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1 Introduction

The study of perturbative scattering amplitudes in string theory dates back to the founding
of the subject and continues to provide deep insights into the dynamics of string theory
today. String amplitudes enjoy a rich mathematical structure and have proven fundamental
in establishing and verifying predictions from string dualities and space-time supersymmetry.
Furthermore, the appearance of super-Yang-Mills and supergravity amplitudes in their
low-energy limit has become increasingly significant to expose the intimate connections
between gauge theory and gravity.

Early investigations of superstring amplitudes, including calculations of tree-level and
genus-one amplitudes with a small number of external string states, were carried out
in a variety of formulations (see for example [1] and references therein). More recent



result have been obtained primarily using the Ramond-Neveu-Schwarz (RNS) formulation
with the Gliozzi-Scherk-Olive (GSO) projection [2-5] as well as the manifestly spacetime
supersymmetric pure-spinor formulation [6-8].

In particular, for higher loop amplitudes, the genus-two measure for even spin structures
was obtained in the RNS formulation by direct calculation using the super period matrix in [9—
12], and by purely algebraic-geometry methods in [13]. The corresponding amplitudes in both
Type II and Heterotic strings with up to four external massless NS bosons were constructed
in the RNS formulation in [14, 15] and generalized to include external fermions in the pure-
spinor formulation in [16, 17]. For tree-level and genus-one amplitudes with larger numbers
of external states, much progress has been made towards the construction of amplitudes
with an arbitrary number of external states (see for example [18-20] and references therein).

Applications to the predictions of S-duality and space-time supersymmetry were an-
alyzed for successively higher orders in the low energy or o’ expansion and in the genus
expansion, starting with [21-24] at tree level and genus one, [15, 25-27] at genus two,
and [28] at genus three.

In recent work, the genus-two amplitude for five external massless string states was
obtained for both the Type II and Heterotic strings in [29]. The construction produces a
consistent expression for the chiral amplitude by an amalgam of results from chiral splitting
in terms of loop momenta and homology shift invariance of the RNS formulation [3, 30] (see
also [31]) and results from zero-mode counting and the BRST cohomology in the pure-spinor
formalism [8]. The physical string amplitudes are given in terms of convergent integrals over
the genus-two moduli space of compact Riemann surfaces. The moduli-space integrands in
turn are themselves integrals over the vertex points of combinations of Green functions and
Abelian differentials [29]. The overall normalization of the Type II amplitude was fixed using
methods analogous to those used in [25, 32] for the four-point amplitude. The low-energy
expansion of the amplitude was obtained in [33] using the methods of higher-genus modular
graph functions [26, 34-36]. As a result, a variety of S-duality predictions for Type IIB
components with different R-symmetry charges were substantiated, while a detailed study
of the tropical limit [37] to the corresponding supergravity amplitude, obtained in [38, 39],
provides further validation of the chiral amplitude [33].

In the present work, we present a first-principles derivation of the even parity part of
the chiral genus-two amplitude for five massless NS states. The methods adopted here are
those used for the construction of the genus-two four-point massless NS amplitude in [14, 15].
The driving forces are chiral splitting in terms of internal loop momenta combined with
the holomorphic projection from supermoduli space onto the moduli space of compact
Riemann surfaces using the super period matrix [3, 30] (see also [40]). The full physical
amplitudes for both the Type II and Heterotic strings are obtained by pairing left and right
chiral amplitudes of the respective theories at fixed loop momenta and then integrating
over the loop momenta. Our results are derived for flat Minkowski space-time R but can
be readily generalized to a d-dimensional toroidal compactification [41] by replacing the
continuous loop momenta of R? by the discrete momenta of the torus 7¢.

As will be explained in the sequel, the five-point computation in this work successfully
overcomes several technical challenges that go considerably beyond those encountered in



the four-point case [15]. Among other things, we present a variety of new simplified spin
structure sums of multiple products of Szegé kernels and streamline the manipulations of
the Beltrami differentials in the moduli-space integrand. These new techniques will be, no
doubt, crucial for subsequent investigations of multiparticle and higher-genus amplitudes.
Our results may also be of use in relating the correlators of the ambi-twistor string [42, 43|
to those of the conventional superstring [44, 45]. This relation was already used in the
proposal of [46] for the genus-three four-point amplitude as an uplift of the low-energy limit
of the amplitude derived in [28] to higher orders in o’

This is a long paper in which many conceptual and technical developments are discussed
and used. The final expression for the amplitude is, however, remarkably simple and we
shall begin by a summary in the sequel of this introduction.

1.1 Summary of results

The main result of this work is the construction, from first principles in the RNS formulation,
of the even spin-structure contribution to the genus-two five-point amplitude of massless
NS-NS-states in Type II and massless NS states in Heterotic superstrings.

Using chiral splitting [3, 30] these physical closed-string amplitudes A?gf“ may be
obtained by pairing left and right chiral amplitudes F and F at fixed loop momenta p’
with I = 1,2. For the Type II strings, the physical amplitude takes the form,*

Ay

— Mo (k) / 302 / / dp F (2,20, ki, Q) F ok, —pl[2) (L1
Typell Mo »5 JR20

while for the Heterotic strings, the amplitude is given by,

Ay

=Ny 5(k)/ \de\g/ dp F (2, €3, ki, p|0) Foos (2, ¢, —k}, —p'|Q)
Ms 5 JR20
(1.2)
The construction of the physical amplitudes is thus reduced to the determination of the

Heterotic

chiral amplitudes, F, F and Fpes. We begin by explaining the ingredients in (1.1) and (1.2).

The external string states are labelled by ¢ = 1,--- ;5 and have lightlike momenta k;;
the total momentum k = E?:l k; vanishes by the momentum conserving é-function; the
periods €2 are integrated over the moduli space My of genus-two compact Riemann surfaces
»; and the chiral amplitudes F, F and Fyes are (1,0)-forms in each vertex point z; € X
which is integrated over X.

For both the Type IT and Heterotic strings, €; are the polarization vectors for the left
chiral amplitude F of the superstring. For Type II, &; are the polarization vectors for right
chirality and F is again the chiral amplitude of the superstring, and the polarization tensors
£; ® & parametrize all the NS-NS states in the N/ = 2 supergravity multiplet of Type II.
The sign of the parity odd terms in F is the same as for those in F in case of Type IIB
amplitudes and opposite in case of Type ITA. For the NS states of the Heterotic string, the
assignment ¢; may correspond either to a polarization vector &; to form the polarization
tensor €; ® &; of the N' = 1 supergravity multiplet, or to the Fg x Eg or Spin(32)/Z2 gauge

!The external momenta k; are taken to be complexified in (1.1), (1.2) and below, and the integration
domain R?® for the loop momenta pﬁ results from the standard Wick-rotation of their timelike components pJ.



algebra data f;’ for the polarizations &; ® t¢ in the N' = 1 super-Yang-Mills multiplet. In
both cases Fios stands for the chiral amplitude of the (compactified) bosonic string. Its
construction for the five-point function was outlined in [29], and the corresponding result
may be carried over the present work without modification.

The normalization factors 9t and DMy are proportional to €2?, where ¢ is the expectation
value of the dilaton field and, by dimensional analysis, to powers of the 10-dimensional
Newton’s constant x19. The overall normalization for the Type Il case was obtained
in [27, 33] following the pure-spinor calculations of [28, 32]. In the RNS formulation used
here, the calculation of the normalization factors 9% and 9y proceeds via the methods
of physical factorization of the amplitude used in [25]. One may factorize the genus-two
five-point function in either one of two ways. A first way to factorize is onto a massive
intermediate NS-NS state into a genus-one three-point function (already normalized in [25])
and a genus-one four-point function (which may be obtained by factorizing the genus-one
five-point function of [18] onto a massive pole). A second way to factorize is onto a massless
NS-NS state into a massless tree-level three-point function (which does not vanish for
complex momenta) and a massless genus-two four-point function normalized in [25]. A
detailed implementation of these factorization methods is left for the future and in fact not
needed here for the Type II case in view of the normalization factors known from [27, 33]
and the matching between RNS and pure-spinor computations to be detailed below.

We note that our result for F can be readily exported to determine the integrand
of Type I superstrings with respect to the real moduli of an open-string worldsheet with
boundaries.

The final result for the even spin-structure contribution to the chiral amplitudes F
and F is remarkably simple and compact, especially so in view of the complexity of its
derivation obtained in this paper, and is given by,?

F(2i,€i, ki, p' Q) = 18.;:/;5{_{1 £1 - f~T3I(Z1)(k'1 k2 wr(4)A(5,1)A(2,3) + cycl(1, 2,3, 4, 5))

+ %kl (1) [ (12 — 201 €1 - ka)r(4)A (1, 3)A(2,5)
+ (f13 — 2411 - kf3)¢d1(4)A(1, 2)A(3, 5) (1.3)
+ (ta = 211 - ka)wr(3)A(1,2)A(4,5)]

5
+ k1 - kawr(4)A(5,1)A(2,3) Z ti; gl{j + cycl(1, 2,3, 4, 5)}

1<i<y
The prefactor N5 denotes the ubiquitous chiral Koba-Nielsen factor, which is common to
both Type IT and Heterotic strings, and is given by,

5 2 5
N5 = exp mQ,pr-pJ+2mij-p1/ wr+ Y ki kjlnE(z;, ;) (1.4)
j=1 %0 1<i<j

2Throughout the body of the paper we shall adopt the Einstein summation convention for the indices
1,J = 1,2 that label the homology cycles so that a pair of an upper and a lower identical indices is summed
over without exhibiting the summation sign. In the appendices, however, all summation signs are being kept
explicitly to ensure maximal clarity.



The holomorphic Abelian differentials w; and the prime form E(z;,z;) are reviewed in
appendices A.1 and A.5, respectively, while the bi-holomorphic form A is reviewed in
appendix B.1 and given in terms of w;(i) = wy(2;) by,

A(i, ) = wi(i)wa(j) — wa(i)wi(j) (1.5)

Momentum conservation guarantees that N is independent of the arbitrary point zg. The
first two lines of (1.3) feature the following combinations,

5
0
P (z:) =2mip” + > kjgi; 9i; = o In 9[v](¢[£2) (1.6)

J#i g

_ [*i
Cr= i wr

of the loop momentum and theta functions reviewed in appendix A.3. Here v is a common,

but otherwise arbitrary, odd spin structure whose dependence drops out from the chiral
“w
J
is governed in part by the permutation-invariant ts-tensor, which may be defined in terms
of the linearized field strengths f/" = el'k¥ — e¥k! by,*

amplitude F. The dependence of the chiral amplitude (1.3) on the polarization vectors &

1 .
ts(fir fio fu, fo) = we(fifj fufe) — Jtr(fifi)te(fife) + eyel(s, k. €) (1.7)
More specifically, the kinematic factors t; and t;; that enter (1.3) are defined by,

t = ts(f2, f3, fa, f5)
tio = t3([f1, fo, f3, fa, f5) (1.8)

and permutations thereof. The cyclic permutations in the last line of (1.3) apply to the
external-state labels of both the differential forms and kinematic factors in all the five lines
of the expression. An alternative representation for the chiral amplitude with manifest
permutation symmetry is,
iN; 5 5 5
F(zi i, ks, p" Q) = 16;‘2 {DIZtiei-iBI(zi)DI > ng£j+2ki-‘ﬁl(zi)ﬂ1} (1.9)
i=1

1<i<j i=1

where we have made use of the following combinations,
Dr = =2k - kawr(4)A(5,1)A(2,3) + cycl(1,2,3,4,5) (1.10)

1
T = Z(tlz — 211 - kg)(W[(iS)A(l, 5)A(2, 4) —+ CyCl(?), 4, 5)) =+ cyc1(2, 3, 4, 5)

and cyclic permutations of Ty; to produce T;;. The expression for F in (1.9) differs from
the one given in (1.3) by exact holomorphic differentials in the vertex points, and therefore

3Following the conventions in [29, 33], we will only display the coefficient functions w;(z) of the differentials
dz in (1,0) forms w;(z)dz, with local complex coordinates (z, Z) on the surface X, that is why (1.3), (1.5)
and later equations do not involve any antisymmetric wedge products.

4Throughout, products, traces, and commutators of f are to be understood in the sense of matrix

multiplication, so that we have (fif;)"*" = (f)**(f;),", tr(fi--- f3) = (fi- - [5)"u, and [fi, f5] = fifs = fi fi.



yields the same physical amplitude. Full permutation symmetry is the result of the facts
that the combination Dy is invariant under all permutations of 1,2,3,4,5 (even though
only cyclic permutations are manifestly a symmetry)® and that Ti; is invariant under all
permutations of 2, 3,4, 5.

The expression for the chiral amplitude F in (1.3) leads to convergent integrals in
the full-fledged Type II amplitude of (1.1) and its Heterotic counterpart, in the sense of
analytic continuation, as was the case for the genus-one four-string amplitude [47, 48].
Specifically, at fixed moduli €2, the integral over the vertex points z; may be analytically
continued in the kinematic variables s;; = —a/(k; + k;)?/4 to produce poles corresponding
to physical intermediate one-particle states. These poles are governed by the operator
product expansion of pairs of colliding vertex operators. The combined integrations over €2
and the loop momenta p! are convergent only for purely imaginary values of the sij, but
may be analytically continued to produce branch cuts in the s;; corresponding to physical
multi-particle states.

The contribution from even spin structures produces the even parity part of the chiral
amplitude with external NS states. This even parity part will be shown to agree with the
bosonic supermultiplet components of the chiral amplitude in pure-spinor superspace derived
in [29]. The chiral genus-two five-point amplitude additionally has an odd parity part,

N
Fodd = 167;771610(171,617f2,f3,f4,f5) (1.11)

with €19 denoting the ten-dimensional Levi-Civita symbol and the permutation invariant
five-form Dy is defined in (1.10). The odd parity part was obtained using chiral splitting
and the pure-spinor formalism in [29, 33]. In the RNS formulation, the odd parity part
derives from the contributions of the odd spin structures. A bootstrap approach to its
construction is described in section 8.3. The construction of the odd spin structure part
is complicated by the zero modes of the RNS worldsheet fermion fields, which in turn
complicate the structure of the super-Riemann surfaces and their supermoduli space. Its
derivation from first principles in the RNS formulation is relegated to future work.

1.2 Comparison with lower genus

The new representation (1.3) of the chiral genus-two five-point amplitude may be compared
with its counterparts at lower genus. The genus-one amplitude F,—; was obtained in [18],

5 5
Fog=1(zire0, ki, p|T) = N5 O > _tiei-B(zi)— Y tijgij—miew(p,e1, f2, f3, f1, f5) (1.12)
i=1

1<i<j

The kinematic factors t; and t;; are those that occurred in the genus-two amplitude and were
defined in (1.8); the unique modulus for genus one is denoted by 17 = 7; there is a single
loop momentum p; the single Abelian differential is constant; the prime form simplifies to

SPermutation invariance of D; follows from the relations among five-forms reviewed in appendix B.1,
and the relations among five-point bilinears k; - k; due to momentum conservation and k‘f = 0 for all
j=1,2,3,4,5. The five-dimensional cyclic basis of bilinears k; - k; in (1.10) can be obtained from cyclic
permutations of k1 - ks = kg - ks — k1 - ko — ko - k3.



E(zi, zj|T) = 91(2 — zj|7) /91 (0]7); the chiral Koba-Nielsen factor is obtained from (1.4) by
these restrictions; and the combinations B(z;) and g; ; are given by,

5
‘13(2,) = 2mip + Z ]Cj 9i.j Gij = 821 In ﬁl(zi—Zj’T) (1.13)

J#
The similarities and differences in the structures of the genus-one and genus-two expressions
for the chiral amplitudes are striking. The contributions proportional to k; - 3/ (z;) to the
genus-two amplitude in the second to fourth line of (1.3) become exact differentials in z;
upon restriction to a single loop, and are absent from the genus-one formula in (1.12).
All other terms in the genus-two chiral amplitude sport additional kinematic factors of
k; - k; and the bi-holomorphic form A which are absent from the genus-one amplitude.
More specifically, they enter through the permutation invariant D; defined in (1.10) which
occurs in the first two parity-even terms in (1.9) and multiplies the entire parity-odd

contribution (1.11).

As a result, the genus-two contribution is generally softer-behaved at low energies,
consistently with predictions from S-duality and space-time supersymmetry. Finally, we note
that the supersymmetrization of (1.12) is known from both the non-minimal pure-spinor
formalism [49] and the minimal one [20].

For completeness, we quote the tree-level contribution to the chiral five-point amplitudes
in Type II superstrings, which can be brought into the following compact form [19],

Fog=0(2is€i, ki) =

512534 A8 (1,2,3,4,5) 513504 A8S(1,3,2,4,5
/\/5{ 12830 A§T ( )Jr 13524 A50% ( )} (1.14)
212R25253234%241 213235252224 241

The expression for N5 simplifies for tree-level as there are no loop momenta, and the prime
form E(z;, z;) reduces to z;; = z; — z;. Furthermore, the color-ordered tree-level amplitudes
AESS of ten-dimensional super-Yang-Mills are related to the ¢s-tensors in (1.8) via,

(812834 — S34545 — 851512)A%%eﬁv[(1, 2,3,4,5) + 51352414%%‘}?\4(1, 3,2,4,5) (1.15)
B (a/)3

a 4512

(tg (EQ . kl) -4 (61 . kg) + tm) + Cycl(l, 2,3,4, 5)

Earlier work on five-point superstring tree-level amplitudes includes [50, 51] and the pure-
spinor-superspace uplift of the super-Yang-Mills amplitudes can be found in [52-54].

Organization. The remainder of the paper is organized as follows. We start by reviewing
the RNS prescription for genus-two amplitudes and spelling out the opening line for the
parity-even part of massless five-point amplitudes in section 2. The sums over even spin
structures needed at five points are carried out in section 3, followed by a discussion of
closely related fundamental simplifications and cancellations in section 4. The non-vanishing
contributions to the chiral amplitude are identified in section 5. All the (0, 1)-forms and
double poles in the chiral amplitude are shown to reduce to exact differentials which cancel
out from the physical amplitude in section 6. In section 7, the results of the previous sections
are simplified and brought into the manifestly gauge-slice independent form (1.3). This



end result of our RNS computation is shown in section 8 to match the bosonic components
of the chiral five-point amplitude in the pure-spinor formalism. Appendix A provides a
summary of the function theory on Riemann surfaces of arbitrary genus, while appendix B
collects a number of properties specific to genus two. Appendices C to I elaborate on various
more technical results used in this work.
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2 Structure of the five-point NS string amplitude

In this section, we shall present the general outline of the construction of the even spin
structure contribution to the genus-two chiral amplitude for five external massless NS states.
We begin by reviewing the conceptual aspects of the construction in terms of the super
period matrix [14, 15], then summarize the results obtained in [9-12] for the chiral measure
(see also [4] for a review), to be followed by several subsections in which the contributions
to the chiral amplitude will be made explicit. The construction will closely parallel the
one for four external massless NS states presented in [14, 15], and we shall follow the same
notations and conventions unless specified otherwise.

2.1 The super period matrix

The fundamental tool for the concrete construction of the genus-two chiral amplitude for
even spin structures in the RNS formulation is the holomorphic projection provided by the
super period matrix. The supermoduli space My ; of compact super Riemann surfaces
with even spin structures is holomorphically projected to the moduli space My of compact
Riemann surfaces. Super moduli space 92 4 may be parametrized locally by the ordinary
period matrix €2 and a pair of odd Grassmann-valued parameters (¢ with a = 1,2. Denoting
the super period matrix by Q, the holomorphic projection may be represented as follows [55],

My 4 My : (Q,¢) — Q (2.1)

The projection associates to a super Riemann surface ¥ with super moduli (2, {) an ordinary
Riemann surface ,.q with moduli Q). The data of this projection are related as follows [3],6

Qs =01 - o= [ [ Pwwix(E)Ss 0w w) (22)

SFollowing [3] and [15], we use a system of local complex coordinates (z,%) in which the metric takes the
form ds® = 2|dz|?. To make contact with the standard Euclidean metric in R?, we set z = (x + iy)/v/2 and
z = (z —iy)/v/2 with z,y € R so that ds* = dz® + dy® and the volume form is d*z = idz A dzZ = dx A dy.
The (positive) Laplacian is given by A = —20.0z, and the Cauchy-Riemann operator acts by 9z(z — w) ™ * =
2md(z,w), where the d-function is normalized as follows, fz: d*26(z,w)f(z) = f(w). We note that these
conventions differ by factors of 2 from those used in [29, 33].



where wy with I = 1,2 are the holomorphic (1,0)-forms and Ss(z,w) is the Szego kernel for
even spin structure § which is a (%, 0) form in both z and w (see appendix A for details), and
x(2) is the worldsheet gravitino field which is a (—3, 1)-form linear in (®. Performing a local
worldsheet supersymmetry transformation on both x and € (caused by the supersymmetry
transformation of the worldsheet metric), leaves the super period matrix invariant.

To construct the chiral amplitude, we make use of NS vertex operators without ghosts,
following [14, 15]. Each operator insertion point, with local coordinates (z;, 6;), is treated
as a marked point, to be integrated over the super Riemann surface ». As a result, the
string amplitudes properly reduce to integrals over the supermoduli space 9>, to which
the holomorphic projection (2.1) may be applied.” To carry out the holomorphic projection
in the superstring amplitudes, it will be convenient to change coordinates from (€2, () to
(©,¢) using (2.2), so that the projection (2.2) reduces to,?

9)12# — MQ : (Q,C) — Q (2.3)

and may be carried out simply by integration over (.
This change of variables may be implemented in conformal field theory correlators by
using a Beltrami differential [i paired against an insertion of the stress tensor,

©)@) O + 5 [ )T (w)0) (24)

where (0)(Q) and (0)(Q) stand for the expectation values of an arbitrary operator O
evaluated at moduli 2 and Q, respectively, and T'(z) stands for the total stress tensor. A
first-order deformation in /i suffices here because the Beltrami differential i may be chosen
to be proportional to ¢!¢? and is thus nilpotent. To see this, we recall that a Beltrami
differential ji(w) produces the following first-order variation in the period matrix,

1 N .
(SQ]J = % /E d2w u(w)éwaU (5wa[] = 27r2w1(w)wJ(w) (2.5)

so that the Beltrami differential that deforms Q to ) must satisfy,
/EdQUJﬂ(’w) wI(w)wJ(w) = i(Q]J - Q]J) (2.6)

and therefore may be chosen to be nilpotent, just as Q- Qis.

"This approach should be contrasted with the one in which vertex operators involve ¢ and § (v) ghosts
and vertex insertion points are punctures rather than marked points. In the approach involving ghosts,
the group of super diffeomorphisms is reduced to the one preserving the punctures and, as a result, the
string amplitudes are reduced to integrals over the super moduli space of punctured super Riemann surfaces.
This last super moduli space does not necessarily possess the holomorphic projection onto ordinary moduli
space [56] that is being used here. However, with Ramond punctures, under certain conditions, there does
exist a super period matrix, as was shown in [57, 58].

8While the supermoduli space Mz, + is projected, its Deligne-Mumford compactification Mz 1 is not
projected [59], due to singular behavior at the compactification divisor. In certain compactifications of
space-time, such as on Calabi-Yau orbifolds, the obstruction to holomorphic projection leads to physical
effects such as the breaking of space-time supersymmetry and the non-vanishing of the genus-two contribution
to the cosmological constant [59, 60] (see also [61]). For flat Minkowski space-time as is being considered in
this paper, however, the superstring measure vanishes at the relevant separating nodes [4] and no contribution
to the amplitude arises from the fact that 9tz 1 is not projected.



2.2 Parametrization of super moduli space adapted to projection

An equivalent, but more geometrical, formulation of the projection treats the gravitino
slice x and the Beltrami differential & on a more equal footing. To do so, one starts with
a bosonic Riemann surface ¥ with period matrix € (corresponding to a Riemann surface
Yred With super period matrix Q) in the formulation given in subsection 2.1). Next, one
parametrizes supermoduli space by turning on the field x(z) linear in the odd moduli (¢,
while at the same time turning on [ bilinear in (¢ in precisely such a manner as to keep
the period matrix €2 unchanged. Adding both deformations of the period matrix, namely
the bilinear deformation due to x of (2.2), and the linear deformation due to fi, we obtain,

8177/d2 /d%w (2)x(2)S5 (2, w)x (w)w (w /d%u (w) wr(wws(w) =0 (2.7)

whose interpretation is that the original period matrix € is left invariant under the combined
deformation, and indeed plays the role of the super period matrix in the formulation
of subsection 2.1. Equation (2.7) determines /i in terms of x, up to diffeomorphisms
f(w) = f(w) + Ogv® (w) where v" is an arbitrary (—1,0)-form diffeomorphism vector field.
It is this formulation that was used in [14, 15] to construct the chiral amplitude for four
massless NS states, and will be used also here for the amplitude with five massless NS states.

2.3 The chiral measure

The procedure outlined above leads to a remarkably simple genus-two superstring chiral
measure on My 4 evaluated in [10]. For fixed even spin structure &, one finds [10-12],°

dpld](92,¢) = duo[0](Q)d*¢ + dp2[8)(Q)¢' ¢*d*¢ (2.8)

Following the parametrization and notation introduced in subsection 2.2, the measure and
amplitudes will be considered on a Riemann surface ¥ with period matrix §2 which, in the
discussion and notations of subsection 2.1, correspond to X..q and Q, respectively.

2.3.1 Top component of the chiral measure
The top component of the chiral measure, for flat Minkowski space-time R?, is given by,

9[6](0|Q)*Z6[6](2) 20 (2.9)

dp2[0](2) = 166w ()

It is independent of the choices of slice for x and /i, and involves only Siegel modular forms.
The Riemann ¥-functions of rank 2 are reviewed in appendix A.3 and the weight 10 Igusa
cusp form W¥yq is given by,
U10(Q) = [ vI01(0]2)? (2.10)
§ even
To define Zg[d](€2), we express the even spin structure § in terms of a sum of three of the
six odd spin structures, 0 = vq + vo + v3 = v4 + V5 + g, where all v; are distinct from one

9The holomorphic volume form d2Q = dQ11 dQ12 dQ22 on Mo is included in the measure du, while the
volume form on the odd fiber will be denoted by d?¢ = d¢td¢?.
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another. The modular form Z4[d](€2) is then defined by the following sum of products,
56[5](9) = Z <Vi|Vj> H 19[1/1 +v;+ I/]J(O‘Q)Zl (211)
1<i<j<3 k=4,5,6
The symplectic pairing between half-integer characteristics v; = v}’ + Qu/, with the compo-

nents of v/, v/ taking the value 0 or  modulo 1, is given by,

(vilvj) = exp {4m' (VZ{VJ/-I - V,L{/V;-)} (2.12)

and takes values in {£1}. The top component of the chiral measure transforms under
Sp(4,Z) modular transformations as a modular form of weight —5,

dua[8)(92) = det (CQ + D) Pdus[5](R) (2.13)

where the transformation laws for 2 and ¢ are given in appendix A. Modular weight —5 is
the correct value for superstring theory in dimension d = 10, as the modular transformations
of the 2 x 10 internal loop momenta will then make the combined integrand of left and
right chiralities modular invariant [4].

2.3.2 Bottom component of the measure

The bottom component of the measure does depend on the choice of slice for y, a dependence
which will be compensated for by the dependence on x of the correlators of the vertex
operators in the full superstring amplitude. We set,

dol8)(Q) = Z[5)(Q)d*0 (2.14)

where Z[0](€2) is the chiral partition function incorporating contributions of the worldsheet
matter fields as well as from the worldsheet (b, c) and (8,7) ghost systems. To make the
dependence on the gauge choices explicit, we shall use local supersymmetry to choose a
convenient slice for the worldsheet gravitino field y with support on two points ¢1, gs € %,

X(2) = 1oz, q1) + C%0(z, q2) (2.15)

and specialize the points ¢i, g2 to be the zeros of a holomorphic (1,0)-form w(z), see (3.2)
to (3.5) for further details,

@(qa) =0 a=1,2 (2.16)

This gauge choice is referred to as unitary gauge and the relation between the points may
alternatively be presented in the equivalent forms,

q1 q2
G+ —2A=2% e / wi + / wi — 201 (20) = 261 (2.17)
Pt 20

0

where Aj is the Riemann vector (A.23) and k = k" + Q«’ is an arbitrary even or odd half
characteristic so that 2 is a full period. In this gauge, Z[0](f2) evaluates as follows,

Z[6] = 2o B(ar, @2) "™ (x]6) 9[3](0)" (2.18)

- 11 -



where the prime form FE(q1,q2) is reviewed in appendix A.5 and Zj is a d-independent
form of weight (—1,0) in both ¢; and ¢ with non-trivial monodromy and a double pole at

q1 = g2, given by,
Zl2

- T200(Q)E(q1, ¢2)%0(q1)%0(g2)?
see (A.26) for Fay’s form o. The explicit form of the chiral scalar partition function
Z = Z(Q) (which is holomorphic in §2) can be found in appendix B.3 and [12], it can
be evaluated via chiral bosonization [62]. The genus-two chiral measure for even spin

Zy

(2.19)

structures (2.8) was alternatively obtained by exploiting the conditions of holomorphicity
and modular invariance in [13].

2.4 The chiral amplitude

The full chiral amplitude is obtained as an integral over odd moduli and sum over spin
structures ¢ of the product of the chiral measure, discussed in the previous subsection, and

correlators constructed from the vertex operators. The correlators take the following form,'°
C[8](£2,¢) = Co[a](2) + C2[8](2)¢ " ¢? (2.20)
and the chiral amplitude is given by,
FOE =Y [ d¢auls)(6.0) o) (221)
6

The meromorphic expression for F(2) to be derived in this work will allow to assemble
massless five-point amplitudes of both Type II and Heterotic theories from the pairings
of left and right movers given in (1.1) and (1.2). In (2.21) and throughout the rest of this
work, the sum } 5 is understood to run over the ten even spin structures 0.

Upon carrying out the integration over the odd moduli ¢, the chiral amplitude (2.21)
receives contributions from both the top and bottom components of the chiral measure,
and may be decomposed as follows,

F(Q) = FOQ) + FD(Q) (2.22)

The superscripts (¢) and (d) refer to the connected and disconnected parts of the correlators,
respectively, which in turn are given as follows,

FOQ) =3 Z[5](9) Ca[8] ()
3

FA(Q) = > 56[51](532 gl[j]((g(z))m) Co[0](9) (2.23)
é

with Zg[d] and Z[d] given by (2.11) and (2.18), respectively. The disconnected part contains
the contributions from the self-contractions of the total stress tensor and finite-dimensional
determinants produced by gauge fixing. The connected part contains all others. It remains
to evaluate the components of the correlators, which was carried out in [15] for the amplitude
with four massless NS bosons.

10We note that no terms of degree one in ¢ arise due to worldsheet fermion number conservation of the
correlators that produce C[d].
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2.4.1 Correlators of chiral vertex operators

The components Cp[d](2) and C2[0](€2) are obtained by chiral splitting from correlators of
the vertex operators for the superstring. The vertex operator for the i-th massless NS state
depending on its lightlike external momentum k; and transverse polarization vector ¢; is
given as a sum of three parts,

V(zi, iy ki) = V(O)(zi, i, ki) + V(l)(zz-, i, ki) + V(Q)(zi, i, ki) (2.24)
These parts were obtained in [14] using chiral splitting and are given by,
VO (2,80, ki) = dai (e 0z, (20) = § 179t (z1) ) efhons ()
VO (25,60, k) = —%déief)(;—“w’fr(zi) ethiw+(z)
VO (2,60, ki) = —dzifiz* (553%901(%) - %fﬁ%iwi(zi)) ek (=) (2.25)
where the gauge invariant chiral field strength is given by,

FIY = gy — eV (2.26)

(2

and 2/ and ¢/ are the worldsheet chiral scalar and fermion fields, respectively (see [9, 10]
for the details of their construction).

Since the Beltrami differential /i is bilinear in odd moduli, V™ has degree n in the odd
moduli. The part V() is a (1,0)-form in z familiar from the standard RNS treatment. The
parts V1) and V2 are (0,1)-forms in z and are required by local supersymmetry invariance.
Although such (0, 1)-forms would naively appear to violate the meromorphicity of the chiral
amplitudes, they eventually combine into exact differentials in the vertex points z; that
integrate to zero upon pairing left and right chiral amplitudes in (1.1) or (1.2). The role of the
(0,1)-forms in (2.25) for the even spin structure contributions to genus-two amplitudes was
established for an arbitrary number of external massless NS states. As demonstrated in [63],
these (0, 1)-forms guarantee that the chiral n-point amplitudes are independent of gauge slice
choices, and meromorphic in the vertex points z;, up to the addition of exact differentials.

The correlators may be computed by Wick contractions of the free fields xi and d}i with
the help of the effective rules of chiral splitting and the following two-point functions [9, 10],

(@h (2)2% (w)) = =™ In E(z, w)
(W ()P (w)) = =" S5(2, w) (2.27)
where E(z,w) is the prime form and S;5(z,w) is the Szego kernel (see appendix A.5).

Since the bottom component Cy[6](£2) of the correlator is independent of odd moduli, it
is given by the correlator of the zero-th component of the vertex operators,

5
Cola() = (Q) [T VO (21,1 k) (2.28)
=1
"Here and throughout this work, we do not distinguish between Lorentz indices p,v,...=0,1,...,9 in

superscripts or subscripts and choose their position such as to minimize clashes with other kinds of labels.
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Here, it is understood that the correlator is evaluated at spin structure J, and chiral splitting
at fixed loop momenta produces the insertion of the operator Q(p),

Q(p) = exp {zpli 7{%1 dz 8in(z)} (2.29)

through which loop momenta are introduced in the conformal field theory correlators. Our
conventions for the homology cycles 27,8 ; are fixed in appendix A.1.
2.5 Contribution from disconnected correlators

The contribution from the disconnected correlators is then given by,

= 4 5
P - OO 0 o)

6 i=1

The top component Cz[d](£2) of the correlator is bilinear in odd moduli, and contains all
remaining contributions to be discussed in the next subsection. All contributions to the
disconnected correlators from three or fewer fermion bilinears in the vertex operators will
vanish by carrying out the spin structure sums for 17, I1s and 19 in (D.8), as is familiar
from the evaluation of the four-point NS amplitude in [15]. The remaining disconnected
contributions to the chiral five-point amplitude arise from the insertions of four and five
fermion bilinears, and we shall decompose F(@) accordingly as follows,

FD(Q) = FiQ) + F () (2.31)
The four fermion bilinear contribution is given as follows,

15 E6[0](€2) 9[0](0])*
Flv(Q) = E;d“g?é? 6[1]t"§716)\1’1[0]((9)’ |

5

X <Q(P)(9zﬂci‘Z (ze)eee+ GO T dz; fleviaph fﬁ(zi)elki“*(zf)> (2.32)
=1
iy

The spin structure sums of its fermion correlators are precisely those encountered in the
case of four external NS states, and correspond to the sums Iy and I2; in (D.9). The five
fermion bilinear contribution is given by,

_ i Belo)(@) 9[0](0]2)*
f(dB)(Q) _ _37226: 6 ;

5
6m6W10(12) <Q(P)i:1_[1dzz‘f{””l i’wii(zi)e”“i“+(%>> (2.33)

The spin structure sums of its fermion correlators correspond to the sums J; and J3 in (3.6)
and will be evaluated in section 3.

2.6 Contribution from connected correlators

The evaluation of the contribution from the connected parts in (2.22) constitutes the most
difficult aspect of this project, and we shall divide the task of the evaluation by decomposing
the contributions as follows,

FO_S 7, Fo= Y [ ¢z (2.34)
a=1 )
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where Z[d] was defined in (2.14) and an explicit formula was given in (2.18). The individual
contributions to the correlator Ca[8](€2) in (2.22) are given by'?

Wi[o] = 87172<Q(p) /XS /XS ljlvi(O)>(c)

V8] = 217T<Q(p) /g(Tx +T¢) Hvi(o)>(c)

=1
L g M 17O
Ys[d] = o— Qp) [xSV; Vi
3 2W;< P /X jl;[z j >
_ 1 (1) (1) (0)
y4[5] 9 Z Q(p) Vz V] H %
i#j I,

5 5
vl =3 (@) v T[v”) (2:35)
i=1 i

Here, );[0] arises from the insertion of two matter supercurrents S paired against the
gravitino slice; )»[0] arises from the insertion of the stress tensor paired against the
Beltrami differential; Vs3[d] arises from a mixed contribution which has one first order vertex
operator VZ-I and one supercurrent; while Y4[0] and Vs[d] arise from the first and second
order corrections to the vertex operators, respectively. Since the above correlators must
be connected, and the vertex operators are independent of the ghosts, the ghost parts of
the supercurrent and stress tensor do not contribute, and only their x4 and ¢4 dependent
parts contribute to (2.35). They take the form produced by the chiral splitting procedure,

1 1 1
S — _§¢iaggi T, = —58:1:’18:6’1 Ty = iibiaﬁ)/fr (2.36)

Note that, in view of the special gauge (2.15), the insertions of [ x.S and Vi(l) in V1[0], Vs[d]
and Y4[d] will have support limited to the points ¢; and g¢s.

2.6.1 The connected parts Y; and Y,

It will be understood that in the connected correlators of (2.35) both z fields in T, and
both v fields in T, are to be Wick contracted onto the corresponding fields in the vertex
operators, and not onto one another. (The self-contractions of T, and Ty, are part of the
disconnected correlator contributions.) It will be convenient to decompose )» further,

Va[6] = Yoz [0] + Vay[d] (2.37)

where Vo, [0] and V(0] are given by V»[d] in (2.35) restricted to T, and Ty, respectively.
It will also be useful to decompose Y, [d] according to the three possible ways the fields
in the supercurrents can be Wick contracted with one another, or not,

V18] = Y1z2[0] + Vigy 0] + V1n[6] (2.38)

2Throughout, the integration over the worldsheet ¥ will be abbreviated by fz d*z — f when no confusion

is expected to arise, and we shall write [ xS = fz d*2x%S(z) and [ AT = fz d*21:*T(2). Moreover, we
will employ the shorthand an) =V (2, e, ki)
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In Y1.2[0] the two 94 fields in the supercurrents are Wick contracted with one another, in
Vigyp|0] the two - fields are Wick contracted with one another, and in ),[d] no fields are
contracted between the two supercurrents. Choosing the gauge of (2.15) for the gravitino
field x, these contributions may be made more explicit as follows,
¢'¢? :
Vigyld] = 16.2 0q10g, In E(q1, QQ)<Q(P) W (q) ! (a2) T Vz(0)>(c)
i=1

1¢2 5

yla:a:[d] = 1€6 255((]1,(]2)<Q(p) 3xi(q1)8xi(q2)il:llvi(0)>(c)
C1<2 5
Yinld] = =32 <Q( ) W (q1) 02! (q1) VY (q2) 0" (g2 H > (2.39)

The prescription (¢) requires that none of the fields at the points ¢; and ¢ are Wick
contracted with one another. The functions F; and F» in (2.34) are decomposed accordingly.

2.6.2 Structure of the spin summands

In the next section, we shall carry out the summations over even spin structures needed
to evaluate F(© and F@. To do so, it will be convenient to extract the non-trivial spin
structure d-dependence of the Beltrami differential,

fi(w) = S5(qu, g2) u(w) (2.40)
where pu(w) satisfies,
1,2
[ oo = S (ran)entan) + wsa)en () (241)

and may be chosen to be independent of §. In preparation for computing the spin structure
sums in the next section, we list the various types of summands we shall need in these spin
structure sums, which we do below. Wick contractions of the 1, fields,

1. in F@ produce closed loops of Szegd kernels multiplied by Zg[6]9[0]*;

2. in Viz2[0], Voz[0] and Y5[d] produce closed loops of Szegd kernels multiplied by
Ss(q1,q2);
3. in YVay[0] produce closed loops of Szegt kernels with one stress tensor T}, insertion;
4. in YVigyp[6], Vinld], V3[d] and Y4[6] produce open chains of Szego kernels beginning at
¢1 and ending at go, possibly times a closed loop.
The spin structure sums of many of these contributions will in fact cancel, and therefore
it will be convenient to perform those spin structure sums before writing out all contributing
kinematic arrangements.

2.7 Preview figure for the simplification process

In the following sections 3 to 6, we will simplify the contributions (2.32), (2.33) and (2.35)
to the chiral amplitude and identify a wealth of cancellations. Figure 1 below gives an
overview of cancellations that rely on the interplay of several F, in (2.34). Contributions to
the final form of the chiral amplitude in section 7 will be denoted by §, with a =1,2,...,10,
and figure 1 also indicates their origin.

~16 —



Fld) = see section 4.8 and 6.5

see sections 6.1 to 6.4

F

Fs —FY — §and

N

FP

Fin —  $7to S0

]:'(c) _
Fi1 —Fiyy =0, see section 4.2
flx:p / fg —
Fozr ™~ 1 to §4
/
Fa
~. P
Fi=0 , see section 4.1

Figure 1. Overview of the components Fi, - - - F5 and F(@) F(@5) their partial cancellations, and
the origin of the contributions §1, - ,§10 to the chiral amplitude. The text and arrows in blue and
red refer to cancellations discussed in sections 4 and 6, respectively.

2.8 Wick contractions of fermions

The remaining Wick contractions of the fermions, required to evaluate )),[d], fall into three
different groups, according to whether they correspond to closed loops of Szeg6 kernels on
vertex points (for items 1 and 2 in the list at the end of subsection 2.6.2), a closed loop with
a fermionic stress tensor inserted (for item 3), or an open chain of Szegé kernels beginning
at ¢; and ending at go (for item 4). These three cases are given respectively by,

Wiz, n[d] = < ﬁfmy”/ﬂ )>
_ <_

=1

;)n d>w i < (w)];[ffi”i¢ii¢f(2i)>

Wi, ald] = 5 (-
()
WS, ol

;)n W (q0) Y4 (g2 Hf’“” (zz)> (2.42)
(©)
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where the subscript (c) excludes self-contractions of T, and of ¥ (¢1)1" (¢2) in the second
and third lines, respectively.

2.8.1 Notations

Throughout, we shall use the following notations for various permutation sums.

o The symbol (i1, ,i,) denotes the sum over all permutations of (1,---,n);

e The symbol (i1,---,iy), denotes the sum over all permutations (i1, ,i,) of (1,---,n)
modulo reversal (i1, ,in) — (in, - ,41);

o The symbol (i1,---,iy). denotes the sum over all permutations (iy,---,i,) of (1,---,n)

modulo reversal and cyclic permutations;

o The symbol (i1, ,im|imst1, - ,in) with 1 <m <n denotes the sum over all inequiva-
lent partitions of the set (1,---,n) into sets of cardinality m and n—m. Equivalently,

in) of (1, )

modulo all permutations of (i1,--- ,iy,) and all permutations of (zm+1, “in)-

(41, yim|im+1,- - ,in) denotes the sum over all permutations (i,

The Wick contractions of the fermions are carried out using the two-point function
given by the Szegd kernel in (2.27). Throughout, we shall use the following notations,

(f1f2 . fk) — f{llmjcéw#s .. f;:k#l
(fufe-- f) = P2 F20 - fERY (2.43)

for closed loops and open chains, respectively, with (fy--- fx) = tr(f1--- fx)-

2.8.2 Closed loops of Szego6 kernels

Performing the Wick contractions explicitly for n < 4, we have

Wi 2[6] = (f1f2)55(1 2)55(2,1)
Wi 23[0] = (f1f2f3)55 1,2)55(2,3)55(3,1)

(
Wi 234[0] = —(f1fafsf1) S5(1,2)S5(2,3)55(3,4)S55(4,1)
(f1f3f2f4)55( ) )55(372)S6(2> )56(47 1)
— (f1f3faf2) Ss(1,3)55(3,4)55(4,2)55(2,1)

+ Wy 2[ ]Wg 4[5} +Wh 3[5]W2 4[5] + W1’4[5]W273[5] (2.44)

)

with Ss(a,b) = Ss(z4, 25). The sum for the four-point correlator may be expressed in an
equivalent and more succinct manner by using the following notations.

Wiosaldl== > (f1fififi)Ss(1,9)S5(i,5)Ss(4, k) Ss(k, 1)+ Y Wij[6]Wiel6] (2.45)
(6,3,k)r (4,31k,6)

The sum on the first line runs over all 3 permutations (i, 7, k) of (2,3,4) modulo reversal
(i,j,k) — (k,j,i), while the sum on the second line runs over 3 inequivalent partitions of
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(1,2,3,4) into 2 + 2, in accord with our general notational conventions of subsection 2.8.1.
For n = 5 we have,

Wiasasldl=—i Y. (fififufefm) Ss(i.§) Ss(5, k) Ss(k,€) Ss(¢,m) Ss(m, i)
(4,3,k£,m)c

+ Y Wiglo] Wiemld) (2.46)
(i,dlk,em)

Under reversal (i, j,k,¢,m) — (m, ¥, k,j,i) on the first line, the product of Szegd kernels
reverses sign, and so does the trace of the f-matrices since tr(f; f; fr fofm) = —tr(fm fefr fifi),
so that each term is invariant. Therefore, the sum on the first line runs over all 12
permutations (i, j, k, £,m) of (1,2,3,4,5) modulo reversal (i, j, k, ¢) — (¢, k, j,i) and modulo
cyclic permutations, while the sum on the second line runs over all 10 inequivalent partitions
of (1,2,3,4,5) into 2 + 3.

2.8.3 Closed loops of Szego kernels with a fermion stress tensor

To organize the Wick contraction of the correlators W in (2.42) with a fermionic stress tensor,
it will be convenient to use the deformed Szegd kernel, defined as the two-point function of
¢ with an insertion of the stress tensor integrated against the Beltrami differential fi,"

Silw ) = —o- [ P plw) (Tl (216 ) (247)

We note that S5 is antisymmetric S§(z,y) = —S5(y, ) just as Sj itself is.
The fermion correlators with the insertion of a single fermion stress tensor are given as
follows. For two and three vertex points, we have respectively,

W{,2[5] = (flf?) S(/;(l, 2) 86(27 1)

Wiaslo] =i > (fififr)S5(i, 5)Ss(5, k)Ss (k. ) (2.48)
(4,5,k)r

The sum is over all 3 permutations (i, 7, k) of (1,2,3) modulo reversal (i, 5, k) — (k,j,1),
under which both (f;f;fi) and the product of Szegd kernels are odd making the summand
invariant. For four points, we have,

Wiasaldl=— > (fififufe) S5(i. ) Ss(j, k) S5(k,£) S5(£,4)
(Z'7.j7k7€)7’
+ 0 (W8] Wi el] + W8] Wi, [8]) (2.49)
(4.41k,€)

The sum on the first line is over all 12 permutations of (1,2,3,4) modulo the reversal
(1,7,k,€) = (¢, k,j,1), under which both (f;f;fif¢) and the product of Szegé kernels are

13The object S§(x,y) is defined here with the opposite sign of its definition in [15] in order to match the
sign of the undeformed Szeg6 kernel in (2.27).
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invariant. The sum on the second line is over all 3 inequivalent partitions of 4 — 2 4 2.
Finally, for five points we have,

Wiasasld) =—i > (fififufefm) S5(i,5) Ss(j, k) Ss(k, £) Ss(¢,m) Ss(m, i)
(4,5,k.€;m)r
+ 3 (WL Witml8] + Wi [0 W 0] (2.50)

(Zhj | k7e7m)

The sum on the first line is over all 60 permutations of (1,2,3,4,5) modulo the reversal
(4,7,k,€,m) — (m,{,k,j,1), under which both (fif;fxfefm) and the product of Szegd
kernels are odd so that their product is even. The sum on the second line is over all 10
inequivalent partitions of 5 — 3 + 2.

2.8.4 Open chains of Szego kernels

For open chains WH in (2.42), we have the following Wick contractions for three vertex
points or fewer,

W8] = =i f1% S5(q1,1)S5(1, g2)

WisIo) = (fifi)*" Ss(a1,1)S5(i, )S5(4, ¢2) (2.51)
(4.5)
W1,2,3[5] Z (flf]fk)“yS(S(qla7’)85(7’7])5'5(]) S§ k q2 Z WHV 5]
(4.3,k) (il7,k)

The sum in W'y is over 2 permutations (i,j) of (1,2). The first sum in WYy 5 is over all
6 permutations (i, j, k) of (1,2,3) while the second sum is over all 3 partitions (i|j, k) of
(1,2,3) into 1 + 2. For four vertex points, we have,

WS s 4l0] == Y (fififufo)" Ss(ar,9)S5(i, 5)S5(j, k)Ss(k, £)S5(¢, g2) (2.52)
(i,5,k,0)
+ 20 (WIS Wield) + WL Wi 061) + 2 W (8] Wiaeld]
(4,41k,£) (i4,k,€)

The sum on the first line is over all 24 permutations (i, j, k, £) of (1,2,3,4). The first sum
on the second line is over all 3 inequivalent partitions (i, j|k, ¢) of (1,2, 3,4) into 2+ 2. The
second sum on the second line is over all 4 inequivalent partitions (i|7, k, ¢) of (1,2,3,4)
into 1 4+ 3. Finally for five vertex points, we have,

WIS s asl0] = =i > (fififufefm)™ Ss(q1,9)S5(i, 5)S5 (4, k)Ss(k, £)S5(£,m)S5(m, g2)

(4,5,k,€,m)
+ Y W Wm0+ D WIS Wik emlO] (2.53)
(4,7]k,¢,m) (3|7,k,€,m)

*% . (fifif)" (fefm)Ss(ar,1)S5(i, 5)S5(5, k) S5 (k. a2) S5 (£, m)?

(/L?]?k?e?m)/zz

The sum on the first line is over all permutations (¢, j, k, ¢,m) of (1,2, 3,4,5). The first sum on
the second line is over all 10 inequivalent partitions (i, j|k, ¢, m) of (1,2, 3,4,5) into 2+3. The
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second sum on the second line is over all 5 inequivalent partitions (i|j, k, ¢, m) of (1,2,3,4,5)
into 1 4+ 4. Finally, the sum on the third line is over all 60 permutations (i, j, k, ¢, m)/Zs of
(1,2,3,4,5) modulo swapping ¢ and m, under which the summand is invariant. Equivalently,
this sum may be expressed as half of the sum over all permutations (i, j, k, ¢, m).

3 Spin structure sums

A crucial ingredient in the construction of the amplitudes in the RNS formulation is the
evaluation of the sums over spin structures. The contributions to the genus-two amplitude
evaluated here will be the parity conserving part only, restricted to external NS states.
Therefore, the spin structure sums will be over even spin structures only. For the five-point
string amplitude, some of the sums were required already for the evaluation of the four-
point string amplitude in [15], and those results, denoted by I; to I, are summarized in
appendix D. The spin structure sums that first occur in the five-point string amplitude will
be discussed in this section, with detailed calculations relegated to appendix E. We group
the different sums according to their structure.

3.1 Auxiliary holomorphic forms

Of crucial importance is the bi-holomorphic form A, which was already introduced in the
summary of results, and which we recall here for convenience,

Az, w) = wi(z)wz(w) — wa(z)wi (w) (3.1)
The holomorphic (1,0)-form w may be defined for either o = 1,2 by,
w(z) = cal(qa, 2) (3.2)
or equivalently in terms of ¥-functions by,
D(2) = (=) wr(2) 9T (ga — A) €27 (1 =) (3.3)
The holomorphic (—1,0)-forms with non-trivial monodromy ¢, were evaluated in [15],
Ca = (—)O‘_lZ3a(qa)_162m”,(q°‘_A) (3.4)

in terms of the chiral scalar partition function Z given in appendix B.3 and the Fay form o
given in appendix A.5. These forms satisfy the following further relations,

awr(q) — cawr(q2)
¢t 0w(q1) + c3 0w(g2)
Zyc1c20w(q1)0w(q2)

0
0
1 (3.5)

which were proven in [15], and will be used extensively throughout.

MFrom the different contexts in which they appear, the bi-holomorphic form A should be clearly
distinguished from the Riemann vector Ar(2o) of (A.23). The half-characteristics " on the right-hand side
of (3.3) and (3.4) is defined by (2.17).

- 21 —



3.2 Sums involving Eg[d]

The spin structure sums that involve the modular form Z¢[d] defined in (2.11) are the
correlators that contribute to F(@ in (2.30). Those with three or fewer vertex points I17, I1s
and Ig of (D.8) vanish, leading to the simplified form (2.31); those with four vertex points

Iyo and Iy of (D.9) are given in (D.10); and those with five vertex points are the sums,'®
Ji(z1, 22, 23 24, 25) = > Z6[6]9[8](0)* S5(1,2)55(2,3)55(3,1)95(4,5)* (3.6)
é
Jo(21, 22, 23,24, 25) = Y Z6[0] 9[0](0)* S5(1,2)55(2,3)95(3,4)95(4,5)55(5, 1)
4

The key to their calculation is the use of the reduction formulas for the product of Szego
kernels, presented in appendix C. To evaluate J;, we apply formula (C.6) to the product
of three Szeg6 kernels. The spin structure sum of the first term on the right side of (C.6)
vanishes in view of the vanishing of I1g in (D.8). Similarly, J, may be evaluated by reducing
the product of five Szeg6 kernels using the results of (C.11). The spin structure sums of the
terms in the first line on the right of (C.11) cancel in view of the vanishing of I17 and Is,
respectively. The remaining spin structure sums may be evaluated in terms of Iy as given
in (D.10). The resulting expressions are as follows,

Jy = =204y %(A(Lzlm(z, 5) + A(1,5)A(2,4)) + cyel(1,2,3)
€23 I31
d
Jy = =g “EE (A(1,2)A(3,4) — A(1L4)A(2,3)) +cyel(1,2,3,4,5) (3.7)
L45T51

The prefactor is expressed in the hyper-elliptic formulation where z; = (z;, s(x;)). The
combination z;;dxy/(x;rxk) is a meromorphic (1,0)-form in 2z, = (x4, s(zy)) with simple
poles at z;, z; and at their images Z(z;), Z(2;) under the involution Z(2) = (x, —s(x)). Its
simple zeros are the six branch points of 3. It is shown in appendix C that this form may
be expressed in terms of A as follows,

T19 dxs _ A(zlaZQ)A/(z3)
o331 A(22,23)A(23,21)

dz3 A'(z) = 0pA(w, z)’ (3.8)
w=z

The differential A’(z)(dz)? is a holomorphic (3,0)-form with zeros at the six branch points;

it is unique up to an overall constant. Alternatively, the differential may also be expressed

in terms of the first-order derivatives of the prime form, which we decompose as follows,

0., In E(2, 25) = (/J[(Zi)gz{j — 0y, Inhy (%) (3.9)

1
2
is defined as follows. For a ¥-function with odd characteristic v we introduce the vector of

where h,, is the holomorphic (5, 0)-form for odd spin structure v given in (A.24), while gz{ j

functions,

gl :ilnﬁ[u](cm) evaluated at  (r = /xWI (3.10)

15When no confusion is expected, we shall often abbreviate dependence on a vertex point z; simply by

its index ¢ so that, for example, Ss(4,7) = Ss5(2s,25), A(4,7) = A(zs,25), wi(i) = wr(z:), and w(i) = w(z).
The dependence on other points, such as g1, g2, w, will always be kept unabbreviated.
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When no confusion is expected, the functions gg{q’y for x,y evaluated on the vertex points
zi, z; will be abbreviated as follows,

The function giyzj depends on v but this dependence will not be exhibited. It changes
sign under swapping the points z; and z;, and has trivial monodromy under 2; cycles but
non-trivial monodromy around 2B cycles, which is given by,

(zi,25) = (zi + By, 25) : gi{j — gz{j — 27Ti5§ (3.12)
We shall also introduce cyclic sums of gz{ ;» all with a common spin structure v,
I I I I I
Girigyeesin = Giryia T Jiniis T T Gin_ryin T Jinsia (3.13)

Clearly, we have Gi{ ; = 0 while for n > 3 the combinations G! are independent of the spin

structure, and single-valued in all points. Antisymmetry of gl{ == g]IZ leads to the reflection

property G . =-Gl

11,02, in yest2,01
It is shown in appendix E that both J; and Jo may be simply expressed in terms of

such that Gz{j,k is totally antisymmetric in ¢, j, k.

the functions G' and holomorphic Abelian differentials, and the final results are as follows,
Ji = =2m' Wi wi (1) (A(2,4)A(3,5) G542 + (4 ¢ 5)) + eyel(1,2,3)
Jy = —2m Wigwr(1)A(2,5)A(3,4) GL 1 5 + cyel(1,2,3,4,5) (3.14)

These expressions are manifestly single-valued. A useful alternative expression for Js is
given in the canonical cyclic basis,

Jo = 20 W gwr (1)A(2,3)A(4,5) (0{72,3 + G{74,5) + cycl(1,2,3,4,5) (3.15)

Note that poles of G{72,3 in (21 — 2z3) and its cyclic permutations are spurious since they
do not occur in the summand in (3.6). Indeed, the coefficient of 9?{,1 in (3.15) is given by
(wr(1)A(2,3) + wr(3)A(1,2))A(4,5) = wr(2)A(1,3)A(4,5) after assembling the cyclic orbit
which cancels the pole in (27 — z3). One can similarly check that the expression for J;
in (3.14) has no simple poles other than those from 9{72, g£73, and 93{71.

3.3 Sums involving Ss5(q1,q2)

The spin structure sums that involve the factor Ss(qi, g2) times closed loops of Szeg6 kernels
at vertex points are the correlators that contribute to Fiyy, F2, and F5 and involve the
Wick contractions in subsection 2.8.2. Those with three or fewer vertex points Iy, 2, I3
of (D.2) vanish; those with four vertex points I1; and I of (D.3) are given in (D.4); and
those with five vertex points are the sums,

J3(21, 22, 235 24, 25) = 3 Z[0]95(q1, 42)95(1,2)95(2, 3)595(3,1)95(4,5)* (3.16)
1

J4(Zla 22, 23, %4, Z5) - Z 2[5]56((]17 QQ)Sé(L 2)85(27 3)S5(3) 4)S5(45 5)55(57 1)
d
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where Z[6] was defined in (2.18). To evaluate the sums in J3, Jy, we proceed by using the
hyper-elliptic representation to reduce the product of three Szegé kernels in J3 using (C.6)
and the product of five Szeg6 kernels in Jy using (C.11). The remaining spin structure
sums may be carried out using the formulas for I1; and I;2 given in (D.3). The resulting
expressions may be simplified to give,

d
J3 = =2 p1 T L cycl(1,2,3)
3112
d
Ji = Zop1 BN 4 vel(1,2, 3,4, 5) (3.17)
L5112

where we shall use the following notations throughout,'6

5 5
pi =[] =(z) p=1l=() (3.18)

j=1 j=1

i
As in the case of Ji, Jo, these hyper-elliptic expressions may be recast in terms of derivatives
of the prime form and ultimately in terms of the single-valued functions analogous to G
of (3.13), provided we generalize the definition of G' to allow for one of the points to be gq.
The calculations are performed in appendix E and the results are given as follows,

Jy=—Zoprwi(1)Gh 515+ cycl(1,2,3)

Ji=Zoprwr(1) Gl o5+ cyel(1,2,3,4,5) (3.19)
where

G218 = Jguzn + Ghzy T Itz + Gy g (3.20)

The combinations occurring in (3.19) have trivial monodromy in all variables, and the
definition (3.20) readily implies antisymmetry Géa,271,3 = —Gém&m as well as zeros in
21—qo and zp—z3. The poles in z; — g, of the individual Géa,j,... in (3.19) are spurious
thanks to the zeros of the accompanying w(z;) factors.

3.4 Sums involving Ss(q1, z:;)Ss5(2;, q2)

The spin structure sums that involve an open chain of Szegé kernels, beginning at the point
¢q1 and ending at g2 contribute to Fi,4, Fin, F3 and Fy and involve the Wick contractions
in subsection 2.8.4. Those with four or fewer vertex points Iy, - -- , I1g of (D.2) all vanish;
those with five vertex points are the sums,

J5(21, 225 23, 24, 25) = 3 Z[0]95(q1,1)95(1,2)95(2, 42)95(3,4)S5(4, 5)95(5, 3)
5

Jo(21; 22, 235 24, 25) = 3 Z[0]95(q1,1)95(1, g2)95(2, 3)*S5(4, 5)°
5

Jr(215 22, 23, 24, 25) = 3 Z[0]95(q1,1)95(1, 42)95(2, 3)95(3,4)S5(4, 5)S5(5,2)

é

Js(21, 22, 23; 24, 25) = 22[5]55(@, 1)S5(1,2)S5(2,3)S5(3, ¢2)S5(4, 5)*
1

Jo(21, 22,23, 24, 25) = »_ Z[6]85(q1,1)55(1,2)55(2,3)595(3,4)55(4,5)95(5,q2)  (3.21)
1

16Note that the symbols p; and p used here differs from their definitions in [15], where they represented
the product over three and four differentials, respectively.
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To evaluate J5, we use the reduction formula (C.6) for the product of the last three Szego
kernels in the summand of J5 and the vanishing of I and Ig in (D.2), and we readily find,

Js =0 (3.22)

Furthermore, Jg and J; are holomorphic in zo, 23, 24, 25 as a result of Iy = I5 = 119 = 0,
while the residues of their poles in z; at g1 and ¢o are given by I1; and Iqo, respectively.
The functions Jg and Jy are holomorphic in z1,--- , z5 as a result of Iy = Ig = Ig = 0.

These spin structure sums are evaluated using the Riemann identities in appendix E,
and the final simplified results are as follows,

Jeg = J7 — Zoc%(‘?w(ql)w(l)A(Q,ll)A(?), 5)
Jr = 200w (g)w (1) (=(3)w(5)A(1,2)A(1,4) + @ (2)@(4)A(1,3)A(1,5))
k:%ﬁ%@g@um@mA@@+w@A@@A@@)

Jo = — 202 0w(q)w(3)A(1,4)A(2,5) (3.23)

The forms ¢, ¢y are given in (3.4) and related to w, A and 2y by the relations of (3.2)
and (3.5). In particular, the first relation in (3.5) makes it manifest that each function
above is odd under swapping ¢; and go, as is expected from the definition of their spin
structure sums in (3.21). Further consistency checks of the simplified formulae in (3.23)
can be found in appendix E.3.6.

3.4.1 Further identities and symmetrizations

We note the following relation between Jg and J7,
Js(1;2,3;4,5) = —J7(1;2,5,3,4) + J7(1;2,3,4,5) + J7(1; 2,4,5,3) (3.24)
For later use, it will be convenient to introduce the symmetrized version of .Jg and J7,
JE(1;2,3;4,5) = %(JG(l; 2,3:4,5) + Jo(1;2,4:5,3) + Jo(1; 2, 5: 3, 4))
J5(152,3,4,5) = %<J7(1; 2,3,4,5) + Jr(132,4,5,3) + J2(1;2,5,3,4)) (3.25)
From the relation (3.23) between Jg and J7 it is readily deduced that we have,
J5(1;2,3;:4,5) = J2(1;2,3,4,5) (3.26)
Their expression is given as follows,

J;g _ 120 c20w(qr)

3907 o0) [A1,2)A01,9=(3)=(5) + A1, 3)A(1, 5)=(2)=(4)

+A(L,2)A(L,5)
+A(1,2)A(1,3)m(5)@(4) + A1, 5)A(1, 4)=(2)w(3)] (3.27)
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The different terms correspond to the 6 partitions of a set of 4 points {2,3,4,5} into two
pairs of 2 distinguishable points. Thus, the function Jg is invariant under all permutations
of the points {2,3,4,5}. Next, we introduce the differences of J; and the symmetrized
version,

J7(1;2,3,4,5) = J7(1;2,3,4,5) — J2(1;2,3,4,5) (3.28)
These functions may be computed in terms of basic objects,

J7(1;2,3,4,5) = %Z()cfﬁw(ql)w(l)(A(Z 3)A(4,5) + A(2,5)A(4, 3)) (3.29)

which makes it manifest that .J; is holomorphic in all vertex points z. In summary, Jg and
J7 can be expressed as follows,

J6(132,3;4,5) = J7(1;2,3,4,5) — 2J7(1;2,5,3,4)
J7(1;2,3,4,5) = J2(1;2,3,4,5) + J7(1;2,3,4,5) (3.30)

where the singularities in 27 at g, are entirely contained in Jfg . These singularities are
simple poles, whose residue is given by,
_ 2Zgprdzy 2Zpp1dz

J2(1;2,3,4,5) = — +0(1 3.31
7 ( ) po— P (1) (3.31)

For later use, it will be convenient to express Jy in the cyclic basis of holomorphic (1, 0)-forms
in five points, exhibited in (B.3),

Jo(1,2,3,4,5) = Zoc2dw(q1) [w(z)A(3,4)A(5, 1) + w(4)A(5,1)A(2,3)

— @(3)A(4,5)A(L, 2)} (3.32)

The spin structure sum exhibits invariance under reversal, namely (21, z2) <> (25, 24) leaving
z3 invariant, as expected from inspection of the original spin structure sum.

3.5 Sums involving the fermion stress tensor

The spin structure sums that involve the fermionic stress tensor Ty, defined in (2.36),
inserted in closed loops of Szegd kernels at vertex points, are the correlators that contribute
to Fay and involve the Wick contractions in subsection 2.8.3. Those with four or fewer
vertex points I3, [14, I15, I16 of (D.5) are given by (D.6); those with five vertex points are
the sums,

Jio(w; 21, 29, 235 24, 25) = Z[6)55(q1, 42) (0] (w3 4,5)85(4,5)S5(1,2)95(2, 3)55(3, 1)
6

Ji1(w; 21, 29, 23; 24, 25) = ZZ[é]Sg(ql, ¢2)p[6)(w; 1,2)85(2,3)S5(3,1)S5(4,5)2 (3.33)
1

Jia(w; 21, 29, 23, 24, 25) = Z[6]55(q1, g2) (0] (w; 1, 2)55(2,3)S5(3,4) 95(4,5)55(5, 1)
5
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Here, we have expressed the correlator of the fermionic stress tensor with two -fields in
terms of the combination ¢[d] familiar from [15],

(Tp ()P ()¢ (y) = g0 old)(w; 2, y) (3.34)
where ¢[0] is given in terms of the Szeg6 kernel by,
o[0)(w; z,y) = S5, w)0wSs(w,y) — S5(y, w)PwSs(w, ) (3.35)

Using the Fay identity (A.35), we recast ¢[d] in an equivalent but more useful form,

I[o](x +y — 2w)E(z,y)
9[0](0) E(x, w)2E(y, w)?

plo)(w; 2, y) = — (3.36)

The expression we shall need is actually the integral of T’ against the Beltrami differential
i of (2.40) for the deformation from the period matrix © to the super period matrix
). This deformation may be summarized in terms of the deformed Szegd kernel S5(z,w)
defined by (2.47). To perform the sum over spin structures, we extract the spin structure
dependence of the Beltrami differential ji(w) = Ss(q1, ¢2)u(w) using (2.40), and assume that
p(w) is independent of §. The deformed Szegd kernel may then be expressed as follows,

Shlany) = 4= [ Pwu(w) Siar,a2) olo)(wiz.y) (3.37)

The dependence on the spin structure ¢ through the factor Ss(q1, g2) must, of course, be
included in the summand while carrying out the sum over spin structures, whence the form
of the sums in (3.33). We note for later use that both ¢[d] and S5 preserve the antisymmetry
under exchange of the points z, y,

Ss(x,y) = —S5(y, x) plo](w; 2, y) = —p[d[(w; y, 7) (3.38)

We shall proceed next to evaluating the spin structure sums in Jyg, J11 and Jyo.

3.5.1 Evaluating Jy¢

To simplify the evaluation of Jjg, we use formula (C.6) to reduce the product of the last
three Szego kernels to squares of Szegd kernels, which may be evaluated with the help of
I3 and I1g. The result is as follows,

. dxy dxo dxs x12dx3

J1o

Lis(w; 24, 25) — ( Lig(w; 24, 255 21, 22) + cycl(1, 2, 3)) (3.39)

2112 T23 T31 2723731

We shall refrain from expressing the hyper-elliptic combinations in terms of the Green
function G, as the first term will be found to cancel upon integration against the Beltrami
differential, and will therefore not be needed, see appendix F.1 for details.
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3.5.2 Evaluating J11 and Ji2

For Ji1 and Jy9, two further reductions in the number of ¥-functions in the summand
may be achieved by use of the Fay identity (A.35) which allows the calculation of the
remaining spin structure sums with the help of the Riemann identities (A.20). The detailed
calculations are relegated to appendix E, and the results are as follows,

1
D= (= Lu(ws1,2:3,4,5) = La(w;1,24,5,3) — Ly (w; 1,2;5,3,4)

+ Lo(w; 1,2;3,4,5) + Lo(w; 1,2;3,5,4) — La(w; 1,2;4,5,3)
+ LQ(w7 17 2?47 3> 5) + LQ(wa 17 27 57 3>4) - LQ(w7 15 27 5>4> 3))

1
J1g = 1<L1(w; 1,2;3,4,5) — L1(w; 1,2;4,5,3) + L1(w; 1,2;5,3,4)
— Lo(w;1,2;3,4,5) — La(w; 1,2;3,5,4) + Lo(w; 1,2;4,3,5)
— Lo(w;1,2;5,3,4) — La(w; 1,2;4,5,3) + La(w; 1,2; 5, 4, 3)) (3.40)

where the functions L, Lo are defined by,
d

Lo(w;1,2;3,4,5) = > Z[6]S5(q1, q2)[6](w; 1,2) Rs(1,3;4,5) Rs(2,4; 5, 3) (3.41)
[

in terms of the combinations,
Rs(21, 225 w1, wa) = Ss(21,w1)S5(22, w2) — Ss(21, wa)Ss(22, w1) (3.42)

which occur in the Fay identity (A.35). These functions are evaluated in appendix E, and
are given as follows,

Li(w;1,2:3,4,5) = 2Zoctw(w)? Ga (4,5, q1; 3, w) G3(1,2,3, q1; 4, 5, w)
+ (@1 < q2)
Ly(w;1,2:3,4,5) = 2 Zgw(w)*w(1)@(2)G(3; 2, 4; g1, w)G(4; 1, 3; q1, w)
x G(5;1,2; g2, w) + (@1 ¢ ¢2) (3.43)

An alternative expression for Lo is given as follows,

Ly(w;1,2:3,4,5) = —2 Zgw(w)?w(2)w(5)G(3: 2, 4; g1, w)G(4; 1, 3; q1, w)
x G(1;5,w;q1,2) + (1 <> ¢2) (3.44)
The Green functions G and G3 emerge naturally in the anti-commuting b, ¢ system analyzed
in subsection B.4.1, where explicit formulas for the function Ga(z1, 22, 23; w1, w2) and

Gs(21, 22, 23, 24; W1, w2, w3) may also be found. Since they are separately permutation
antisymmetric in the z; and w; and since G(z; 21, 22; 1, p2) in (B.16) or (B.19) is symmetric
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under p; <> p2 as well as antisymmetric under z; <> 22, the representation (3.43) of the L;
and Lo implies the following symmetry properties,

Li(w;1,2;3,4,5) = —L1(w;2,1;3,4,5) = Ly(w; 1,2;3,5,4)
Lo(w;1,2;3,4,5) = —La(w; 2,1;4,3,5) (3.45)

which are evident from (3.41) and the antisymmetry of Rs(z1, z2; w1, ws2) in both 21 <> 29
and wi <> we. The above formulas for J11 and Ji2 are proven in appendix E.

4 Fundamental simplifications and cancellations

The summation over spin structures enforces the GSO projection, required for space-time
supersymmetry, and produces major cancellations and simplifications to the chiral amplitude.
In particular, these cancellations are required to render the amplitude properly independent
of any intermediate gauge and slice choices. They will further guarantee the absence
of certain low-energy interactions and thus lead to non-renormalization theorems. The
importance of such cancellations is familiar from the amplitude for four external states in [15],
but will be even more dramatic for the amplitude with five external NS states. In this section,
we prove the required cancellations and simplifications in order of increasing complexity.

4.1 Cancellation of F4

The contribution F,, obtained as the sum over spin structures of Y4[d] given in (2.35),
vanishes. To prove this result, we use the fact that in Y4[d] one vertex point coincides with
q1, another with go. The fermionic part of the correlators therefore involves a sum over
contributions, each of which is formed out of a chain of Szegé kernels from ¢ to g with
three vertex points being available for },[d]. But such contributions cancel upon summing
over spin structures as follows (see appendix D for further details). The points ¢; and ¢
may be connected via zero vertex points which vanish by I} = Iy = I3 = 0, by one vertex
point which vanish by I4 = Is = 0, by two points which vanishes by Is = 0 or by three
points which vanishes by I7 = 0.

4.2 Cancellation of Fyyy

The contribution Fjy, obtained as the sum over spin structures of Vi [d] given in (2.39),
vanishes. To prove this result, we use the fact that the Wick contractions of the fermions are
given by open chains spelt out in section 2.8.4 with p and v contracted with one another. The
spin structure sums of Wi [3], Wi'5[d], Wi'5 5[6] and WY, 3 4[] defined in (2.51) and (2.52)
vanish thanks to the vanishing of Iy, - -, Iip in (D.2). The remaining contribution to Fjyy
involves the chain of Szego kernels with five vertex points given in (2.53). Expressing the
resulting sums in terms of the functions Js, Js, J7, Jg, Jg of (3.21), we find that Fjyy is
proportional to the following sum (omitting a factor of bosonic contractions),

Y 2(fififufefm) Jois ks bom) — > 2(fififo)(fefm) Js(i g, ks €ym)  (4.1)

(4.3,k,6,m) (4,4,k[€;m)
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where we recall from (2.53) that the first sum is over all permutations (i, j, k, ¢, m) of
(1,2,3,4,5) while the second sum is over all permutations (4, j, k|¢, m) modulo swapping
£, m. In obtaining this result, we have used the facts that the spin structure sum of the
first term in the second line of (2.53) is proportional to J5 which vanishes in (3.22), while
the contraction over p and v of the second term in the second line of (2.53) vanishes since
[ = 0. The last cancellation explains why Js and J7 are absent from Fjyy.

Now recast the first term as the sum over pairs of terms with reversed assignments,

(fzf]fkfffm) JQ(ivjv ka f’ m) + (fmfffkf]fl) J9(m7 gu kaja 7’)
= (Fififfofm) (Jo(i, g, b, £,m) = Jo(m, £,k 7)) (42)
where we have used (fp, fofifjfi) = —(fifjfufefm) to combine both terms. Since we have
Jo(i, 7, k, ,m) = Jo(m, £, k, j,i) by (3.23) each term vanishes. A similar argument applies
to the second term in the sum of (4.1), but this time applied to reversing only the entries
N
(filife)(fefm) Js(is 3, ki €m) + (fififi) (fefm) Js(k, j, 15 €,m)
= (Fifi $) et (s, s €,m) = Js(k, .5 £,m)) (43)
where we have used (fyfjfi) = —(fif;jfx) to combine both terms. Inspection of Jg in (3.23)
and repeated use of the identities (B.2) shows that Js(i, j, k; £, m) = Jg(k, j,4;£,m) so that
each term vanishes. This concludes our proof of the vanishing of Fjyy.
4.3 The function A

In preparation for the evaluation of the contributions F5 of the stress tensors in the later
subsections, we review here the expression of the Beltrami differential p in terms of the
function A which was introduced in [15]. The starting point is the following key observation,

/Z 2w p(w)e (w)wr (w) = 0 (4.4)

To prove it, we express w(w) in terms of A(gn,w) using (3.2), then express A(gq,w) in
terms of e//wy(qq)ws(w) and finally use the form of the integral of y against wr(w)ws(w)
using (2.41). As a result, there exists a single-valued function A(z) such that,

pw)w(w) = pA(w) (4.5)

The function A is unique up to the addition of a holomorphic function of w which, on a
compact surface, must be constant, and we have,

A(z) — A(z0) = —% /E d*>w pw(w)ww(w)G(w; z, z0; p1, P2) (4.6)

where we refer to (B.16) for the definition of G. The integral on the right side does not
depend on the points p1, p2, which are the zeros of G as a function of w, since a change
in the points p1, pe adds a single-valued well-defined holomorphic form in w to G whose
integral vanishes in view of (4.4).
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If A were smooth and vanishing at ¢; and ¢a, then A(w)/w(w) would be a smooth
vector field that produces a diffeomorphism of ¥. The part of ;1 and A that corresponds to a

genuine deformation of moduli is governed by the difference of A at the points ¢; and go,'"
1
Aa) = Alg) = =5 [ d*w p(w)@(w)Glwiar, g1, p2) (47)

The fact that only a single modulus suffers a deformation follows from the fact that, in
unitary gauge, the difference of the period matrix and the super period matrix €2 — Q is of
rank 1 due to the linear dependence of wr(q1) and wr(g2).
The difference A(q1) — A(g2) is an intrinsic quantity which was evaluated in equa-
tion (9.10) of [15] and is given by,
¢'¢* e ¢ e

Alq1) — Alge) = SZ o 0w(q2) = T8 o 0w (q1) (4.8)

Without loss of generality, we choose the additive constant so as to set the sum to zero,
Alq1) +A(g2) =0 (4.9)

in which case we have the simplified expression,

_ C1C2 Caaw(qa)
1672 cico

A(Qa) =

(4.10)

We shall also make use of formula (3.5) which was established in equation (9.29) of [15].

4.4 Cancellation of the dependence on A(z;) and 9A(z;)

We shall now obtain simple expressions for the dependence of the correlators W' in sec-
tion 2.8.3 on the gauge function A at the vertex points z; which capture the contributions
Fay of the fermionic stress tensor. There will be further contributions to W' arising from
A(qq) as pointed out in the preceding subsection, but they will be dealt with later on. We
shall verify that these contributions are cancelled by the analogous contributions A(z;) and
OA(z;) from the bosonic stress tensor and from Fs.

As exhibited in subsection 2.8.3, the contributions to W’ are given by a sum over closed
cycles of Szego kernels, with a single substitution of Sj§ for Ss. To obtain the dependence of
W' on A at the vertex points, we evaluate its contribution to S§(x,y) via (2.47),

b
w(w)

Since w(w) is holomorphic it has precisely two zeros, namely at ¢; and go. Therefore, we

1
Ss(z, y)n' = — Ss(q1,q2) /z d*w A(w)dg (

o T @) @

may separate the contributions involving A(g,), which will be denoted with a superscript
(@ throughout, and those which involve only the dependence on A at the vertex points,

S = S3(a) P + 3 Sl ) P S (Tl @ ) (412

17With this convention we have adopted in footnote 5, the Green function G satisfies 0w G(w; z,y;p1,p2) =

2m6(w — ) — 270 (w — y), a formula that will be used here and below.
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The derivative may be calculated with the help of the OPE of Ty, with 1 given by,

ARG

(w—1x)? w—ux

Ty (w)el (z) =

+ regular (4.13)

and we find,

S5(x,y) = S5(x,9)@ — Ss(q1, ¢2) (28:; fc - A(;;‘?;gx) - g((i)) ax> Ss(x,y)  (4.14)

(2)
(2)

OANy) Aly)ow(y) A
(v)

()
- S5(Q17Q2) <2w y 2w(y)2 =+ w(y)8y> 55(‘T7y)

In any of the W, it is always combinations of the form Sj§(u, z)Ss(x,y) + Ss(u, z)S5(z, y)
that enter, and their contributions involving A(z) are given by,

A(z)
w(x)

where contributions involving A(q.), A(u), A(y) have been suppressed. As a result, assem-

S:;(u,:v)S(;(:U,y)+S(5(u,:v)S(';(:U,y)—>—5’5(q1,qQ)6$< Sg(u,x)Sg(x,y)) (4.15)

bling all contributions, and including now the dependence on A(z;) and OA(z;) for all the
vertex points z;, we find,

WA .. [0l = WL . [6]'D — S5(q1. g2) Zn:a ( ) ,---,n[5]) (4.16)
i=1 Zi

where Wy .. ,[d] (@) will be discussed in sections 4.5 to 4.7. There are two further contributions

that yield dependences on A(z;) and 9A(z;), namely through the vertex operators Vi(2)
which give rise to the contribution V5[] and through the action of the bosonic part of the
stress tensor in ), [0]. We discuss these in turn.

4.4.1 Contributions in A(z;) from Y5[d]

The contribution Ys[d] is given in (2.35), and may be expressed in terms of the vertex

(0)

operator V;’ only, using (2.25). Furthermore, we can extend the range of the partial

derivative and complete the partial differential into a total differential d,, = dz;0,, + dz;03,,

as follows, 8

V5[0] = —Ss(q1, g2 Zdzz ( (('Zz) < (p) HVJ('O)>)

8

A(z
+S6 q1aq2 Zdzl i ( HV](O)>)
J

S ) YD 0 0a) 5 <Q(p) HV§°)> (@.17)

8Henceforth, the range of the summation variable ¢ in sums and products over the labels of vertex points
will be 1 <¢ <5 unless indicated otherwise. The summation over the index o on g will be o =1, 2.



The first term is an exact form and cancels upon pairing against anti-holomorphic or exact
forms on the right-moving sector and so may be omitted. The second term will cancel the
derivatives in (4.16) from the action of 0,, on A(z;)/w(z;) or the fermionic variables in V](O).
However, the second term of (4.17) additionally will give contributions from 0, acting on
the bosonic variables whose cancellation against ), [0] will be explained next. The last

term of (4.17) involves A(g,) and thus will not contribute to the dependences on A(z;).

4.4.2 Contributions in A(z;) from Y2.[d]

The contribution from the bosonic stress tensor Vs, [d] is given by,

Vo [0] = %Sa(fh,fh < / d*w p(w) Ty (w) HV(O)> (4.18)
(o)

The effect of the stress tensor insertion at the vertex points z; is to transform all bosonic
operators according to the diffeomorphism Ward identities. There will also be contributions
from the zeros of w(w) which involve A(g,) and will be discussed later. The sum of the
contributions involving A(z;) and dA(z;) from Yoy [0] and Vo, [0] are precisely cancelled by
the second term in (4.17). Hence, the entire dependence on A(z;) and A(z;) cancels, even
before summing over spin structures, as is expected from diffeomorphism invariance on X.

4.5 A(qq)-dependence from W’ for < 3 vertex points

Having now dispensed with the contributions involving A and its derivative at the vertex
points z;, we proceed to collect the remaining contributions, namely those involving A(qq ),
which arise from the poles at the points g, and have been denoted by Wy ... ,,[d] (@) in (4.16).
Even for the case of four vertex points, the simplification of being allowed to discard the
contributions involving A(z;) and OA(z;) produces major simplifications whose advantage
was not exploited in [15]. For this reason, we shall start here by reviewing the contributions
with four and fewer vertex points from this vantage point, and then proceed to the case of
five vertex points.

To obtain the dependence on A(g,) for the cases of four or fewer vertex points, we
need to extract the dependence on A(q,) of the integrals against the Beltrami differential u
of the spin structure sums I3, I14, I15, [16 given in (D.5) and evaluated in (D.6). It was
proven in [15] that the spin structure sums of the first three correlators vanish,

> ZIiLE] =D ZIIW1 (0] = Y Z[6)W] 95[6] = 0 (4.19)
é é 6

The first vanishes in view of ¢[d](w; 21, z1) = 0, the second because the pairing of I;3 with
i vanishes, and the third because the cyclic sum of the pairing of I14 with p vanishes.

4.6 A(ga)-dependence from W’ for 4 vertex points and cancellation

To extract the dependence on A(gq) of the spin structure sum of W] , 5 4[6] paired against
u, we evaluate first the dependence on A(gy) of the pairing against u of I15 and I, given
by the following integrals for a = 15, 16,

7.(1,2,3,4) = /d2 Io(w;1,2,3,4) (4.20)
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Inspection of I;5 and I in (D.6) reveals that, as a function of w, they have poles at
the vertex points which produce terms in A(z;) and its derivative, but those terms were
already shown to cancel in the preceding subsection. Its values at ¢, are finite, and may be
determined by taking the following limit,

lim @(w)G(2;p1,P2; ¢, w) = cg0w(qs)w(2) Alp1,p2) (4.21)

w=qp @(p2)w(p1)

when 5 # « and vanish when § = «. Using this limit in the evaluation of Z;5, along
with (4.8) and (3.5), we find,

701,254 = S AML2)AG.A) (122)

2

Using the same procedure to evaluate Z;5, we find,
@1 g9.a 4y _ &6
T (1,2;3,4) 52 A(1,3)A(2,4) + A(1,4)A(2,3) (4.23)
7r

in agreement with the formulas (8.8), (8.12) and (8.14) given in [15] for Z;5 and Z16. As a
result, the spin structure sum is given as follows,

1 1

D Z0Winaaldl =5 X (FfififdTis(id k. 0+ 5 D (Fify)(fefo)Tio(i, 3 b, 0)
5 (i,d,k0)c (4.71k.0)
NS

=15 (A(l, 3)A(2,4) + A(1,4)A(2, 3))

% (2(f1 fafofa) + (f12)(fsfa)) + cyel(2,3,4) (4.24)
The number of permutations (i, 7, k, ¢). equals the number of partitions (i, j|k,¢) which
allows us to group the terms as we did in the second line.
4.6.1 Cancellation against the disconnected part F(44)

The contribution F(@) from the disconnected part for four vertex operators with fermion
bilinears was introduced in (2.32). The spin structure sum due to fermion bilinears in
external legs 1,2, 3,4 is given by,

E6[0]9[9](0)*

Flog = Ns 16750 0 1,2,3,4(0]
= 5 (AHARA) + ALDAR.) (A Saofa) + (AF)FF)
+eyel(2,3,4) (4.25)

where N is the chiral Koba-Nielsen factor arising from the contractions of the exponentials
[1, e*#+(=) and the loop momentum operator Q(p); it will be given explicitly in (5.7)
and (5.8). The two contributions (4.24) and (4.25) are seen to cancel one another exactly
(after multiplying the second by ¢!¢2, or integrating the first over [ d2¢). This cancellation
persists inside any correlator in which only the bosonic field . is contracted, i.e. after
dressing (4.24) and (4.25) with the extra contribution from €592/ (25) in the bosonic
correlator.
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4.7 A(q.)-dependence from W’ for 5 vertex points

The explicit expression for the insertion of the fermionic stress tensor is given by,

W{,2,3,4,5[5] = Z Z(fzf]fk)(féfm)SS(%])SJ(]7 k)Sg(k,z)S(’;(&m)Sg(m,Z)
(4.3,k[€;m)

+ > %(fifjfk)(fefm)sg(i, 7)Ss(j, k) S5 (k,)S5(¢, m)Ss(m, £)
(i,3,k|€,m)

— Y ilfififefefn) S50, 5)Ss(5, k) S5 (K, €)Ss(¢,m)Ss(m, i) (4.26)
(4,5,k,6,m)r

The sum on the first line is over all partitions (i, 7, k[¢,m) of (1,2,3,4,5) into 3 + 2;
the sum on the second line over all permutations (i,7, k|¢, m) modulo swapping ¢, m;
while the last sum is over all permutations (4,7, k, ¢, m) of (1,2,3,4,5) modulo reversal
(i,4,k,€,m) — (m, €, k,j,i). Performing the sum over spin structures, we obtain,

.7:2¢ — ZZ[&}W{727374,5[5] = Z %(fzf]fk’)(fﬁfm)le(Zajakvgam)
6

(i,,k|€,m)

* Z i(flfjfk)(fffm)jlsl(l,],k’&m)

(4,,k[€,m)

b LB TGk Lm) (427)

(inj?k»évm)c

The corresponding symmetrized functions are defined as follows,

J5(1,2,3;4,5) = J\0(1,2,3;4,5) + T\0(2,3,1;4,5) + 70 (3,1,2;4,5)
T5(1,2,3,4,5) = 719(1,2,3,4,5) + 79(2,3,4,5,1) + 717 (3,4,5,1,2)
+ T9(4,5,1,2,3) + 7L (5,1,2,3,4) (4.28)

The sums in (4.27) on the first and second lines are over all partitions (i, j, k|¢,m) of
(1,2,3,4,5) into 3+ 2, and the sum in the third line is over all permutations (i, j, k, ¢, m) of
(1,2,3,4,5) modulo cyclic permutations and reversal. The functions Ji0, J11, J12 are the
integrals against u of the functions Jyg, J11, J12, respectively, and are defined by,

1
Ja(1,2,3,4,5) = %/ Pw p(w)Ja(w;1,2,3,4,5) (4.29)
b))

These functions are evaluated in appendix F, the last two in terms of the pairings of the
functions L1 and Ls. Having already shown the cancellations of any contributions involving
A(z;) and OA(z;), we retain here only the contributions that involve A(g,), and use the
freedom to shift A by a constant to set A(q1) + A(g2) = 0. The results from appendix F are
as follows. For J19 we find agreement with the expression for J; in (3.14),

_ ¢

(9)
1,2,3;4,5) =
\710 ( 9 737 75) 3271_6\:[]10

Ji(1,2,3;4,5) (4.30)
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For J;5 we have,

¢'¢?

Ji(1,2,3;4,5) = WW(UA(Z‘UA(& 5)(95,4 + 945+ 953+ Bs — B:?{) + cycl(1,2,3)
¢'¢? I I I I pl
oy wr()A(2,5)A(3,4) (955 + 654 +9ls+ B — BY) + cyel(1,2,3)
¢'¢?
= Ji(1,2,3:4,5 4.31
* 16700, 1(1,2,3;4,5) (4.31)

where the cyclic permutations are applied to the first two lines only and we have exposed a
contribution of J; for later convenience. For J;3 we find,

jlg(la 2,3,4, 5) = _CS? Wl(l)A(Qa B)A(4> 5) (9573 + 91{75 + Bé - B?I) + Bi - Bg)
¢i¢?
— Sy wr(DAR5)AB ) (935 + B — BY) + ceyel(1,2,3,4,5)
¢t
J2(1,2,3,4,5 4.32
el ) (4.32)

where the cyclic permutations are applied to the first two lines only and the identification
of Jo as given in (3.14) will be exploited in the next subsection. The functions B! were
obtained in (F.19), and are given by,

BI:ZCQEU(@w( T 20(da) = @ (4)Dgo T 20 (d) ) (4.33)
i . 28w(qa) qaWI\Ga ) Tz;,20 \da WJlda )Oqq Tz;,20 \ Qo .
where

Toy(2) =0 InE(z,2) — 0;In E(z,y) = WI(Z)(Qi,m - giy) (4.34)

Here zq is an arbitrary reference point which cancels out of the differences B! — BJI . The
functions B! are single-valued (0,0)-forms in the points g, with double poles in z; at ¢
and go. An alternative presentation is in the cyclic basis,

¢'¢?

J5(1,2,3,4,5) = le(l)A(Q» 3)A(4,5) (29{,2 + 29%,1 + gi5 + 95,3 + 395,1

+3¢] 4 — B} + 2B} — 2B + B) + cycl(1,2,3,4,5) (4.35)

4.7.1 Contribution from the disconnected part F(%

The contribution F(@) from the disconnected part for five vertex operators with a fermion
bilinear was defined in (2.32) and is given by,

=6(0]9(3)(0)*

(d5) _
4 N 167601,

Wi 2,3.4,5(0] (4.36)
where N5 is the chiral Koba-Nielsen factor given in (5.7) and (5.8). Expressing the spin
structure sums in terms of the functions Ji, Jo we find,

No St ) (o) s K )

AL
320010 ;. STem)

iNs .
- m (ij;:m) (fififrfefm) J2(i, 5, k, £, m) (4.37)

Fld5) —
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where the sum on the first line is over all 10 partitions (i, j, k|¢,m) into 3 4+ 2, while the
sum on the second line is over all 12 permutations modulo cyclic and reversal.

4.8 Combining F® and Fayp

In combining the contributions from Fa, and F (@) for the five-point amplitude, we use the
facts that (1) the contributions with three or fewer fermion bilinears from the vertex operators
cancel separately for Fy, and F(@; (2) the contributions with four fermion bilinears from
Fayp and F(@ precisely cancel one another as seen in (4.24) and (4.25), including when these
four fermion bilinears occur in the five point function; (3) the contributions with five fermion
bilinears are given in the above part. Assembling all contributions, the result is as follows,

N .
FO 4 Foy = 20 S (fafy ) Unfn) Gl s )
(4,9,kl€;m)
iNs .
~ 1o > (Fififufefm) Cali .k, 6m) (4.38)
(4,5,k,6,m)

where the functions Cy,Ca (not to be confused with the correlators in (2.20)) are given by,

. J1(2, 7, k; £, . .
Cl(zu%k;& m) = _W +87T2/d2c (2\710<Z7j7k;€7 m) + jlsl(zvjak;ga m))
Jo(i,7,k, 0
C2(i’j7 kvgvm) = W - 87T2/d2<—‘7152'(l’,j,k,€,m) (439)

The first term on each line arises from F(?) while the remaining terms arise from Fay.
Inspection of (4.30) and (4.31) reveals that the contributions in .J; cancel, so that we are
left with the following results for Cq,

C1(1,2,3;4,5) = wi(1)A(2,9)A(3,5) (984 + 915 + 9b5 + BS — BY)
+ cycl(1,2,3/4,5) (4.40)

where cycl(1, 2, 3]4,5) stands for all six cyclic permutations of 1,2,3 combined with swaps
of 4,5. Similarly, inspection of (4.32) reveals that the contributions in Jy cancel, so that
we are left with the following results for Cs,

C5(1,2,3,4,5) = wr(1)A(2,3)A(4,5) (g5 + b5 + BS — By + B — Bl)
+wi(1)A(2,5)A(3,4) (955 + B — BY) + cyel(1,2,3,4,5)  (4.41)

where cycl(1,2,3,4,5) applies to both lines of Ca. A useful alternative presentation of Co
in terms of the canonical cyclic basis is given by,

02(17 2,3,4, 5) = w[(l)A(Q, 3)A(47 5) (gé,?) + gi5 + g{,?) + gil
+ Bj — 2B +2B] - Bl) + cycl(1,2,3,4,5) (4.42)
Note that, in view of the identity,

wr(1)A(2,4)A(3,5)g4 5 + cyel(1,2,3[4,5) =0 (4.43)
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the dependence on gi5 actually cancels out from (4.40). Similarly, the overall coefficient of
g{,3 in the cyclic orbit in (4.42) is proportional to wr(1)A(2,3)+wr(3)A(1,2) = wr(2)A(1, 3).
As a result, none of the gé’b terms in either C; or Cy produces a singularity at coincident
vertex points, and the expression is always accompanied by a factor A(a,b) which vanishes.
Thus, the only singularities of Cy,Co arise from the double pole of B! in z; as z; — qo. The
fact that all dependence on B} arises in the form gi,b +BI— Bl{ guarantees the cancellation
of monodromy in zg, 2p.

The cancellation of these double poles requires contributions from Fi., and Fa, that
will be worked out in the next section. Therefore the cancellation of all double poles, along
with the conversion of all (0, 1)-form contributions into exact total differentials, will have to
wait until section 6.

5 Assembling the chiral amplitude

In this section, we shall assemble the various contributions to the chiral amplitude, and
simplify their dependence on any remaining choices of slice. In subsequent sections we
shall show that all remaining slice-dependence cancels or results in the addition of exact
differentials, whose contribution to the full integrated amplitudes automatically cancel.

5.1 Combining the contributions of Fj,, and Fa,

We recall the definition of the contributions Fi,, and Fa, obtained by assembling (2.39)
and (2.37) and carrying out the integrations over the odd moduli ¢,

Flaz = 1617TQ§Z[5]55(Q17QQKQ( p) 024 (q1)0x! (g2 HV >

=7 > 2085t [ ¢ [ ) (@) oat (w)ostt (w) v,

The contributions to Fa, involving A(z;) and OA(z;) have already been shown to cancel in
subsection 4.4. To obtain the contributions involving A(q,), we express p in terms of A and
w, pick up the poles in w at g4, and use (4.8) and (4.9) to obtain,

2

Foa = —z%gzmsa(ql,@)@( p) 02t (4a)0 Hv<°>> (52)

2
o 327 C1C2

Combining the two contributions gives,

M@?(P) (018x+(q1) — 2024 (g2 ) HV > >3

Foe +F20 = = Z 32m2cico
4

where the square of the large parentheses is understood in the sense of the square of the
Lorentz vector, and the connectedness prescription (. . .)(C) excludes its self-contractions. The
other contractions may be performed in terms of the Lorentz-vector-valued meromorphic
(1,0)-form P(z) given by,'"

P(z) = 2miplw;(z +Zk‘ 0.In E(z, z;) (5.4)

19WWe shall frequently encounter the Lorentz-contractions k; -P(z;) and €; - P(z;) in which the kinematic
relations kf = k; - &; = 0 guarantee the absence of 9. In E(z, z;) evaluated at z = z;.
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The contraction of dx4(z) with Q(p) and the exponential produce precisely —iP(z). The
contributions to the above sum may be organized into three parts,

3
Froe+ Foo = (Filh + 7)) (5.5)
j=1

In the j = 1 part, all five vertex operators have fermion bilinears, so that the two pre-factors
1024+ (q1) — c20x 4 (g2) are contracted with Q(p) and the exponential. In the j = 2 part, one
vertex has a bosonic 0z contracted with Q(p) and the exponential while the remaining four
contribute fermion bilinears and the two pre-factors ¢;0x(q1) — c20x4(g2) are contracted
with Q(p) and the exponential. In the j = 3 part, one vertex has a bosonic dz contracted
with one of the pre-factors ¢;0x(q1) — c20x4(q2), the other factor being contracted with
Q(p) and the exponential. While the j = 1 part is gauge-invariant by itself, it is only the
combination of the j = 2,3 parts that is gauge invariant.

5.1.1 The j = 1 part: five vertices with fermion bilinears

In terms of P(z), the j = 1 part of (5.3) is evaluated to be,

N 2
Pl + 75l = Gty (4P (@) ~ eiP(@) S Z0Si(an e Wiasasld]  (50)

where we have used the following notation for the chiral Koba-Nielsen factor,?’
N = (Q(p) [T e+ ) (5.7)
i
Its evaluation gives,
2
In N5 = in Qyp’ - p” + 2mi Zkl ~pI/ wr + Zkl kjn E(z;, 2) (5.8)
i 0 i<j

where the dependence on the endpoint 2y drops out by momentum conservation. The
function P(z;) is related to N3 by,

621' lnN5 = ki . P(ZZ> (5.9)

Thanks to the first relation in (B.32), the dependence on the loop momentum drops out
of the combination ¢;P(q1) — c2P(q2), and thanks to momentum conservation, we can
use (B.33) to simplify this combination as follows,

aP(q1) — c2P(q2) = —ci0w(q1) > kj D(25, 20) (5.10)
J

where we have defined the following combination,

Az, w)

D) = et

= —D(w,z) (5.11)

20The chiral Koba-Nielsen factor A5 was denoted by Zs in [29]. The notation was changed here to avoid
confusion with the functions Z encountered in (4.20) and appendix F.
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The combination D is a single-valued scalar in z,w and a multiple-valued (—2,0)-form in
do which satisfies D(w, z) = —D(z,w). In view of momentum conservation, the expression
in (5.10) is independent of the point zg, as may be seen by considering the difference,

D(zj, 2z0) = D(zj, zy) + D(20, 20) (5.12)
Putting all together using (4.8) as well as the second and third formulas in (3.5) we find,
@ g0 _ __NsD
Flaw T For = T39:22, ) 25: Z[6]S5(q1, g2)W1 2,3,4,5(0] (5.13)
where D is defined by,
D= szi . ij(Zi,Zo)D(Zj,26> (5.14)
i7j

for arbitrary points zy and z(, and p was defined in (3.18). Each factor of D(z;, 29) has a
simple pole as z; — g, but the prefactor p guarantees that all such poles cancel in D. Thus,
D is a holomorphic (1,0)-form in each vertex point z;, which is manifestly invariant under
all simultaneous permutations of the pairs (k;, z;). The arbitrary points zy and z, may be
eliminated at the cost of manifest permutation symmetry. Below we provide two alternative
expressions for D that no longer involve zy and z(, and are manifestly holomorphic.

o A first expression for D, which has only manifest cyclic symmetry, is given by,
D = —2k3 - kaw(1)A(2,3)A(4,5) + cycl(1,2,3,4,5) (5.15)
e A second expression in which the point 1 is singled out is as follows,
D = 2k [kgw(4)A<1, 3)A(2,5) + k3w (4)A(L, 2)A(3,5) + kaw(3)A(L, 2) A(4, 5)]
— 2 (1) [ks - kaA(2, 3)A(4,5) + ks - ks A(3,4)A(5,2)] (5.16)

and cyclic permutations thereof. This expression has no manifest permutation sym-
metry left, but will turn out to be useful in the sequel in formulas where one vertex
point is being singled out for other reasons.

To prove these formulas one may choose zp = 2, = z5 in the definition (5.14), then use the
formulas of (B.2) to convert all terms to expose either w(1), w(2) or w(5) upon which the
remaining denominator w(5) is found to cancel due to momentum conservation. Finally,
decomposing all holomorphic five-forms into the standard cyclic basis gives (5.15). The
structure of the right side has an obvious symmetry interpretation inside the pentagon.
To obtain (5.16) one again uses (B.2) and momentum conservation to rearrange the sum
in (5.15).

The spin structure sum in the second line of (5.13) is manifestly (space-time) gauge
invariant. Carrying out the sum over spin structures in terms of the functions Js and Jyu

defined in (3.16),

23[5156((11,qz)W1,2,3,4,5[5]:—% o il ) Urfefm) T3 (k, £,msi, 5)
5

(l’]|k7eim)

—i > (fififufefm) Jali, gk, €,m) (5.17)

(i7j7k7€7m)c
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we obtain the following explicit form,

/N5 D .
Flre+ T3 = 6;T25Zp( > (I Sudm 8,559
i,7|k,4,m
N; D .
SZQW;’ZP ST i fufefm) Jatisg, Kyt m) (5.18)

(4,9,k,£,m) ¢

Note that neither J3 nor Jy has poles in z; as z; — g, and a simplified form of these spin
structure sums can be found in (3.19).

5.1.2 The 57 = 2 part: one bosonic vertex contracted with the exponential

The j = 2 part of (5.3) arises from the contribution where one vertex operator is bosonic
Oz, and contracted with Q(p) and the exponential, while the other four have fermion
bilinears, and the two pre-factors ¢10x(q1) — co0x4(q2) are contracted with Q(p) and the
exponential as in the case of part one. Putting all together, we get,

@ , @ _ N5
Flaw +Fow = 327r20162< c1P(q1) — c2P(q2 ) ZEz P(z0)
x ZZ [0185(a1, @2)WV;.;..5 0] (5.19)

The sum over spin structures may be carried out using I;; and 12 defined in (D.3) and
given in (D.4), and we find,

> Z161Ss(q1,02) W, .50] = 220 pete (5.20)
§

where py was defined in (3.18) and t, was defined in (1.7) and (1.8). Substituting this result
into the expression in (5.19), we find,

ZN5 Z()

(2) (2) _
7 + f2x - 1671'2(2162

lxx

( 1P(q1) — 2P (g2 ) sz teer - P(2r) (5.21)

Next, we use the relation (5.10) to convert the pre-factors, use the definition of D in (5.14),
as well as the relation p = py w(zy) to obtain,

@ 2 _iNsD P(20)
Flow + For’ = 1672 D teee w(zg)

5.1.3 Part three: one bosonic vertex contracted with a prefactor

(5.22)

In the third part of (5.3), the bosonic vertex 0z (z;) is contracted with one of the pre-factors
1024 (q1) — c20x4(q2), the other pre-factor being contracted with Q(p) and the exponential.
The contraction of the vertex dz, with the prefactor is given by,

(04 (20) (102" (@) = 202 (42))) = =00z, (€172, (@) = o7, 2y (2))
= 20w (q1)n"" 02, D24, 2()) (5.23)
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where 7, 2726'(%‘) is defined in (4.34) and z{ is an arbitrary point, which is independent of .
Also carrying out the sum over spin structures via (5.20) we find,

z/\f
]:1(22,3 + .7:2(? -3 Zpg to (e0 - kj) D(25,20)02,D (20, 2 ) (5.24)

This contribution may be decomposed into a total differential, plus the result of the
integrations by parts,

FO 4+ FY = Z <N5Pefz2(6e'kj)D(ZjaZf))D(ze,zf)/)>

¢ J

Ns ’ 1"
+.7'-3 —’LW Zpg toke - Pze) (g0 - K ) (Zj,ZO)D(Zg,ZO) (5.25)
jl

where the last term arises from differentiating N5 with respect to z, and using (5.9), and
we have defined the following combination, which is a (0, 1)-form in zy,

- i N:
Fa= 5 ooty (er-ky) Dz )05, D0, ) (5.26)
7,0

9:D(z,w) =21y (2 4a) (5.27)

we shall relate the contribution .7:"3 to V3 and F3 in section 6. Finally, in the last term we

use the rearrangement e}'k} = f}" + ek to produce the following result,
N ,
Fion+ Fi) = Fs= =55 D puteky f" P (21) Dz, 20) Dler, =)
7.0
ZN5 o "
5 > petoer - P(ze) (kj - ko) D(zj,20) D(ze, 25) (5.28)
7.t

The first term is manifestly gauge invariant. Provided we set z{] = z{, = zo, the second
term will cancel those terms in fl(w)x + ]-'2( ) which have either i = £ or j = {. Adding these

contributions, we have,

FO L FO+FO 4+ FY Fy= ZN5

lxx lzx

Zpgtgsg P(z¢) Z ki-kjD(zi,20)D(24,20)

,j 7L
ZNE)szfek“fg P?(z¢) D(2¢,20) D(zj,20)  (5.29)

Although the first term on the right side involves a naked ¢y, its gauge invariance is manifest
since P(z¢) and N5 are the only factors that involve zy and a linearized gauge transformation
on ¢y yields a total differential in view of (5.9). The above formula is independent of the
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point zg at the expense of total differential terms. Indeed, replacing zy by z{, using (5.12)
produces the following additional terms multiplying D(zo, z(),

N
L5 Zpgtﬂ? 2) (54 > ki kiD(z5, 20) — Zk:“D zj,zo)) (5.30)
1,57

In the first term under the parentheses, the sum of k; over i gives —k, which combined with
the second term becomes —ej'k/'kj and this term contracted with P”(2;) and N5 combines
into a total differential in z,. Hence we have independence of the point zg at the cost of a
total differential.

5.2 Calculation of Fi,

The contribution Fi, is obtained from Y, [d] in (2.39) by summing over spin structures
and integrating over odd moduli,

Fin = 6 Ta-2 Z < )V (q1)02! (¢1) ¥ (g2) 02" (g2) HV(O)>( | (5.31)

The connectedness prescription excludes any contractions between the fields = and ¢
at the points ¢1, ¢2. All spin structure sums vanish unless all five vertex operators give a
fermion bilinear, so that we have,

Ns

Fin = 1672

PH(q1)P" (q2) 23[5]’/"55,374,5[5] (5.32)
1)
To evaluate the spin structure sum, we consult the form of the expression for WH”[§] in (2.53)
and the spin structure sums in (3.21). Since the spin structure sum of the combination
Wz“ ;[5] inside a correlator with five vertex points is proportional to Js, which vanishes, it
will not contribute to Fi,. The remaining contributions give,
vV /l: vV . .
ZZ[&]W{L’2’374,5[5] = 1 Z ff (fjfk)(fffm)JG(Z;jv k;€,m)
é

(ilg,kl£;m)

i > (fifefefm)J7(is g, ky €,m)

(i]g,k.L,m)
Z (flf]fk)uu(fefm)‘]8(7'7]7kae7m)
(4,,k|€,m)

—i > (fififufefm)™ Jo(i, 4, k, 0, m) (5.33)

(Z‘7j7k7€7m)

N | .

The functions Jg and J7 both have simple poles in z; at ¢4, which may be isolated in terms
of a symmetrized function J# plus holomorphic parts J7, derived in (3.30). Recasting the
above sum in terms of these objects, we recognize the coefficient of J%g to be proportional
to the kinematic combination t; in (1.7),

iy G IE (i 4, k. 4m) (5.34)
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The labels j, k, £, m are any permutation of the points in the set {1,2,3,4,5} \ {i}. Since
Jfg (; 7, k, ¢, m) is invariant under all permutations of {j, k, ¢, m}, the choice is immaterial.

Next, to work out the terms involving J7, we set i = 5 and then include all cyclic
permutations of the result. Using the expression (3.29) for J7 in terms of basics objects, we
have the following contributions for i = 5, to be multiplied by i f:"

S (iufefm) + 5 U Fni)) (55, K £, m)
(5]4,k,€,m)

- %Zoc%aw(ql)w@)A(l, 2)A(3,4)07(1,23,4) + cycl(2, 3,4) (5.35)

where the kinematic combination Cr was introduced in [9, 15], is given by,

Cr(i, jlk,€) = 2(fifjfefe) = 2(fififofr) + (fife)(fife) — (fife)(fifr) (5.36)

and has the following symmetry properties,

CT(Zaj‘k7£) = CT(kve‘Zaj) = —CT(j,Z|k,£)
Cr(i,jlk,l) + cycl(j, k, £) =0 (5.37)

Putting all this together, we obtain the following result for the spin structure sum,

23[5]Wﬁ'§,3,4,5[5] = Z’Ztifi"”Jf(i;j, k,¢,m)
5 i

+ézoc%aw(q1) S SO |G m)w () A, k)AL m)
(il m)
=0 S BB edm) (i g i £m)

(i,],k‘€7m)

—i Y (fififefefm)" Jo(iy g, k, £, m) (5.38)
(i3,k,6;m)
The sum over (i|j, k|¢,m) on the second line is over all 15 permutations of {1,2,3,4,5}
modulo swapping 7, k, swapping ¢, m and swapping the pairs (j, k) and (¢,m). The expres-
sions for J# and Jg, Jg can be found in (3.27) and (3.23), respectively, and the additional
simplifications upon insertion into (5.38) will be discussed in section 7.

6 Cancellation of (0,1)-forms and double poles

There are three sources of (0, 1)-forms that do not involve A(z;) (which were already dealt
with in section 4), given as follows,

Vlo) = Q) [xsvI TIV")
JFi
A
V5[6] — 27Ss(q1, 2 Zz(s %, qa) = < HV(O)>
r, — ZN5 ZE:Qoz ' ‘
- ZZ cadw(q Pe teee - kj D(z5, 20) (6.1)
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Here, the first line is given by the full expression for Y3[0] in (2.35). The second line is given
by the A(gq)-dependent part of the contribution )s[d], obtained in (4.17) after all A(z;)
and OA(z;) parts have been cancelled. Finally, the third line is given by the (0, 1)-form
part of the combination ]:1(::25 + ]-"2(? obtained by combining (5.26) and (5.27). We shall
now make the expressions for these contributions more explicit, and prove that their sum

cancels in the full chiral amplitude.

6.1 The contribution Fj3

The contribution F3 is given by,

Fy = / ¢S Z[6)Vs0) (6.2)
0

The integral over ¢ may be readily evaluated using the expressions for Vi(l) in (2.25), for
the supercurrent S in (2.36) and y in (2.15), and we find,

[ ¢ [ xSV = 160 a0 (@00 @)l (@) €5 — (g @) (63)

Therefore, F3 is given by,

Fy= = 3 0 a)el Y Z81{Q)o ) vt () (a2) 0 T V)

5 i
+ (@1 + ) (6.4)

Note that Z[d] reverses sign under (g1 <+ g2) as does (6.3), whence the overall symmetrization
instruction (g1 <+ g2). The contributions to the correlators may be grouped as follows.

1. Three or fewer vertex operators VJ(-O) have a fermion bilinear. These contributions all
vanish by the identities I, =0 fora =1,--- ,7 in (D.2).

2. All four vertex operators Vj(»o) for j # ¢ have fermion bilinears and the operators

Yk (q1)¥" (g2) are not Wick contracted with one another. These contributions also
vanish by the identities Is = Iy = I;p = 0 in (D.2).
(0)

3. All four vertex operators V; for j # i have fermion bilinears and the operators

YH (q1)¥" (g2) are Wick contracted with one another. These contributions are non-
vanishing in view of (D.3), (D.4), and are proportional to p;t;.

Collecting this information, we get,

1 iki-xy (2
Fy= 5= 0z az) el %:ZW]S(;(% 02)(Q(p)0a't (q1) e+ (0 1;[)/](0>> Fla o)
7 Y
N2

I Zpififi’((S(zz’,ql)P“(qz)+5(z¢,q2)7>“(q1)) (6.5)

where we have used (5.20) to go from the first to the second line, as well as the expression
for the chiral Koba-Nielsen factor of (5.7). Note that, because ¢; - k; = 0, the terms
0(zi,q1) In E(z;, g2) produced by P(g2) are absent.
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6.2 The contribution Fj5

The contribution F5 is given by,
7= [ Yzl (6.6)
1

The full combination F5 receives contributions from terms involving A(z;) and 9A(z;) which
were cancelled already in section 4. The remaining contributions, which depend on A(qy)
and were given in (6.1), will be collected here. All contributions to (6.1) involving three or
fewer fermion bilinears from the vertex operators vanish, leaving contributions only from
four or five fermion bilinears. Thus, we shall separate those as follows,

Fs — F 4 7Y (6.7)

where féa) and ]-"éb) are produced by the contributions with four and five fermion bilinears
from the vertex operators, respectively, and are given by,

o) N5 Z c
F( = 5 : prtfse <C2 (26, 1) P*(q1) + 025(2%7@12)77“(@))
7= ZZ sz;qa ZZ [6]55(q1, g2)WV1,2,3,4,5[6] (6.8)

6.3 The contribution from Fj

The contribution F3 arising from the reorganization of F. ® .7:2(2) in (5.25) was simplified

lxx
to the expression in (6.1). It will be convenient to rewrite the sum over kD in terms of P

via (5.10) and to introduce Zy via (3.5), to obtain,

- N5 Z
A Omese[ (26, q1)P"(@2) + 5(z2, 42)P" (1)
- %am,qlw(ql) = j—j«%ze, 42)P" (¢2) (6.9)

6.4 Assembling F3, F5 and the (0,1) part of F. (3) + F. (3)

lmm
Assembling all contributions above we see, by inspection of (6.9), (6.5) and (6.8), that
the contributions of F3 are cancelled by those of F3 and féa), so that the sum of the
contributions of F3, Fs, and F3 simplifies as follows,

Fs+Fs+F3 — FY (6.10)
()

Thus, it remains to evaluate F5~ which we shall do in the remainder of this subsection.
To evaluate ]:5(b) we use the spin structure sum of (5.17) in terms of J3 and Jy,
> Z[6]95(q1, )W ,2,3,45[0] = ~3 S (fififu)(fefm) s (i, g, k; £,m)
1

(4.,k|€,m)

—i Y (fififufefm) Ja(isg K, 0,m) (6.11)

(i7j7k7€7m)c
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Evaluating the quantity .7-"5(b) in (6.8), and carrying out the sum over a, requires evaluating
each one of the arguments of J3 or Jy at the points ¢,. To do so, we use the representation
of these functions given in (3.17) but with the hyper-elliptic combination expressed in terms
of the bi-holomorphic form A using (3.8) by,

A(j, k) A'(i)

A(i, j)A(k, 1)
A(j, m)A'(4)

A(i, j)A(m, i)

The only non-zero contribution arises from z; = ¢, as otherwise the factor p; vanishes when

J3(i7jak;€7 m) = —ZOPi +CyC1(iajv k)

Ja(i, j, k. 6,m) = Zop + cycl(i, j, k, £,m) (6.12)

zi # qqo. In particular, we have Js3(i, j, k; ¢o, m) = 0 identically. The resulting evaluations
simplify considerably and we have,

Ay, k)A/(QOz)
A(Gas J)A(K, 4a)
A(j,m)A (¢a)
A(qa, J)A(M, o)

Using the identity ¢, A'(¢n) = —0w@(qa), derived from (3.2), the function ]-"éb) takes the
form,

J3(qa>j’k;£7 ’I?’L) = _ZOPz = _ZO caaw(qa) pZD(]7 k)

J4(qa>j7k7€am) = ZOpZ = ZO C(Jéaw(qa) plD(]’ m) (613)

FO = P20 00) S () o) (9000 DU ) eyel(i, 1)

16m 5 ae G ikem

+ N 52020“‘9“((’“) S (fififefefm) (pid(2i,4) D) +eyel(i, . k.6, m)

U2 (i jktm)e
(6.14)

Since the summand in the first line is invariant under swapping ¢, m and j, k, we may undo
the cyclic sum cycl(i, 7, k) and extend the sum over all 10 partitions (i, j, k|¢, m) into a sum
over all permutations (i, j, k, ¢, m) upon including a factor of 1/2 for swapping ¢, m and
another factor of 1/2 for swapping j, k. Similarly, since the summand in the second line is
invariant under reversal of (i, 7, k, ¢, m), we may undo the cyclic sum cycl(s, j, k, £,m) and
extend the sum over all 12 permutations in (i, j, k, ¢, m). to a sum over all permutations
(i,4,k,¢,m) upon including a factor of 1/2 for reversal. Finally, eliminating Zy using
Zoc1c00w(q1)0w(q2) = 1 and 30w (q1) = —c30w(q2) of (3.5), we find,

F = ZN5Z S o) 5y i) (o)

647T 7]7k 7 m caaw(qa)
[ ) Zis o .
1@:? > Z c(aw((]q))D(]’ m)pi(fifjfifefm) (6.15)
« ( « (e

Next, we write this sum over ¢ of the (0,1)-form in z; (which is a (1, 0)-form in all z; with
J # 1) in terms of a sum over i of exact total differentials in z; plus the difference which is a
(1,0)-form in all z;. Care must be taken to include the z; dependence of N5 in the process,

féb) = .7:5(1) + ]__5(2) + exact total differential (6.16)
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where the first two terms are given by,

1 _ N5 Tzi,20(da)
F5 = Togn2 (,J;m)%’ Rl Fili fi) efmdbs - P 3250
ZNE) 22720 a)
- 3972 (iJ%;’m)D(j’ )pz(fzfjfkféfm k P Zz Z ( )
@ _ N5 8i(9alnE(zi,qa)
F5 = 128”2(%7%)1)(3, Rl i) Jefm) 2= 5 S

_ N ; (f f 0i04, M E(2i, qa)
3972 (m’%’m)D(]am)pz(fzfjfkfﬁfm) ; CQGW((]Q)

(6.17)

The exact differentials may be omitted as their integrals will vanish. The contribution JF5 (1)
may be simplified using the relation (B.33), and we find,

3 = _éj;ﬁz > pilfififr)(fefm) ki - P(2i) D(z5, 20) D(zi, 20)
(4,5,k,,m)
?Z)2A7:"52 Z pl(fzfjfkfgfm) ki P(ZZ) D(Zj7zm)D(ziazO) (618)
(3,7,k,€,m)

The function .7-"5(1) depends on zy through an exact differential of the chiral Koba-Nielsen

factor, which is immaterial and may be omitted. The function ]-"5(2) will cancel F(@) + Fa

as will be shown in the subsequent subsection.

6.5 Cancellation of F(9) + Foy + ]-'5(2)

The motivations for combining these contributions is that they are,

e the only ones remaining that have double poles in z; at qq,

e the only ones remaining that involve kinematic invariants built out of concatenated
products of field strengths f without involving additional momentum factors,

o expected to cancel in the final form of the amplitude on the basis of non-renormalization
theorems and predictions from S-duality and space-time supersymmetry.

To prove their cancellation, we begin by summing their expressions from (4.38),

iN- 500 .
FO4 Fap+ 7 = 555 3 (fufidi)(fefm) Culis i i £.m)
(i.4,k[€;m)
iNs 50
~ lon2 S (fififefefm)Cali, gk, ,m) (6.19)
(i1j1k1£7m)c
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where the functions C; and C, are given by,

5 az-a InF s Qo .o
clu,j,k;e,m)—clu,j,k;e,m)—[A(i,mw(@w(m)Z 00 0 EE00) ooy

- €a0w(qa)

i 8.0, InE(z:
Cali, j, k, £,m) = Ca(i, j, k, £,m) — [A(i,k)w(ﬂ)w(m)z e ar; (ézﬂ)’q")

+ cycl(i, 7, k,ﬁ,m)} (6.20)

The functions C; and Cy were given in (4.40) and (4.42), respectively. By exposing the
coefficients of the functions BJI defined in (4.33), we arrive at the alternative presentation,

C1(i jy ki £,m) = wi()AG, AT, m) (9]0 + G + I (6.21)
— S (rOAGm) +or(m)AG,O)AG KB+ eyel(i,j, b, m)
Ca (i, j, ki, €,m) = wr()AGG, kYA m) (9) s, + Gl + 9l + 91.)

(
— (wr(©AG,m) + wi(m)AG, ) A, k) B] + cyel(i, j, k, £,m)

For both formulas, the instruction to add cyclic permutations applies to all terms in the
expression. The vanishing of the combinations C; and Cs is demonstrated in appendix G.
Thus, we have established the absence of double poles in the vertex points z; at the points
¢~ in the chiral amplitude, as well as the relation,

FO 4 Foy+ FP =0 (6.22)

both of which constitute a major conceptual check of our general methods and a significant
simplification of the chiral amplitude.

7 Assembling and simplifying the chiral amplitude

Having assembled the contributions to the chiral amplitude in section 5, and proven the
cancellation of all (0, 1)-form parts and double poles in z; at the points ¢, in section 6, the
remaining contributions to the chiral amplitude are as follows, (see figure 1 for an overview),

« from (5.29) we obtain F\2, + F? + F&) + 7%,

lzx lzx

o from (5.18) we obtain }'1(25 + .7:2(3[;);

o from (6.17) we obtain ]:él);

« and from (5.38) we obtain Fi,,.
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It will be convenient in subsequent calculations to factor out the normalization i/(6472)
and the chiral Koba-Nielsen factor defined by (5.8),

i\
Fion+ P+ Fi+ FL) = 5 1+ 82)
i N
Flon+Fs) = &5 (83 + )
1 _ N
I 6an2 (85 + B6)
i \:
Fin = £ (81 + s+ Fo + S10) (7.1)

The full chiral amplitude F of (2.22) is then given in terms of § as follows,

i N5
6472

F = T + exact differentials 5= Z Fa (7.2)

Here, we have indicated the presence of exact differentials in the vertex points z; that have
been discarded in the process of cancelling all (0, 1)-form contributions, and that do not
contribute to the physical amplitudes (1.1) and (1.2).

7.1 The functions §,

It will be convenient to organize the individual functions §, according to the structure of
their kinematic and worldsheet dependences. The functions §; and §o are the only ones
that involve a naked polarization vector ¢, as opposed to its field strength f,, and are given
as follows,

¢ - P(z0)
= 4D {
$1= Z —— = ()
F2 = —8ZW to (kj - €0) ke - P(ze) D(2¢, 20) D(25, %)) (7.3)
]

where the permutation-invariant combination D was defined in (5.14) and simplified in (5.15)
and (5.16). The kinematic dependence of all remaining contributions is entirely through
the linearized field strengths fy. The individual functions §s, - - - ,§g are given by,

%3222 S (fififo) (fefm)Is(zis 2, 215 20, 2m)
(4,3,k]€,m)
§1= 20 S (R fudofu) (e )
4—Zop(“k£ iJjJeJeIm) Ja\zi, 25, 2k, 205 Zm
,],K, 7m)c
1
§5 =35 S pilfififi)(fefm) ki - P(25) D(z5, 20) D(zi, 20)
(4,9,k,,m)
Fe=2 > pilfififefefm) ki - P(2) D(z}, 2m) D (2, 20) (7.4)
(2,5,k,¢,m)
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where the functions J3 and Js are given by (3.19),

J3(2i, 25, 23 20, 2m) = — 20 piwr(zi) Gy jix + cyel(i, j, k)

Ju(ziy 2, 2k, 20, 2m) = 20 pi wi(2) anm m +eyel(i, g, k, £,m) (7.5)
The individual functions §7,--- ,§10 are given by,
F7 = APH(q)P" (a2) D tif1" T2 (233 25, 2s 20, 2m) (7.6)
Js = —2PH(q)P"(q2) D (fifif)™ (fefm)Js(2is 25, 2k 20, 2m)
(i,4.k|€,m)
Jo=—4PH(q)P"(q2) Y. (fififuleSm)"™ Jo(2is 25, 2ks 22, 2m)
(3,7,k,£,m)
2 v .
SlO = g P“(Ql)PV(%) Z flﬂ CT(]a kwv m)ZOC%aw(Ql)w(Zi)A(Z]” Zk)A(va Zm)
(ilj,k|€;m)

The kinematic factor Cr was defined in (5.36), the function J2 was obtained in (3.27), and
the functions Jg, Jg were given in (3.23),

1
IP (25 2, 2k, 20, 2m) = s Z0ct0m(@)@(z) ™ Y0 Az 2) Al 1)@ (20) @ (2m)
(4,kl€,m)
Js(zi, 25, 213 20, 2m) = Zoc%(?w(m)(w(zi)A(zj, 20) A2y 2m) + @ (2m) A(2i, 20) Az, 21))
Jo(2i, 25, 2, 20, 2m) = — Z0c10w (1) (2k) A (21, 20) A2, 2m) (7.7)

The sum (j, k|¢,m) in J¥ is over all 6 partitions into inequivalent pairs of {1,2,3,4,5}\ {i}.
Finally, note that despite its asymmetrical presentation above, Jg satisfies,
Js(2i, 2j, 215 205 2m) = Js(2is 25 2k5 2ms 20) = J8(2k, 255 215 20, 2m) (7.8)

In each one of the functions §7,--- , 10, the product PH(q1)P"(q2) of one-forms (5.4)
enters anti-symmetrically in ¢ and v. This leads us to introduce the following convenient
combination,

B = Zyctom(a) (P*(a)P(a2) = P* (1) P*(a2)) (7.9)

In terms of B and the expressions for Jfg , Jg, Jg, we obtain the following explicit formulas,

2 v
§7 = gB“ Z t [l

s w (2
(ilg,kle;m) (2

A(zi, 2j) Az, 2)w (20) w0 (2m)

Js=-B" > (fifjfk)”y(fzfm)(W(Zi)A(Zj, 20) A(2k, 2m) + @ (2m) A(zi, Ze)A(Zj,Zk)>

(4.3,k[€,m)
Zo=2B"" > (fififufefm)" @ (2k) Alzi, 20) A2, 2m)
(4,7,k,¢,m)
1 v .
310=§BW Z f17Cr (G, kIl m)w (2:) Alzj, 2) Aze, 2m) (7.10)
(il4,k1€,m)

where we remind the reader that (i|j, k|¢, m) refers to 15 permutations of 1,2, 3, 4,5 modulo
swapping j, k, swapping ¢, m and swapping the pairs (7, k) and (¢, m).
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7.2 Simplifying B*¥

To simplify B*” we make use of formula (5.10) to eliminate P(g2) in favor of P(q1), use the
third formula in (3.5) to eliminate Zp, and obtain the following formula independent on the
choice of @ = 1,2 which contains only a single factor of P,

B = co > (KiP"(ga) = KeP*(ga) ) D(2a; 20) (7.11)

To simplify this formula further, we decompose the meromorphic form P*(z) onto the
basis of holomorphic (1,0)-forms wy(z), and thereby define the meromorphic homology shift
invariant functions B! (z) as follows,

P(z) = wi(2)B () B (z) =2mip" + ) kagl., (7.12)

for an arbitrary point z. Substituting the left side expression into (7.11), using the identity,

c1wr(q1)D(zq, 20) = wilza) _ wilz) (7.13)

@(za)  w(20)

and omitting the contribution from the second term on the right side of (7.13) in view of
overall momentum conservation in the sum over a, we recast (7.11) in the following form,

B = % (00) 0 ) () (7.14)

P @ (2a)

The advantage of this formula is that 93/ (g,) factors out of the sum over a, leaving us to
deal only with the simpler summation over a with manifestly zy independent summand. In
later steps of the computation, we will frequently use the following corollary of (7.12),

B(2) =P (ga) = D kaGL ., 00 (7.15)

which makes it manifest that 37 (z;) — B! (go) is independent of the loop momenta p’.

7.3 Bases of holomorphic and meromorphic forms in 5 points

Inspection of the contributions §1,--- ,§10 in (7.3), (7.4) and (7.10) to the chiral amplitude
reveals that these (1,0)-forms in the five vertex points z; are built out of a few simple
holomorphic and meromorphic (1, 0)-forms in the five points z;. For the holomorphic forms
it is readily proven by enumeration and the techniques of appendix B.1 that one may choose
the following cyclic basis,?!

Wi = wl(21) Az, 23) A(24, 25)

Wl = w(Zl)A(ZQ,Z3)A(Z4,Z5) (7.16)

2Tn the sequel of this section we shall freely move indices I, J, ... between subscripts and superscript and
not distinguish between w; and w! or P¥ and P’ in order to avoid cumbersome index configurations.
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and cyclic permutations thereof to obtain W/ and W, for a = 1,2,3,4,5. It will be useful
to introduce also the following meromorphic forms,
I
w' (2a) 5 I I
Wi, = W WL, =w 7.7
ab w(za) b aa a ( )

The vector space generated by the 25 meromorphic forms W, has dimension 20. A basis

may be chosen to consist of the forms W, with b # a, leaving the holomorphic forms
W, expressible as linear combinations of W, with b # a. These linear combinations are
generated by the identity,
Wiy + Wiy =Wy + Wd (7.18)
and cyclic permutations thereof. These relations may be solved for W/ as follows,
— Wiy — Wi — Wiy — Wi, (7.19)
and cyclic permutations thereof. Finally, in expressing D and other combinations in terms of
the bases of holomorphic forms, we shall encounter the following ubiquitous combinations,

ko w(4)A(1,3)A(2,5) + ksw(4)A(1,2)A(3,5) + ks w(3)A(1,2)A(4,5)
= (ko + ks + k‘4)W3 — k‘QW4 + (ko + kg)W5 (7.20)
kawr(4)A(1,3)A(2,5) + kzswr(4)A(1,2)A(3,5) + kawr(3)A(1,2)A(4,5)
= (ko + k3 + k) W{ — koW + (ko + k)Wd
wr(1)e@ (1)~ ks @(4)A(1,3)A(2,5) + ks w(4)A(1,2)A(3,5) + ks @ (3)A(1,2)A(4,5)]
= (ko + k3 + ka) Wi — kaWi g + (kg + ks) Wi
7.4 Simplifying §1 + &2
We shall now derive a simplified representation §1 + §o = a4 + 314 + Siﬁ‘ for §1 and §o
in (7.3) where the three terms on the right-hand side are given as follows,
Fa = 8tk PH(1) [k4 ksA(2,5)A(3,4) — ks - kyA(2,3)A(4, 5)} + cycl(1,2,3,4,5)
§la = StV PBY (a) [REW Ly + KWL, + (K + KW 5] + eyel(1,2,3,4,5) (7.21)
§h = St (B (21) — BY (aa)) [FEWs + REWLs + (R + KE)Ws] + eyel(1,2,3,4,5)
To do so, we use (5.16) to recast §1 as follows,
g1 P(l)

S1— %4 =84 = (1)

[ ko w(A)A(1,3)A(2,5) + kit - ks w(4)A(1,2)A(3,5)

+ky - ks w(3)A(1,2)A(4,5)] + eyel(1,2,3,4,5) (7.22)

To rearrange §2, we choose z, = zs, select an adapted point zy for each term so as to match
the terms in §1 — §4, and multiply through by p;, as follows,
kv -P(1)

S2 = -8t =)

[51 ko w(4)A(1,3)A(2,5) + &1 - ks w(4)A(1,2)A(3,5)

+e1 hyw(3)A1,2)A(4,5)] + eyel(1,2,3,4,5) (7.23)
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We observe that §1 + §2 — §4 is gauge-invariant and use e{k}' — ef'ky = — fI" to combine
the terms. Expressing the result in terms of the basis forms W,y using (7.20) and the
decomposition of P(1) given in (7.12), we obtain,

18— Fa =St P () [REWL s+ kW + (R4 RS Wis | +eyel(1,2,3,4,5)  (7.24)

Here we have made use of momentum conservation and orthogonality to ki to re-express
(ko + k3 + k4) — —ks and (k2 + k3) — —(ks4 + k5). For later convenience we have further
decomposed §1 +F2 —Fa = §'4 + 34 to give formula (7.21). Note that §4 is gauge-invariant,
and independent of ¢q,.

A final rearrangement may be carried out for §4 by recognizing that the difference
P (zi) —PY(¢a) is independent of the loop momenta p% and may be re-expressed in terms
of the functions G! by means of (7.15). Using this expression in §’4 and the rearrangement,

I I I I I I I
Ganiie = Yaai + 955+ Gik + Ihga = Coasik = Gaasig (7.25)

we obtain,
§h =8t f1” {kZ Gloges+Kk5Glsgs+ kZG{A,qa,B] (7.26)

x [REW s + KWLy + (k) + B)W] 5] + eyel(1,2,3,4,5)
where the term proportional to kY contracts to zero into f{" and may therefore be omitted.

7.5 Simplifying §3 + a4

To simplify §3 + §4, we begin by recasting Fs3,F4 in (7.4) as follows,

Sa= D S (hfifi) fzfm)< 10 Géa,j,i,wcycl(z',j,k))

(i KlEm) (3)
e (i) -
34 =2D Z (fzf]fkféfm) () an,j,i,m + cyc (Z’ja ) )m) (727)
(4,9,k,0,m) ¢
We note the following antisymmetry property,
Géa,],l,k‘ Géa,k,i,j (728)

which lines up with the symmetry properties of the corresponding kinematic factors above.
In §3, we may extend the sum (i, j, k|¢, m) to the sum over all permutations upon including a
factor of % to account for the permutations on ¢, m, as well as another factor of % to complete
the summation over all cyclic permutations of (7, j, k) to all permutations (i, j, k), and then
omitting the permutation instruction on (i, j, k) inside the parentheses in the summand.
In §4, we may similarly extend the sum (4, j, k, ¢, m). to the sum over all permutations by
omitting the cyclic permutations instruction on (i, j, k, ¢, m) inside the parentheses of the
summand, upon including an extra factor of 2 to undo the reversal quotient in (7, j, k, ¢, m)..
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The result is as follows,

35 :_72) Y (fifif)(fefm) ((Z)) G i

(4,7,k,¢,m)
=D S (Bhifnfeh) 2 Gl (7.29)
(%,4,k,¢,m)

In §s3, the factor (f;fjfr) = —(frf;fi) is manifestly anti-symmetric under swapping any pair
of indices. In §4, we use the fact that, for a given pair i, j, the sum over all permutations
of the complementary indices k, ¢, m produces the same matrix in both brackets in the
summand of §,4. Putting all together and using the rearrangement formula (7.25),

1 > 1(3) | wr(j) I
5 = 8@(J%m)m,fﬂfk)(fefm)( o) 6l
(1) | wr(d)\ 1
S = _7D flaf fmff) + R GQa7i,j (730)
(m%m) Jm e ( (7) wm)

Using the definition of ¢g of (1.7), and the fact that the cyclic permutations required to define
tg are being automatically added in the sum for §4, we may recast the entire expression for
§3+34 in terms of tg involving the commutator [f;, ],

tio = t3([f1, fo], f3, fa, f5) = ([f1, fol f3fufs) — i([f17f2]f3)(f4f5) +cycl(3,4,5)  (7.31)

and permutations thereof. This kinematic building block is manifestly symmetric in 3,4,5
and antisymmetric in 1,2. In the expressions for §3 and §4 we sum over all permutations
(k, €, m), so there is a factor of 2 coming out from this observation,

— _7D (wr(t) | wr(j) ol _ (7)
S+ Si=-D ;J‘w (w(i) " w(i)) Gotd QD;% (4) Coi (7:32)

Finally, we recast the result as a sum over cyclic permutations,

S3+ 351 =

1 teyel(1,2,3,4,5) (7.33)

It will be useful in later steps to eliminate t;5 by means of the four-term identity
tip +tis+tia+t5=0 (7.34)

which readily follows from (7.31). Based on (7.34), the identity GfI1mL2 - Géa1175 = G{’anﬁ

and cyclic permutations of (2,3,4) thereof, we obtain,

- 1

So+50=—2p 20
@ (1)

Using the decomposition of (5.16) for D and the basis forms W in (7.17), we have,

(619G g0 5+ 013G 5.4 5 +114GT g, 5| Foyel(1,2,3,4,5)  (7.35)

§3+ 81 =3p+ 35 (7.36)
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where
8l = 4lks - kWil + ke - ks(W3 + W)
X [t12 Gl g.g, 5+ 113 Gla o + 11 Gl a g 5| + evel(1,2,3,4,5)
SE = 4{1{:1 . k5W11;3 + k1 - k2W1I;4 + k1 - (ks + k5)W1[;5}

x [t12 Gl g.g, 5+ 113 Gl o + 11 Gla g, 5] + ovel(1,2,3,4,5) (7.37)

These contributions will be collected with other terms linear in t;; in subsection 7.10.

7.6 Simplifying §5 + S

We shall now simplify the expressions for both of §5, 86 in (7.4) and then combine both
using tg. Decomposing the summand of §5 using D(z;, zx) = D(z;j, 2() — D(z, 2;) for an
arbitrary point z(, and using the anti-symmetry (f;f;fx) = —(f; fifx), we recast the formula
as follows,

§s = —%Zpi k; 'P(ZZ) D(Zi,ZO)ZD(Zj,Zé) Z ([fufj]fk)(fﬂfm) (738)

J#i (k.&m)#4,5
where the sum is over all mutually distinct (k, £, m) not equal to i or j. Similarly decomposing
the summand in §s using D(zj, zm) = D(2j, 25) — D(2m, (), we obtain,
36 =2 piki-P(zi) D(zi,20) Y D(z5,25) Y. [(fz’fjfkfzfm) - (fjfz'fmfkfz)} (7.39)
i i (k,0,m)#i,j
The sum is over all mutually distinct (k, ¢, m) not equal to i or j. As a result, the corre-
sponding sums over the matrices fi fsfi, and fi,, fr f¢ are equal to one another, and we have,

S6=2> piki-P(z)D(zi,20) Y D(z,20) Y, ([fis il fafefm) (7.40)
i J#i (k.&;m)#i,j
Adding §5 and §¢, we recover the tg contraction of commutators in (7.31),
35+ 36 =4 piki- P(zi) D(zi,20) D(z), 20) tij (7.41)
i#]
Decomposing also this sum into cyclic permutations, and choosing z(, = z5, we have,
4
G5 + 356 = 4p1 ky - 7)(21) D(Zl, Zo) Z D(Zj, 25) tlj + CyCl(l, 2, 3,4, 5) (742)
j=2

Moreover, we choose the point zg adapted to each one of the three terms,
ki -P(1)

S5 + 386 =4 =)

(@A 3)AQ2,5)t2 + @ (4)A(1,2)A®3,5) s
+ @(3)A(1,2)A4, 5)tua] + cyel(1,2,3,4,5) (7.43)
Finally, decomposing these forms onto the basis Wal;b, we obtain,
85 + B = 4y - Pr () |[(Wi — Wiy + Wit + (Wi + Wis)tis + Wzt
+ cycl(1,2,3,4,5) (7.44)

These contributions will be collected with other terms linear in t;; in subsection 7.10.
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7.7 Simplifying §7

We may recast §7 as given in (7.10) in the following way,

2 v uv X@
§r=3B" Zi:ufi () (7.45)
where X; is defined by
X1 =A(1,2)A(1,3)w(4)w(5) + A(1,3)A(1,4)w(2)w(5)
+A(1,2)A(1,4)w(3)w(5) + A(1,3)A(1, 5)w(2)w(4)
+ A(1,2)A(1,5)w(3)w(4) + A(1,4)A(1, 5)w(2)w(3) (7.46)

and cyclic permutations thereof. Expressed in this manner, the contributions to §7 involve
simultaneous poles arising from (ww(1)w(2))~! and (w(1)w(5))~! in the product of B
given in (7.14) with X;/w(z;) but these simultaneous poles will be proven to be spurious
below. To do so, we substitute the expression (7.14) for B*” to obtain,

4 1% 4 X > w (a)
§r=guff ‘Bf(qa)w(i)az;kg w’@ +eyel(1,2,3,4,5) (7.47)

Expressing ks in terms of the other momenta by momentum conservation and using the
fact that k' f1"” = 0, we obtain,

_ 4 v i m WI(Q) (,U[(E)) X,
S7 = g‘ﬂp[(%)’qfl (k2 {w(2) — =(5) } =(1) +cycl(2,3,4)>

+ cycl(1,2,3,4,5) (7.48)

By decomposing the differential form inside the parentheses onto w;(z;)/w(z;), we obtain,

{wI(Z) wr(5) } X1

w(2) @) w(l)

_ w[(l) 1 w1(2) 1 w1(5)
=3 [w(l) 3o " 2 w(d A(2,5)(A(1,3)m(4) + A1, 4)w=(3))
1fwi(2)  wr(5)
-2 {w@) _ w@} (A2 4)AEB,5) + A2, 3)AM5))=(1) (7.49)

where the spurious simultaneous poles (ww(1)w(2))~! and (ww(1)w(5))~! present in (7.48)
have been now removed.

The expressions involving zo <+ 23, 24 may be obtained from (7.49) by cyclic permuta-
tions of 2, 3,4 on both sides. Decomposing the result onto the basis W, and then converting
the diagonal parts Ws,, onto the basis of off-diagonal parts W, with b # a via (7.19),
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we obtain,
1
§r = o Wi aa)t S [k { 3w, — 6, — 2wy 3w, — Wiy
+ 2Wy + AWy + 2W s — Wiy — Wi}

+ ki {2Wis — 2Wis — Wi, — Wiy — Wi}
+ R {2W g — 2Wiy — Wis — Wi, — Wiy}
+ ke —3W 5 — Wiy — 2L, + 3Wy — W,
+ 2W 5+ AW + 2Wy — Wiy — Wi}
+cyel(1,2,3,4,5) (7.50)

where we have used f" S°°_, k¥ = 0 to simplify the expression. Note that the coefficients of

ko, k3, k4, ks are not related by cyclic permutations of the labels of W, since the underlying
forms (7.49) and z2 <> 23,24 are not images of each other under cyclic permutations of
1,2,3,4,5. Instead, (7.50) follows from separately reducing the right-hand side of (7.49)
and its relabelling zo <+ 23, 24 into the basis of W,;. Fortunately, many of the complicated
contributions to §7 will cancel against counterparts in §g + Fo + $10 to which we now turn
our attention.

7.8 Simplifying §Fs + Fo + F10

The starting point is the expression for §s, F9, F10 given in (7.10), which we recast in terms

of the functions D and the differential p as follows,

sgz—épzsw S (i)™ (Fefw) (D(z5, 20)D (s 2m) + Dz 20) DAz, ) )

(4,7,k,,m)
Fo =208 > (ffifefefm)" Dz, 20) D2, 2m)
(3,9,k,£,m)
1 v .
§io= 308" > JICr( ke, m)D (=, 2)D (20, ) (7.51)
(il7,k|€,m)

In Fs we have included a factor of 1/2 to account for the fact that the formula is written as
a sum over all permutations (i, j, k, £, m). Introducing an arbitrary intermediate point zg to
split the D-functions using the relation D(z;, z;) = D(zi, 20) — D(zj, 20), and recasting the
sums in terms of the functions D(z;, 20)D(%;, 20), we may express the sum §g + F9 + F10 as
follows after properly symmetrizing in ¢ and j,

88 + o + F10 = B LM LM =p " D(z,20)D(z),20)8L (7.52)
i#j
The anti-symmetric tensors Sj;” are built out of the field strengths f without further
dependence on the momenta k, whose explicit expressions are given in appendix H, but will
not be needed here. The only information needed here is the following properties,
S = g = g ; St =0 (7.53)
jFi
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which in particular guarantee that the combination above is independent of the arbitrary
point zg. The following non-trivial kinematic relation, which is proven in appendix H,

1
L = et KA - kS A (754
t#ig

will be important in simplifying §s + §9 + F10 and obtaining a useful explicit formula.

7.8.1 Re-expressing LM

We shall now re-express £* in terms of the five holomorphic basis forms W; in (7.16). To
do so, we choose zyp = z5 in LM and derive the following identities from (7.53),

S12 + S13 + S14 + So3 + S24 + 534 =0
S12 + S13 4+ S23 — Sa5 =0
Saz + 524 + S34 — S15 =0 (7.55)

We subtract from £ the product of the first identity times 2pD(1,5)D(4,5), the second
identity times 2pD(1,5)D(3,4) and the third identity times 2pD(2,1)D(4,5) to obtain,

£ — ~2084 D(1,2)D(3,4) — 204 D(2,3)D(4,5) - 208 D(3,4)D(5,1)

This identity is parallel to (5.15) in the sense that this expression involves only those .S;; for
which ¢ and j are “nearest neighbors”, namely related by j =i+ 1 mod 5. Finally, along
with its cyclic permutations, we have,

LM = —2W S4) — 2Wo SKY — 2W3 SEY — 2W, SiY — 2W5 Shy (7.57)
Using the following shorthand for nearest neighbors S;;,
SIS, Svosl. SWosk, SWoSh. SUosy (15)
we have the more compact formula,

L = =23 "W, S (7.59)

7.8.2 Contraction with B*¥

We now consider the contraction of £/ in (7.59) with the expression for B*” in (7.14), and

use the anti-symmetry of £/ in p, v to simplify the expression,

s+ Fo + Fro = — 4P (qa) D WL, KAS” (7.60)
a,b

As discussed in subsection 7.3, the 25 meromorphic (1,0)-forms generate a vector space of
dimension 20 for which a basis may be chosen of off-diagonal Wal;b with b # a. Using the
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explicit relations of (7.19) we may eliminate all diagonal Wal;a in terms of the off-diagonal
entries. Thus, §s + §9 + F10 may be expressed as follows,

s+ Fo + F10 = —2P%(qa) D WL, CLy (7.61)
a#b

where the kinematic factors Cy, are defined by the decomposition of (7.60) into the basis
of WC{;b with a # b, and a factor of 2 has been absorbed into their normalization for later
convenience.

Our next task is to calculate Cy, explicitly. Inspection of the expression (7.19) for the
diagonal entries Wal;a in terms of the off-diagonal entries, we see that Wi;a involves WC{;b for
b # a where a and b are nearest neighbors. Thus, the calculation of Ca”;b may be separated
into two cases: either a # b are “nearest neighbors” (mod 5), or they are not. When a, b
are not nearest neighbors we have,

Cl3 =2k1S" = 2k\'SYs ,  Cf4=2kSy" = 2k)'ST5 (7.62)

and their respective cyclic permutations. Both cases are of the form k;'S};” and thereby
amenable to the rewriting (7.54) in terms of tg tensors.

The evaluation of C', for the case where a, b are nearest neighbors is more complicated
as one now also needs to pick up the contributions from the diagonal parts k%SHL”. We
begin by observing that the diagonal contributions from k4 SE" to C1.2 and to (.5 are equal
to one another. Therefore, their difference evaluates as follows,

Clu;Q — Cly;5 = 2kf(545 — So3) = kil(Su + S13 — S14 — S15)H (7.63)
along with its cyclic permutations. Their sum may also be readily obtained and we have,
Yo+ Ol = 2l (Sag + Sas + Sog)™ + 2KLSLY — 2KLSIY — WK SLY + 2KESKY  (7.64)

Combining the terms proportional to Ss3 and Sy5, using momentum conservation on both
coefficients and the summation relations in (7.53) for i = 2 and i = 5 to re-express the
combinations inside the parentheses, and combining this result with the formula for the
difference, we obtain,

Cly = —(ka + ks)" S5 — (ka2 + ks)"Sh3" — (ka2 + ks)"Shs
+ K Sy + Ky Shy + kY (S12 — S14)™”
Cls = —(ka + ks)"Shs" — (ka2 + ks)"Sh3" — (ka2 + ks)"Shy
+ k5 Shs’ + kY S5 + kY (S15 — Sis)™ (7.65)
along with their respective cyclic permutations. Note that every single term in C1,2 and C1;5
is of the form of kj'S{;” and may be expressed in terms of ts tensors by virtue of (7.54). In

summary, by inserting (7.62), (7.65) and their cyclic permutations into (7.61), the kinematic
factors in Fs+Fo+F10 boil down to gauge invariant combinations of t; f/* and t;;.
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7.9 Combining all terms proportional to t;

By the results of the previous subsections, the kinematic dependence of the entire chiral
amplitude, proportional to § in (7.2), is expressed in terms of ¢; and t;; defined in (1.7)
and (7.31), respectively. In this subsection, we combine all the contributions proportional
to t; which, by addition of cyclic permutations, will give us all contributions proportional
to t; (as opposed to t;;). In subsequent equations, the restriction |, stands for retaining all
terms that involve either t; ¢; or t; f;, relegating the contributions of t;; to section 7.10.

No contributions of the form ¢t; arise from 3 + §4 and §5 + Fg since all the kinematic
factors in (7.37) and (7.44) are of the form t;;. Thus, here we collect all t; contributions
from §1 + F2 + F7 + Fs + Fo + F10. Note that we have reorganized §1 +F2 = Fa + 34 + 5%
and that §4 is manifestly independent of g, see (7.21). Our first goal will be to show
independence of ¢4, so we shall concentrate on the contribution from §’, +§’4. Using MAPLE,
one readily combines the following contributions,

(84 + 87+ 85+ B0+ Fu0) | = 8B (g0) (WS + KW + (K + k§)WH)
+eyel(1,2,3,4,5) (7.66)

where the poles from w(a)™! due to WC{;b with a # b cancel. In order to combine with the

remaining terms of §1+gF2, we decompose P (qo) = PB47(1) — (PBY(1)—PBY (o)) in (7.66).
Like this, the last term has the same prefactor as §’4 in (7.21), and the differences of Y
can be rewritten using (7.15) in both cases. We thus arrive at,

§

= Fa+3Fc+3c (7.67)

7

where §4 is kept in the form of (7.21) and §¢ is obtained from (7.66) by replacing
P (ga) — P4 (1) and re-expressing W/ in terms of w; and A

§o = =8t "B (1) [Kwr ()AL, 3)A(2,5) + kfwr(4)A(1,2)A(3,5)
+ K{wr(3)A(1,2)A(4,5)] + eyel(1,2,3,4,5) (7.68)

While §4 and F¢ are manifestly independent of gq, the third contribution §, to (7.67)
carries the leftover go-dependence from P%(1) — PB%(qq) of both F’} and (7.66),

So =8t fi” {kgG{,Q,qu + kG305t ]‘CZG{A,%,E)}
x [ (Wis = Wiy + Wiy = wi + w - wy)
+ 1 (Wi + Wis — Wi — W)+ k(Wi — W) |
+eyel(1,2,3,4,5) (7.69)

As will be shown in section 7.11 and appendix I, the g,-dependent contribution §} will
eventually cancel terms with kinematic factors t;; that we shall discuss next.
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7.10 Combining all terms proportional to t;;

In this subsection, we combine all the contributions proportional to t;; (as opposed to the
kinematic factors t; in the simplified form (7.67)). Based on the results of section 7.8, a
straightforward collection of terms involving t;; in §7 + §s + §9 + F10 shows that we have,

(37 + 88 + T + 510) = —4k1 - Pr(da) {’tlz (Wll3 — W+ Wy —wi + W - Wg,[)

i
+tig (Wi + Wis = Wi = W) + tag (Wly — Wi ) |
+cyel(1,2,3, 4, 5) (7.70)

where the restriction |t¢j stands for retaining all terms that involve t;; rather than t;.
Combining the above contribution with §5+§¢ from (7.44) and splitting up the combination
PBY(qa) = BY(1) — (PBY(1) — PBY(qa)) as we did earlier, mechanical simplifications lead to,

(35+36+37+38+39+310> ~=3p +3p (7.71)

)

In the first piece §p all the WC{;b with a#b and thus all the poles w(a)~! cancel, so we find

§p = 4ki - B (1) [tu wr(4)A(1,3)A(2,5) + ti3wr(4)A(1, 2)A(3,5)
+tiawr(3)A(1,2)A(4,5)| + eyel(1,2,3,4,5) (7.72)

after reconverting its W/ to the basis of w; and A. The g,-dependent terms §7, in (7.71)
are given by,

I I I
Sp = 4k7 {k5G1,2,qa,5 + kG505 + kZGlA,qaﬁ}

X {tlg (Wl{S — W1[;4+W1[;5 _W2,1+W411 - WSI)
+ {13 (W{;3+W1[;5 *Wg{ *W5I> + t14 (WII,3 *WBI)}

+cyel(1,2,3,4,5) (7.73)

In order to complete the assembly of the terms t;; in the chiral amplitude, we combine (7.71)
with §3 + §4 = §5 + 5 from (7.36) and obtain

5

=3+ +3p+3D (7.74)

)

with §5 and §'5 given by (7.37).

7.10.1 Rearranging the g,-dependent terms

The combination of § and §', may be rearranged as follows,

S5+ 8p =35+ 3k (7.75)
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where a first piece is again free of w(a)™!,

§p = —4kY [tl?G{,anﬁ + 3G 50,5+ t14G{,47qa,5}
x (kG (W = Wi + W)+ kS (W] + W) + kW
+eyel(1,2, 3,4, 5) (7.76)
and the leftover terms are arranged as follows for later convenience,
b=a(Wiy—wi,+wis —wi+wl-wl)

X [(kzl kstio — k1 - kgflg)Gi&qu) + (k1 - katip — Fy - k2t14)G{,4,qa,5}
+4 (Wiy+ Wi — Wi —wi) (7.77)

X [(lﬁ kotiz — Ky - k‘3’t12)G{,27qa75 + (k1 - katiz — ky - k3114)G{,47qa75}
+ 4 (Wiy = W) [(kr - Rotia = kr - katin) Gl g, 5+ (Rt - kstia — k- katis) G5 0, 5
+ cycl(1,2,3,4,5)

The separation into §5 and § is motivated by the subsequent simplifications of the
combination,
S5 =35+3E (7.78)

We will use the identity,

ks - kg wl(l)A(Q, 3)A(4, 5)+ kg - ks w[(l)A(3,4)A(5, 2)
- (k1 ko wi(4)A(5, 1)A(2,3) + eycl(1, 2,3, 4, 5))
Fkr - ko wr ()AL, 3)A(2,5) + ki - ks wr(4)A(L,2)A(3,5)
1,2

2
+ky - kawr(3)A(1,2)A(4,5) (7.79)

analogous to the equality of D in equations (5.15) and (5.16). In fact, it will be convenient
to introduce the shorthand

Dr = —2kg - ky w[(l)A(2, 3)A(4, 5) + cycl(l, 2,3, 4, 5) (780)

for the permutation invariant which follows from the replacement w(a) — wy(a) in the
expression (5.15) for D. With this definition and the identity (7.79), the sum §p is readily
combined as follows,

gB = —2D[ |:t12 G{727qa75 + t13 G{73,QO¢75 + t14 G{747qa75 + CyCl(l, 2, 3, 4, 5):| (781)

Using also the relation G{Q’qmg) = G{,Q,qa — G{757qa and the four-term identity (7.34) among
ti; we obtain equivalently,

Fp = —2D; [tm Glog +113Gl 3, + 4Gy, +1t5Gls,, +oyel(1,2,3,4, 5)} (7.82)
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By further use of (7.34), it is readily shown that all g,-dependence cancels out between
different terms of the cyclic orbit, so that we have,

5 5
Sp=-2D1> tijg;=-4Dr > tjgi;=-4D; > t;Gi,; (7.83)
i#j 1<i<y 2<i<j

The last step is based on (7.34) to recast this permutation invariant combination of t;; gi{ j
I

a,b,c
In summary, the contributions to § involving t;; are given by,

in terms of the single-valued G combinations.

§

=% +3p+3k (7.84)

iJ

with g-independent pieces §p and §p given by (7.72) and (7.83), respectively, as well as a
leftover gq-dependence in §’; given by (7.77).

7.11 Summary

In this subsection, we assemble all parts of § based on the organization of the t; and t;;
dependent terms in (7.67) and (7.84),

§=35 =Fa+Jc+Fc+3Fp+3p+3E (7.85)

+35

t

The only leftover go-dependence resides in the parts § and %, given by (7.69) and (7.77),
respectively. In fact, it is proven in appendix I that the g,-dependent terms entirely cancel,

Sc+35=0 (7.86)

using highly non-trivial identities for kinematic factors and worldsheet dependences that
will both be given in the same appendix. Taking this result into account, we now arrive at
a manifestly g,-independent representation of §,

§=8a+8B+35c+35p (7.87)
The remaining functions are recalled as follows
§a=—8tier - P(1) ks ksA(5,2)A(3,4) + kg - kaA(2,3)A(4,5)| + eyel(1,2,3,4,5)
35 = 4[@1 ko wi(4)A(5,1)A(2,3) + cycl(1,2, 3,4, 5)} > b9l
i#j
Fo = =8t f{PL(1) [ké‘wz(ﬁl)A(l, 3)A(2,5) + Kywr(4)A(1,2)A(3,5) (7.88)
+ k{wi(3)A(1,2)A(4,5)] + eyel(1,2,3,4,5)

§p = 4k - P(1) [t12w1(4)A(1, 3)A(2,5) + tiswr (4)A(1, 2)A(3, 5)

+ tiawr(3)A(1,2)A(4,5)] + eyel(1,2,3,4,5)

where P(1) and P! (1) are defined in (5.4) and (7.12), respectively.
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7.11.1 Alternative presentation

A further rearrangement of §4 +§¢ will lead to an alternative presentation of the manifestly
go-independent chiral amplitude § in (7.87). The identity (7.79) may be used to re-express
Fa as follows,
Fa = —8tie1 - P (1) (/-e1 ko wr (A)A(5, 1)A(2,3) + cyel(1, 2,3, 4, 5)) +eyel(1,2,3,4,5)
—8tye1 - PL(1) [k:l ckowr(4)A(1,3)A(2,5) + k1 - kswr(4)A(1,2)A(3,5)
+ k1 - ks wr (3)A(1,2)A(4,5)| + ceyel(1,2,3,4,5) (7.89)
Using the relations f1"k + e{ky - ko = €1 - ko kY, we observe that the terms on the second
and third lines above combine with §¢ to produce the combinations k1 -3 (1), and we have,
Fa+ o = —8tier - P (1) (k- kawi ()A(5, 1)A(2,3) + cyel(1,2,3,4,5))
— 8tuky - BT (1)e} [k wi()A(1,3)A(2,5) + k§ wi()A(1,2)A(3,5)
+ B wi(3)A(1,2)A(4,5)] + eyel(1,2,3,4,5) (7.90)

where the instruction to add cyclic permutations applies to all terms. Further combining
this result with the other terms gives the following alternative formula,

§ = —8tier - P/ (1) (k1 - by wi(4)A(5, 1A(2,3) + cyel(1,2,3,4,5))
+ 4k - P (1)] (12 — 221 - ka)wr (4)A(1,3)A(2,5)
+ (ts — 2tie1 - ks)wr (D)A(1,2)A(3,5) (7.91)
+ (tig — 2tie1 - ka)wr(3)A(L, 2)A(4, 5)}
+ 8k1 - kawr(4)A(5,1)A(2,3) > i) +cyel(1,2,3,4,5)

1<i<j<5

where the instruction to add cyclic permutations applies to all terms in F.

The final result of the RNS computation in this work, given by § in (7.91) combined
with the chiral Koba-Nielsen factor in (7.2), leads to the expression for the chiral amplitude
F advertised in section 1.1. The new form (7.91) manifests different properties of the chiral
amplitudes as compared to the representations obtained from the pure-spinor computa-
tion [29, 33] to be reviewed in the next section. For instance, (7.91) exhibits an interesting
echo of the chiral five-point amplitude (1.12) at genus one since the shorthand D; in (7.80)
condenses the first and last line to,

5
4D, {Z e B - D tijgi[,j} (7.92)
j=1

1<i<j<5

see section 1.2 for further details.
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8 Matching with results of [29] and [33]

We shall now compare the simplified forms (1.3) and (1.9) of the genus-two chiral amplitude
for five massless external NS states with the parity-even part of the bosonic components
obtained in [29, 33] using a combination of chiral splitting and pure-spinor methods. Among
the multiple representations of the chiral amplitude given in [29, 33], we will work with
the manifestly homology shift invariant correlator in section 5.3 of [29] together with the
effective NS components of [33]. This choice will furnish the most convenient starting point
to demonstrate agreement with the RNS result in this work, since our presentation of the
RNS result is manifestly homology shift invariant.

8.1 The bosonic components of the pure-spinor results

The parity-even components of the genus-two five-point chiral amplitude obtained in [29, 33],
which is to be compared with the result (1.3), or equivalently (7.91), of the RNS computation
carried out in this work, may conveniently be organized as follows,

3 = gp.s + Sp.k: + Sscalar (81)

where we have again stripped off the ubiquitous chiral Koba-Nielsen factor A5 in (5.8).
The three contributions §p.e, §p.x and Fscalar refer to different ways of contracting the
loop-momentum dependent factors of P, (i) defined in (5.4). Using the prescription for
effective NS components in [33], the three polarization-dependent ingredients in (8.1) are
given by,

Fpe=—8[Pu(1)A(2,3)A(4,5)k3-ky+cycl(1,2,3,4,5)]
X {5§Lt8(f2,f3,f4,f5)+cycl(1,2,3,4,5)}
Sk = —4Pu(DA2,3) A4 5){ K (Rs1234+ Rsapn 34) 4 (Riszzat Rigjsas)
+k'g(R2;5\1,3,4+R2;1|3,475)+2k§R3;4|172’5+2kZR4;3|1’2’5}—|—Cyc](1,2’374’5) (8.2)
Sscatar =11 (1)A(2,3) A4, 5){G{72a5T2€5H71\374+G{72,3S§§’>I4\5,1 +G{,2,452e§1|3\5,1

ff ff
+G{,5,35§;3|4\1,2 +CTY{,5,45§;4|3|1,2} +eyel(1,2,3,4,5)

I
a,b,c

on the external-particle labels of both the differential forms and of k;,¢;, f;. The kinematic

where the single-valued function G is defined in (3.13) and the cyclic permutations act

dependence of both §, 1 and Fscalar is exclusively built from the following combinations,

Ra;b|c,d7e = i(sa : kb)tS(fbv fe> fa, fe) - %tS([fav fb]? fes fa, fe) (83)

symmetric in ¢, d, e which also featured in the simplifications of appendix I of this paper.
The expression for Fscalar in (8.2) depends on the polarizations through the building blocks,

T;Iffdd,e = (Skd : ke - 4ka : kb)(Ra;b|c,d,e - Rb;a|c,d,e) + 4ka ’ kb(Rb;c\a,d,e - Ra;c|b,d,e)
S elae = (8ka - ke — ko - k) Rapied.e — 4o - koRaselp.de (8.4)
+ 8(kc ’ ded;e|a,b,c — kq - keRd;da,b,e) + S(kc ’ keRe;d|a,b,c — kq - keRe;C|a,b,d)
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symmetric in d,e with further permutation properties spelt out in [33]. Note that the
five-forms of §.., in (8.2) naturally generalize the combinations of A(a,b) and momenta in
the chiral four-point amplitude which is proportional to A(1,2)A(3,4)ks - k3 +cycl(1,2,3,4).

Finally, the superspace result of [29] naturally unifies the parity-even bosonic components
in (8.1) with the parity-odd ones in (1.11) whose derivation in the RNS formalism is left for
future work.

8.2 Agreement with the RNS computation

The agreement of the chiral amplitude in (8.1), obtained in [29, 33] from chiral splitting and
pure-spinor methods, with the result (7.91) of the RNS computation will be demonstrated
in the following five steps,

(i) match the loop-momentum dependent terms with contractions &, - p!

(ii) organize the &, - p’-independent terms from (i) and (7.91) into R,. bled,e and tgp

)
)
(iii) show agreement of the terms ty, including those from (ii)
(iv) match the &, - p! parts of remaining terms Rapje,d,e

)

(v) match the k, - ky parts of remaining terms Rp|cq.

8.2.1 Step (i)

We begin by comparing the first line of (7.91) with the &, - p! terms §, in (8.2). Based on
Pu(a) =Bl (a)wr(a) and the definition (7.80) of Dy, their difference is given by
Sair = Fpe — ADr (1l PL(1) + cyel(1,2,3,4,5))
= stiel { [BL(1) — BL2)Jwr(2)AB, A5, 1)ks - ks
+ [B(1) = P(3)]wr(3)A4,5)A(L, 2)ks - ky (8.5)
+ [B(1) = B (4)]wr (4) A5, 1)A(2, 3)k1 - k2
+ [BL(L) = BLG)wr ()AL, 2) A3, 4)ks - ks | + cyel(1,2,3,4,5)

and can be simplified to the following expression that no longer depends on the loop
momentum via permutations of (7.15)

Sdiff = _8t15lf{[G{,2,3k5 + G{,2,4kff + G{72,5k§}w1(2)A(3,4)A(5, 1)k4 “ks
+ (Gl 30k5 + G 34K + Gl 3 5k5]wr(3) A4, 5)A(L, 2)ks - ky
+ [G{A,zk?g + G{,4,3k§f + G{74,5k§}w1(4)A(5, 1)A(2,3)k1 - k2 (8.6)
+ [Glsakh + Gl 53k + G154k Jwr(5)A(1,2)A(3,4)k; - k’3}
+eyel(1,2,3,4,5)
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8.2.2 Step (ii)

All the remaining terms Fp , Sscalar il the target expression (8.2) are written in terms of
the tensor structure R 4, defined in (8.3). We shall therefore organize the kinematic
factors of (8.6) and the last four lines of (7.91) into Ry.pjc.q. and ty using

t1er- ko= —iR1;2‘37475 + %flz (8.7)
In the difference (8.6), this leads to the unique decomposition

Saist = Saift | p + Saisr |tab
Saift | = Saift |ta5a'kb‘>*iRa;b|c,d,e (8.8)

gdlff ’tab - gdlff ’taaa‘kb%%tab

In the final result (7.91) of the RNS computation, the decomposition (8.7) casts the sum of
the second, third and fourth line into the compact form

Sr = 8ik -5]3[(1){R1;2|3’4’5w1(4)A(1, 3)A(2,5) + Rygjoaswr(4)A(1,2)A(3,5)
+ Riapasr(3)ALDAWLD) | +eyel(1,2,3,4,5) (8.9)

8.2.3 Step (iii)

As a key benefit of the reorganization (8.8) of (8.6), all the terms t,;, cancel between Fqig
and the last line of (7.91) since

5
Fair |, = Swr(1)A(2,3)A(4,5)ks - ka Y tijgi; + cycl(1,2,3,4,5) (8.10)
1<i<j
where we have used the following corollary of the identity (7.34) among t;;,
5 5
Yo o6iGL = Y bl (8.11)
2<i<j 1<i<j

On these grounds, the difference between §, . in (8.2) and the complete RNS result (7.91)
entirely boils down to combinations of Rgpc.q. in (8.3),

gp.s _gZSdiﬁ?‘R_gR (812)

with Faif | r and §g given by (8.8) and (8.9). In order to finish the proof of equivalence
between the pure-spinor and RNS computations, it therefore remains to show that,

S'R - Sdiﬁ |R = %’p.k + 3:scalar (8'13)

where also the right-hand side is expressed in terms of R|cq. by virtue of (8.2).

— 68 —



8.2.4 Step (iv)
It is convenient to first consider the loop-momentum dependent terms in proving (8.13).
For this purpose, we rearrange the cyclic orbit in (8.2) and eliminate Ry;523 4 using the
extension Rj.g345 + (2 <> 3,4,5) = 0 of the four-term identity (7.34) to write,
gR - gp.kz = 8iR1;2|3,4,5kiL{m;€(1)A(17 3)A(27 5)“}[(4) + PM(4)A(5’ 1)A(27 3)
— Pu(3)A(4,5)A(1,2) + 3PL(2)A(3,4)A(5,1) — 3P, (5)A(L, 2)A(3,4)}
+ 8iR skl {BLOAL A, 5)wr (1) - Pu(3)AM5)AL2)  (8.14)
+ 3Pu(2)A3,4)A(5,1) - 3Pu(5)A(1,2)A(3,4) }
+ 8iRyaps sk {BL(DAL 2)A(, 5)wr(3) — Pu(3)A4,5)A(1,2) )
+ cycl(1,2,3,4,5)
After decomposing P, (a) = mﬁ(a)wj(a), reducing the five-forms to their cyclic basis and

exploiting the vanishing of k1 -7 (1)w;(1) = 9., In N5 upon integration, all the loop momenta
drop out. Based on (7.15) and Ryg345 + (2 <> 3,4,5) = 0, we find

Sr— Spk = 4i(Rig345 + Ri3i2,45
x {ABAB, Dwr(2) (k1 - ksGl s + bt - kaGl g g + ki - ksG 25)
k1 ]‘C2G152+k1 k’3G153+k1 ]f4G154)}

) (k1

)(
+ 8iR 1234545, 1)A(2, 3)wr (4) (k1 k2G1,4,2 + ki - k3G1,4,3 + k1 - k5G{,4,5)
+ 8iRy 512,344 (4,5)A(1,2)wr (3) (k1 k2G{,3,2 + k1 - 7“74G{,3,4 + ki - k5G{,3,5)
+ cycl(1,2,3,4,5) (8.15)

)
(
— A(1,2)A(3,4)wr (5
2
1

8.2.5 Step (v)

The final step in proving (8.13) is to show that the simplified expression (8.15) is equal to
gdiﬁf |R +Sscalar- By (82)7 (84) and

Saift |, = 81{ [GlasRigpa5+ GloaRiapss + GlosRispsa)wi(2)A3,4)A(5, 1)ky - ks
+ [G{,3,2R1;2\3,4,5 + G{,3,4Rl;4\2,3,5 + G{,3,5R1;5\2,3,4]WI(3)A(47 5)A(1,2)ks - k1
+ [G] 4aR123.45 + GlasRispa5 + GlasRispsawr(4)A5,1)A(2,3)k: - ky

+ [G{,5,2R1;2\3,4,5 + G{,5,3R1;3\2,4,5 + G{,5,4R1;4\2,3,5]w1(5)A(17 2)A(3,4)ks - kS}

+ cycl(1,2,3,4,5) (8.16)

each term under consideration is of the form Ra;b‘c,d,er k- In order to verify (8.13), the

single-valued functions have to be brought into a six-element basis of G{ ap With 2<a<b<5
via permutations of G£73,4 = G{72’3+G{’374+G{’4,2. Moreover, we need the relation (I1.4)
among the gauge invariant combinations lln‘2’3 =iky - kaRy;312.45 — tk1 - k3Ry.934,5. With
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these manipulations of both the worldsheet functions and the kinematic factors, it is a long
but mechanical task to confirm (8.13) which we did with the help of Mathematica. This
concludes our proof of equivalence of the chiral amplitude (7.91) computed from the RNS
formalism and the bosonic components (8.1) of the pure-spinor computation in [29, 33].

8.3 Bootstrapping the odd parity five-point amplitude

The odd parity part of the chiral amplitude was constructed in [29, 33] using a combination
of chiral splitting and pure-spinor methods. No corresponding calculation has been carried
out from first principles in the RNS formulation to date. This is due, in large part, to the
fact that the zero modes of the worldsheet fermion fields complicate the structure of the
super moduli space My _ of compact genus two super Riemann surfaces with odd spin
structures. In particular, it has been argued that 2ty _ is not projected [56], a property
which is presumably related to the fact that no simple super period matrix exists in the
odd spin structure case [30]. Now that a well-motivated proposal for the odd parity part
is available from [29, 33], it is urgent to obtain a first principles calculation in the RNS
formalism for the odd spin structure sector and to understand the supermoduli space 9o _
in greater detail than had been available thus far. Such a detailed derivation is relegated to
future work.

In this subsection we shall argue that the genus-two odd parity chiral amplitude may
be partially conjectured from symmetry arguments and the structure of the correlators of
vertex operators for massless NS states in the RNS formulation. The construction hinges on
simple assumptions regarding the role of the odd spin structure supermoduli space My _,
the power counting of loop momenta and the types of tensors contracting the one-forms
wr(z;) in the chiral amplitude. To begin with, the integrated vertex operators are identical
to those given for even spin structure in (2.24) and (2.25). Furthermore, there are two odd
moduli (% and therefore the gravitino slice x is linear in (% while the Beltrami differential
[t may be chosen to be bilinear in (¢.

8.3.1 Zero-mode counting in RNS

For odd spin structures, each chiral worldsheet fermion field 4% has one zero mode, providing
a total of 10 zero modes. In order to saturate the zero modes in the functional integral
over Y! | we need at least 10 insertions of the field ¢/}. At most 12 are available from the
5 vertex operators, the insertion of two supercurrents S, and the insertion of one stress
tensor Ty. The contribution from the fermion bilinears in all 5 vertex operators being
saturated by zero modes cancels since €19(f1, f2, f3, f4, f5) = 0 by momentum conservation.
A Lorentz-invariant and gauge-invariant contraction of all five field strengths is obtained
by forming the combination e1o(p’, 1, f2, f3, f1, f5) and its cyclic permutations, which is
non-zero.

The first assumption we shall make regarding the net effect of the integration over
supermoduli space is that all contributions with two or more powers of loop momenta
in the chiral amplitude cancel. This assumption is consistent with the structure of the
corresponding supergravity amplitude [38, 39] and with the results of the construction
of [29, 33].
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8.3.2 Uniqueness of the kinematic factor

Invariance of e19(p’, €1, f2, f3, f1, f5) under all permutations of 2, 3,4, 5 is manifest. To show
invariance under all permutations of 1,2, 3,4, 5, it suffices to prove that,

610(p17517 f27 f3a f47 f5) = 610(p]a€27 fla f3a f47 f5) (817)

since invariance under all other permutations then follows from combining this transposition
with the invariance under all permutations of 2,3,4,5. To prove (8.17), we express fo in
terms of 9 and ko,

e10(p’se1, fa, f3, fa. f5) = 2efgH"2 T (pl ) eh kg2 fAV fie fL (8.18)

Using momentum conservation on ko = —k; — k3 — k4 — k5 we see that the contributions
from ks, k4, ks cancel by the Bianchi identities for fs, f1, f5, leaving only the contribution
from —k7, and we obtain,

e10(p, €1, fa, f3, f1, f5) = —2€lg"1 12010 (el e k2 f00 fr floe (8.19)

The identity (8.17) follows upon properly rearranging the indices and expressing the
combination in terms of f; and &s.

8.3.3 Uniqueness of the odd parity chiral amplitude

The second assumption we shall make is that the chiral amplitude Foqq is the product
of the universal chiral Koba-Nielsen factor N5 times a linear combination of products of
(1,0)-forms wy, (%) for i = 1,---,5 with constant coefficients, i.e. independent of z; and
Q1. Indeed, contractions with gévb or analogous z,-dependent objects obtained from higher
derivatives of prime forms are ruled out by our assumption of holomorphicity and homology
shift invariance. So this second assumption really boils down to requiring the tensors
contracting the wr, (2;) to be independence of Q.

Using the GL(2,Z) subgroup of Sp(4,Z) under which w; transforms linearly (see
appendix A), it may be established that the only invariant tensors of the modular weight
—2 of five factors of wr,(z;) lead to linear combinations of the five-fold holomorphic forms
wr(i)A(j, k)A(L, m). Specifically, this form for F,qq is required by the branching rules for
the tensor product 2%° into a single 2 together with the modular weight —2. As a result of
the assumptions, the only holomorphic form that is invariant under all permutations, linear
in loop momenta, and that has no extra factors of external momenta is given as follows,

610(]9], €1, f27 f3a f47 f5) w[(l)A(27 3)A(47 5) (820)

plus all possible permutations. But the permutations include the subgroup of cyclic
permutations of (3,4,5) upon which the sum over such permutations vanishes. Hence
no permutation invariant exists without including extra factors of external momentum.
Investigating the possible contractions of the bosonic fields z*/ in the correlators of vertex
operators, supercurrents, and stress tensor 7', it is manifest that at most two additional
factors of external momenta can be produced beyond eo(p’, 1, fo, f3, f1, f5). (Additional
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factors of k; - p’ or p’ - p& would violate our earlier assumption on the power counting
of loop momenta.) For example, the bosonic stress tensor can be contracted with two
exponential factors in two different vertex operators, and analogously, the fields 92"/ of the
two supercurrents can each be contracted onto a single exponential.

Thus, we consider combinations of five-forms that involve one power of k; - k;, and begin
with the term that includes wy(1). Since the total expression must be invariant under all
permutations, it must in particular be invariant under all permutations of 2,3,4,5 that leave
1 invariant. The corresponding combination is unique and generalizes the chiral four-point
amplitude written in a manner that does not make use of overall momentum conservation
(since this is different for the cases of 4 or 5 external states). Thus, the expression is unique
and given by,

c10(p” €1, fo, f3, f1, f5)wr (1) [(k‘z —k3) - (ks — ks5)A(2,3)A(4,5) (8.21)
+ (k2 — ka) - (ks — k3)A(2,4)A(5,3)
+ (ks — ks) - (ks — k1) A(2,5)A(3,4)] + cyel(1,2,3,4,5)
To simplify it, we may expand each term in the canonical basis of five-forms given by the
cyclic orbit of Wi = w!(1)A(2,3)A(4,5),
ew(prse1, o, f3, Ja, J5) | (ke = ks) - (ko = ks) W] (8:22)
+ (ka2 = ka) - (ks — k) (=W + W3 + W)
o (k= Ks) + (ks = ka) (= W3 = W3)] + eyel(1,2,3,4,5)

Rearranging the cyclic permutations so as to expose the contribution proportional to W{
and applying momentum conservation, the preceding expression reduces as follows,

— L2e10(p’ 1, fo, f3, fa, f5) (ks - ka)wr(1)A(2,3)A(4,5) + cyel(1,2,3,4,5) (8.23)

which coincides, up to an overall multiplicative factor, with the result (1.11) we have
obtained from the pure-spinor calculation.

9 Conclusions and future directions

In this work, we have computed the contributions from even spin structures to the genus-
two amplitudes for five massless NS-NS states of Type II superstrings and five massless
NS states of Heterotic superstrings from first principles in the RNS formulation. Our
simplified result in (1.3) and (1.9) reproduces the bosonic components of the massless
genus-two five-point amplitudes in pure-spinor superspace [29, 33]. On the one hand, our
results provide the highest order in the number of loops and legs where string amplitude
computations in the RNS and pure-spinor formalism are explicitly shown to agree. On
the other hand, the superspace result of [29] combined the zero-mode structure of the non-
minimal pure-spinor formalism [8] with a bootstrap strategy involving BRST cohomology,
homology shift invariance and locality. Hence, our present work confirms the result of [29] by
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providing a first-principles computation, complementing a variety of earlier checks through
the supergravity limit [29] and S-duality of Type IIB superstrings [33].

Our final expressions for the chiral amplitude (1.3) and (1.9) provide a more compact
and more symmetrical alternative to its numerous superspace representations in [29, 33| and
expose an interesting similarity in structure to its genus-one counterpart. Straightforward
loop integration over the pairing of left and right chiral amplitudes yields Type II and
Heterotic superstring amplitude in terms of convergent integrals over the moduli space of
compact genus-two Riemann surfaces. The moduli-space integrand is itself an integral over
vertex points of combinations of Abelian differentials and the scalar Green function.

Given that the even parity genus-two chiral amplitude for five external NS bosons has
now been calculated in the RNS formulation, it becomes urgent to provide a complete
calculation of the odd parity part as well. While its general kinematic structure was
developed here in subsection 8.3, it still remains to understand how the measure on the
supermoduli space My _ reduces to the odd parity amplitude on My, and this will be
studied in future work. Equally urgent is a derivation of the R-sector of the chiral amplitude
in the RNS formulation, presumably using the results on the super period matrix in [57, 58]
and the spin-field correlators in [64, 65].

For genus two amplitudes with more than five external states, perhaps the greatest
challenge to overcome is the summation over spin structures of the various concatenated
products of Szeg6 kernels. Producing a method that is more systematic and more efficient
than the diverse fauna of methods used here will be of great importance for this goal.
Once the even spin structure sums have been performed, the general construction used
here should generalize to chiral amplitudes with an arbitrary number of external massless
NS states.

A Function theory for arbitrary genus

In this appendix we present a summary of relevant definitions and formulas for holomorphic
and meromorphic differentials on compact Riemann surfaces of genus h > 1, in terms of
Riemann 9-functions and related objects (for standard references see for example [3, 66]).

A.1 Compact Riemann surfaces

A Riemann surface is a connected orientable complex manifold of dimension two over R.
The topology of a compact Riemann surface > without boundary, the only case needed in
this paper, is completely specified by its genus h which equals the number of handles of X..
On a compact Riemann surface X of genus A > 1 we choose a basis of homology 1-cycles
A7, By € H(X,Z) for I,J =1,--- , h with canonical anti-symmetric intersection pairing J,

J®ALA) = J(B1,By) =0
JRA,By) = —3(B, A1) =1y (A1)

Since ¥ is a complex manifold, its cotangent bundle is the direct sum of the holomorphic
canonical bundle and its complex conjugate, whose sections are (1,0) and (0, 1)-forms,
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respectively. As a result, the first cohomology group H!(3,Z) is the direct sum of the
Dolbeault cohomology groups H(X,7) = HL9(%,7) @ HOY (2, Z) of holomorphic (1,0)-
forms and their complex conjugates, respectively. We normalize a canonical basis w; €
H0)(%,Z) of holomorphic (1,0)-forms dual to the canonical basis of 1-cycles Ay, B by,

j{ wy=90rJ j{ wy =y (A.2)
A Br

The period matrix €2 is symmetric and its imaginary part Im €2 is positive definite by the
Riemann bilinear relations, and therefore takes values in the Siegel upper half space of rank
h, to be defined in the next subsection. A modular transformation acts by an invertible
linear map M with integer entries on the canonical homology cycles, represented below as
column matrices 2l and B with entries 2; and B for I = 1,--- , h respectively,

3)-@)-()

As a map between canonical homology bases, the transformation M preserves the canonical
pairing J, so that the associated transformation matrix M belongs to Sp(2h,Z) and satisfies,

0 —1Iy A B
Mt~M:~ N — M = A4
v J J (Ih 0 ) (C D) (A-4)

where J is the symplectic pairing matrix, I, denotes the h X h unit matrix and A, B, C, D
are h x h blocks. Under a modular transformation M the column vector of holomorphic
(1,0)-forms w and period matrix 2 transform as follows,

w— o= (QC"+ D" w
Q—Q=(4Q+ B)(CQ+ D)™ ! (A.5)

The periods of an arbitrary homology cycle in Hy(X,Z) span a lattice Z" + QZ" whose
associated torus is the Jacobian variety J(X) = C"/(Z" + QZ"). The Abel map is a
holomorphic map of an arbitrary number d of copies of ¥ into J(X). The Abel map of a
divisor of degree d of points z1, - - - , zg € X, symbolically denoted by z1+- - -+ 24, is defined by,

21 Zd
21+ +zg — / w[+-'-+/ wr (A.6)
z20 20

where z is an arbitrarily chosen base point in ¥. The map is multiple-valued in C"* but
becomes single-valued in J(X).

A.2 The Siegel upper half space

The rank h Siegel upper half space Hj;, may be defined as the space of all A x h symmetric
matrices with complex-valued entries whose imaginary part is a positive definite matrix,

Hy={QeC Q' =0V =ImQ >0} (A7)
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More geometrically, H}, is the coset of Sp(2h,R) by its maximal compact subgroup U(h),
Hy, = Sp(2h, R)/U(h) (A.8)

The presence of a U(1) factor in the stability group implies that Hj, is a Kédhler manifold.
The Sp(2h, R)-invariant Kéhler metric on Hy, is given by,

h
ds* = > (Y YY"y Y ldQ, dQkr (A.9)
1,J,K,L=1

The Siegel upper half space H; is the upper half complex plane with the Poincaré metric.
The quotient of H; by the modular group SL(2,Z) is given by SL(2,Z)\*H; and represents
the moduli space of compact Riemann surfaces of genus one.

The period matrix €2, defined in (A.2) for a compact Riemann surface of arbitrary genus
h > 1, takes values in the Siegel upper half space Hj, for an arbitrary Riemann surface. But
the converse is false for h > 4 as may already be seen from the dimension formulas, %h(h+ 1)
for H;, and 3h — 3 for My, and h > 2 which agree for h = 1, 2,3 but differ for h > 4.

For h = 2, the case used in this paper, the quotient of 2 by the modular group Sp(4, Z)
is Sp(4,7Z)\Hz2 and represents the moduli space Ms of compact Riemann surfaces of genus
two, provided we remove the divisor of diagonal matrices 2 corresponding to the union of
two disconnected tori. Since the metric ds? is invariant under Sp(4,Z), it pulls back to a
well-defined metric on the quotient Sp(4,Z)\Hs and thus on moduli space M. From this
metric, one obtains the Sp(4, Z)-invariant volume form on Mo,

|d°Q?

(det Im )3 (A.10)

which arises in the physical amplitudes (1.1) and (1.2) upon integration over loop momenta
p! and forming modular invariant measures for integration over the vertex points.

For h = 3, the dimensions of H3 and M3 coincide, but obtaining M3 from Hs requires
taking the quotient by the involution of hyper-elliptic Riemann surfaces. For genus h > 4,
the dimensions of Hp and M;, differ, and specifying My, inside Hj requires Schottky
relations.

A.3 The Riemann ¥-function

The Riemann ¢-function of rank h, with given characteristics u, is a holomorphic function
¥ : Ch x Hy, — C defined by,??

A1) = D exp (im(n+ @)An + p') + 2mi(n + 1) (¢ + ")) (A.11)

nezh

where ¢ = (C1,---,C)t € Ch, Q € Hy,, and p is an array p = (i, ") where y/, u” € C* are
thought of as column matrices. For our purposes, u will be “half-characteristics” specifying

Z2Throughout, when no confusion is expected to arise, we shall use a notation in which the contraction of
two column vectors, such as n and ¢, is denoted by n¢ = n’¢ and similarly nQn = n*Qn.
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spin structures of line bundles on a Riemann surface so that the entries of y/ and u” take

the values 0 or % (mod 1). The parity of the ¥-functions depends on p and is even or odd

depending on whether the integer 4" - u” is even or odd. The corresponding spin structure
is then also referred to as even or odd.
The standard J-function is defined by 9(¢|€2) = 9[0](¢[€?), and is related to J[u] by

Ou)(CIQ) = (¢ + " + 1Q) exp{mip'Qu’ + 2mip' (¢ + 1)} (A.12)

We have the following periodicity relation for 9[u](¢|Q2) where m,n € Z" are column
matrices,

Iu) (¢ +m + Qn|Q) = I[u](¢|Q) exp{—imnQn — 2mwin(¢ + u") + 2mip'm}
O+ o 1+ mI(C102) = O[)(CI2) expl2mimy'} (A.13)
The following formulas for special cases of the above will be useful,
IlHI(C — ) = V(C|6) e~k
DIp)(C + Q) = D(CI62) e —2min Gt
(¢ +2M1Q) = D[] (¢[Q) (A|pz) e~ T ONFO (A.14)
where p and A are even or odd characteristics. The signature symbol is defined by,
(M) = exp{dmi(u'\" — N'p")} (A.15)
for 1, A both half-integer characteristics, and we have (u|\) = +1.

A.3.1 Modular transformations on ¥-functions and characteristics

A modular transformation M € Sp(2h,Z), parametrized in (A.4), transforms Q and ¢ by,
Q— Q= (A0 + B)(CQ+ D)™ !
¢—=C=(QC"+DH ¢ (A.16)

The transformation rule for €2 coincides, of course, with the expression given for the period
matrix in (A.5). The spin structure p = (¢'| ') transforms inhomogeneously as follows,

/(D =C\ [ 1 (diag(CD?) _(AB
)= (G2 () s Gim) — v=(00) e

where diag(A) is the column matrix whose entries are the diagonal elements A;; of the
square matrix A with entries Ay;. Finally, the ¥-function transforms as follows (see [67],
page 85),

I (CI2) = e(, M) det (CQ + D) 29[u] (¢[92)
X exp {m' S G+ D) ”} (A.18)
I,J

The factor €(u, M) is independent of ¢ and €2 and satisfies e(u, M)® = 1. Its explicit
expression is complicated and may be found in [67], but will not be needed here.
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A.3.2 The Riemann identities

The Riemann identity for an arbitrary spin structure p is given as follows,?3

4 4
D (A TT 9N (Ga) = 4 TT 9lul(¢) (A.19)
A a=1 a=1

where ¢ is given in (A.21). The sum in X is over all even and odd spin structures A. The
Riemann identities for an arbitrary spin structure p, but this time for the sum over even
spin structures ¢ only, or the sum over odd spin structures v only, are given by,

4 4
> (uld) H 1(Ca) —2H19 ¢H+2 [ 0wl
a=1

é even a=1

4 4
> H ](Ca) =2 H I[u)(¢E) =2 [T 9l () (A.20)
vodd a=1 a=1

where the relations between ¢, and ¢ are given by,

i +(1 11 1 1
+
111 -11
2 l=n G2 == (A.21)
: G 2l1-11 1
i G 1-1-11

Note that we have ITf = IT and T1% = T.

A.4 The Riemann vanishing Theorem

The definitions and results of subsections A.2 and A.3 were given for arbitrary points
Q) € Hj, not necessarily corresponding to the period matrix of a Riemann surface. In this
subsection, as well as the subsequent subsection of this appendix, we shall specialize to
definitions and results that hold only when 2 is the period matrix of a compact Riemann
surface X, so that € is given by (A.2) as defined in subsection A.1.

The Riemann vanishing Theorem states that for 2 the period matrix of a compact
Riemann surface 3, and ¢ € J(X), the relation ¢#(¢|2) = 0 holds if and only if there exist
h — 1 points p1,--- ,pn—1 € X, such that,

h=1 rp;
(= Z/ wr — Ar(zo) I[=1--h (A.22)
i=1"77%0

where A7(zp) € C" is the Riemann vector with base-point zy given by,?*

Aj(z0) = —5 — *QU +> ]{ wy(z / wr (A.23)

J#I

23When the dependence on  is clear from the context, we shall simply write 9[A](¢) = 9[\](¢|Q).
241t should go without saying that the Riemann vector A1(z0) is not to be confused with the bi-holomorphic
form A introduced in (3.1).
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All dependence on zy cancels out of the combination (; in (A.22). The points p; need not
be distinct. An important application of the Riemann vanishing theorem is to the existence
of the following holomorphic (1,0)-form, defined for any odd spin structure v by,

wy(z) = Zw;(z)@lﬁ[u](O) (A.24)
1

Its 2(h — 1) zeros are all double zeros at points p; such that ¢; = vy in (A.22). Therefore,
wy(2) admits a holomorphic and single-valued square root h,(z) such that w,(2) = h,(z)%.
For each odd spin structure v, the holomorphic (%, 0)-form h,, is unique up to a sign.

A.5 The prime form, the Fay form, and the Szego kernel
The prime form is defined in [66] by,

I[v](z — w)

Bew) = 3 o w)

(A.25)

where z — w stands for the Abel map of the divisor z — w. The prime form F(z,w) has
weight (—%, 0) and is holomorphic in z and w, independent of the odd spin structure v, and
multiple-valued on X. Closely related to the prime form is Fay’s form o defined in [66] by,

h
o(z) = exp {— Iz:; j(élz wr(y)In E(z, y)} (A.26)

The form o(z) has weight (%,0), is nowhere vanishing, and multiple-valued on X. It satisfies
the following relation for pq, - - - , py arbitrary points in 3,

o(z)  dp1+---+py—2—A)E(w,p1)--- E(w,pp)
O'(’LU) a ﬁ(pl 4+ 4+ pp—w— A)E(Z,pl) . E(Z,ph) (A27)

The Szegd kernel Ss(z, w) for even spin structure § is a meromorphic (3,0)-form on ¥ in
both z and w, with a single simple pole at z = w and is given by the following expression,

0[] (= — w)

502 0) = 505700) Bz w)

(A.28)
The definition of the Szego kernel for an odd spin structure v is complicated by the existence
of the holomorphic (%, 0)-form, and will not be needed in this paper.

Additional properties of the prime form and Fay form are as follows. On a simply-
connected domain Y’ obtained by cutting ¥ along 2; and B; cycles with a common
base-point, we may define a single-valued E(z,y) and a single-valued o(z). On ¥/ the prime
form vanishes only on the diagonal,

E(z,w) =2z —w+ O((z — w)?) (A.29)

The monodromy of E(z,w) and o(z) around 2 cycles is trivial, while around B cycles it
is given as follows,

E(z+B;,w) = E(z,w) exp {z’w — i Qyr — 2m’/ wI}

w

o(z+B1) =o(z) exp {im(h — 1)Q; + 2miVi(2)} (A.30)
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where

Vi(z) = (h—1) / wr — Ag(z0) (A.31)

20
The monodromies of the meromorphic (1, 0)-forms derived from the prime form are,

0;InE(z +2A5,w) =0, In E(z,w)
0:InE(z+Br,w) =0, In E(z,w) — 2miw(2)
0. InE(z,w+Br) =9, In E(z,w) + 2miw(2) (A.32)

The Abelian differential with a double pole 9,0, In E(z,w) is invariant. Under modular
transformations E(z,w) and o(z) transform as follows,

Z, W Z,W) exp { i Zw “10]” Zw
B(z,w) = B(zw) p{ zJ;/w H[ca+pyie]” | J}

w

1J
o(2) — o(2) exp {— 2)[(ca+ D)~ VJ(z)} (A.33)

where V7(z) was defined in (A.31). The transformation rule for E(z, w) was given in [66],
while the transformation rule for o(z) is presented above up to a multiplicative factor which
is independent of z, and clearly cancels out in the ratio o(2)/o(w) given in (A.27).

A.6 The Fay trisecant identity

The Fay trisecant identity [66] holds for the period matrix 2 of a Riemann surface X, four
points 21, 29, w1, we on ¥, and arbitrary real characteristics p = i/, "] with p/, " € RP /7",

Ip)(z1 + z2 — w1 — w2) V] (0)E(z1, 22) B (w1, w)
= J[p)(z1 — w1)9[p)(z2 — w2) E(22, w1) E(z1, ws)
— D[22 — w0 L) (1 — w2) B(z1,w1) B2, w5) (A.34)
The identity is automatically satisfied for every odd half characteristic p (or spin structure)
for which the left side vanishes identically, and the terms on the right side are manifestly
equal upon using the expression for the prime form (A.25) by choosing v = p in (A.25).

For an arbitrary even spin structure p = ¢ the Fay identity (A.34) may be expressed in
terms of Szegd kernels, prime forms, and a single ratio of J-functions,

19[5] (21 —+ 20 —wn —UJQ)E(Zl, ZQ)E(’LUl,wQ)

S, S, - = A.35
(21 w02) 85 (z2,w01) = (w1 & w2) = G o B Gy wn) By wn) Bewg) )
Taking the limit of coincident points we — 2o, we find an important special case,
E(z9,23) 3 19[5]( — 23)
= .. 1 A.
Ss(21,22)85(22, 23) = Ss(21, 23) 02y In ————< Bz, 1) Zwl 2’2 51(0)E (21, 25) (A.36)
Taking yet another limit gives the further special case,
o'o79[s
Ss(z,w)* = 0,0, In E(z,w) + Z wl(z)wJ(w)M (A.37)
2 9061(0)

The Fay identities will play a crucial role in this paper by simplifying the spin structure
dependence of products of Szegd kernels.
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A.7 The scalar Green functions

The Riemann bilinear relations show that Q75 = Qj7, as well as the positivity of the
integral,
/ d?zwi(2)wy(z) = 2Y1y Y =ImQy, (A.38)
p)

where we recall that the measure and Dirac delta-function are normalized as in footnote 5,
/ 22 6(z,w)f(z) = f(w) P2 —idz A d3 (A.39)

This allows us to define the canonical volume form (z) on X as the pull-back under the
Abel map of the canonical Kéhler form on the Jacobian J(X), and we have,

1 -
K(z) = — Z wi(2) (Y H wy(z) / d’zr(z) =1 (A.40)
2h 73 =
The string scalar Green function G4(z,w) is symmetric in z,w and obeys the following
differential equation,
0:0,Gs(z,w) = —271(z,w) + 2w h k(z) (A.41)

The solution of the differential equation (A.41) is given as follows,

4 z
Gz, w) = —In |E(z,w)[2 + 20 Y (Y1) (Im / w[) (Im / wJ) (A.42)

1.7 w w
Note that the integral of the right side of (A.41) equals 2(h — 1)7, and therefore defines a
single-valued function on ¥ x ¥ only for A = 1. For h > 2, the function G is well-defined
only on a cut surface ¥’ and transforms inhomogeneously under conformal transformations

in z,w. However, the mixed derivative,

0:00,Gs(z,w) =270 (z,w) — 7 ij(z) (Y H! Wy (w) (A.43)
1,J
obeys an equation whose right side integrates to zero against an arbitrary holomorphic
(1,0)-form in z and an arbitrary anti-holomorphic (0, 1)-form in w.
The Arakelov Green function is defined to satisfy the differential equation

0:0.G(z,w) = =270 (2, w) + 27 K(2) (A.44)

along with the condition [y, d%z k(2)G(z,w) = 0. The right side of (A.44) properly integrates
to zero against constant functions for all h. An explicit formula for the Arakelov Green
function may be constructed as follows from the string Green function G,

G(z,w) = Gs(z,w) = 7s5(2) = 7s(w) + 10 (A.45)

where,

vs(2) = | d*w k(w)Gs(z,w) Yo = / d?z k(2)7s(2) (A.46)
Y s

The Arakelov Green function G is single-valued on ¥ x ¥, independent of the how the
surface is being cut into ¥/, and conformal invariant.
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B Function theory for genus two

The function theory of a genus-two Riemann surface exhibits special relations many of
which are used in the calculation of the genus-two string amplitudes. Some of these relations
are more easily established in terms of modular geometry as will be shown in subsection B.1
while others more naturally make use of the hyper-elliptic nature of genus-two Riemann
surfaces, as will be shown in subsection B.2 of this appendix.

B.1 Multi-holomorphic 1-forms

A number of multi-holomorphic (1, 0)-forms are special to genus two and will be discussed
here. The ubiquitous bi-holomorphic (1,0)-form was introduced in [15] and is given by,

Az, w) = wi(z)wa(w) — wa(z)wi (w) (B.1)

It is a holomorphic (1,0)-form in both z and w, anti-symmetric in z,w (viewed as the
coefficient of the coordinate (1,0) ® (1,0)-form dz dw), and satisfying the following relations
on tri- and quadri-holomorphic forms,

wI(Zl)A(ZQ, 2’3) + wI(ZQ)A(Zg, 21) + wI(Zg)A(Zl, 22) =0
0

A(Zl, ZQ)A(Zg, 24) + A(Zl, Z3)A(Z4, 22) =+ A(Zl, Z4)A(Z2, Z3) = (B.?)

Further ubiquitous combinations of significance for the five-point function are the vector-
valued (1, 0)-forms in five points wy(z;)A(2;, k) A(ze, 2m), for which a cyclic basis may be
chosen of the form,

wr(z1)A(z2, 23)A(24, 25) and 4 cyclic permutations in 1,2,3,4,5 (B.3)

To show that all forms wy(2;)A(24, 2,) A(2¢, 2m) may be decomposed in this cyclic basis, we
use a cyclic permutation to set ¢ = 1, producing the three forms wy(z1)A(22, 23)A(24, 25),
wr(z1)A(z2, 25)A(z3, 24), and wr(2z1)A(z2,24)A(25, 23). The first form is already of the
desired form; the third form is related to the first two by the second identity in (B.2); and
the second form may be reduced to a linear combination in the cyclic basis by implementing
the first identity of (B.2) on the product wr(z1)A(ze, 25).

B.2 The hyper-elliptic formulation

Every compact genus-two Riemann surface Y is hyper-elliptic: it possesses a holomorphic
involution Z and may be represented as a double cover of the sphere C ramified over 6
branch points uy,--- ,ug € C. The surface ¥ may be parametrized by z = (x, s) where,

6
s2 = 1:[1(93 — ;) (B.4)

The involution Z acts by Z(x, s) = (z, —s) where s = s(x) is given by the above relation.
The action of the modular group reduces to the group G of permutations of the branch
points. The SL(2,C) conformal automorphism of C allows one to fix three of the six branch
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points at arbitrary points leaving the remaining three branch points to parametrize the
complex moduli of a genus-two surface.
A basis for holomorphic (1,0)-forms in the hyper-elliptic formulation is given by,

dx T dr

s() s(z)

The normalized holomorphic (1,0)-forms w; may be expressed in the hyper-elliptic basis

(B.5)

with the help of a matrix o7 as follows,

x/ldx ' ldx

wr(z) = EJ:UIJ @) O = EJ:O'IJ jélK (@) (B.6)

where the coefficients o;y depend on moduli but not on z. The bi-holomorphic form A may
be expressed in terms of the hyper-elliptic basis for z; = (z;, s(x;)),

T — IL’Q) da:l dxg

A(z1,22) = (det o) ( s(z1) s(x2)

(B.7)

Therefore, as a function of z; = (x1, s(x1)), the two zeros of the holomorphic (1,0)-form
A(z1,29) are at zo = (w2, s(x2)) and its image under involution Zzy = (x2, —s(x2)).

B.3 The chiral bosonic partition function

There exists a one-to-one correspondence between the six odd spin structures v; and the
branch points u; for ¢ = 1,--- ,6 given by a relation on the Abel map,

u;
()i = [ s = Ai(zo) (B.8)
0

where Aj(zp) is the Riemann vector of (A.23), considered here for h = 2. For each branch
point u; with ¢ = 1,--- ,6 there exists a holomorphic (1,0)-form w,, with a unique double
zero at that branch point u; given by (A.24) and a holomorphic (3,0)-form h,,(z) with a
unique simple zero at w; which enters the construction (A.25) of the prime form.

For genus two, the nowhere vanishing form o (z) of (A.26) is a (1, 0)-form with non-trivial
monodromy. The relation (A.27) may be expressed as the fact that the combination,

Y u+v—z—A)
E(z,u)E(z,v)0(z)

(B.9)

is independent of z. Taking the limit z — v, we obtain an interesting equivalent formula,

Vu+v—2z—A)  wr(v)d"(u—A)

= B.10
E(z,u)E(z,v)0(z) E(u,v)o(v) ( )
Recalling the expression for the chiral bosonic partition function Z from [15],
—2—A)E
73 _ Y u+v—z VE(u,v)o(u)o(v) (B.11)

E(z,u)E(z,v)0(z)A(u,v)
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and combining the two formulas, we obtain the following simple relation,
Au,v) = Z73 o(uw)wr(v)0"9(u — A) (B.12)

This formula proves that the right side is single-valued and odd under swapping u,v. Under
a modular transformation M € Sp(4,Z), the bi-holomorphic form A transforms by,

A(u,v) = det (CQ + D) ' A(u,v) (B.13)

see (A.4) for the decomposition of M into 2 x 2 matrices A, B, C, D and (A.5) for its action
on wy. The modular transformation of Z is given as follows,

Z(Q) = ey det (CQ + D)z Z() (B.14)
where €2* = 1, and €3 = €(0, M) occurs in the transformation law of the ¥-function of (A.18).

B.4 Meromorphic (1,0)-forms and the b, ¢ system

An Abelian differential of the third kind is a meromorphic (1, 0)-form with two simple poles
of residues 41 at the points z; and zo, respectively. This condition does not define the
differential uniquely, as one may add a linear combination of the two holomorphic Abelian
differentials. To specify the differential uniquely, we fix two of its zeros to be at points p;
with ¢ = 1,2. The resulting differential G(z; 21, z2; p1, p2) satisfies,

0:G(2; 21, 22, p1,p2) = 2m0(2, 21) — 2m0(2, 22)
G(pi; 21, 22;p1,p2) = 0 i=1,2 (B.15)
Here, G is a (1,0)-form in z and a (0,0)-form in z1, 29, p1, p2. It may be interpreted as

a Green function for the Cauchy-Riemann operator acting on (1,0)-forms and may be
represented explicitly in terms of J-functions and the prime form by,

V(z—21—20+p1+p2—A)I(—2+p1+p2—A)E(21,22)

G(z;21,22;p1,p2) = B.16
A S Sy, S o gy T oo S e

An alternative solution to the differential equation in (B.15) is given by,
T12(2) = 0; In E(z,21) — 0, In E(z, 22) (B.17)

The form 7 5 is a single-valued (1,0)-form in z and a multiple-valued (0, 0)-form in 2, 22.
Under a modular transformation 71 2(2) behaves as follows,

~ . -1 IJ %2
T12(2) = T12(2) + 2mi ij(z) {(C’Q + D) C’] / wy (B.18)
I,J “1
In terms of 7, the Green function G is obtained by requiring zeros at pi, p2, and is given by,
A(p2, 2) A(z,p1)
Gz . _ 27 B.19
(2521, 22,01, p2) = T12(2) + A1) T1,2(p1) + Alpr.po) T1,2(p2) (B.19)

Both (B.16) and (B.19) show that G(z; 21, z2; p1, p2) is invariant under p; <+ ps and changes
sign under z; <+ z2. The monodromy in z1, z9 of the three individual terms given by (A.32)
cancels in the sum in view of the first relation of (B.2). Similarly, the shifts in 71 » produced
by modular transformations in each individual term in (B.19) cancel in the sum, and we
find that G is modular invariant.
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B.4.1 The b, c system for weights (1,0) and (0, 0)

A useful unification of various formulas for holomorphic and meromorphic forms is provided
by the conformal field theory correlators of anti-commuting fields b and ¢ of weights (1,0)
and (0, 0), respectively.2> We shall normalize the OPE of the fields by,

1

Z—w

b(z) c(w) ~

(B.20)

For genus two all non-vanishing correlators have one more b than ¢ operators and we define,

Gn(z1, -+ s Zng1;wis - wn) = (0(21) -+ b(znga)e(w) - - e(wn)) (B.21)

The form G, is odd under swapping z; and z; with 7 # j and under swapping w, and wy
with a # b. Therefore, viewed as a function of z;, it has simple zeros at all points z; with
j # i, and viewed as a function of w, it has simple zeros at all points wy with b # a. Finally,
viewed as a function of z; the form G,, has simple poles at all points w,, governed by the
OPE and, for n > 2, given by,

(_)nJrafi

gn(zly"' awn) ~ gnfl(zla"' agi,'" y Zn+1; Wi, - aﬂ)\aa"' 7wn) (B22)

Zi — Wq

where the wide hat on z; instructs the omission of the point z;, and similarly for wy.
Quantum field theory allows us to evaluate G,, by the rules of Wick contraction. However,
an equivalent but more useful evaluation is closely related to chiral bosonization,

_ V(302 — Yqwa — A) L 0(2:)

Gn(z1, - ,wy) = FE(z, 25 E(wg, wy B.23
n( n) Z3 ;.0 E(2i,wa) [, 0(wa) g (= ])al;Ib (100, 1) (B.23)
where ¢, =1,--- ;n+1and a,b=1,--- ,n. The standard overall normalization factor pro-

duced by chiral bosonization is Z~! instead of Z~3. The latter has been chosen here instead
to simplify subsequent formulas as well as the behavior of G, under modular transformations.
With the factor of Z~3 the correlator transforms under modular transformations by,

Gn(21, -+ ywy) = det (CQ+ D)7 1Gu (21, -+, wy) (B.24)

Note the absence in this transformation law of the 24-th root of unity factor ¢y in (B.14),
which is present in the transformation law for ¥ and also appears for the transformation
law of G, if we had used the standard normalization obtained from replacing Z =3 by Z~!.
For n = 1, one may use (B.11) to obtain the explicit form

V(21 + 22 —w — A)E(z1, 22)0(21)0(22)

Gi(z1, 29, w) = ZE(w. 21) Ew. 23)0 () = A(z1,22) (B.25)

which manifests the transformation law (B.24). For n = 2 the correlator Gs is proportional
to the Green function G of (B.16),

Ga(2,p1, p2; w1, wa2) = A(p1,p2) G(2; w1, wa; p1,p2) (B.26)

Z5We note that the b, ¢ system discussed in this appendix differs from the b, ¢ ghost system associated
with diffeomorphism invariance, whose weights are (2,0) and (—1,0), respectively.
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and the relation (B.19) now takes on a more symmetrical form in terms of Go,

Ga(2,p1,p2; 21, 22) = A(p1,p2)T12(2) + A2, p1)T1,2(p2) + A(p2, 2)T1,2(P1) (B.27)

where 712 was defined in (B.17). The three terms on the right side are obtained from
one another by cyclic permutations of z,pi1,p2 thereby exhibiting the full permutation
antisymmetry of Go between these points. Moreover, the monodromies of the individual
terms as 212 — 212 + By again cancel in view of the first identity in (B.2). The explicit
formula (B.27) may alternatively be obtained from Wick contractions of the b, ¢ correlator.

B.5 Compendium of formulas for genus two and unitary gauge

In this subsection we collect formulas for holomorphic and meromorphic forms on an
arbitrary genus-two Riemann surface in which the pair of points ¢1, g2 enters. Recall that
the points ¢1, g2 are the zeros of a holomorphic (1,0)-form w(z), and are therefore related
to one another by the divisor relation,

@ +q—2A=2k (B.28)

where £ = (k/, k") is an arbitrary half-integer characteristic given by x = Qx’ + £” and A
denotes the Riemann vector (A.23). We have the following relations for a = 1,2,

@ (2) = caA(ga; 2) (B.29)
or equivalently,
@(2) = (=) T A N0 ()07 (g — A) (B.30)
I
and
Ca0(ga) = (=) 7123 27N (10=2) (B.31)

The objects ¢, c2 are holomorphic (—1,0)-forms with non-trivial monodromy in ¢; and g,
respectively, and satisfy the following relations (see (2.19) for Zp),

crwr(qr) — cowr(qz) =0
¢t 0w(qy) + 3 0w(qe) = 0
Zyc1020w(q1) Ow(qe) = 1 (B.32)
as well as the identity,
@ (@)@ () (172 (@) = 22y (@) ) = —A0m(@1) A2, ) (B.33)

The value of A’(z) at the zeros ¢1, g2 of the holomorphic (1,0)-form w(z) is given by,
caAN (q0) = —0w(qa) (B.34)

In particular, the meromorphic form evaluated at this point gives,

A(z1, 22) A (¢a) _ Ca0w(qa)A(21, 22)
A(22,Ga) A(gas 21) w(21)w(22)

(B.35)
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Further useful formulas are as follows,

g — A+ 2z —w)d(—q + A+ 2 —w) = —w(2)w(w)E(z, w)2e T (@=4) (B.36)

e () B@a)E@a)0@)’
wl\x i T, q1 T,q2)0(x —47ri/i’(ac—y) B.37
= e .
=)~ Ew.a)EW )om)? (B.37)
and
w(21)G(z5; 21, 22; W, @2) = —w(25)G(21; 25, W; 22, q1) (B.38)

The latter formula is proven by expressing both sides in terms of (B.16) and then using the
following relation between ¥-functions,
Vzs +w+qe— 21 — 20— A)
W t22+q—2—w—A)

=exp{dmik'(k+z21+ 20— 25 —w—q—A)}  (B.39)

C Reducing products of Szego kernels

In this appendix, we shall reduce certain products of concatenated genus-two Szego kernels
for even spin structures to a small set of standard forms. The goal is to obtain a simplified
dependence on the spin structure, so that the sum over all even spin structures is facilitated.

To do so we use the hyper-elliptic representation of the Szegd kernel, which is obtained
as follows. Each one of the 10 even spin structures J uniquely corresponds to a partition
(A|B) = (B|A) of the 6 branch points u; into two disjoint sets A, B of 3 branch points each,

AUB={1,---,6} ANB=10 4A=H4B=3 (C.1)
To a partition (A|B), we associate the degree 3 polynomials s4(z)? and sp(x)? defined by,

sa(z)? = H(:E — u;) sp(x)? = H(x — ;) (C.2)
i€A 1€B
such that the product is s4(z)sp(x) = s(x) given in (B.4). The Szego kernel for an even
spin structure § specified by the partition (A|B) of the points z; = (x;, s(z;)) is given by,

S5(zi, zj) = % SA(:UZ')SB($j);;j8A($j)SB(wz‘) (s((if; jgﬁggj)) E 3

where we use the standard notation x;; = z; —x;. We note that no holomorphic (%, 0)-forms
exist, for an arbitrary even spin structure, and throughout the genus-two moduli space.
C.1 Product of two Szego kernels

The square of the Szego kernel is an Abelian differential of second kind, namely with one
double pole. It may be expressed as follows,

dx;dz; sa(wi)?sp(5)? + sa(z)?sp(z;)?
2 2 2
Sslzi2)" = 555 4x2.J S =2t s](x')S(xj) j

%] ?

(C.4)
The numerator of the ratio in S% is a polynomial of degree three in z; and in x;, which

depends on the spin structure through the partition (A|B), while all other ingredients in
the formula are independent of the partition (A|B).
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C.2 Product of three Szego kernels
The product of three concatenated Szegd kernels forming a closed loop may be similarly
decomposed in powers of Sfj by using only polynomial algebra,

da:ldazgdxg,

Ss(21, 22)S5(22, 23)S5(23, 21) = (5%2 + S35+ S5 — 4) (C.5)

8 T12 T23 T31

Recasting Sfj in terms of S5(%;, 2;), we find the following reduction formula,

dridrodx T1o dx
Ss(21, 22)S5 (22, 23) S5 (23, 21) = 10T2dT3 +( 12 dx3

— Ss(z1, 22)2 1 1,2,3>
2712 T23 T31 (21, 22)" + eyell )

(C.6)

The reduced product of three Szego kernels to a sum of squares will be fundamental in our

2x93 T31

ability to perform various sums over spin structures.

C.3 Product of four Szego kernels

There are two distinct products of four Szego kernels forming closed loops. The first is the
product of two one-loop contributions, of the form Ss(21, 22)%55(23, 24)% and permutations
thereof. Its simplified expression is obtained by taking the product of two copies of (C.4).

The product of four concatenated Szego kernels forming a single closed loop may be
similarly decomposed in powers of S?j by using polynomial algebra,

S5(21, 22)S5(22, 23)Ss(23, 24) S5 (24, 21)

dzq dxo dxs dxy 2 2 2 o2 2 @2 2 @2
— — 16+ 45 45 S75S. S5.87 — S7aS C.7
39 219 9 T34 a1 ( + 4573 + 459, + 019034 1+ 533517 13 24) (C.7)

In terms of the original Szeg6 kernel, this expression becomes,

S5(21,22)S5(22, 23)S5(23, 24)S5(24, 21)

dxr1 dxo drs dry 22, dxo dr x2, drq dx
13 ¢L2 GLg 2 24 W1 4L3 2
=— Ss(z1,23)" + S5 (22, 24)
2x12 23 T34 T41 212 T23 T34 T4l 2x12 23 T34 T41
1234 2 2 L23T41 2 2
~———S5(21,22)"85(23, 24)" + -————S5(22, 23)°S5(24, 21)
2 x93 T4t 2712 %34
2 9
L13L24 2 2
— 55(21,2’3> 55(22,24) (CS)

2219 23 T34 T41
The relative sign factors of the last three terms depend on whether the pairs of points that
occur as the argument of the Szegé kernels are adjacent or not.
C.4 Product of five Szeg6 kernels

There are two distinct products of five Szeg6 kernels forming closed loops. The first one
involves two loops and reduces with the help of (C.6) as follows,

Ss(21,22)S5(22, 23)Ss (23, 21) S5 (24, 25)* (C.9)

dridxad
— LIRS g, 25)? + ( Si(z1,22)2S5 (24, z5)% + eyel(1,2, 3))

2x12 23 T31

X192 d.ng
2123731
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The second involves a single loop and reduces as follows,

Ss(z1,22)S5(22, 23)Ss5(23, 24)Ss (24, 25)S5(25, 21) (C.10)
dxry dxg dxs dry dxs 9
= [—16+ 3 4487
12 £23 T34 T45 T51 1<isi<s

+ 575593, + S33575 + S3452, + Si5STy + 52,95,
+ 575535 + S3355 + 53,52, + S35Sts + 52155

— S%,83, — S34S35 — S355% — S41Sh — S%,5%]

The signs in the sum over 10 pairs (i,7) on the first line on the right side correspond
to whether 4, j are nearest neighbors (minus sign) or not (plus sign). The last 15 terms
correspond to all possible inequivalent partitions of the five points into two pairs of points
each along with a single remaining point. Their sign corresponds to whether the points in
the two pairs are interlaced (minus sign) or not (plus sign).

Expressing the result in terms of the original Szeg6 kernels we obtain,

S5(21,22)S5(22, 23)Ss(23, 24) S5 (24, 25) S5 (25, 21)

_ dxy dxo dxs dry dxs _ x%Qdazgd:c4 dzs :L“%3d:v2dx4daz5

Ss(21,22)* + Ss(21,23)*
20 712 w23 T34 T45 T51 412 -+ - w51 ( ) 4dx19--- 51 ( )
2 .9 2,2
T3%35d2 2 2 T5234d21 2 2
—===2——55(22,23)"Ss(24, 25)" + —=———55(22, 25)"Ss (23, 24
P — ( )= Ss( ) PP — ( )85 ( )
2 .2 d
- T24%55°71 35(22724)255(23725)2—1_ CyCl(1727374a5) (Cll)
412 T51

where the instruction to add cyclic permutations applies to the entire expression on the
right side of the equality. Note that the relative signs of the last three terms prior to the
instruction of cyclic symmetrization again relate to whether pairs of points are interlaced
(minus sign) or not interlaced (plus sign).

C.5 Alternative expressions for the ubiquitous meromorphic form

In each one of the above reductions, the coefficients of the squares of the Szegt kernels
and their products are expressed in terms of differential (1,0)-forms in the hyper-elliptic
formulation. For example, the coefficient in the second term of (C.6),

rizdrs  drs drs

S (C.12)
23731 23 31

is a meromorphic (1,0)-form in z3 (where z; = (z;, s(x;))) and a scalar in z; and za, with
four poles in z3, namely simple poles at z1, 25 and at their images under involution Zz1,Z zo,
with residues +1. Its six zeros are simple zeros at the six branch points u;. It may be
expressed in terms of standard differentials with the help of the form A(z,y), and the
following holomorphic (3,0)-form derived from it,

A(2) = 0pA(w, z)‘ (C.13)

w=z
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Its expression in the hyper-elliptic formulation with z = (z, s(z)) is derived from (B.7),

A'(2) = (det o)

Ok (C.14)

which makes it clear that this holomorphic (3,0)-form has simple zeros at the six branch
points. Again using (B.7) it is now straightforward to see that we have,

.’L‘lgdfbg _ A(Zl,ZQ) A/(2’3>
o331 Az, 23)A(23,21)

(C.15)

This result allows us to express all the reduced forms of the concatenated products of Szegd
kernels in two different ways: either in terms of the hyper-elliptic formulation as was done
in the first subsection of this appendix, or in terms of the canonical differentials w; through
the bi-holomorphic form A, as we have done in this subsection.

D Summary of spin structure sums up to four points

In this appendix, we summarize the spin structure sums for up to four vertex points derived

n [15]. In the next appendix we shall derive the additional spin structure sums that are
needed for the five-point string amplitude with external NS states and even spin structures.
Throughout, the points z; will refer to vertex points, while ¢, go will refer to the zeros of a
holomorphic differential w(w). The chiral partition function Z[J§] was calculated in [15],

Z18] = 2o E(q1, ¢2) "™ (1) 9]6](0)* (D.1)
Zl2
T2 W10 E(q1,92)%0(q1)?0(g2)?

Zy =

where the chiral scalar partition function Z can be found in (B.11) and [12], ¢1 +¢2—2A = 2k
and Wy is the Igusa cusp form (2.10).

D.1 Vanishing spin structure sums

The following spin structure sums over even spin structures ¢ vanish.

ZZ ] S5(q1,42)

ZZ ] Ss(q1,q2)85(21, 22)?

ZZ ] Ss(q1,q2)Ss5(21, 22)S5(22, 23)S5(23, 21)
Iy = ZZ ] Ss(q1,21)Ss(21, q2)

ZZ ] S5(q1,21)55(21, 42) S5 (22, 23)°

Z Z[6] Ss(q1,21)S5(21, 22)S5(22, ¢2)
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I; = ZZ ] Ss(q1,21)Ss(21, 22) S5 (22, 23) S5 (23, 42)
ZZ Ss(q1, 21)Ss(21, 22) S5 (22, 23) Ss (23, 24) S5 (24, 42)
ZZ ] Ss(q1,21)S5(21,22)95(22, g2) S5 (23, 24)

I = ZZ | S5(q1,21)S5(21,q2)S5(22, 23)S5(23, 24) S5 (24, 22) (D.2)

D.2 More spin structure sums involving S;5(q1,q2)

The following spin structure sums involve a product of Ss5(q1,¢2) times loops of Szegd
kernels. They may be evaluated with the use of the Riemann relations (A.20),

I (21, 225 23, 24) = Y Z[0]95(q1, a2) S5 (21, 22) S5 (23, 24)°
5

Lia(21,22,23,24) = Y Z[8]S5(q1,42)S5(21, 22) S5 (22, 23) S5 (23, 24) S5 (24, 21) (D.3)

5
and are given by,
L1 (21, 29; 23, 24) = —220w(21)w(22)w(23)w(24)
To(z1, 22, 23, 21) = —2Z¢w(21)w(22)w(23)w(24) (D.4)

The holomorphic (1,0)-form w(z) is proportional to both A(qi, z) and A(ge, 2). It was
introduced in [15] and is given explicitly in (3.2), (3.4) as well as in the compendium of
formulas in (B.29).

The following spin structure sums involve the insertion ¢[d](w; z;, 2;) of a fermion stress
tensor defined by (3.36),

Lis(w;z1,22) = Y Z16]95(q1, ¢2)@[0) (w; 21, 22) S5(22, 21)
5
La(w; 21,22, 23) = Y, Z16]5(q1, 42) @[0) (w; 21, 22) S5(22, 23) S5(23, 21)
5
Lis(w; 21,22, 23, 24) = Z[0]S5(q1, 42) (0] (w; 21, 22) S5 (22, 23) S5 (23, 24) S5 (24, 21)
5

Lig(w; 21, 225 23, 24) = »_ Z[0)S5(q1, q2)@[0](w; 21, 22) S5(22, 21) S5 (23, 24) (D.5)
5

and produce the following simple results,

Ilg(w; 21, 22) = 42073(21)’@'(22)@(10)2

Lia(w; 21, 22, 23) = 220w (21)w(20) w0 (w)* G (235 21, 22, 1, w) + (@1 < @) (D.6)
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as well as the following more involved expressions,

Lis(w; 21, 22, 23, 24) = 2o (21)@(20)w(w)2{ G (23; 21, 22; @1, W) G (24; 21, 22; Go, W)

+ G235 24, 21; q1, ) G (245 23, 225 q1, W)

— G(23; 24, 225 q1, w)G(245 23, 215 q1, W)

+ (@ < q2)}

Le(w; 21, 295 23, 24) = — 20w (21)w(20)w (w)*{ G235 21, 22; 1, W) G (24; 21, 225 G2, W)

+ G(23; 24, 215 q1, w) G (245 23, 223 q1, W)

+ G(23; 24, 225 q1, w) G (245 23, 215 1, W)

+ (1 < @2)}

see (B.16) or (B.19) for the Green function G(z; 21, z2; p1,p2)-

D.3 Spin structure sums involving Zg[4]

The following sums involve Zg[d] given by (2.11) and vanish identically,

119(2:1, Z9, 2’3) = Z 56 [(5]19[5](0)455(21, 22)55(22, 2’3)55(2’3, 2’1)
0

Finally, the following sums involve Zg[d],

Ino(21, 225 23, 24) = Y _ Z6[0]0[6](0)* S5 (21, 22)% 95 (23, 24)°
5

I (21,22, 23, 24) = Y Z6[0]9[0](0)*S5(21, 22) S5 (22, 23) S5 (23, 24) 95 (24, 21)
5

and were also evaluated in [15],

Ino(21, 295 23, 24) = —47* Wy <A(z17 23)A(22, 24) + A(z1, 24) A(22, 23))

Io1 (21, 29, 23, 24) = 274 W g (A(Zl, 29)A(z3, 24) — A(z1, 24) A( 22, 23))

We note the identity Iog(z1, 23; 22, 24) = —2I21(21, 29, 23, 24)-

E Evaluation of spin structure sums with five points

(D.7)

(D.9)

(D.10)

In this appendix we present the calculations and simplifications of the spin structure sums in-

volving various combinations of Szeg6 kernels anchored at five vertex points, complementing

the discussion in section 3.

~9] —



E.1 Simplification of J; and J-

The starting point for the simplification of J; and J; is the formula obtained in (3.7) in the
hyper-elliptic formulation. To convert the expression for J; into prime forms, we begin by
matching its poles by —274W ;¢ 7 where 57 is given by,

Ji = [03In E(3,2) — 3In E(3,1)] (A(1,4)A(2,5) + A(1,5)A(2,4)) + cyel(1,2,3) (E.1)

While —274W 57 matches the poles and residues of J;, has vanishing monodromy under
2A; cycles in all points, and is single-valued in zy4, 25, it has non-trivial monodromy in the
points z1, 22, 23, whereas .J is single-valued. The monodromy transformation of ji* under
z1 — 21 + By is given by,

Jt = 3t = 2mi (W (DA, 5) + wi(5)A(1,4) ) A(2,3) (E.2)

The monodromy in z;, as well as in the points z2, z3, may be readily cancelled by the
addition to j1* of the following holomorphic combination,

i = +0In E(1,4)A(2,3)A(4,5) + 04 In E(4,1)A(2,3)A(1, 5)
+ o InE(1,5)A(2,3)A(5,4) + 95 In E(5, 1)A(2,3)A(1,4) + cycl(1,2,3)  (E.3)

The monodromy of j{ in 24,25 vanishes, and its monodromy in 2z, 22, z3 cancels the
monodromy of j7. Thus, the combination —274W (57 + j{ ) is single-valued in all its
variables and has exactly the same poles and residues as Jp, so that its difference with J;

must be single-valued and holomorphic in all variables. Its general form must be,

S THEEM G (Dws 2wk (3)wr (4)war (5) (E.4)
1,J,K,L,M
for some modular invariant tensor 7. The subgroup of Sp(4,Z) which leaves the splitting
into A and B-cycles invariant is GL(2,Z), and contain the element —I under which wy is
odd. But there can be no odd-rank invariant tensor 7', so this tensor must vanish and we
have J; = —2m4Wyo(j7 + j{ ). The result may be simplified in terms of the functions gz{ j
introduced in (3.10), and regrouped in terms of the single-valued combinations G' of (3.13).
An analogous calculation gives also the simplified form of Jo and we recover the final results
for J; and Jy given in (3.14).

E.2 Simplification of J3 and J4

The procedure used to simplify the expressions for J3 and Jy in (3.17) is analogous to the
one used to simplify J; and Ja, so we shall be brief here. We match the poles and residues
of (3.17) with an expression —Zyj§ in terms of derivatives of the prime form,

o= (al In E(1,3) — 0, 1nE(1,2)) [T @) +cyel(1,2,3) (E.5)
1=2,3,4,5

This object is single-valued in z4, z5 but has non-trivial monodromy in z1, zo, z3. Specifically,
under z; — z1 + By, we have,

35 = 35+ 2mi(w (2)w(3) —wiB)=(2)) [ =() (E-6)
1=1,4,5
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To match its monodromy by a holomorphic form, we use the relation between w and A,

w(z2) = aA(q, 2) = caA(ge, 2)
Ca = (=) Z%0(ga) €2 (178 (E.7)

This allows us to recast the monodromy using (B.2) as follows for either value of a,
wr(2)w(3) —wr(3)w(2) = cawr(ga)A(2,3) (E.8)

The monodromy of ;3 may be compensated by adding to j% the following holomorphic
combination whose monodromy is opposite to that of j§, i.e. J3 = —Z(j§ + jg ) with,

31 = —Ca 0y, N E(qa, 1)w(1)A(2, 3)w(4)w(5) + cycl(1, 2, 3) (E.9)

Using the relation (B.2) for the points 29, 23, ¢o, and reconverting A(qq, 2;) to w(z;), we find,

5

33 = 221 () 0gu,2 + 93.02) [[ (0) + cyel(1,2.3) (E.10)
1 =2

Proceeding analogously for Jy and assembling all contributions in terms of the functions
gib, we recover the expressions for J3 and Jy in (3.19).

E.3 Calculation of Jg, J7, Jg and Jg

The functions Jg, J7, Js, Jg are defined in (3.21) in terms of spin structure sums over a
product of six Szegod kernels. The Riemann identities (A.20) evaluate spin structure sums
with four ¥-functions. To evaluate the spin structure sums in Jg, J7, Js, Jg using the Riemann
identities, we need to reduce the number of §-dependent ¥-functions in the summand with
the help of the Fay identities (A.35), (A.36) and (A.37). Moreover, we will frequently
make use of the results on spin structure sums I, ..., Is; with four or fewer vertex points
reviewed in appendix D.

E.3.1 Calculation of Jg

To compute Jg we shall use the Fay identity (A.37). Upon substituting this identity for
the squares of both Szegd kernels in the spin structure sum for Jg, we see that all the
contributions from the first term on the right side of the identity (A.37) cancel in view of
I, = Iy = 0. Making the J-dependence of Z[d] explicit, we have,

ZOE(C]la q2) 647rm’Qn' ~TJ;KL
wi(22)w, (23)wi (24)wr(z5) Jg™
E(q1,21)E(21, q2) 1,§,L 6

Jo(21; 22, 233 24, 25) =

(E.11)
where the modular tensor Jg is given by,

3" =D (610) 0[] (a1 — 21) 9[0)(21 — 42) 907 9[6)(0) OF 8" 98] (0) (E-12)
0
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To carry out the sum, we use the Riemann relations of (A.20) for a sum over even spin
structures 4. We begin by evaluating,

Jo = D _(K|0) V[0](q1 — 21) V[0] (21 — q2) V[0)(2¢3) V]6](2a) (E.13)
5
in terms of which GI L g given by,
~LIKL 1 0 Js
gL _ 1 E.14
J6 16 031 0¢3.7 OCak OCar, (E-14)

(3=C4=0

We evaluate Jg using the Riemann identities (A.20) with the following values of ¢,

Gr=a+G+G GG =3+8+G
G =a-G—G G =5-G-
G ==3+G-U (3 =—q9+0G—
G==3-G+& G =-09-G+& (E.15)
with
=g —-—A—-k 3=21—-A—K (E.16)

When (3 = ¢4 = 0, each factor 9[x]((F) vanishes by the Riemann vanishing Theorem of
appendix A.4, so that in computing the 4-fold derivative at (3 = (4 = 0, we need to apply
precisely one derivative to each factor. Doing so we find,
37 = 0"91](3)07 91k (5)0 91 (0)0" 9 ] (a)
+0"9[K](9)070[K](q) 0" O[](5)0" 0[] (5)
— [0"91K] ()07 9 [k)(3) + 0" V1] (5)07 91] ()]
x [0%0[K](a)0"9[K] (3) + 0% V(K] (3)0" V(K] (a)] (E.17)

Contracting with the holomorphic differentials, we use,

Z UJ] 8119 Mm Qr’ Z OJ[ A) eQwin’(ql—A) (E18)

The remaining combination,

E(Q1, Q2> eQiﬂ'n’Qn’
E(Qla Zl)E(Zl, QQ)

> wi(z:)0"[k](3) w.(2)0”9[K] (3) (E.19)

is a (1,0)-form in 21, 2;, z; which is holomorphic and symmetric in z;, zj, and is a scalar and
odd under swapping ¢i and go2. As a function of zy, it vanishes at z;, z; and has simple poles
at qi,q2 with opposite residues +w(z;)w(z;). These properties are uniquely matched by,

E(q1, q2) 2™ o
E((h,Zl)E Zl>¢]2 ZW] ZZ a 19 )wJ(ZJ)a 19[%](3)
= —G(21;q1, q2; i, 2w (2:) ™ (25) (E.20)
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where G is the Green function defined in (B.16). The simple poles of G in z; and z;
are cancelled by the factors w(z;)w(2;) so that the expression is holomorphic in z;, z; as
required. In terms of these functions, we have,

Jo(21; 22, 235 24, 25) = 20 p1 (=G (215 q1, @25 22, 23) — G(215 q1, 425 24, 25) (E.21)
+ G (215 q1, q2; 22, 24) + G (215 q1, @25 23, 24)
+ G(215q1, q2; 22, 25) + G(215q1, q2; 23, 25))

where p; was defined in (3.18). The result of (E.21) will be simplified in subsection E.3.5.

E.3.2 Calculation of J7

To calculate J; we evaluate the following auxiliary quantity in two different ways,
A 2
Jr =2 Z[0]Ss(q1,21)S5(21, 42) (55(22, 23)S5(24, 25) — S5(22, 25) 95 (24, 23)) (E.22)
6

On the one hand, by expanding the square and identifying with the functions J; we find,
Jr = Jo(21; 22, 233 24, 25) + Jo(215 22, 253 23, 24) — 2J7(21; 22, 23, 24, 25) (E.23)

On the other hand, evaluating the combination in parentheses using the Fay identity (A.35),
and factoring out the remaining spin structure independent factors, we have,

5 2 4 B(q1, qo) E (22, 24)? E 23, 25) J7
Jr = ’ 5 5 . (E.24)
E(q1, 21)E(21, 42) E(22, 23)* E(22, 25)* E (24, 23)* E (24, 25)
where
Jr = Y (kIO (a1 — 21)9[0] (21 — 42)9[0) (22 + 24 — 23 — 25)° (E.25)
s
This sum may be evaluated using Riemann identities (A.20) with,
T=q—A—Kk+zo+24—23— 25 (G =x1—A—K+2+24—23— 2
(= —A—k—z—z4+23+2 G =21—A—rk—2—z1+23+ 25
C;:A‘i‘/i—Zl Cg_ZQQ—A—/‘G
(C=A+r—2 (G =@—-A—k (E.26)

Since we have 9[k](¢5) = 9[k](¢F) = 0, we readily have J; = J; = 0. Using this result in
conjunction with (E.23) we obtain a formula for J7 in terms of Jg,

1 1
J7(21; 22,234 24, 25) = §J6(2’1; 294,235 24, Z5) + §J6(Zl; 292,255 23, 24) (E27)
Using the expression (E.21) for Jg, we notice some simplifications,

J7(215 22, 23, 24, 25) = Zo p1 (G (215 q1, @25 22, 24) + G(21; q1, G2; 23, 25)) (E.28)

The result of (E.28) will be simplified in subsection E.3.5.
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E.3.3 Calculation of Jg

To compute Jg we evaluate the following auxiliary combination in two different ways,

Js =Y Z[) (Sg(z4, 25)% — 0,055 In E(24, z5)) (Sa(q1, 21)85 (21, 22) — Tgy 2 (21) Ss(q1, 22))
é

X (SJ(Z% 23)S5(23,q2) — TZQ,QQ(ZS)S(S(ZQ»(]Q)) (E.29)

On the one hand, by expanding the summand term by term and expressing the sums in
terms of I and J-functions, we see that the contribution proportional to 9,,0,, In E(z4, z5)
cancels using I7 = 0, and the contributions proportional to 7 cancel in view of Ig = 0. The
remaining contribution is exactly Jg so that Js = Js. On the other hand, using the Fay
identity (A.37) for the first factor and (A.36) for the second and third factors, we arrive at
the following expression,

ZoemH U By qo) LKL
wr(21)wrp(z3)wr(z4)wi(z5) S8 7
E(q1,22)E(22,qQ) LJ’ZK’L ( ) ( ) ( ) ( ) 8

Jg(21, 22, 233 24, 25) =

(E.30)
where
Iy =3 (k16) 9[8](0) 007 9[6)(0) 9" V(6] (a1 — 22) 97I[6] (=22 — @2) (E-31)
0
To calculate the spin structure sum, we first compute the auxiliary quantity,
Js = Y (k[6) 0[3](0) 918](262) 918)(q1 — 22 + 2€5) V[8] (22 — ga + 2€4) (E.32)
é
so that,
: 1 '3
3§,J,K7L B J8 (E.33)

" 16
6 0821 0827 083K OurL, fymta—tr—0

Evaluating the spin structure sum using the Riemann relations (A.20) with,

T=a-A—r+&H+ G+
G=@p-A-rk+&H-G-4
G =A+r—2m—b+&—&
G=n-A-k-56E-G+& (E.34)

we note that 9[k](¢F) = 0 for each a = 1,2,3,4 when & = & = & = 0 by the Riemann
vanishing Theorem of appendix A.4. Hence, when taking the four derivatives, it must be
that exactly one derivative ends up on each factor. It will be convenient to convert (x| to
J-functions without characteristics. Carrying out the derivatives in &3, &3, &4 and setting
these variables to zero we find,

IWTIE = (8"0(q1 — D)2 0(1 — A)OKD(22 — A)IFD(22 — A) (E-35)

_ aKﬁ(ql _ A)@Lﬁ(ql _ A)al'ﬂ(ZQ _ A)aJﬂ(ZQ _ A)) €—4ﬂiH/(QH,—q1—Z2+2A)
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We now use the formulas (B.29) and (E.20), observe that all exponential dependence on
cancels as expected, and we find,
Js(21, 22, 233 24, 25) = 20 p2 (G225 q1, 23 24, 25) — G225 q1, G2; 21, 23)) (E.36)

The poles of the Green functions in z1, 23, 24, 25 at g1 and ¢o are cancelled by the prefactor
p2 which vanishes there, while the poles in zo at q1, g2 are cancelled in the subtraction of
the two Green functions, so that Jg is indeed holomorphic in all z; as expected. The result
of (E.36) will be simplified in subsection E.3.5.

E.3.4 Calculation of Jg

We relate Jg to Jg and Jg by evaluating the following auxiliary quantity in two different
ways,

jg = Z 3[5] (S(;(ql, 2’1)55(2’2, Z3) — Sg(ql, 2’3)55(2’2, Zl))55(21, 2:2)
)

X (S5(23, 24) S5(25, @2) — Ss(23,42) S5 (25, 24) ) Sa(24, 25) (E:37)

On the one hand, by expanding both parentheses and identifying the result with the
J-functions, we have,

Jo = Jo(z1, 29, 23, 24, 25) + Jo(23; 21, 295 24, 25)
+ Js(21, 22, 23; 24, 25) + Ja(23, 24, 253 21, 22) (E.38)

On the other hand, by using the Fay identity (A.35) for each parenthesis, and factoring out
the sum over spin structures, we obtain,

2, eAmirQK E(q1,92)E(q1, 22)E(21, 23)E(z3, 25) E(24, q2) J9

j p—
0 E(q1,21)E(q1, 23)E (22, 23) E(23, 24) E(23, @2) E(25, @2) E(21, 22)? E (24, 25 )?

(E.39)

where,

Jo = D _(k|6)0[0)(21 — 22)0[0] (24 — 25)[0] (a1 + 22 — 21 — 23)9[6] (23 + 25 — 24 — g2) (E.40)
§

We calculate this spin structure sum using the Riemann identities (A.20) with,

GF=a—-A-k G =qa—-A—k—z1+2
(S =21+zu—2m—z—-—qa+A+kK GG =2—2—-—q@+A+k
(F =A+r—23 (3 =2m—2n1—23+A+kK
(=21 +zmtzm—m—u—A—k (G =23+2m—24—A—kK (E.41)

The Riemann vanishing Theorem reviewed in appendix A.4 implies that 9[](¢]) = 0 for
a = 1,3 which causes the product involving ¢ to vanish. Converting (x| to ¥-functions
without characteristics, the product becomes,

4
[ 2K)(¢) = e G2 9(gy + 29 — 21 — A)I(go + 24 — 25 — A)
a=1

X Hzz+21 —20— A)H 23+ 25 — 24 — A) (E.42)
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We use (B.10) to express the ¥-functions as follows,

o +2j —2i — A) = ( )aw(Zj)E(qu(zjii'z)zzi;(zi) e~ 27K’ (qa—A)
E(z, 2j)E(zi, z1)0(2;)

Dz + 21— 2 — A) = (2 — A E.4
(Z] +Zk z ) 2[:0‘)1(2]?)8 (Z] ) E(Zj,Zk;)O'(Zk) ( 3)
and taking the product of all four ¥-functions we use the variant of (E.20)
E(Qb Q2)
wi(21)0M0 (23 — A)wy(25)070(23 — A
LZJ 1(2) (= s (z) (23 )E(QLZ?))E(Z&@)
= —G(z3;q1, 42 21, 25)w(21) (25) ™ (A7) (E.44)
to obtain,
Jo =220 p3 G(23;q1, q2; 21, 25) (E.45)

Combining this result with (E.38) and using the expressions (E.21) and (E.36) for Js and
Js, we find,

Jo(21, 22, 23, 24, 25) = 20 p3 (G (235 q1, q2; 21, 22) + G235 q1, 42; 24, 25)
+ G (23591, 25 21, 25) — G(235q1, G2; 21, 24)
— G(23;q1,q2; 22, 25) — G (235 q1, q2; 22, 24))
+ Zop2(G(22; q1, 923 21, 23) — G (223 q1, 425 24, 25))
+ Z0pa (G245 q1, 25 23, 25) — G (245 q1, G25 21, 22)) (E.46)

The poles in z7, 29, 24, 25 at q1, g2 are cancelled by the prefactor ps, while the poles in 23 at
q1, g2 cancel in the sum of the six Green functions, so that Jg is holomorphic in z1,--- , 25
as expected. The result of (E.46) will be simplified in subsection E.3.5.

E.3.5 Simplifications of Jg, J7, Jg, Jg

The expressions obtained in (E.21), (E.28), (E.36) and (E.46) may be simplified further by
using the following relation

w(2)w(x)w(y)G(z;q1, q2; ¢, y) = c%@w(ql)A(z, x)A(z,y) (E.47)

To prove this formula, we compare the properties of both sides which are single-valued in
x,y, z. The left side is a holomorphic (2, 0)-form in z since the poles in z at ¢, g2 are cancelled
by w(z), and a holomorphic (1,0)-form in x and y, since their poles at ¢1, g2 are cancelled by
w(x)w(y). Furthermore, the left-hand side is symmetric in x,y and vanishes at z = z and
z = y. Therefore it must be proportional to A(z,z)A(z,y). The factor of proportionality
must be independent of x,y, z and may be determined by taking the limit z — ¢.

Applying (E.47) to J; readily gives its expression in (3.23). In the remaining cases,
namely Jg — J7 and Jg, Jo, the factor of the inverse of w cancels out using the relations
of (B.2), in agreement with the fact that those spin structure sums are holomorphic in all
the variables. Their resulting simplified expressions are given in (3.23).
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E.3.6 Consistency checks for Jg to Jg

We note some simple checks between the defining formulas for the spin structure sums
Jg to Jg in (3.21) and the expressions obtained in (3.23). From their definitions in (3.21)
one observes that Jg and J; take the same value as we let either zo — 24, or z3 — z5, in
agreement with the first formula of (3.23). As we let z; — 24 (or similarly when 2z — z5),
it is seen from the definition in (3.21) that Jy tends to Js5, which vanishes and this is borne
out in the last formula of (3.23). Finally, as we set z3 = q; or g2 in the definition of Jy
in (3.21) we obtain Js, in agreement with the last formula of (3.23).

The residue of J7 as z1 — ¢ is related to I12 by inspection of the spin structure sums,

922,
12(2,3,4,5) = —2”

J7(1;2,3,4,5) ~ —
Z1 — 41 21— q1

(E.48)

The rightmost expression is produced by evaluating the pole in J; starting from (3.23) as
well as by using (D.4) for I15. Further checks relate Jg and Jg by letting z3 — 21, and Jy
to J7 by letting z5 — 21 in the expressions for these functions given in (3.23),

Js(1,2,1:4,5) = ~J5(1:2,1:4,5) = 200 (q1) [w(1)A(L,5)A(2,4) - =(5)A(1, 2)A(1,4)]
Jo(1,2,3,4,1) = J7(1,2,3,4,1) = Zoct0w(q1) A(1,2)A(1,4)w(3) (E.49)
Finally, one relates J3 to Jg and Jy to Jg by letting z; — g2,

Jg(qz, 2, 3; 4, 5) = Jg(QQ, 2, 3; 4, 5) = —Zng@’W((]g)A(Q, 3)@(4)@(5)
Ji(q2,2,3,4,5) = Jo(q2,2,3,4,5) = Zpce0w(q2)A(2,5)w(3)w(4) (E.50)

Both equalities on the left follow from the definitions of J3,Js in (3.16) and the definitions
of Jg, Jg in (3.21) in terms of spin structure sums. Both equalities on the right are obtained
from their general expressions in (3.23) by setting z; = g2. To evaluate J3(go,2,3;4,5) and
Ju(q2,2,3,4,5) it is convenient to use the expressions of (3.17). The contributions from the
cyclic permutations vanish automatically, since p;(g2) = 0 for i = 2, 3,4, 5, so that only the
terms proportional to p; remains. To evaluate those, we use (C.15) and (B.34) and obtain
the right side of both relations in (E.50).

E.4 Calculation of Jy1; and Jio

To evaluate the spin structure sums in J11 and J12 we perform two further reductions of
the number of Szegd kernels in the summand on which the Riemann identities (A.20) can
be used. To do so, we introduce the following combinations,

Rs(z1, z2; w1, wa) = Ss(21, w1)S5(22, wa) — S5(z1, w2) S5 (22, w1) (E.51)

which satisfy the following symmetry properties,

Rs(22, 215 w1, wa) = —Rs(21, 22; w1, wa)
Rs(z1, 205 wa, w1) = —Rs(z1, 22; w1, w2)
Rs(w1,ws; 21, 29) = Ry(21, 295wy, w2) (E.52)

— 99 —



On the one hand, by the Fay identity (A.35), it is given in terms of the following ratio of
J-functions and prime forms,

19[(5](2’1 + 29 — w1 — wQ)E(Zl, ZQ)E(wl,U)Q)

Rs(z1, 295 w1, we) = — E.53
(21, 223 w1, wo) 9[6)(0)E (21, w1) E (21, w2) E(z2, w1 ) E (22, wa) (E.53)
On the other hand, listing the three possible combinations involving four points,
Rs(21, 223 23, 24) = Ss(21, 23) S5 (22, 24) — Ss(21, 24) S5 (22, 23)
Rs(21, 235 24, 22) = S5(21, 24)Ss(23, 22) — S5(21, 22) S5(23, 24)
Rs(21, 245 22, 23) = S5(21, 22)S5(24, 23) — Ss(21, 23) S5 (24, 22) (E.54)

shows that the product of two Szegd kernels may be simply expressed in terms of Ry,
1 1 1
Sg(zl, 22) 55(23, Z4) = §R5(21, 22523, 24) — §R5(21, 23574, 22) — §R5(21, 24522, 23) (E.55)

We shall now introduce the following spin structure sums involving the combinations Rs,

L1<w7 1,2;3,4, 5) = Z 2[5]55((]17 QQ)QO[é] (U), 1, 2)R5(17 3;4, 5)R5(27 3;4, 5)
8

Ly(w; 1,2;3,4,5) = Y Z[0]5(q1, 42)[8) (w; 1,2) Rs(1, 3;4,5)Rs(2,4;5,3)  (E.56)

Applying the decomposition (E.55) of products of two Szegd kernels into the products
S5(2,3)S5(4,5) and Ss(1,3)S5(4,5) in the summand of J;1, and to the products Ss(2,3)Ss(4,5)
and Ss(3,4)Ss(5,1) in the summand of Jy2, one verifies that the functions Ji; and Ji2 are
given by the simple linear combinations of these building blocks in (3.40). It remains to
evaluate L; and Lo which is done in the subsequent two subsections.

E.4.1 Evaluating L,
Substituting the expressions (3.36) and (E.53) for ¢[d] and Ry, respectively, into L, we

obtain,
Lo— ZyE(1,2)E(1,3)E(2,3)E(4,5)% £, (E.57)
YT B w)2E(2,w)2E(1,4)E(1,5)E(2,9)E(2,5)E(3,4)2E(3,5)2 '
where £ is given by,
€1 = NN 16)0[0) (g1 — a2)0[0) (21 + 22 — 2w)
5
X V[0](z1 + 23 — 24 — 25)0[0](22 + 23 — 24 — 25) (E.58)
To apply the Riemann relations (A.20), we use,
(F==F(@—A—kK) +z1+2+2—2—25—
s =@ —A—k) +tautzm—a—w
§t = (q1 A — R) +w — 29
(F=+g—A—kK) +w—2z (E.59)

- 100 —



Since —(q1 — A — k) = g2 — A — k, the Riemann relations give,
£ = 4mN/QN H 19 q1 — QQ) (E.GO)
Using the relation,
I[K](C — k) = e~ TR ARETINCy (¢) (E.61)
we find after various simplifications,
£ =2 egﬂm,(ql*A)ﬂ(ql —A+z1+204+23— 24— 25 — W)
xI(qr — A+ zs+ 25 — 23 —w)¥ @ — A+ w — 22)
x V(g1 —A+w—21)+ (1 < ) (E.62)

Expressing the J-functions in terms first of the Green functions G3 and G, discussed in
appendix B.4, we recover the result for L; in (3.43). More specifically, intermediate steps
are based on (B.23), (3.4) and (E.43).

E.4.2 Evaluating Lo

Substituting the expressions (3.36) and (E.53) for ¢[d] and Ry, respectively, into Ko, we

obtain,
2y B(1,2)E(1,3)E(2,4) £5
Lo(w;1,2:3,4,5) = — E.63
2(wi 1, 23,4.5) = — P B @ w2 E(L B 5 ER, 8) ER.5)EG 1 0%
where £5 is given by,
L5 = NN 4116)0[0) (g1 — a2)0[0) (21 + 22 — 2w)
1)
X V[0](z1 + 23 — 24 — 25)0[0](22 + 24 — 23 — 25) (E.64)
To apply the Riemann relations (A.20), we use,
(=4 —A—kK)+2+2—25—w
y=Ep —A—k)+2—w
3[: (g1 —A—R)+w+z3—20—24
=@ - A—R) fwtzi—z -z (E.65)
Since —(q1 — A — k) = g2 — A — k, the Riemann relations give,
4
€9 =2 TTO[R)(C) + (@1 ¢ ¢2) (E.66)

a=1

Using the relation (E.61) we find,

Lo =28 BN (g — At z5 —w) W g — A+ 21 + 22 — 25 — w)
XHqp—A+zs+w—20—24) g1 —A+z4+w—21—23) + (@1 < q2) (E.67)

Expressing this combination in terms of the scalar Green function G in (B.16) we recover
the expression for Lo given in (3.43) using intermediate steps based on (B.36) and (B.38).
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E.4.3 Consistency checks for L; and Lo

By comparing the defining relations for Ly and Lo in (E.56) with the evaluations given
in (3.43) in various limits we obtain consistency checks on our results, especially regarding
the overall signs. We shall use the facts that [d](w; 21, 22) tends to zero as zo — zi;
Rs(21, z9; w1, wo) tends to zero as zo — 21 and as wy — wy; and that Rs(z1, 22; w1, ws) has
a simple pole as w; — z; for 4, j = 1,2, whose residue is given by,

Rs(21, z2; w1, wy) ~ Ss(z1,w2) (E.68)

w1 — 22
and permutations thereof.

From these observations and its definition in (E.56), it is clear that L1 — 0 as z1 — 29;
as z1 — z3; as zo — z3; and as z4 — 25, and these results are indeed borne out by the
corresponding limits of the explicit solutions given in (3.43). Furthermore, L; has a double
pole as z4 — z3, whose residue may be read off from inserting the limit of both factors
Rjs into the definition of Ly in (E.56), using the fact that the resulting sum is given by
—I14(w;1,2;5), and then using the evaluation of I14 given in (D.5),

. 2Z2w(l)w(2)

Li(ws 123, 4,5)| o~ = =0

@(w)’G(5; 1,2 q1,w) + (1 4> q2)  (B.69)

On the other hand, the evaluation of the same limit from (3.43) gives,

_ 2Zyw(5)w(2)

Ll(w; 172;3747 5)’(3.43) ~ (ZS — 24)2

w(w)*G(1;5,w;2,q1) + (q1 < ¢2) (E.70)
The overall sign of L; may be checked by comparing the residues of these formulas at the
pole in z; — 25, which are both given by 4Zyw(1)w(2)w(w)? and thus agree. Actually, the
entire residues agree in view of formula (B.38).

Similarly, it is clear from its definition in (E.56) that Ly — 0 as 21 — 2z2; as z1 — z3; and
as zo — 24, all of which are borne out by the corresponding limits of (3.43). Furthermore,
Lo has a double pole in z3 — 24, and we have,

. 2Z2yw(l)w(2)

(E.56) ~ (23 — 24)2 W(’U))QG(5, 1a 27 q1, w) + ((h A Q2) (E71)

Lo(w;1,2;3,4,5)|

On the other hand, the evaluation of the same limit from (3.43) gives,

220w (1) (2
Lo(w;1,2;3,4, 5)‘(3.43) R _(23524)5)72(1”)261(5; 1,2;q2,w) + (1 <> ¢2) (E.72)

These expressions manifestly agree with one another.
F A(q.)-dependence of pairing Jig, J11, J12 against p

In this appendix, we shall derive the pairing integrals of the spin structure sums Jig, J11, J12
in (3.33) against the Beltrami differential p and denote the resulting integrals by 7, for
a = 10,11,12, given in (4.29). The results will be expressed in terms of the function A
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introduced in (4.5) and its derivative. Two different types of contributions arise, namely those
which depend on A(z;) and 0A(z;) and those which involve only A(g,). The contributions
involving A(z;) and 0A(z;) were already shown to cancel against similar contributions from
the stress tensor of the bosonic fields in section 4.4 and do not need to be retained here.
Instead, we will only evaluate the contributions involving A(q,) as will be reflected by
superscripts (9 in the notation. Throughout, we shall make heavy use of the formulas given
in the compendium (B.32) and (B.33), and originally established in [15].

F.1 Integral of J;o9 against the Beltrami differential

Using (3.39), the fact that the integral of I;3 against u vanishes, and retaining only the
dependence on A(q,), we readily have,

x12 ds

J9(1,2;3,4,5) = — T0(4,5:1,2) + cycl(1,2,3) (F.1)

2293131
The expression for Ifg) is obtained from formulas (8.8), (8.12) and (8.14) of [15],

79(4,5:1,2) = gg(A(l,zl)A(z,s)) +A(1,5)A(2,4)) (F.2)

Hence we have,

C1¢% z1adas

(9)
1,2;3,4,5)=—
le ( )y Iy 5y ) 167T2 .’B23$31

(ALAAE2,5)+A(1,5)A(2,4)) +eyel(1,2,3)  (F.3)

This is proportional to the expression (3.7) for Ji,

¢'¢?

1,2,3;4,
\710 ( 3 5) 327‘(’6\1/10

J1(1,2,34,5) (F.4)
Recasting J; in terms of G/-functions as in (3.14), we find,

2
TD(1,2,3:4,5) = 15_644 (wr(DA2,4)A(3,5)G1 5540+ (44 5)) +eyel(1,2,3)  (F.5)

F.2 Integrals of L; and Lo against u

The functions Jq; and Ji2 are given in (3.40) as linear combinations with constant coefficients
of the building blocks Ly and Lo with simplified expressions in (3.43). Thus, to evaluate
the integrals of Ji; and Jis against the Beltrami differential u, it suffices to compute the
integrals of L1, Ly against u,

Lo(1,2:3,4,5) = — /,u(w)La(w;l,Q;B,él, 5) (F.6)

o

Since we have already dealt with the contributions involving A at the vertex points, we shall

)

retain here only the contributions involving A(g,) and denote those by qu . Expressing p in

terms of A, using the choice of additive constant by the vanishing of the sum A(g;)+A(g2) =0
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as given in (4.9), and the expression for the difference in (4.8), we obtain the following
simplified expression,

¢'¢?

£9(1,2:3,4,5) =
a'(1,2:3,4,5) 1672¢1co

> 2La(4a31,2,3,4,5) (F.7)
a=1,2

In carrying out the above simplifications, we have assumed that the limit of L,(w;1,2,3,4,5)
as w — g, exists, but we shall show by explicit calculation below that this is indeed the
case for both L and Lo.

F.2.1 Evaluating qu)

To evaluate qu) we use (3.43) for L; and the behavior of Gy and Gs near these poles in w at

da, which may be read off from their representation in terms of the b, ¢ system, see (B.22),

A4,5 1,2,3;4,5
M Q3(1,2,3,q1;4,5,w) ~ _M

92(4, 57Q1; 37w) ~
w—q1 w—q

(F.8)

Since @ (w) = (W — ¢a )0 (qa) + O((w — ¢4 )?) has a simple zero in w at g, L1 has a smooth
limit as w — ¢4, and (B.32) implies that,

1,2
£0(1,2:3.4.5) = £ G:(1,2,3:4.5)A(4,5) (F.9)

This expression is nicely independent of g1, g2. Finally, we may use (B.27) to express Gy in
terms of 7, and then express that result in terms of the functions G',

1,2
£00,2:3,45) = 5 Y arDACHALHGL 5 + od(1,23)  (F10
I

F.2.2 Evaluating qu)

To evaluate Eéq), we need the limit of La(w;1,2,3,4,5) as w — ¢,. To this end, it will be
useful to recast the Green functions G in Lo of (3.43) in terms of the Green function Ga,
and simplify the extra factors with the prefactor w(w)? in Lo to obtain,

1w (2
Lo(w;1,2;3,4,5) = 2c1czzow(w)(:)()

+ ng2(3, q2, W; 27 4)g2(47 g2, W; 17 3)g2(57 q1, w; 17 2)} (Fll)

[0192(3, q1, W; 27 4)g2(47 q1, W; 17 3)g2(57 q2, W; 17 2)

As w — g1, both terms have a simple pole in w from the prefactor w(w)~!. The first term
has a double zero from the first two Green functions while the third Green function is
regular, so that the first term vanishes. The first two Green functions in the second term
are regular as w — g1 while the third Green function,

w—q2
(&)

g2(57 q2, W; 17 2) = aW(QQ)G(5, 17 27 q2, QQ) + O ((’U) - q2)2> (F12)
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has a simple zero which cancels the pole in the prefactor. As w — g9, the roles of the terms
are reversed. Therefore, Lo has a smooth limit as w — ¢, which, after reconverting the
third Green function Gy back to G, is given by,

2 2
Lo(d0i 1,2,3,4,5) = 25132 Zow(1)(2)Ga(3, 01, 423 2, 4)

«

x G2(4,q1,92;1,3)G(5: 1,23 qa, 4a) (F.13)
This expression may be simplified considerably by using the following identity,
w(l)w(2) g2(37 q1,92; 21 4) g2 (4> q1,492; 17 3) = _8w(QI)aw(Q2)A(17 S)A(27 4) (F14)

Both sides are single-valued holomorphic (1,0)-forms in z1, 29, 23, 24 since the poles in all
these points at g1, g2 cancel on the left side, namely the pole in z3 at zo cancels by (B.25)
and similarly for the pole in z3 at z4. To evaluate this combination in terms of more
standard objects, we use the expression for Gy in terms of 7 of (B.27) in the following form,

") 1 01) — o (a2) (F.15)

g2(Z7 q1,42; xay) =

Using formula (B.33) to simplify this expression and taking the product of the two copies
of Gy on the left side of (F.14) then establishes the formula. Using (F.14), the expression
for Lo simplifies, and we have,

L3(qa; 1,2,3,4,5) = ~2-2 A (1,3)A(2,4)G(5: 1, 2; as da) (F.16)
so that,
2
002,35 = - S SALHAR N Y G612 00,00 (F.17)

«

F.2.3 Simplifying ngq)

The poles in z5 at z; and z9 are independent of g, while the poles in z; and 29 at g, are
holomorphic in z5, and may be isolated as follows,

fZG 51,25 Gos o) = T1.2(5 Zwl — Bl (F.18)

where the functions BZ-I appeared in the discussion of section 4.7 and are defined as follows,

1J

I_ Cao € o
B; = § 20w () (aqan(Qa)Tzz',ZO (9a) WJ(Qa)aanZi,ZO (%z)) (F.19)

Here 2 is an arbitrary reference point which has been introduced via 71 2(ga) = 71,2 (¢a) —
T9.20(¢a) and cancels out of the differences B — B]I . The functions B/ are single-valued
(0, 0)-forms in the points g, with double poles in z; at g1 and go. Neither 71 2(5) nor Bf — B}
is single-valued in z1, 25, but their combination above is single-valued. The monodromy of
BJI under z; — z; + B is given by

Bj — Bl 4 2ridy (F.20)
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which guarantees that qu)(l, 2,3,4,5) is single-valued, and takes the following form,

£49(1,2,3,4,5) = A(2,4) Zwl )(9is + 942 — B3+ BY) (F.21)

¢¢ 42
472
F.3 Evaluating J(Q) and Jﬁ

The expression for [J11 in terms of £; and Lo restricted to only the contributions from qu)

and qu) may be read off from (3.40) and is given by,

1
TJ0(1,2,3;4,5) = 1 [ — £49(1,2;3,4,5) — £{7(1,2;4,5,3) — £{7(1,2;5,3,4)
+£57(1,2:3,4,5) + £57(1,2;3,5,4) — £57(1,2;4,5,3)
+ £80(1,2;4,8,5) + £57(1,2;5,3,4) - £§7(1,2;5,4,3)]  (F.22)

Substituting the corresponding expressions (F.10) and (F.21) for £§Q) and Egn,

2
£9(1,2:3,4,5) = C C - Ga(1,2,3;4,5)A(4,5)
2
. ij e A@,5)(e]s — ols) + evel(1,2,3)
2
00,2345 - 5 P S OADAR A6~k BB (P

The definition of B! may be found in (F.19) respectively. Working out the combinatorics
for the cyclically symmetrized version J73 in (4.28), we find,

C C2
Jh(1,2,3;4,5) ZWI 4)A(3,5) (9{,2 + 295,4 + 294{,5 + 295{,3 + 9%,1

+ Bl — Bg’) + (4« 5)} + cycl(1,2,3) (F.24)

The result may be related to the final expression (3.14) for J; as follows,

2
Ji(1,2,3;4,5) = C C ZWI A(3, 5)(95,4+9i,5+gé,3+B§—B§) +eyel(1,2,3)
1 2
+%Zw1(l)A(2,5)A(3’4) (95,5+9g,4+9i3+35*3§)+cycl(1,2,3)
7
ClCQ F.25
———Ji(1,2,3;4 .
+167T6\I»'10J1( 2,3;4,5) (F.25)
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F.4 Evaluating J(q) and ._’7132

The expression for [Ji2 in terms of £1 and Lo restricted to only the contributions from qu)

and qu) may be read off from (3.40) and is given by,

TP (1,2,3,4,5) = 2 [ £17(1,2:3,4,5) - £17(1,2:4,5,3)+ L7 (1,2;5,3,4)

1
4
—L57(1,2;3,4,5)— £57(1,2;3,5,4) + L5 (1,2;4,3,5)

—£50(1,2:4,5,3) - £50(1,2;5,3,9)+£57(1,2:5.4,3)]  (F.26)

We shall now substitute the expressions (F.10) and (F.21) for qu) and £(2q) into the cyclically
symmetrized combination J;3 in (4.28) that actually enters the calculation of the amplitude.
Converting this result into the functions gib, and decomposing onto the canonical cyclic
basis of five-fold holomorphic (1,0)-forms, we find the following simplified result,

e
Ji3(1,2,3,4,5) = 82 ZWI A(4,5) (2gé,1 + 29{,2 + 95,3 + 393{,1 + 39{,4 + gi5

— B} + 2B} — 2B{ + B}) + cycl(1,2,3,4,5) (F.27)

Part of ;% may be expressed in terms of J given by (3.15),

¢'¢?

S
1,2,3,4,5
\712( ) Hy Dy Ty ) 87T6\1110

S 7(1,2,3,4,5) (F.28)

C C2 I I I I
Z wr(1 JA(4,5) (92,3 T 945+ 9131 9a1
+BL 2Bl +2BI - Bg) + eycl(1,2,3,4,5)

where the cyclic permutations are taken only of the last two lines. The poles of the terms
in g{73 and gil are cancelled upon cyclic permutation, and one may write a manifestly
pole-free expression, as follows,

¢'¢?

S
1,2,3.4.5 J2(1,2,3,4,5 F.29
j12(777ﬂ> 86111102(7, ) ( )
C<2§: DA(2,3)A(4,5) (gL I +Bl - B+ Bl — B!
32 wr(1)A(2,3)A(4, )(92,3+94,5+ 9 — b3+ by — 5)
I
CCZ I I I
— § wi(1)A(2,5)A(3,4) (955 + Bj — B) + cyel(1,2,3,4,5)

where the cyclic permutations are applied only to the last two lines.

G The vanishing of (fl and éz

We shall now demonstrate the vanishing of the differential forms C; and Cs in (6.20). This
result will establish another major cancellation within the chiral five-point amplitude among
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the contributions in (6.19) indicated by the blue arrows in figure 1. It will be useful to
re-express these combinations as follows,

él(ivja kv& m) = ZMI(Z)A(],K)A(]C,TR) (gjl',f + gl{,m + ggn,k)
I

- A(,Lv k)f-)(.]a fa m) + Cy01(7:5j7 k)
Coli, j, s bom) = S wr(B)AG, K)AWm) (9] + b + 911 + 91,
I

—A(Z,k)f)(],f, ’I?’L) +CyCl(i7j7ka£ﬂ m) (Gl)

The instructions to add cyclic permutations apply to all terms in each expression. The
form $(j,¢,m) contains all the double poles of the vertex points at g,, and is given by,

az.ﬁqa n 255 4o
95, 6;m) = 3 (wr(OAGm) +wi(m)AG, ) Bf + = () (m) 3 = ;wEé 3 |
I “ " ’

(G.2)

G.1 Properties of the differential forms C~1 and éz

The differential forms C; and C, obey the following properties,

C; and C, are single-valued (1,0)-forms in each vertex point z;;

C1 and C, are single-valued (0, 0)-forms in gu;

1(%, 4, k; £, m) is invariant under cyclic permutations of 4, j, k and ¢, m;

C
Ci(i,7,k;¢,m
C
¢

(

( is odd under the interchange of 4, j;
Z(iv j: kv ga m

(

is invariant under cyclic permutations of 4, j, k, £, m;

~— — ~— ~—

2(i,J,k,£,m) is odd under reversal (i, j,k,{,m) — (m,{, k,j,i);

C, and Cy are holomorphic in each z;

® N o e WD

as a consequence of the previous items, C; = Co = 0.

Single-valuedness in items 1 and 2 was achieved by construction. The symmetry
properties in items 3 to 6 may be shown from the explicit formulas for C; and C; in (6.20)
and the transformation properties of gib and BiI . Next, we shall show prove item 7 that C;
and Cy are holomorphic in the vertex points zj, namely that there are no singularities as
two vertex points collide, and there are no singularities as z; — gq.

G.2 Holomorphicity of ¢, and G-

To show that C; has no singularities at coincident vertex points, we use the fact that
$9(j, ¢, m) has no such singularities, that the contribution from gl{m to C; cancels out, and
that the poles in g]{e + gi%k, are cancelled by the prefactor A(j,¢)A(k,m). Similarly, the
poles in Cy arising from gj{k + gt{m are cancelled by the prefactor A(j, k)A(¢, m), while those
of gi{ Tt gl{i are cancelled upon adding the cyclic permutations. This leaves only the poles
of $(j, ¢, m) and their cyclic permutations as z; — ¢q.

- 108 —



To show the absence of the remaining singularities in C; and Cy we use the following
formulas to extract the double and simple poles as z; — qq,

Og., In E(z;, =— +re
q (%), 4a) — g
1
02,04, M E(2j,q0) = 7(% ) + reg
j «
1
92 In E(z;, =———— +re G.3
qa ( J qOé) (ZJ _ qa)Q g ( )

The terms in C; and Co with poles in zj at gq are proportional to $(j, ¢, m) defined in (G.2).
Using the expression for B]I- we obtain the forms of the double and simple poles,

w(a) cawr(a)e!’ 0y, w1 (qa)
wr(a)Bl = — — = + reg (G.4)
; ! ; 20w (¢a)(2j — qa)? a;] 20w(ga) (2 — 4a)
The double pole in z; at g, cancels in view of the identity coA(qqa,a) = w(a), while the
simple pole in z; at g, is given by,

-1 Z (w(ﬁ)ﬁqu(qa, m)+w(m)0y, A(qa,¥)

S;J(]’E’m):Zj—qa — 28@((]&)

+y (@(O)wr(m) +w(m)wr (0))e"’ dg,ws (¢a)
1,J

20 (00 ) +reg (G.5)

also cancels in view of ¢4, A(qq, ) = w(f). In summary, we have the following Lemma.

G.3 The vanishing of ¢, and G-

To prove item 8 we shall begin by combining the implications of the properties established in
items 1 to 7. Since Cy(i, j, k; £, m) is a single-valued holomorphic (1,0)-form in each vertex
point z;, it may be expressed in the basis of holomorphic (1,0)-forms wy(z;) for each z;,

Ci(i, g ki tom) = > wili)ws()wi (k)wr (Owar(m) f M (G.6)
1,J,K,L,M
The modular tensor C{ SEGLM g a single-valued scalar in ¢, in view of item 2, and inde-

pendent of all z; in view of item 7. It has cyclic symmetry in I, J, K and L, M in view of
item 3, and is odd under swapping I, J in view of item 4. Because of the last property, its

components may be parametrized in terms of a rank three tensor AXEM ag follows,
Cll,J,K;L,M _ T AKLM | JK g\LLM | _KI gJ:L.M (G.7)
As a result, we have,
Ciliyj ki tom) = > wi(Owar(m) AK?LﬂM(A(i, Pwi (k) + cycl(i, , k)) (G.8)

K,L,M

but this combination vanishes by the fundamental identity (B.2) of the bi-holomorphic form
A. This completes the proof of item 8 for C;.
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Since Cy (4,7,k,¢,m) is a single-valued holomorphic (1,0)-form in each vertex point z;
in view of item 1 it may be expressed in the basis wr(z;) for each z;, so that we have,

62(7;7.7‘7]{’& m) - Z wl(i>wj(j)wK(k)wL(£> ( )CIJKLM (GQ)
I,J,K,L,M

The tensor CI SELM

of all z; in view of item 7. It has cyclic symmetry in I,J, K, L, M in view of item 5
and is odd under reversal (I, J,K,L,M) — (M,L,K,J,I) in view of item 6. Since the
indices I, J, K, L, M can take the values 1,2, the implications of its behavior under cyclic

is a single-valued scalar in g, in view of item 2, which is independent

permutations and reversal are readily analyzed on its 32 components, for J # I,

el — el

clIL _ _gJIin _ _olil

ClLII — _oJJUI _ _clil))

ClII — _eJII _ Il (G.10)

The first equality from the left on each line follows from oddness under reversal, while the
second equality on the second, third and fourth lines follows from cyclic symmetry. When
(I,J)=(1,2) or (2,1) the first line gives 2 identities while each one of the remaining lines
gives 10 identities totaling 32. Every line implies that the corresponding components vanish,
which proves the vanishing of Cs in item 8.

H Kinematic rearrangement of §s + F9 + F10

The purpose of this appendix is to prove formula (7.54) which is the key to express the
entire kinematic dependence of the five-point amplitude in terms of tg tensors. To begin,
we obtain the following decomposition of the tensors Sj;” into the parts M/", N\ and Q}}
which arise from the decompositions of §s, §9, and §19, respectively,

S = ME + NE + QLY (H.1)
The individual contributions, properly symmetrized in 4, j, may be read off from match-

ing (7.51) with (7.52),

ME =2 S [2fe i) — 20 E ) i) — 2 fefifm) (i) (H2)
k,l,;m#i.j

+{(fifi )" = (fifu £ + (fufi fi)™
+ (i fife ™ = (Fifif ™ + (Ffif)™ Y (fefm)|

N = > [(fz‘fjfkfefm)w = (fifmfefe )" = (fofifrfifu)™ + (fefmFufifi)"

k,tm#i,j

+ (fififufefm)" = (fifmFefef ) — (fefifufifm)" + (fefmfkfjfi)“”]
QW= X A (2Uefsfm) — 2 fifefm) + i) i) — (Fefn) (F52)

k,l,m+#i,j
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The sums are over mutually distinct k, ¢, m which are different from ¢ and j, say six

permutations of 3,4,5 if (i,5) = (1,2). By construction, the tensors M/", N/, Q}" are

anti-symmetric in @ and v and symmetric in ¢ and j. The relations in (7.53) originate
from the corresponding relations of each individual tensor, and in particular guarantee that

s, 89, §10 are individually independent of the arbitrary point zg.

H.1 Kinematics: notation and identities

We start by deriving auxiliary identities that will later on facilitate the simplification of the
tensor contractions k' Mi‘;y and k' Ni‘;'j. In addition to the conditions k? = ¢; - k; = 0, we
have the linearized Bianchi identity,

RS RLAP 4 R = 0 (H3)
Throughout we use the notations,

(f1f2 e fn) = f{’«l#2f;2,u3 e f#nﬂl
(Fufa- - fal = fP2f520 - 0 (H.4)

The Bianchi identity implies the following identities,

K (fre fioeofo) = (fioo fufre fic )M K+ K (figr - fafr--- fi)™ (H.5)

as well as,

ki (fuee firo )0 = (freo fim) 7R (i Fu) A (1o fi) VR (fign - fo)7P (HL6)

for 1 < i < n, and the following identities for ¢ = 1, n,

KV (fife f)P = kY (fifa - f)" + fUPES (fafs oo fn)
kh(fifo---f)"? = (fufar o fo1)" kn £BP + (fifo - fo)"F KD (H.7)

Further identities that seem to be useful may be obtained by contracting u,v in (H.6),
G fo )P0 = (S TR fima o P )P 4 (freee SRS (fiea = £)7F - (HL8)

with the special cases for i = 1,2, n given by,

B (fife--- fa)* =0
kn(fife--- f)' = =(fufife- - fa1) @ ky + (fifo- - fo) K

B (S fal = SO B (fafu o ) (1.9)
We single out the special cases for n = 3,
K (ffi )™ =0
kK (fifif) = 5(faf) Y FEY
ki (fifi i)™ = (fififu)ki — (fufifi) ki (H.10)
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and for n = 5,

K (fifjfrfefm)t =0
K (fifj fufefm)™ = 5(fif3) K (frfefm)™
ki (fififefefm) = ki (fififufefu)™ = (fififi) ki (fofm)"”
ky (fifjfrfofm)™ + Ky (frfififefm)™ = (fifjfufo) ki 15
( M=k (

kL (fzf]fkféfm)“y kﬁn féfk:fjfzfm H = zfjfkfffm) (H'll)

H.2 Inner products with k:f

To prove the relation (7.54), we shall evaluate the inner products k' ijw, K N EY and k!’ ij"

for all ¢ #£ j and then obtain their sum. Straightforward application of the kinematic
identities in (H.10) gives the following result,

REMEY = 37 [SRECRSi )™ (fi) = SR e fo) ™ (Fif) + 5 CFifie) (F3 FoORL Tl
k., m#£i,j

— M B kY + 5L R FE + S(Fifi) R £} (fofm)| (H.12)

Similarly, we obtain,
KINE = > [kf(fjfifkfefm)w—kf(fzfifkfjfm)“”—kf(fefjfkfifm)w
k,l,m#£i.j5

FRE fefom FrfiFi " =R (F o f e )™ 4R oS fefi )] (H13)

The evaluation of the first and second terms proceeds directly using the first identity
n (H.11). To evaluate the remaining terms we use the last two lines of (H.11) to obtain,

K (fefifrffm)' + B (fefifofifm)' = (fofifefi) KL B
ki (fefm e it + K (fefm e fi )" = (fofm Frfi) K] £7
KX (fefmfufi f) — K (f frufmfefi)™ = (fefmfufifi)ky (H.14)

After summing over all permutations of k, £, m, the terms on the left side precisely correspond

to the combinations occurring in the summand of kj'N}}”, and we have effectively,

KECfofi Fefifm)™ — S (fofjfufi)KE f12F
K (fefmfefif )" = 5(Fefm et KE F1Y
K (fefmfrfi ) — K (fifm fefefi)™ — (fefmFefifi)ki (H.15)

Putting all together, we obtain,

RENEY = 37 [ = (el fefi) KT+ S(febmBrfs) KEFE 4 kY (fefm fifi )

k7evm7éi7j

+ SCFi) R (frfefm)™ = S(fife) Ky fn)™ (H.16)
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Evaluating k' Q;;" does not require any use of kinematic identities, and we find,
4 1 14
MQE =2 X K20 efifm) =20 fefm )+ Fif) Fef) = (fifm) (fif0)] (HAT)
ey

Adding up the contributions to k'S from (H.12), (H.16) and (H.17), we see that the
two terms (fofpfc)" on the second line of (H.16) cancel the first two terms in (H.12).
Assembling the remaining contributions, we find,

RESE = 3 KA [ S (Fif0) + i (fif) (fefm) = §(fifefifm) = 5(fifefmfs)]

k., m#£i,j

+ 30 R[S bif) = S f) Sefm)]
k,0mti,

S R B Flrfe ) + R £ (Fefi)] (H.18)
k,l,m=#£i.j

The sums k, £, m are over all permutations of the three distinct values in {1,2,3,4,5}\ {4, 7}.
In the last two lines, we immediately recognize the structure of tg which is defined only as a
sum over cyclic permutations of the last three indices. By writing out the six permutations
of (k,¢,m) in the first line of (H.18), one can also identify —%tg(fi, fjs fe, fm) along with
k' fi¥. In terms of the notation t; and t;; in (1.7) and (7.31), we recognize the formula (7.54),
whose proof was the purpose of this appendix, and is now complete.

I Vanishing of §, + 3%

The go-dependent combinations § and §7% in (7.69) and (7.77) have the same structure
in their worldsheet data Waf;b and Gi{ ek Accordingly, their kinematic data consistently
combines to the following quantity in their sum,

: 1 1
le;l‘gl’g) = flf{“/k‘gkg + 5]61 - ko ti3 — 5]{}1 . /6'3 ti2 (I.l)

and permutations thereof. This combination may be related to the quantity Ry.3345 that
provides an effective description of the bosonic components in pure-spinor calculations [33]
as reviewed in section 8.1,

- pinv

—iRY5 5 = k1 - ko Ry31245 — k1 k3 Rig3.45

. i
Rigas =i(e1-ka)ts — §f12 (1.2)

and permutations thereof. Contrarily to the individual Ry,33 45, the combination Rif;“2’73 is
manifestly gauge-invariant, obeys the symmetry 11“5’3 = —Rif}g,Q, and the cyclic identity,

s+ RIS+ RSG5 =0 (I3)

The independence of g, of § and the vanishing of the combination § + §’ hinges on the
following remarkable identity, which was proven using Mathematica,

11?5,4 + Riﬁ; + Rg;néﬁ + Ri5r;1§,3 =0 (L4)
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We note that this identity is manifestly invariant under swapping 1, 4, independently swap-
ping 3,5, and independently swapping the pairs (1,4), (3,5). Because, in this presentation,
the second index is always 2, it follows that the t; f; terms factor out a momentum ky. The
terms of the form t;; may be similarly rearranged, so that the identity is equivalent to,

kY {(lﬁ — ka)tig + (ks — ks )35 + 5 (k1 + ka)(t12 + ta2) + 3 (ks + ks )" (t32 + t52)
+ 2t VR + 20T RY + 2t fURE + 26 fLVRE| = 0 (.5)

We have properly symmetrized under swapping the pairs (1,4), (3,5) at the cost of introduc-
ing the factors of % above. One may speculate whether there exists a vector-valued identity
that is first order in momenta k; and quadri-linear in f; from which this relation follows.

I.1 The vanishing of §; + §%

The combination §f, + §% may be expressed exclusively in terms of R™,

So+3E= _SZ (W{;3+W1[;5_W31_W51_W1[;4+W4[) [ §?§3G1 3,ga,5 T 1111§4G14q&, }
i
=83 (Wiy+Wis— Wi = W) RIS oGl 200 5+ B 4G 4 g0 5]
T
_SZ (Wll:’,_WzI) { if;lXQGl 2,g0,5 T 11111301 3,dasd } +cycl(1,2,3,4,5) (1.6)
I

and the five-forms Wy, W, in (7.17), where the instruction to add cyclic permutations
applies to all terms on the right side. We use 11an = iln;)’ and the identity (I1.4)
to express the R™ in terms of two independent terms mv3 and Ry 3.4 and their cyclic
permutations. The remaining combinations are given by (1.4),

i11;15,4 = ngnX 5T if;li’g - 151153 - ngng1 (L7)
and cyclic permutations thereof. The first term on the right side is in the cyclic orbit of

inv

1:2.3, while the second, third and fourth terms are in the cyclic orbit of Rif?gA. Cyclicly
permuting all terms to the same representative in a given cyclic orbit, we find,

3o+ 85 = —8Z1R% 5 — 8Zo R 4 + cycl(1,2,3,4,5) (L.8)
The coefficients Z1, Z are obtained by collecting all the contributions in the same orbit,
Zy = (Waa — Wia)G13,g0.5 + (Waz + Wss — Wiz — Wis)Giog,3
+ (Wan = Wi1)Gap o5 + (Waz — Wag — Wag + Wan)Gao g, 3
Zy = (Wig — Waa — Waa + Wa2)G314..2 + (Was — Wais)G31,404
+ (Win — Wss — Waa + Was)Gas a1 + (Wau — Waia) G23.40.5
+ (Wag — Wao — Wag + Wa2)Ga24.3 + (Wi — Wa1)Gao,g. 5
+ (Wis — Ws5)G1aga5 + (Waz — Wi3)G13,9,4 (L.9)

where we suppress the superscripts of WI b and GZ gk 38 well as the associated ) ; for
ease of notation throughout the remainder of this appendix.
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1.2 The vanishing of Z; and Z,

The combinations Z; and Zs in (1.9) are,

1. differential (1,0)-forms in z; for i = 1,2, 3,4,5 and scalars in qq;

2. free of singularities as z; — ¢, so that they are holomorphic in ¢, and therefore
independent of ¢q;

3. free of singularities as z; — z; for all j # 4, and are thus holomorphic in z;;

4. zero Z1 = Zy = 0.

To show item 2, namely that Z; and Zs are free of singularities as z; — ¢4, we use the fact
that such singularities are of the form (zi—qa)*1 and can arise from W;,; with j # 7 as
well as from the parts proportional to g; 4, in G. Furthermore, we shall use the fact that
Gia,q..b — 0 as 2; = qa, as well as the following identities,

Wiy + Wis =Wy + W§
Wi+ Wi = w(2)A(1,3)A(4,5) (1.10)

and permutations thereof. We begin by establishing the cancellation of all singularities
in Z1 as z; = qo. The absence of poles as 21 — g, is obvious since any Wy,; with j # 1
is accompanied by a factor of G 4,4, With the corresponding zero. For z3 — ¢, none
of the W, in Z; has a singularity, so the leftover source of poles is g2 4,. After some
simplifications, using the first equation in (I.10) this part is given by,

92,0 Was1 + Wyg — Wao — Wit — Wi+ Wi) (I.11)

Using now also the second identity in (I.10), we see that the entire expression is proportional
to g2,4,@(2) and thus regular as zo — go. For z3 — qq, the pre-factors are regular and the
terms proportional to g3 4, simplify using the first equation in (I1.10) to give,

93,00 Wiz = Wi — Wia + Wy — Wz + Wapo) (I.12)

Using a shift forward by 1 of the second equation of (I.10), we see that the entire combination
is proportional to g3 4,@(3) and thus regular as z3 — g,. For z4 — ¢, each individual term
has a regular limit by the zeros of G444, - For z5s — qa, the pre-factors are regular and
the terms proportional to gs 4, simplify using the first equation in (I1.10) to give,

95,90 Wit + Wia — Waga — W) (L.13)

This combination is proportional to gs 4, (5), using the second equation of (I1.10) shifted

forward by 3, and thus also regular as z5 — q,. This concludes the proof of item 2 for Z;.
Item 2 is established in exactly the same way for Zs, so we shall be brief here. For

example, as 21 — ¢q, the potentially singular terms in Zs are proportional to g1 4,,

91,g0 (Wao — Waq + Was + Waog — Wag — Was) (L.14)

Using a shift backward by 1 of the second equation of (I.10), we see that the entire
combination is proportional to g1 ¢, (1) and thus regular as z; — ¢o. The other limits are
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computed analogously and all vanish as well so that Zs is also holomorphic in ¢, thereby
completing the proof of item 2.

Item 3 is proven by letting z; — z; for all 1 <7 < j <5, in which limit all pre-factors
Wy in Z1 and Zy are regular, so that all singularities arise from the G-functions. For Zi,
we begin by considering the limits z; — z2 and z; — 23 which are proportional to,

g1,2(Wa.3 + Ws5 — Wig — Wis5)
g13(Wig — Wag + Wiz — Was — Wia + Wa) (I.15)

respectively. The coefficient of gy 2 is proportional to A(1,2) which cancels the pole as
z1 — zz. For the coefficient of g1 3 in turn, the first two terms Wy.3 —W3.3 and the remainder
separately vanish as z; — z3. All the constituents of Z; are manifestly regular as z; — z4.
For z; — z5 the relevant terms of Z; are given by g1 5(Wy4 — Wi4) which is manifestly
proportional to A(5, 1) and is thus regular in the limit. The remaining limits may easily be
established along analogous lines, which concludes the proof that the limits z; — z; of Z;
are all regular. Item 3 may be established in exactly the same way for Zs.

To prove item 4 we use the arguments used in appendix E.1 for the forms Z;, Zo which
are independent of ¢,, and holomorphic in z,--- , z5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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