sensitive
to translation and rotation. This attenuates the effects
of quantization uncertainty and sparsity of a target’s
LiDAR image. The resulting shape is asymmetric to
remove pose ambiguity.

2) We present a means that uses target shape to jointly esti-
mate target vertices and pose. Because the cost function
of the proposed method can be formulated as an SDP, the
target’s pose and vertices can be globally estimated with
an open-source solver [23].

3) We utilize an open-source LiDAR simulator [24] to
provide ground truth of the poses and vertices. In the
simulation, we validate that the optimal shape with the
global solver achieves centimeter error in translation and
a few degrees of error in rotation when the targets are
at a distance of 30 meters and partially illuminated.
In addition, we conduct experimental evaluations where
the ground truth data are provided by a motion capture
system, and achieve results similar to the simulation.

4) We open-source all the related software for this work,
including the generation of the optimal shape, our means
for pose estimation, and the simulated/experimental
datasets; see [25], [26].

II. RELATED WORK

To the best of our knowledge, there is no existing work
on target shape design for LiDAR point clouds. The closet
publication on target shape design is [27], which evaluated
the relative range error of dense terrestrial laser scanners
using a plate, a sphere, and a novel dual-sphere-plate target.
We therefore review instead some techniques to improve the
pose estimation of fiducial markers and to assist in extracting
features of calibration targets.

A. Fiducial Markers

Fiducial markers for cameras were originally developed
and used for augmented reality applications [4], [5] and have
been widely used for object detection and tracking, and pose
estimation [28]. Due to their uniqueness and fast detection rate,
they are also often used to improve Simultaneous Localization
And Mapping (SLAM) systems [29]. CCTag [30] adopts a
set of rings (circular target) to enhance pose estimation from
blurry images. ChromaTag [6] proposes color gradients on a
squared target to speed up the detection process and obtain
more accurate pose estimation. More recently, LFTag [9] has
taken advantage of topological markers, a kind of uncommon
topological pattern, on a squared target to improve pose
estimation at a longer distance. However, all the mentioned
fiducial markers only work on cameras.

In our prior work on LiDAR [1], we proposed the first fidu-
cial marker for LiDAR point clouds, which can be perceived

by both LiDARs and cameras. We achieved millimeter error
in translation and a few degrees in rotation. However, due to
the quantization error of the LiDAR, the performance of the
pose estimation (especially in-plane rotation) was noticeably
degraded when the target was farther than 12 meters. Thus,
this work proposes the concept of target shape design to
specifically address the quantization uncertainty present in
LiDAR returns and push the range of pose estimation to more
than 30 meters. In passing, we note that symmetric targets,
such as a square or hexagon, suffer from rotational ambiguity.
Hence, our designed target will not be symmetric.

B. Target-Based LiDAR-camera Calibration

LiDAR-camera calibration [11]–[21] requires feature cor-
respondences from the image pixels and the LiDAR point
cloud. However, the representations and inherent properties
of camera images and LiDAR point clouds are distinct. An
image (pixel arrays) is dense and very structured, with the
pixels arranged in a uniform (planar) grid, and each image has
a fixed number of data points. On the other hand, each scan of
a LiDAR returns a 3D point cloud consisting of a sparse set of
px, y, zq coordinates with associated intensities. In particular,
LiDAR returns are not uniformly distributed in angle or
distance [2, III-A]. Target-based LiDAR-camera calibration
utilizes targets to identify and estimate the corresponding
features, such as vertices, 2D/3D edge lines, normal vectors,
or the plane equations of the targets. References [10]–[13]
have noted that placing the targets so that the rings of the
LiDAR ran parallel to its edges led to ambiguity in the
vertical position due to the spacing of the rings and thus
was detrimental to vertex or feature estimation. References
[16], [20] utilize RANSAC [31] and plane fitting to remove
the outliers of the LiDAR returns, while [13] proposes a
“denoising process” for LiDAR returns around the target
boundaries before applying RANSAC to extract features. When
estimating the target vertices, the later references separate the
edge points into groups and then apply the RANSAC algorithm.
However, regressing the line equation of edge points will fail
when there are not enough edge points or inliers, as shown in
Fig. 1. Additionally, no target geometry information is used
while estimating the features.

The remainder of this paper is organized as follows. Sec-
tion III formulates the design of an optimal target shape for
LiDAR point clouds. The extraction of the target vertices
while globally estimating the pose is discussed in Sec. V. The
simulation and experimental results are presented in Sec. VI
and Sec. VII. Finally, Sec. VIII concludes the paper and
provides suggestions for further work.

III. OPTIMAL SHAPE FOR SPARSE LIDAR POINT CLOUDS

In this section, we propose a mathematical formulation of
target shape design. The main idea is for target translation and
rotation to result in large gradients at edge points defined by
the LiDAR returns. Fig. 2 summarizes a high-level optimiza-
tion process.
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Fig. 2: Optimization process for determining an optimal target shape. Pro-
jective transformations applied to a nominal quadrilateral generate candidate
convex quadrilaterals (targets). Edge points are intersections of LiDAR rings
with the target boundaries. The objective is to maximize the gradient of edge
points under actions of SEp2q applied to the target. To enhance robustness,
the gradients are computed for n-discrete rotations of the quadrilateral under
partial illumination, and the score is the worst case.

A. Convex Shape Generation

We apply projective transformations on a nominal convex
quadrilateral in 3D to generate planar candidate targets. We
will see that applying a projective transformation rather than
working with a collection of vertices makes it easier to ensure
convexity of the target and to generate a cost function that is
invariant under scaling and translations.

Let V :“ tXi|Xi :“ pxi, yi, 1q|xi, yi P Ru4i“1 denote the
3D vertices Xi of a nominal convex quadrilateral, such as a
square. Given P, a projective transformation defined by a non-
singular 3ˆ3 matrix [32, p.33], let ĂXi denote the new vertices
transformed by P:

ĂXi “

»

–

x1i
y1i
λ1i

fi

fl “ PXi “

»

–

p11 p12 p13
p21 p22 p23
p31 p32 υ

fi

fl

»

–

xi
yi
1

fi

fl . (1)

The resulting vertices rV :“ tĂXiu
4
i“1 lie in the projective space

P2 [32, p.26]. Let V 1 be the corresponding transformed vertices
in the Cartesian space pR2q [32, p.27] and Π : P2 Ñ R2 be
the mapping function

ΠprVq :“ ΠpPpVqqq :“

"

X 1i

ˇ

ˇ

ˇ

ˇ

X 1i :“

ˆ

x1i
λ1i
,
y1i
λ1i

˙*4

i“1

. (2)

To summarize, given a nominal convex quadrilateral, V , and a
projective transformation, P, we construct a new quadrilateral
via

V ÞÝÑ PV “: rV and V 1 :“ ΠprVq. (3)

Remark 1. From here on, we will abuse notation and pass
from Cartesian coordinates to homogeneous coordinates with-
out noting the distinction.

It is important to note that for any desired quadrilateral,
there exists a projective transformation yielding V 1 from
V . Hence, our procedure for generating candidate targets is
without loss of generality.

Theorem 1 ([33, p.274]). There exists a unique projective
transformation that maps any four points, no three of which
are collinear, to any four points, no three of which are
collinear.

While Theorem 1 can be used to construct an arbitrary
quadrilateral, convexity need not be conserved as shown in

(a) (b)

Fig. 3: Equation (5) versus convexity. The red indicates the resulting shapes
transformed by projective transformations from the same nominal shape
(black). The left shows a case where (5) is satisfied and thus the transformed
shape is convex; otherwise, it is non-convex, as shown on the right, where
p31x3 ` p32y3 ` υ “ ´0.5.

Fig. 3. We need the following condition to ensure that the
resulting polygon is convex:

Theorem 2 ([34, p.39]). Let Ω : R3 Ñ R2 by Ωpx, y, λq “
px{λ, y{λq. If domΩ “ R2 ˆR``, where R`` “ tx P R|x ą
0u and the set C Ď domΩ is convex, then its image

ΩpCq “ tΩpxq|x P Cu (4)

is also convex.

For the domain of our projective transformation to be R2ˆ

R``, and hence for the candidate target to be automatically
convex, the following linear inequality should be imposed in
(1),

p31xi ` p32yi ` υ ą 0. (5)

Because we consider two candidate targets to be equivalent
if one can be obtained from the other by translation and
scaling, we are led to decompose the projective transformation
as follows [35], [36],

P “ HSHSHHSCHE

“

„

sR t
0J 1



»

–

1 k 0
0 1 0
0 0 1

fi

fl

»

–

λ 0 0
0 1{λ 0
0 0 1

fi

fl

„

I 0
vJ υ



, (6)

where HS ,HSH ,HSC ,HE are similarity, shearing, scaling and
elation transformations, respectively; see [35] for more details.
By setting s “ 1, t “ p0, 0q in (6), the degree of freedom
(DoF) of the projective transformation drops from eight to
five. Our family of candidate targets is now given by (2) with
P satisfying (5) and (6).

In summary, we can describe candidate convex target shapes
via projective transformations while reducing the number of
degrees of freedom to five.

Remark 2. The same design process could be run with an
N -gon, for N ě 3. If N is too large, the target will have at
least one very short edge which will be impossible to discern
in a point cloud. In between, it’s a tradeoff between having
adequate area to collect LiDAR returns, non-parallel edges to
minimize pose ambiguity, and long enough edges to pick them

3



Fig. 4: The pink dots are the edge points determined by a LiDAR ring (orange
line) intersecting with the edge line connecting two vertices (Xi and Xi`1).
The distance between the two edge points on the same LiDAR ring is di. The
height and width of the shape is w and h, respectively.

out of a point cloud. We used a 4-gon as a reasonable starting
point. Investigating N equals 3 and 5 would be interesting as
well.

B. Edge Points Determination

As mentioned in (2), V 1 are the 2D vertices of a candidate
target. An edge point Ei is defined by the intersection point
of a LiDAR ring and the line connecting two vertices of the
polygon as shown in Fig. 4. If we let S be the boundary of
the quadrilateral with vertices V 1, the collection of edge points
detected by the LiDAR is the set EP :“ tEiu

M
i“1, where M

is the number of edge points and is given by the intersection
of S with the LiDAR rings LR, i.e.

S “ BconvpV 1q, tEiu
M
i“1 “ S X LR. (7)

When the LiDAR rings are horizontal py “ yrq, an edge point
Ei “ pqxi, qyiq can always be computed in closed form,

qxi “ xi `
xi`1 ´ xi
yi`1 ´ yi

pyr ´ yiq and qyi “ yr. (8)

C. Shape Sensitivity

From experience gained in LiDARTag [1], we observed that
the pose estimation suffers the most from in-plane rotation.
Therefore, we compute the shape sensitivity in SEp2q. The
sensitivity of a polygon is defined as the gradient of the
edge points with respect to rigid-body transformations of the
polygon, with the LiDAR rings held constant, as shown in
Fig. 5. Hence, the sensitivity captures the horizontal movement
of an edge point after the shape is rotated and translated.

For a transformation in the Special Euclidean group H P

SEp2q, let E1i, denote the transformed edge point by

E1i :“ H ˝ Ei “

»

–

cos θ ´ sin θ tx
sin θ cos θ ty

0 0 1

fi

fl

»

–

qxi
qyi
1

fi

fl , (9)

where θ, tx, ty are the rotation angle, the translation on
x-axis, and the translation on y-axis, respectively. Denote

Exppκ, ω, u, vq as the exponential map that maps from the
Lie algebra sep2q to the continuous Lie group SEp2q,

Exppκ, ω, u, vq “ expm

¨

˝κ

»

–

0 ´ω u
ω 0 v
0 0 0

fi

fl

˛

‚

“

»

–

cospωκq ´ sinpωκq 1
ω pv cospωκq ` u sinpωκq ´ vq

sinpωκq cospωκq 1
ω pv sinpωκq ´ u cospωκq ` uq

0 0 1

fi

fl ,

(10)

where pω, u, vq parameterize the unit sphere S2 Ă R3, expm
is the usual matrix exponential, and κ is a dummy variable for
differentiation. Comparing H in (9) and (10) leads to

$

’

&

’

%

θ “ ωκ

tx “
1
ω pv cospωκq ` u sinpωκq ´ vq

ty “
1
ω pv sinpωκq ´ u cospωκq ` uq.

(11)

For each triple of values pω, u, vq, the action of (10)
on a candidate target quadrilateral results a path pipκq :“
pipExppκω, κu, κvqq being traced out by the edge points along
a LiDAR ring. Using (11) to differentiate the path pi at the
identity of SEp2q produces an action of se2,

vipω, u, vq :“
d

dt

ˇ

ˇ

ˇ

ˇ

κ“0

pipExppκω, κu, κvqq, pω, u, vq P se2.

(12)
From (8), (10), (11), and (12), the gradient of the edge point
with respect to the LiDAR ring is

vix “ω

ˆ

pxi ´ xi`1qpxiyi`1 ´ yixi`1 ` xi`1yr ´ xiyrq

pyi ´ yi`1q
2

´ yr

˙

` u`

ˆ

xi`1 ´ xi
yi`1 ´ yi

˙

v.

(13)
Notice that viy “ 0 because the y-coordinates of HpV 1qXLR
remain fixed.

Finally, we define the sensitivity M of the polygon

MpV ,LR, ω, u, vq :“
1

h

M
ÿ

i“1

v2ix , (14)

where M is the number of edge points, and h, defined in
Fig. 4 is included because gradients in (13) scale with vertical
height.

D. Initial Cost Function

The candidate target’s sensitivity defined in (14) does not
take into account the discrete nature of the LiDAR returns on a
given ring. Let di denote the distance between two edge points
on the i-th LiDAR ring. We want to encourage targets that have
di larger than the spatial quantization of the LiDAR returns.
We can do this in two ways, by scaling (14) by w and by
including a term in the cost of the form

řK
i“1 di (di is larger

for wider targets). The resulting score of shape (Ψ) becomes

Ψ “ wM` µ
K
ÿ

i“1

di, (15)

4



Fig. 5: Shape sensitivity under rotation. The sensitivity of a shape is defined
by the gradient (vix) of each edge point as it moves along the ring lines
(orange) under rotations and translations of the shape. The green dots are
the original edge points and the pink dots are the edge points on the rotated
shape. The same process can be done for translation. The left shows a gradient
vix of a square where the dotted square has been rotated from the nominal
positioned square. The right shows that the gradient of an edge point on a
circle is zero under rotation about its center. The gradient would be non-zero
for translations.

where w is the width of the polygon, K is the number of rings
illuminating the polygon, and µ is a weight trading off the two
terms in the cost function.

IV. ROBUST SHAPE FOR REAL LIDAR SENSORS

In previous section (Sec. III-D), we added an extra term
to (15) to account for the discrete measurements in azimuth
direction of the LiDAR. Additionally, LiDARs have different
ring densities at different elevation angles. For example, 32-
Beam Velodyne ULTRA Puck LiDAR has dense ring density
between ´5˝ and 3˝, and has sparse ring density from ´25˝

to ´5˝ and from 3˝ to 15˝ [37]. A target could be partially il-
luminated in the sparse region, as shown in Fig. 6a. Therefore,
assuming edge points are uniformly distributed is not practical
and using a distribution of edge points that is similar to reality
is critical while maximizing (15). Additionally, LiDAR rings
from mobile robots are not always parallel to the ground plane.
We account for non-horizontal LiDAR rings by rotating the
candidate target.

A. Partial Illumination of Target

To have the shape being robust to illuminated area and the
angle of the rings with respect to the target, we first rotate the
generated polygon n times, and then divide the rotated polygon
into m areas. Only one area is illuminated by LiDAR rings
at a time to determine edge points and to compute the score
(15), Ψij , for 1 ď i ď n and 1 ď j ď m. Figure 6b shows
the edge points being determined for a partially illuminated
target. Equation (15) is consequently evaluated n ˆm times
for illumination of the target and the lowest among the nˆm
scores is the final score of the candidate target shape.

B. Optimization for the Optimal Shape

To summarize, the resulting optimization problem depends
on the projective transformation parameters that are used
to generate a convex polygon, edge points illuminated by
horizontal LiDAR rings lied on the rotated quadrilateral, the
transformation of the edge points in se2, and distances between

(a) (b)

Fig. 6: The left shows a partially illuminated candidate shape. Because we also
rotate the target when computing a score, we can without loss of generality
use horizontal strips to partially occlude the target. The right shows that the
target is divided into m-areas of partial illumination, and that for each of
n-rotations of the candidate target, a score is assigned to each subarea based
on (15). The final score of the shape is the lowest among the nˆm scores.

Fig. 7: The resulting optimal shape from (16) in arbitrary units.

two edge points on the corresponding LiDAR rings. Thus, the
optimization problem is defined as:

P˚ “ arg min
P

min
ω,u,v

max
i,j
t´Ψiju. (16)

The optimization problem (16) was (locally) solved by
fmincon in MATLAB, after the optimization parameters
were randomly initialized. We rotated the generated polygon
six times. Each rotated polygon was divided into five areas,
and four LiDAR rings were used to illuminate one area at a
time. The unit sphere of unit vectors in sep2q, mentioned in
Sec. III-C, was discretized into 25ˆ 25 faces (by normalizing
the vectors to have unit length, we can reduce the dimension
from three to two). Once the generated polygon was rotated
and illuminated, the sensitivity of the resulting edges points
were evaluated at each face on the unit sphere. The resulting
optimal shape is shown in Fig. 7. One can observe that the
resulting shape satisfies: 1) it has sufficient area so as to collect
LiDAR returns; 2) the length of the shortest side is still long
enough to be identified through edge points; 3) its asymmetric
shape avoids the issue of pose ambiguity.

Remark 3. The main point of this paper is that target shape
can be used to enhance the estimation of target vertices and
relative pose between a target and a LiDAR. We have proposed
one algorithmic means to produce an “optimal target shape”.
Different notions of cost will result in different shapes.

V. GLOBAL POSE AND FEATURE ESTIMATION

In this section, we propose a means to use known target
geometry to extract target vertices while globally estimating
relative pose between target and LiDAR. For a collection of
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Fig. 8: Pose definition and illustration of template fitting. A coordinate frame
for the template (target shown in black) is defined by aligning the plane of the
template with the y-z plane of the LiDAR frame and also aligning the mean of
its vertices with the origin of the LiDAR. Let HL

T (blue arrow) be an estimate
of the rigid-body transformation from target to LiDAR, projecting the edge
points of the target back to the template. The estimated pose of the target
is then given by the inverse transformation, HT

L (green arrow). The optimal
HL

T is obtained by minimizing (18) (based on point-to-line distance). This
figure also shows a fitting result of a target at 2 meters in the Ford Robotics
Building. The red frame is the template re-projected onto the LiDAR point
cloud by HT

L .

LiDAR returns T P :“ tXiuNi“i, let EP :“ tEiu
M
i“1 P T P

be the M target edge points. Given the target geometry, we
define a template with vertices tX̄iu

4
i“1 located at the origin

of the LiDAR and aligned with the y-z plane as defined in
Fig. 8. We also denote L :“ t`iu

4
i“1 as the line equations of

the adjacent vertices of the template. We seek a rigid-body
transformation from the template to the target, HT

L P SEp3q,
that “best fits” the template onto the edge points. In practice,
it is actually easier to project the edge points EP back to the
origin of the LiDAR through the inverse of the current estimate
of transformation HL

T :“
´

HT
L

¯

1́ and measure the error there.
The action of H P SEp3q on R3 is H ¨ Xi “ RXi ` t, where
R P SOp3q and t P R3.

The cost ji of edge point Ei P EP is defined as the point-
to-line distance,

jipEi;Lq “ min
`iPL

}Ei ´ `i}
2
2 (17)

where L is the set of line equations for the target. Let
tĒiu

M
i“1 :“ HL

T pEPq “ tHL
T ¨ Eiu

M
i“1 denote the projected

points by HL
T . The total fitting error is defined as

JpHL
T pEPqq :“

M
ÿ

i“1

jipĒiq (18)

To minimize (18), we adopt techniques that were used
to globally solve 3D registration or 3D SLAM [23], [38]–
[40] where the problem is formulated as a QCQP, and the
Lagrangian dual relaxation is used. The relaxed problem
becomes a Semidefinite Programming (SDP) and convex. The
problem can thus be solved globally and efficiently by off-
the-shelf specialized solvers [41]. As shown in [23], the dual
relaxation is empirically always tight (the duality gap is zero).

Once we (globally) obtain HL
T , the pose of the target is

HT
L “ pH

L
T q

1́, and the estimated vertices are tĂXiu
4
i“i :“ tHT

L ¨

X̄iu
4
i“1. The edge-line equations, the normal vector, and the

plane equation of the target can be readily obtained from the
vertices.

VI. SIMULATION RESULTS

Before carrying out experiments with the new target shape,
we used a MATLAB-based LiDAR simulator introduced in
[10] to extensively evaluate the pose and vertex estimation
of the optimal shape. Both quantitative and qualitative results
are provided. We do not compare against standard targets,
such as unpatterned rectangles, diamonds, or circles, because
their symmetry properties result in pose ambiguity. At large
distances, a pattern would not be discernible.

We simulate a 32-Beam Velodyne ULTRA Puck LiDAR,
whose data sheet can be found at [37]. A target is placed
at distances from 2 to 40 meters in 2 m increments. At each
distance, simulation data is collected with a target face-on to
the LiDAR as an easy case, and another dataset with the target
rotated by the Euler angles (roll = 20˝, pitch = 30˝, yaw =
30˝) under the XY Z convention as a challenging case. In
addition, we induce two different levels of noise to each dataset
to examine the robustness of the algorithm.

The results of vertex estimation are reported as the root-
mean-square-error (RMSE):

RMSE “

g

f

f

e

1

4

4
ÿ

i“1

}ĂXi ´Xi}
2
2, (19)

where ĂXi is the estimated vertex and Xi is the ground truth
vertex from the simulator. The pose on SEp3q is evaluated on
translation et in R3 and rotation er on SOp3q, separately. In
particular, et and er are computed by

et :“ }t ´rt} and er :“ }LogpRrRT
q}, (20)

where }¨} is the Euclidean norm, r̈ is the estimated quantity, R
and t are the ground truth rotation and translation, respectively,
and Logp¨q is the logarithm map in the Lie group SOp3q.
Additionally, we also report the percentage of the RMSE and
translation error, which are computed by each quantity divided
by the centroid of the target. The quantization error eq is the
distance between two adjacent points on the same ring and
can be approximated by the azimuth resolution (0.4˝) of the
LiDAR times the target distance.

Qualitative results are shown in Figure 9. The complete
quantitative results of the distances and noise levels are shown
as line charts in Fig. 10. Table I shows a subset of quantitative
results of the pose and vertex estimation using the noise-free
dataset. For vertex estimation, we achieve less than 1% error in
most cases. The translation errors are less than the quantization
error eq . We also achieve a few degrees of rotation errors. It
can be seen that the estimation limit of the optimal target of
width 0.96 meter with our 32-Beam Velodyne ULTRA Puck
LiDAR optimal is 30 meters. However, for a LiDAR with a
different number of beams or points, the estimation limit may
be different. Based on these results, we were motivated to
build the target and run physical experiments.

6



VII. EXPERIMENTAL RESULTS

We now present experimental evaluations of the pose and
vertex estimation of the optimal shape. All the experiments are
conducted with a 32-Beam Velodyne ULTRA Puck LiDAR and
an Intel RealSense camera rigidly attached to the torso of
a Cassie-series bipedal robot, as shown in Fig. 11. We use
the Robot Operating System (ROS) [42] to communicate and
synchronize between the sensors. Datasets are collected in
the atrium of the Ford Robotics Building at the University
of Michigan, and a spacious outdoor facility, M-Air [43],
equipped with a motion capture system.

A. Quantitative Experimental Results in M-Air

The Qualisys motion capture system in M-Air is used as a
proxy for ground truth poses and vertices. The setup consists
of 33 motion capture cameras with passive markers attached to
the target, the LiDAR and the camera, as shown in Fig. 11 and
Fig. 12. Datasets are collected at various distances and angles.
Each of the datasets contains images (20 Hz) and scans of
point clouds (10 Hz). Similar to the simulation environment,
the optimal-shape target is placed at distances from 2 to 16
meters (maximum possible in M-Air) in 2 meter increments.
At each distance, data is collected with a target face-on to the
LiDAR and another dataset with the target roughly rotated
by the Euler angles (roll = 20˝, pitch = 30˝, yaw = 30˝)
as a challenging case. The results are shown in Table II. As
expected, the results are slightly worse (approximately one
degree) than the simulator’s due to the white noise of the
LiDAR and many missing returns on the targets, as shown in
Fig 13.

Remark 4. A Velodyne LiDAR return consists of the point’s
Cartesian coordinates, intensity, and ring number. For each

ring, the first and the last point are the edge points of the
ring. Since we define a template at the LiDAR origin, we
first center the target points by subtracting its centroid. Each
centered edge point is associated with the closest edge. Given
the current association, we estimate the pose and then redo
edge-point-to-edge-line association. Therefore, the optimiza-
tion process is an alternating process. The optimization is
terminated if }LogpHk´1Hkq} is smaller than 1e´5, where
Logp¨q is the logarithm map.

B. Qualitative Experimental Results and Target Partial Illu-
mination

For distances beyond 16 meters (the distance limit in M-
Air), we present qualitative results from the atrium in Fig. 13
to support the simulation-based analysis. The blue dots are
LiDAR measurements, and the red frame is the fitting result.
Figure 14 illustrates a partially illuminated target (the green
dots are assumed missing and only blue dots are used for pose
estimation); the resulting fitting results are the red frame.

VIII. CONCLUSION

We presented the concept of optimizing target shape to en-
hance pose estimation for LiDAR point clouds. We formulated
the problem in terms of choosing a target shape that induces
large gradients at edge points under translation and rotation so
as to mitigate the effects of quantization uncertainty associated
with point cloud sparseness. For additional robustness, the cost
function or score for a candidate target was defined to be
the minimum score under a set of relative rotations of the
edge points; this had the effect of breaking symmetry in the
candidate target, which also removes pose ambiguity.

For a given target, we used the target’s geometry to jointly
estimate the target’s pose and its vertices. The estimation

Fig. 9: Simulation results of the noise-free dataset of the pose estimation at various distances (10, 20, 30, 40 m). LiDAR returns (blue dots) on the target are
provided by the LiDAR simulator. Black indicates the ground truth pose from the simulator, and red is the estimated pose and vertices. The top and bottom
show the front view and a side view of the fitting results, respectively.
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Fig. 10: Simulation results with a target placed at distances from 2 to 40 meters in 2 m increments in the LiDAR simulator. At each distance, the simulation
data are collected with the target face-on to the LiDAR as an easy case (solid line), and for the other, the target is rotated by the Euler angle (roll = 20˝,
pitch = 30˝, yaw = 30˝) as a challenging case (dashed line). In addition, we induce two different levels of noises to each dataset, as indicated by the different
colors.

Fig. 11: The sensor suite consists of a LiDAR, a camera and several motion
capture markers.

problem was formulated so that an existing semi-definite
programming global solver could be modified to globally and
efficiently compute the pose and vertices of the target. A
LiDAR simulator generated synthetic ground truth of the target
pose and vertices. We validated that the combination of the
optimal shape with the global solver achieved centimeter error
in vertex estimation, centimeter error in translation, and a few
degrees off in rotation in pose estimation when a partially
illuminated target was placed 30 meters from the LiDAR . In
experiments, when compared to ground truth data collected by
a motion capture system with 33 cameras, we achieved results

Fig. 12: The Experimental setup. The left shows passive markers are attached
to the four corners of the optimized target shape and the right shows a
LiDAR scan in M-Air.

similar to those of the simulations.

In the future, we shall establish a system to automatically
detect the shape in both images and LiDAR point clouds. If a
dataset has been collected and labeled, automatic detection
using deep-learning architectures is also an exciting future
direction. Currently, the proposed algorithm assumes the point
cloud has been motion compensated; how to adopt motion
distortion into the algorithm is another direction for future
work. Applying it as a fiducial marker system or as an
automatic calibration system also offers another interesting
area for further research. Furthermore, applying the proposed
algorithm to 3D target shape fitting and generating shapes with
more sides provide interesting research directions.
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Fig. 13: Fitting results of the optimal shape at various distances (20, 24, 28, 32 meters) in the atrium of the Ford Robotics Building at the University of
Michigan. The blue dots are the LiDAR returns on the target and the red frame are the fitting results. The top and bottom show the front view and a side
view of the results, respectively.

Fig. 14: Fitting results of the partially illuminated target at various distances (4, 10, 22, 30 meters) in the atrium of the Ford Robotics Building at the University
of Michigan. The selected distances are different from Fig. 13 to show more results. The red frames are the fitting results. The blue dots are the LiDAR returns
on the targets while the green dots are considered missing. The top and bottom show the front view and a side view of the fitting results, respectively.
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