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ABSTRACT
Welfare measures overall utility across a population, whereas mal-

fare measures overall disutility, and the social planner’s problem

can be cast either as maximizing the former or minimizing the latter.

We show novel bounds on the expectations and tail probabilities of

estimators of welfare, malfare, and regret of per-group (dis)utility

values, where estimates are made from a finite sample drawn from

each group. In particular, we consider estimating these quantities for
individual functions (e.g., allocations or classifiers) with standard

probabilistic bounds, and optimizing and bounding generalization
error over hypothesis classes (i.e., we quantify overfitting) using

Rademacher averages. We then study algorithmic fairness through

the lens of sample complexity, finding that because marginalized or

minority groups are often understudied, and fewer data are there-

fore available, the social planner is more likely to overfit to these

groups, thus even models that seem fair in training can be system-
atically biased against such groups. We argue that this effect can be

mitigated by ensuring sufficient sample sizes for each group, and

our sample complexity analysis characterizes these sample sizes.

Motivated by these conclusions, we present progressive sampling
algorithms to efficiently optimize various fairness objectives.

ACM Reference Format:
Cyrus Cousins. 2022. Uncertainty and the Social Planner’s Problem: Why

Sample Complexity Matters. In 2022 ACM Conference on Fairness, Account-
ability, and Transparency (FAccT ’22), June 21–24, 2022, Seoul, Republic of
Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3531146.

3533243

1 INTRODUCTION
Machine learning systems in settings like facial recognition [10,

11, 13] and medicine [3, 4, 12] exhibit differential accuracy across

race and other protected groups. This can lead to discrimination:

for example, facial recognition in policing yields disproportionate

false-arrest rates [24], and machine learning in medicine can lead to

inequity of health outcomes [18], both of which exacerbate existing

structural inequalities impacting minority groups. In recent years,

researchers have proposed welfare-centric fair learning models,

which constrain or optimize welfare [15, 22, 26, 28, 38, 44, 45] or
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malfare [1, 14, 20, 30, 33, 43] to promote fair learning across all
groups, as well as regret-based methods [7, 39], which similarly

promote fairness by minimizing the maximum dissatisfaction of

any group, relative to their preferred outcome, i.e., howmuch excess

risk is incurred, or utility is lost, to any group by compromising on

a shared model.
We study sampling and learning problems in the optimization

of welfare, malfare, and regret objectives. In particular, our setting

subsumes the minimax fair learning [1, 20, 30, 33, 43] and fair-PAC
learning [14] settings, by considering arbitrary malfare or welfare

functions, as well as the multi-group agnostic PAC learning [7, 39]

setting, by considering arbitrary malfare functions — rather than

just the maximum — of per-group regret values. This extension

naturally and smoothly interpolates between minimizing utilitarian
(i.e., weighted average) and egalitarian (i.e., maximum) malfare of

risk or regret. Crucially, this allows for fine-grained control over

the desired fairness concept, and mitigates the minority rule is-

sues of minimax methods, while remaining axiomatically grounded

in cardinal welfare theory. We bound the generalization error of

optimizing welfare, malfare, and regret objectives, and find that

while the power-mean malfare is always easy to estimate, due to

Lipschitz-continuity (as studied by Cousins [14]), our learning al-

gorithms work for any malfare, welfare, or regret objective that is

continuous and monotonic in per-group (dis)utility values.

We then study algorithmic fairness through the lens of sample

complexity, finding that because marginalized or minority groups

are often understudied, and fewer data are therefore available, the

social planner is more likely to overfit to these groups. Consequently,
even models that seem fair in training can be systematically bi-
ased against such groups. Section 3 shows that this effect can be

mitigated with sufficient per-group sample sizes, and §4 presents

progressive sampling methods, which dynamically sample until a

near-optimal model (w.r.t. some fairness objective) is learned.

Our bounds leverage the specific character of the objective at

hand; for example, utilitarian welfare is sensitive to the average con-
fidence radius across groups, whereas egalitarian welfare is more

sensitive to the confidence radii of disadvantaged (i.e., low-utility or

high-risk) groups. Furthermore, our progressive sampling methods

are tailored to three realistic models of data generation: in the joint
sampling model, each sample contains a piece of information for

every group, in the mixture sampling model, samples are annotated

with (sets of) group labels, and in the conditional sampling model,

we are allowed to choose from which groups to sample. While our

settings and modelling assumptions are practically motivated, this

is a highly theoretical paper, and all novel results are meticulously

proven in §6.
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2 LEARNING FRAMEWORK AND
OBJECTIVES

In this section, we introduce the functional form of the objects and

random spaces that we operate over, and we define our learning

objectives. In particular, §2.1 presents the welfare, malfare, and

regret objectives, which compile per-group sentiment values into a

cardinal objective value that can be optimized and analyzed, then

§2.2 reifies this abstract mathematics with three realistic models of

data-collection, each of which requires its own statistical treatment

to efficiently learn from data, i.e., to optimize and bound objectives,

while minimizing the cost of obtaining said data.

We henceforth assume a supervised learning setting, where X
is the domain and Y is the codomain. We also assume either a

loss function 1 ℓ(·, ·) : Y ′ × Y → R0+ or a utility function u(·, ·) :

Y ′ × Y → R0+, which map predictions and labels onto negatively
connoted loss or disutility, or positively connoted gain or utility,

generically termed a sentiment function s(·, ·) : Y ′ × Y → R0+. In
most supervised learning settings, a single probability distribution

D over X × Y suffices, but we assume a set Z of д groups, and

we model the experiences and conditions of each group as its own

distribution, i.e., we have D1, . . . ,Dд . For convenience, we often

compose the sentiment function with a predictor or model h(·) :
X → Y ′, taking (s ◦ h)(x ,y) � s(h(x),y), thus we quantify model

performance for group i as EDi [s ◦ h].

2.1 Fair Learning with Malfare, Welfare, and
Regret Objectives

Here we define the welfare, malfare, and regret objectives. While

the details differ, each of these is a function of the expected utility

or loss (generically sentiment) of some h : X → Y for each of the д
groups, and we are interested in selecting the model or hypothesis

h from some hypothesis class H ⊆ X → Y ′ that optimizes the

given objective.

Malfare and Welfare. Awelfare functionW(S;w)measures over-

all positive utility S across a population weighted byw , whereas a

malfare function

W

(S;w)measures overall disutility S, and generi-

cally, we say an aggregator function M(S;w) measures overall sen-

timentS. The prototypical example is the utilitarian (or Benthamite)
aggregate, defined as M1(S;w) � S · w , which simply averages

sentiment across the population (e.g., welfare as per-capita income,

or malfare as per-capita medical expenditure), and the second-fiddle

is the egalitarian (or Rawlsian) welfareW−∞(S;w) (minimum) or

malfare

W

∞(S;w) (maximum), which summarizes a population’s

sentiment as that of its most disadvantaged member. We assume

throughout thatw ∈ (0, 1)д is a probability vector, thus ∥w ∥1 = 1,

and S ∈ R
д
0+

is nonnegative. Ab initio, our first objective is, via the
social planner’s problem, to maximize welfare [22, 28, 38, 44], or

by extension (e.g., in chores manna or harm allocation [25, 29], or

in machine learning [1, 14]) to minimize malfare, i.e., we seek to

1
Often Y′ = Y, such as in standard classification and regression settings, but this is

not universally the case. For instance, in probabilistic classification or regression (i.e.,

conditional density estimation), Y′ is a space of distributions over Y, and in interval
estimation, Y′ is a space of sets over Y.

approximate

h⋆ � argmin

h∈H

W

(
i 7→ E

Di
[ℓ ◦ h];w

)
,

or h⋆ � argmax

h∈H
W

(
i 7→ E

Di
[u ◦ h];w

)
. (1)

Intuitively, the utilitarian case seeks to optimize overall or average

sentiment, whereas the egalitarian case instead seeks to lift up the

most disadvantaged group, and thus promote equality, perhaps at

the expense of overall (total) utility.

Notably, welfare maximization generalizes utility maximization
to multiple groups, and malfare minimization likewise general-

izes risk minimization, and the well-studied minimax fair-learning
framework arises as the special-case of egalitarian malfare mini-
mization. In general, we assume onlymonotonicity and continuity of
aggregator functions; however, there are a set of relatively standard

axioms that, when taken together, restricts the class of interest to

the power-mean family [14]. This is convenient, as all power-mean

malfare functions are Lipschitz-continuous, which in §4 leads to

stronger estimation guarantees and more efficient sampling algo-

rithms than ε-δ limit-continuity.

Definition 2.1 (Axioms of CardinalWelfare andMalfare). Suppose
an aggregator function M(S;w). For each item, assume (if neces-

sary) that the axiom applies for all S,S′ ∈ R
д
0+
, scalars α , β ∈ R0+,

and probability vectorsw ∈ (0, 1)д.

(1) Strict Monotonicity: S′ , 0 =⇒ M(S;w) < M(S + S′;w).
(2) Weighted Symmetry: Suppose д′ ∈ Z+, S′ ∈ R

д′
0+
, and prob-

ability vector w ′ ∈ (0, 1)д
′

, such that for all u ∈ R0+, it
holds that

∑
i s.t. Si=u wi =

∑
i s.t. S′i=u

w ′i . Then M(S;w) =

M(S′;w ′).
(3) Continuity: M(S;w) is a continuous function (in the standard

ε-δ limit-continuity sense) in both S andw .

(4) Independence of Unconcerned Agents : M(⟨S1:д−1,α⟩;w) ≤
M(⟨S′

1:д−1,α⟩;w) =⇒ M(⟨S1:д−1, β⟩;w) ≤

M(⟨S′
1:д−1, β⟩;w).

(5) Multiplicative Linearity: M(αS;w) = αM(S;w).
(6) Unit Scale: M(1;w) = M(⟨1, . . . , 1⟩;w) = 1.

(7) Pigou-Dalton Transfer Principle: Suppose µ = w · S = w · S′,
and for all i ∈ Z: |µ − S′i | ≤ |µ − Si |. Then for utility and

welfare,W(S′;w) ≥ W(S;w), and for disutility and malfare,

W

(S′;w) ≤

W

(S;w).

Axioms 1–4 are essentially the standard axioms of cardinal wel-
fare [37, 40], modified to include the weightsw , and omitting any

of them leads to rather perverse aggregator functions. Axiom 5

(multiplicative linearity) strengthens the traditional independence
of common scale axiom, and ensures that the units of welfare or
malfare must match those of sentiment, and axiom 6 (unit scale)

merely specifies a multiplicative constant. Finally, axiom 7, the

Pigou-Dalton transfer principle [17, 36], characterizes fairness in
the sense of equitable redistribution of utility (welfare) or disutility

(malfare).

Theorem 2.2 (Aggregator Function Properties [14, theo-

rems 2.4 and 2.5]). Suppose aggregator function M(S;w), and
assume arbitrary sentiment vector S ∈ R

д
0+

and probability vector

w ∈ (0, 1)д . The following then hold.
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(1) Power-Mean Factorization: Axioms 1–6 imply ∃p ∈ R s.t.

M(S;w) = Mp (S;w) � f −1p

( д∑
i=1

wi fp (Si )
)

=p,0
p

√
д∑
i=1
wiS

p
i , with

{
p = 0 f0(x) � ln(x)
p , 0 fp (x) � sgn(p)xp .

(2) Fair Welfare and Malfare: Axioms 1–7 imply p ∈ (−∞, 1] for
welfare and p ∈ [1,∞) for malfare.

(3) Lipschitz-Continuity: For all p ≥ 1, it holds that

|Mp (S;w) −Mp (S
′
;w)| ≤ Mp (|S − S

′ |;w) ≤

maxi ∈Z |Si − S
′
i |.

In closing, we note that utilitarian philosophy is often criticized

for permitting great inequality by ignoring the needs of smaller or

less visible groups, whereas egalitarian philosophy is criticized for

ignoring the masses in favor of outliers and disadvantaged groups,

and its inherent susceptibility to minority rule. Concretely, utilitar-

ian aggregates only weakly satisfy the Pigou-Dalton principle, thus

do not incentivize equitable redistribution , and egalitarian aggre-

gates satisfy only weakmonotonicity, thus only incentivize gains in

the most disadvantaged group(s). Power-means provide a spectrum

of intermediaries, so exactly how tradeoffs should be made may de-

pend on the application, as well as the culturosocietal values of the

social planner. They are also statistically convenient, as many of our

estimation guarantees hold in terms of generic Lipschitz-continuity

assumptions, and thus apply to any power-mean malfare function.

Malfare of Regret. Regret measures the relative dissatisfaction of

group i with some h ∈ H , relative to their preferred h⋆
i ∈ H . We

define the (per-group) preferred outcome h⋆
i as the model group i

would select for themselves, i.e.,

h⋆
i � argmin

h∈H
E
Di
[ℓ ◦ h] or h⋆

i � argmax

h∈H
E
Di
[u ◦ h] , (2)

for loss or utility, respectively, and we let S⋆
i denote the optimal

expected sentiment for group i , i.e., S⋆
i � EDi [s ◦ h

⋆
i ]. We now

formally define the regret of group i on some outcome or model

h ∈ H as

Regi (h) � E
Di
[ℓ ◦ h] − S⋆

i , Regi (h) � S
⋆
i − E

Di
[u ◦ h] ,

or generically, Regi (h) � | E
Di
[s ◦ h] − S⋆

i | . (3)

Intuitively Regi (h) is nonnegative, and it quantifies the amount by

which group i prefers their optimal h⋆
i to h.

Several authors [7, 39] minimize the worst-case (over groups)

regret of the selected ˆh, and the statistical and computational ques-

tions that arise are studied under the umbrella of “multi-group

agnostic PAC learning.” We generalize this notion, optimizing not

just worst-case (i.e., egalitarian), but arbitrary malfare functions, of
per-group regret values, which allows for greater flexibility and

resistance to the usual issues of egalitarian malfare. In particular,

we seek

h⋆ � argmin

h∈H

W(
i 7→ Regi (h);w

)
= argmin

h∈H

W

(
i 7→ | E

Di
[s ◦ h] − S⋆

i |;w
)
. (4)

Curiously, since we seek to measure overall regret, and regret is a

nonnegative quantity with negative connotation, we always sum-

marize it with a malfare function

W

(·;w), even when we began

with a utility function. Intuitively, this is because we can never hope

to select a shared function
ˆh that group i prefers to h⋆

i , thus excess
dissatisfaction is always positive in both the loss and utility cases. In

some sense, the malfare of regret thus measures the price of sharing
in a society, as the shared model

ˆh is naturally compared [23] to

letting each group select their own model
ˆhi .

Previous work summarizes regret across groups by taking the

largest regret amongst them. This is analogous to game-theoretic

regret (i.e., the maximum over agents of utility differences at adja-
cent profiles), but even there, any malfare function could reasonably

aggregate per-group regret values. We argue that considering only

egalitarian regret may act as an enforcer of the status quo, if one

group is particularly happy with their h⋆
i and is thus aggrieved

by any compromise — perhaps best summarized by the adage, “To

those accustomed to privilege, equality feels like oppression.” We

mitigate this issue by summarizing regret with a power-mean mal-

fare function

W

p (·;w), instead of the egalitarian malfare, in order

to lessen the impact of the most aggrieved group. In particular, this

class smoothly and nonlinearly interpolates between the worst-case

(egalitarian)

W

∞(·;w) regret and the utilitarian M1(·;w) welfare or
malfare.

Fascinatingly, we find that utilitarian regret minimization re-

duces to utilitarian malfare or welfare optimization, as all terms

involving per-group optimal sentiment can be factored into an

additive constant from these objectives; observe

W

1

(
i 7→ Regi (h);w

)
=

W

1

(
i 7→ | E

Di
[s ◦ h] − S⋆

i |;w

)
= |

( д∑
i=1

wi E
Di
[s ◦ h]

)
−w · S⋆ |

=

{
s = ℓ

W

1

(
EDi [ℓ ◦ h];w

)
−w · S⋆

s = u w · S⋆ −W1

(
EDi [u ◦ h];w

)
,

(5)

namely S⋆
appears only in the additive constantw · S⋆

, which is

independent of h. From this perspective, we conclude that while the

utilitarian regret is not particularly interesting, the power-mean

malfare of regret interpolates between minimizing largest regret,

with its minority rule issues, and optimizing utilitarian welfare or

malfare.

2.2 Three Sampling Models for Populations
with Multiple Groups

In order to study efficient sampling, we must first quantify the

difficulty or cost of a sampling-based estimation routine, which

requires a sampling model. Within a single-group population, meth-

ods like i.i.d. sampling, importance sampling, or sampling without
replacement are near-ubiquitous, and all can measure cost as sample
sizem ∈ Z+; however, in group-sensitive settings, we must consider

how samples from different groups are obtained, and what the cost

of collecting these samples is. In the context of this work, we don’t

argue for a one-size-fits-all solution, but rather we discuss three

sampling models, and show that they fit key applications in the

computer science domain and beyond.

(1) Joint Sampling: Each i.i.d. sample contains a piece of informa-

tion for each of the д groups, with arbitrary dependencies be-
tween groups. For example, per-group representatives could

be shown a shared x ∈ X and asked for their feedback, which
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would then be used to establish some Yi for each group i .
Thus each sample is in the spaceX×Yд

if theX components

are shared between groups, or more generally in (X × Y)д .

This setting also arises inmulti-objective reinforcement learn-
ing [15, 44], as well as various bandit problems and empirical

game theoretic analysis [48], where each query of an action
or strategy profile yields a sample of the utility values of each

player, agent, or group.
(2) Mixture Sampling: For each sample, the data are only rele-

vant to a nonempty subset of groups z ∈ 2Z, thus samples are

elements of X ×Y × 2Z. This generality is useful for study-

ing concepts like intersectionalism and multicalibration [39],

where individuals may belong to multiple groups, but the

case of mutually exclusive groups (i.e., each sample belongs

to exactly one group) is also convenient [23]. This model

naturally represents a mixed population being sampled i.i.d.,

where the group identities of the sample are left up to chance

(i.e., roughly proportional to group frequencies), and is thus

the most appropriate model for learning from [14] existing

datasets with group identity features [21].
(3) Conditional Sampling: Here we actively choose from which

group to sample, in contrast to the mixture sampling model,

where we simply cast our net and “get what we get.” In

particular, we sample i.i.d. (X,Y) pairs conditioned on some

group z ∈ Z, thus we may select sample sizesm1:д ∈ Z
д
+

and draw a sample (x ,y) ∈ (X × Y)m1 × · · · × (X × Y)mд
.

This is a natural model in active sampling [1] and scientific
inquiry settings, where initial results guide further study

and resource expenditure, and similar conditional sampling

structure arises in stratified sampling settings.

In mixture sampling, we generally assume unit cost C = 1 per

sample, and in joint sampling, we assume constant cost C > 1 per

joint-sample, as it is more expensive to set up a properly controlled

joint sampling distribution. On the other hand, in conditional sam-

pling, some groups may be more difficult or costly to study than

others, so we assume a cost model C1:д ∈ R
д
+, where Ci is the

per-sample cost for group i , thus the total cost of a sample with

per-group sizesm1:д ism · C . Note that the extra control of the

conditional sampling model is extremely convenient and power-

ful, however it is generally more expensive than mixture sampling.

These costs are entirely application dependent, so we take no stance

on which is preferable, and rather focus on developing efficient

learning algorithms under each sampling model.

3 STATISTICAL ANALYSIS AND ESTIMATION
GUARANTEES

In this section, we discuss the statistics of estimating malfare and

welfare functions. In particular, we assume a setZ of д groups, and

we want to estimate the malfare, welfare, or regret of per-group

expected loss or utility of some h, i.e.,

M̂ ≈ M

(
i 7→ E

Di
[s ◦ h];w

)
, or M̂ ≈ M

(
i 7→ Regi (h);w

)
,

where D1:д are distributions over X ×Y, and M(·;w) generically
represents some aggregator function. Estimating the expected loss

or utility of one group is a well-studied sampling problem, but

generalizing to the welfare, malfare, or regret of multiple groups

introduces some subtleties. We start by noting that while the em-

pirical mean is an unbiased estimator of expected utility or loss of a
single group, in general there is no unbiased estimator of welfare or

malfare (essentially due to their nonlinear nature, much like with

the standard deviation). Thus rather than unbiased estimators, we

seek additive error (AE) bounds of the form P
(
|M − M̂| ≤ ε

)
≥ 1−δ ,

where ε is the confidence radius (a.k.a. the margin of error), and δ
is the failure probability (or, by alternative convention, 1 − δ is the

level of confidence).
In machine learning, we optimize over a hypothesis class H ⊆

X → Y ′, thus we seek some sample-dependent
ˆh ∈ H with true

objective value within ε of that of the optimal h⋆ ∈ H . At times,

we are also interested in related statistics, like the objective values

of
ˆh and h⋆

, and in general, tools to bound the deviations between

the empirical and true objective values for any h ∈ H are sufficient

to bound these quantities. The rest of this section pursues such

bounds, assuming a fixed failure probability δ and sample sizemi
for each group i ∈ Z. In particular, section 3.1 reviews known

results for uniformly estimating expectations acrossH , section 3.2

builds upon these results to uniformly estimate malfare, welfare,

and regret values, and section 3.3 then studies how varying per-

group sentiment values and confidence radii impacts these bounds,

and quantifies the incremental value of sampling from each group

as a function of these quantities.

3.1 Uniform Convergence Bounds for Mean
Estimation

In this work, the common functional form of our additive er-

ror (AE) bounds is data dependent uniform convergence, vector-
ized to operate over samples from multiple groups, rather than

on a single-group sample. Occasionally, we are interested in

the scalar form AES(m,δ ,x ,y) : Z+ × (0, 1) × Xm × Ym →

R0+, which operates on a single group, but unless otherwise

stated, we refer to the vector bound AEV(m,δ ,x ,y) : Z
д
+ ×

(0, 1) × (Xm1 × · · · × Xmд ) × (Ym1 × · · · × Ymд ) → R0+.

In particular, given a sample (x ,y) ∼ Dm1

1
× · · · ×D

mд
д , we require

a function2 AEV(. . . ) such that

ε̂ ← AEV(m,δ ,x ,y)

=⇒ P
x ,y, ε̂

(
max

i ∈Z
sup

h∈H
| ˆE
xi, :,yi, :

[s ◦ h] − E
Di
[s ◦ h]| − ε̂i > 0

)
< δ .

(6)

Section 3.2 explores how AEV(. . . ) can be used to bound malfare,

welfare, and regret, and the remainder of this subsection is dedicated

to showing non-trivial bounds of this form for machine learning

applications. All of our AE bounds assume bounded sentiment range
r � supy′∈Y′,y∈Y s(y′,y), but this can usually be relaxed if we

instead assume amoment condition, e.g., each s◦h is sub-exponential,
sub-gamma, sub-Poisson, or sub-Gaussian [8].

Data-dependent uniform convergence bounds, i.e., those of the

formAES(m,δ ,x ,y), are invaluable for studying a population about
which little is known. Such bounds require data to evaluate, thus we

2
Going forward, we present only scalar bounds, but it is to be understood

that given additive error scalar bound AES(. . . ) and a finite group count

д, we may construct the additive error vector bound AEV(m, δ, x , y) ←〈
AES(m1, δд , x1, :, y1, :), . . . , AES(mд, δд , xд, :, yд, :)

〉
via the union bound.
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cannot determine a priori how much data will be required to meet

a given confidence radius. This contrasts distribution-free bounds,

which must have worst-case dependence on the distribution, and

take the formAES(m,δ ) ≤ sup(x ,y)∈(X×Y)m AES(m,δ ,x ,y). In sec-
tion 4, when constructing schedules for progressive sampling, we

often assume knowledge of AES(m,δ ), but this is usually possible

via this worst-case RHS bound. We first present simple bounds for

bounded finite hypothesis classes, which depend on the sentiment
range r , hypothesis class size |H |, variances V[·], and empirical

variances
ˆV[·].

Theorem 3.1 (Uniform Convergence for Bounded Finite Hy-

pothesis Classes). theorem We may bound the distribution-free

AES(m,δ ), the distribution-dependent AESD (m,δ ), and the

data-dependent AES(m,δ ,x ,y) scalar additive error as

(1) ε ←

√
r 2 ln 2|H|

δ
2m [27] ;

(2) ε ←
r ln 2|H|

δ
3m +

sup

h∈H

√
2VD [s◦h] ln

2|H|

δ
m [6] ; &

(3) ε̂ ←
7r ln 2|H|+1

δ
3(m−1) +

sup

h∈H

√
2
ˆVx ,y [s◦h] ln

2|H|+1
δ

(m−1) [16] .

Note that supremum variances and empirical variances are prop-

erties of the distribution and sample, respectively. Dependence on

variance is necessary (similar terms appear in mean-estimation

lower-bounds [19, 32]), however the ln |H | union bound terms are

loose, and the bounds are vacuous for infinite (continuous)H . We

now state results using Rademacher averages [5, 42] that tolerate

infiniteH , while preserving the variance-dependence of item 2.

Theorem 3.2 (Uniform Convergence with Rademacher Averages).
theorem Suppose hypothesis classH and sentiment function s(·, ·),

take (x ,y) ∼ Dm
and σ ∼ Um (±1), i.e., σ is uniformly distributed

on (±1)m, and define the Rademacher average Rm (s ◦ H ,D) and
Bousquet variance proxy Vm (s ◦ H ,D) [see 9] as

Rm (s ◦ H ,D) � E
x ,y,σ

[
sup

h∈H
|
1

m

m∑
i=1

s ◦ h(xi )σi |

]
,

Vm (s ◦ H ,D) � sup

h∈H
V
D
[s ◦ h] + 4rRm (s ◦ H ,D) . (7)

We may then bound AESD (m,δ ) as ε ← 2Rm (s ◦H ,D)+
r ln 1

δ
3m +√

2Vm (s◦H,D) ln
1

δ
m .

Data-dependent analogues of theorem 3.2 are possible using em-
pirical Rademacher averages and variances at no asymptotic cost

[16]. In the worst case, theorem 3.2 performs comparably to theo-

rem 3.1 item 2, however it improves when correlations exist between
elements of H , because the effective size of H is smaller for the

purposes of realizing the supremum in the Rademacher average,

see (7). The abstract inequalities of theorem 3.2 are quite opaque,

so we now provide concrete bounds on the Rademacher averages

of practical infinite hypothesis classes. The below results hold for
any distribution D, and are thus distribution-free, although similar

distribution-dependent or data-dependent bounds are possible.

Property 3.3 (Practical Bounds on Rademacher Averages). (1)

Suppose H has Vapnik-Chervonenkis (VC) dimension d

[46, 47], and ℓ(ŷ,y) � 1 − 1y (ŷ) is the 0-1 loss. Then for

some absolute constant c , Rm (ℓ ◦ H ,D) ≤
√

cd
m , which

implies bounds for linear classifiers, bounded-depth decision

trees [31], and many classes of neural network [2].

(2) Suppose X � {®x ∈ R∞ | ∥ ®x ∥2 ≤ R} is the R-radius L2 ball

in R∞,H � {®x 7→ ®w · ®x | ∥ ®w ∥2 ≤ γ } is a γ -regularized linear
class,Y � [−Rγ ,Rγ ], and ℓ(·, ·) is a λ-Lipschitz loss function
s.t. ℓ(y,y) = 0. Then r ≤ 2λRγ and Rm (ℓ ◦ H ,D) ≤

2λRγ
√
m

.

This implies bounds for (kernelized) SVM, generalized linear

models [35], and bounded linear regression.

3.2 From Mean Estimation to Welfare, Malfare,
and Regret Bounds

Wenow adapt theAE bounds of section 3.1 on expectations to bound

malfare, welfare, and regret in terms of empirical estimates thereof.

In particular, the strategy for each is to combine tail bounds for

mean-estimation with themonotonicity axiom (definition 2.1 item 1)

to bound the tails and expectations of our desiderata.We use the uni-

form convergence bounds of section 3.1 to bound the error of these

estimates, thus we need only propagate this uncertainty through

the appropriate aggregator functions. In general, aggregator func-

tions are nonlinear, and optimizing over H results in estimation

bias, thus the plug-in estimator is biased, however, we still obtain

tail bounds on our objectives via AEV(. . . ). Because the plug-in

estimator is biased, we also consider various LCB-and-UCB-style

estimates, which when optimized yield safer function choices and

partially control for overfitting. Finally, in some cases, integrat-

ing over worst-case uncertainty from the tail bounds of AEV(. . . )

yields convenient bounds on the expectation (and thus the bias) of

the plug-in estimator.

Welfare and Malfare. Due to the lack of an unbiased estimator

for welfare and malfare, we study the simple plug-in estimator

M̂, as employed by [16], and introduce a pair of lower and upper

estimators (M̂
↓
, M̂
↑
). In particular, we take

M̂ �M

(
i 7→ ˆE

xi, :,yi, :
[s ◦ h];w

)
︸                         ︷︷                         ︸

Plug-In Estimate

,

M̂

↓
�M

(
i 7→ 0 ∨ ˆE

xi, :,yi, :
[s ◦ h] − ε̂i ;w

)
︸                                     ︷︷                                     ︸

LCB Estimate

,

& M̂

↑
�M

(
i 7→ r ∧ ˆE

xi, :,yi, :
[s ◦ h] + ε̂i ;w

)
︸                                     ︷︷                                     ︸

UCB Estimate

, (8)

where ∨ and ∧ are the (minimum precedence) infix binary max

and min operators. By monotonicity (axiom 1), it holds that

M̂

↓
≤ M̂ ≤ M̂

↑
. The lower and upper confidence bound estimates

are convenient, both to show high probability bounds, and to sand-

wich the plug-in estimator, which we use to bound its bias. We first

show tail bounds for the estimation of welfare and malfare in terms

of their plug-in, LCB, and UCB estimates, and we then bound the

bias of M̂.
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Theorem 3.4 (Welfare andMalfare Tail Bounds). theorem Suppose

sentiment function s(·, ·) : Y ′ × Y → R0+, per-group probability

distributions D1:д , sample size vectorm ∈ Z
д
+, samples (x ,y) ∼

D
m1

1
× · · · × D

mд
д , failure probability δ ∈ (0, 1), and additive error

bound AEV(. . . ), and let ε̂ ← AEV(m,δ ,x ,y). Then for all h ∈
H and all monotonic aggregator functions M(·;w), it holds with
probability at least 1 − δ over x , y, and ε̂ that

M

(
i 7→ 0 ∨ E

Di
[s ◦ h] − ε̂i ;w

)
︸                                 ︷︷                                 ︸

True LB

≤ M

(
i 7→ ˆE

xi, :,yi, :
[s ◦ h];w

)
︸                           ︷︷                           ︸

Plug-In Estimate M̂

≤ M

(
i 7→ r ∧ E

Di
[s ◦ h] + ε̂i ;w

)
︸                                 ︷︷                                 ︸

True UB

, (9)

&M

(
i 7→ 0 ∨ ˆE

xi, :,yi, :
[s ◦ h] − ε̂i ;w

)
︸                                       ︷︷                                       ︸

LCB Estimate M̂

↓

≤ M

(
i 7→ E

Di
[s ◦ h];w

)
︸                     ︷︷                     ︸

True Aggregate M

≤ M

(
i 7→ r ∧ ˆE

xi, :,yi, :
[s ◦ h] + ε̂i ;w

)
︸                                      ︷︷                                      ︸

UCB Estimate M̂

↑

, (10)

thus if M(·;w) is λ-Lipschitz-continuous w.r.t. some norm ∥·∥M, we

have

|M

(
i 7→ ˆE

xi, :,yi, :
[s ◦ h];w

)
︸                           ︷︷                           ︸

Plug-In Estimate

−M

(
i 7→ E

Di
[s ◦ h];w

)
︸                     ︷︷                     ︸

True Aggregate

| ≤ λ∥ε̂ ∥M .

(11)

From (10), we see that minimizing M̂

↑
(or maximizing M̂

↓
) is in

some sense a safe choice, as w.h.p. we can bound the true aggregate

value in terms of the UCB or LCB. This idea is reminiscent of the

sample variance penalization algorithm of [34], wherein ERM is

supplanted by minimizing an upper-bound on risk; in that case

with variance-dependent bounds, but here the bound depends on

the structure of the malfare or welfare objective at hand. It should

also be noted that while the final Lipschitz form (11) is concise and

convenient for all Lipschitz-continuous aggregator functions (e.g.,

all p ≥ 1 power-mean malfare functions, see theorem 2.2 item 3), it

can be quite loose. For example, under ± uncertainty intervals, the

egalitarian welfareW−∞(⟨4±1, 9±8⟩;w)=min(4±1, 9±8) must be

on the interval 3±2, despite (11) giving confidence radius 8. Thus

while (11) is convenient for intuition and analysis, when possible

(9) or (10) should be favored.

Theorem 3.5 (Welfare and Malfare Expectation Bounds). theorem

Suppose as in theorem 3.4, and assume also that AEV(m,δ ,x ,y) =
AEV(m,δ ) is a distribution-free or distribution-dependent (but not
data-dependent) bound. Then

|M − E[M̂]| ≤ E [ |M − M̂|] ≤ λ

∫
1

0

∥AEV(m,δ )∥M dδ .

The above theorems give general recipes for bounding tails and

expectations, so for demonstrative purposes, we instantiate them

with theorem 3.1 for malfare estimation. Similar bounds can be

derived for learning with theorem 3.2.

Theorem 3.6 (Bernstein-Type Malfare Bounds). corollary-

thmwmestexpbern

Suppose as in theorem 3.1, and also per-group sample size m
(i.e., m = ⟨m, . . . ,m⟩) and p ≥ 1 power-mean malfare function

W

p (·;w). Now, let variance proxy v be defined in three cases as

v � M1/2(v ;w) =
(∑д

i=1wi
√
vi

)
2

for p = 1, v � w ·v for p ∈ (1, 2],
or v � ∥v ∥∞ for p > 2. Then for all δ ∈ (0, 1), we have

(1) P

(
|

W

− ˆ

W

| ≥
r ln д

δ
3m +

√
2v ln

д
δ

m

)
≤ δ ;

(2) E[|

W

− ˆ

W

|]≤
r ln(2eд)

3m +

√
2v ln(2eд)

m ; &

(3)

W

≤E[ ˆ

W

]≤

W

+
r ln(eд)
3m +

√
2v ln(eд)

m .

Estimating the Malfare of Regret. Regret is difficult to bound, as

it depends both on the expected sentiment of the selected
ˆh, and

also onH through the (unknown) per-group optimal sentiments

S⋆
1:д . We thus introduce the estimators

ˆSi � inf

h∈H
ˆE

xi, :,yi, :
[ℓ ◦ h] , or

ˆSi � sup

h∈H
ˆE

xi, :,yi, :
[u ◦ h] , (12)

for loss or utility, respectively, cf. (2). By analogy with (3), the plug-

in estimator for the regret malfare minimizer is then

ˆh � argmin

h∈H

W

(
i 7→ | ˆE

xi, :,yi, :
[s ◦ h] − ˆSi |;w

)
. (13)

The following theorem bounds the difference between the true and

empirical malfare of regret.

Theorem 3.7 (Regret Estimation Bounds). theorem Suppose sen-

timent function s(·, ·) : Y ′ × Y → R0+, per-group probability

distributions D1:д , sample size vectorm ∈ Z
д
+, samples (x ,y) ∼

D
m1

1
× · · · × D

mд
д , failure probability δ ∈ (0, 1), and additive er-

ror bound AEV(. . . ), and let ε̂ ← AEV(m,δ ,x ,y). Then for all

h ∈ H and all monotonic malfare functions

W

(·;w), it holds with
probability at least 1 − δ over x , y, and ε̂ that

W

(
i 7→ 0 ∨

���� E
Di
[s ◦ h] − S⋆

i

���� − 2ε̂i ;w)
︸                                            ︷︷                                            ︸

True Regret Malfare LB

≤

W

(
i 7→

���� ˆE
xi, :,yi, :

[s ◦ h] − ˆSi

���� ;w)
︸                                    ︷︷                                    ︸

Plug-In Regret Malfare

≤

W

(
i 7→ r ∧

���� E
Di
[s ◦ h] − S⋆

i

���� + 2ε̂i ;w)
︸                                            ︷︷                                            ︸

True Regret Malfare UB

, (14)

&

W

(
i 7→ 0 ∨

���� ˆE
xi, :,yi, :

[s ◦ h] − ˆSi

���� − 2ε̂i ;w)
︸                                                 ︷︷                                                 ︸

LCB Estimate

≤

W

(
i 7→

���� E
Di
[s ◦ h] − S⋆

i

���� ;w)
︸                                ︷︷                                ︸

True Regret Malfare

≤

W

(
i 7→ r ∧

���� ˆE
xi, :,yi, :

[s ◦ h] − ˆSi

���� + 2ε̂i ;w)
︸                                                ︷︷                                                ︸

UCB Estimate

, (15)
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thus if

W

(·;w) is λ-Lipschitz-continuous w.r.t. some norm ∥·∥ W

,

we have����������

W

(
i 7→

���� ˆE
xi, :,yi, :

[s ◦ h] − ˆSi

���� ;w)
︸                                    ︷︷                                    ︸

Plug-In Regret Malfare

−

W

(
i 7→

���� E
Di
[s ◦ h] − S⋆

i

���� ;w)
︸                               ︷︷                               ︸

True Regret Malfare

����������
≤ 2λ∥ε̂ ∥ W.

(16)

Note that similar bounds on the expectation of the regret plug-

in estimator can be shown along the lines of theorem 3.6, mutatis
mutandis for regret. Note also that theorem 3.7 matches theorem 3.4

up to a 2-factor attached to the confidence radius, thus in some

sense regret is “about twice as difficult” to estimate as malfare or

welfare.

3.3 Information Asymmetry and Where Best to
Sample

An intuitive notion of fairness would suggest that we should draw

equally-sized samples for each group, or perhaps samples propor-

tional to population frequencies. If the goal is to optimize or bound

welfare, malfare, or regret, such intuitive notions should be rejected,

as they are critically flawed.We now discuss the ways in which sam-

ples drawn from one group or another may be more or less valuable

to for the purposes of estimating or optimizing these objectives.

As a brief thought experiment, suppose we want to estimate

the egalitarian welfare of a population consisting of two groups.

Suppose also that their utilities are similarly difficult to estimate,

and their expected utilities are ⟨1, 10⟩. In such a setting, nearly

all sampling effort should be invested in estimating the utility of

group one, as once group two is estimated to within ±9 AE, there

is no further benefit to improving their estimate. Thus the optimal

sampling strategy depends on the true expected utilities, the dif-

ficulties of estimating utilities for each group, and the objective

in question, and in no way resembles the naïve uniform or pro-

portional so-called “fair sampling strategies” described above. We

argue that such naïve strategies are dangerous, as they introduce

subtle biases and fairness issues, but the rationale for alternative

sampling strategies is only apparent through the lens of sample

complexity.

We now ask the questions, “Given a sample, what do we need to

obtain sharper bounds?” and “How much will bounds improve with

a larger sample?”We begin with a soft discussion as to why samples

from different groups may contribute more or less information to

an estimate, which we measure as the improvement to tail bounds

that additional samples may yield. In particular, for malfare, we

discuss the improvement to upper bounds, but the entire discussion

can be directly translated to welfare and lower bounds in the usual

manner. We then quantify these factors mathematically, and we

develop these ideas further in section 4.2, where they are used to

adaptively choose from which group to sample.

(1) Variable estimation difficulty or overfit potential: Often it is

inherently more difficult to give bounds on the expected

sentiment for some groups than for others. This can be due

to differences in variances (see theorem 3.1) or in uniform

convergence bounds (see theorem 3.2), and in general, occurs

when ε̂ ← AEV(. . . ) has ε̂i ≪ ε̂j , even whilemi ≈mj .

(2) Variable task difficulty: Some groupsmay be inherently easier

or harder to satisfy than others; e.g., regression and classifi-

cation problems are generally easier for groups with labels

that are more homogeneous, and regret varies with the op-

timal expected sentiment S⋆
i . This is crucial, because most

malfare and welfare functions are more sensitive
3
to high-

risk or low-utility groups, thus the ease of satisfying a group

effects their impact on malfare and welfare values.

(3) Aggregator function interactions: Complicated interactions

also occur through the malfare or welfare function. When

learning overH , the set of near-optimal functions is more

relevant than those that are clearly bad choices overall, and

groups that tend to be mutually satisfied (i.e., are correlated)

are less impactful to the overall objective. Weight values in

malfare or welfare functions may also differ between groups,

and higher-weighted groups are usually more impactful.

Quantifying the Incremental Value of Sampling. We measure the

impact of sampling by asking the question, “What is the incremental

value of a single sample drawn for some group?” In particular, we

quantify the value of the sample as the reduction in uncertainty,
as measured by the infimum UCB (over H), and although this is

inherently a discrete question, we approximate the answer for the

power-mean malfare with tools from calculus of infinitesimals.

Note that all such analysis is necessarily heuristic, as we funda-

mentally cannot answer this question without more information: it

is precisely because we are trying to estimate unknown means that
we can’t know how the samples we draw will impact the empirical
means. For now, we heuristically assume that our estimated expec-

tations are reasonably accurate, and consider what will happen as

tail bounds sharpen with additional samples. The strategy we thus

employ is to make a reasonable guess as to how sampling might

impact the UCB by assuming that the empirical mean will not be

strongly affected, and all confidence intervals overm samples will

contract at a Θ
√

1

m rate.

Property 3.8 (Incremental Gain of Sampling). Suppose

power-mean malfare

W

p (·;w), sample (x ,y) with group sam-

ple sizes m1:д , and let x ′,y′ extend x ,y to sample sizes m′,
where m′ = m + 1i , i.e., group i has one additional sample.

Now, let ε̂ ← AEV(m,δ ,x ,y) and ε̃ ← AEV(m′,δ ,x ′,y′),

and take
ˆh � argminh∈H

W

p

(
i 7→ ˆExi, :,yi, : [ℓ ◦ h] + ε̂i ;w

)
,

ˆ

W

�

W

p

(
i 7→ ˆExi, :,yi, :[ℓ ◦

ˆh];w
)
,

ˆ

W↑
�

W

p

(
i 7→ ˆExi, :,yi, :[ℓ ◦

ˆh]+ε̂i ;w
)
, and

˜

W↑
�

infh∈H

W

p

(
i 7→ ˆEx ′i, :,y

′
i, :
[ℓ ◦ h]+ε̃i ;w

)
.

3
In particular, this holds for all p , 1 power means, and is axiomatically justified by

the Pigou-Dalton transfer principle (definition 2.1 item 7).
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Then the incremental impact of sampling from group i on the

UCB is approximately

ˆ

W↑
− ˜

W↑
≈

ε̂iwi
2mi + 3

2

(
ˆExi, :,yi, : [ℓ ◦

ˆh] + ε̂i

ˆ

W↑

)p−1
≈

ε̂iwi
2mi

(
ˆExi, :,yi, : [ℓ ◦

ˆh]

ˆ

W

)p−1
. (17)

Observe that (17) characterizes the knowledge gain of sampling

from group i . This gain is proportional to the current bound radius ε̂i ,
the group weightwi , and the (p−1)th power of the ratio of the UCB

risk of group i to the UCBmalfare, i.e.,

(
ˆExi, :,yi, : [ℓ ◦

ˆh] + ε̂i/ ˆ

W↑)p−1
,

and inversely proportional to the amount of effortmi already put

forth into studying group i . These terms line up with the soft argu-

ments at the top of section 3.3 as to where sampling should occur,

but it is only via precisely studying sample complexity and esti-

mation error that we gain quantifiable mathematical insight. In

particular, the weight term wi appears directly, and
ε̂i
mi

captures

both the difficulty of estimating this group, and also the diminish-

ing incremental improvement produced by further sampling. The

ratio between the risk of group i and the malfare then captures

how important group i is relative to the other groups, and this term
being raised to the (p − 1)th power nonlinearly adjusts its impact;

higher p saturate high-risk groups, tending towards egalitarianism,

whereas in the p = 1 (utilitarian) case, this term is 1. Finally, for

optimization problems, the dependence on
ˆh captures other depen-

dencies; namely the behavior of

W

(·;w) near the optimal h ∈ H is

what matters.

This analysis parallels concerns in stratified sampling, wherein
subpopulations are sampled individually, generally to produce an

improved mean estimator. In particular, we suggest a form of dispro-
portionate allocation, i.e., per-group sample sizes are not necessarily

proportional to their population frequencies. Rather than simply

considering variances to estimate means, we holistically consider

the objective and uncertainty over various quantities, thus our

sample-size selection-strategy is a variant of the minimax sampling
ratio [41] method. Chen et al. [12] also suggest disproportionate

allocation in fair learning, albeit only for bounding differences

of per-group statistics. Similar concerns also arise in optimizing
minimax-fair models, wherein Abernethy et al. [1] present an algo-

rithm that takes gradient steps to improve a model for the highest-

risk group, though it is unclear whether such methods generalize

beyond the egalitarian case.

4 PROGRESSIVE AND ACTIVE SAMPLING
ALGORITHMS

Section 3 considers fixed sample sizesm1:д and failure probabilities
δ , and bounds the confidence radius ε . In this section, we want a

fixed ε-δ AE guarantee, but we are willing to let an algorithm select

the sample sizem (or per-group sample sizesm1:д ). In particular,

due to the cost of sampling and processing data, we want our al-

gorithm to minimizem (or cost measured as some function ofm),

while constraining ε and δ to user-supplied levels. Some cases are

simpler than others; the joint sampling model yields a standard

progressive sampling method with a fixed sampling schedule, and

the method undermixture sampling is similar, except a subtle condi-

tioning argument allows us to use variably-sized per-group sample

sizes based on the order groups are sampled in. For the conditional
sampling model, we develop an active sampling approach, which

makes cost-sensitive decisions as to which group to sample at each

iteration. More details on sampling schedules and other aspects of

our progressive sampling algorithms are given in section 7.

We can’t simply draw samples one-by-one, compute bounds

using ε̂ ← AEV(m,δ ,x ,y) after each sample, and terminate when

a sufficiently sharp bound is available, because the possibility of

early termination leads to themultiple comparisons problem, wherein

by chance the desired confidence radius is met at some timestep.

Progressive sampling algorithms correct for this by establishing a

sampling schedule s and failure probability schedule δ , which usually
dictate that, at timestep t , we take a tail-bound with δ = δt and
sample size st , while ensuring that all bounds hold simultaneously

(by union bound) with probability at least 1 − δ . Due to this union

bound, it is inefficient to take bounds after drawing every sample.

Furthermore, for technical reasons, we henceforth assume a few

mild regularity conditions:

(1) The sampling schedule s ∈ Z∞+ is a strictly monotonically

increasing sequence, i.e., for all t ∈ Z+, st ≤ st+1;
(2) The failure probability schedule δ ∈ [0, 1)∞ is a sequence

that sums to some δ ∈ (0, 1), i.e.,
∑∞
i=1 δt = ∥δ ∥1 = δ ; &

(3) The distribution-free bound supx ,y ∥AEV(m,δ ,x ,y)∥ is

monotonically decreasing inm1:д and δ for any norm ∥·∥.

In order to prove that a progressive sampling algorithm produces

a (probabilistically) correct answer, it is crucial to show that it does

not loop indefinitely. We now introduce ε-convergent schedules,
which require all sentiment values to eventually be ε-δ estimated

w.r.t. some norm ∥·∥M, yielding welfare, malfare, or regret bounds

via theorems 3.4 and 3.7.

Definition 4.1 (ε-Uniformly-Convergent Schedule). For any ε ≥ 0,

a sampling schedule s and failure probability schedule δ are ε-
uniformly-convergent w.r.t. AEV(. . . ) and some norm ∥·∥M if

inf

t ∈Z+
sup

(x ,y)∈(X×Y)st ×д
∥AEV(⟨st , . . . , st ⟩,δt ,x ,y)∥M ≤ ε . (18)

Intuitively, definition 4.1 captures the idea that no matter how

unlucky we are with the sampled x ,y, if AEV(. . . ) bounds tails
once for each timestep t of the schedule, with per-group samples

of size at least st and failure probability δt , then at some point

an ε-estimate of the objective will be produced. Note that neither

data-dependent AEV(. . . ) bounds on sentiment values, nor suffi-

cient per-group error radii to estimate the objective, are known

a priori, thus it is not always possible to select a sufficient static
sample size, however, definition 4.1 is more flexible, as it requires
only the existence of a (possibly unknown) sufficient sample size.

Even when a sufficient sample size is known, unless it is also neces-
sary, progressive sampling is usually more sample-efficient, often

terminating closer to the necessary sample size.
With this definition in hand, we now construct finite ε-, and infi-

nite 0-, uniformly-convergent schedules. In the context of this work

(see theorems 4.5 and 4.6), the finite schedule can be employed with

a Lipschitz-continuous objective and an a priori known distribution-
free bound on AEV(. . . ), and when the objective is continuous but

not Lipschitz-continuous, or the classH is uniformly-convergent
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at an unknown rate, the infinite schedule can still be used. Both

are based on geometrically-increasing sample sizes, which are effi-

cient because they never “overshoot” any sample size by more than

a constant factor, yet they cover an exponentially large range of

sample sizes in a linear number of timesteps.

Definition 4.2 (Geometric-Uniform Schedule). Suppose optimistic
size α ≥ 1, common ratio β > 1, and schedule length T ∈ Z+. The
geometric-uniform schedule then takes (geometric) st � ⌈αβt ⌉ and

(uniform) δt �
δ
T 11, ...,T (t).

Definition 4.3 (Double-Geometric Schedule). Suppose optimistic
size α > 0 and common ratio β > 1. The double-geometric schedule

then takes (geometric) st � ⌈αβt ⌉ and (geometric) δt �
δ (β−1)
β t .

Lemma 4.4 (Sufficient Conditions for Uniformly-Convergent Geo-

metric Schedules). Suppose as in definition 4.2, and assume

sup

(x ,y)∈(X×Y)sT ×д
∥AEV (⟨sT , . . . , sT ⟩,

δ
T ,x ,y)∥M ≤ ε . (19)

Then the geometric-uniform schedule (s , δ) is ε-uniformly-

convergent. Furthermore, suppose as in definition 4.3, α ≥ 1

δ ,

and

lim

m→∞
sup

(x ,y)∈(X×Y)m×д
∥AEV (⟨m, . . . ,m⟩,

β−1
β (m+1) ,x ,y)∥M = 0 .

(20)

Then the double-geometric schedule (s , δ) is 0-uniformly-

convergent.

The initial and final sample sizes of the geometric-uniform sched-

ule are s1 = ⌈αβ⌉ and sT = ⌈αβ
T ⌉, and often one can set s1/β and

sT to minimal sufficient and maximal necessary sample sizes (as

a function of T , the objective, and other parameters). To maxi-

mize statistical efficiency while controlling the value of β , we may

select the minimal T such that ⌈logβ
sT
s1
⌉ = T .4 In particular, as-

suming a λ-Lipschitz objective, the Hoeffding (item 1) and empir-

ical Bernstein (item 3) bounds of theorem 3.1 imply ε-uniformly

convergent schedules via (19) of length T ∈ Θ(log λr
ε ). For the

double-geometric schedule, we may similarly set s1/β to a mini-

mal sufficient sample size, and here there is no T parameter (the

schedule is infinite), thus we may simply select β as desired. This

yields 0-uniformly convergent schedules, since each of the bounds

of theorem 3.1 satisfy (20), as do those of theorem 3.2, so long as

limm→∞maxi ∈ZRm (s ◦ H ,Di ) = 0.

Both of the above schedule types are efficient, in the sense

that for the smallest (per-group) static sample size m⋆
at which

we obtain the bound ε⋆, some m̂ ≤ ⌈βm⋆⌉ is contained in the

schedule, and the bound ε̂ ← AEV(⟨m̂, . . . ,m̂⟩, . . . ) exceeds ε⋆

only because it uses a smaller δ value. In particular, assuming

all bounds are Θ
√
u for u � ln

д
δ , we have for each group i

that

ε⋆i
ε̂i
∈ Θ

√
u

log(T )+u and

ε⋆i
ε̂i
∈ Θ

√
u

log(m⋆)+u for the geometric-

uniform and double-geometric schedules, respectively. Note also

that log(T ) ∈ Θ(log log rλ
ε ), whereas log(m

⋆) ∈ O(log rλu
ε ), thus

the geometric-uniform schedule is preferable, unlessm⋆
is exponen-

tially smaller than the above bound, e.g., if λ = ∞, or if a nonlinear
objective is more stable to perturbations of each Si about its opti-

mum than the Lipschitz constant λ would indicate.

4.1 The Linear Progressive Sampling
Algorithm

The core of linear progressive sampling (algorithm 1) is quite simple.

At timestep t = 1, we guess that a sample of size s1 for all groups
will be sufficient to ε-δ optimize the objective, we draw at least such

a sample (7 for joint sampling, or lines 9–12 for mixture sampling),

compute tail bounds (line 14), then determine the UCB-optimal
ˆh

(line 16). If our bounds indicate that
ˆh is provably near-optimal,

algorithm 1 terminates, otherwise, our guess was incorrect, so we

increment t , draw at least st samples (per-group), and repeat. The

basic principle is quite flexible, so algorithm 1 can maximize welfare

or minimize malfare of risk or regret via the LinearPSLoss(. . . ) and

LinearPSUtility(. . . ) routines.

Theorem 4.5 shows that algorithm 1 learns an optimal h ∈ H
to within user-specified ε-δ AE. We require only monotonicity

(axiom 1) and continuity (axiom 3) of M(·;w), though the power-

mean malfare family is convenient, as Lipschitz-continuity (thm.

2.2 item 3) permits efficient ε-uniformly-convergent schedules (def.

4.2). NB this result generalizes to welfare objectives, mutatis mu-
tandis (flipping infima and suprema), via the negation reduction of

lines 25–30.

Theorem 4.5 (Linear PS Guarantees). Suppose ( ˆh, µ̂, ε̂,M⋆↓) ←

LinearPSLoss(H, ℓ(·, ·), D, AEV(. . . ), s, δ, ε, M(·;w ), Reg), M(S;w)
is continuous and monotonic in S with (possibly infinite) Lipschitz

constant λM w.r.t. ∥·∥M, and the schedules (s,δ) are ε
λM(1+1Reg)

-

uniformly-convergent w.r.t. AEV(. . . ) and ∥·∥M. Now take µ to be

the true objective value of
ˆh and µ⋆

to be the true objective value of

the optimal h⋆
, i.e., if Reg = False, take µ � M(i 7→ EDi [ℓ ◦

ˆh];w)
and µ⋆ � infh∈H M(i 7→ EDi [ℓ ◦ h];w), or if Reg =

True, take (see section 3) µ � M(i 7→ Regi (
ˆh);w) and

µ⋆ � infh∈H

W(
i 7→ Regi (h);w

)
. Then, with probability at least

1 − δ , the output ( ˆh, µ̂, ε̂,M⋆↓) obeys

(1) |µ̂ − µ | ≤ ε̂ ≤ ε ; &

(2) M
⋆↓ ≤ µ⋆ ≤ µ ≤ µ̂ + ε̂ ≤ M

⋆↓ + 2ε .

4.2 The Braided Progressive Sampling
Algorithm

Under the joint and mixture sampling models (algorithm 1),

progress is linear (i.e., sequential, as no decisions are made except

when to terminate); we begin with (at least) s1 samples per group,

and advance until we reach a sufficient sample size to terminate

with the desired guarantee. For the conditional sampling model, we

present braided progressive sampling (algorithm 2), which is actively
making decisions, thus linear analysis is not applicable. At each
iteration (line 6) of algorithm 2, a group index i ∈ Z is chosen (line

16) to optimize an estimate of knowledge-gain via logic similar to

that of section 3.3 (due to space limitations, the details are deferred

to section 7.2), and group i is sampled for one additional timestep
(line 17), i.e., the sample associated with group i is extended from

size sti to s1+ti , where ti denotes the current timestep for group i .
The remainder of algorithm 2 is essentially the same as algorithm 1;

after sampling, we optimize (line 9) a UCB-optimal
ˆh, bound the

4
The base-β logarithm arises intuitively, as the number of times the sample size must

increase by a factor β to reach sT from s1 .
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Algorithm 1 Fair Learning with Linear Progressive Sampling under the Joint and Mixture Sampling Models
1: procedure LinearPSLoss(H , ℓ (·, ·),D,AEV(. . . ), s, %, Y, W(·;w), Reg)→ (ℎ̂, ˆ̀, Ŷ, W

★↓)
2: input: Hypothesis classH ⊆ X → Y′, loss function ℓ (·, ·) : Y′ × Y → [0, 2], joint or mixture distribution D, additive error vector

bound AEV(m, X, x,~), schedule s ∈ Z∞+ and % ∈ [0, 1)∞, confidence radius Y, weighted malfare

W(·;w), and Boolean Reg
3: output: Empirically UCB-optimal ℎ̂, empirical malfare estimate ˆ̀, confidence radius Ŷ, and lower bound on minimal malfare

W

★↓

4: m1:6 ← 0; x1:6 ←
〈
〈〉, . . . , 〈〉

〉
; ~1:6 ←

〈
〈〉, . . . , 〈〉

〉
⊲ Initialize per-group sample counts, empty per-group sample lists

5: for C ∈ 1, 2, . . . do ⊲ Progressive sampling timesteps
6: if D is joint sampler then
7:

(
x1:6,sC−1+1:sC ,~1:6,sC−1+1:sC

)
∼ DsC−sC−1 ; ∀8 ∈ Z : m8 ← sC ⊲ Sample from joint distribution (assume s0 = 0)

8: else if D is mixture sampler then
9: while min8 m8 < sC do

10: (G,~, z) ∼ D ⊲ Draw X ×Y × 2Z triplet (domain, codomain, groups)
11: ∀8 ∈ z : m8 ← m8 + 1; (x8,m8

,~8,m8
) ← (G,~) ⊲ Increment counts and store samples for each group 8 associated with (G,~)

12: end while
13: end if
14: 9̂1:6 ← (1 + 1Reg) AEV(m, %C , x,~) ⊲ Bound additive error of per-group supremum deviations (w.h.p.)
15: ∀8 ∈ Z : Ŝ8 ←

(
inf
ℎ∈H

Ê
x8,:,~8,:

[ℓ ◦ ℎ]
)
if Reg else 0 ⊲ Set regret baseline of per-group minimal empirical risks (or 0 if ¬Reg)

16: ℎ̂ ← argmin
ℎ∈H

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − Ŝ8 + 9̂8 ;w

)
⊲ Compute UCB-optimal ℎ̂

17:

W★↓ ← inf
ℎ∈H

W(
8 ↦→ 0 ∨ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − Ŝ8 − 9̂8 ;w

)
⊲ Lower-bound optimal

W

★

18: ( ˆ W↓, ˆ W↑) ←
( W(

8 ↦→ 0 ∨ Ê
x8,:,~8,:

[ℓ ◦ ℎ̂] − Ŝ8 − 9̂8 ;w
)
,

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ̂] − Ŝ8 + 9̂8 ;w

) )
⊲ LCB and UCB on ℎ̂ (regret) malfare

19: if ˆ W↑ ≤ W

★↓ + 2Y then ⊲ Check if desired error guarantee is met (termination condition)
20: ( ˆ̀, Ŷ) ←

(
1
2 ( ˆ

W↓ + ˆ W↑), 12 ( ˆ

W↑ − ˆ W↓)
)

⊲ Symmetric estimate ˆ̀ and confidence radius Ŷ of (regret) malfare of ℎ̂

21: return
(
ℎ̂, ˆ̀, Ŷ,

W

★↓) ⊲ Return UCB-optimal ℎ̂, Ŷ-estimate of

W(·;w), and lower-bound on optimal malfare

W

★↓

22: end if
23: end for
24: end procedure
25: procedure LinearPSUtility(H , u(·, ·),D,AEV(. . . ), s, %, Y,M(·;w), Reg)→ (ℎ̂, ˆ̀, Ŷ,M★↑)
26: input: Utility function u(·, ·) : Y′ ×Y → [0, 2], weighted aggregator function M(·;w) (malfare if Reg, otherwise welfare), see line 2
27: output: Empirically LCB-optimal ℎ̂, empirical welfare ˆ̀, confidence radius Ŷ, and UB on maximal welfare M★↑ (or similar for regret)
28: (ℎ̂, ˆ̀, Ŷ,M★↑) ← LinearPSLoss(H , 2 − u(·, ·),D,AEV(. . . ), s, %, Y, (21Reg − 1)M(S8 ↦→ 2 − S8 ;w), Reg) ⊲ Negate to flip inf and sup
29: return

(
ℎ̂, A − ˆ̀, Ŷ, (21Reg − 1)M★↑)

30: end procedure

schedules, respectively. Note also that log() ) ∈ Θ(log log A_
Y ), whereas log(<★) ∈ O(log A_D

Y ), thus the geometric-
uniform schedule is preferable, unless<★ is exponentially smaller than the above bound, e.g., if _ = ∞, or if a nonlinear
objective is more stable to perturbations of each S8 about its optimum than the Lipschitz constant _ would indicate.

4.1 The Linear Progressive Sampling Algorithm

The core of linear progressive sampling (alg. 1) is quite simple. At timestep C = 1, we guess that a sample of size s1 for
all groups will be sufficient to Y-X optimize the objective, we draw at least such a sample (line 7 for joint sampling, or
lines 9–12 for mixture sampling), compute tail bounds (line 14), then determine the UCB-optimal ℎ̂ (line 16). If our
bounds indicate that ℎ̂ is provably near-optimal, alg. 1 terminates, otherwise, our guess was incorrect, so we increment
C , draw at least sC samples (per-group), and repeat. The basic principle is quite flexible, so alg. 1 can maximize welfare or
minimize malfare of risk or regret via the LinearPSLoss(. . . ) and LinearPSUtility(. . . ) routines.

Theorem 4.5 shows that alg. 1 learns an optimal ℎ ∈ H to within user-specified Y-X AE. We require only monotonicity
(axiom 1) and continuity (axiom 3) of M(·;w), though the power-mean malfare family is convenient, as Lipschitz-
continuity (thm. 2.2 item 3) permits efficient Y-uniformly-convergent schedules (def. 4.2). NB this result generalizes to
welfare objectives, mutatis mutandis (flipping infima and suprema), via the negation reduction of lines 25–30.
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objective (lines 10–11), and terminate if the user supplied guarantee

is met, otherwise we continue.

There is thus a lattice of possible sample size vectorsm. To avoid

a union bound over this (exponentially large) lattice, we analyze

the method as a braid, in that д progressive sampling sequences are

concurrently active, and at each iteration we select some group i ,
and advance the schedule by one timestep for only group i . Con-
sequently, we must use (line 17) the additive error scalar bound
ε̂i ← AES

(
mi ,

δti
д ,xi, :,yi, :

)
, i.e., we operate on one group at a

time, rather than over all groups as in the linear algorithm (al-

gorithm 1 line 14). Similar analysis is employed for multi-armed
bandits, where a union bound is taken over all timesteps and each

arm being sampled. We now show correctness of algorithm 2.

Theorem 4.6 (Braided PS Guarantees). Suppose ( ˆh, µ̂, ε̂,M⋆↓)←

BraidedPSLoss(H, ℓ(·, ·), D, AES(. . . ), s, δ, ε, M(·;w ), Reg),
M(S;w) is continuous and strictly monotonic in S

with (possibly infinite) Lipschitz constant λM w.r.t.

∥·∥M, and the schedules (s,δ) are
ε

λM(1+1Reg)
-uniformly-

convergent w.r.t. ∥·∥M and the additive error vector bound
AEV(m,δ ,x ,y) ←

〈
AES(m1, δд ,x1,y1), . . . ,AES(mд , δд ,xд ,yд)

〉
.

Now take µ to be the true objective value of
ˆh and µ⋆

to be the true

objective value of the optimal h⋆
(see theorem 4.5). Then, with

probability at least 1 − δ , we have

(1) |µ̂ − µ | ≤ ε̂ ≤ ε ; &

(2) M
⋆↓ ≤ µ⋆ ≤ µ ≤ µ̂ + ε̂ ≤ M

⋆↓ + 2ε .

5 CONCLUSION
This work generalizes existing theories of fair machine learning,

with welfare, malfare, and regret objectives, thus subsuming the

minimax fair learning [1, 20, 30, 33, 43], multi-group agnostic PAC
learning [7, 39], and fair-PAC learning [14] settings, while enjoying

rigorous statistical learning guarantees and the axiomatization of

cardinal welfare theory. In particular, we bound the generalization
error and sample complexity of UCB-optimal models, either given a

fixed sample, or to meet a user-supplied ε-δ optimality guarantee

via progressive sampling. Our bounds leverage the specific charac-

ter of the objective at hand, and our progressive sampling methods

are tailored to three realistic models of data generation. We stress

that while training UCB-optimal models is analytically convenient,

there is also an important fairness impact to this decision, as fair

malfare functions (e.g., egalitarian) place strong emphasis on the

most disadvantaged groups, which are often understudied minority

groups. Cousins [14] notes that optimizing empirical malfare M̂
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Algorithm 2 Fair Learning with Braided Progressive Sampling under the Conditional Sampling Model
1: procedure BraidedPSLoss(H , ℓ (·, ·),D1:6, I1:6,AES(. . . ), s, %, Y,

W(·;w), Reg)→ (ℎ̂, ˆ̀, Ŷ, W

★↓)
2: input: Hypothesis class H , loss function ℓ (·, ·), per-group distributions D1:6 , cost model I1:6 ∈ R6+ , additive error scalar bound

AES(<,X, x,~), schedule s ∈ Z∞+ and % ∈ [0, 1)∞, confidence radius Y, weighted malfare

W(·;w), and Boolean Reg
3: output: Empirically UCB-optimal ℎ̂, empirical malfare estimate ˆ̀, confidence radius Ŷ, and lower bound on minimal malfare

W

★↓

4: t1:6 ← 1 ⊲ Initialize per-group timestep indices
5: ∀8 ∈ Z : (x8,1:s1 ,~8,1:s1 ) ∼ D

s1
8
; 9̂8 ← (1 + 1Reg) AES(s1, %1

6
, x8,:,~8,:) ⊲ Draw initial sample for all groups & bound error

6: loop ⊲ Loop over braided algorithm iterations
7: ∀8, 9 ∈ Z, C ∈ Z+ : 9̃ (8 )

9,C
←

(
9̂ 9 if 8 ≠ 9 else 9̂ 9

√√
st 9 ln

6

%t 9

sC+t 9 ln
6

%C+t 9

)
⊲ Estimate of 9̂ 9 after sampling group 8 for C more iterations

8: ∀8 ∈ Z : Ŝ8 ←
(
inf
ℎ∈H

Ê
x8,:,~8,:

[ℓ ◦ ℎ]
)
if Reg else 0 ⊲ Set regret baseline of per-group minimal empirical risks (or 0 if ¬Reg)

9: ℎ̂ ← argmin
ℎ∈H

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − Ŝ8 + 9̂8 ;w

)
⊲ Compute UCB-optimal ℎ̂

10:

W★↓ ← inf
ℎ∈H

W(
8 ↦→ 0 ∨ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − Ŝ8 − 9̂8 ;w

)
⊲ Lower-bound optimal

W

★

11: ( ˆ W↓, ˆ W↑) ←
( W(

8 ↦→ 0 ∨ Ê
x8,:,~8,:

[ℓ ◦ ℎ̂] − Ŝ8 − 9̂8 ;w
)
,

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ̂] − Ŝ8 + 9̂8 ;w

) )
⊲ LCB and UCB on ℎ̂ (regret) malfare

12: if ˆ W↑ ≤ W

★↓ + 2Y then ⊲ Check if desired error guarantee is met (termination condition)
13: ( ˆ̀, Ŷ) ←

(
1
2 ( ˆ

W↓ + ˆ W↑), 12 ( ˆ

W↑ − ˆ W↓)
)

⊲ Symmetric estimate of ˆ̀ of malfare or regret of ℎ̂

14: return (ℎ̂, ˆ̀, Ŷ, W

★↓)
15: end if
16: 8 ← argmax

8∈Z
sup
C ∈Z+

1
I8 (sC+t8 − st8 )︸             ︷︷             ︸
Reciprocal Cost

(
ˆ W↑ − W(

9 ↦→ 2 ∧ Ê
x8,:,~8,:

[ℓ ◦ ℎ] − Ŝ8 + 9̃ (8 )9,C ;w
))

︸                                                          ︷︷                                                          ︸
Estimated (Regret) Malfare Improvement

⊲ Maximize improvement:cost ratio

17: (x8,1+st8 :s1+t8 ,~8,1+st8 :s1+t8 ) ∼ D
s1+t8 −st8
8

; t8 ← t8 + 1; 9̂8 ← (1 + 1Reg) AES(st8 ,
%t8
6
, x8,:,~8,:) ⊲ Sample group 8 & bound error

18: end loop
19: end procedure

Theorem 4.5 (Linear PS Guarantees). Suppose (ℎ̂, ˆ̀, Ŷ,M★↓)←LinearPSLoss(H, ℓ ( ·, · ),D,AEV(. . . ), s, %, Y,M( ·;w ), Reg) ,
M(S;w) is continuous and monotonic in S with (possibly infinite) Lipschitz constant _M w.r.t. ‖·‖M, and the schedules
(s, %) are Y

_M (1+1Reg ) -uniformly-convergent w.r.t. AEV(. . . ) and ‖·‖M. Now take ` to be the true objective value of
ℎ̂ and `★ to be the true objective value of the optimal ℎ★, i.e., if Reg = False, take ` � M(8 ↦→ ED8

[ℓ ◦ ℎ̂];w)
and `★ � infℎ∈HM(8 ↦→ ED8

[ℓ ◦ ℎ];w), or if Reg = True, take (see equation 3) ` � M(8 ↦→ Reg8 (ℎ̂);w) and
`★ � infℎ∈H

W(
8 ↦→ Reg8 (ℎ);w

)
. Then, with probability at least 1 − X , the output (ℎ̂, ˆ̀, Ŷ,M★↓) obeys

1)
�� ˆ̀ − `�� ≤ Ŷ ≤ Y ; & 2) M★↓ ≤ `★ ≤ ` ≤ ˆ̀ + Ŷ ≤ M★↓ + 2Y .

4.2 The Braided Progressive Sampling Algorithm

Under the joint and mixture sampling models (alg. 1), progress is linear (i.e., sequential, as no decisions are made except
when to terminate); we begin with (at least) s1 samples per group, and advance until we reach a sufficient sample size
to terminate with the desired guarantee. For the conditional sampling model, we present braided progressive sampling

(alg. 2), which is actively making decisions, thus linear analysis is not applicable. At each iteration (line 6) of alg. 2, a
group index 8 ∈ Z is chosen (line 16) to optimize an estimate of knowledge-gain via logic similar to that of §3.3 (due to
space limitations, the details are deferred to appx. B.2), and group 8 is sampled for one additional timestep (line 17), i.e.,
the sample associated with group 8 is extended from size st8 to s1+t8 , where t8 denotes the current timestep for group 8 .
The remainder of alg. 2 is essentially the same as alg. 1; after sampling, we optimize (line 9) a UCB-optimal ℎ̂, bound the
objective (lines 10–11), and terminate if the user supplied guarantee is met, otherwise we continue.

There is thus a lattice of possible sample size vectorsm. To avoid a union bound over this (exponentially large) lattice,
we analyze the method as a braid, in that 6 progressive sampling sequences are concurrently active, and at each iteration
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overfits to small numbers of sampled minorities, however we ar-

gue that training UCB-optimal models (i.e., optimizing M̂

↑
) factors

uncertainty into training, so that the needs of understudied groups

(i.e., those with large ε̂i values) are better addressed.
Our active learning setting under the conditional samplingmodel

is philosophically intriguing, as we find that optimally investing

sampling effort under uncertainty is challenging, depends on the

objective at hand, and has important fairness impact. In section 3.3,

we see that a host of factors involving the objective, function class

H , and per-group distributions D1:д all interact to determine the

sharpness of welfare, malfare, and regret bounds, and property 3.8

quantifies the incremental UCB improvement of sampling each

group. This analysis answers questions raised by Chen et al. [12] as

to how sampling-error impacts fairness, and generalizes the analysis

of Shekhar et al. [43] from the egalitarian special-case to arbitrary

power-meanmalfare functions. Algorithm 2 then incorporates these

ideas into an active sampling algorithm, which dynamically select

groups to sample based on projected UCB improvement. Notably,

algorithm 1 does use uniform sample sizes under the joint sampling

model, and uses whatever is available under the mixture sampling

model, as these are natural choices under these sampling models. In

contrast, under the conditional sampling model, algorithm 2 is able

to make more intelligent decisions as to where to allocate sampling

effort.

We thus conclude that (welfare-centric) fairness, statistical un-

certainty, and sample complexity analysis are tightly intertwined,

and must all be considered to best allocate resources in service of

the social planner. We are hopeful that this analysis and algorithmic

study will lead to a greater emphasis on sample complexity and

finite sample analysis for the social planner’s problem, which is

traditionally analyzed in terms of the asymptotic Bayesian methods

of classical economics. In particular, we are hopeful that this anal-

ysis emphasizes and mathematically supports the call for greater

visibility of minority groups and the importance of incorporating

diverse data into (fair) machine learning systems.
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