

Ccq1 restrains Mre11-mediated degradation of short telomeres

Julien Audry

Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes

Kurt Runge (

rungek@ccf.org)

Cleveland Clinic Lerner College of Medicine https://orcid.org/0000-0001-8492-0530

Article

Keywords:

Posted Date: March 24th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1456395/v1

License: © 1 This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License

Ccq1 restrains Mre11-mediated degradation of short 1 telomeres. 2 3 4 5 Julien Audry^{1,*} and Kurt W Runge^{1,2,*} 6 7 8 ¹ Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic 9 Foundation, Cleveland, Ohio, 44195 USA ² Department of Genetics and Genome Sciences, Case Western Reserve University, 10 11 Cleveland, Ohio, 44106 USA 12 * Corresponding authors: to Kurt W Runge, rungek@ccf.org and to Julien Audry, 13 14 audryj@ccf.org 15 16 Word count for Abstract: 145 words Word count for Introduction, Results and Discussion: 4,245 words 17 18 Word count for Materials and Methods: 1,216 words 19 Word count for 10 Figure Legends: 2,340 words

Abstract

Telomeres cap chromosome ends with specialized chromatin composed of DNA repeats bound by a multiprotein complex called shelterin. Fission yeast telomeres can be formed by cleaving a "proto-telomere" bearing 48 bp of telomere repeats to form a new stable chromosomal end that prevents the rapid degradation seen at similar DNA double-strand breaks (DSBs). This end-protection was investigated in viable mutants lacking telomere-associated proteins.

Telomerase, the shelterin components Taz1, Rap1, or Poz1 or the telomere-associated protein Rif1 were not required to form a stable chromosome end after cleavage of the proto-telomere. However, cells lacking the fission yeast shelterin component Ccq1 converted the cleaved telomere repeat-capped end to a rapidly degraded DSB. Degradation was greatly reduced by eliminating the nuclease activity of Mre11, a component of the Mre11-Rad50-Nbs1/Xrs2 complex that processes DSBs. These results demonstrate a novel function for Ccq1 to effect end-protection by restraining Mre11-dependent degradation.

Introduction

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Telomeres are specialized double-strand breaks (DSBs) at chromosome ends that facilitate their replication and prevent DNA degradation and activation of the DNA damage checkpoint (for review: [1–3]). In many eukaryotes, telomeres consist of G-rich repeats synthesized by telomerase to form a tract of double-strand repeats with a 3' single-stranded overhang. Specialized proteins bind to these repeats to form a complex called shelterin, which shows strong evolutionary conservation between mammals and the fission yeast Schizosaccharomyces pombe [2,4–6]. The telomere repeats and bound proteins can provide protection of the chromosome end and full replication in yeast and humans [7–9]. In S. pombe, the internal telomere repeats are bound by Taz1, which anchors Rap1 and its associated protein Poz1 in what is considered the double-strand binding complex (Fig. 1)(analogous to the TRF1/TRF2-RAP1-TIN2 complex in human shelterin)[3,10]. Taz1 also interacts with Rif1, a protein conserved throughout eukarvotes with roles in telomere length regulation, DNA replication in fungi [10-13] and as a component of the DSB processing regulator Shieldin [14,15]. Deletion of any of these genes in S. pombe results in viable cells with elongated chromosomal telomere repeat tracts [10,16–18]. S. pombe telomeres end in a single-stranded 3' DNA overhang bound by Pot1 [19]. Pot1 interacts with Tpz1 and Ccq1, analogous to the mammalian POT1-TPP1 complex, which interact with Poz1 (Fig. 1)[18,20-22] These proteins have important roles in protecting the telomere end from degradation, as cells born without Pot1 eventually die or circularize their chromosomes [19]. Cells lacking Tpz1 have a similar phenotype [18]. The phenotype of cells lacking Ccq1 is more complex. Ccq1 helps recruit telomerase to the telomere via a TQ motif at amino acids 93-94 that is phosphorylated by the ATM kinases Rad3 or Tel1 and promotes

interaction with the telomerase subunit Est1 [23–25]. Cells in which Ccq1 has been deleted or the *ccq1-T93A* mutation introduced first slowly shorten their telomere repeats tracts. After many generations (over ~80 doublings), the cells contain either circularized chromosomes or linear ones with very short telomere repeat tracts maintained by a telomerase-independent mechanism [26–28]. Finally, Ccq1 has another role as part of the histone-modifying complex SHREC, which is required for heterochromatin at the telomere and other loci [28,29].

One challenge in the analysis of telomere protein function and regulation of the length of the telomere repeat tract is the delay between making the mutation and analysis of telomeres. Mutations constructed by transformation or genetic crosses start with cells bearing normal length telomeres which then change during the ~30 generations of growth required to generate sufficient material for analysis of telomeric chromatin. Mutations that convert telomeres to rapidly degraded DSBs are difficult to study with this approach. Consequently, a system that can follow the modification of a short telomere tract in real time can provide additional, important information about the requirements for distinguishing a telomere from an internal chromosomal DSB.

We recently developed an inducible telomere formation system in *S. pombe* using the I-Scel homing endonuclease [30]. The system uses "proto-telomere" cassettes bearing either a tract of 48 bp of *S. pombe* telomere repeats (named 2R-48 bp) or a 0 bp (2R-0 bp). Induction of transcription of I-Scel induces a DSB to expose the 48 bp telomere sequence at 2R-48 bp or create a DSB at 2R-0 bp (Figs. 2A, S1). The cleaved 2R-48 bp cassette immediately gained telomere function as the end was protected and elongated to a full-length telomere, while the DSB at the 2R-0 bp cassette was degraded [30]. Consequently, the 2R-48 bp and 2R-0 bp proto-telomere system provide a strong model to investigate how telomere-repeat capped ends are distinguished from a DSB.

Following telomere formation at the cleaved 2R-48 bp proto-telomere in viable mutants lacking telomerase or telomere-bound proteins revealed a novel function for Ccq1 in distinguishing telomeres from DSBs. The cleaved 2R-48 bp proto-telomere was rapidly degraded in $ccq1\Delta$ cells, similar to a DSB. This $ccq1\Delta$ rapid degradation phenotype was distinct from a ccq1 mutation that blocked telomerase recruitment but was very similar to a tpz1 mutation that interferes with Ccq1 recruitment to telomeres. The immediate degradation of the cleaved 2R-48 bp telomere in $ccq1\Delta$ cells was relieved by eliminating the nuclease activity of Mre11, a component of the DNA damage checkpoint complex MRN/X that processes DSBs. Thus, Ccq1 prevents Mre11 from stimulating DNA degradation at the newly formed short telomere.

Results

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Telomere formation in cells lacking the double-strand DNA binding components of shelterin leads to a constant rate of telomere elongation to longer, steady-state lengths. The inducible telomere formation system consists of the I-Scel endonuclease under the control of an ahTET-inducible promoter proto-telomeres placed 3' to the gal1⁺ locus (Fig. S1)[30]. Inducing I-Scel production results in cleavage of the control 2R-48 bp telomere after 1 hour (h) followed by addition of telomere repeats to the I-Scel generated end or the 48 bp telomere repeat tract, and reaches steady-state lengths within 8 to 12 h with lengths of ~160 bp of telomere repeats (Fig. 2B)[30]. The distal hph⁺ fragment was detected transiently by Southern blotting, but the signal was very weak by 8 h (Fig. 2B). In contrast, the control 2R-0 bp prototelomere with no telomere repeats is rapidly degraded upon cleavage as expected for an induced DSB: hybridization to the ~350 bp ura4⁺ band and the distal hph⁺ DNA fragment was rapidly lost (Fig. 2C,D)[30]. -A DSB induces a cell cycle pause at the G2 until the break is repaired, which can be detected by an increase cell doubling time [31]. A significant increase in doubling time was only observed in 2R-0 bp cells (Fig. 2E), and their survival required a Rad52dependent recombination event (Fig. S2)[30], In contrast, the rad52\(\Delta\) 2R-48 bp cells formed a functional telomere (Fig. S2B). Consequently, a property of the 48 bp of telomere repeats is to protect the cleaved end immediately after I-Scel cleavage, which we refer to as end-protection. 2R-48 bp cleavage after I-Scel induction occurred similarly in wild type, $taz1\Delta$, $rap1\Delta$ and $poz1\Delta$ cells, with >80% proto-telomere cleavage in 4 h (Figs. 3A-C, S3A,B and Table S1). The cleaved 2R-48 bp telomere was not degraded, and became greatly elongated in the taz1 Δ . rap1∆, and poz1∆ cells over 32 h (Figs. 3A-C, S3A), similar to the chromosomal telomere lengths originally described for these mutants. Comparing telomere elongation in wild type, $taz1\Delta$, $rap1\Delta$, and $poz1\Delta$ cells revealed that the initial rates for the first 2 h were similar but

increased in the mutants 4 h after the induction to form hyper-elongated telomere repeats (Fig. S3D). In contrast, wild type elongation began to slow at 8 h, as telomeres attained their equilibrium length (Fig. S3D). Cell growth rates and viability in uninduced cells and 0-8 or 8-32 h after I-Scel induction were indistinguishable (Fig. S3C,E), in contrast to the growth delay previously observed when the 2R-0 bp proto-telomere is cleaved to form a repairable DSB that activates DNA damage checkpoints (Fig. 2E)[30]. Consequently, loss of Taz1, Rap1, or Poz1 did not affect the end protection afforded by the 48 bp telomere tract. Telomere formation in cells lacking Rif1 leads to a biphasic rate of telomere elongation to the final steady-state length. Rif1 has roles in telomere repeat tract length regulation, DNA DSB repair and the timing of DNA origin of replication firing [10–12,32–34], and loss of Rif1 had different effects on telomere formation. $rif1\Delta$ cells initially showed wild type rates of telomere elongation, followed by a slower rate of elongation that required ~200 h of growth to reach the steady-state telomere length (Figs. 3D, S4A-C). As with $taz1\Delta$, $rap1\Delta$ and $poz1\Delta$ cells, growth of $rif1\Delta$ cells after I-Scel induction, colony size and viability were not significantly different from wild type cells (Figs. 3E, S4D,E). Therefore, Rif1 was not required to protect the telomere repeat-capped end. The newly formed short telomere is stable in cells lacking active telomerase but immediately degraded in cells lacking Ccq1. Cells lacking telomerase activity, due to loss of telomerase RNA (TER1) or the telomerase component Est1, formed a stable new telomere end that shortened slowly over time but was still detectable at 32 h post-induction (Fig. 4A,B)[30]. Thus, telomerase activity was not required for

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

protection of the telomere repeat-capped end.

Ccq1 helps recruit telomerase to the telomere [23,25,26], but its loss led to the rapid degradation of the cleaved proto-telomere immediately after the I-Scel induction (Figs. 4C, S5A). The cleaved $ura4^+$ band became undetectable after ~4 h, similar to the degradation of the same band from the 2R-0 bp DSB in wild type cells (Fig. 4C vs. Figs. 2C, 4E). $ccq1\Delta$ cells also showed a significant growth delay at 0-8 h and 8-32 h post-induction (Fig. 4D), mimicking the growth delays observed with the 2R-0 bp proto-telomere (a DSB)(Figs. 2E,F, 4D, S5B,C [30]). S. pombe cells, paused in G2 of the cell cycle, continue to elongate [35], and the $ccq1\Delta$ 2R-48 bp cells became significantly longer 8 and 24 h after I-Scel induction (Fig. 4F), consistent with the DNA damage checkpoint activation.

Ccq1 and Pot1 are only recruited after cleavage of the proto-telomere.

To test whether the rapid proto-telomere degradation in $ccq1\Delta$ cells was due to an altered presence of the DNA binding proteins at the telomere repeats in proto-telomere, Taz1, Pot1, and Ccq1 occupancy at the proto-telomere was monitored by chromatin immunoprecipitation (ChIP) before and during telomere formation (Figs. 5, S6). Taz1 was detected near the telomere repeats at similar levels at the 2R-48 bp proto-telomere in wild type and $ccq1\Delta$ cells at 0 h and 2 h post-I-Scel induction (Fig. 5A), consistent with the established binding of Taz1 to interstitial telomere repeats [16,36,37]. In wild type cells, the Taz1 ChIP signal increased as new telomere repeats were added, while the Taz1 signal was lost from $ccq1\Delta$ cells as the telomere was degraded (Figs. 5A, S6A). Only background Taz1 signal was detected at the 2R-0 bp DSB control that lacks telomere repeats. Therefore, Taz1 was present before and after I-Scel cleavage but could not prevent the rapid degradation of the cleaved 2R-48 bp telomere in $ccq1\Delta$ cells.

Ccq1 and Pot1 were not detectable until formation of the new telomere end, with the majority of signal adjacent to the telomere repeats and a weaker signal 3 kb from the I-Scel site (Figs.

5B,C, S6B,C). No significant recruitment of Pot1 to the new telomere in $ccq1\Delta$ pot1-myc 2R-48 bp cells was detected, even though the $ura4^+$ -telomere band was detectable at 2 h (Fig. 4C), suggesting that Pot1 was unable to bind the cut proto-telomere prior to its degradation.

Degradation of the newly formed short telomere in $ccq1\Delta$ cells is not rescued by increasing $pot1^+$ gene number.

If Ccq1 was required for efficient Pot1 binding at the cleaved 2R-48 bp proto-telomere, then Pot1 levels in $ccq1\Delta$ cells maybe too low to bind the newly formed telomere. In this hypothesis, increasing $pot1^+$ gene number might provide sufficient Pot1 to prevent degradation of the cleaved proto-telomere in $ccq1\Delta$ cells. An untagged $pot1^+$ cDNA was expressed from the strong nmt1 promoter from a multi-copy, episomal plasmid (Table S2) because epitope tags are known to alter Pot1 function [38,39]. The presence of the Pot1 plasmid did not alter cell growth or I-Scel cleavage in wild type or $ccq1\Delta$ cells. The newly formed telomere in $ccq1\Delta$ 2R-48 bp cells was rapidly degraded in cells bearing the empty vector and the vector expressing Pot1, while cells bearing a positive control vector expressing Ccq1 formed stable telomeres (Fig. S7). The results suggested a more complex role for Ccq1 in protection of telomere repeat-capped ends.

Protection of telomere repeat-capped ends does not require active telomerase.

Phosphorylation of Ccq1 at the T93 residue is a major pathway to recruit telomerase to telomeres via the interaction of phosphorylated Ccq1 and the telomerase subunit Est1. Introducing the *ccq1-T93A* mutation causes normal length telomere repeat tracts to shorten over ~80 generations until the repeats are no longer detectable [23–25]. Cells lacking telomerase or both ATM kinase family members, Rad3 and Tel1, have the same phenotype [40], and Rad3 is considered to be the major kinase that phosphorylates Ccq1 T93 [23,25]. To determine whether the presence of long telomere repeat tracts masked *ccq1-T93A* effects on

end protection, telomere formation was assayed in *ccq1-T93A* cells and *rad3-D2249A* (*rad3-kd*) cells that lack Rad3 kinase activity [41,42].

The *rad3-kd* cells were proficient for end protection of the cleaved *2R-48 bp* proto-telomere, but produced elongated telomere repeat tracts that were shorter than wild type cells (Fig. 6A,C), similar to the chromosomal telomeres in *rad3*⁻ cells [43,44]. I-Scel induction and proto-telomere cleavage did not significantly change *rad3-kd* cell growth rate and had only small effects on survival (Figs. 6D, S8A,B). Therefore, the elimination of the Rad3 kinase activity did not impact the *2R-48 bp* proto-telomere end protection.

The ccq1-T93A cells were also proficient for end protection as the cleaved 2R-48 bp telomere was stable but not elongated and showed some shortening at 24 h (Figs. 6B, S8C), similar to the telomeres in $TER1\Delta$ or $est1\Delta$ cells (Fig. 4A,B). At late time points: telomeres in $TER1\Delta$ and $est1\Delta$ cell telomere fragments were readily detectable while the ccq1-T93A cell telomeres were less intense at 24 h and not detectable at 32 h (Figs. 4A,B, 6B, S8D). The doubling time increase in the 8-32 h period in the ccq1-T93A cells was consistent with loss of the telomere, in contrast to $TER1\Delta$ and $est1\Delta$ cells (Fig. 6D vs. Fig. 4D).

After telomerase recruitment, the Tpz1-K75 residue is important for telomerase activation. The *tpz1-K75A* mutation produces cells in which telomerase is at the telomere by ChIP, but telomerase activity is significantly diminished [45]. The telomeres formed in these *2R-48 bp* cells were short and became more heterogeneous with continued growth (Figs.6C, S8E), potentially due to small amounts of lengthening and shortening at the individual telomere in different cells, as observed previously in budding yeast [46]. Therefore, cleavage of the *2R-48 bp* proto-telomere in *tpz1-K75A* cells did not show an alteration in proto-telomere cleavage,

220 cellular growth or stability of the telomere repeat-capped end (Figs. 6D,E, S8D,E), showing that 221 those cells are proficient for end protection. 222 223 End protection requires the Ccq1-Tpz1 interaction but not the Ccq1-Clr3 (SHREC) 224 interaction 225 Ccq1 directly interacts with Clr3, the histone deacetylase of the SHREC complex required for 226 heterochromatin at telomeres and elsewhere [28,29,47]. Cells lacking Clr3 were also proficient 227 for end protection and elongation of the cleaved 2R-48 bp proto-telomere, and the telomere 228 repeat tracts observed at 8 and 24 h post-induction were slightly shorter than those of wild type 229 cells (Fig. 7A,C,D). Therefore, the ability of Ccq1 to allow cells to distinguish a telomere repeat 230 capped end from a DSB is independent of recruiting SHREC. 231 232 Tpz1 interacts with Ccg1 and is essential for telomere function as cells lacking Tpz1 are inviable 233 unless the telomeres are eliminated by chromosome circularization [18]. The tpz1-L449A 234 mutation significantly weakens recruitment of Ccq1, and consequently telomerase, to telomeres 235 [20,27]. Induction of I-Scel cleavage of the 2R-48 bp proto-telomere in tpz1-L449A cells 236 resulted in a degradation of the ura4⁺ telomere band (Figs. 7B, S9), that was similar to the 237 degradation in $ccq1\Delta$ cells, with a comparable delay in cell growth (Fig. 7C-right panel, D). 238 Thus, Tpz1 plays an essential role in end protection of the cleaved 2R-48 bp telomere through 239 its interaction with Ccq1. 240 241 Removal of the Mre11 nuclease stabilizes the newly formed short telomere in $ccq1\Delta$ cells. 242 The two major exonucleases with roles at the telomere and DSBs are exonuclease I (Exo1) and 243 Mre11 of the Mre11-Rad50-Nbs1/Xrs2 (MRN/X) complex [44,48–53]. We tested whether loss of 244 Exo1 or Mre11 slow or relieve the degradation the cleaved 2R-48 bp proto-telomere in wild type 245

and $ccq1\Delta$ cells.

The removal of Exo1 from wild type cells had little effect on 2R-48 bp proto-telomere cleavage, telomere stability and elongation (Fig. 8A). 2R-0 bp proto-telomere cleavage was delayed in $exo1\Delta$ cells without any large increase in stability of this DSB or change in growth (Figs. 8B,D,E, S10A). The cleaved 2R-48 bp proto-telomere was still rapidly degraded in $ccq1\Delta$ $exo1\Delta$ cells, and the growth kinetics were the same as $ccq1\Delta$ cells (Figs. 8C,E, S10B), although slightly higher levels of the ura4⁺ telomere were detectable at 4 and 6 h in $ccq1\Delta$ $exo1\Delta$ cells compared to $ccq1\Delta$ cells (Figs. 8C, S10B vs. Figs. 4C, S5A). Therefore, Exo1 only makes small contributions to the degradation of the cleaved 2R-48 bp telomere in $ccq1\Delta$ cells.

Removal of Mre11 had much larger effects. Cleavage of the 2R-48 bp and 2R-0 bp prototelomeres occurred similarly in $mre11\Delta$ and wild type $mre11^+$ cells (Figs. 2B-D, 9A,B, S10G). A shorter terminal tract was observed in the $mre11\Delta$ mutant at 32 h. As $mre11\Delta$ cells have a longer generation time after induction, the reduced telomere length may be related to the fewer doublings that these cells undergo by 32 h, or another Mre11-related function (Fig. 9I)[43,54]. The cleaved 2R-0 bp proto-telomere fragments were partially stabilized but undetectable after the 8 h time point (Figs. 9B, S10C vs. 2C).

The $ccq1\Delta$ $mre11\Delta$ cells gave a surprising result: the cleaved 2R-48 bp proto-telomere was much more stable, and the formed $ura4^+$ telomere began to shorten at 24 h and was undetectable at 32 h (Figs. 9C,G, S10D). The formed telomere in $ccq1\Delta$ $mre11\Delta$ cells was as stable as the telomere formed in ccq1-T93A cells that cannot efficiently recruit telomerase (Figs. 6B, S8C). Therefore, the rapid degradation of the telomere-repeat capped end in $ccq1\Delta$ cells requires Mre11, and the absence of Ccq1 reduces telomerase recruitment and elongation of the $ura4^+$ telomere.

To distinguish whether Mre11 protein or its nuclease activity accounts for rapid proto-telomere
degradation in $ccq1\Delta$ cells, similar experiments were performed in $mre11$ -H134S strains that
lack Mre11 nuclease activity [50]. The <i>mre11-H134S</i> wild type and <i>ccq1</i> ∆ strains gave nearly
identical results as the $mre11\Delta$ strains in proto-telomere cleavage, telomere stability, $2R-0$ bp
DSB stability and cell growth, although elongation of the <i>ura4</i> ⁺ telomere was heterogeneous and
reduced compared to $mre11\Delta$ cells (Fig. 9A-H). While the $ura4^+$ telomere showed slightly
stronger hybridization in $ccq1\Delta$ mre11-H134S cells at 24 and 32 h compared to $ccq1\Delta$ mre11 Δ
(compare Figs. 9C,G, S10D vs. Figs. 9F,H, S10E), the similar growth rates of $ccq1\Delta$ $mre11$ -
H134S vs. $ccq1\Delta$ mre11 Δ cells (Fig. 9I) suggest that these two cell types were still have the
same defects that prevent normal growth. The sum of these data shows that the conversion of
the cleaved 2R-48 bp proto-telomere to a DSB in ccq1∆ cells was abrogated by loss of Mre11
nuclease activity, and the degradation of the DSB was slowed by the loss of Exo1. Mre11
interacts with S. pombe telomeres [44] and was detectable at chromosomal ends in $ccq1\Delta$ cells
by ChIP (Fig. S11), showing that Mre11 recruitment to telomeres is Ccq1-independent.
Therefore, a novel role of Ccq1 is to restrain the degradation of the newly formed short
telomere-repeat capped end by Mre11 nuclease.

Discussion

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Requirement for different telomere associated proteins were tested for a role in distinguishing a telomere repeat-capped chromosome end from a DSB using our recently developed S. pombe inducible telomere formation system [30]. The 48 bp telomere tract in this system focuses the analysis on the role of the repeats in end protection in the absence of subtelomeres or longer repeat tracts, and allowed testing of viable mutants of telomere-associated proteins on chromosome end protection. Cells lacking Taz1, Rap1 or Poz1 rapidly elongated the short 48 bp tract to the extended chromosomal telomere lengths found in these mutants (Figs. 3, S3). In contrast, $rif1\Delta$ cells initially elongated the terminal tract to wild type lengths and then slowly elongated the telomere repeats to mutant lengths over many generations (Figs. 3, S4). Cells lacking Ccq1 gave the most surprising result: the cleaved proto-telomere was immediately degraded in the same manner as an induced double-strand break (Figs. 4C, S5). These results were unexpected as the previously known telomeric functions of Ccq1 were to recruit telomerase. Chromosomal telomeres with wild type length tracts introduced into $ccq1\Delta$ cells or ccq1-T93A cells gradually shortened over ~80 generations until the terminal repeats tract become extremely short and DNA damage checkpoints were activated [18,23,25,26,28,55]. At this point, $ccq1\Delta$ cells arrest and/or repair the defective telomere ends by circularizing the chromosome or elongating telomere repeats by a telomerase-independent mechanism [18,26]. The immediate degradation of the cleaved proto-telomere in $ccq1\Delta$ cells was not due to a lack of telomerase activity, as cells lacking telomerase subunits (est1 Δ and TER1 Δ) or cells that fail to activate bound telomerase (tpz1-K75A)[23,45] maintained the 48 bp tract for more than one day (Figs. 4A,B, 6C, S8E). The rapid degradation of the cut proto-telomere in $ccg1\Delta$ cells could be blocked by eliminating the DSB processing nuclease activity of Mre11 (Figs. 9, S10D,E). These results, therefore, indicate a novel role for Ccq1 in restraining Mre11-nuclease activity from degrading short tracts of telomere repeats.

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Ccq1 was most likely required to be present at the cleaved short proto-telomere to accomplish this protective function: the $ccg1\Delta$ strain lacking Ccg1 and the tpz1-L449A strain expressing a mutant Tpz1 protein that is defective for Ccq1 interaction showed a similar degradation of the cleaved 48 bp proto-telomere (Figs. 4C, 7B, S5, S9). The requirement for Ccq1 did not appear to be to recruit known Ccq1 associated factors as eliminating these factors did not recapitulate the $ccq1\Delta$ rapid degradation phenotype. Ccq1 is a component of the histone deacetylase complex SHREC [29]; however, cells lacking the Clr3 catalytic subunit of this complex did not rapidly degrade the cut 48 bp proto-telomere (Fig. 7A). This result is consistent with our previous observations where proto-telomere cleavage allowed the immediate manifestation of the end protective functions that distinguish telomeres from DSBs, but the spreading of telomeric heterochromatin required many generations of growth [30]. Eliminating telomerase activity by removing telomerase RNA ($TER1\Delta$) or a telomerase subunit (est1 Δ) allowed cells to maintain the 48 bp telomere repeat tract for more than one day after cleavage (Fig. 4A,B). In contrast, the ccq1-T93A cells (deficient in telomerase recruitment) showed a loss of telomeric ura4⁺ hybridization at 24 and 32 h post-cleavage (Fig. 4A,B vs. Figs. 6B, S8C), perhaps reflecting an additional deficiency of Ccq1-T93A at telomeres in these cells. While these differences between telomerase and ccq1-T93A mutants may highlight new dynamics as telomeres shorten and lose their function, these affects are greatly delayed compared to the immediate end protection afforded by the 48 bp repeat tract (i.e. suppression of Chk1 phosphorylation and the delay in cell division during the first 8 h post cleavage [30](Figs. 2E, 4D). Therefore, the end protection properties of the cleaved 2R-48 bp telomere are most likely due to Ccq1 itself, or an unidentified Ccq1-interacting factor.

336

337

338

The loss of end protection for the cleaved 2R-48 bp proto-telomere in $ccq1\Delta$ cells was partially rescued by loss of Mre11 nuclease activity. Mre11 is part of the MRN complex (MRX in

Saccharomyces cerevisiae) composed of Mre11, Rad50, and Nbs1 or Xrx2 that initiates the processing of DSBs. It was recently reported that *S. cerevisiae* MRX can be inhibited by the telomere-associated protein Rif2 [56–58]. Rif2p inhibits MRX through an inhibitory motif called MIN, which interacts with the MRX complex through the Rad50 protein [56,57]. While Rif2 is only found in some budding yeasts, the MIN motif was identified in the DNA replication protein Orc4 in some budding yeasts that lack Rif2. Mutation of the MIN motif in Rif2 or Orc4 in different yeasts showed that this motif regulated the steady-state length of the terminal telomeric tracts [56], strongly suggesting an interaction with MRN/X at the telomere. In the *S. pombe* shelterin proteins, a MIN motif was only identified in Taz1, which mediated an interaction between Taz1 and *S. pombe* Rad50 in two-hybrid analyses [56], consistent with the presence of Mre11 with telomeres by ChIP [63](Fig. S11). Mutating the Taz1 MIN motif did not alter the length or the protection of the terminal telomeric tract [56], and the cleaved proto-telomere in *taz1*Δ cells was stable and elongated (Figs. 3A, S2A). Therefore, the role of the Taz1 MIN motif in restraining the Mre11 nuclease activity at the short proto-telomere is not a strong as that of Ccq1.

Our working model for the restraint of the Mre11 nuclease activity in *S. pombe* is that wild type cells have long enough telomere tracts to recruit sufficient Taz1 and Ccq1 to block MRN-mediate degradation (Fig. 10). Both Taz1 and Ccq1 may protect telomere repeats after replication when the telomeric chromatin is being reassembled or if the replication fork breaks in telomere repeats [6,59]. At telomeres with short repeat tracts, protection may rely on Ccq1 as the amount of Taz1 is limiting (similar to the cleaved *2R-48 bp* proto-telomere). In cells lacking Ccq1, shortening telomeres will be bound by less Taz1 until MRN-mediated degradation is no longer restrained and telomeres are degraded. Telomere repeat tracts would therefore be protected from MRN by the combinatorial actions of Taz1 and Ccq1 under different conditions.

The Ccq1 and Rif2 proteins that restrain MRN activity at telomeres are limited to relatively closely related fungi [56,60]. *S. pombe* and *S. cerevisiae* are separated by almost one billion years of evolution [61], leading to multiple differences in biological properties that include very different shelterin proteins [1,62]. Nevertheless, both yeasts have evolved specific proteins to reduce Mre11-mediated degradation of the telomere end. This convergent evolution of function raises the possibility that blocking MRN/X activity by domains on specific shelterin proteins is conserved beyond fungi, and potentially in humans, as means for the cell to distinguish telomeres from DSBs.

Materials and Methods

Strains and Media

All *S. pombe* strains used in this study are shown in Tables 4 and S1. Selection for strains containing telomere cassettes was performed in Edinburgh Minimal Media with 3.6 g/l (19 mM) sodium glutamate monohydrate (EMMG) substituted for ammonium chloride without uracil and with appropriate amino acid supplements and 100 µg/ml Hygromycin B Gold (InvivoGen) as described in [63]. Non-selective growth of strains bearing the telomere cassettes was done in EMMG with adenine, histidine, uracil, leucine, lysine, and arginine (EMMG + AHRULK) and without hygromycin (Hyg). Preparation of 10 mM anhydrotetracycline (ahTET) stock and plates was performed as in [64].

Cells Transformation and Strain Construction

Cells were grown in EMMG media with appropriate amino acid supplements to OD_{600nm} of 0.5 (1-2 x 10⁸ cells) and harvested by centrifugation (3500 g, 5 min, 4°C). The pelleted cells were washed three times with ice-cold 1M Sorbitol (25, 10, and 5 ml). The cells were then resuspended in 0.5 mL ice-cold 1M Sorbitol and mixed with 500 ng of linear DNA (or 50 ng of circular DNA) in a 0.2-cm electroporation cuvette (Bio-Rad). Electroporation was made using the Bio-Rad Gene Pulser, which applied an electric pulse of 11.0 kV/cm for 5 ms. The electroporated cells were then spread onto YES plates and incubated at 32°C overnight. The resulting lawn of cells was then replica plated onto the appropriate selective media and incubated at 32°C until colonies formed (adapted from [65]).

Gene deletion or mutations were made with a kanMX6 or natMX4 PCR fragment amplified by PCR with at least 250 bp of homology on the 5' and 3' of the targeted gene. The ccq1 deletion

was always the last deletion made in all the strains listed in Table S4 to minimize the number of generations before the telomere formation induction (less than 50 generations).

Induction of *I-Scel*

Cells containing the telomere cassettes were grown under selection overnight (EMMG + AHR + Hyg) and diluted in non-selective media (EMMG + AHRULK) for exponential growth for 3-4 h. Untreated cells (3-5 x 10^8) were removed, pelleted, and washed in sterile, milli-Q purified water before freezing the cell pellets at -80°C. The remaining cells were treated with ahTET, added to a final concentration of 9 μ M. Cells were then collected at various time points, pelleted, washed, and frozen as above.

Southern Blot Analysis

Cells (3-5 x10⁸) were collected at each time point and used to prepare genomic DNA as in [66]. Genomic DNA (50 μ g) was digested with 20 units of *Sca* I-HF (NEB) overnight at 37°C. The digested DNA was resolved on a 1.2% agarose gel (6 h at 100 V) and transferred onto a Hybond N+ positively charged nylon membrane (Amersham - GE healthcare). The membrane then was crosslinked with UV and hybridized (60°C, overnight) by labeled probes produced by PCR with u4ScaProbe_S + u4ScaProbe_AS ($ura4^+$ probe), SV40ScaProbe_S + SV40ScaProbe_AS (hph^+ probe), or abo1-probe_S + abo1-probe_AS ($abo1^+$ probe as a loading control) using 100 μ Ci of [α -32P-dCTP] (6000 Ci/mmol, PerkinElmer) as previously described in [30] (primer sequences are shown in Tables 5). The labeled and washed membrane was exposed 1-2 days into a cassette containing a phosphor screen. The radiolabeled DNA quantification acquisition was made using the Amersham Typhoon IP Biomolecular Imager. All the quantifications and telomere band size measurements were then made using Image QuantTM TL 8.2 Software for Windows.

Quantitative Survivor Plating Assay

Cells were plated onto non-selective EMMG with or without ahTET at ~200 cells per plate and grown for 3-4 days at 32°C. The colonies were then counted, and the survival percentage was calculated by the number of individual colonies formed on ahTET plates (induced condition) over to the number of colonies formed on plates without ahTET (uninduced condition). A minimum of 300 colonies were counted for each strain for each assay.

Doubling time calculation

- To measure the OD_{600nm}, a WPA CO 8000 Cell Density Meter was used, and cultures were diluted to obtain a reading between 0.3 and 1.2, corresponding to the linear range between OD measurement and cell concentration. OD_{600nm} was measured before the induction, at 4, 8, 12 or 16, 24 and/or 32 h, and were combined in three categories: uninduced, 0-8 h pos-induction, and 8-24 or 8-32 h post-induction. The doubling time calculation was made using the formula:
- $doubling \ time = \frac{\ln(2)}{gr}$ where gr is the growth rate and $gr = \frac{\ln(\frac{OD_{tx}}{OD_{t0}})}{t}$

Statistical comparisons

Doubling time comparisons used the uninduced condition of each strain tested as the standard. Wild type 2R-48 bp strain was used as the standard for telomere length comparison after I-Scel cleavage. For ChIP: 2R-0 bp or wild type 2R-48 bp untagged strains values were used as the standard. Comparisons for survival used wild type strains as the standard. The t-tests were performed with Microsoft Excel for Mac (v.16.52).

ChIP Assay

At each time point, 2-3 x10⁹ cells in 200 ml final were processed as previously described in [30] with minor modifications. Cells were cross-linked with 1% formaldehyde and washed twice with

cold TBS buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl) supplemented with 125mM final of Glycine. Cell pellets were resuspended in ChIP-lysis buffer and lysed using the Precellys homogenizer (Bertin Instruments) for a mechanical disruption with 0.5 mm glass beads (Biospec 11079105) using 3 cycles of 30 sec followed by 2 min on ice. The lysate was sonicated for 10 cycles on maximum power (30 sec ON and 59 sec OFF) in a Diagenode Bioruptor XL with sample tubes soaked in an ice water bath. Solubilized chromatin protein concentration was measured using the Bio-Rad protein assay, and all the samples were standardized to the same concentration in 800 µl ChIP-lysis buffer. 790 µl was used for each ChIP sample, while 10 µl was saved as input. Mouse monoclonal antibodies: M2 anti-FLAG (F3165, Sigma-Aldrich), antimyc tag antibody (9E10, Abcam ab32) or anti-GFP (632375, Clontech) were added to the lysate and incubated while rocking for 3 h at 4°C. 50 µl of Dynabeads™ Protein G (Invitrogen) was then added for rocking 3 additional hours at 4°C. Beads were washed and resuspended in 110 μl of TES (1 x TE with 1% SDS). The supernatant (100 μl) was recovered and separated from the beads to be incubated in at 65°C, 8 h in a PCR block, to reverse cross-linking. For input samples. TES buffer (90 µl) was added and the tubes were incubated with the ChIP samples. Then, all the samples were treated with RNase A 30 min at 37°C and Proteinase K for 30 additional minutes at 37°C and purified by QIAgen PCR purification column. All the time points from the same figure were processed for ChIP assay at the same time, and 3 independent biological replications were made. For the qPCR analysis, input samples were diluted to 1/10 with ddH₂O, while ChIP samples were not diluted. Template DNA (2 μI) was added to 5 μI of Roche LightCycler 480 SYBR Green I Master (2X), and primers were added to a final concentration of 0.6 µM for a 10 µl total reaction volume. Each sample was run at least twice on the same 384-well PCR plate (Roche LightCycler 480 Multiwell Plate 384, clear) in a Roche LightCycler 480. The ChIP and input signals were calculated using standard dilution series. The ratios ChIP/input signal are presented.

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

Acknowledgments

- We thank Carly Kerr for technical assistance and members of the Runge lab for helpful
- discussions during the course of this work, and Stéphane Coulon and Bibo Li for comments of
- 476 the manuscript. We thank Katsunori Tomita, Toru Nakamura, Peter Baumann, Feng Qiao, Tony
- 477 Carr and Paul Russell for *S. pombe* bearing mutations used to construct our strains. This work
- 478 and JA were supported for by NSF grant 1908875 to KWR. KWR was supported by this NSF
- 479 grant, NIH grant R01AG051601 and the Lerner Research Institute.

480

481

473

Author Contributions

- 482 Conceptualization, methodology and writing: JA and KWR. Investigation and visualization: JA.
- 483 Funding Acquisition: KWR.

484

485

References

- 486 1. Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces
- 487 *cerevisiae* telomeres: beginning to end. Genetics. 2012 Aug;191(4):1073–105.
- 488 2. Pfeiffer V, Lingner J. Replication of telomeres and the regulation of telomerase. Cold
- 489 Spring Harb Perspect Biol. 2013 May 1;5(5):a010405.
- 490 3. de Lange T. Shelterin-Mediated Telomere Protection. Annu Rev Genet. 2018 Nov
- 491 23;52:223–47.
- 492 4. Moser BA, Subramanian L, Khair L, Chang Y-T, Nakamura TM. Fission yeast Tel1(ATM)
- and Rad3(ATR) promote telomere protection and telomerase recruitment. PLoS Genet.
- 494 2009 Aug 28;5(8):e1000622.
- 495 5. Xue J, Chen H, Wu J, Takeuchi M, Inoue H, Liu Y, et al. Structure of the fission yeast S.
- 496 pombe telomeric Tpz1-Poz1-Rap1 complex. Cell Res. 2017 Dec 21;27(12):1503–20.
- 497 6. Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End

- 498 Replication Problems. Front Cell Dev Biol. 2021 Apr 1;9.
- 499 7. Gottschling DE, Aparicio OM, Billington BL, Zakian VA. Position effect at *S. cerevisiae*
- telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–62.
- 501 8. Wilkie AOM, Lamb J, Harris PC, Finney RD, Higgs DR. A truncated human chromosome
- 502 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat
- 503 (TTAGGG)n. Nature. 1990 Aug 30;346(6287):868–71.
- 504 9. Nimmo ERR, Cranston G, Allshire RCC. Telomere-associated chromosome breakage in
- fission yeast results in variegated expression of adjacent genes. EMBO J. 1994 Aug
- 506 15;13(16):3801–11.
- 507 10. Kanoh J, Ishikawa F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential
- for telomere function in fission yeast. Curr Biol. 2001 Oct;11(20):1624–30.
- 11. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a
- global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012 Jan
- 511 15;26(2):137–50.
- 512 12. Mattarocci S, Reinert JK, Bunker RD, Fontana GA, Shi T, Klein D, et al. Rif1 maintains
- 513 telomeres and mediates DNA repair by encasing DNA ends. Nat Struct Mol Biol. 2017
- 514 Jul;24(7):588–95.
- 515 13. Shubin CB, Greider CW. The role of Rif1 in telomere length regulation is separable from
- its role in origin firing. Elife. 2020 Jun 29;9.
- 517 14. Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, et al. 53BP1-RIF1-shieldin
- counteracts DSB resection through CST- and Polα-dependent fill-in. Nature.
- 519 2018;560(7716):112–6.
- 520 15. Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, et al. The
- 521 shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018;560(7716):117–
- 522 21.
- 523 16. Cooper JP, Nimmo ER, Allshire RC, Cech TR. Regulation of telomere length and function

- 524 by a Myb-domain protein in fission yeast. Nature. 1997;385(6618 LB-702):744–7.
- 525 17. Chikashige Y, Hiraoka Y. Telomere binding of the Rap1 protein is required for meiosis in
- 526 fission yeast. Curr Biol. 2001 Oct;11(20):1618–23.
- 18. Miyoshi T, Kanoh J, Saito M, Ishikawa F. Fission yeast Pot1-Tpp1 protects telomeres and
- 528 regulates telomere length. Science. 2008 Jun 6;320(5881):1341–4.
- 529 19. Baumann P. Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and
- 530 Humans. Science. 2001 May 11;292(5519):1171–5.
- 531 20. Jun H-I, Liu J, Jeong H, Kim J-K, Qiao F. Tpz1 controls a telomerase-nonextendible
- telomeric state and coordinates switching to an extendible state via Ccq1. Genes Dev.
- 533 2013 Sep 1;27(17):1917–31.
- 21. Pan L, Hildebrand K, Stutz C, Thomä N, Baumann P. Minishelterins separate telomere
- length regulation and end protection in fission yeast. Genes Dev. 2015 Jun
- 536 1;29(11):1164–74.
- 537 22. Liu J, Hu X, Bao K, Kim J-K, Zhang C, Jia S, et al. The cooperative assembly of shelterin
- 538 bridge provides a kinetic gateway that controls telomere length homeostasis. Nucleic
- 539 Acids Res. 2021 Aug 20;49(14):8110–9.
- 540 23. Moser BA, Chang Y-T, Kosti J, Nakamura TM. Tel1ATM and Rad3ATR kinases promote
- 541 Ccq1-Est1 interaction to maintain telomeres in fission yeast. Nat Struct Mol Biol. 2011
- 542 Nov 20;18(12):1408–13.
- 543 24. Webb CJ, Zakian VA. Schizosaccharomyces pombe Ccq1 and TER1 bind the 14-3-3-like
- domain of Est1, which promotes and stabilizes telomerase-telomere association. Genes
- 545 Dev. 2012 Jan 1;26(1):82–91.
- 546 25. Yamazaki H, Tarumoto Y, Ishikawa F. Tel1(ATM) and Rad3(ATR) phosphorylate the
- 547 telomere protein Ccq1 to recruit telomerase and elongate telomeres in fission yeast.
- 548 Genes Dev. 2012 Feb 1;26(3):241–6.
- 549 26. Tomita K, Cooper JP. Fission yeast Ccq1 is telomerase recruiter and local checkpoint

- 550 controller. Genes Dev. 2008 Dec 15;22(24):3461–74.
- 551 27. Harland JL, Chang Y-T, Moser BA, Nakamura TM. Tpz1-Ccq1 and Tpz1-Poz1
- interactions within fission yeast shelterin modulate Ccq1 Thr93 phosphorylation and
- 553 telomerase recruitment. PLoS Genet. 2014 Oct 16;10(10):e1004708.
- 554 28. Moser BA, Raquimova ON, Nakamura TM. Ccq1-Tpz1TPP1 interaction facilitates
- telomerase and SHREC association with telomeres in fission yeast. Mol Biol Cell. 2015
- 556 Nov 1;26(21):3857–66.
- 557 29. Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M, Kobayashi R, et al. SHREC, an
- effector complex for heterochromatic transcriptional silencing. Cell. 2007 Feb
- 559 9;128(3):491–504.
- 30. Wang J*, Eisenstatt JR*, Audry J*, Cornelius K, Shaughnessy M, Berkner KL, et al. A
- Heterochromatin Domain Forms Gradually at a New Telomere and Is Dynamic at Stable
- Telomeres. Mol Cell Biol. 2018 May 1;38(15). (*co-first authors)
- 31. al-Khodairy F, Carr AM. DNA repair mutants defining G2 checkpoint pathways in
- Schizosaccharomyces pombe. EMBO J. 1992 Apr;11(4):1343–50.
- 32. Xue Y, Marvin ME, Ivanova IG, Lydall D, Louis EJ, Maringele L. Rif1 and Exo1 regulate
- the genomic instability following telomere losses. Aging Cell. 2016;15(3):553–62.
- 567 33. Fontana GA, Reinert JK, Thomä NH, Rass U. Shepherding DNA ends: Rif1 protects
- telomeres and chromosome breaks. Microb cell. 2018 May 17;5(7):327–43.
- 569 34. Wang J, Zhang H, Al Shibar M, Willard B, Ray A, Runge KW. Rif1 phosphorylation site
- analysis in telomere length regulation and the response to damaged telomeres. DNA
- 571 Repair (Amst). 2018;65:26–33.
- 572 35. Nurse P, Thuriaux P, Nasmyth K. Genetic control of the cell division cycle in the fission
- yeast Schizosaccharomyces pombe. Mol Gen Genet MGG. 1976 Jan;146(2):167–78.
- 574 36. Miyoshi T, Sadaie M, Kanoh J, Ishikawa F. Telomeric DNA ends are essential for the
- localization of Ku at telomeres in fission yeast. J Biol Chem. 2003 Jan 17;278(3):1924–

- 576 31.
- 577 37. Tomita K, Bez C, Fennell A, Cooper JP. A single internal telomere tract ensures meiotic
- 578 spindle formation. EMBO Rep. 2013 Mar 1;14(3):252–60.
- 38. Audry J, Maestroni L, Delagoutte E, Gauthier T, Nakamura TM, Gachet Y, et al. RPA
- prevents G-rich structure formation at lagging-strand telomeres to allow maintenance of
- 581 chromosome ends. EMBO J. 2015 Jul 14;34(14):1942–58.
- 582 39. Webb CJ, Zakian VA. Telomerase RNA stem terminus element affects template
- boundary element function, telomere sequence, and shelterin binding. Proc Natl Acad
- 584 Sci. 2015;112(36):11312-7.
- 585 40. Naito T, Matsuura A, Ishikawa F. Circular chromosome formation in a fission yeast
- mutant defective in two ATM homologues. Nat Genet. 1998 Oct;20(2):203–6.
- 587 41. Bentley NJ, Holtzman DA, Flaggs G, Keegan KS, DeMaggio A, Ford JC, et al. The
- 588 Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 1996 Dec 2;15(23):6641-
- 589 51.
- 590 42. Nakamura K, Okamoto A, Katou Y, Yadani C, Shitanda T, Kaweeteerawat C, et al.
- Rad51 suppresses gross chromosomal rearrangement at centromere in
- 592 Schizosaccharomyces pombe. EMBO J. 2008 Nov 19;27(22):3036–46.
- 593 43. Manolis KG, Nimmo ER, Hartsuiker E, Carr AM, Jeggo PA, Allshire RC. Novel functional
- requirements for non-homologous DNA end joining in *Schizosaccharomyces pombe*.
- 595 EMBO J. 2001 Jan 15;20(1–2):210–21.
- 596 44. Nakamura TM, Moser BA, Russell P. Telomere binding of checkpoint sensor and DNA
- repair proteins contributes to maintenance of functional fission yeast telomeres. Genetics.
- 598 2002 Aug;161(4):1437–52.
- 599 45. Armstrong CA, Pearson SR, Amelina H, Moiseeva V, Tomita K. Telomerase Activation
- after Recruitment in Fission Yeast. Curr Biol. 2014 Sep;24(17):2006–11.
- 601 46. Shampay J, Blackburn EH. Generation of telomere-length heterogeneity in

- Saccharomyces cerevisiae. Proc Natl Acad Sci. 1988 Jan 1;85(2):534–8.
- 47. Job G, Brugger C, Xu T, Lowe BR, Pfister Y, Qu C, et al. SHREC Silences
- Heterochromatin via Distinct Remodeling and Deacetylation Modules. Mol Cell.
- 605 2016;62(2):207–21.
- 606 48. Mimitou EP, Symington LS. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand
- 607 break processing. Nature. 2008 Oct 9;455(7214):770–4.
- 49. Nicolette ML, Lee K, Guo Z, Rani M, Chow JM, Lee SE, et al. Mre11-Rad50-Xrs2 and
- Sae2 promote 5' strand resection of DNA double-strand breaks. Nat Struct Mol Biol. 2010
- 610 Dec;17(12):1478–85.
- 611 50. Williams RS, Moncalian G, Williams JS, Yamada Y, Limbo O, Shin DS, et al. Mre11
- dimers coordinate DNA end bridging and nuclease processing in double-strand-break
- 613 repair. Cell. 2008 Oct 3;135(1):97–109.
- 51. Zhu Z, Chung W-H, Shim EY, Lee SE, Ira G. Sgs1 helicase and two nucleases Dna2 and
- Exo1 resect DNA double-strand break ends. Cell. 2008 Sep 19;134(6):981–94.
- 616 52. Maringele L, Lydall D. EXO1-dependent single-stranded DNA at telomeres activates
- subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta
- 618 mutants. Genes Dev. 2002 Aug 1;16(15):1919–33.
- 619 53. Kibe T, Tomita K, Matsuura A, Izawa D, Kodaira T, Ushimaru T, et al. Fission yeast
- Rhp51 is required for the maintenance of telomere structure in the absence of the Ku
- heterodimer. Nucleic Acids Res. 2003;31(17):5054–63.
- 622 54. Wilson S, Warr N, Taylor DL, Watts FZ. The role of Schizosaccharomyces pombe Rad32,
- the Mre11 homologue, and other DNA damage response proteins in non-homologous
- 624 end joining and telomere length maintenance. Nucleic Acids Res. 1999 Jul
- 625 1;27(13):2655–61.
- 626 55. Armstrong CA, Moiseeva V, Collopy LC, Pearson SR, Ullah TR, Xi ST, et al. Fission
- yeast Ccq1 is a modulator of telomerase activity. Nucleic Acids Res. 2018;46(2):704–16.

- 628 56. Khayat F, Cannavo E, Alshmery M, Foster WR, Chahwan C, Maddalena M, et al.
- Inhibition of MRN activity by a telomere protein motif. Nat Commun. 2021;12(1):3856.
- 630 57. Roisné-Hamelin F, Pobiega S, Jézéguel K, Miron S, Dépagne J, Veaute X, et al.
- Mechanism of MRX inhibition by Rif2 at telomeres. Nat Commun. 2021;12(1):2763.
- 632 58. Rosas Bringas FR, Stinus S, de Zoeten P, Cohn M, Chang M. Rif2 protects Rap1-
- depleted telomeres from MRX-mediated degradation in *Saccharomyces cerevisiae*. Elife.
- 634 2022;11.
- 635 59. Miller KM, Rog O, Cooper JP. Semi-conservative DNA replication through telomeres
- 636 requires Taz1. Nature. 2006 Apr 6;440(7085):824–8.
- 637 60. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, et al. Comparative
- functional genomics of the fission yeasts. Science. 2011;332(6032):930–6.
- 639 61. Hedges SB. The origin and evolution of model organisms. Nat Rev Genet.
- 640 2002;3(11):838–49.
- 641 62. Moser BA, Nakamura TM. Protection and replication of telomeres in fission yeast.
- 642 Biochem cell Biol. Oct;87(5):747–58.
- 643 63. Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast
- 644 Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823.
- 645 64. Sunder S, Greeson-Lott NT, Runge KW, Sanders SL. A new method to efficiently induce
- a site-specific double-strand break in the fission yeast *Schizosaccharomyces pombe*.
- 647 Yeast. 2012 Jul;29(7):275–91.
- 648 65. Suga M, Hatakeyama T. High efficiency transformation of Schizosaccharomyces pombe
- pretreated with thiol compounds by electroporation. Yeast. 2001 Aug;18(11):1015–21.
- 650 66. Ray A, Runge KW. The yeast telomere length counting machinery is sensitive to
- sequences at the telomere-nontelomere junction. Mol Cell Biol. 1999 Jan;19(1):31–45.

Figure Legends

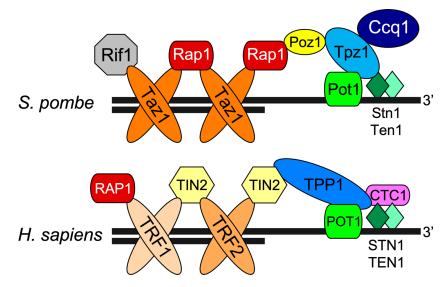


Fig. 1. *S. pombe* and *H. sapiens* telomere-capping complexes share a similar molecular architecture. The human complex (called shelterin) and fission yeast complex are visualized as a conserved bridge structure [22] with a double-stranded telomere DNA protein (TRF1-TRF2/Taz1) connected to the single-stranded telomere DNA protein POT1 by non-DNA-binding proteins (TIN2-TPP1/Rap1-Poz1-Tpz1). Homologous and orthologous proteins are shown in similar colors.

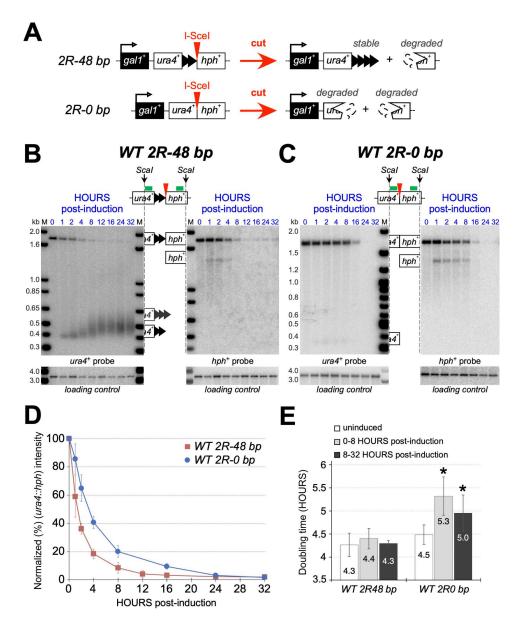


Fig. 2. I-Scel cleavage next to telomere repeats leads to the formation of a new telomere, whereas cleavage in the absence of these repeats produces a rapidly degraded DSB. (A) Schematic of the proto-telomere cassettes at the right end of chromosome 2 and the consequences of I-Scel induction [30](the full system is described in Fig. S1). The I-Scel site is marked by a red triangle. The 2*R*-48 bp proto-telomere contains 48 bp of telomere repeats, while 2*R*-0 bp has no such repeats. Telomere repeats are indicated by black triangles. Genes are indicated by boxes and degrade DNA by jagged edges and small lines. (B) Wild type (WT) 2*R*-48 bp exponentially growing cells were treated with ahTET (9 μM final) to induce the I-Scel

enzyme expression. Aliquots were taken either prior to induction (0 h) or after induction (1 to 32 h). The genomic DNA was then extracted, digested with Sca I, and analyzed by Southern analysis using probes ura4⁺, hph⁺ (denoted by green bars above each locus), or abo1⁺ as a loading control. A schematic of the 2R-48 bp cassette shows the positions of the Sca I sites, and the truncated schematics indicate which fragments formed the bands on the Southern blot. The numbers in blue on top of the blots represent the hours post-induction. Molecular weight standards are shown (M). The modal terminal restriction fragment sizes of the ura4+ cut band are presented in Table S6. (C) Cells bearing the 2R-0 bp cassette were treated and analyzed as in Fig. 2B. (D) Normalized intensities of the 1.8 kb uncut ura4::hph bands of the inductions shown in B and C. Normalization is the average of the Typhoon IP biomolecular Imager (Amersham) signals (quantified using Image QuantTM TL 8.2 Software) of the *ura4*⁺, or *hph*⁺ probe normalized to the loading control (abo1⁺ probe) signal for each lane. The 0 h time point (uninduced condition) is represented as 100% for each strain. Error bars show standard deviations from three independent assays (values are in Table S1). (E) Doubling times of the cell cultures were determined by OD600nm prior to the ahTET induction (uninduced), 0-8 h postinduction, and 8-32 h post-induction. Error bars show standard deviations from at least three independent assays. Statistically significant differences (*p*<0.05) are indicated by an asterisk.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

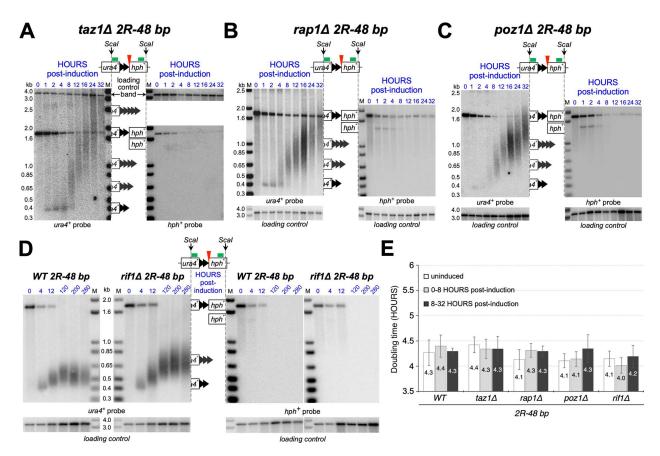


Fig. 3. Cells lacking Taz1, Rap1, Poz1 and Rif1 produce stable telomere repeat-capped ends to reach new equilibrium telomere lengths. $taz1\Delta$ (A), $rap1\Delta$ (B), or $poz1\Delta$ (C) cells bearing the 2R-48 bp proto-telomere were treated with ahTET (9 μM final) and analyzed by Southern blot as in Fig. 2B. The modal terminal restriction fragment sizes of the $ura4^+$ cut band are presented in Fig. S3D and Table S6. The $taz1\Delta$ $ura4^+$ probe panel is shown as the full gel to present the long, disperse telomere repeat hybridization. Additional Southern blots from independent experiments are shown in Fig. S3A. The final telomere repeat tract lengths are similar to those described for the original mutants (median lengths of 1.0 to 2.5 kb, ranging from 0.5 to 5 kb [10,16,18]). (D) WT or $rif1\Delta$ cells bearing the 2R-48 bp proto-telomere were treated with ahTET (9 μM final) to induce the I-Scel enzyme expression. Aliquots were first taken either prior to induction (0 h) and after induction (1 to 12 h). At 12 h, cells were struck for a single colony on rich media (YES) and grown for 3 days at 32°C. Portions of several individual resulting colonies were tested for loss of hph^+ by failure to grow on plates with 100 μg/ml

hygromycin. A hygromycin-sensitive colony was inoculated in non-selective EMMG media with ahTET, and serial dilutions from time points 120, 200, and 280 h were collected and analyzed by Southern blot as in Fig. 2B. An additional Southern blot is shown in Fig. S4B. **(E)** Doubling times of the cell cultures were determined by OD_{600nm} prior to the ahTET induction (uninduced), 0-8 h post-induction and 8-32 h post-induction. Error bars show standard deviations from at least three independent assays. The wild type values from Fig. 2E are included for comparison.

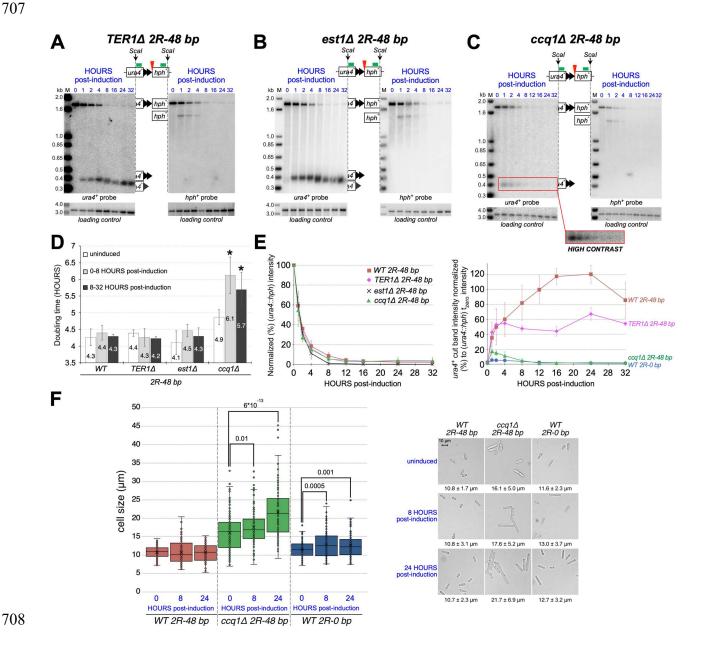


Fig. 4. Cells lacking the telomerase components TER1 or Est1 form a short, stable telomere while loss of Ccq1 causes rapid degradation similar to a DSB. Cells lacking telomerase RNA TER1 (A), Est1 (B), or Ccg1 (C) and bearing the 2R-48 bp cassette were treated and analyzed as in Fig. 2B. The modal terminal restriction fragment sizes of the ura4⁺ cut band are presented in Table S6. An additional $ccg1\Delta$ Southern blot is shown in Fig. S5. (D) Doubling times of the cell cultures were determined by OD_{600nm} prior to the ahTET induction (uninduced), 0-8 h post-induction, and 8-32 h post-induction. Error bars show standard deviations from at least three independent assays. Statistically significant differences (p<0.05) are indicated by an asterisk. The wild type values from Fig. 2E are included for comparison. (E) Left panel. Intensities normalized to the loading control of the 1.8 kb uncut ura4::hph bands of the inductions shown in Figs. 2B and 4A-C, derived as in Fig. 2D. The wild type 2R-48 bp values from Fig. 2D are included for comparison. Right panel. Normalized intensities of the $ura4^+$ cut bands of the inductions shown in Figs. 2B,C and 4A,C. The est1 Δ cell values are not plotted as they are nearly identical to those of TER1 Δ cells (Table S6). Normalization is the average of the Typhoon IP biomolecular Imager (Amersham) signals (quantified using Image QuantTM TL 8.2 Software) of the *ura4*⁺ bands (using the *ura4*⁺ probe) divided by the 1.8 kb *ura4::hph* band intensity before induction (0 h)(using the *ura4*⁺ probe, in the same membrane) for each lane. The error bars for $TER1\Delta \ 2R-48 \ bp$ and $ccq1\Delta \ 2R-48 \ bp$ strains are derived from three independent Southern blots, and the est1\(\Delta 2R-48 \) bp strain error bars are from two independent Southern blots (values are in Tables S1 and S3). (F) Left panel: Cell lengths (n > 110 of each strain) prior to the ahTET induction (0 h) and 8 and 24 h post-induction are represented. Statistically significant values (p<0.05, t-test) are indicated by the black numbers in the graph. Right panel: Cells observations (Brightfield mode) made by using a DM4B microscope (Leica) with the DFC7000T Digital Camera (Leica) and processed using the Leica Application Suite X v3.7.2.22383 (for Windows). The numbers below indicate the average cell length ± standard deviation in each condition (in micrometers). Cell measurements were made

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

736

737

738

739

740

741

742

Fig. 5. ChIP analyses of Taz1, Ccq1, and Pot1 at the proto-telomere before and after cleavage in wild type and $ccq1\Delta$ cells. ChIP of taz1-GFP (A), pot1-myc (B), or Ccq1-FLAG (C) cells bearing the 2R-0 bp or the 2R-48 bp cassettes in a wild type and $ccq1\Delta$ background. Representative Southern blots, cut efficiency quantifications and doubling times of these strains are shown in Fig. S6. The ChIP immunoprecipitations used an anti-GFP antibody (A, 632375, Clontech), an anti-myc antibody (B, 9E10, Abcam ab32), or an anti-FLAG M2 antibody (C,

F3165, Sigma-Aldrich). The immunoprecipitated DNA was analyzed by qPCRs using 4 pairs of primers (Table S5) as represented by the arrows in the telomere cassette schematics above the graphs. "-3 kb" (in purple) and "-0.4 kb" (in blue) are in the *ura4*⁺ gene that forms the telomere, and "+0.4 kb" (in green) and "+3 kb" (in dark green) are located in the *hph*⁺ gene that is degraded. For the *ccq1*Δ *taz1-GFP* and *ccq1*Δ *pot1-myc 2R-48 bp* strains, only the 0, 2, and 4 h time points aliquots were taken as almost all the *ura4*⁺ DNA cut fragment is degraded, preventing accurate quantitation. "X" means not measured. Cutting efficiencies of the tagged (Fig. S6) and untagged (Figs. 2D and 4E) strains were similar. Error bars show standard deviations from three independent assays. Statistically significant differences (*p*<0.05) are indicated by an asterisk. In (**A**), a red asterisk means a statistically significant difference between *taz1-GFP 2R48 bp* and *taz1-GFP 2R0 bp*, whereas a green asterisk is between *ccq1*Δ *taz1-GFP 2R48 bp* and *taz1-GFP 2R0 bp*, whereas a green asterisk is between *ccq1*Δ

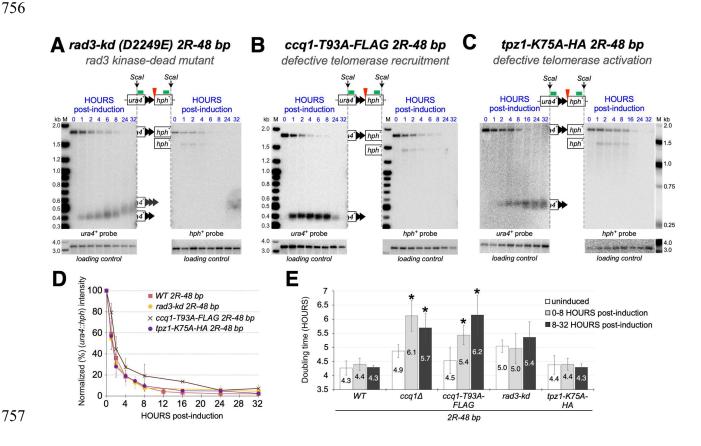


Fig. 6. The Rad3-Ccq1 telomerase recruitment pathway is not required for the stability of the newly formed short telomere. rad3-D2249E (kinase-dead) (A), ccq1-T93A (B) and tpz1-K75A-HA (C) cells bearing the 2R-48 bp cassette were treated and analyzed as in Fig. 2B. The modal terminal restriction fragment sizes of the ura4⁺ cut band are presented in Table S6. Additional ccq1-T93A and tpz1-K75A Southern blots are shown in Fig. S8. (D) Intensities normalized to the loading control of the 1.8 kb uncut ura4::hph bands of the inductions shown in A and B, derived as in Fig. 2D. Error bars are derived from two independent Southern blot assays (values are in Table S1). The wild type 2R-48 bp values from Fig. 2D are included for comparison. (E) Doubling times of the cell cultures were determined by OD_{600nm} prior to the ahTET induction (uninduced), 0-8 h post-induction and 8-32 h post-induction. Error bars show standard deviations from at least three independent assays. Statistically significant differences (p<0.05) are indicated by an asterisk. The wild type and $ccq1\Delta$ 2R-48 bp values from Figs. 2E and 4D are included for comparison.

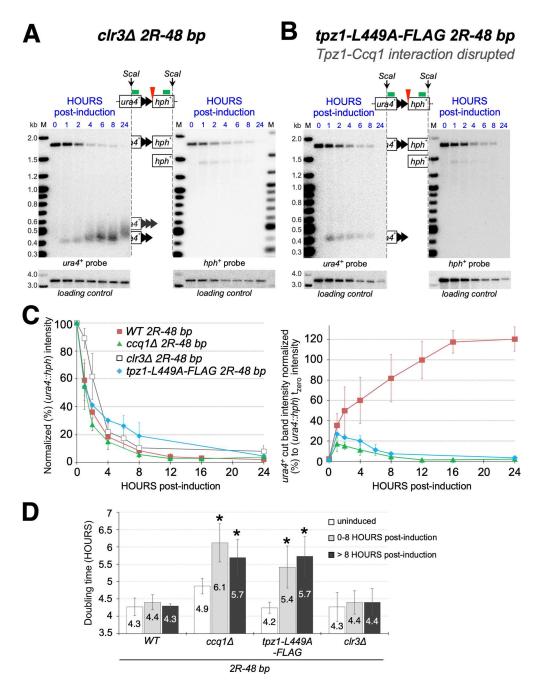


Fig. 7. The stability of the newly formed telomere requires the Ccq1-Tpz1 interaction but not Ccq1-Clr3 interaction. $clr3\Delta$ (A) and tpz1-L449A-FLAG (B) cells bearing the 2R-48 bp cassette were treated and analyzed as in Fig. 2B. The modal terminal restriction fragment sizes of the $ura4^+$ cut band are presented in Table S6. An additional tpz1-L449A Southern blot is shown in Fig. S9. (C) Left panel. Intensities normalized to the loading control of the 1.8 kb uncut ura4::hph bands of the inductions shown in A and B, derived as in Fig. 2D. The wild type

and $ccq1\Delta$ 2R-48 bp values from Figs. 2D and 4E are included for comparison. **Right panel.** Normalized intensities of the $ura4^+$ cut bands of the inductions shown in Fig. 2B, 4C, and 7B were analyzed as in Fig. 4E. The error bars for the tpz1-L449A 2R48 bp strain are derived from two independent Southern blots (values are in Tables S1 and S3). **(D)** Doubling times of the cell cultures were determined by OD_{600nm} prior to the ahTET induction (uninduced), 0-8 h post-induction, and 8-24 (> 8 h) post-induction. Error bars show standard deviations from at least three independent assays. Statistically significant differences (p<0.05) are indicated by an asterisk. The wild type and $ccq1\Delta$ 2R-48 bp values from Figs. 2E and 4D are included for comparison.

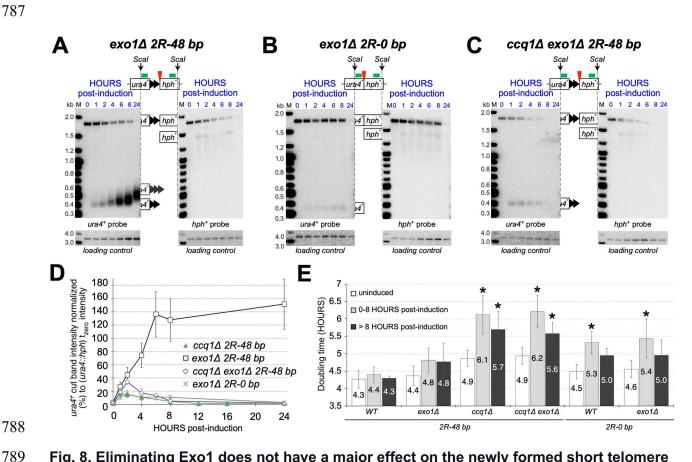
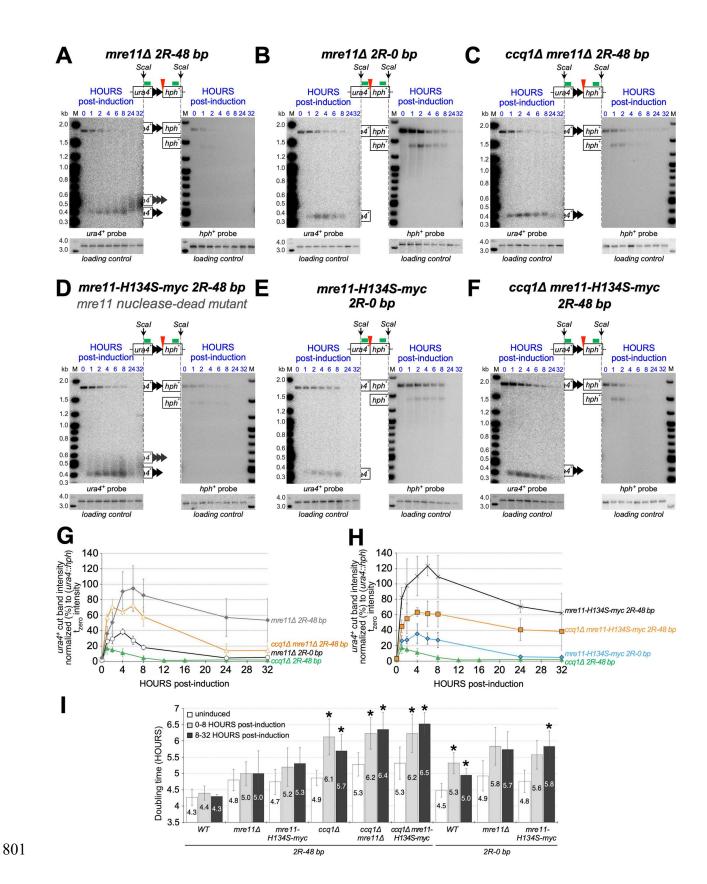



Fig. 8. Eliminating Exo1 does not have a major effect on the newly formed short telomere stability in $ccq1\Delta$ cells. (A-C) Cells lacking Exo1 in with the indicated genotypes were treated and analyzed as in Fig. 2B. The modal terminal restriction fragment sizes of the $ura4^+$ cut band

are presented in Table S6. Additional Southern blots from independent experiments are shown in Fig. S10. **(D)** Normalized intensities of the $ura4^+$ cut bands of the inductions shown in Figs. 4C and 8A-C, were analyzed as in Fig. 4E. The error bars are derived from two independent Southern blot assays for panels A and B, and three independent assays for panel C (values are in Table S3). **(E)** Doubling times of the cell cultures were determined by OD_{600nm} prior to the ahTET induction (uninduced), 0-8 h post-induction, and 8-24 h (>8 h) post-induction. Error bars show standard deviations from at least three independent assays. Statistically significant differences (p<0.05) are indicated by an asterisk. The wild type and $ccq1\Delta$ 2R-48 bp values from Figs. 2E and 4D are included for comparison.

Fig. 9. Eliminating Mre11 nuclease activity stabilizes the newly formed short telomere in $ccq1\Delta$ **cells.** Cells lacking Mre11 (A-C) or with a Mre11 nuclease dead mutant (H134S)(D-F) with the indicated genotypes were treated and analyzed as in Fig. 2B. The modal terminal restriction fragment sizes of the $ura4^+$ cut band are presented in Table S6. Additional Southern blots from independent experiments are shown in Fig. S10. (**G**) and (**H**) Normalized intensities of the $ura4^+$ cut bands of the inductions in $mre11\Delta$ strains (**G**) and mre11-H134S (**H**) were analyzed as in Fig. 4E, and the $ccq1\Delta$ data from Fig. 4E is repeated for comparison. Error bars are derived from two or three independent repeats of each assay (values are in Table S3). (**I**) Doubling times of the cell cultures were determined by OD_{600nm} prior to the ahTET induction (uninduced), 0-8 h post-induction, and 8-32 h post-induction. Error bars show standard deviations from at least three independent assays. Statistically significant differences (p<0.05) are indicated by an asterisk. The wild type and $ccq1\Delta$ 2R-48 bp values from Figs. 2E and 4D are included for comparison.

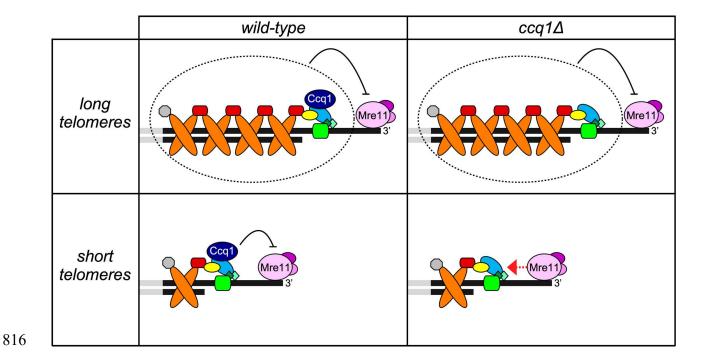


Fig. 10. Hypothesis for the roles of Ccq1 and Taz1 in restraining Mre11 degradation of telomeres. Khayat et al. [56] recently identified an $\underline{\mathsf{MRN/X}}$ inhibitory domain (called MIN) in *Saccharomyces cerevisiae* Rif2 and *S. pombe* Taz1, but while mutation of this domain altered *S. cerevisiae* telomeres, it had no effect on *S. pombe* telomere length or stability. Ccq1 and Taz1 may therefore have redundant functions to inhibit Mre11-mediated degradation of the telomere. At long telomeres in wild type cells, both Taz1 and Ccq1 act to restrain Mre11, while Taz1 provides this function at long telomeres in $ccq1\Delta$ cells. At short telomeres (e.g. wild type cells with tracts shortened by breakage), Taz1 in limiting due to the reduced number of binding sites and Ccq1 restrains Mre11. When telomere repeat tracts shorten in $ccq1\Delta$ cells, Mre11-mediated degradation occurs when the amount of Taz1 protein falls below a threshold level and chromosomes either circularize or use a telomerase-independent mode of telomere replication.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- AudryRungeSI.pdf
- $\bullet \ \ nrreporting summary Audry and Runge flatten.pdf$