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Nonlinear Dynamics Modeling and Fault Detection
for a Soft Trunk Robot: An Adaptive

NN-Based Approach
Jingting Zhang , Xiaotian Chen, Paolo Stegagno , Member, IEEE, and Chengzhi Yuan , Member, IEEE

Abstract—This letter presents a radial basis function neural
network (RBF NN) based methodology to investigate the dynamics
modeling and fault detection (FD) problems for soft robots. Finite
element method (FEM) is first used to derive a mathematical
model to describe the dynamics of a soft trunk robot. An adaptive
dynamics modeling approach is then designed based on this FEM
model by incorporating model-reduction and RBF NN techniques.
This approach is capable of achieving accurate identification of
the soft robot’s highly-nonlinear dynamics, with the identified
knowledge being obtained and stored in constant RBF NN models.
Finally, a model-based FD scheme is proposed with the modeling
results, which can achieve efficient FD for the soft robot whenever it
encounters an unknown fault. Note that the proposed methods are
generic and usable for general soft robots. Validation of these meth-
ods is performed through both computer simulation and physical
experiments.

Index Terms—Soft robotics, dynamics modeling, fault detection,
adaptive dynamics learning, neural networks.

I. INTRODUCTION

SOFT robots are a unique and emergent type of robots. They
are made of soft materials, such as silicone and rubber,

with no joint in the structure, and their motion is obtained by
deformation of the soft components. Soft robots have an impor-
tant capability of adjusting their shapes and flexibility to adapt
to given tasks or unstructured environments, which is a unique
advantage over traditional rigid robots in many applications,
such as underwater exploration, search and rescue operations,
and safe human-robot interaction. This has motivated many
researchers to design soft robots in recent years, e.g., soft robotic
fish [1] and soft grippers [2].

During the operation of soft robots, fault detection (FD) tech-
niques are crucial to guarantee their safety and reliability [22].
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It is to make an effective indicator that can identify faulty status
of the robotic system, so as to facilitate realizing fault tolerant
operation for minimizing performance degradation and avoiding
dangerous situations [23]. However, as opposed to the substan-
tially growing body of literature on control design (e.g., [3]–[5]),
study of FD on soft robots has gained limited success, with only
a few research results being reported in [6]–[9], [24]. The study
is still in its primitive stage, leaving many challenging issues that
have yet to be adequately addressed. For example, researchers
in [9] investigated the FD problem of a special soft robot de-
signed with Shape Memory Alloys, which cannot be extended
to more general classes of soft robots. [8] studied the fault
detection and identification problem of a soft manipulator, which
however required the detected faults’ information (e.g., faulty
type and data) to be available for pre-training, limiting their
wider applicability. In [24], a Koopman operator-based scheme
has been developed to detect and identify the faults resulting
from the change of robot’s tip-load, which unfortunately might
not be applicable to other types of faults, e.g., robot’s air hose ob-
struction. [6], [7] developed an FD mechanism for locked-motor
faults by monitoring the controller’s dynamics. These schemes
did not investigate the overall dynamics of the studied robot, as
such they cannot detect those faults that could be hidden within
the robot’s uncertain dynamics, e.g., component faults that could
not result in deviation of the controller’s dynamics. In view of
these, it is of particular interest and importance to develop a
more practical FD scheme that can be applied to general soft
robots and usable for general classes of faults.

To fulfill this objective, one may use the model-based FD
method [10], which has a unique capability of providing a deeper
insight into the dynamical behaviors of robots, facilitating more
efficient and accurate FD. However, developing such a FD
method requires the system model of soft robots to be available,
which is a very challenging problem. Unlike traditional rigid
robots, soft robots have deformable structure, complex geometry
and excessive degrees of freedom, thus their physical model is
very difficult to deduce. In recent years, some research efforts
have been devoted to employing the Finite Element Method
(FEM) for modeling and control of soft robots, e.g., [3]–[5].
In these schemes, the FEM technique is used to discretize the
robots’ geometry into a finite number of small elements, so
as to derive a finite-dimensional model to describe the soft
robots’ behavior. However, these FEM-based schemes only de-
veloped an approximate linear dynamic model—describing the
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dynamics of soft robots around some equilibrium points—for
further control study. Such a model cannot achieve a sufficient
modeling accuracy. It thus could not be suitable for designing
an accurate and reliable FD scheme.

To accurately model soft robots’ nonlinear dynamics, a
promising tool is neural network (NN). Some research results
have been published by employing NN techniques for the in-
vestigation of soft robots, e.g., [11]–[13], [25]. These schemes
utilized NN techniques to model some specific feature of soft
robots, e.g., turning motion capability [12] and input-to-position
mapping relationship [11], [13], so as to facilitate desired con-
trol performance. However, these schemes cannot guarantee a
sufficiently-accurate modeling performance, which could not
be appropriate for the design of FD scheme. This is because,
different from the control problem of [11]–[13], [25] where
the NN-modeling errors can typically be compensated by the
controllers, these errors often have negative impacts on the
FD residual signals, which cannot be structured or decoupled
from the occurring fault, leading to possible misjudgment of
FD [14]. For developing an efficient FD scheme, achieving
accurate modeling for the nonlinear dynamics of soft robots with
NN techniques is very important, which however still remains
as an open problem to date.

In this letter, we aim at achieving accurate identifica-
tion/modeling of a soft trunk robot’s nonlinear dynamics; and
proposing a model-based FD scheme for the soft robot. Specif-
ically, FEM is first used to generate a mathematical model for
simulating the overall-state dynamics of soft robot. Based on
this FEM model, an adaptive dynamics identification approach is
proposed with model-reduction and radial basis function neural
network (RBF NN) techniques. In particular, model reduction
method is employed to derive a low-order model capturing the
robot’s dominant dynamics for further NN training purpose; and
RBF NN technique is used to design an adaptive dynamics iden-
tifier. This identification approach is based on the deterministic
learning theory [15], which can be theoretically and practically
guaranteed to achieve accurate identification for the soft robot’s
dynamics, and the identified knowledge can be obtained and
stored in constant RBF NN models. With these identification
results, a model-based FD scheme will be developed to achieve
efficient FD for the soft robot whenever an unknown fault occurs.
In particular, the design of this FD scheme only needs the data
of the robot operating in the normal mode, while does not
requires any data of the robot’s operating under any pre-known
faulty modes. The FD scheme can thus be applicable for general
soft robots with general types of faults. These important fea-
tures distinguish our scheme from many existing FD schemes,
e.g., [6]–[9]. The proposed methods are validated through both
computer simulation and physical experiments.

The main contributions of this work are: (i) achieving accurate
identification/modeling for the soft robot’s overall-state nonlin-
ear dynamics; (ii) proposing a model-based FD scheme for soft
robot; and (iii) performing both simulational and experimental
validations for the proposed methods.

The remainder of this letter is organized as follows. Section II
provides some preliminaries. Section III contains the prob-
lem statement. The adaptive NN-based identification scheme is

presented in Section IV. The FD scheme is presented in Sec-
tion V. Section VI concludes the letter.

II. PRELIMINARIES

A. Proper Orthogonal Decomposition (POD)

POD is a well-known model order reduction method [16]. It
has been widely used for nonlinear large-scale systems to deal
with their high dimensionality.

Consider a large scale dynamical system:

ẋ = f(x, u), x ∈ Rn. (1)

According to the projection-based model reduction method
of [16], there exist two projectors V = [Vr, Vr̄] ∈ Rn×n and
U = [Ur, Ur̄] ∈ Rn×n, such that the state x can be decomposed
into two parts: a low-order state xr ∈ Rr (with r � n) and a
negligible state xr̄ ∈ Rn−r, i.e.,

x =
[
Vr Vr̄

] [xr

xr̄

]
with

[
xr

xr̄

]
=

[
Ur Ur̄

]�
x (2)

where Vr ∈ Rn×r, Vr̄ ∈ Rn×(n−r), Ur ∈ Rn×r, Ur̄ ∈
Rn×(n−r), and U�V = In. The objective of POD is to
find the two projectors Vr and Ur for computing the state
xr = U�

r x, such that x ≈ Vrxr. Then, based on the original
system (1), a low-order system can be derived as follows:

ẋr = U�
r f(Vrxr, u) = fr(xr, u), xr ∈ Rr, r � n. (3)

According to [16], the projectorsVr andUr of (2) can be obtained
with the snapshots of systems state x in (1). Let Sx be the
collection of s ∈ N+ snapshots of x, i.e.,

Sx = (x(t1), x(t2), . . . , x(ts)) ∈ Rn×s. (4)

Then, we perform a singular value decomposition on this matrix,
i.e., Sx = VΣΩ�, obtaining the left singular matrix V and the
singular value matrix Σ. According to the decay rate of the
singular values of Σ, we can select the first r columns of V
to construct a new matrix Vr such that:

Sx = VΣΩ� = VrΣrΩ
�
r +Δ (5)

with Δ representing the model reduction errors. Based on this,
the projectors Vr and Ur in (2) are obtained as:

Vr = Ur = Vr. (6)

Using these projectors, the reduced-order system (3) can be
derived.

B. Radial Basis Function Neural Network (RBF NN)

From [17], RBF NNs can be described by

fnn(x) =

Nn∑
i=1

ŵisi(x) = Ŵ�S(x) (7)

where x ∈ Ωx ⊂ Rn is the input vector with Ωx being a com-
pact set, Ŵ = [ŵ1, . . . , ŵNn

]� ∈ RNn is the weight vector,
with Nn denoting the NN node number, and S(x) = [s1(‖x−
ς1‖), . . . , sNn

(‖x− ςNn
‖)]� : Rn → RNn , with si(·) being a
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Fig. 1. Soft trunk robot studied in this letter: robot’s prototype (left); sensors’
setup (middle); and actuators’ arrangement (right).

Fig. 2. Soft trunk robot’s FEM model built in SOFA. Robot’s mo-
tion/deformation (middle and right) by pressurizing the air inside the red
segment.

radial basis function, and ςi ∈ Rn (i = 1, 2, . . . , Nn) being
distinct points in state space. In this letter, the radial basis func-
tion si(·) is chosen as the Gaussian function: si(‖x− ςi‖) =
exp[−(x−ςi)

�(x−ςi)
η2
i

], where ςi is the center of the receptive field
and ηi is the width of the receptive field.

As shown in [17], for any continuous function f(x) : Ωx →
R, and for the NN approximator of (7), where the node number
Nn is sufficiently large, there exists an ideal constant weight
vector W ∗ ∈ RNn , such that for any ε∗ > 0,

f(x) = W ∗�S(x) + ε, ∀x ∈ Ωx (8)

where |ε| < ε∗ is the ideal approximation error. The ideal weight
vector W ∗ is an “artificial” quantity required for analysis, and is
defined as the value of Ŵ in (7) that minimizes |ε| for allx ∈ Ωx,
i.e., W ∗ := argminŴ∈RNn{supx∈Ωx

|f(x)− Ŵ�S(x)|}.

III. PROBLEM STATEMENT

A. Soft Trunk Robot

The studied soft trunk robot is shown in Fig. 1. It is pneumatic
actuated, and composed of three identical segments made by
high elasticity silicone rubber. The robot can move in the 3D
space with the cooperative motion/deformation of these seg-
ments, as seen in Fig. 2. Five reflective balls (as sensors) are fixed
on the top of the soft robot to locate the robot’s end-effector.
In terms of robot’s each segment, it has maximum length of
108 mm and maximum width of 32 mm. They are able to
extend and shrink vertically by pressurizing/depressurizing the
air inside the segment. The maximum deformation displacement
along vertical direction is about 60 mm. To realize such a
motion/deformation, three air tubes are coming out from the
bottom of the soft robot to link each segment with two pump

motors and one electrical air valve. One pump motor is for
pressurizing the air inside the segment, and the other one is
for depressurizing. These motors and valves are all controlled
by an Arduino board [18].

B. FEM Model Description

For the deformable robot in Fig. 1, it is difficult to accurately
describe its complex geometry and model its continuously de-
forming structure without using a large state space. We utilize
the FEM technique to discretize the robot’s structure into a
mesh of finite elements, so as to establish an FEM model
in Fig. 2. A number of 29626 tetrahedron-type elements are
chosen, such that the robot’s body can be spatially discretized
into N = 9376 mesh nodes. Simulation of this model is done
using the SOFA framework (an FEM-based simulator) with the
SoftRobots Plugin [19].

Define q ∈ Rn as the position of each mesh node of the FEM
model, and v ∈ Rn as the velocity vector of the model, in which
the dimension n = 3×N = 28128 since the variables q, v are
considered in the 3D space. Then, by Newton’s second law, the
nonlinear dynamical model that is used to describe the motion
of the robot in Fig. 2 can be given as follows:

M(q)v̇ = P (q)− F (q, v) +H(q)�u, (9)

where v̇ ∈ Rn is the acceleration vector;M(q) : Rn → Rn×n is
the mass matrix;F (q, v) : Rn × Rn → Rn is the internal forces
applied to the robot’s structure; P (q) : Rn → Rn is external
forces; H(q)�u is the actuators contribution with H(q) : Rn →
Rn×m containing the direction of actuator’s forces and u ∈ Rm

the amplitude.
Denoting x = [q, v]� ∈ R2n, the system of (9) can be refor-

mulated in the following general form:

ẋ = f(x) + g(x)u, y = Cx, (10)

where f(x) = [v;M(q)−1P (q)−M(q)−1F (q, v)], g(x) =
[0;M(q)−1H(q)�]; y ∈ Rp (with p = 6) is the measurement
(i.e., position and velocity variables) of the robot’s end-effector;
and C ∈ Rp×2n is the output matrix for picking out the end-
effector measurement from all mesh nodes of the FEM model.

Note that the FEM model developed in Fig. 2 is for simulating
the dynamical behavior of the real soft robot in Fig. 1. Accurate
values of all parameters in the mathematical model (10) are
assumed unknown. In this letter, we aim at: (i) developing an
adaptive RBF NN-based dynamics identification approach for
this model (10), so as to realize accurate identification/modeling
for the unknown nonlinear dynamics f(x) and g(x); and (ii)
proposing a model-based FD scheme with the modeling results
to achieve accurate FD for the system (10) whenever it encoun-
ters an unknown fault. A block diagram illustrating the design
of our approaches is given in Fig. 3. It is seen that the design of
such methods will be performed directly based on the nonlinear
dynamical model (10), without needing any linearization pro-
cess that has been adopted in [3]–[5]. This would facilitate our
approach to develop better dynamics-modeling accuracy and FD
reliability.
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Fig. 3. Block diagram of the nonlinear dynamics modeling scheme and fault detection scheme. x = [q, v]� is the measurement (i.e., position q and velocity v)
of the mesh nodes of robot’s FEM model; Sq and Sv are the snapshots of mesh nodes’ position q and velocity v, respectively; u is the control input of robot; xr

represents the system reduced-order state; x̌ is the estimate of state xr ; y is the measurement of robot’s end-effector; ȳ is the estimate of output y.

IV. ADAPTIVE NN DYNAMICS IDENTIFICATION

In this section, we will propose an RBF NN-based identifica-
tion approach for modeling the soft robot’s nonlinear dynamics
based on the model (10). The design procedure is shown in
Fig. 3. Both the state-feedback and output-feedback cases will
be considered.

A. Model Order Reduction

Note that the system (10) is of large dimension, which is not
suitable for the subsequent development of NN modeling. Thus,
the POD algorithm in Section II-A will be first used for model
order reduction purpose. This is an offline process and usually is
computationally intensive. However, it will be performed only
once to find the desired projectors of (6), and it does not affect
real-time execution.

Specifically, by performing the process (4)–(6), we can get
the two projectors Ur and Vr. Then, according to the idea in
(1)–(3), the system (10) can be rewritten as:⎧⎪⎨

⎪⎩
ẋr = U�

r f(xr, xr̄) + U�
r g(xr, xr̄)u,

ẋr̄ = U�
r̄ f(xr, xr̄) + U�

r̄ g(xr, xr̄)u,

y = CVrxr + CVr̄xr̄.

(11)

By neglecting the state xr̄, this system can be approximated by
a reduced-order model:

ẋr = fr(xr) + gr(xr)u, y = Crxr, (12)

where xr = U�
r x ∈ Rr, fr(xr) = U�

r f(xr) : Rr → Rr,
gr(xr) = U�

r g(xr) : Rr → Rr×m and Cr = CVr ∈ Rp×r.
Note that with the POD process, the reduced-order model of

(12) is still not available since the functions f(·) and g(·) of
(11) are both unknown. However, the POD process provides the
projectors Ur and Vr, which can be used to construct the output
matrix Cr = CVr and to real-time generate the system state
xr = U�

r x, which are necessary for the subsequent development
of dynamics modeling.

B. State-Feedback Identification

In this subsection, we consider an ideal case when the system
state xr of (12) are available via xr = U�

r x. A state-feedback
adaptive identification approach will be developed to identify
the unknown dynamics fr(xr) and gr(xr) of (12).

From Section II-B, for the unknown functions fr(xr) and
gr(xr) in (12), we know that there exist two RBF NN models
W ∗�

1 S1(xr) and W ∗�
2 S2(xr) such that:

fr(xr) = W ∗�
1 S1(xr) + ε1, gr(xr) = W ∗�

2 S2(xr) + ε2
(13)

where W ∗
1 ∈ RNn×r, W ∗

2 ∈ RNn×r, S1(xr) : Rr → RNn ,
S2(xr) : Rr → RNn×m. Based on this, we can construct two
RBF NN models to respectively identify the unknown functions
fr(xr) and gr(xr) as follows:

f̂r(xr) = Ŵ�
1 S1(xr), ĝr(xr) = Ŵ�

2 S2(xr) (14)

where Ŵ1 ∈ RNn×r and Ŵ2 ∈ RNn×r are the estimates of W ∗
1

and W ∗
2 , respectively.

Using the RBF NN models (14), we propose to design an
adaptive dynamics identifier as follows:⎧⎪⎪⎨

⎪⎪⎩
˙̂x = K(x̂− xr) + Ŵ�

1 S1(xr) + Ŵ�
2 S2(xr)u,

˙̂
W1 = −Γ1S1(xr)(x̂− xr)

�P − Γ1σ1Ŵ1,
˙̂
W2 = −Γ2S2(xr)u(x̂− xr)

�P − Γ2σ2Ŵ2,

(15)

where xr is the state of reduced-order system (12); P , K, Γi

and σi (with i = 1, 2) are design parameters satisfying: P =
P� > 0, K�P + PK < 0, Γi = Γ�

i > 0 and σi > 0 being a
small number.

The design of identifier (15) is based on a positive-
definite Lyapunov function V = x̃�P x̃+ tr(W̃�

1 Γ1W̃1) +
tr(W̃�

2 Γ2W̃2) with x̃ = x̂− xr and W̃i = Ŵi −W ∗
i (i = 1, 2).

The overall system stability and signals’ convergence can be
guaranteed based on the deterministic learning theory [15],
which for completeness of presentation is summarized as fol-
lows. Using the identifier (15) on the system (12), by setting the
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NN input trajectory xr to be recurrent through the NN training
process, we can have: (i) all signals in the closed-loop system
remain bounded; (ii) the estimation error |x̂− xr| will converge
to a small neighborhood around the origin; and the NN weight
Ŵi will converge to a small neighborhood of its optimal value
W ∗

i ; and (iii) a locally-accurate approximation of the unknown
functions fr(xr) and gr(xr) can be achieved by Ŵ�

1 S1(xr),
Ŵ�

2 S2(xr), respectively. Proofs are omitted in this letter, and
more details can be seen in [15, Th. 3.1].

Once the offline NN training process is completed, we can
further obtain the modeling result as follows. According to [15],
owing to the convergence of NN weights Ŵi to optimal val-
ues W ∗

i , we can obtain their corresponding constant weights
W̄i :=

1
t2−t1

∫ t2
t1

Ŵi(τ)dτ with [t1, t2] representing a time seg-
ment after the transient process. Two constant RBF NN models
W̄�

1 S1(xr) and W̄�
2 S2(xr) can be constructed, which are able

to locally accurately approximate the unknown functions fr(xr)
and gr(xr) of (12), i.e.,

fr(xr) ≈ W̄�
1 S1(xr); gr(xr) ≈ W̄�

2 S2(xr). (16)

These models will be used in the next sections for developing a
model-based FD scheme.

C. Output-Feedback Identification

The above identification approach is based on the system state
xr = U�

r x of (12), whose derivation requires the measurement
of the whole statex of (10). This could be difficult in practice due
to the large number of variables to measure. In this subsection,
we consider a more practical case when only soft robot’s inputs
u and outputs y are measurable. An output–feedback adaptive
identification approach will be developed.

Specifically, by using the measured robot’s output y ∈ Rp, a
high-gain observer is first developed as follows:

˙̌x = Kh(y̌ − y), y̌ = Crx̌, (17)

where x̌ is the estimate of system state xr in (12), y̌ is the
estimate of system output y in (12), Cr is from (12), and Kh

is a design parameter satisfying eig(KhCr) < 0. Particularly,
according to [20], by appropriately selecting a high gain Kh, the
signal x̌ can estimate the system states xr of (12) with arbitrarily
small estimation errors.

Using the state x̌ of (17), the identifier is designed as:⎧⎪⎪⎨
⎪⎪⎩

˙̂x = K(x̂− x̌) + Ŵ�
1 S1(x̌) + Ŵ�

2 S2(x̌)u,
˙̂
W1 = −Γ1S1(x̌)(x̂− x̌)�P − Γ1σ1Ŵ1,
˙̂
W2 = −Γ2S2(x̌)u(x̂− x̌)�P − Γ2σ2Ŵ2,

(18)

where the design parameters P , K, Γi and σi (with i = 1, 2) are
selected similar to (15).

From (17) and (18), and according to [15, Chap. 7], it is
seen that, as long as the estimation error x̌− xr is sufficiently
small, the identifier (18) can provide accurate identification for
unknown dynamics fr(·) and gr(·) of system (12). Associated
results of system stability and signals’ convergence are similar to
those of Section IV-B. Consequently, using the output-feedback
identifier (17) and (18), we can also obtain constant NN models

Fig. 4. First 10 singular values of: (a) robot’s position snapshots Sq ; and (b)
robot’s velocity snapshots Sv .

W̄�
1 S1(·) and W̄�

2 S2(·) to represent the identified knowledge of
dynamics fr(·) and gr(·), respectively, as seen in (16).

Remark 1: The high-gain observer (17) can achieve accurate
estimation for system state xr in (12) when the output matrix
Cr is full column rank, i.e., rank(Cr) = r. This is fulfilled by
appropriately arranging the number and position of sensors for
our studied robot.

D. Application to Soft Robot

1) Model Order Reduction: Model reduction of the soft trunk
robot requires measurement of the overall system state, which
could be very difficult in practice. Thus, this process is performed
on the FEM model of Fig. 2 using the SOFA framework. The
obtained results will be valid for both simulated FEM model
and the physical robot. Specifically, for our soft robot, we use
structure preserving model order reduction for system state
x = [q, v]� of (10), such that the reduced-order state can keep
its initial structure, i.e., xr = [xrq , xrv ]

�. The model reduction
process will be performed for soft robot’s position q and velocity
v, respectively. According to the POD algorithm in Section II-A,
we store 1200 snapshots of q and v, and construct the snapshot
matrices Sq and Sv in the form of (4), both of which have
dimension 28128× 1200. Their corresponding singular values
are shown in Fig. 4, which decrease very fast. We choose the
first 3 values, and obtain the projectors Vrq , Vrv , Urq , Urv all
with dimension 28128× 3. They guarantee that xrq = U�

rq
q,

q ≈ Vrqxrq and xrv = U�
rv
v, v ≈ Vrvxrv . With these projec-

tors, the large-scale model (10) can be transformed into a
low-order model (12), with system dimension being decreased
2n = 2× 28128 = 56256 → r = 2× 3 = 6.

2) Simulation Testing: We use the FEM model of Fig. 2
in SOFA framework to simulate the dynamical behavior of
the soft trunk robot, so as to examine the performance of the
proposed identification approach, including the state-feedback
and output-feedback cases. We first consider the state-feedback
case. For the identifier (15), the RBF NNs are constructed in
a regular lattice, with the centers evenly spaced on [−1, 1],
the nodes Nn = 531441, and the widths ηi = 0.25. Associated
parameters are designed as: K = −1.5, P = 1, Γi = 1.5, and
σi = 0.001 (i = 1, 2). The simulation results are illustrated in
Fig. 5. It shows that the state x̂ of the identifier (15) can provide
an accurate approximation of the state dynamics xr.

We further consider the output-feedback identification ap-
proach of (17) and (18). The system setup keeps the same as that
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Fig. 5. Simulation testing: approximation performance of state-feedback iden-
tifier (15) for system (12): state dynamics x̂ → xr .

Fig. 6. Simulation testing: approximation performance of output-feedback
high-gain observer (17) for system (12): state dynamics x̌ → xr .

Fig. 7. Comparison of robot’s dynamical behavior between FEM model
(simulation) and robot’s prototype (experiment): output trajectory (y1, y2).

of state-feedback case except the parameterKh = −20C−1
r . The

performance of high-gain observer (17) is illustrated in Fig. 6,
showing that the state x̌ can accurately estimate the system state
xr. Using these state estimate x̌, accurate identification can be
achieved, and associated performances are similar to those in
Fig. 5, which are omitted here due to the limited space.

3) Experimental Testing: We further consider to use the soft
robot’s physical prototype in Fig. 1, to test the performance
of proposed identification approach. Since the robot’s state x
is not measurable, the state-feedback identification approach
is not usable. We only consider the output-feedback case. We
first validate the constructed FEM model by comparing the
dynamical behavior between the simulated FEM model of Fig. 2
and the physical prototype of Fig. 1, as seen in Fig. 7, which
are close. This guarantees that the model-reduction results of
Section IV-D1 are valid on the robot’s prototype. Considering
the high-gain observer (17) and the identifier (18), associated
system setup and parameters are the same as those in the case

Fig. 8. Experiment testing: approximation performance of output-feedback
identifier (18) for soft robot: output dynamics ŷ → y with ŷ = Crx̂.

of simulated FEM model, as mentioned above. The modeling
performance is illustrated in Fig. 8. It shows that the robot’s real
output y can be accurately estimated by the output ŷ = Crx̂ of
the identifier (18). These justify that our approach can achieve
accurate identification for the dynamics of actual robot in Fig. 1.

V. FAULT DETECTION SCHEME

In this section, a model-based FD scheme will be proposed
with the modeling result of Section IV, to realize accurate FD
for the system (10) whenever an unknown fault occurs. For
implementation convenience, this FD scheme will be designed
only using the output measurement of system (10).

A. FD Observer Design

From Section IV, we know that two constant RBF NN models
W̄�

i Si(·) (i = 1, 2) can be obtained through offline NN training
process. Using these models, we propose to design an output-
feedback FD observer as follows:

˙̄x = Ky(ȳ − y) + W̄�
1 S1(x̄) + W̄�

2 S2(x̄)u, ȳ = Crx̄,
(19)

where Ky is a design gain to guarantee that the observer (19)
can be stable, which satisfies eig(KyCr) < 0.

Consider the observer (19) and the monitored system (12).
Note that the constant models W̄�

1 S1(·) and W̄�
2 S2(·) in (19) can

accurately approximate the unknown functions fr(·) and gr(·)
in (12), respectively, as seen in (16). Using the observer (19) to
monitor the system (12), the state x̄ can accurately estimate the
system state xr, and the output ȳ can also accurately estimate the
system output y, i.e., the error |ȳ − y| can be very small. Such an
accurate estimation can be guaranteed only when the monitored
system (12) is operating in normal mode, i.e., no change occurs
in system’s dynamics. Thus, the observer (19) can be used to
monitor the fault occurrence in system (12) for our FD scheme
design.

B. FD Decision Making

The design of our FD scheme is similar to our previous
work [21]. Associated implementation procedure is shown in
Fig. 3, and is clarified as follows. For the system (10), using
the measured system output y and input u, the FD observer
(19) can be operated to real-time generate the output ȳ. Then,
comparing the signals ȳ of (19) and y of (10), we can obtain
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Fig. 9. Soft robot operates under normal mode. The red point is the location
of end-effector.

Fig. 10. Approximation performance of FD observer (19) for soft robot: output
dynamics ȳ → y.

the FD signal as ‖ȳ − y‖1, where ‖ · ‖1 represents L1 norm
defined as ‖x(t)‖1 = 1

T

∫ t

t−T |x(τ)|dτ with T > 0 being a de-
sign parameter. With this FD signal, we have: when no fault
occurs in the studied robot, ‖ȳ − y‖1 can be very small, and
remain smaller than a given constant threshold, denoted as ρ̄. If
there exists a time instant td, such that the FD signal ‖ȳ − y‖1
becomes larger than the threshold ρ̄, i.e., ‖ȳ(td)− y(td)‖1 > ρ̄,
it indicates that a certain fault must occur in the robot. Thus,
the occurrence of fault can be detected at time td. The idea is
formalized as follows:

FD decision making: Compare the FD signal ‖ȳ − y‖1 with
the FD threshold ρ̄. If there exists a finite time td, such that
‖ȳ(td)− y(td)‖1 > ρ̄ holds. Then, the occurrence of a fault is
deduced at time td.

Remark 2: The parameter ρ̄ can be determined by trial-and-
errors in simulation or experiment study, as will be presented
below.

C. Application to Soft Robot

1) Validation of FD Observer: For the FD observer (19),
the constant NN models W̄�

i Si (i = 1, 2) is constructed with
constant weights W̄i =

1
100

∫ 1200

1100 Ŵi(t)dt, which are calculated
based on the NN weights’ convergence. The parameters are set
as Ky = −2C−1

r . To examine the estimation performance of
this observer, the prototype of soft robot in Fig. 1 is used. We
enable the soft robot to be operating in normal mode (i.e., no fault
occurs) in Fig. 9. Using the FD observer (19) on such a robot,
as seen in Fig. 10, accurate estimation for the robot’s output y
can be achieved by the FD observer’s output ȳ. This validates
the effectiveness of our designed FD observer.

Fig. 11. Soft robot operates under: faulty mode 1 (left); faulty mode 2 (middle);
and faulty mode 3 (right).

Fig. 12. Fault 1 occurs at time t = 41.25 sec, and is detected at time td =
42.34 sec. Detection time is td − t0 = 1.09 sec.

Fig. 13. Fault 2 occurs at time t = 42.61 sec, and is detected at time td = 45.5
sec. Detection time is td − t0 = 2.89 sec.

2) FD Performance: FD testing is also based on the proto-
type of soft robot. As shown in Fig. 11, three different kinds of
faults will be considered: (i) faulty mode 1: one of soft robot’s air
tubes is blocked; (ii) faulty mode 2: the motion/deformation of
robot’s one segment is stuck due to some external force; and (iii)
faulty mode 3: pump motors’ power source encounters a fault,
i.e., the power voltage raises by 50%. Considering these faults,
the FD process will be performed with FD observer (19) and
threshold ρ̄ = [7.7, 7.7, 1.43, 24.2, 22, 3.3], where the parame-
ter of L1 norm is T = 1.5 sec. Associated FD performances
can be seen in Figs. 12–14. In Fig. 12, after fault 1 occurs at
time t = 41.25 sec, some of the FD signals ‖yi − ȳi‖1 (with
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Fig. 14. Fault 3 occurs at time t = 50.55 sec, and is detected at time td =
54.27 sec. Detection time is td − t0 = 3.72 sec.

i = 1, 3, 4, 6) increase and become larger than their associated
threshold; as a result, fault 1 can detected at time td = 42.34
sec, and the detection time is td − t0 = 1.09 sec. Similar results
for the case of fault 2 and fault 3 can also be seen in Figs. 13 and
14. These results justify the effectiveness of our FD scheme on
detecting different types of faults occurring in the soft robot.

VI. CONCLUSION

This letter has investigated the dynamics-identification and
FD problems of soft robots. Specifically, FEM has been used
to derive a mathematical model for simulating the overall-state
dynamics of soft robot. Based on the FEM model, an adaptive
dynamics identification approach has been proposed by using
POD-based model-reduction and RBF NN techniques. This
approach can accurately identify the dominant state dynamics of
the soft robot, and the identified knowledge can be obtained and
stored in constant NN models. Model-based FD scheme has been
proposed with these modeling results to achieve efficient FD for
the soft robot whenever an unknown fault occurs. The proposed
methods have been validated with both simulation testing and
experiment testing.

In future work, we expect to extend our proposed dynamics-
modeling approach to design a reference-tracking controller for
soft robots. After this, we will try to combine this control method
with the FD scheme proposed in this letter, to further develop
a fault tolerant control scheme for providing more reliable soft
robot operations.
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