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Abstract
We present a compact, high-order Richards’ equation solver using a local discontinuous Galerkin finite element method
in space and a dual-time stepping method in time. Dual-time stepping methods convert a transient problem to a steady
state problem, enabling direct evaluation of residual terms and resolve implicit equations in a step-wise manner keeping
the method compact and amenable to parallel computing. Verification of our solver against an analytical solution shows
high-order error convergence and demonstrates the solvers ability to maintain high accuracy using low spatial resolution;
the method is robust and accurately resolves numerical solutions with time steps that are much larger than what is normally
required for lower-order implicit schemes. Resilience of our solver (in terms of nonlinear convergence) is demonstrated in
ponded infiltration into homogeneous and layered soils, for which HYDRUS-1D solutions are used as qualitative references
to gauge performance of two slope limiting schemes.

Keywords Richards’ equation · Dual-time stepping · Local discontinuous Galerkin · Hydrostatic pressure

1 Introduction

Richards’equation (RE) governs single-phase, variably sat-
urated flows driven by gravity and pressure in porous media
[1]. It is commonly used to simulate soil-water flow and
associated processes such as contaminant transport, land-
atmosphere energy exchange, and groundwater recharge.
Solving RE is complicated by a number of factors, including
highly nonlinear relationships among soil hydraulic parame-
ters, heterogeneity in soil properties, and the presence of
sharp wetting fronts during infiltration into dry soils. As
noted in a recent review article on the subject [2], these
factors lead to several challenges in the numerical solution
of RE and give rise to two main deficiencies in existing
RE solvers: (i) A “lack of higher-order accuracy” —

� Yilong Xiao
xiao.76@osu.edu

Ethan J. Kubatko
kubatko.3@osu.edu

Colton J. Conroy
cjc2235@columbia.edu

1 The Ohio State University, Columbus, OH, USA

2 Columbia University, New York City, NY, USA

specifically, the authors point out that the “vast majority of
spatial discretizations used in practice are based on classical
low-order finite element discretizations and cell-centered
finite difference;” and (ii) A “lack of robustness” across the
range of conditions found in practice (e.g., multi-layered
soils, hydrostatic pressure, capillary effects, etc) due, in
part, to the “poor performance of the time integrator.” Ulti-
mately, this leads the authors of the review to conclude that
“alternative solution approaches or methods are needed.”

In this work, we aim to address this need through the
development of a high-order RE solver based on a local
discontinuous Galerkin finite-element method (LDG-FEM)
in space paired with a dual-time (DT) (or pseudo-time) step-
ping method. There have been previous efforts utilizing DG
methods for the numerical solution of RE (see, for example,
[3–6]), which vary in terms of both implementation details
and numerical testing of the resulting solver. However, in
our estimation, although these previous DG investigations
were aiming to address the lack of higher order accuracy
and robustness in previous RE solvers, these deficiencies
were not fully addressed in the following regards. First,
with respect to high-order accuracy, while several steady-
state and transient analytical solutions exist for RE, none of
the previous DG investigations tested their solvers in this
capacity or formally demonstrated high-order convergence
rates with respect to mesh (h) refinement for RE.
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Our numerical experiments demonstrate (to our knowl-
edge, for the first time) near-optimal high-order conver-
gence rates with respect to h refinement for a transient
analytical solution to RE. Second, with respect to robust-
ness, the previous DG formulations were mostly tested on
homogeneous soils and were not tested in the presence of
hydrostatic pressure. The former scenario does not repre-
sent most natural landscapes, which are usually made up of
layers of different types of soil with distinct hydraulic prop-
erties. When a fine-textured soil overlays a coarse-textured
soil this can create a capillary barrier effect [7], which
impedes infiltration, increases run-off, and can lead to a lack
of convergence of implicit time steppers. Similarly, the lat-
ter scenario, that is, the presence of hydrostatic pressure,
is also an important physical consideration when applying
RE solvers to real world problems — intermittent, intense
rainfall leads to ponding effects that create large pressure
fronts that move through the soil and can cause instability
in the numerical solver. The robustness of our specific LDG
+ DT formulation is demonstrated by solving problems in
both of these settings (i.e., in layered soils and in the pres-
ence of hydrostatic pressure), where we show that the DT
stepping approach, which hitherto has not been used in the
context of RE, successfully converges in situations where
other standard implicit time solvers fail.

The LDG spatial discretization, in general and in our
particular formulation, possesses a number of favorable
properties with regard to solving RE. First, by solving a
weak form of the problem over individual elements, DG
methods are able to resolve discontinuous jumps that may
form in the numerical solution at the interface of layered
soils typically found in nature. (This is a complication that
is more difficult to resolve using high-order continuous
Galerkin (CG) finite element methods). Second, the method
ensures a consistent flow of information from element-
to-element via a numerical flux function, which was first
introduced in the context of finite volume (FV) methods.
In very dry soil conditions, the RE solution for infiltration
behaves similar to a “wave” of moisture traveling through
the soil, where propagation speeds of the solution are finite
and advective-type fluxes can be used for the numerical
flux. As soil conditions increase in saturation, however, the
propagation of information depends on both upstream and
downstream information. To account for this wide ranging
behavior we utilize a local-Lax Friedrichs (LLF) flux, which
is a function of the average of the left and right states at
element boundaries as well as any jump that may exist in
the numerical solution and the speed with which it moves.
In very dry soils, the LLF flux is similar to an upwind
flux; however, in soils that are close to saturation, the LLF
flux consists of a simple average. Furthermore, it is easy to
implement and robust and widely used in geophysical fluid
dynamics but has yet to be used in RE solvers. Our nume-

rical results indicate that the LLF flux is robust enough to
handle smooth and discontinuous transport and produces
high-order solutions in infiltration, drainage, and hydro-
static pressure scenarios. Finally, unlike high-order finite
difference and essentially non-oscillatory (ENO)-type spa-
tial discretizations, the high-order spatial accuracy of DG
methods is achieved without an increase in stencil width.
Given this property, the pairing of DG spatial discretiza-
tions, when paired with explicit time steppers, results in a
fully discrete scheme with an extremely local data structure,
which, in turn, gives rise to high parallel efficiency.

However, the use of explicit time steppers present severe
time step restrictions when solving RE. Implicit time step-
ping methods avoid this issue but result in a fully discrete
scheme that compromises the compact nature and resulting
parallel efficiency of DG methods. We address this issue
by supplementing our DG spatial discretization with a dual
time stepping (DT) method that was introduced in [8] and
successfully applied to the Navier-Stokes equations [9–11].
The DT method is novel in terms of application to the
RE, which are typically solved using low-order implicit
steppers [2]. What makes the DT method unique is that
it transforms a transient problem in physical-time to a
steady-state problem in “pseudo” time by adding a pseudo-
time derivative and uses the dynamical information of the
flow field on shorter time scales to “time-march” to the
solution at the next time level. We utilize a second-order
backward difference formula to discretize physical time
coupled with an explicit time stepper in “pseudo” time.
By employing an explicit pseudo-time scheme, all residual
terms are directly evaluated and we avoid inversion of global
matrices and maintain a local data structure. This preserves
the compactness of the DG method, keeping it amenable
to parallel computing. Further, because the explicit time
stepper uses a smaller time step in pseudo-time than in
physical time, the fast waves of the problem are adequately
resolved. In the context of the RE, this point is far from
trivial due to the dynamics of soil moisture transport which
can consist of fast moving wetting fronts in dry soils, and
slow moving diffusion in saturated soils; in fact, this is
frequently a sticking point in implicit methods such as the
backward Euler method which can loose accuracy in the
presence of sharp wetting fronts unless a small time step
is used. By mixing an implicit time discretization with
an explicit time stepper (in pseudo-time) we are able to
converge to the solution and preserve accuracy while using
a time step that is larger than what is typically achievable
with standard backward difference formula.

The rest of this paper is organized as follows. First, in
the next section, we introduce RE and the soil-water consti-
tutive relations. Next, the LDG-FEM formulation and the
dual-time discretization are explained. We then verify our
solver against analytical solutions to demonstrate high-order
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accuracy as well as its robustness with respect to converging
in time. We also illustrate numerical solutions under
hydrostatic pressure in both a homogeneous soil column
as well as a layered soil column, using HYDRUS-1D
for qualitative reference. And finally, we conclude with a
summary of the major findings of our work.

2 Governing equations

The governing equation is the one-dimensional (1D) mixed-
form RE:

∂θ(ψ)

∂t
+ ∂

∂z

[
K(ψ) − K(ψ)

∂ψ

∂z

]
= 0, (2.1)

where θ is volumetric soil water content (or soil water
content), defined as unit volume of water per unit volume
of soil, [L3/L3]; ψ is soil water pressure head (or pressure
head, suction, matric potential), [L], which describes the
ability of soil to absorb water. It is more negative when
the soil is drier and can be positive under hydrostatic
pressure; K is the hydraulic conductivity of soil, [L/T],
which accounts for advective transport and is greater when
soil is more saturated; z is the vertical spatial coordinate and
t is time. Note that the “+” sign before the spatial derivative
terms in Eq. 2.1 indicates that the vertically downward
direction is taken as positive. This is the predominate
direction of soil-water flows and one of the main reasons
why 1D RE solvers see wide application [12–14].

Soil water constitutive relationships characterize the
mathematical relationships among θ , ψ and K . For
example, the Mualem-van Genuchten (MVG) model [15]
describes the relationship between θ and ψ as

θ(ψ) =
{

θr + θs−θr[1+(α|ψ |)n]m , for ψ < 0;
θs, for ψ ≥ 0,

where θr is the residual soil water content, [L3/L3], the
theoretical minimum value of θ ; θs is the saturated soil
water content, [L3/L3], the theoretical maximum value of
θ ; α [L−1], n [−] and m [−] are parameters that vary based
on soil hydraulic properties. In the case of ψ < 0, soil is
unsaturated and the θ -ψ relationship is highly nonlinear. At
ψ = 0, soil is fully saturated and θ reaches its maximum. In
a vertical infiltration scenario, ψ would exceed zero in the
presence of ponding depth (hydrostatic pressure), and soil-
water flow in the top saturated zone would adhere to Darcy’s
law until reaching the depth where ψ ≤ 0. MVG expresses
hydraulic conductivity as

K(ψ) =
⎧⎨
⎩

Ks · Sl
e ·
[
1 −

(
1 − S

1/m
e

)m]2
, for ψ < 0;

Ks, for ψ ≥ 0,

where Ks is saturated hydraulic conductivity [L/T], the
theoretical maximum of K; l is an empirical curve-fitting
parameter that varies based on soil properties; Se is degree
of saturation [–] which normalize θ within the range of [θr ,
θs]:

Se = θ − θr

θs − θr

.

In nature, soil also experiences extremely complicated
hysteresis caused by different wetting and drying history. In
this work, we do not consider hysteresis and assume the θ -ψ
relation is unique to each type of soil.

3 Spatial discretization: local discontinuous
Galerkin

3.1Weak formulation

Equation 2.1 is rewritten as a system of first- and zero-order
differential equations:

∂θ(ψ)

∂t
+ ∂

∂z
[K(ψ) − q(ψ)] = 0 inΩ × [0, T ] , (3.1a)

q(ψ) − K(ψ)r(ψ) = 0 inΩ × [0, T ] , (3.1b)

r(ψ) − ∂ψ

∂z
= 0 inΩ × [0, T ] , (3.1c)

where Ω = [
ztop, zbot

]
is the spatial domain, where ztop

and zbot denote the z coordinate of the top and bottom,
respectively, of the soil column; T is the total simulation
duration; q(ψ) and r(ψ) are auxiliary variables. Technically
(3.1c) is not always necessary for a system of first-order
equations, since (3.1b) can be presented as follows:

q(ψ) − ∂K(ψ)

∂z
= 0,

where K(ψ) is the anti-derivative of K(ψ). In fact, this is
the case in the paper which first introduced the LDG method
by Cockburn and Shu [16]. However, seeking K(ψ) may be
overly cumbersome due to complexity of the MVG model.
Hence, we resort to this alternative using three equations, as
has been demonstrated by Aizinger et al. [17].

Defining a set of points {zi}Ni=0 such that ztop = z0 <

z1 < · · · < zN = zbot, the spatial domain is partitioned
into a set of N elements denoted by Ωj = (zj−1, zj )

for j = 1, · · · , N with size Δzj = zj − zj−1. Next,
smooth test functions are defined respectively for the three
equations: ṽθ (z), ṽq (z), ṽr (z) (the subscripts indicate their
corresponding solution variables). Multiplying both sides
of each equation by its test function and integrating both
sides over the j -th element produces a weak form of
Eq. 3.1, where the strong requirement on smoothness of the
independent variable and flux functions is transferred to the
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test functions by an integration by parts (the independent
variable is suppressed for readability):

∫
Ωj

∂θ

∂t
ṽθ dz + (K − q)ṽθ

∣∣∣zj

zj−1
−
∫

Ωj

(K − q)
∂ṽθ

∂z
dz = 0, (3.2a)

∫
Ωj

qṽq dz −
∫

Ωj

Krṽq dz = 0, (3.2b)

∫
Ωj

rṽr dz − ψṽr

∣∣∣zj

zj−1
+
∫

Ωj

ψ
∂ṽr

∂z
dz = 0. (3.2c)

Next, the following finite-dimensional space is defined:

V
p
h =

{
v : v|zj

zj−1 ∈ Q
p, ∀Ωj ∈ Th

}
,

where Q
p is the space of basis polynomials of degrees up

to p and Th is the partitioned spatial domain, i.e., Th ={
Ωj

}N
j=1. We select our test functions denoted by ṽθ,h, ṽq,h

and ṽr,h from V
p
h , and we approximate θ by θh ∈ V

p
h . The

problem described by Eq. 3.2 then becomes: to determine
θh, qh and rh ∈ V

p
h such that the following system of

equations holds ∀ṽh ∈ V
p
h and ∀Ωj ∈ Th, i.e.,

∫
Ωj

∂θh

∂t
ṽθ,h dz =

∫
Ωj

(K(ψh) − qh)
∂ṽθ,h

∂z
dz

− (K(ψh) − qh) ṽθ,h

∣∣∣zj

zj−1
,

(3.3a)

∫
Ωj

qhṽq,h dz =
∫

Ωj

K(ψh)rhṽq,h dz, (3.3b)

∫
Ωj

rhṽr,h dz = −
∫

Ωj

ψh

∂ṽr,h

∂z
dz + ψhṽr,h

∣∣∣zj

zj−1
, (3.3c)

where the subscripts ‘h’ indicates that the terms are
DG approximation by the basis polynomials in V

p
h .

The space Vp
h does not enforce continuity across element

boundaries. Local solutions of neighbouring elements could
differ at their interfaces and create dual-valued fluxes.
To avoid this ambiguity, the interface terms in Eq. 3.3
are replaced with numerical fluxes, which, in general, are
dependent upon the left and right limits of every element
interface, i.e.

(K(ψh) − qh)ṽθ,h

∣∣∣zj

zj−1
→ (

K̂(ψh) − q̂h

)
zj

(
ṽ−
θ,h

)
zj

− (
K̂(ψh) − q̂h

)
zj−1

(
ṽ+
θ,h

)
zj−1

,

ψhṽr,h

∣∣∣zj

zj−1
→ ψ̂zj

(
ṽ−
r,h

)
zj

−ψ̂zj−1

(
ṽ+
r,h

)
zj−1

,

where K̂ , q̂h and ψ̂ are the numerical fluxes for K(ψh), qh

and ψh, respectively, and ( ·̂ )zj
refers to the numerical flux

at zj for j = 1, · · · , N .

Some simple numerical flux schemes include arithmetic
average:

F̂ (uz) = 1

2

[
F(u+

z ) + F(u−
z )
]
,

and upwind:

F̂ (uz) =
{

F(u−
z ), for ûz ≥ 0;

F(u+
z ), for ûz < 0,

in which F represents a generic function of u the solution
variable. The numerical flux schemes we adopted are
detailed in Section 5 alongside each test problem.

More implementation details on the LDG method are
provided in the Appendix, such as master element trans-
form, treatment of the constant coefficients in the test func-
tions, the Gauss-Lobatto quadrature rule, and the compu-
tational forms of the weak form. For proof of the well-
posedness of the LDG method with a formulation similar to
Eq. 3.1, kindly refer to the work by Aizinger et al. [17] and
the references therein.

3.2 Slope limiter

During simulation of infiltration (especially into dry soil),
large pressure gradients and oscillations are expected at
the wetting front. Numerical solutions could overshoot the
range of [θr , θs] and lead to erroneous flux values. This
can be circumvented with the two following slope limiting
schemes, which preserves local mass conservation but
unfortunately reduce the order of local solutions to 1.

First is a bound-preserving limiter [18] as follows:

p̃j = min

{
1,

∣∣∣∣ M − p̄j

Mj − p̄j

∣∣∣∣ ,
∣∣∣∣ m − p̄j

mj − p̄j

∣∣∣∣
}

· [pj (z) − p̄j

]+ p̄j ,

(3.4)

where min{·} returns the minimum entry in the brackets;
pj is the local basis-polynomial approximation of the j -th
element before adjustment and p̃j is after adjustment; p̄j is
the local average of the j -th element; M is the global upper
bound (i.e. θs); m is the global lower bound (i.e. θr ); Mj and
mj are respectively the local maximum and minimum of the
j -th element.

Second is the minmod limiter [19] given by

p̃−
j+1/2 = p̄j + m

(
p−

j+1/2 − p̄j , b, c
)

, (3.5a)

p̃+
j−1/2 = p̄j + m

(
p̄j − p+

j−1/2, b, c
)

, (3.5b)

b = p̄j − p̄j−1, (3.5c)

c = p̄j+1 − p̄j , (3.5d)
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where p−
j+1/2 is the left limit of the (j +1/2)-th edge before

adjustment and p̃−
j+1/2 is after adjustment; p+

j−1/2 is the
right limit of the (j − 1/2)-th edge before adjustment and
p̃+

j−1/2 is after adjustment; m(·) is the minmod function
defined as

m(a1, a2, a3) =

⎧⎪⎨
⎪⎩

s min
1≤n≤3

|an| , if s(a1) = s(a2) = s(a3);

0, otherwise,

in which s(·) returns the sign of the parenthesized term.
The above slope limiters were selected for ease to imple-

ment and are distinct enough for performance compari-
son: the bound-preserving limiter stays dormant until phys-
ical bounds in θ were violated, whereas the minmod limiter
actively adjusts local profiles based on solutions in neigh-
bouring elements. For more recent breakthroughs in slope
limiters for DG methods in general, refer to Kuzmin’s
[20] work which combines flux and slope correction. Their
method has been proven for hyperbolic problems and
could potentially be compatible with the elliptic-parabolic
Richards’ equation, but a more thorough testing of slope
limiting schemes is beyond our current scope.

3.3 Hydrostatic pressure head profile

The mixed-form RE evaluates flux functions with ψ and
conserves mass in θ . However, upon advancing in time,
conversion of θ to ψ with the constitutive relationship
discounts hydrostatic pressure because θ is capped at θs

regardless of ψ greater than zero. To preserve the informa-
tion of hydrostatic pressure, during ponded infiltration with
a top-boundary pressure head of ψ0 > 0, we check the sat-
uration condition of the top soil after each time step and
impose a linear pressure gradient of ψ0/zsat from the soil
surface (z = 0) to the lower boundary of the top saturated
zone (z = zsat).

4 Temporal discretization: dual-time
steppingmethod

This section demonstrates dual-time discretization with
second-order backward difference formula (BDF2) in
physical-time and forward Euler (FE) method in pseudo-
time. Let (2.1) be condensed into

∂θ(ψ)

∂t
+ R(ψ) = 0

where R(ψ) compactly represents all the spatial terms that
undergo the LDG formulation described in Section 3. We
drop ‘(ψ)’ from the time derivative because θ at the end
of each physical-time step is obtained by solving for the

spatial terms rather than by conversion from ψ . Instead, a
conversion from θ to ψ is made at the beginning of each
physical-time step for evaluation of spatial terms. Following
Section 3, we make the LDG-FEM approximation θh ≈ θ

and ψh ≈ ψ :

∂θh

∂t
+ R

(
ψh

) = 0.

The physical-time derivative is discretized via BDF2 (2nd-
order accurate, L-stable). As BDF2 needs known solutions
from two previous time steps, we resort to a Crank-Nicolson
method (2nd-order accurate, A-stable) in the first physical-
time step and switch to BDF2 afterward, i.e.:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ1
h − θ0

h

Δt
+ 1

2

[
R
(
ψ1

h

)+ R
(
ψ0

h

)] = 0,

3θm+1
h − 4θm

h + θm−1
h

2Δt
+ R

(
ψm+1

h

) = 0,

(4.1)

where the superscripts of θ and ψ denote physical-time
level. A pseudo-time derivative, ∂w/∂τ , is added to Eq. 4.1
and discretized with forward difference. Then, all instances
of θm+1

h (and θ1
h ) are replaced by w(k) to complete the FE

discretization in pseudo-time, i.e.:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
(k+1)
h − w

(k)
h

Δτ
= w

(k)
h − θ0

h

Δt
+ 1

2
R1,

R1 = R
(
ψ(w

(k)
h )

)
+ R

(
ψ0

h

);
w

(k+1)
h − w

(k)
h

Δτ
= 3w

(k)
h − 4θm

h + θm−1
h

2Δt
+ R2,

R2 = R
(
ψ(w

(k)
h )

)
,

(4.2)

where the superscript k indicates inner iteration level. The
discretized equation in DT can be compactly written as

w(k+1) = w(k) + ΔτR∗ (w(k)
)

, (4.3)

where R∗(·) is the dual-time residual based on right-hand-
side terms in Eq. 4.2 and must turn zero as k → ∞.
Temporal accuracy is (almost entirely) determined by the
physical-time scheme and not required for pseudo-time
convergence; the only objective of inner iteration is to fulfill
∣∣∣w(k+1) − w(k)

∣∣∣ :=
∣∣∣Δw(k+1)

∣∣∣ ≤ ε ≈ 0

for some user-defined tolerance level, ε. Stability condition
in dual-time no longer follows the original stability
condition of BDF2 or FE, but rather can be determined via
a linear analysis of Eq. 4.3 in τ . For DT stepping methods
with BDF2 in physical-time, the recommended stability
requirement for a linear problem is κ = (Δτ/Δt) ≤
(2/3) [10, 21], where 2/3 is the inverse of the coefficient
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of the unknown variable in the implicitly discretized equa-
tion using BDF2. Currently there exists no concrete metho-
dology on estimation of optimal κ values for DT stability
and convergence a priori. For the test problems in Section 5,
optimal κ would be estimated via trial and error.

5 Tests and results

Five test problems are designed for evaluation of the LDG-
DT solver. In the first three tests, the LDG-DT solver is ver-
ified against different analytical solutions. In the last two
problems, HYDRUS-1D [22] (which is a well established
RE solver based on continuous Galerkin FEM in space and
backward Euler in time accelerated by modified Picards’
method [23]) is used for qualitative comparison. Compar-
ison is also made in each test problem between LDG-DT
and LDG-BDF2 under identical spatial configurations. For
all LDG-DT simulations, unless otherwise specified, con-
vergence criterion is purposefully set to |Δw| < 10−15 to
demonstrate its convergence capability (this is in light of the
fact that harsh convergence criterion incompatible with Δt

is also a cause of incorrect convergence or non-convergence
of implicit temporal schemes). Other simulation settings are
detailed within the subsection of each test problem.

5.1 Infiltration toward a water table

In this problem, we rigorously assess the accuracy and
h convergence rates of the DG spatial discretization and
investigate the performance of the DT time stepping using a
range of physical and pseudo time step sizes, comparing the
results to a standard BDF2 time stepping approach.

An analytical solution for infiltration towards a water
table was derived by Srivastava and Yeh [24], who
adopted Gardner’s [25] exponential model for hydraulic
conductivity and Irmay’s [26] power function for degree of
saturation as follows:

K = Ks · Kr, (5.1a)

Kr = eαsyψ = θ − θr

θs − θr

, (5.1b)

where
Ks = 1.0 cm/hr is the saturated hydraulic conductivity

used in their experiments; Kr ∈ [0, 1] is relative hydraulic
conductivity and αsy [L−1] is a soil-related constant. Their
analytical solution for this scenario is:

Kr = qB − (
qB − eαsyψ0

) · e−z

− 4(qB − qA) · e(L−z)/2 · e(−1/4)

·
∞∑

n=1

sin (λnz) sin (λnL)e−λ2
nt

1 + (L/2) + 2λ2
nL

,

(5.2)

where

– αsy = 0.1 cm−1, θr = 0.06 and θs = 0.40;
– qB = 0.9 cm/hr is the flux at the soil surface for t > 0

(can be perceived as some constant rainfall rate);
– qA = 0.1 cm/hr is the flux at the soil surface for t = 0

(initial condition only);
– ψ0 = 0 cm is the pressure head at the top of the water

table;
– L = αsyL∗, in which L∗ = 100 cm is the distance to

the water table from the soil surface;
– λn is the n-th positive root of tan (λL) + 2λ = 0, which

can be numerically estimated by increasing λ from zero
with tiny increment and checking for sign changes on
the left-hand side. We capped n at 1000.

Srivastava and Yeh’s initial condition is given by:

Kr(z, 0) = qA − (qA − eαsyψ0) · e(−z), (5.3)

whereas the top boundary condition is:

qB =
[
Kr + ∂Kr

∂z

]
,

and the bottom boundary condition is:

Kr = eαsyψ0 = 1.

To obtain the initial condition for LDG-DT, Eq. 5.3 is
evaluated at the coordinates of all quadrature points and then
converted to ψ and θ . The top boundary conditions are:

ψ̂z=0 = ψ+
z=0,[

K̂ − q̂
]
z=0 = qB .

The bottom boundary conditions are:

ψ̂z=100 = 0,

K̂z=100 = Ks,

q̂z=100 = Ks · r−
z=100.

At internal element interfaces, the following numerical
fluxes are applied:

ψ̂z = ψ+
z ,

K̂z = 1

2

(
K+

z + K−
z

)−
∣∣K ′∣∣

2

(
θ+
z − θ−

z

)
,

q̂z = K−
z · r−

z ,

where K̂z is the local Lax-Friedrichs flux and K ′ = Ks(θs −
θr)

−1 is the partial derivative of Kz with respect to θ (5.1);
it corresponds to the speed of the moisture wave in very
dry soil and arises from the theory of hyperbolic PDEs [27].
Spatial units are in cm and temporal units are in hr. Given
that the top boundary flux (qB ) is smaller than Ks , relatively
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smooth profiles are expected, thus no slope limiting scheme
is applied. For evaluation of accuracy, we compute the L2

error norm against the analytical solution, i.e.:

EL2 =
⎡
⎣ N∑

j=1

∫
Ωj

(
ue − uh

)2 dΩj

⎤
⎦

1/2

,

where ue and uh respectively represent the analytical and
numerical solution profiles at a particular time.

Figures 1, 2 and 3 present LDG-DT solutions. The
observation times are chosen for visual clarity. Accurate
convergence is demonstrated at Δt = 0.1 hr, with Δτ =
0.01Δt for stability. It is plausible for the solver to converge
at Δt > 1 hr, but accuracy would be compromised. The
advantage of using p refinement in the LDG method in
space is highlighted by the comparably accurate predictions
with different combinations of spatial resolutions and basis
polynomial orders: N = 20 with p = 1, N = 5 with
p = 2, and N = 2 with p = 4. As reported in Table 1, near-
optimal L2 convergence rates of p + 1 are observed when
Δt is sufficiently small [19]. Meanwhile, the use of BDF2
in physical-time will limit long-term accuracy to the second
order, consequently leading to the plateauing/flattening of
the curve of p = 2 at a later time with a larger Δt .

The selection of Δτ is not entirely arbitrary as it affects
stability and efficiency. A general rule of thumb from the
literature is that instability tends to occur when Δτ >

Δt , but optimization of efficiency with respect to Δτ and
Δt is unclear [21]. For verification of our solver against
analytical solutions, we define κ = Δτ/Δt and estimate
its optimal value via trial and error. Specifically, we start

Fig. 1 Infiltration toward a Water Table: Comparison between LDG-
DT (p = 1, N = 20) and analytical solutions. L2 errors at the four
observation times (ascending order) are 0.0145, 0.0141, 0.0140 and
0.0121 respectively

Fig. 2 Infiltration toward a Water Table: Comparison between LDG-
DT (p = 2, N = 5) and analytical solutions. L2 errors at the four
observation times (ascending order) are 0.0331, 0.0299, 0.0292 and
0.0217 respectively

with sufficiently small Δt (0.0001 hr) and κ (0.01) and
compute the L2 error at the end of a simulation. Then,
we increase κ and recompute the error. If the new error
is similar (on the same order of magnitude) to the initial
error, the numerical results are considered to be comparably
accurate. This process is repeated for increasing κ until
instability or noticeably larger errors occur. Given this set
of solutions, the κ corresponding to the fewest number of
computational steps is reported as the “optimal” κ .

Fig. 3 Infiltration toward a Water Table: Comparison between LDG-
DT (p = 4, N = 2) and analytical solutions. L2 errors at the four
observation times (ascending order) are 0.0226, 0.0176, 0.0179 and
0.0120 respectively
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Table 1 L2 Error convergence
rates of LDG-DT N t = [0, 1] hr, 105 Steps t = [5, 5.1] hr, 104 Steps

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

4 – – – – – –

8 0.28 1.42 2.96 0.84 1.73 2.58

16 0.80 1.74 2.97 0.89 1.81 2.36

32 0.84 1.88 3.01 0.92 1.83 1.73

64 0.85 1.91 2.99 0.94 1.74 1.26

Near-ideal convergence rate is observed for the test from t = 0 hr to t = 1 hr. But because the method
would ultimately be second-order accurate due to using BDF2 in physical-time, deterioration in convergence
is expected and observed from t = 5 hr to t = 5.1 hr

Tables 2 and 3 summarize optimal κ values for a range
of (physical) time steps sizes Δt . It can be noted that as
Δt increases, the maximum allowable κ decreases, which
agrees with previous observations in literature that Δτ <

Table 2 Infiltration toward a Water Table: Estimated Optimal κ for
LDG-DT and Comparison against LDG-BDF2 (N = 5, p = 2,
T = 48 hr, κ = Δτ/Δt)

Method ε Δt (hr) κ Steps EL2

DT 10−6 0.4 0.010 17588 0.0219

0.3 0.013 16285 0.0219

0.2 0.020 13814 0.0219

0.1 0.040 10529 0.0219

0.05 0.077 7905 0.0219

0.02 0.17 6133 0.0219

0.01 0.30 7087 0.0218

0.008 0.36 7942 0.0218

0.006 0.44 9582 0.0218

0.004 0.55 13025 0.0218

0.002 0.66 24740 0.0218

0.001 0.66 48546 0.0218

0.0005 0.66 96355 0.0218

0.0001 0.66 480143 0.0218

BDF2 10−3 ≥ 0.004 – Invalid –

0.002 – 24802 0.0219

0.001 – 48570 0.0219

0.0005 – 96573 0.0219

0.0001 – 480000 0.0218

‘Steps’ is the total number of computational cycles/steps taken by
the solver. For LDG-DT, this equals the summation of all pseudo-
time steps in all physical-time steps; for LDG-BDF2, this equals
the summation of all iterations in all physical-time steps. LDG-DT
and LDG-BDF2 undergo the identical routine for spatial terms and
only differ in the temporal derivatives. The most efficient run by the
LDG-DT solver is emphasized in bold

‘EL2 ’ is the L2 error at T

‘Invalid’ marks unrealistic results, where at least one cell average θ

value has exceeded the range of [θr , θs ] and led to unrealistic flux
values

Δt is generally necessary for stability. It is also discovered
that the optimal κ is very close to the maximum allowable
κ (which facilitates the trial and error process); when Δt is
small enough for the maximum allowable κ to be greater

Table 3 Infiltration toward a Water Table: Estimated Optimal κ for
LDG-DT and Comparison against LDG-BDF2 (N = 2, p = 4,
T = 48 hr, κ = Δτ/Δt)

Method ε Δt (hr) κ Steps EL2

DT 10−6 0.4 0.010 17438 0.0122

0.3 0.014 15415 0.0120

0.2 0.022 13072 0.0122

0.1 0.043 9852 0.0121

0.05 0.085 7378 0.0121

0.02 0.19 5812 0.0121

0.01 0.32 6962 0.0120

0.008 0.38 7892 0.0120

0.006 0.43 9352 0.0120

0.004 0.53 13100 0.0120

0.002 0.66 24598 0.0120

0.001 0.66 48558 0.0120

0.0005 0.66 96419 0.0120

0.0001 0.66 480090 0.0120

BDF2 10−3 ≥ 0.004 – Invalid –

0.002 – 24003 0.0120

0.001 – 48000 0.0120

0.0005 – 96000 0.0120

0.0001 – 480000 0.0120

‘Steps’ is the total number of computational cycles/steps taken by
the solver. For LDG-DT, this equals the summation of all pseudo-
time steps in all physical-time steps; for LDG-BDF2, this equals
the summation of all iterations in all physical-time steps. LDG-DT
and LDG-BDF2 undergo the identical routine for spatial terms and
only differ in the temporal derivatives. The most efficient run by the
LDG-DT solver is emphasized in bold

‘EL2 ’ is the L2 error at T

‘Invalid’ marks unrealistic results, where at least one cell average θ

value has exceeded the range of [θr , θs ] and led to unrealistic flux
values
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than ≈ 2/3, the optimal κ would simply be ≈ 2/3,
which coincides with the recommended upper limit of κ for
using BDF2 in physical-time, mentioned near the end of
Section 4. We also loosened error tolerance from the default
ε = 10−15 to ε = 10−6, which suffices for accuracy in this
problem while taking far fewer computational steps. Almost
identical L2 error is observed for ε ∈ [10−15, 10−6].

Also included in Tables 2 and 3 are simulation results
using LDG-BDF2. An error tolerance of ε = 10−3 is used
for LDG-BDF2. We noticed that smaller ε could lead to
non-convergence. For example, Fig. 4 shows overestimation
of infiltration speed with ε = 10−6, due to the fact that
LDG-BDF2 fails to converge in early simulation and is
forced to accept an incorrect estimation in order to advance
in time (we cap the number of iterations). With reference to
the LDG-DT results, it is found that at the Δt values where
LDG-BDF2 starts to converge correctly, the total number
of computational steps it takes is similar to LDG-DT for
the same Δt . Coincidentally, the largest Δt at which LDG-
BDF2 converges accurately is also where optimal κ ≈ 2/3
for LDG-DT. Hence κ ≈ 2/3 can be interpreted as a critical
point: For Δt where optimal κ < 2/3, LDG-DT is clearly
the superior choice, otherwise the two time steppers would
be on par with each other (provided that Δt and ε for LDG-
BDF2 are compatible). By plotting optimal κ against Δt in
log-log scale, an almost linear trend is observed for optimal
κ < 2/3 (Fig. 5), as shown in Figs. 6 and 7.

Fig. 4 Infiltration toward a Water Table: Comparison between LDG-
BDF2 (p = 2, N = 5, ε = 10−6) and analytical solutions. L2 errors
at the four observation times (ascending order) are 0.0812, 0.0541,
0.0462 and 0.0347 respectively. Error is accumulated from incorrect
convergence at the first time step due to an error tolerance of ε = 10−6.
If ε = 10−3, the profiles would be equally accurate as those in Fig. 2

Fig. 5 L2 error convergence from two different starting times. The
slope of each curve over each refinement is listed in Table 1

Fig. 6 Infiltration toward a Water Table: Optimal κ (N = 5, p = 2). Gra-
dient of optimal κ before plateauing is roughly −0.8879 (R2 = 0.994)

Fig. 7 Infiltration toward a Water Table: Optimal κ (N = 2, p = 4). Gra-
dient of optimal κ before plateauing is roughly −0.8726 (R2 = 0.991)
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In supplement to the infiltration results above, some
results for drainage are hereby provided. The exact solution
for drainage is attained by swapping the values of qA and
qB in Eq. 5.2, otherwise everything is kept unchanged. We
set N = 5 and p = 2. Following the aforementioned
method, we estimated and summarized optimal κ values
for LDG-DT in Table 4. Figure 8 shows LDG-DT profiles
generated with Δt = 0.5 hr; numerical results match the
analytic results qualitatively well except for the upper limb
at t = 1 hr, which can be remedied by either increasing
the polynomial approximation or spatial resolution. Figure 9
presents change in optimal κ with respect to Δt .

Overall, LDG-DT can accurately converge at Δt several
orders of magnitudes larger than LDG-BDF2, ultimately
taking far fewer total computational steps (in this case,
roughly 1/4 the number of steps) while being less sensitive
to ε.

5.2 Infiltration under constant surfacemoisture

We further verify our numerical result against an analytical
solution derived by Hayek [28] for infiltration under a

Table 4 Drainage toward a Water Table: Estimated Optimal κ for
LDG-DT and Comparison against LDG-BDF2 (N = 5, p = 2,
T = 48 hr, κ = Δτ/Δt)

Method ε Δt (hr) κ Steps EL2

DT 10−6 0.5 0.018 14120 0.0261
0.2 0.023 14070 0.0261
0.1 0.045 10801 0.0261
0.05 0.086 8106 0.0261
0.02 0.16 5972 0.0261
0.01 0.28 6513 0.0261
0.005 0.48 10432 0.0261
0.002 0.61 24598 0.0261
0.001 0.66 48558 0.0261
0.0005 0.66 96419 0.0261
0.0001 0.66 480090 0.0261

BDF2 10−3 ≥ 0.004 – Invalid –
0.002 – 24000 0.0261
0.001 – 48000 0.0261
0.0005 – 96000 0.0261
0.0001 – 480000 0.0261

‘Steps’ is the total number of computational cycles/steps taken by
the solver. For LDG-DT, this equals the summation of all pseudo-
time steps in all physical-time steps; for LDG-BDF2, this equals
the summation of all iterations in all physical-time steps. LDG-DT
and LDG-BDF2 undergo the identical routine for spatial terms and
only differ in the temporal derivatives. The most efficient run by the
LDG-DT solver is emphasized in bold

‘EL2 ’ is the L2 error at T

‘Invalid’ marks unrealistic results, where at least one cell average θ

value has exceeded the range of [θr , θs ] and led to unrealistic flux
values

Fig. 8 Drainage toward a Water Table: Comparison between LDG-DT
(p = 2, N = 5, ε = 10−6) and analytical solutions. L2 errors at the
four observation times (ascending order) are 0.0290, 0.0071, 0.0047
and 0.0094 respectively

constant surface soil-water content based on the following
variant of RE:

∂Se

∂t
+ ∂

∂z

[
K(Se) − D(Se)

∂Se

∂z

]
= 0, (5.4)

where Se, the degree of saturation, is given by the following
θ -ψ constitutive relationship:

Se = θ − θr

θs − θr

= exp

(
αψ

n

)
,

Fig. 9 Drainage toward a Water Table: Optimal κ (N = 5, p = 2). Gra-
dient of optimal κ before plateauing is roughly −0.7054 (R2 = 0.984)
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where n = 3.5; K(Se) and D(Se) are respectively hydraulic
conductivity and diffusivity, expressed as follows:

K(Se) = Ks

θs − θr

Sn
e ,

D(Se) = nKs

α(θs − θr)
Sn−1

e .

The analytical solution of Eq. 5.4 at any time t in z ∈
[0, zf ] is given by:

θ = θr + (θ∗ − θr)

[
1 − exp

(
α(n − 1)(z − ξ0 − V t)

n

)]
.

Here, zf is an arbitrary finite length (as the analytical
solution is derived for an semi-infinite domain) which is
set to 150 cm for our problem; top boundary condition (at
z = 0) is θ = θ∗ − δ for δ = 10−3θr ; below the wetting
front, θ = θr for the entire remaining domain. θ∗ is set to θs ;
α = 1.0 cm−1; V = Ks/(θs − θr); ξ0 is defined as follows:

ξ0 = − n

α(n − 1)
ln

[
1 −

(
θ∗ − δ − θr

θ∗ − θr

)n−1
]
,

which is is simply the starting location of the wetting front.
We set ξ0 = 50 cm to lessen influence from the initial
condition due to remarks by the author [28]. Lastly, Ks =
1.0 cm/hr, θs = 0.40, and θr = 0.06. This analytical solution
represents a scenario where the soil surface is fully wet
without accumulation of water. Within the soil, the depth
above the wetting front would asymptotically approach full
saturation as the wetting front travels indefinitely deeper.

LDG-DT settings are as follows. The top boundary
conditions are:

ψ̂z=0 = 0 cm,[
K̂ − q̂

]
z=0 = Ks .

The bottom boundary conditions are:

ψ̂z=100 = ψ−
z=100,

K̂z=100 = K−
z=100,

q̂z=100 = K−
z=100 · r−

z=100.

At internal element interfaces, the numerical fluxes are
configured as follows:

ψ̂z = ψ−
z ,

K̂z = 1

2

(
K+

z + K−
z

)−
∣∣K ′

max

∣∣
2

(
θ+
z − θ−

z

)
,

q̂z = K+
z · r+

z ,

where K ′
max is the local maximum partial derivative of K

with respect to θ . Given that the soil profile underneath the
wetting front is at exactly θr , undershooting of local solu-
tions are expected. Therefore, the two slope limiters descri-
bed in Section 3.2 are implemented separately.

Figures 10 and 11 present sample results predicted by
LDG-DT. Observation times in the figures are selected to
demonstrate issues in the minmod limiter, which fails to
bound θ ∈ [θr , θs]. In contrast, the bound-preserving limiter
helps maintain realistic results (Fig. 12).

Fig. 10 Infiltration under
Constant Surface Moisture:
Comparison between LDG-DT
and analytical solutions (p = 1,
N = 20)
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Fig. 11 Infiltration under
Constant Surface Moisture:
Comparison between LDG-DT
and analytical solutions (p = 1,
N = 40)

As before, the optimal κ for LDG-DT is estimated via
trial and error, as summarized in Table 5 and illustrated
in Fig. 13. Similar trends as in the first test problem are
observed: the optimal κ increases as Δt decreases; an
almost linear relationship in log-log scale is found between
optimal κ and Δt for optimal κ < 2/3; the Δt at which
optimal κ hits 2/3 is also where LDG-BDF2 starts to

Fig. 12 Infiltration under Constant Surface Moisture: Comparison
between LDG-BDF2 and analytical solutions (p = 1, N = 40).
Overestimation of infiltration speed is caused by incompatible error
tolerance

Table 5 Infiltration under Constant Surface Moisture: Estimated
Optimal κ for LDG-DT and Comparison against LDG-BDF2 (N =
20, p = 1, T = 24 hr, κ = Δτ/Δt)

Method ε Δt (hr) κ Steps EL2

DT 10−6 0.4 0.065 4884 0.0586
0.3 0.085 4888 0.0590
0.2 0.12 4949 0.0595
0.1 0.22 4859 0.0600
0.05 0.38 4695 0.0602
0.02 0.63 4828 0.0602
0.01 0.65 6348 0.0602
0.005 0.64 10142 0.0602
0.002 0.66 23765 0.0602
0.001 0.66 28105 0.0602
0.0005 0.66 48713 0.0602
0.0001 0.66 240501 0.0602

BDF2 10−3 ≥ 0.008 – Invalid –
0.005 – 5316 0.7704
0.002 – 12078 0.0896
0.001 – 23999 0.0602
0.0005 – 47999 0.0602
0.0001 – 240000 0.0602

‘Steps’ is the total number of computational cycles/steps taken by
the solver. For LDG-DT, this equals the summation of all pseudo-
time steps in all physical-time steps; for LDG-BDF2, this equals
the summation of all iterations in all physical-time steps. LDG-DT
and LDG-BDF2 undergo the identical routine for spatial terms and
only differ in the temporal derivatives. The most efficient run by the
LDG-DT solver is emphasized in bold

‘EL2 ’ is the L2 error at T

‘Invalid’ marks unrealistic results, where at least one cell average θ

value has exceeded the range of [θr , θs ]
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Fig. 13 Infiltration under Constant Surface Moisture: Optimal κ and
Efficiency of LDG-DT (N = 20, p = 1). Gradient of optimal κ before
plateauing is about −0.8250 (R2 = 0.996)

produce satisfactory results on par with those of LDG-DT.
Pertaining to error tolerance, once again it is discovered
that ε < 10−3 causes non-convergence in LDG-BDF2, as
shown in Fig. 12 where the solver is forced to advance in
time with an inaccurate solution early on. In contrast, LDG-
DT consistently returns the same result for ε ≤ 10−6. For
example, at Δt = 0.05 hr with κ = 0.38, the total number
of computational steps is 4695 for ε = 10−6 and 17388
for ε = 10−10, but the L2 error at t = 24 hr is 0.0602
regardless.

5.3 Horizontal infiltration under constant surface
moisture

This problem is similar to the previous except infiltration
occurs sideways as if water enters the soil through a vertical
seepage face. This removes convection due to gravity and
simplifies RE to a diffusion problem in an infinitely thin
layer of soil, governed by

∂θ

∂t
= ∂

∂x

[
D
(
θ(ψ)

)∂θ(ψ)

∂x

]
, (5.5)

where x [L] is the horizontal spatial coordinate and D

[L2/T] is diffusivity. This is essentially the horizontal
process in a multi-dimensional RE. Constitutive relationship
for this problem is described by the Brooks-Corey model
[29], which defines D(θ(ψ)) as follows:

D
(
θ(ψ)

) = K(ψ)
∂ψ

∂θ
= − Ksψb

λ(θs − θr)
S

2+1/λ
e .

Here ψb [L] is air-entry pressure head, λ [–] is pore-size
distribution index, and Se in unsaturated soil (ψ < ψb) can
be expressed as

Se = θ − θr

θs − θr

=
(

ψ

ψb

)−λ

.

Hayek [30] presents the analytical solution of Eq. 5.5 as
follows:

x = a
√

Dst
[
m − nc(Se − Sei)

n
]

· (Se − Sei)
m−1 e−c(Se−Sei )

n + xf (t),
(5.6a)

xf (t) = −a
√

Dst
[
m − nc(Se0 − Sei)

n
]

· (Se0 − Sei)
m−1 e−c(Se0−Sei )

n

,
(5.6b)

where t is the physical-time variable, Ds is diffusivity at full
saturation, Sei is degree of saturation of the initial condition,
Se0 is degree of saturation based on the condition at the
wet boundary (Se0 = 1 for this problem because the wet
boundary is set to θs). All other parameters necessary for
evaluation of Eq. 5.6 are included in Table 6.

LDG-DT settings are as follows. Initial condition of the
entire 100-cm long domain is set to θi . Boundary conditions
of the wet (left, −) end are:

ψ̂x=0 = ψb,[
K̂ − q̂

]
z=0 = D

(
θ(ψb)

)
.

Boundary conditions on the dry (right, +) end are:

ψ̂x=100 = ψ−
x=100,

K̂x=100 = 0,

q̂x=100 = D−
x=100 · r−

x=100.

At internal element interfaces, the following numerical
fluxes are applied:

ψ̂x = ψ−
x ,

K̂x = 0,

q̂x = D+
x · r+

x .

Table 6 Horizontal infiltration: soil parameters

Parameters Sand Sandy Loam

θr [cm3/cm3] 0.020 0.041

θi [cm3/cm3] 0.020 0.050

θs [cm3/cm3] 0.417 0.412

ψb [cm] −7.26 −14.66

λ [ – ] 0.592 0.322

Ks [cm/hr] 21.00 2.59

a [ – ] −0.15102 −0.11519

c [ – ] −0.04263 −0.05732

m [ – ] 4.71929 5.90092

n [ – ] 5.00363 5.50562
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Fig. 14 Horizontal infiltration:
LDG-DT profiles in sand
(p = 1, N = 20)

Due to θi ≈ θr , the bound-preserving limiter is in place to
prevent unrealistic solutions.

Figure 14 shows LDG-DT results using N = 20 and
Δt = 0.1 hr in a sand domain. Overall agreement with
the analytical solution is excellent and improves over time.
Similar performance is seen in Fig. 15 for a sandy loam

domain, where N = 20 and Δt = 0.2 hr. Sandy loam is less
conductive than sand at high degrees of saturation, hence
a larger physical-time step is allowed. In contrast, Fig. 16
shows slight overestimation of infiltration speed by LDG-
BDF2 in early simulation. For evaluation of accuracy, due to
difficulties in inverting (5.6) and expressing θ as a function

Fig. 15 Horizontal infiltration:
LDG-DT profiles in sandy loam
(p = 1, N = 20)
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Fig. 16 Horizontal infiltration:
LDG-BDF2 profiles in sand
(p = 1, N = 40)

spatial coordinates, for the same θ profiles we plot the exact
coordinates against the quadrature point coordinates and
check how closely they align with the y = x line in terms
of the coefficient of determination, R2.
Table 7 Horizontal infiltration under constant surface moisture:
estimated optimal κ for LDG-DT (Sand, N = 20, p = 1, T = 20 hr,
κ = Δτ/Δt)

Method ε Δt (hr) κ Steps R2

DT 10−6 0.1 0.013 32532 0.99982

0.05 0.048 18564 0.99989

0.02 0.11 16443 0.99990

0.01 0.20 14624 0.99990

0.005 0.33 13653 0.99991

0.002 0.59 14821 0.99991

0.001 0.63 22686 0.99991

0.0005 0.66 41503 0.99990

0.0002 0.66 100673 0.99991

0.0001 0.66 200363 0.99991

BDF2 10−3 > 0.0001 – Invalid –

0.0001 – 200358 0.99982

‘Steps’ is the total number of computational cycles/steps taken by
the solver. For LDG-DT, this equals the summation of all pseudo-
time steps in all physical-time steps; for LDG-BDF2, this equals
the summation of all iterations in all physical-time steps. LDG-DT
and LDG-BDF2 undergo the identical routine for spatial terms and
only differ in the temporal derivatives. The most efficient run by the
LDG-DT solver is emphasized in bold

‘Invalid’ marks incorrect results. In this case, at least one cell average
θ value has exceeded the range of [θr , θs ]

As before, estimated optimal κ are summarized in
Tables 7 and 8, as well as plotted in Figs. 17 and 15. Optimal
κ increases with decreasing Δt and is capped at about 2/3.

Table 8 Horizontal infiltration under constant surface moisture:
estimated optimal κ for LDG-DT and Comparison against LDG-BDF2
(Sandy Loam, N = 20, p = 1, T = 20 hr, κ = Δτ/Δt)

Method ε Δt (hr) κ Steps R2

DT 10−6 0.1 0.052 9909 0.99972

0.05 0.010 9294 0.99977

0.02 0.22 8217 0.99978

0.01 0.36 7931 0.99978

0.005 0.56 8234 0.99979

0.002 0.61 12617 0.99979

0.001 0.66 21384 0.99979

0.0005 0.66 40611 0.99979

0.0002 0.66 100395 0.99979

0.0001 0.66 200481 0.99979

BDF2 10−3 > 0.0001 – Invalid –

0.0001 – 200012 0.99978

‘Steps’ is the total number of computational cycles/steps taken by
the solver. For LDG-DT, this equals the summation of all pseudo-
time steps in all physical-time steps; for LDG-BDF2, this equals
the summation of all iterations in all physical-time steps. LDG-DT
and LDG-BDF2 undergo the identical routine for spatial terms and
only differ in the temporal derivatives. The most efficient run by the
LDG-DT solver is emphasized in bold

‘Invalid’ marks incorrect results. In this case, at least one cell average
θ value has exceeded the range of [θr , θs ]

185Comput Geosci (2022) 26:171–194



Fig. 17 Horizontal infiltration in sand: optimal κ

Unlike before, the trend prior to reaching 2/3 is not as
linear; LDG-BDF2 does not immediately generate realistic
results (i.e. θ would exceed the range of [θr , θs]) at the Δt

where optimal κ first hits 2/3. For comparable outcomes,
with a maximum Δt three orders of magnitude smaller than
that of LDG-DT, LDG-BDF2 takes more than 10 times the
computational steps (Fig. 18).

5.4 Ponded infiltration into a single layer

This problem simulates a scenario where a certain depth of
water accumulates atop the soil and drives infiltration. Soil-
water flow is characterized by the MVG model in Section 2.
Hydraulic parameters of the soil column are provided in
Table 9. Initial condition is set to a uniform pressure head of
−100 cm. The top boundary conditions are
ψ̂z=0 = 1 cm,

K̂z=0 = Ks,

q̂z=0 = K−
z=0 · r−

z=0.

Fig. 18 Horizontal infiltration in sandy loam: optimal κ

Table 9 Single-layer ponded infiltration: soil parameters

Parameters Value

θr [cm3/cm3] 0.078

θs [cm3/cm3] 0.430

α [1/cm] 0.036

n [–] 1.560

Ks [cm/day] 24.96

l [–] 0.5

The bottom boundary conditions are

ψ̂z=100 = −100 cm,

K̂z=100 = K−
z=100,

q̂z=100 = K−
z=100 · r−

z=100.

At internal element interfaces, the following numerical
fluxes are applied:

ψ̂z = ψ−
z ,

K̂z = 1

2

(
K+

z + K−
z

)−
∣∣K ′∣∣

2

(
θ+
z − θ−

z

)
,

q̂z = K+
z · r+

z ,

where K ′
max is the local maximum derivative of K with

respect to θ :

K ′ = dK

dθ
= KslS

l−1
e

θs − θr

[
1 −

(
1 − S

1/m
e

)m]2

− 2KsSel+1/m−1
[
1 −

(
1 − S

1/m
e

)m]
(

1 − S
1/m
e

)m−1
.

We obtain HYDRUS-1D solution following Table 10 for
qualitative comparison. The two slope limiting schemes
introduced in Section 3.2 are also used separately in our
solver. For all LDG-DT simulations, we stuck to the
convergence criterion of

∣∣Δw < 10−15
∣∣, but we also capped

Table 10 Single-layer ponded infiltration: HYDRUS settings

Parameters Values

Soil depth [cm] 100

Number of nodes 101

Simulation Period [day] 0.5

Δt [day] 10−5

Error Tolerance in θ 10−7

Error Tolerance in ψ 10−3

Maximum iteration 500

ψt=0 [cm] −100

ψ(z = 0) [cm] 1

ψ(z = 100) [cm] Free Drainage
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Fig. 19 Single-layer ponded
infiltration: LDG-DT profiles
for two slope limiting schemes
and HYDRUS-1D solution

maximum inner iterations at 500 and forced the solver to
advance in time should it fail to meet that precision.

Figure 19 presents LDG-DT profiles for N = 20, Δt =
0.01 day. Prediction of infiltration speed with the bound-
preserving limiter roughly matches that by HYDRUS-
1D. A bit of undershooting below the wetting front is
visual because θ is still decently above θr , so the bound-
preserving limiter remains inactive. Profiles generated with

the minmod limiter are smoother in appearance, but most
likely due to active adjustment of pressure gradient at almost
all time, infiltration speed predicted with the minmod
limiter is lower than that with the bound-preserving limiter.
More graphical results are presented in Figs. 20 and 21.
As spatial resolution increases, undershoots diminish in
solution profiles with the bound-preserving limiter; the
slowing down of infiltration speed becomes more apparent

Fig. 20 Single-layer ponded
infiltration: LDG-DT profiles
for two slope limiting schemes
and HYDRUS-1D solutions
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Fig. 21 Single-layer ponded
infiltration: LDG-DT reference
profiles for two slope limiting
schemes and HYDRUS-1D
solutions

using the minmod limiter, which likely makes its outcome
less accurate. Using the solution profile with the bound-
preserving limiter at t = 1.25 day in Fig. 21 as a reference,
we report reference L2 errors for N = 10, 20, and 40

(Δt = 10−4 day for all) as 0.0667, 0.0449 and 0.0287,
respectively.

We also present some BDF2 results for compari-
son. Figure 22 shows LDG-BDF2 predictions (with the

Fig. 22 Single-layer ponded
infiltration: LDG-BDF2 profiles
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bound-preserving limiter) at N = 40 and Δt = 10−4 day.
Similar to earlier tests, LDG-BDF2 estimation of infiltra-
tion speed is higher than LDG-DT. But more importantly,
for the same spatial configurations, LDG-BDF2 requires Δt

of roughly 2 orders of magnitudes smaller than that of LDG-
DT in order to resolve reasonably. This is also the case for
HYDRUS-1D, which implements backward Euler in time
with a Picard iterative scheme to accelerate convergence.
For example, HYDRUS-1D is able to converge using 21
nodes (equivalent to 20 elements) at Δt = 10−3 day with an
error tolerance of 10−4 in θ and 0.1 cm in ψ , but not when
Δt is increased to 10−2 day even if the error tolerance is
made more lenient.

5.5 Ponded infiltration into two layers

The setup is almost identical to the previous except the
soil column consists of two layers with distinct hydraulic
properties (clayey loam on top, sandy loam below). The
characteristic relationships in Fig. 23 indicate that the upper
layer is less conductive than the lower layer near saturation,
but the opposite is true over a large range of ψ . Thus a jump
in θ would be expected at the layer interface when both sides
around the interface become equally conductive. Afterward,
the upper layer would serve as a limiting barrier and prevent
the lower layer from ever becoming fully saturated.

Soil-water flow is characterized by the MVG model in
Section 2. Hydraulic parameters are provided in Table 11.

Table 11 Two-layer ponded infiltration: soil parameters

Parameters Sandy Loam Clayey Loam

θr 0.065 0.095

θs 0.410 0.410

α [1/cm] 0.075 0.019

n 1.890 1.310

Ks [cm/day] 106.1 6.24

l 0.5 0.5

Table 12 Two-layer ponded infiltration: HYDRUS settings

Parameters Values

Clayey loam depth [cm] 0 – 40

Sandy loam depth [cm] 40 – 100

Number of nodes 101

Simulation Period [day] 1.25

Δt [day] 10−5

Error Tolerance in θ 10−7

Error Tolerance in ψ 10−3

Maximum iteration 500

ψt=0 [cm] −100

ψ(z = 0) [cm] 1

ψ(z = 100) [cm] Free Drainage

Fig. 23 Two-layer ponded infiltration: soil-water characteristic curves
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Fig. 24 Two-layer ponded
infiltration: solution profiles
(N = 20)

Initial and boundary conditions as well as internal numerical
fluxes follow those in Section 5.4. HYDRUS-1D configu-
rations are summarized in Table 12.

LDG-DT solutions were obtained using minmod and
bound-preserving limiters separately. Figures 24 and 25
shows some results for different spatial resolutions. The

observations in general are very similar to what is described
in in Section 5.4. Note that because the lower layer is
much less saturated than the upper layer, neither of the
slope limiter is active in the lower layer. Reference solution
profiles are shown in Fig. 26, generated with N = 80 and
Δt = 10−4. With the same time step size and using the

Fig. 25 Two-layer ponded
infiltration: solution profiles
(N = 40)
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Fig. 26 Two-layer ponded
infiltration: solutions profiles
(N = 80)

bound-preserving limiter, we report reference L2 error of
0.0771, 0.0371 and 0.188 respectively for N = 10, 20,
and 40.

Lastly, some LDG-BDF2 profiles are produced with the
bound-preserving limiter and presented in Fig. 27. Once
again, infiltration speed predicted by LDG-BDF2 is slightly

higher than that by LDG-DT. LDG-BDF2 also requires Δt

to be roughly 2 orders of magnitudes smaller than that of
LDG-DT to resolve correctly. We also attempted running
HYDRUS-1D with 21 nodes, which fails to converge with
Δt = 10−4 day until error tolerance is loosened to 10−2 in
θ and 1 cm in ψ .

Fig. 27 Two-layer ponded
infiltration: LDG-BDF2 profiles
(N = 40)
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6 Conclusion

We solved 1D mixed-form RE with LDG-DT and demon-
strated accuracy and robustness of our solver. Verification
against analytical solutions shows the advantage of LDG
in space to achieve comparable or even improved spatial
accuracy under coarser resolutions via adjusting basis poly-
nomial degree; compared to directly solving an implicitly
discretized RE, the DT stepper largely expands the range
of allowable physical-time step size without compromising
on accuracy. DT is also found to be much more oblivi-
ous to shifts in error tolerance and thus far more consis-
tent, unlike direct application of the implicit scheme which
would require Δt to be compatible with error tolerance
for satisfactory convegence. Qualitative comparison with
HYDRUS-1D in ponded infiltration test problems shows
that the LDG-DT solver can resolve to comparable results
using much fewer elements and harsher error tolerance.
Overall, LDG-DT appears very promising for numerical RE
solutions. Currently, the optimization of DT parameters is
via trial and error and has implied flaws in existing theories.
Future study on dual-time efficiency would be extremely
helpful.

Appendix A: LDG formulation supplements

A.1 Master element transform

To simplify implementation of Eq. 3.3, a master element
Ω̂ = {ξ : ξ ∈ [−1, 1]} is introduced. Any point on
the master element can be linearly transformed to its
corresponding point in Ωj via:

z(ξ)|Ωj
= zj + zj−1

2
+ Δzj

2
ξ, (A.1)

where z represents the spatial coordinates of points in Ωj .
Applying the master element transform to Eq. 3.3 yields:

∫
Ω̂

∂θh

∂t
vθ,h

dz

dξ
, dξ =

∫
Ω̂

(K(ψh) − qh)
∂vθ,h

∂z

dz

dξ
dξ (A.2a)

− (K(ψh) − qh) vθ,h

∣∣zj

zj−1
,

∫
Ω̂

qhvq,h

dz

dξ
dξ =

∫
Ω̂

K(ψh)rhvq,h

dz

dξ
dξ, (A.2b)

∫
Ω̂

rhvr,h

dz

dξ
dξ = −

∫
Ω̂

ψh

∂vr,h

∂z

dz

dξ
dξ + ψhvr,h

∣∣∣∣
zj

zj−1

, (A.2c)

where dz/dξ = Δz/2 based on Eq. A.1. The tilde above v

is removed to indicate that it is now a function of ξ .

A.2 Linear combinations of degrees of freedom
and basis polynomials

In succession to Appendix A, all terms with a subscript ‘h’
in Eq. 3.3 are expressed as linear combinations of coef-
ficients and basis polynomials:

vχ,h =
p+1∑
i=1

(βχ )iφi, χ ≡ θ, q, or r

qh =
p+1∑
i=1

(qh)iφi = qh · Φ,

θh =
p+1∑
i=1

(θh)iφi = �h · Φ,

ψh =
p+1∑
i=1

(ψh)iφi = �h · Φ,

where (βχ )i are arbitrary constant coefficients; φi is the (i−
1)-th degree basis polynomial, for which Legendre polyno-
mials orthogonal to one another over the interval [−1, 1] are
used; Φ is an array containing all φi for i = 1, 2, · · · , (p+
1); qh, �h and �h are arrays containing degrees of freedom
of their corresponding variables, qh, θh and ψh. Conversion
between θh and ψh can be made via the soil-water con-
stitution relationships after converting the degrees of free-
dom to quadrature-point values. Gauss–Lobatto quadrature
rule is implemented for numerical integration of the inte-
grals in Eq. 3.3. The number of quadrature points per
element is set to n = �(p + 3)/2
.

A.3 Elimination of arbitrary constant coefficients
in the test functions

We use Eq. A.2a to demonstrate the procedure, which can be
extended to the other equations with test functions. Starting
with the index i = 1, by substituting

(
vθ,h

)
1 = (βθ )1φ1 into

Eq. A.2a for vh, we obtain the following:

∫
Ω̂

∂θh

∂t
((βθ )1φ1)

dz

dξ
dξ

=
∫

Ω̂

(K(ψh) − qh)
∂((βθ )1φ1)

∂z

dz

dξ
dξ

− (K(ψh) − qh) ((βθ )1φ1)|zj
zj−1 (A.4)

Because (βθ )1 is a constant and appears in every term on
both sides of the equation, it can be eliminated to leave only
φ1 in the original locations of vθ,h. This is applied to every
i from 1 to (p + 1), giving us a total of (p + 1) equations
(no longer with constant coefficients) and as many
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φi . Therefore, the (p + 1) equations can be condensed into
the following:
∫

Ω̂

∂θh

∂t
Φ

dz

dξ
dξ =

∫
Ω̂

(K(ψh) − qh)
∂Φ

∂z

dz

dξ
dξ

− (K(ψh) − qh) Φ|zj
zj−1 , (A.5)

where Φ is a (p + 1)-by-1 array containing φi for i =
1, 2, · · · , (p + 1).

A.4 Quadrature

Gauss–Lobatto quadrature is used to approximate definite
integrals. To demonstrate, let f (ζ ) and g(ζ ) be two arbitrary
functions defined over the domain of the master element, Ω̂ .
The integral of their product over Ω̂ can be approximate as
follows:∫

Ω

f (ζ ) · g(ζ ) dΩe

≈
n∑

i=1

g(ζi) · wi · f (ζi)

=

⎡
⎢⎢⎢⎣

g(ζ1)

g(ζ2)
...

g(ζn)

⎤
⎥⎥⎥⎦

ᵀ⎡
⎢⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f (ζ1)

f (ζ2)
...

f (ζn)

⎤
⎥⎥⎥⎦

where wi and ζi (i = 1, 2, · · · , n) are the quadrature
weights and points, respectively, for n-point Gauss–Lobatto
quadrature rule. For an integrand in the form of a p-degree
polynomial, the required n to produce identical result as
exact integration is n ≥ �(p + 3)/2
. For non-polynomial
integrands, larger n generally improves accuracy.

A.5 Mass matrix

Taking advantage of quadrature rule and master element
transform, the physical-time integral can be expressed as
follows:
∫

Ω̂

∂�h

∂t
� dz =

[∫
Ω̂

�� dz

]
∂�

∂t

= [
�ᵀW�

] ∂�h

∂t

= M
∂�h

∂t
,

where M is the mass matrix.

A.6 Computational forms

Similar to the physical-time integral, the remaining terms
in Eq. A.2 can be numerically approximated. In sum, the

computational form of Eq. A.2 for the j -th element is:

∂�h

∂t
= A (K − q) + B−

zj

(
K̂ − q̂

)
zj

−B+
zj−1

(
K̂ − q̂

)
zj−1

(A.6a)

qh = L2 (K · r) (A.6b)

rh = −A� − B−
zj

�̂zj

+B+
zj−1

�̂zj−1 (A.6c)

where:

A = M−1 ∂�

∂ξ

ᵀ
W,

B+
zj−1

= 2

Δz
M−1�+

zj−1
,

B−
zj

= 2

Δz
M−1�−

zj
,

L2 = M−1�ᵀW,

M = �ᵀW�.

Further expanding some terms:

� =

⎡
⎢⎢⎢⎣

φ1(ξ1) φ2(ξ1) · · · φp+1(ξ1)

φ1(ξ2) φ2(ξ2) · · · φp+1(ξ2)
...

...
. . .

...
φ1(ξn) φ2(ξn) · · · φp+1(ξn)

⎤
⎥⎥⎥⎦

∂�

∂ξ
=

⎡
⎢⎢⎢⎢⎢⎢⎣

dφ1
dξ

(ξ1)
dφ2
dξ

(ξ1) · · · dφp+1
dξ

(ξ1)

dφ1
dξ

(ξ2)
dφ2
dξ

(ξ2) · · · dφp+1
dξ

(ξ2)

...
...

. . .
...

dφ1
dξ

(ξn)
dφ2
dξ

(ξn) · · · dφp+1
dξ

(ξn)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�+
zi

=

⎡
⎢⎢⎢⎣

φ1(z
+
i )

φ2(z
+
i )

...
φp+1(z

+
i )

⎤
⎥⎥⎥⎦ , �−

zi
=

⎡
⎢⎢⎢⎣

φ1(z
−
i )

φ2(z
−
i )

...
φp+1(z

−
i )

⎤
⎥⎥⎥⎦ ,

W =

⎡
⎢⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

⎤
⎥⎥⎥⎦ ,

f · g =

⎡
⎢⎢⎢⎣

f (ξ1) · g(ξ1)

f (ξ2) · g(ξ2)
...

f (ξn) · g(ξn)

⎤
⎥⎥⎥⎦ , fh =

⎡
⎢⎢⎢⎣

f1

f2
...

fp+1

⎤
⎥⎥⎥⎦ .
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The conversion between degrees of freedoms and solutions
at quadrature points is via:

f = �fh,

fh = L2f,

which closes (A.6).
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