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We explore basic mechanisms for the instability of finite-amplitude interfacial gravity
waves through a two-dimensional linear stability analysis of the periodic and irrotational
plane motion of the interface between two unbounded homogeneous fluids of different
density in the absence of background currents. The flow domains are conformally mapped
into two half-planes, where the time-varying interface is always mapped onto the real
axis. This unsteady conformal mapping technique with a suitable representation of the
interface reduces the linear stability problem to a generalized eigenvalue problem, and
allows us to accurately compute the growth rates of unstable disturbances superimposed on
steady waves for a wide range of parameters. Numerical results show that the wave-induced
Kelvin—-Helmholtz (KH) instability due to the tangential velocity jump across the interface
produced by the steady waves is the major instability mechanism. Any disturbances
whose dominant wavenumbers are greater than a critical value grow exponentially. This
critical wavenumber that depends on the steady wave steepness and the density ratio
can be approximated by a local KH stability analysis, where the spatial variation of the
wave-induced currents is neglected. It is shown, however, that the growth rates need
to be found numerically with care and the successive collisions of eigenvalues result
in the wave-induced KH instability. In addition, the present study extends the previous
results for the small-wavenumber instability, such as modulational instability, of relatively
small-amplitude steady waves to finite-amplitude ones.
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1. Introduction

Progressive gravity waves at the interface between two homogenous fluids of different
density have been extensively studied as a simple model for internal waves which are
commonly observed on a pycnocline in the ocean. This work numerically considers
the two-dimensional linear stability of the periodic and irrotational plane motion of
steady interfacial gravity waves propagating in permanent form with constant speed at
the interface between two unbounded homogeneous fluids in the absence of background
currents, as shown in figure 1(a). The fluids are assumed to be incompressible and inviscid,
the surface tension at the interface is neglected and the density of the upper-layer fluid (o)
is assumed to be less than that of the lower-layer fluid () for static stability.

For finite-amplitude steady interfacial waves, the full Euler system has been numerically
studied by Holyer (1979), Vanden-Broeck (1980), Saffman & Yuen (1982), Meiron &
Saffman (1983), Turner & Vanden-Broeck (1986) and Pardu & Dias (2001). In particular,
Saffman & Yuen (1982) developed a numerical method to find steady wave solutions
in the hodograph plane, which can be recovered, in the steady limit, from our unsteady
formulation to be presented. It should be remarked that, unlike surface gravity waves,
the wave profiles of large-amplitude steady interfacial waves of permanent form may
overhang, as shown in Meiron & Saffman (1983) and Turner & Vanden-Broeck (1986).
However, the limiting behaviour of steady interfacial waves is not yet known. On the
other hand, adopting the Stokes expansion in small wave steepness, Tsuji & Nagata (1973)
obtained the fifth-order approximate steady wave solutions, which we compare with our
fully nonlinear numerical solutions for steady waves.

The linear stability of steady interfacial periodic waves has been investigated by Yuen
(1984), Grimshaw & Pullin (1985), Pullin & Grimshaw (1985), Dixon (1990) and Zhou,
Lee & Cheung (1992). In their earlier attempts, Yuen (1984) and Pullin & Grimshaw
(1985) numerically solved the linear stability problem in the physical plane using the
method that McLean (1982) developed for the stability analysis of surface waves. With
k and h denoting the wavenumber and the crest-to-trough wave height of the steady
waves, respectively, Yuen (1984) obtained the numerical results for two different wave
steepnesses, kh = 0.2 and 0.5, for density ratios of p;/p> = 0.1 and 0.9, but the numbers
of Fourier modes for the computation of steady waves and for the stability analysis
were 20 and 5, respectively, which are too small for accurate computations. On the
other hand, Pullin & Grimshaw (1985) presented results for greater wave steepnesses
kh < 0.3 (=0.942) under the Boussinesq approximation for the density ratio p1/02 — 1,
where the density difference across the interface is ignored except for the buoyancy
term. Their results showed that the instabilities due to low-order resonances, including
the modulational instability of small- and moderate-steepness waves, are analogous to
those for surface waves (McLean 1982). Dixon (1990) and Zhou et al. (1992) obtained
similar results using the Zakharov formulation for interfacial waves. As they focused on
the modulational instability for small-steepness waves perturbed by small-wavenumber
disturbances, Grimshaw & Pullin (1985, (4.4) on p. 304) also derived a nonlinear
Schrodinger equation as a weakly nonlinear model, whose solutions are compared with
their numerical solutions.

In addition to the small-wavenumber or modulational instability, Pullin & Grimshaw
(1985, figure 10 on p. 331) numerically found a large-wavenumber instability for p1 /02 —
1 and kh = 0.27t (=~0.628), which is similar to the Kelvin—Helmholtz (KH) instability that
usually occurs in the presence of a background current jump at the interface. This KH-type
instability is excited by the tangential velocity jump induced by the steady wave at the
interface. This instability has been referred to as the ‘wave-induced KH instability’ and
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Figure 1. Two-dimensional periodic motion of interfacial waves and conformal mapping of the flow domains:
(a) the z-plane (z = x + iy), (b) the ¢;-plane (§1 = & +in) and (c) the §»-plane (&, = & + in2). The upper-
and lower-layer flow domains in the physical plane (the z-plane) are conformally mapped onto the upper half
of the ¢1-plane and the lower half of the ¢;-plane, respectively. Here, A: the crest-to-trough wave height, A: the
wavelength and p; (j = 1, 2): the fluid density of the jth layer.

does not occur for surface waves. Pullin & Grimshaw (1985, (4.1) on p. 330) proposed an
approximate expression for the growth rate of the wave-induced KH instability using linear
theory for the well-known KH instability for two horizontal uniform currents of different
speed (for example, see Lamb (1945, § 232) and Drazin & Reid (1981, § 1.4)), and pointed
out that this instability occurs if the wavenumber of a disturbance added to the steady wave
is greater than a critical value. However, this instability was studied only for one value of
the wave steepness, kh = 0.27 (=~0.628), under the Boussinesq approximation, and was
not fully examined. Dixon (1990, § 6) also discussed this instability using the Zakharov
formulation, but computed the growth rate only for a single wave steepness of kh = 0.4.
Although its growth rate is much greater than that of the modulational instability, the
wave-induced KH instability has not been studied extensively and a more complete study is
required to better understand the instability of interfacial gravity waves for a wide range of
steady wave steepnesses. It is, however, difficult to numerically study this instability using
the previous numerical methods developed in the physical plane, particularly, when the
wave steepness is no longer small. Instead, the stability problem needs to be investigated
by adopting a new technique relevant for the unsteady motion of large-amplitude waves.
In this work, the two flow domains in a two-layer fluid are conformally mapped into two
half-planes, where the time-varying interface is always mapped onto the real axis in each
plane, as shown in figure 1. This unsteady conformal mapping technique (Ovshannikov
1974; Tanveer 1991; Dyachenko, Zakharov & Kuznetsov 1996; Choi & Camassa 1999)
has been successfully used for the two-dimensional linear instability analysis of surface
capillary waves by Tiron & Choi (2012) and surface gravity waves on a linear shear
current by Murashige & Choi (2020). The aim of this work is to numerically study various
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instabilities of interfacial gravity waves including the wave-induced KH instability and
the modulational instability through two-dimensional linear stability analysis using this
unsteady conformal mapping technique.

The paper is organized as follows. The basic formulation for the two-layer problem using
the unsteady conformal mapping is presented in § 2. Computed steady interfacial periodic
waves with symmetric profiles are shown in § 3. The details of our linear stability analysis
are described in §4. In comparison with the theoretical approximations of the growth
rates of unstable disturbances presented in § 5, our numerical results of the linear stability
analysis are summarized and discussed in § 6. Section 7 concludes this work.

2. Formulation of the problem
2.1. Formulation in the physical plane

Consider the periodic and irrotational plane motion of steady gravity waves progressing
to the left in permanent form with constant speed ¢ at the interface between two
unbounded homogeneous fluids with the different densities p and p; (p1 < p2), as shown
in figure 1(a), where subscripts 1 and 2 refer to the upper and lower fluid domains,
respectively. It is convenient to formulate the problem in the flow domains for one period
with wavelength A of the steady waves, namely the two domains surrounded by A;ACBB;
(j = 1,2) in figure 1(a), in the frame of reference moving to the left with the waves. The
steady wave profiles are assumed to be symmetric with respect to the vertical line passing
through the wave crest. It is also assumed that the fluids are incompressible and inviscid,
and that the fluid motion in each layer is two-dimensional and irrotational in the vertical
cross-section (x, y) along the propagation direction of the waves. Surface tension at the
interface is neglected. The origin is placed such that the wave profile y = Y (x, 1) satisfies
the zero mean level condition

A
/ Y(x,)dx =0, (2.1)

0

where ¢ denotes the time.

For irrotational plane flows, we can introduce the complex coordinate z = x + iy and
the complex velocity potential f; = ¢; +iy; (j = 1,2), where ¢; and v; denote the
velocity potential and the streamfunction, respectively, for the jth layer. When the physical
variables are non-dimensionalized, with respect to ¢ and k (=27/1), as

- - fi Pj .
=kz, Y.=kY, ti=ckt, fi.="-, i = —— =1,2), 2.2
Zx Z * * C f]* - / X Pjx ,01C2 (J ) (2.2)
the following dimensionless parameters appear in the problem:
h, = kh < 2.3)
= , Cy = y .

where p; denote the pressure, i the crest-to-trough wave height and g the gravitational
acceleration. Note that h, = kh = 2wth/A is the wave steepness. The asterisks for
dimensionless variables will be omitted hereinafter for brevity.

The complex velocity potentials f; = fj(z, 1) (j = 1, 2) are both analytic in each layer.

The boundary conditions at the interface y = Y(x, ) are given, from the kinematic
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conditions, by
Yi+¢iYi=¢jy (G=12) aty=7Y(x,01), 2.4)

and, from the dynamic condition p; = p» at the interface y = f/(x, t) with Bernoulli’s
equation for each layer, by

d1,0+ = (15" + 1) + =Y — B(1)
2 c?

P2 1 2 2 1 5
= 2.+ §(¢2,x +¢2y7) + C—2Y aty =Y(x, 1), (2.5)

where an arbitrary function B(¢) can be absorbed into the velocity potentials and the
subscripts denote the partial derivatives with respect to x, y and ¢ as
) S 39 39 iy

Yyi=—, Y, := FTS Gjx = s Oy = a_y and ¢;; = o (G=12).
(2.6)

To avoid any confusion, a comma is introduced to denote a derivative of an indexed
function with respect to the variable following the comma.

It should be remarked that, as a velocity jump across the interface is allowed under the
inviscid assumption, the velocity potential is discontinuous across the interface while the
streamfunction is continuous so that

Vi y, 0 = Y2y, 0 aty =Y. 2.7
In addition, the conditions that the flow is uniform far above and below the interface (y —
+00) yield

a
w1:=£—>1 asy — oo and wz:=§—>1 asy — —oo, (2.8)
Z

0z
where w; = u; — iv; (j = 1, 2) denote the complex velocity.

2.2. Unsteady conformal mapping of the flow domains

As described in § 1, in order to overcome numerical difficulties for the two-dimensional
linear stability analysis of finite-amplitude interfacial waves, we generalize the unsteady
conformal mapping technique used for the stability of surface capillary and gravity waves
(Tiron & Choi 2012; Murashige & Choi 2020) to the two-layer problem. Here, we map the
upper flow domain (y > Y (x, 1)) and the lower flow domain (y < Y (x, 1)) into the upper
half of the ¢1-plane (¢ = &1 + in1 with n; > 0) and the lower half of the {-plane (¢, =
& + iny with ny < 0), respectively, as shown in figures 1(b) and 1(c). The time-varying
interface y = Y (x, 1) is always mapped onto the real axes n; = 0 in the ¢;-plane (j = 1, 2)
although the corresponding physical locations on the interface are different even when
£ =&.

The complex coordinates z; = z(¢j, 1) = x;(§;, nj, 1) +1iy;(§;, n;, 1) and the complex
velocity potentials f;(¢;, 1) = ¢j(§;, nj, t) +1¥;(&j, nj, 1) are analytic in the j-plane (j =
1, 2). We write xj, yj, ¢; and v; at the interface n; =0 (j = 1, 2) as

Xi(§,0 =x,n=0,0, Yy, 0 =yj,n=0,0
G, 1) =&, = 0.1, V&, 0 = Y&, nj =0,1)

Note that, at the interface, & (j = 1, 2) range from —7 to 7 for one wavelength, as shown
in figures 1(b) and 1(c). We also introduce the following shorthand notation for partial
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derivatives with respect to &; and ¢, respectively, as

0x; 0x;

Xjji=— and xj,:=—

0§; ot

Then, using the chain rule, it can be shown that the derivatives in the z-plane can be
transformed to those in the ¢;-plane (j =1, 2) as

(U=1L2). (2.10)

1 9(¢;. yj) 1 9(xj, ¢)) 1 (g, v, @) .
ix = — R/ iy = — AL j’t:_# (j=1,2), (@11
J; a(§;, mj) J; a(§5, mj) Ji a(§j, mj, )
B Y B 1 9%, ¥,
o= 24 ana 7= 0Dy ) (2.12)
Xjj Xj.j 3(51', )]
where J; (j = 1, 2) are defined by
Ji=xt 7 (=12). (2.13)

In order to match at the interface n; = 0 (j = 1, 2) the upper- and lower-layer solutions,
we introduce a subsidiary real variable é along the interface and write &; and &, at the
interface as

¢ n=E+yEn ad HEN=E-yEn for —n<E<T, Q214
with

g =+n,n==+n (j=1,2) and y(E==mn0)=0 forr>0, (2.15)
where y(é, t) is an unknown real function. Note that similar parametric representations
of the interface have been previously adopted for the numerical computation of steady

interfacial waves (Saffman & Yuen 1982; Pardu & Dias 2001) and unsteady interfacial
waves (Baker, Meiron & Orszag 1982; Grue et al. 1997).

Using £ and y defined by (2.14), the conditions that the wave profiles in the ¢1- and
¢2-planes coincide are given by

e =66E 0.0 =06 =660 z)} . 2.16)
yitdi =&1,0,0) =y =5(E,1,1)
The conditions in (2.16) are referred to as the contact conditions at the interface in this

work. Also the continuity condition (2.7) of the streamfunctions at the interface can be
expressed as

Vi =66, 0.0 = Po& = &E 0, 0. 2.17)

Substituting (2.11) and (2.12) with the Cauchy—Riemann relations into (2.4) and (2.5),

we obtain the kinematic conditions and the dynamic condition at the interface n; = 0 in
the ¢j-plane (j = 1, 2), respectively, as

X3 = Vi%ie =~V (=12), (2.18)
and

~ | ..~ 11 - - 1.
bo.i — —(r2%2 + F2252.0020 + = —($2.2° — ¥2.2") + =52 — B(D)
Jo 2J> c
o1 [ - 1 . O 1.
= — 191 — X Fyiy0en + 5 @1” — v + sy (219)
02 J1 273 c

where the notation for the derivatives in (2.10) has been used. Here, note that §; = &; (é 1)
at the interface n; = 0 (j = 1, 2) are given by (2.14). The conditions at infinities (2.8) are
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satisfied with

71— ¢ and fi — & asm —> 0 } (2.20)

2—>8 and fr > & asmy —> —o0

The analyticity of z; = x; +1iy; and f; = ¢; +iy; (j = 1,2) with (2.20) yields the
relations between the real and imaginary parts at the interface as

¥ —& =Hiil, Y1 =—Hilgr — &1, Fo— & = —Hal2l, V2 = Halds — &1,
(2.21a-d)

where H;[F] is the Hilbert transform for a real-valued function F = F(&;) in the ¢;-plane
(j = 1, 2) defined by

1 © FE)
H[F1(&) = ;P.V./ s g/ (j=1.2), (2.22)
—005j T 5j

with P.V. denoting Cauchy’s principal value. Thus the governing equations (2.16), (2.17),
(2.18) (j = 1 or 2) and (2.19) determine the five unknown variables y;, ¢; (j = 1,2) and y.

3. Steady interfacial waves of symmetric profile

We write steady solutions for 2mt-periodic interfacial waves as

0 0 ()
5 =7") =x" & n) +iy) &, 1)

(G=1,2), 3.1
=10 =6 & n) +iv” &, ny)

and &1 and &; at the interface as

=@ =(4+y0¢) and H="¢=£-y0¢ for—n<§<(n3,2)

with £ ( = £m) = £n (j=1.2)and y @ (¢ = £m) = 0.

We assume that the steady wave profile is symmetric with respect to the vertical line
passing through the wave crest. Then, we numerically obtain the steady wave solutions
using the method of computation summarized in Appendix A. As the steady limit of our
unsteady formulation can be reduced to the steady formulation of Saffman & Yuen (1982),
the numerical method for steady solutions is similar to theirs. In this method, the steady
wave solutions are approximated by truncated Fourier series with N terms, as shown in
(A4) with (AS). We found that this method of computation with N = 128 produces reliable
steady solutions for the ranges of the density ratio p1/p2 and the wave steepness & that we
choose in this work, as discussed in Appendix A.

Figure 2(a) exhibits computed steady wave profiles with N = 128 for the density
ratios p1/p2 = 0.1 and 0.9 with varying wave steepness /. The corresponding fifth-order
approximate solutions of Tsuji & Nagata (1973) are shown in figure 2(b). From these, we
can see that the computed wave profile near the crest of large-amplitude interfacial waves
becomes rounded as p{/p increases, and that the accuracy of the approximate fifth-order
solutions in figure 2(b) deteriorates as & increases.
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Figure 2. Wave profiles of steady interfacial waves of symmetric profile for different values of the wave
steepness h. The density ratios used for the left and right panels are p;/p2> = 0.1 and 0.9, respectively.
(a) Fully nonlinear solutions computed using the present method with N = 128: (al) h = 0.6, 0.8, 1.0, 1.2, 1.3;
(a2) h=10.6,1.0,1.4,1.8,2.0,2.2. (b) Fifth-order approximate solutions (Tsuji & Nagata 1973): (b1) h =

0.6,0.8,1.0,1.2,1.3; (b2) h =0.6, 1.0, 1.4, 1.8, 2.0.

(@) 25 25
200 2 (—:Compuea)] 20| Ay (—: Compueed)
1.50 j 151 72 ,
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0t 0L
0.5} 0.5}
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Figure 3. The tangential velocity jump Ag at the interface defined by (3.3) for different values of the
density ratio p1/pz and the wave steepness h: (a) p1/p2 = 0.1, h =0.6,0.8, 1.0, 1.2, 1.3; (b) p1/p2 = 0.9,
h=0.6,1.0, 1.4, 1.8, 2.0, 2.2. Each solution is computed using the present method with N = 128.

Figure 3 shows the tangential velocity jump Ag across the interface of steady interfacial
waves, which is defined as

Ag = sgn(Au)vV Au? + Av?,
where Au = uﬁo) ug)), Av = io) — véo) and sgn(Au) denotes the sign of Au.
Here, u(o) ¢(0) ~(O) /J @ and v(o) ¢>(O) ~J((;) /J O are the horizontal and vertical
Velocmes at the 1nterface in the &- plane (= 1 2), respectively. The resulting
discontinuity of the tangential velocity causes the wave—induced KH instability.
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Figure 4. Variation with wave steepness / of the tangential velocity jump Ag,.s at the wave crest and the wave
speed c of steady interfacial waves normalized by the linear wave speed c( given by (3.4). The computed results
using the present method with N = 128 (solid lines) are compared with the fifth-order approximate solutions
(Tsuji & Nagata 1973) (dashed lines) and the computed results of Saffman & Yuen (1982) for p;/p> = 0.1
(circles). The density ratios used for computations are p;/p = 0.1 (black), 0.3 (red), 0.5 (blue) and 0.9 (green).

Figures 4(a) and 4(b) show the variation of the tangential velocity jump Agres at
the wave crest and the wave speed ¢ of the steady waves with the wave steepness /,
respectively, for the density ratios p1/p02 = 0.1, 0.3, 0.5 and 0.9. In figure 4(b), c is
normalized by the (dimensionless) linear wave speed cg given by

1—pi/p2

o = P2 —pP1
V 02+ p1 1+ p1/p2

It is shown that the computed result of c¢/cy for p;/p2 = 0.1 agrees well with that of
Saffman & Yuen (1982). To compute the results (solid lines), we choose N = 128 and
increase & until the error tolerance (A8) is no longer satisfied, or the convergence of each
Fourier coefficient in (A4) is too slow. Thus the right end of each solid line does not
represent the limiting wave, but we focus on the range of 4 < 1 in this work. In addition,
these figures show that the fifth-order approximate solutions (dashed lines) of Tsuji &
Nagata (1973) agree with our computed results only for small values of 4. The results for
Aqcrest and c¢/co will be used in §§ 5 and 6 to estimate the critical condition for instability
and the growth rates.

(3.4)

4. Linear stability analysis
4.1. Linearization around steady wave solutions in the |- and ¢»-planes
For linear stability analysis, we superimpose time-dependent small-amplitude disturbances
Z}l)(fj, 1), jj-(l)(gj, t) and y(l)(é, t) on the steady wave solutions zj@((j), J;-(O)(g“j) and
y© &), respectively, as
GG 0 =2" @)+ .0

©) m (=12 and yEn=yPE&+yVE 0,
fiG. 0 =57 +f (.0

4.1)

and linearize the governing equations around the steady wave solutions. Note that z;l) (&, 1)
and ];.(D({j, t) are both analytic in the ¢j-plane (j = 1, 2). Similarly to (2.9), we write the
938 A13-9
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disturbances at the interface as
~(1 1 ~(1 1
W =x"EG =00, 5" n=y"E =001

; ] (G=12).
6" 0 =0"EGn=00, U & n=v"&n=00

4.2)

We look for solutions of the linearized equations in the form of
¥ 0 =&, 3@ 0 =" &)

7 () L) ) o], () =12, &3

0V 0= &), T E.n =P &)

and
yWE n=e"yD ), (4.4)

where 0 = o, + i0; € C. The steady interfacial waves are linearly unstable if and only
if there exists a positive real part o, > 0. Notice that this condition is equivalent to the
existence of any real part as both o and —o are eigenvalues to be discussed later, where &
denotes the complex conjugate of .

Substituting these into the governing equations (2.18) for j = 1, (2.19), (2.16) and (2.17),

and expanding them around the steady wave solutions and &§; = & j(o) &) (j=1,2), we can

obtain the linearized equations for x(l) , yj(l) qvi(l) , %(l) (j =1,2)and D as follows:

0v() <) w(l I
oG =R = =i, (.5)
1 _ 7O« (1) ~(0) »(1) 7 (D O ) | 50) L)
{¢ (0)( 22X T Y20Y; )} (0)¢ (J(O))Z( 22522 T Y2292
Z

1 4(0)
) { by 1~(O>});(1>

2}’3 )
0 2 s
C (J( ))2 C

101 1 ~(0) 1) | ~0)v(1) Y ~(0) (1) ~(0) (€Y
|: {¢ <0>(11x1 +I0 )} (0)¢ (J(O))z(ll INBRARASRY

m
1 (0)
1. 2711 L o~
+Czy1 { (‘]fo))Z - zyl’l YV ) (46)
v(1 v(1 0 0
# -8 = -0 +30)r W, 4.7)
v(1 v(1 0 ~(0
yP—ﬁﬂ-@H+ﬁbwj (4.8)
Y (1 0 1 0,2
vV =£0E) =9V =& ¢)), (4.9)

where &; = Ej(o) (§ ) (j = 1, 2) at the interface are given by (3.2). In addition, eliminating
y(l) from the contact conditions (4.7) and (4.8), we obtain

0 0)yx(1 0 0) v (1 0 ~(0)yx(1 0 0) v (1
G+ — GO+ Y = 60 5 - G+

For later convenience, we use (4.10) instead of (4.8). Five equations (4.5), (4.6), (4.7), (4.9)
and (4.10) determine the linear stability of steady interfacial waves.
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Following Floquet theory, we can write the general solutions of (4.5), (4.6), (4.7), (4.9)
and (4.10) in the form of

o o
v(1 ip&;: 1) imé&; v(1 ipE; 1) imé&;
x} ‘&) =€ Y Olfm)elmgf, y} ‘&) =€t Y a;m)elm%

m=—00 m=—0o0

N N (=12,
6 &) =€ Y7 b, iU E) =T Y g
m=—o0 m=—o0
(4.11)
and
.o o . o
y D@ =e Y e, (4.12)
m=—0o0

where the exponent p is assumed to be real so that the solutions are bounded for —oo <
& < 00 (j=1,2). Since the linearized equations (4.5), (4.6), (4.7), (4.9) and (4.10) are

invariant under the transformation & — —&;, ¢7>j(1) — —qVSj(l), 1/V/j(1) — —I/ij(l) G=12),

§ — —é, t —» —tand y — —y D thereisa degeneracy in the choice of p, similarly to
the case of surface waves (for e.g. see Tiron & Choi (2012, § 2.4) and Murashige & Choi
(2020, § 4.3)). In particular, if o is an eigenvalue for p, then —o is another eigenvalue for
the same value of p, and 6 and —o are the eigenvalues for 1 — p. Thus the range of p can
be restricted to 0 < p < 1/2. In addition, from the analyticity given by (2.21a—d) and the
following relations for the Hilbert transform

. ) +1 (v>0)
Hile™5] = isgn(v)e™™ (j=1,2) withsgn() =1 0 (1=0) , (4.13)
-1 (v<0)

the coefficients o j(ri) and B8 J.(r:l) (j =1,2)in (4.11) can be related to a Y and bj(m), respectively,
by

aﬁyz =1isgn(p+m) aﬁz, /3(1) = —isgn(p +m) b(l)}

of) = —isgn(p+myas, AL =isgn(p+m) b

2m’

(4.14)

Substituting these into the linearized equations (4.5), (4.6), (4.7), (4.9) and (4.10), we
obtain

o Z Anm(&)af,) = Z Biym(E)bS,. (4.15)

m=—00 m=—00

o Z (Ao mE)al)) + A m(E)aly) + B mE)bi) + B m(E)DY)

m=—0oQ

o0
Y {Asw @)l + A m(E)aly + B3t m(E)bY,) + Bam(E)bY,) + CamE)elD),
m=—00

(4.16)
938 A13-11
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[e¢]) o o9}
3 Agw@al) + Y Anw@ay) = > ComE)cl), (4.17)

m=—oQ m=—0oQ m=—0Q0

ZAslm@)a ZAszm@)a and Zlem@)b(” ZBszm@)bg;i,

m=—00 m=—00 m=—00 m=—00

(4.18a,b)

where A*ym(é ), B*,m(é ) and C*,m(g ) are 2m-periodic functions determined by the steady
wave solutions and summarized in Appendix B. Furthermore, from periodicity, the

coefficient functions A, m(é ), By, m(é ) and Cy, m(é ) can be expanded in the form of Fourier
series as

00 00 0o
A*,m(é) = Z A*,km elks’ B*,m(é) = Z B*,km elk§7 C*,m(é) = Z C*,km elks
k=—00 k=—o00 k=—o00

(4.19a—c)
Then, we can transform (4.15), (4.16), (4.17) and (4.18a,b) into

o Z Aukma Z Bi1 kmb 1m, (4.20)

m=—00

1 1 1
o Z {Azl,kmaﬁ,,z +A22,kma§,,: + BZl,kmb( )+ By, kmb(,,)l}

m=—00

o
1 1
> {As1ima,) + Asakmasy + B3t imbl,) + B3ambyy + Caamct’}, (4.21)

m=—00

o

Z A41,kma + Z Ay, kma Z Ca eV, 4.22)

m=—00 m=—00 m=—0o0
o.¢]
Z As1 ki, Z As2.mddy, and > Bs1 b, = Z B3 kmb5.
m=—00 m=—00 m=—00 m=—0o0
(4.23a,b)

for all k € Z. These equations (4.20), (4.21), (4.22) and (4.23a,b) determine o, a'" and

jm
bj%) (j =1, 2). In particular, in the limit of wave steepness # — 0, we can analytically
obtain the expression of ¢, in terms of the exponent p and the mode number m, as

o—>a mi=U—(p+m)E/|p+m|} ash— 0. (4.24)

Here, note that this limit 0 ., 18 independent of the density ratio p1/p>.

4.2. The method of computation

First, we can numerically determine the Fourier coefficients Ay xm, Bsim and Ci im
(k,m=—N,...,N —1)in (4.19a—c) using the steady wave solutions at é = ég ={n/N
(£ = —N,...,N) obtained in §3 and the fast Fourier transform. Here, N is the total
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number of terms of the truncated Fourier series (AS) for the steady wave solutions.
Next, we substitute these Fourier coefficients into (4.19a—c), (4.20), (4.21), (4.22) and
(4.23a,b), and truncate the resulting infinite series as

00 M o M
Z ~ Z and Z ~ Z with M < N. (4.25)

k=—00 k=—M m=—00 m=—M

To reduce numerical errors, large-wavenumber components are filtered out by setting M <
N. Then (4.20), (4.21), (4.22) and (4.23a,b) can be rewritten, respectively, as

oAnal’ = B!, (4.26)

G(Azlagl) + Azzag) + leb(ll) + Bzzbg))
= Aya) + Anal + Bybi + Byby + C3cV, (4.27)
A41a§l) + A42a§]) = C4c(l), (4.28)
Asia\) = As;a) and  Bs;b\" = Bs,b{", (4.29a,b)

where A, = (A*,km)]]:/’[m:_My B, = (B*,km)%m:_M and C, = (C*,km)%m:_M are (2M +
1) x (2M + 1) matrices, and aj(.l) = (a](.rz))%:_M, bj(.l) = (b;rln))%’:_M and ¢V = (cﬁ))%:_M
(j =1, 2) are vectors with 2M + 1 components. Furthermore, from (4.28) and (4.29a,b),

we can represent ag), bg) and ¢V by ail) and bgl) as
o) = Ao, B = Bsb. e = G @300
where
Asi = A5y 'Asi, Bsi=Bsy 'Bs;, Cs=Csy | (Ay + ApAs3).  (4.3la—c)

Substituting these into (4.26) and (4.27), we obtain
Ar o\ (4 0 By /[ a)
o = , (4.32)
Ay By bgl) A3z B3z bil)

A3 = Ay + ApAs3, A3z = A3 + AnAs3 + C3 Cs}
By3 = By + ByyBs3, B3z = B3 + B3 Bs3 '

This is a generalized eigenvalue problem for the eigenvalue o and the eigenvector
(ail), bil)). When the density ratio p; /2, the steady wave steepness & and the exponent p
of disturbances are given, we can solve (4.32). In this work, we numerically solve (4.32)
using computational routines for eigenvalue problems in LAPACK (http://www.netlib.org/

lapack/).

where

(4.33)

4.3. The dominant wavenumber of disturbances and classification of eigenvalues

The generalized eigenvalue problem (4.32) produces 4M + 2 sets of the eigenvalue o
and the corresponding eigenvector (agl),bﬁl)). Here, as shown in (4.11) and (4.25),

ail) = (a(l))M _y and bil) = (b(l))M _y are the truncated Fourier coefficient vectors

Im/’m= Im/m=
938 A13-13
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Figure 5. Examples of the variation of |a§2| with the mode number m and the corresponding disturbance 51(11)

for p1/p2 = 0.9, h = 0.5 and p = 1/2: (a) stable case (o, ~ 0.0, o; >~ —0.257) for which u = 1; (b) unstable
case (o, >~ 0.706, o; >~ —24.7) for which u = 20. (al) and (b1) show |a(12| for u = 1 and 20, respectively.

(a2) and (b2) show ¥V for = 1 and 20, respectively. The computed results are obtained using the present

method with N = 128 and M = 60. The dominant mode number p and the disturbance y V( ) are defined by

(4.34) and (4.11), respectively. The red and blue lines in (a2) and (b2) represent the real and 1maginary parts of

yﬁl), respectively.

for y(l) and ¢>(1) respectively. For each eigenvalue o, the disturbance has 2M + 1 Fourier
components, from which the dominant mode number p is defined as the value of m at

which the absolute value |al )I is the maximum for —M < m < M, namely

‘a(l)‘ —  max ‘a( )’ (4.34)
—M<m<M

An alternative is to use |b§2 [, but no difference is expected for the choice of . Note that u
is an integer and —M < p < M. Using this definition, 4M 4 2 eigenvalues are classified

into the 2M + 1 dominant mode groups. Then, as 5)51)(51) can be expressed as

M

WE) = D ap,explitn +p)E), (435)

m=—M

pD s u+p and, if |a1)| is much

the dominant wavenumber of the disturbance y,
greater than Iall)l for all m (m #w), we may approximate y1 )(51) as 5/(1)(51) ~
am exp(i(pu + p)&1)-

Figure 5 shows the variation of |a1 )| with m and the corresponding disturbance y(l)
for two eigenvalues. The physical and numerical parameters for these solutions are
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Downloaded from https://www.cambridge.org/core. Ibaraki University Library, on 15 Mar 2022 at 23:46:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.145

Stability analysis of finite-amplitude interfacial waves

p1/p2=0.9, h=0.5, p=1/2, N =128 and M = 60. One eigenvalue is for a stable
mode (o, >~ 0.0, 0; >~ —0.257) and the other is for an unstable mode (o, >~ 0.706, o; >~
—24.7). The results suggest that the dominant mode is well defined when its value is

small, as shown in figure 5(a), but the bandwidth of |a§2| increases with |u|. For large
||, there is some ambiguity in the definition of u, as can be observed in figure 5(b).
Furthermore, when || is found large, the convergence of the Fourier series expansion for
the corresponding disturbances in (4.11) and (4.12) becomes slow due to its truncation.
Then M needs to be further increased, but, unfortunately, the computational cost increases
with M. Therefore, for a fixed value of M, this causes a limitation of the classification of
eigenvalues in terms of . Due to our limited computational resources, we choose N = 128
and M = 60, for which we focus on the modes of || < 40 for & < 1.

5. Approximations of the growth rate o, of the disturbances

We may analytically estimate the growth rate o, = Re{o} of the disturbances z;l), ];.(1) (=

1,2) and ¥V to steady interfacial waves for two kinds of instability: (i) the wave-induced
KH instability and (ii) the modulational instability.

5.1. Wave-induced KH instability

As described in § 1, after assuming that the velocity jump near the crest is locally constant,
Pullin & Grimshaw (1985, (4.1) on p. 330) proposed the approximate growth rate of the
wave-induced KH instability for interfacial waves using the well-known result of the

KH instability for two horizontal uniform currents of different speed. Based on their

approximation, the positive real part, or the growth rate ar(KH) of the wave-induced KH

instability, can be written as

2
(KH)  5(KH) _ p 2l PP an 2 (C_O) 51
o, ep e{\/(u +p) a +p1/p2)2( Gerest)” — e+ pl\ =) - GD

where u + p is the dominant wavenumber of disturbances defined by (4.34), AGcres: 1S
the tangential velocity jump at the crest of the steady interfacial wave, ¢ is the steady wave
speed and ¢ is the linear wave speed given by (3.4). As Agcresr and ¢ depend on the steady

wave steepness £, the approximate growth rate &,(KH) changes with p1/p2, h, i and p.

In addition, (5.1) yields the critical mode number [LEKH)

root in (5.1) vanishes, as

, at which the inside of the square

2
[ KH) (1+ p1/p2) 1 (Co>2 . (52)

¢ o1/ P2 (Aécrest)2 c

For u < [LEKH) (> [LEKH)), the steady interfacial wave is stable (unstable). Figure 6 shows

the variation of ,ELEKH) with the steady wave steepness & for the exponent p = 1/2 and
different values of the density ratio p1/p03.

Note that ar(KH) and /ng " can be estimated using either the fifth-order approximate
solutions (Tsuji & Nagata 1973), or the fully nonlinear computed results for Agees and c.

As can be seen in figure 6, the two results show little difference, except for p1/p2 = 0.1.
Therefore, in § 6, the fifth-order approximate solutions are used for Ag. s and ¢ as o*r(KH)

and ,ELEKH) can be analytically estimated.
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h
Figure 6. Variation of the approximate critical mode number [LSKH) given by (5.2) with the steady wave

steepness /1 for p = 1/2 and different values of the density ratio p;/p2. In computing ,&,gKH), AGcrest and ¢
in (5.2) are estimated using both the fifth-order approximate solutions of Tsuji & Nagata (1973) (solid) and the

numerical solutions with N = 128 (dashed).

5.2. Modulational instability
Introducing the slow space scale X = € (x’ + c,f) and the slow time scale T = €2t in the
inertial frame (x', ¥, 1) with x’ = x — ¢t and y = y, Grimshaw & Pullin (1985, (4.4), (4.8)
and (4.9) on pp. 304-305) derived the nonlinear Schrodinger (NLS) equation for slowly
modulated small-amplitude interfacial waves as

—iA; + aAxx + BIAJPA =0, (5.3)
with
1 1 1 2
o =-co. o=—-c, _ _+(,0—1/pz)2’ (5.4)
2 8 2(1 4 p1/p2)

where ¢, denotes the group velocity, ¢ is given by (3.4) and A = A(X, 1) is the complex
wave amplitude of the leading-order wave train. Following Mei, Stiassnie & Yue (2005,
chap. 13), we can investigate the linear stability of the basic Stokes wave given by

Ao = age B0T (49 € R), (5.5)

which is the solution of —iAg; + B|Ag|?Ag = 0. In particular, the approximate growth rate

&r(NLS) of disturbances for the modulational instability is given by

5(NLS) . Re l_’/zm 220 (5.6)
’ 8V (1 + p1/p2)?

This is supposed to be valid for small values of /& and p.

6. Numerical examples of linear stability analysis and discussion

This section summarizes the computed results for the eigenvalue o = o, + io; of the
generalized eigenvalue problem (4.32) using the present method described in §4.2,
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Figure 7. Variation of the growth rate o, with the dominant mode number x of the corresponding disturbance
for p1/p2 = 0.9, p = 1/2 and different values of the wave steepness h. The computed results (dots) using the
present method with N = 128 and M = 60 are compared with the approximate growth rate (red solid lines)
6,(KH) given by (5.1). The red dashed line represents the approximate critical mode number ;IEKH)
(5.2) for the wave-induced KH instability.

given by

and discuss two kinds of instability: (i) the wave-induced KH instability and (ii)
small-wavenumber instability including the modulational instability. The computed results
in this section are obtained with N = 128 and M = 60, where N and M denote the total
number of terms of the truncated Fourier series (AS) for steady wave solutions and (4.25)
for disturbances, respectively.

6.1. Wave-induced KH instability

Figure 7 shows the variation of the growth rate o, with the dominant mode number @
for the density ratio p1/p02 = 0.9, the exponent p = 1/2 and different values of the wave

steepness: (a) h = 0.4, (b) 0.5, (c) 0.6 and (d) 0.7. The computed results are compared

with the approximate growth rate 6,(KH) in (5.1) for the wave-induced KH instability.

The computed results show that there exist unstable modes (o > 0) for || > ., where
We s the critical mode number. This is analogous to the case of the well-known KH
instability for two horizontal uniform currents of different speed. Since there are no
background currents in this problem, the instability in figure 7 is the KH instability
excited locally by the wave-induced tangential velocity jump. While its variation with
e 1s qualitatively similar to the computed results, the approximate growth rate &r(KH) in
(5.1) is always overpredicted. Nevertheless, the critical mode number . for the onset
of the wave-induced KH instability is well approximated by ,lngH) in (5.2). As the wave
steepness increases, the critical mode number decreases, as can be seen in figure 7. For any
wave steepness, as the growth rate increases with i (>u.) and appears to be unbounded
as ;u — 00, the inviscid initial value problem would be ill posed.
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04 0.6
h

Figure 8. Variation of the growth rate o, with the steady wave steepness & and the dominant mode number p
of disturbances for different values of the density ratio p;/p2 (p = 1/2). The computed results (blue dots) are
obtained using the present method with N = 128, M = 60. The red solid line represents on the (u, h)-plane

the approximate critical mode number p = ;IEKH) (h) defined by (5.2).

Figure 8 shows the variation of the growth rate o, (=0) with the wave steepness A and
the dominant mode number u for the exponent p = 1/2 and different values of the density
ratio: (a) p1/p2 = 0.1, (b) 0.3, (c) 0.5, (d) 0.7, (¢) 0.9 and (f) 0.99. These three-dimensional
plots allow us to observe the continuous change of o, with both # and  simultaneously.
The critical dominant wavenumber 1t depends on the density ratio and the wave steepness,
and the interfacial periodic steady waves are always unstable for u > .. We can observe
that the value of the growth rate o, > 0 for the unstable range © > . increases with the

938 A13-18



Downloaded from https://www.cambridge.org/core. Ibaraki University Library, on 15 Mar 2022 at 23:46:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.145

Stability analysis of finite-amplitude interfacial waves

(b)0.6 -
04f
02}

I
I
0—

e
06 N g

062, 0641 066 | 068 70.70
4l 1 | o
I I [} T
| | | [
e T T T
127—4.\\\ | [
I ——— T ;
— ; |
T L I I
10’ | | [ - S
[ | ] l -
20 il ; 7 gy e e e B
0.41 0.42 0.43 0.44 0.62 0.64 0.66 0.68 0.70
h h

Figure 9. Variation of the real and imaginary parts of the eigenvalue o0 = o, + io; with the steady wave
steepness h for p;/p> = 0.9 and p = 1/2: (a) 0.41 < h < 0.44; (b) 0.62 < h < 0.7. The results (dots) are
computed with N = 128 and M = 60. At the wave steepness & marked by the red dashed line, two eigenvalues
collide and the growth rate o, changes from o, = 0 to o, #0.

density ratio p1/p2. However, the computed results vary little for p; /0 = 0.9. It is found

that the estimated critical curve yu = ,&EKH) (h) approximately agrees with the computed
results for p;/p2 = 0.3 but not for p;/p2 = 0.1. This disagreement for p;/02 = 0.1 may
be due to the fact that the tangential velocity jump near the crest for p;/p; = 0.1 changes
more rapidly than that for p;/p2 > 0.3, as shown in figure 3, and the tangential velocity
jump cannot be assumed to be constant near the crest of the steady waves. Therefore, the
approximate local analysis breaks down for small values of p1/p».

Figure 9 shows the variation of the real and imaginary parts of the eigenvalue o =
o, + io; with the wave steepness / for the density ratio p1/02 = 0.9, the exponent p = 1/2
and the dominant mode number || < 40. The computed results of the imaginary part o;
demonstrate that some pairs of the eigenvalues collide successively at the wave steepness
h shown by the red dashed lines. When two eigenvalues collide, the corresponding growth
rate o, changes from o, = 0 to 0, #0, and the dominant mode number pu is equal to
the critical mode number .. These successive collisions of the eigenvalues result in the
wave-induced KH instability found in figures 7 and 8. This observation is consistent with
the previous theoretical results that the instability arises when two eigenvalues of opposite
Krein signature or opposite energy sign collide, for example, in MacKay & Saffman (1986)
for surface waves and Benjamin & Bridges (1997) for interfacial waves using Hamiltonian
approaches.

In figures 7, 8 and 9, the value of the exponent p is fixed to p = 0.5. Figure 10 shows the
variation of the growth rate o, with the wave steepness & and the dominant mode number
w for different values of the exponent p (the density ratio p1/p2 = 0.9). For relatively
large values of |u|, the computed eigenvalue o almost remains unchanged with p, as
shown in figure 10, because the dominant wavenumber p + p with 0 < p < 1/2 is nearly
equal to p. On the other hand, for small values of ||, namely for small-wavenumber
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Figure 10. Variation of the growth rate o, with the wave steepness / and the dominant mode number p for the
density ratio p1/p2 = 0.9 and different values of the exponent p: (a) variation of o, with & and p; (b) variation
of o, with . (al) and (a2) show variation of o, with & and p for p = 0 and 0.25, respectively. (b1) and (b2)
show variation of o, with p for 2 = 0.5 and 0.7, respectively. The results (dots) are computed with N = 128
and M = 60. The red solid line in (a) represents on the (u, h)-plane the approximate critical mode number

w = & (h) defined by (5.2).

(long-wavelength) disturbances, the eigenvalue o changes with p and a different type of
instability is observed, to be discussed in § 6.2.

6.2. Small-wavenumber instability

Until now, we have discussed the instability associated with large values of the dominant
mode number , but the instability for which p is small is also observed. Figure 11 shows
the variation of the growth rate o, with the exponent p for © = —1, 1 and 0. Here, we
fix the density ratio to p;/p2 = 0.9, but vary the wave steepness: (a) 2 = 0.3, (b) 0.5,

(c) 0.7 and (d) 0.9. The computed results using the present method are compared with

(1) the approximate growth rate &r(NLS) in (5.6) for the modulational instability and (ii)

the computed results using the previous method (Yuen 1984) that was developed in the
physical plane. It is found that the approximate growth rate 5r(NLS) is valid only for small
values of h and p, as expected. It is also noticed that the computed results using the
previous method agree with those using the present method only for 42 < 0.7, but not for
h = 0.9. For h > 0.7, we could not obtain accurate numerical solutions using the previous
method, as shown in figure 11(d).

It should be remarked that the value of the growth rate o, > 0 of small-wavenumber
disturbances in figure 11 is much smaller than that of the wave-induced KH instability in
§ 6.1. Thus, it is difficult to identify the small-wavenumber instabilities with u = —1, 0

and 1, including the modulational instability in figures 7, 8, 9 and 10. It is interesting to
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Figure 11. Variation of the growth rate o, with the exponent p for the density ratio p;/p2 = 0.9 and the
dominant mode numbers @ = —1, 0 and 1. The computed results using the present method with N = 128
and M = 60 (dots) are compared with those using the previous method by (Yuen 1984) (circles) and the
approximate growth rate &,(NLS) in (5.6) for the modulational instability (red lines).

note that the present method captures another type of instability for 4 = 0.9 and 0.21 <
p < 0.25, as shown in figure 11(d). This instability seems to be similar to the ‘nonlinear
mode jumping’ phenomenon described by Yuen (1984, figure 4(g) on p. 80) for p1/p02 =
0.9 and h = 0.5 with the background current jump AU = 0.5(co/c). The source of this
instability remains unknown and is a topic for future research.

7. Conclusions

We have performed linear stability analysis of finite-amplitude gravity waves at the
interface between two unbounded homogeneous fluids of different density in the absence
of background currents. We have focused on the wave-induced KH instability, which is
excited by the tangential velocity jump at the interface induced by the deformation of the
interface. To numerically study the linear stability for a wide range of wave steepnesses,
the unsteady conformal mapping technique often adopted for surface waves is extended
to the two-layer fluid problem, and the upper and lower flow domains are conformally
mapped into the upper and lower half-planes, respectively. Then, the time-varying
interface is always mapped onto the real axis and is conveniently parameterized. After
reformulating the linear stability problem as the generalized eigenvalue problem in matrix
form (4.32) in §4.2, we numerically solved the eigenvalue problem (4.32), and have
identified the dominant mode u defined by (4.34) monitoring the eigenvectors of unstable
disturbances.

The stability analysis in § 6.1 has confirmed that the wave-induced KH instability is
the dominant mechanism for the instability of the interfacial periodic waves. This has
been widely accepted, but has not been fully or accurately investigated in previous studies.
Once the wave-induced KH instability is excited, large-wavenumber disturbances grow
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exponentially if their wavenumbers are greater than a critical value that depends on the
wave steepness and the density ratio. The critical mode number . can be relatively

well approximated by [TLE‘KH) in (5.2) for p;/p2 = 0.3, where ,&E-KH) represents the critical
value predicted by the local KH stability analysis by assuming that the local currents
are constant around the wave crest, or, more specifically, over a length scale greater
than the wavelengths of unstable waves. Nevertheless, the local stability analysis fails to
accurately provide the growth rates, in particular, of large-wavenumber disturbances. In
addition, it has been found that the successive collisions of the eigenvalues give rise to the
wave-induced KH instability.

It has been shown in § 6.2 that small-wavenumber disturbances are also unstable and the
present method allows us to numerically study such instability for large-amplitude waves,
for which weakly nonlinear theory using the NLS equation is no longer applicable.

We have shown that the present method can be used to obtain accurate numerical
solutions of the eigenvalue problem (4.32) for p;/p2 < 0.99, h < 1 and |u| < 40 with
N =128 and M = 60, where N and M denote the total number of terms of the
truncated Fourier series (A5) for steady wave solutions and (4.25) for the presentation
of disturbances, respectively. Beyond this parameter range, the values of N and M need
to be further increased with a more efficient numerical algorithm to solve the generalized
eigenvalue problem.
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Appendix A. Numerical computation of steady interfacial waves
A.l. Numerical method

For steady wave solutions Z;O) (¢j) and ];(O) (¢j) in (3.1), the kinematic conditions (2.18) with
(2.21a—d) yield

=1 and ¥V =0 (=12, (A1)
and the dynamic condition (2.19) with (A1) becomes
. 11 3 11 3 B©
Gi§) =5 — (Wm ST @@4——7:Q (A2)
J5 (%‘2) Ji (&1 )

where & = £ (§) (j = 1, 2) at the interface are given by (3.2), /| (&) = (X\))? + ()2
(j=1,2)and B is an unknown real constant. The contact conditions (2.16) become
Gr6) =iV E =E+y0E) - @ =(—yOE)) =0
G&) =3 =6 +y0E) -3 =5 —yOE) = 0
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Figure 12. Fourier coefficients of steady wave solutions in (A4) for the density ratio p;/p2 = 0.9 and the

wave steepness i = 1.0: (a) ag(,)l), ag:l) and c(o) (n=0,1,...,N) with N = 128; (b) convergence of aﬁ?l) with

increasing N (N=64, 128, 256, 512).

From the symmetry of the periodic wave profile, the analyticity of z( ) (0) + 1y(0)

(j = 1, 2), the conditions at infinities (2.20) and the boundary conditions ‘;‘j(o) (S =0) =
S.(O)(é =4n)=xn(j=1,2)and y(o)(é =0) =0, y(o)(é = +m) =0, we can expand
the steady wave solutions z( ) (=1,2)and y© as

0.¢]
0 . 0) i
V@) =t +i) _ayp) e o
= and y O @) =) o sinnk,  (Ad)
5@ = +iy ag)e =]
n=0

where a(l(,?,agzl), 020) € R. For numerical calculations, each infinite series in (A4) is

truncated as

00 N

Yo~y (A5)

n=0 n=0
When the density ratio p;/p; and the wave steepness i are given, we may numerically
determine the 3N + 3 unknowns {a(O)} 0> 1@ (0)} N0 cflo)}ilv;ll,
method such that the dynamic condition G (5 ) =0 in (A2) and the contact condition
G3(£) =0in(A3)até =& =¢n/N(=0,1,...,N),G2() =0in(A3)até =& (£ =
1,2,..., N — 1) with the wave height condition

By and ¢ using Newton’s

Gy =31 =0 -3 =n) —h =0, (A6)
and the zero mean level condition
Gs = / #0x0) der =0, (A7)
0

are simultaneously satisfied. In the numerical results in this paper, the stopping condition
of Newton’s method was set to

maX{HGl ”max, ”GZ”maxa ||G3||max’ |G4|, |G5|} < 10_95 (AS)
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Figure 13. Variation of the total wave energy Er = Ex + Ep of steady interfacial waves with the wave
steepness h for different values of the density ratio p1/p2. The kinetic energy Ex and the potential energy Ep
are computed by using (A9) and (A10), respectively, with the computed steady wave solutions with N = 128.

where

1Gjllmax =, max_ |G; )G =1,3) and |G2lax = , 1ma?]§[_l|G2(§z)|-

.....

Figure 12(a) shows the Fourier coefficients a(lo), aé?l) and C(O) in (A4) for p1/p2 =0.9

and & = 1.0. As they decay fast enough, any value of N greater than 60 seems to be
large enough for double precision computations. In addition, as shown in figure 12(b),
the Fourier coefficient a( ) converges well as N increases. In this work, we use N = 128.

In the linear stability analysis presented in § 4, to reduce numerical errors in solving
eigenvalue problems, each Fourier coefficient in (A4) is set to zero if its absolute value is
less than 10~!

A.2. Wave energy

The expressions for the kinetic energy Ex and the potential energy Ep of steady interfacial
waves of symmetric profile are given by

EK=162[ Pl / {(ur — 1) 40,2} di dj+——— / {(M2—1)2+v22}d5€d§}
Dy

2 Lpitp o1 +,02
1—pi1/ ’T .
2 ) (0) P1/P2 (0) (0) 0)
= Ve dé — (—)/ {1—-x7(0+y; )}dé], (A9)
[/ M1 T L+ p1/02/) Jo 7 L1 %
and
xXg Y Xg Y
Ep=— ol / /ydydx+ P2 / /ydydx
P11+ 02J)x, p1+ p2Jx, Jo
l—m/pz>/ (0)y2,.0) ONSYT
{y; 1 (A +yp7)dé, (A10)
(1+pl/,02 LI T T

where each energy is non-dimensionalized by (p; + p2)g/k>, and D; (j=1,2) denote
the fluid domains surrounded by A;ACBB; in figure 1(a). Figure 13 shows the variation
of the total wave energy ErT = Ex + Ep of steady interfacial waves with the wave
steepness h.
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It was shown by Tanaka (1983) and Longuet-Higgins & Tanaka (1997) that the steady
surface gravity waves lose stability due to superharmonic disturbances at the wave
amplitude where the wave energy attains an extremum. Murashige & Choi (2020) also
found that this type of superharmonic instability of surface waves occurs even in the
presence of a linear shear current. In this work, we compute steady solutions only for
h < 1, where the wave energy E7 increases monotonically with /. Thus the superharmonic
instability found for surface waves does not occur for the interfacial waves with

h <1

Appendix B. The coefficient functions 4, m(é), B*,,,,(é) and C,, m(§ )

The coefficient functions Ay ,(€), By m(€) and Cy,(§) in (4.15), (4.16), (4.17) and

(4.18a,b) are given by

Ann® = {&7) =i sen(p +m) 5 | explip + myy © @)) exp(imé)

’ ) ’ . (B
Biim(&) = —Ip + mlexp (i(p + m)y D (£)) exp(imé)
~ 1 ~ ~
Ao () = %W {isen(p+m) &%) + 3501} exp(ip + myy @ @) exp(imé)
1
~ 1 ~ ~
Ann®) =~ {=isen(p+m &% + 390 exp(—itp + my @ @) exptimé) |
2
Boiw() = —% exp(i(p +m)y @ ) exp(imé),
Boo (&) = exp(—i(p +m)y @ (&) exp(imé)
(B2)
2 _ P L. -0 , O] ; 1
Az m(§) = E |:_(]§T)2 {1sgn(p + m)xl,l +Y1,1}1(P +m) + zj|
x exp(i(p + m)y @ (€)) exp(imé)
R 1 ) . - ) 1
Kizm®) = [W [isen(p-m 3 + 50 ip-+m) - _}
x exp(—i(p +m)y Q) (€)) exp(imé)
2 pr 1. . OYE .2 ® (B3)
Baim(®) = 7 —5iCp +m) explicp +myy @ (€)) explmd)
1
N 1 ~ N
B m(€) = —Wup + m) exp(—i(p + m)y Q) ()) exp(imé)
2
L i
&y _ 2"~ ~(0) , P1 2" b ~(0) .2
C3,m(§) — | = (Jéo))z 0_2)72’2 E - (J;O))Z + C_Zyl,l exp(lmé)
Agt (&) = sgn(p +m) exp(p +m)y© €)) exp(imé)
Agp (&) = sgn(p + m) exp(—i(p + m)y @ (&)) exp(imé) § , (B4)
Cam(®) =1 @) +333) exp(imé)
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At (@) = {8 + 30 — isen(p + mG) + 510
x exp(i(p + m)y @ (€)) exp(imé)
Asm(®) = {70 + 30 + isen(p +mG) +5] [ - (B3)
x exp(—i(p +m)y @ &)) exp(imé)
Bsim(€) = AnmE) and Bsyw(€) = —Asm@)
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