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ABSTRACT

Welfare measures overall utility across a population, whereas mal-
fare measures overall disutility, and the social planner’s problem
can be cast either as maximizing the former or minimizing the latter.
We show novel bounds on the expectations and tail probabilities of
estimators of welfare, malfare, and regret of per-group (dis)utility
values, where estimates are made from a finite sample drawn from
each group. In particular, we consider estimating these quantities for
individual functions (e.g., allocations or classifiers) with standard
probabilistic bounds, and optimizing and bounding generalization
error over hypothesis classes (i.e., we quantify overfitting) using
Rademacher averages. We then study algorithmic fairness through
the lens of sample complexity, finding that because marginalized or
minority groups are often understudied, and fewer data are there-
fore available, the social planner is more likely to overfit to these
groups, thus even models that seem fair in training can be system-
atically biased against such groups. We argue that this effect can be
mitigated by ensuring sufficient sample sizes for each group, and
our sample complexity analysis characterizes these sample sizes.
Motivated by these conclusions, we present progressive sampling
algorithms to efficiently optimize various fairness objectives.
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1 INTRODUCTION

Machine learning systems in settings like facial recognition [10,
11, 13] and medicine [3, 4, 12] exhibit differential accuracy across
race and other protected groups. This can lead to discrimination:
for example, facial recognition in policing yields disproportionate
false-arrest rates [24], and machine learning in medicine can lead to
inequity of health outcomes [18], both of which exacerbate existing
structural inequalities impacting minority groups. In recent years,
researchers have proposed welfare-centric fair learning models,
which constrain or optimize welfare [15, 22, 26, 28, 38, 44, 45] or
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malfare [1, 14, 20, 30, 33, 43] to promote fair learning across all
groups, as well as regret-based methods [7, 39], which similarly
promote fairness by minimizing the maximum dissatisfaction of
any group, relative to their preferred outcome, i.e., how much excess
risk is incurred, or utility is lost, to any group by compromising on
a shared model.

We study sampling and learning problems in the optimization
of welfare, malfare, and regret objectives. In particular, our setting
subsumes the minimax fair learning [1, 20, 30, 33, 43] and fair-PAC
learning [14] settings, by considering arbitrary malfare or welfare
functions, as well as the multi-group agnostic PAC learning [7, 39]
setting, by considering arbitrary malfare functions — rather than
just the maximum — of per-group regret values. This extension
naturally and smoothly interpolates between minimizing utilitarian
(i.e., weighted average) and egalitarian (i.e., maximum) malfare of
risk or regret. Crucially, this allows for fine-grained control over
the desired fairness concept, and mitigates the minority rule is-
sues of minimax methods, while remaining axiomatically grounded
in cardinal welfare theory. We bound the generalization error of
optimizing welfare, malfare, and regret objectives, and find that
while the power-mean malfare is always easy to estimate, due to
Lipschitz-continuity (as studied by Cousins [14]), our learning al-
gorithms work for any malfare, welfare, or regret objective that is
continuous and monotonic in per-group (dis)utility values.

We then study algorithmic fairness through the lens of sample
complexity, finding that because marginalized or minority groups
are often understudied, and fewer data are therefore available, the
social planner is more likely to overfit to these groups. Consequently,
even models that seem fair in training can be systematically bi-
ased against such groups. Section 3 shows that this effect can be
mitigated with sufficient per-group sample sizes, and §4 presents
progressive sampling methods, which dynamically sample until a
near-optimal model (w.r.t. some fairness objective) is learned.

Our bounds leverage the specific character of the objective at
hand; for example, utilitarian welfare is sensitive to the average con-
fidence radius across groups, whereas egalitarian welfare is more
sensitive to the confidence radii of disadvantaged (i.e., low-utility or
high-risk) groups. Furthermore, our progressive sampling methods
are tailored to three realistic models of data generation: in the joint
sampling model, each sample contains a piece of information for
every group, in the mixture sampling model, samples are annotated
with (sets of) group labels, and in the conditional sampling model,
we are allowed to choose from which groups to sample. While our
settings and modelling assumptions are practically motivated, this
is a highly theoretical paper, and all novel results are meticulously
proven in §6.
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2 LEARNING FRAMEWORK AND
OBJECTIVES

In this section, we introduce the functional form of the objects and
random spaces that we operate over, and we define our learning
objectives. In particular, §2.1 presents the welfare, malfare, and
regret objectives, which compile per-group sentiment values into a
cardinal objective value that can be optimized and analyzed, then
§2.2 reifies this abstract mathematics with three realistic models of
data-collection, each of which requires its own statistical treatment
to efficiently learn from data, i.e., to optimize and bound objectives,
while minimizing the cost of obtaining said data.

We henceforth assume a supervised learning setting, where X
is the domain and Y is the codomain. We also assume either a
loss function ! £(-,-): Y’ x Y — Ry or a utility function u(-, -):
Y’ x Y — Ry4, which map predictions and labels onto negatively
connoted loss or disutility, or positively connoted gain or utility,
generically termed a sentiment functions(:,-): ¥’ XY — Ro4. In
most supervised learning settings, a single probability distribution
D over X x Y suffices, but we assume a set Z of g groups, and
we model the experiences and conditions of each group as its own
distribution, i.e., we have Dy, ..., Dy. For convenience, we often
compose the sentiment function with a predictor or model A(-) :
X — Y, taking (s o h)(x,y) = s(h(x),y), thus we quantify model
performance for group i as Ep, [s o h].

2.1 Fair Learning with Malfare, Welfare, and
Regret Objectives

Here we define the welfare, malfare, and regret objectives. While
the details differ, each of these is a function of the expected utility
or loss (generically sentiment) of some h : X — Y for each of the g
groups, and we are interested in selecting the model or hypothesis
h from some hypothesis class H € X — Y’ that optimizes the
given objective.

Malfare and Welfare. A welfare function W(S; w) measures over-
all positive utility S across a population weighted by w, whereas a
malfare function M(S; w) measures overall disutility S, and generi-
cally, we say an aggregator function M(S; w) measures overall sen-
timent S. The prototypical example is the utilitarian (or Benthamite)
aggregate, defined as M1(S;w) = S - w, which simply averages
sentiment across the population (e.g., welfare as per-capita income,
or malfare as per-capita medical expenditure), and the second-fiddle
is the egalitarian (or Rawlsian) welfare W_u(S; w) (minimum) or
malfare Moo (S; w) (maximum), which summarizes a population’s
sentiment as that of its most disadvantaged member. We assume
throughout that w € (0, 1)¢ is a probability vector, thus ||w||; = 1,
and S € Rg+ is nonnegative. Ab initio, our first objective is, via the
social planner’s problem, to maximize welfare [22, 28, 38, 44], or
by extension (e.g., in chores manna or harm allocation [25, 29], or
in machine learning [1, 14]) to minimize malfare, i.e., we seek to

10ften Y’ = Y, such as in standard classification and regression settings, but this is
not universally the case. For instance, in probabilistic classification or regression (i.e.,
conditional density estimation), Y’ is a space of distributions over Y, and in interval
estimation, Y’ is a space of sets over Y.
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approximate
h* = argminAA(i — E[lo h];W) ,
heH D;
or h* = argmaxW (i — Efuo h];w) . 0
heH i

Intuitively, the utilitarian case seeks to optimize overall or average
sentiment, whereas the egalitarian case instead seeks to lift up the
most disadvantaged group, and thus promote equality, perhaps at
the expense of overall (total) utility.

Notably, welfare maximization generalizes utility maximization
to multiple groups, and malfare minimization likewise general-
izes risk minimization, and the well-studied minimax fair-learning
framework arises as the special-case of egalitarian malfare mini-
mization. In general, we assume only monotonicity and continuity of
aggregator functions; however, there are a set of relatively standard
axioms that, when taken together, restricts the class of interest to
the power-mean family [14]. This is convenient, as all power-mean
malfare functions are Lipschitz-continuous, which in §4 leads to
stronger estimation guarantees and more efficient sampling algo-
rithms than e-6 limit-continuity.

Definition 2.1 (Axioms of Cardinal Welfare and Malfare). Suppose

an aggregator function M(S; w). For each item, assume (if neces-

sary) that the axiom applies for all S, S’ € Rg " scalars @, f € Ry,

and probability vectors w € (0,1)9.

(1) Strict Monotonicity: 8" # 0 = M(S;w) < M(S + 8’"; w).
(2) Weighted Symmetry: Suppose g €Z, S € Rg+, and prob-
ability vector w’ € (0,1)7, such that for all u € Ry, it
holds that 3; s §;=u Wi = Xi st. Sj=u w;. Then M(S; w) =
M(S’;w').

(3) Continuity: M(S; w) is a continuous function (in the standard
-0 limit-continuity sense) in both S and w.

(4) Independence of Unconcerned Agents: M({(S1.g-1,); W)
M((S] 41 @); W) = M((S1:g-1. B): w)
MUS] gy i w)

(5) Multiplicative Linearity: M(aS; w) = aM(S; w).

(6) Unit Scale: M(1; w) = M((1,...,1);w) = 1.

(7) Pigou-Dalton Transfer Principle: Suppose p=w-S =w-S’,
and for all i € Z: |p = 8]| < |p — S;l. Then for utility and
welfare, W(S’; w) > W(S; w), and for disutility and malfare,
M(S;w) < M(S;w).

INIA

Axioms 1-4 are essentially the standard axioms of cardinal wel-
fare [37, 40], modified to include the weights w, and omitting any
of them leads to rather perverse aggregator functions. Axiom 5
(multiplicative linearity) strengthens the traditional independence
of common scale axiom, and ensures that the units of welfare or
malfare must match those of sentiment, and axiom 6 (unit scale)
merely specifies a multiplicative constant. Finally, axiom 7, the
Pigou-Dalton transfer principle [17, 36], characterizes fairness in
the sense of equitable redistribution of utility (welfare) or disutility
(malfare).

Theorem 2.2 (Aggregator Function Properties [14, theo-
rems 2.4 and 2.5]). Suppose aggregator function M(S;w), and
assume arbitrary sentiment vector S € Rg . and probability vector
w € (0, 1)9. The following then hold.
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(1) Power-Mean Factorization: Axioms 1-6 imply Jp € R s.t.

M(S;w) = Mp(S;w) = f;! (Zwi ﬁ,(Si))
i=1
— oS P ; =0 x) = In(x
“peo {EwiS! . with {53 20 Szt
(2) Fair Welfare and Malfare: Axioms 1-7 imply p € (—oo, 1] for
welfare and p € [1, o0) for malfare.
(3) Lipschitz-Continuity: For all p > 1, it holds that
Mp(Siw) - Mp(Ssw)| < Mp(IS-S'hw) <
max;ez |S; — S|

In closing, we note that utilitarian philosophy is often criticized
for permitting great inequality by ignoring the needs of smaller or
less visible groups, whereas egalitarian philosophy is criticized for
ignoring the masses in favor of outliers and disadvantaged groups,
and its inherent susceptibility to minority rule. Concretely, utilitar-
ian aggregates only weakly satisfy the Pigou-Dalton principle, thus
do not incentivize equitable redistribution , and egalitarian aggre-
gates satisfy only weakmonotonicity, thus only incentivize gains in
the most disadvantaged group(s). Power-means provide a spectrum
of intermediaries, so exactly how tradeoffs should be made may de-
pend on the application, as well as the culturosocietal values of the
social planner. They are also statistically convenient, as many of our
estimation guarantees hold in terms of generic Lipschitz-continuity
assumptions, and thus apply to any power-mean malfare function.

Malfare of Regret. Regret measures the relative dissatisfaction of
group i with some h € H, relative to their preferred hy € H. We
define the (per-group) preferred outcome h} as the model group i
would select for themselves, i.e.,

hy = argmin E[foh] or h} =argmax E[uoch] , (2)

heH Di heH Di
for loss or utility, respectively, and we let S} denote the optimal
expected sentiment for group i, ie, 8} = Ep,[s o hf]. We now
formally define the regret of group i on some outcome or model

heH as

Reg;(h) = E [[o h] =87 , Reg;(h) = S] - 5 E[uoh],

0r generically, Reg;(h) = | ]E [so h'] S| 3)

Intuitively Reg;(h) is nonnegative, and it quantlﬁes the amount by
which group i prefers their optimal h} to h.

Several authors [7, 39] minimize the worst-case (over groups)
regret of the selected h, and the statistical and computational ques-
tions that arise are studied under the umbrella of “multi-group
agnostic PAC learning” We generalize this notion, optimizing not
just worst-case (i.e., egalitarian), but arbitrary malfare functions, of
per-group regret values, which allows for greater flexibility and
resistance to the usual issues of egalitarian malfare. In particular,
we seek

B* = argminM (i — Reg;(h); w)

heH
= argmln/\(\(ll—) |E[soh] S;|;w) . (4)
heH
Curiously, since we seek to measure overall regret, and regret is a
nonnegative quantity with negative connotation, we always sum-
marize it with a malfare function M(-; w), even when we began
with a utility function. Intuitively, this is because we can never hope
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to select a shared function h that group i prefers to h7, thus excess
dissatisfaction is always positive in both the loss and utility cases. In
some sense, the malfare of regret thus measures the price of sharing
in a society, as the shared model his naturally compared [23] to
letting each group select their own model hi.

Previous work summarizes regret across groups by taking the
largest regret amongst them. This is analogous to game-theoretic
regret (i.e., the maximum over agents of utility differences at adja-
cent profiles), but even there, any malfare function could reasonably
aggregate per-group regret values. We argue that considering only
egalitarian regret may act as an enforcer of the status quo, if one
group is particularly happy with their h} and is thus aggrieved
by any compromise — perhaps best summarized by the adage, “To
those accustomed to privilege, equality feels like oppression.” We
mitigate this issue by summarizing regret with a power-mean mal-
fare function AAP(~; w), instead of the egalitarian malfare, in order
to lessen the impact of the most aggrieved group. In particular, this
class smoothly and nonlinearly interpolates between the worst-case
(egalitarian) Mo (-; w) regret and the utilitarian M; (-; w) welfare or
malfare.

Fascinatingly, we find that utilitarian regret minimization re-
duces to utilitarian malfare or welfare optimization, as all terms
involving per-group optimal sentiment can be factored into an
additive constant from these objectives; observe

M (i > Reg;(h);w) = My (i = |E'[S o h] —Si*l;w)

—|(Zw, soh)—w-s*|

_[s=t¢ M (Ep,[foh;w)—w-S* 5)
Tls=u w-8*-Wi(Ep,[uchl;w) ,

namely S* appears only in the additive constant w - S* which is
independent of h. From this perspective, we conclude that while the
utilitarian regret is not particularly interesting, the power-mean
malfare of regret interpolates between minimizing largest regret,
with its minority rule issues, and optimizing utilitarian welfare or
malfare.

2.2 Three Sampling Models for Populations
with Multiple Groups

In order to study efficient sampling, we must first quantify the
difficulty or cost of a sampling-based estimation routine, which
requires a sampling model. Within a single-group population, meth-
ods like i.i.d. sampling, importance sampling, or sampling without
replacement are near-ubiquitous, and all can measure cost as sample
sizem € Z,; however, in group-sensitive settings, we must consider
how samples from different groups are obtained, and what the cost
of collecting these samples is. In the context of this work, we don’t
argue for a one-size-fits-all solution, but rather we discuss three
sampling models, and show that they fit key applications in the
computer science domain and beyond.

(1) Joint Sampling: Each i.i.d. sample contains a piece of informa-
tion for each of the g groups, with arbitrary dependencies be-
tween groups. For example, per-group representatives could
be shown a shared x € X and asked for their feedback, which
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would then be used to establish some Y; for each group i.
Thus each sample is in the space X XYY if the X components
are shared between groups, or more generally in (X X Y)9.
This setting also arises in multi-objective reinforcement learn-
ing [15, 44], as well as various bandit problems and empirical
game theoretic analysis [48], where each query of an action
or strategy profile yields a sample of the utility values of each
player, agent, or group.

(2) Mixture Sampling: For each sample, the data are only rele-
vant to a nonempty subset of groups z € ZZ, thus samples are
elements of X x Y x 2<. This generality is useful for study-
ing concepts like intersectionalism and multicalibration [39],
where individuals may belong to multiple groups, but the
case of mutually exclusive groups (i.e., each sample belongs
to exactly one group) is also convenient [23]. This model
naturally represents a mixed population being sampled i.i.d.,
where the group identities of the sample are left up to chance
(i.e., roughly proportional to group frequencies), and is thus
the most appropriate model for learning from [14] existing
datasets with group identity features [21].

(3) Conditional Sampling: Here we actively choose from which
group to sample, in contrast to the mixture sampling model,
where we simply cast our net and “get what we get” In
particular, we sample i.i.d. (X, Y) pairs conditioned on some
group z € Z, thus we may select sample sizes my.4 € Zz
and draw a sample (x,y) € (X X Y)™ X --- X (X x Y)™9.
This is a natural model in active sampling [1] and scientific
inquiry settings, where initial results guide further study
and resource expenditure, and similar conditional sampling
structure arises in stratified sampling settings.

In mixture sampling, we generally assume unit cost C = 1 per
sample, and in joint sampling, we assume constant cost C > 1 per
joint-sample, as it is more expensive to set up a properly controlled
joint sampling distribution. On the other hand, in conditional sam-
pling, some groups may be more difficult or costly to study than
others, so we assume a cost model Cig € Rz, where C; is the
per-sample cost for group i, thus the total cost of a sample with
per-group sizes my.4 is m - C. Note that the extra control of the
conditional sampling model is extremely convenient and power-
ful, however it is generally more expensive than mixture sampling.
These costs are entirely application dependent, so we take no stance
on which is preferable, and rather focus on developing efficient
learning algorithms under each sampling model.

3 STATISTICAL ANALYSIS AND ESTIMATION
GUARANTEES

In this section, we discuss the statistics of estimating malfare and
welfare functions. In particular, we assume a set Z of g groups, and
we want to estimate the malfare, welfare, or regret of per-group
expected loss or utility of some b, i.e.,

MzM(il—)g[SOh];w) , or MzM(iHRegi(h);w),

where D14 are distributions over X x Y, and M(:; w) generically
represents some aggregator function. Estimating the expected loss
or utility of one group is a well-studied sampling problem, but
generalizing to the welfare, malfare, or regret of multiple groups
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introduces some subtleties. We start by noting that while the em-
pirical mean is an unbiased estimator of expected utility or loss of a
single group, in general there is no unbiased estimator of welfare or
malfare (essentially due to their nonlinear nature, much like with
the standard deviation). Thus rather than unbiased estimators, we
seek additive error (AE) bounds of the form P(|M — M| < €) >1-6,
where ¢ is the confidence radius (a.k.a. the margin of error), and §
is the failure probability (or, by alternative convention, 1 — § is the
level of confidence).

In machine learning, we optimize over a hypothesis class H C
X — Y’ thus we seek some sample-dependent A € H with true
objective value within ¢ of that of the optimal A* € H. At times,
we are also interested in related statistics, like the objective values
of h and h*, and in general, tools to bound the deviations between
the empirical and true objective values for any h € H are sufficient
to bound these quantities. The rest of this section pursues such
bounds, assuming a fixed failure probability § and sample size m;
for each group i € Z. In particular, section 3.1 reviews known
results for uniformly estimating expectations across H, section 3.2
builds upon these results to uniformly estimate malfare, welfare,
and regret values, and section 3.3 then studies how varying per-
group sentiment values and confidence radii impacts these bounds,
and quantifies the incremental value of sampling from each group
as a function of these quantities.

3.1 Uniform Convergence Bounds for Mean
Estimation

In this work, the common functional form of our additive er-
ror (AE) bounds is data dependent uniform convergence, vector-
ized to operate over samples from multiple groups, rather than
on a single-group sample. Occasionally, we are interested in
the scalar form AES(m,8,x,y) : Z+ X (0,1) X X™ x Y™ —
Ro+, which operates on a single group, but unless otherwise
stated, we refer to the vector bound AEV(m,Jd,x,y) : Z‘Z X
(0,1) X (X™ X -+ X X™9) X (Y™ X --- x Y™9) — Ryq.
In particular, given a sample (x,y) ~ D" x--- X Z);n Y, we require
a function® AEV(. ..) such that

& — AEV(m, 8, x,y)

= P |maxsup| B [soh]- E[soh]l -4 >0|<é.
x,y,é \i€Z peg{ Xi.»>Yi: D;
(6)

Section 3.2 explores how AEV(...) can be used to bound malfare,
welfare, and regret, and the remainder of this subsection is dedicated
to showing non-trivial bounds of this form for machine learning
applications. All of our AE bounds assume bounded sentiment range
r = Ssupyeyyey s(y’,y), but this can usually be relaxed if we
instead assume a moment condition, e.g., each soh is sub-exponential,
sub-gamma, sub-Poisson, or sub-Gaussian [8].

Data-dependent uniform convergence bounds, i.e., those of the
form AES(m, 8, x, y), are invaluable for studying a population about
which little is known. Such bounds require data to evaluate, thus we

2 Going forward, we present only scalar bounds, but it is to be understood
that given additive error scalar bound AES(...) and a finite group count
g, we may construct the additive error vector bound AEV(m, S, x,y)
<AES(m1, g, X1 Yu,:)s - - -» AES(myg, g, Xg,:s yg,;)> via the union bound.
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cannot determine a priori how much data will be required to meet
a given confidence radius. This contrasts distribution-free bounds,
which must have worst-case dependence on the distribution, and
take the form AES(m, §) < SUP(x, ) e(Xx Y ym AES(m, , x,y). In sec-
tion 4, when constructing schedules for progressive sampling, we
often assume knowledge of AES(m, §), but this is usually possible
via this worst-case RHS bound. We first present simple bounds for
bounded finite hypothesis classes, which depend on the sentiment
range r, hypothesis class size ||, variances V[-], and empirical
variances V[-].

Theorem 3.1 (Uniform Convergence for Bounded Finite Hy-
pothesis Classes). theorem We may bound the distribution-free
AES(m, d), the distribution-dependent AESg(m,5), and the
data-dependent AES(m, 8, x, y) scalar additive error as

214 2H]
rIn=5

(1) e« e [27];
rlnM 2V [SOh]lnM
O A el R
.oy (20 [soh] In 2
() & = =) e 4 1) [16].

Note that supremum variances and empirical variances are prop-
erties of the distribution and sample, respectively. Dependence on
variance is necessary (similar terms appear in mean-estimation
lower-bounds [19, 32]), however the In |H| union bound terms are
loose, and the bounds are vacuous for infinite (continuous) H. We
now state results using Rademacher averages [5, 42] that tolerate
infinite H, while preserving the variance-dependence of item 2.

Theorem 3.2 (Uniform Convergence with Rademacher Averages).
theorem Suppose hypothesis class H and sentiment function s(., -),
take (x,y) ~ D™ and ¢ ~ U™(+1), i.e., o is uniformly distributed
on (+1)™ and define the Rademacher average Ry (s o H, D) and
Bousquet variance proxy Vi (s o H, D) [see 9] as

1 m
Rm(soH,D)= E |sup |—ZSOh(xi)a,~| ,
*Y%9 |pe Min
Vm(soH, D) = sup V[soh]+4rRpu(so H,D) . (7)
heH D

r

1
We may then bound AES ¢y(m, §) as € « 2Rp(so H, D) + ;’:na‘ +

2Vm(soH, D) In %
—_—

Data-dependent analogues of theorem 3.2 are possible using em-
pirical Rademacher averages and variances at no asymptotic cost
[16]. In the worst case, theorem 3.2 performs comparably to theo-
rem 3.1 item 2, however it improves when correlations exist between
elements of H, because the effective size of H is smaller for the
purposes of realizing the supremum in the Rademacher average,
see (7). The abstract inequalities of theorem 3.2 are quite opaque,
so we now provide concrete bounds on the Rademacher averages
of practical infinite hypothesis classes. The below results hold for
any distribution D, and are thus distribution-free, although similar
distribution-dependent or data-dependent bounds are possible.

Property 3.3 (Practical Bounds on Rademacher Averages). (1)
Suppose H has Vapnik-Chervonenkis (VC) dimension d
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some absolute constant ¢, Ry (£ o H, D) < /57, which
implies bounds for linear classifiers, bounded-depth decision
trees [31], and many classes of neural network [2].
Suppose X = {x € R™|||X|l2 < R} is the R-radius £ ball
inR%, H = {¥ > w-X||[wll2 < y} is a y-regularized linear
class, Y = [-Ry, Ry], and €(-, ) is a A-Lipschitz loss function
s.t. €(y,y) = 0. Then r < 2ARy and R, (€ o H, D) < 2Ry
This implies bounds for (kernelized) SVM, generalized linear
models [35], and bounded linear regression.

[46, 47], and £(§,y) = 1 — 1y(§) is the 0-1 1070_{'1[hen for

—
S
~

3.2 From Mean Estimation to Welfare, Malfare,
and Regret Bounds

We now adapt the AE bounds of section 3.1 on expectations to bound
malfare, welfare, and regret in terms of empirical estimates thereof.
In particular, the strategy for each is to combine tail bounds for
mean-estimation with the monotonicity axiom (definition 2.1 item 1)
to bound the tails and expectations of our desiderata. We use the uni-
form convergence bounds of section 3.1 to bound the error of these
estimates, thus we need only propagate this uncertainty through
the appropriate aggregator functions. In general, aggregator func-
tions are nonlinear, and optimizing over H results in estimation
bias, thus the plug-in estimator is biased, however, we still obtain
tail bounds on our objectives via AEV(...). Because the plug-in
estimator is biased, we also consider various LCB-and-UCB-style
estimates, which when optimized yield safer function choices and
partially control for overfitting. Finally, in some cases, integrat-
ing over worst-case uncertainty from the tail bounds of AEV(...)
yields convenient bounds on the expectation (and thus the bias) of
the plug-in estimator.

Welfare and Malfare. Due to the lack of an unbiased estimator
for welfare and malfare, we study the simple plug-in estimator
M, as employed by [16], and introduce a pair of lower and upper
estimators (Ml, MT). In particular, we take

Xi,»Yi,:

MiM(iH E [soh];w),

PLuG-IN ESTIMATE

MliM(iHOV E [soh]—éi;w),

Xi,»Yi,:

LCB ESTIMATE

&MTiM(iHrA B [SOh]+£‘,-;w), (8)

Xi,»Yi,:

UCB ESTIMATE

where V and A are the (minimum precedence) infix binary max
and min operators. By monotonicity (axiom 1), it holds that
M < M < M'. The lower and upper confidence bound estimates
are convenient, both to show high probability bounds, and to sand-
wich the plug-in estimator, which we use to bound its bias. We first
show tail bounds for the estimation of welfare and malfare in terms
of their plug-in, LCB, and UCB estimates, and we then bound the
bias of M.
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Theorem 3.4 (Welfare and Malfare Tail Bounds). theorem Suppose
sentiment function s(:,-): Y’ X Y — Ro4, per-group probability
distributions D1y, sample size vector m € Zz, samples (x,y) ~
Z)lm Ix. .o X Z);n Y, failure probability § € (0, 1), and additive error
bound AEV(...), and let £ « AEV(m,d,x,y). Then for all h €
H and all monotonic aggregator functions M(-; w), it holds with
probability at least 1 — § over x, y, and £ that

M(ii—>0V E[SOh]—éi;w)
D.

i

TrUE LB

Xi,»Yi,:

SM(ii—> B [SOh];w)

PLuG-IN ESTIMATE M

SM(iHrAg[soh]+éi;w), 9

True UB

&M(iHOV B [soh]—éi;w) SM(iH ]E[SOh];w)

Xi,»Yi,: D;

LCB ESTIMATE I\A/[l TRUE AGGREGATE M

SM(ii—)r/\ B [SOh]+£‘i;w), (10)

Xi,»Yi,:

UCB ESTIMATE MT

thus if M(+; w) is A-Lipschitz-continuous w.r.t. some norm ||-||np, we
have

|M(i|—> B [soh];w)—M(i»—» E[soh];w)|S/1||£‘||M .
XinYi: D;
(11)

PLUG-IN ESTIMATE TRUE AGGREGATE

From (10), we see that minimizing M (or maximizing I\A/Il) is in
some sense a safe choice, as w.h.p. we can bound the true aggregate
value in terms of the UCB or LCB. This idea is reminiscent of the
sample variance penalization algorithm of [34], wherein ERM is
supplanted by minimizing an upper-bound on risk; in that case
with variance-dependent bounds, but here the bound depends on
the structure of the malfare or welfare objective at hand. It should
also be noted that while the final Lipschitz form (11) is concise and
convenient for all Lipschitz-continuous aggregator functions (e.g.,
all p > 1 power-mean malfare functions, see theorem 2.2 item 3), it
can be quite loose. For example, under + uncertainty intervals, the
egalitarian welfare W_qo((4£1,9+8); w)=min(4+1, 9+8) must be
on the interval 3+2, despite (11) giving confidence radius 8. Thus
while (11) is convenient for intuition and analysis, when possible
(9) or (10) should be favored.

Theorem 3.5 (Welfare and Malfare Expectation Bounds). theorem
Suppose as in theorem 3.4, and assume also that AEV(m, 8, x,y) =
AEV(m, S) is a distribution-free or distribution-dependent (but not
data-dependent) bound. Then

1
IM-E[M]| <E[IM=-M]|]] < A/O |AEV(m, 8)||p dS .

The above theorems give general recipes for bounding tails and
expectations, so for demonstrative purposes, we instantiate them

2009

Cyrus Cousins

with theorem 3.1 for malfare estimation. Similar bounds can be
derived for learning with theorem 3.2.

Theorem 3.6 (Bernstein-Type Malfare Bounds). corollary-
thmwmestexpbern

Suppose as in theorem 3.1, and also per-group sample size m
(i.e, m = (m,...,m)) and p > 1 power-mean malfare function
AAP(-; w). Now, let variance proxy v be defined in three cases as
v = Myy(v;w) = (Z?zl w,-\/'u_,-)2 forp=10v=w-ovforpe (2],
or v = |||le for p > 2. Tglen fi € (0,1), we have

1) P{|m - A > r%ﬁ +

& rin(Zeg) 2v In(229).

(2) E[IM - M — =+ &

(3) M<E[A] <M+ 00 +\/?;3@ .

Estimating the Malfare of Regret. Regret is difficult to bound, as
it depends both on the expected sentiment of the selected h, and
also on H through the (unknown) per-group optimal sentiments
N g We thus introduce the estimators

Si=inf E [€oh], or S;=sup E [uoh], (12)

heH Xi, Yi,: heH Xi.»Yi:
for loss or utility, respectively, cf. (2). By analogy with (3), the plug-
in estimator for the regret malfare minimizer is then

ﬁiargminm i—| E [SOh]—$i|;w . (13)
heH Xi,»Yi,:
The following theorem bounds the difference between the true and
empirical malfare of regret.

Theorem 3.7 (Regret Estimation Bounds). theorem Suppose sen-
timent function s(-,-) : Y’ X Y — R4, per-group probability
distributions 1.4, sample size vector m € ZZ, samples (x,y) ~
D;" Ixooex D;" 9, failure probability § € (0, 1), and additive er-
ror bound AEV(...), and let £ « AEV(m,d, x,y). Then for all
h € H and all monotonic malfare functions M(-; w), it holds with
probability at least 1 — § over x, y, and £ that

i

M(ii—)OV

E[SOh]—Sl-*'—Zéi;w)

TRUE REGRET MALFARE LB

SAA(iH E [soh]—si;w)
Xi,»Yi,:
PLUG-IN REGRET MALFARE
SAA(ii—>r/\ E[soh] -8/ +2éi;w), (14)

TRUE REGRET MALFARE UB

&AA(ir—>0V

E [soh] —S,—' - Zéi;w)

Xi,»Yi,:

LCB ESTIMATE

g

B [sohl-S;

Xi,nYi,:

SM(iH‘E[SOh]—Si*

i

TRUE REGRET MALFARE

SA(\(i»—)r/\

+ Zé,-;w) ,  (15)

UCB ESTIMATE
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thus if M(-; w) is A-Lipschitz-continuous w.r.t. some norm ||-[|p,

we have
N\(ir—) E [SOh]—Si’;w)—AA(iH‘E[SOh]—Si*;w)
Xi,»Yi,: i
PLUG-IN REGRET MALFARE TRUE REGRET MALFARE
< 221 €llpm-

(16)

Note that similar bounds on the expectation of the regret plug-
in estimator can be shown along the lines of theorem 3.6, mutatis
mutandis for regret. Note also that theorem 3.7 matches theorem 3.4
up to a 2-factor attached to the confidence radius, thus in some
sense regret is “about twice as difficult” to estimate as malfare or
welfare.

3.3 Information Asymmetry and Where Best to
Sample

An intuitive notion of fairness would suggest that we should draw
equally-sized samples for each group, or perhaps samples propor-
tional to population frequencies. If the goal is to optimize or bound
welfare, malfare, or regret, such intuitive notions should be rejected,
as they are critically flawed. We now discuss the ways in which sam-
ples drawn from one group or another may be more or less valuable
to for the purposes of estimating or optimizing these objectives.

As a brief thought experiment, suppose we want to estimate
the egalitarian welfare of a population consisting of two groups.
Suppose also that their utilities are similarly difficult to estimate,
and their expected utilities are (1,10). In such a setting, nearly
all sampling effort should be invested in estimating the utility of
group one, as once group two is estimated to within +9 AE, there
is no further benefit to improving their estimate. Thus the optimal
sampling strategy depends on the true expected utilities, the dif-
ficulties of estimating utilities for each group, and the objective
in question, and in no way resembles the naive uniform or pro-
portional so-called “fair sampling strategies” described above. We
argue that such naive strategies are dangerous, as they introduce
subtle biases and fairness issues, but the rationale for alternative
sampling strategies is only apparent through the lens of sample
complexity.

We now ask the questions, “Given a sample, what do we need to
obtain sharper bounds?” and “How much will bounds improve with
alarger sample?” We begin with a soft discussion as to why samples
from different groups may contribute more or less information to
an estimate, which we measure as the improvement to tail bounds
that additional samples may yield. In particular, for malfare, we
discuss the improvement to upper bounds, but the entire discussion
can be directly translated to welfare and lower bounds in the usual
manner. We then quantify these factors mathematically, and we
develop these ideas further in section 4.2, where they are used to
adaptively choose from which group to sample.

(1) Variable estimation difficulty or overfit potential: Often it is
inherently more difficult to give bounds on the expected
sentiment for some groups than for others. This can be due
to differences in variances (see theorem 3.1) or in uniform
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convergence bounds (see theorem 3.2), and in general, occurs
when & < AEV(...) has §; < £}, even while m; ~ m;.

Variable task difficulty: Some groups may be inherently easier
or harder to satisfy than others; e.g., regression and classifi-
cation problems are generally easier for groups with labels
that are more homogeneous, and regret varies with the op-
timal expected sentiment Sl.*, This is crucial, because most

—~
DN
~

malfare and welfare functions are more sensitive’ to high-
risk or low-utility groups, thus the ease of satisfying a group
effects their impact on malfare and welfare values.
Aggregator function interactions: Complicated interactions
also occur through the malfare or welfare function. When
learning over H, the set of near-optimal functions is more
relevant than those that are clearly bad choices overall, and
groups that tend to be mutually satisfied (i.e., are correlated)
are less impactful to the overall objective. Weight values in
malfare or welfare functions may also differ between groups,
and higher-weighted groups are usually more impactful.

—
W
=

Quantifying the Incremental Value of Sampling. We measure the
impact of sampling by asking the question, “What is the incremental
value of a single sample drawn for some group?” In particular, we
quantify the value of the sample as the reduction in uncertainty,
as measured by the infimum UCB (over H), and although this is
inherently a discrete question, we approximate the answer for the
power-mean malfare with tools from calculus of infinitesimals.

Note that all such analysis is necessarily heuristic, as we funda-
mentally cannot answer this question without more information: it
is precisely because we are trying to estimate unknown means that
we can’t know how the samples we draw will impact the empirical
means. For now, we heuristically assume that our estimated expec-
tations are reasonably accurate, and consider what will happen as
tail bounds sharpen with additional samples. The strategy we thus
employ is to make a reasonable guess as to how sampling might
impact the UCB by assuming that the empirical mean will not be
strongly affected, and all confidence intervals over m samples will
contract at a 9\/% rate.

Property 3.8 (Incremental Gain of Sampling). Suppose
power-mean malfare M,(+;w), sample (x,y) with group sam-
ple sizes my.4, and let x’,y’ extend x,y to sample sizes m/,
where m’ = m + 1;, ie, group i has one additional sample.
Now, let ¢ « AEV(m,d,x,y) and ¢ «— AEV(m',§,x',y’),

and take h = argming cqMp (i — ]AExiY:,yiq:[f o h] + &;; w),

A - AAP(i s iy g, [€ 0 B w), Iy -

My (i - Ex,»,:,y,«,:[f o hl+&; w), and Al

infheq.(mp (i - ]Exi,,;’y;',:[f o h]+é&;; W).

3In particular, this holds for all p # 1 power means, and is axiomatically justified by
the Pigou-Dalton transfer principle (definition 2.1 item 7).
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Then the incremental impact of sampling from group i on the
UCB is approximately

~ = ~ N p_l
Al N _EiWi Exi,:,yi,:[f’ oh]+é&;
2m; + % MT

. 2 o i\l
. w(Exi,z,y,,;[f h]) .

2m; M

Observe that (17) characterizes the knowledge gain of sampling
from group i. This gain is proportional to the current bound radius &;,
the group weight w;, and the (p — 1)th power of the ratio of the UCB
risk of group i to the UCB malfare, ie., (Ex, 4, [€ © h]+ é,-//\?\T)p_l,
and inversely proportional to the amount of effort m; already put
forth into studying group i. These terms line up with the soft argu-
ments at the top of section 3.3 as to where sampling should occur,
but it is only via precisely studying sample complexity and esti-
mation error that we gain quantifiable mathematical insight. In
particular, the weight term w; appears directly, and rfl—’l captures
both the difficulty of estimating this group, and also the diminish-
ing incremental improvement produced by further sampling. The
ratio between the risk of group i and the malfare then captures
how important group i is relative to the other groups, and this term
being raised to the (p — 1)th power nonlinearly adjusts its impact;
higher p saturate high-risk groups, tending towards egalitarianism,
whereas in the p = 1 (utilitarian) case, this term is 1. Finally, for
optimization problems, the dependence on h captures other depen-
dencies; namely the behavior of M(-; w) near the optimal h € H is
what matters.

This analysis parallels concerns in stratified sampling, wherein
subpopulations are sampled individually, generally to produce an
improved mean estimator. In particular, we suggest a form of dispro-
portionate allocation, i.e., per-group sample sizes are not necessarily
proportional to their population frequencies. Rather than simply
considering variances to estimate means, we holistically consider
the objective and uncertainty over various quantities, thus our
sample-size selection-strategy is a variant of the minimax sampling
ratio [41] method. Chen et al. [12] also suggest disproportionate
allocation in fair learning, albeit only for bounding differences
of per-group statistics. Similar concerns also arise in optimizing
minimax-fair models, wherein Abernethy et al. [1] present an algo-
rithm that takes gradient steps to improve a model for the highest-
risk group, though it is unclear whether such methods generalize
beyond the egalitarian case.

4 PROGRESSIVE AND ACTIVE SAMPLING
ALGORITHMS

Section 3 considers fixed sample sizes my.4 and failure probabilities
6, and bounds the confidence radius ¢. In this section, we want a
fixed e-0 AE guarantee, but we are willing to let an algorithm select
the sample size m (or per-group sample sizes m;.g4). In particular,
due to the cost of sampling and processing data, we want our al-
gorithm to minimize m (or cost measured as some function of m),
while constraining ¢ and § to user-supplied levels. Some cases are
simpler than others; the joint sampling model yields a standard
progressive sampling method with a fixed sampling schedule, and
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the method under mixture sampling is similar, except a subtle condi-
tioning argument allows us to use variably-sized per-group sample
sizes based on the order groups are sampled in. For the conditional
sampling model, we develop an active sampling approach, which
makes cost-sensitive decisions as to which group to sample at each
iteration. More details on sampling schedules and other aspects of
our progressive sampling algorithms are given in section 7.

We can’t simply draw samples one-by-one, compute bounds
using € « AEV(m, 8, x, y) after each sample, and terminate when
a sufficiently sharp bound is available, because the possibility of
early termination leads to the multiple comparisons problem, wherein
by chance the desired confidence radius is met at some timestep.
Progressive sampling algorithms correct for this by establishing a
sampling schedule s and failure probability schedule §, which usually
dictate that, at timestep ¢, we take a tail-bound with 6 = §; and
sample size s;, while ensuring that all bounds hold simultaneously
(by union bound) with probability at least 1 — §. Due to this union
bound, it is inefficient to take bounds after drawing every sample.
Furthermore, for technical reasons, we henceforth assume a few
mild regularity conditions:

(1) The sampling schedule s € ZZ is a strictly monotonically
increasing sequence, i.e., forall t € Z,, sy < s¢41;

(2) The failure probability schedule § € [0,1)® is a sequence
that sums to some 6 € (0,1),ie, X2, 8; = |6l = 6; &

(3) The distribution-free bound SUPy y [|JAEV(m, 5, x,y)|| is
monotonically decreasing in my.4 and 6 for any norm ||-||.

In order to prove that a progressive sampling algorithm produces
a (probabilistically) correct answer, it is crucial to show that it does
not loop indefinitely. We now introduce ¢-convergent schedules,
which require all sentiment values to eventually be ¢-§ estimated
w.r.t. some norm ||-||p, yielding welfare, malfare, or regret bounds
via theorems 3.4 and 3.7.

Definition 4.1 (e-Uniformly-Convergent Schedule). Forany ¢ > 0,
a sampling schedule s and failure probability schedule § are -
uniformly-convergent w.r.t. AEV(...) and some norm ||-|[y if

tieanJr (x,y)e(s(t’lgy)sﬁw ||AEV(<St, ce ,St>, 6t,x,y)||M <e. (18)

Intuitively, definition 4.1 captures the idea that no matter how
unlucky we are with the sampled x,y, if AEV(...) bounds tails
once for each timestep ¢ of the schedule, with per-group samples
of size at least s; and failure probability J8;, then at some point
an ¢e-estimate of the objective will be produced. Note that neither
data-dependent AEV(...) bounds on sentiment values, nor suffi-
cient per-group error radii to estimate the objective, are known
a priori, thus it is not always possible to select a sufficient static
sample size, however, definition 4.1 is more flexible, as it requires
only the existence of a (possibly unknown) sufficient sample size.
Even when a sufficient sample size is known, unless it is also neces-
sary, progressive sampling is usually more sample-efficient, often
terminating closer to the necessary sample size.

With this definition in hand, we now construct finite ¢-, and infi-
nite 0-, uniformly-convergent schedules. In the context of this work
(see theorems 4.5 and 4.6), the finite schedule can be employed with
a Lipschitz-continuous objective and an a priori known distribution-
free bound on AEV(... ), and when the objective is continuous but
not Lipschitz-continuous, or the class H is uniformly-convergent
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at an unknown rate, the infinite schedule can still be used. Both
are based on geometrically-increasing sample sizes, which are effi-
cient because they never “overshoot” any sample size by more than
a constant factor, yet they cover an exponentially large range of
sample sizes in a linear number of timesteps.

Definition 4.2 (Geometric-Uniform Schedule). Suppose optimistic
size & > 1, common ratio f > 1, and schedule length T € Z.. The
geometric-uniform schedule then takes (geometric) s; = [af!] and
(uniform) é; = %]lly___,r(t).

Definition 4.3 (Double-Geometric Schedule). Suppose optimistic
size @ > 0 and common ratio f > 1. The double-geometric schedule

8(p-1)

then takes (geometric) s; = [af?] and (geometric) §; = —pr

Lemma 4.4 (Sufficient Conditions for Uniformly-Convergent Geo-
metric Schedules). Suppose as in definition 4.2, and assume

sup AEV ((sT,...,s7), &, x, <e. 19
e ARV (7. s, £ 5. ) (19
Then the geometric-uniform schedule (s, §) is e-uniformly-
convergent. Furthermore, suppose as in definition 4.3, @ > %
and

lim sup

p-1
AEV e, M), T, X, =0 .
m—oo (x,y)E(Xxy)mX9” (m, m) B(m+1) xY)lm =0

(20)
Then the double-geometric schedule (s, 8) is O-uniformly-
convergent.

The initial and final sample sizes of the geometric-uniform sched-
ule are s; = [af] and s7 = [« ], and often one can set s1/§ and
sT to minimal sufficient and maximal necessary sample sizes (as
a function of T, the objective, and other parameters). To maxi-
mize statistical efficiency while controlling the value of , we may
select the minimal T such that [log ss—f] = T.* In particular, as-
suming a A-Lipschitz objective, the Hoeffding (item 1) and empir-
ical Bernstein (item 3) bounds of theorem 3.1 imply e-uniformly
convergent schedules via (19) of length T € O(log ’1—;). For the
double-geometric schedule, we may similarly set si/ to a mini-
mal sufficient sample size, and here there is no T parameter (the
schedule is infinite), thus we may simply select § as desired. This
yields 0-uniformly convergent schedules, since each of the bounds
of theorem 3.1 satisfy (20), as do those of theorem 3.2, so long as
limp, comax;e zRm(s o H, D;) = 0.

Both of the above schedule types are efficient, in the sense
that for the smallest (per-group) static sample size m* at which
we obtain the bound £* some m < [fm*] is contained in the
schedule, and the bound ¢ « AEV({m,...,m),...) exceeds £*
only because it uses a smaller § value. In particular, assuming
all bggnds are ©+/u for u E*i ln%, we have for each group i
that £ € © m and £ € © m for the geometric-
uniform and double-geometric schedules, respectively. Note also

that log(T) € O(loglog %), whereas log(m*) € O(log MT“) thus
the geometric-uniform schedule is preferable, unless m* is exponen-
tially smaller than the above bound, e.g., if A = oo, or if a nonlinear
objective is more stable to perturbations of each S; about its opti-
mum than the Lipschitz constant A would indicate.
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4.1 The Linear Progressive Sampling
Algorithm

The core of linear progressive sampling (algorithm 1) is quite simple.
At timestep t = 1, we guess that a sample of size s; for all groups
will be sufficient to e-6 optimize the objective, we draw at least such
a sample (7 for joint sampling, or lines 9-12 for mixture sampling),
compute tail bounds (line 14), then determine the UCB-optimal h
(line 16). If our bounds indicate that h is provably near-optimal,
algorithm 1 terminates, otherwise, our guess was incorrect, so we
increment ¢, draw at least s; samples (per-group), and repeat. The
basic principle is quite flexible, so algorithm 1 can maximize welfare
or minimize malfare of risk or regret via the LiNearPSLoss(. . . ) and
LiNeaRPSUTILITY(. . . ) routines.

Theorem 4.5 shows that algorithm 1 learns an optimal h € H
to within user-specified e-6 AE. We require only monotonicity
(axiom 1) and continuity (axiom 3) of M(:; w), though the power-
mean malfare family is convenient, as Lipschitz-continuity (thm.
2.2 item 3) permits efficient e-uniformly-convergent schedules (def.
4.2). NB this result generalizes to welfare objectives, mutatis mu-
tandis (flipping infima and suprema), via the negation reduction of
lines 25-30.

Theorem 4.5 (Linear PS Guarantees). Suppose (ﬁ, 4,8, M*)
LiNeaRPSLoss(H, £(-, -), D, AEV(...), s, 8, &, M(+; w), REG), M(S;w)
is continuous and monotonic in S with (possibly infinite) Lipschitz
constant Ay w.r.t. ||-|[m, and the schedules (s, §) are m—
uniformly-convergent w.r.t. AEV(...) and ||-|[\. Now take y to be
the true objective value of hand p* to be the true objective value of
the optimal h* i.e., if REG = FALSE, take y = M(i = Eqp,[£ 0 ﬁ]; w)
and p* = infpeqyM(i = Ep,[f o h];w), or if REc =
TRUE, take (see section 3) g = M@ Regi(ﬁ); w) and
p* = infpeqr M (i — Reg;(h); w). Then, with probability at least
1 - &, the output (IAz,ﬁ, £,M*!) obeys

M lpg-pl<é<e; &

@ MY <p* <p<p+é< MY+ 2.

4.2 The Braided Progressive Sampling
Algorithm

Under the joint and mixture sampling models (algorithm 1),
progress is linear (i.e., sequential, as no decisions are made except
when to terminate); we begin with (at least) s; samples per group,
and advance until we reach a sufficient sample size to terminate
with the desired guarantee. For the conditional sampling model, we
present braided progressive sampling (algorithm 2), which is actively
making decisions, thus linear analysis is not applicable. At each
iteration (line 6) of algorithm 2, a group index i € Z is chosen (line
16) to optimize an estimate of knowledge-gain via logic similar to
that of section 3.3 (due to space limitations, the details are deferred
to section 7.2), and group i is sampled for one additional timestep
(line 17), i.e., the sample associated with group i is extended from
size s¢; to S14¢;, where t; denotes the current timestep for group i.
The remainder of algorithm 2 is essentially the same as algorithm 1;
after sampling, we optimize (line 9) a UCB-optimal h, bound the

4The base-3 logarithm arises intuitively, as the number of times the sample size must
increase by a factor f§ to reach st from s;.
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Algorithm 1 Fair Learning with Linear Progressive Sampling under the Joint and Mixture Sampling Models

1. procedure LINEARPSLOsS(H, £(-,-), D, AEV(...),s, &, &, M(-;w), REG) — (h, i, & M*)
2. input: Hypothesis class H € X — Y’, loss function £(-,-) : Y’ X Y — [0, c], joint or mixture distribution D, additive error vector
bound AEV(m, 8, x,y), schedule s € Z° and 8 € [0, 1), confidence radius ¢, weighted malfare M(-;w), and Boolean ReG

3. output: Empirically UCB-optimal h, empirical malfare estimate /1, confidence radius &, and lower bound on minimal malfare M*!
4 myg — 0; X9 — ((), Ce ()); Y1ig & <(), s ()) > Initialize per-group sample counts, empty per-group sample lists
s: fortel,2,...do > Progressive sampling timesteps
6:  if D is joint sampler then

7 (d1:g, 514150 YLigspy1is, ) ~ DI Vi€ Zi my — ¢ > Sample from joint distribution (assume so = 0)
8 else if O is mixture sampler then

9. while min; m; < s; do

10: (x,y,2) ~D > Draw X X Y x 2< triplet (domain, codomain, groups)
11: Viez: mj &< m;+1;(Xim;,Yim;) < (x,y)  »Increment counts and store samples for each group i associated with (x, y)
12: end while

132 endif

14: £1:g « (14 IRge) AEV(m, &4, x, )
15 VieZ: S« (inf B [£oh]) if Rec else 0
heH Xi:Yi:
16 he—argminM(i>cA E [toh] - S;+é;w)
heH XinYiy
172 M — inf M(i— 0V
heH

> Bound additive error of per-group supremum deviations (w.h.p.)
> Set regret baseline of per-group minimal empirical risks (or 0 if =REG)

> Compute UCB-optimal h

B [Loh]-Si-&;w)
XisYiy
B [toh]-Si—é&w),Mm(iscA B [£oh] -8+ éi;w)) > LCB and UCB on A (regret) malfare

XiHYi XinYi:

> Check if desired error guarantee is met (termination condition)

> Lower-bound optimal M*
1 (ALAN — (AA(i >0V

19: if M < M*! + 2¢ then

0 (B8 — (%(A?\1+MT), LA —A?\l))
21: return (fz 0,8 M)

222 endif

23 end for

24: end procedure .
25: procedure LINEARPSUTILITY(H, u(+, -), D, AEV(...),s, 8, M(;w), REG) — (h, /i, & M*T)

26:  input: Utility function u(-,-) : Y’ x Y — [0, c], weighted aggregator function M(-;w) (malfare if REG, otherwise welfare), see line 2
27:  output: Empirically LCB-optimal h, empirical welfare fi, confidence radius £, and UB on maximal welfare M*' (or similar for regret)
28: (ﬁ, £, &, M*T) « LINEARPSLOss(H, ¢ — u(,-), D, AEV(...),s, 8, ¢ (21grgs — 1)M(S; — ¢ — Si;w), REG) » Negate to flip inf and sup

> Symmetric estimate /i and confidence radius ¢ of (regret) malfare of h

> Return UCB-optimal fl, &-estimate of M(-;w), and lower-bound on optimal malfare M*!

209:  return (I;, r— & (21gge — HM*)
30: end procedure

objective (lines 10-11), and terminate if the user supplied guarantee
is met, otherwise we continue.

There is thus a lattice of possible sample size vectors m. To avoid
a union bound over this (exponentially large) lattice, we analyze
the method as a braid, in that g progressive sampling sequences are
concurrently active, and at each iteration we select some group i,
and advance the schedule by one timestep for only group i. Con-
sequently, we must use (line 17) the additive error scalar bound
& — AES(m,-, %,xi,:,yi,;), i.e., we operate on one group at a
time, rather than over all groups as in the linear algorithm (al-
gorithm 1 line 14). Similar analysis is employed for multi-armed
bandits, where a union bound is taken over all timesteps and each
arm being sampled. We now show correctness of algorithm 2.

Theorem 4.6 (Braided PS Guarantees). Suppose (fz, 0,8, M*Y)
BrAIDEDPSLoOSs(H, (-, -), D, AES(. ..), s, 8, &, M(+; w), REG),

M(S;w) is continuous and strictly monotonic in 8
with  (possibly infinite) Lipschitz constant Ay w.rt.
II-llm» and the schedules (s,8) are m—uniformly—
convergent w.r.t. |||l and the additive error vector bound
AEV(m, 5, x,y) < <AES(m1, g,xl,yl), s AES(mg, g,xg,yg».
Now take p1 to be the true objective value of h and p* to be the true

2013

objective value of the optimal h* (see theorem 4.5). Then, with
probability at least 1 — &, we have

) |a—pl
(2) M*

<é<e; &
P p <+ E< MY 42,

INE

5 CONCLUSION

This work generalizes existing theories of fair machine learning,
with welfare, malfare, and regret objectives, thus subsuming the
minimax fair learning [1, 20, 30, 33, 43], multi-group agnostic PAC
learning [7, 39], and fair-PAC learning [14] settings, while enjoying
rigorous statistical learning guarantees and the axiomatization of
cardinal welfare theory. In particular, we bound the generalization
error and sample complexity of UCB-optimal models, either given a
fixed sample, or to meet a user-supplied e-§ optimality guarantee
via progressive sampling. Our bounds leverage the specific charac-
ter of the objective at hand, and our progressive sampling methods
are tailored to three realistic models of data generation. We stress
that while training UCB-optimal models is analytically convenient,
there is also an important fairness impact to this decision, as fair
malfare functions (e.g., egalitarian) place strong emphasis on the
most disadvantaged groups, which are often understudied minority
groups. Cousins [14] notes that optimizing empirical malfare M
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Algorithm 2 Fair Learning with Braided Progressive Sampling under the Conditional Sampling Model

1: procedure BRAIDEDPSLoss(H, £(-, -), Di:g, Cregs AES(...),s, 8,6 M(:;w),REG) — (fi, 0,8, M)
2. input: Hypothesis class H, loss function £(-, -), per-group distributions D1y, cost model Cy4 € Rf, additive error scalar bound
AES(m, 6, x,y), schedule s € Z2° and & € [0, 1)*, confidence radius ¢, weighted malfare M(-;w), and Boolean REc

tl:g —1

ook w

g VYieZ: S« (inf E [to h]) if ReG else 0
heH Xi:Yi;
9 h« argminM(i > cA B
heH Xin Y, X
10 M* e inf M0V E [foh]-Si-é;w)
heH XinYi

[oh] - Si+&;w)
ol ol .
" (M,M)%(M(IHOV
12 if A < M* 4 2¢ then
B (B8 — (%(&\l + A, LA 7&\1))

B
XY

14: return (A, 0,8, M)
15:  endif 1
16: i <= argmax sup

ez tez, Ci(stst; —st;)
N

Vi€ Z: (Xins,Yins) ~ D;i's & — (1+ Ipe) AES(sy, 2L, %1, yis)

. loop o s,jln%
: o s Alip i, N 3
7 VijeZte€Z,: &, — | & if i# ] else & P

J

[loﬁ]—SA,‘féi;w),AA(ir—)c/\ 5
i XinYiy
> Check if desired error guarantee is met (termination condition)

(/Q\T _ A(\(j > cA x,»,]:Eyi,:V oh] - S +§(_i).w))

output: Empirically UCB-optimal h, empirical malfare estimate /1, confidence radius &, and lower bound on minimal malfare M*!

> Initialize per-group timestep indices
> Draw initial sample for all groups & bound error
> Loop over braided algorithm iterations

> Estimate of £; after sampling group i for ¢ more iterations

> Set regret baseline of per-group minimal empirical risks (or 0 if =REG)

> Compute UCB-optimal h
> Lower-bound optimal M*

[£o ﬁ] -Si+ éi;w)) »>LCB and UCB on h (regret) malfare

> Symmetric estimate of /i of malfare or regret of h

s > Maximize improvement:cost ratio

RecrprocaL CosT

sy, A 5,
17: (xi,1+s,i:s1+,l.ayi,1+s,l.:sl+ti) ~ D?”" Stist; — b+ 15 & — (14 Ipgg) AES(st[! 7’,xi,:,yi,:)

18:  end loop
19: end procedure

ESTIMATED (REGRET) MALFARE IMPROVEMENT

> Sample group i & bound error

overfits to small numbers of sampled minorities, however we ar-
gue that training UCB-optimal models (i.e., optimizing I\A/IT) factors
uncertainty into training, so that the needs of understudied groups
(i.e., those with large &; values) are better addressed.

Our active learning setting under the conditional sampling model
is philosophically intriguing, as we find that optimally investing
sampling effort under uncertainty is challenging, depends on the
objective at hand, and has important fairness impact. In section 3.3,
we see that a host of factors involving the objective, function class
H, and per-group distributions D14 all interact to determine the
sharpness of welfare, malfare, and regret bounds, and property 3.8
quantifies the incremental UCB improvement of sampling each
group. This analysis answers questions raised by Chen et al. [12] as
to how sampling-error impacts fairness, and generalizes the analysis
of Shekhar et al. [43] from the egalitarian special-case to arbitrary
power-mean malfare functions. Algorithm 2 then incorporates these
ideas into an active sampling algorithm, which dynamically select
groups to sample based on projected UCB improvement. Notably,
algorithm 1 does use uniform sample sizes under the joint sampling
model, and uses whatever is available under the mixture sampling
model, as these are natural choices under these sampling models. In
contrast, under the conditional sampling model, algorithm 2 is able
to make more intelligent decisions as to where to allocate sampling
effort.

We thus conclude that (welfare-centric) fairness, statistical un-
certainty, and sample complexity analysis are tightly intertwined,
and must all be considered to best allocate resources in service of
the social planner. We are hopeful that this analysis and algorithmic
study will lead to a greater emphasis on sample complexity and
finite sample analysis for the social planner’s problem, which is
traditionally analyzed in terms of the asymptotic Bayesian methods
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of classical economics. In particular, we are hopeful that this anal-
ysis emphasizes and mathematically supports the call for greater
visibility of minority groups and the importance of incorporating
diverse data into (fair) machine learning systems.
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