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Fault Detection and Isolation of Uncertain
Nonlinear Parabolic PDE Systems

Jingting Zhang, Chengzhi Yuan, Wei Zeng, Cong Wang

Abstract—This paper proposes a novel fault detection and iso-
lation (FDI) scheme for distributed parameter systems modeled
by a class of parabolic partial differential equations (PDEs) with
nonlinear uncertain dynamics. A key feature of the proposed
FDI scheme is its capability of dealing with the effects of system
uncertainties for accurate FDI. Specifically, an approximate
ordinary differential equation (ODE) system is first derived to
capture the dominant dynamics of the original PDE system.
An adaptive dynamics identification approach using radial basis
function neural network is then proposed based on this ODE
system, so as to achieve locally-accurate identification of the
uncertain system dynamics under normal and faulty modes.
A bank of FDI estimators with associated adaptive thresholds
are finally designed for real-time FDI decision making. Rigorous
analysis on the FDI performance in terms of fault detectability
and isolatability is provided. Simulation study on a representa-
tive transport-reaction process is conducted to demonstrate the
effectiveness and advantage of the proposed approach.

Index Terms—Partial differential equations, fault detection and
isolation, adaptive dynamics identification, deterministic learning,
neural network, distributed parameter systems.

I. INTRODUCTION

ISTRIBUTED parameter systems (DPSs) are dynamical
systems with inputs, outputs, and process parameters

that may vary temporally and spatially [1], [2]], [3], which
are usually modeled by partial differential equations (PDEs).
Some typical examples include fluid flow process [4], biolog-
ical process [5], convection diffusion reaction process [6] and
thermal process [7]. Particularly, due to the ever-increasing
technical demands, fault diagnosis of DPSs has been an
area of significantly growing interests. It is a critical step to
realize fault tolerant operations for minimizing performance
degradation and avoiding dangerous situations, such that safety
and reliability of DPSs can be guaranteed. To this end, the past
decades have witnessed tremendous progress in the research of
fault diagnosis for DPSs, leading to a large variety of methods,
see, e.g., [8l, [9l, [10], [L1], [12]] and the references therein.
As opposed to the substantially growing body of literature
on fault detection (FD) of DPSs (e.g., [8], [9], [1O], [13],
[14]), study on the fault isolation (FI) problem has gained
quite limited success, especially for those DPSs with nonlinear
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unstructured uncertain dynamics. Some research efforts have
been devoted to the development of FI methods for DPSs
with precisely known models. For example, [[15] proposed an
FI scheme using a finite-dimensional geometric approach. In
[6], the FI problem for DPSs with various actuator faults has
been investigated. For the FI problem of DPSs with nonlinear
uncertain dynamics, the research is still under-explored. One
of the technical difficulties is that the dynamics of faults
occurring in the system could be hidden within the system’s
general uncertain dynamics (e.g., unmodeled uncertainties),
such that the fault feature could not be accurately identified for
FI purpose. Some attempts have been made to overcome this
difficulty. The FI scheme proposed in [16] is able to distinguish
the effects between occurring fault and system uncertainties.
[L7], [18] developed a Lyapunov function-based FI scheme
for DPSs, in which system uncertainties were handled by
active control strategies. However, all these existing schemes
have not appropriately dealt with the system uncertainties
in the sense that occurring faults are typically required to
have sufficiently large magnitudes (e.g., larger than those of
the system uncertainties), limiting their wider applicability in
practice.

To overcome the above deficiencies, a promising strategy is
to realize accurate modeling of the system uncertain dynamics.
Adaptive neural network (NN)—as commonly used in the field
of control and modeling of DPSs with uncertain dynamics
(see, e.g., [19], [20], [21])—provides a powerful tool for this
purpose. However, different from the control problem, where
modeling errors of NN can typically be compensated by the
controllers, using NN for accurate fault detection and isolation
(FDI) of DPSs is rather challenging. This is because NN
approximation errors often have negative impacts on the FDI
residual signals, which cannot be structured and decoupled
from the occurring fault, leading to possible misjudgment of
FDI. To minimize such effects of NN approximation errors, a
key technical challenge is to satisfy the so-called persistently
exciting (PE) condition of associated NN regressor vectors
[22]. Recently, the deterministic learning (DL) theory pro-
posed in [23] has demonstrated that with radial basis function
neural networks (RBF NN), almost any recurrent trajectory
can result in the satisfaction of a partial PE condition. As
a result, locally accurate RBF NN identification of nonlinear
unstructured uncertain dynamics can be achieved along the
recurrent trajectory, and approximation errors of the associ-
ated NN can be guaranteed arbitrarily small [24]. With this
important property, the DL theory has been recognized in
recent years as a new and effective paradigm for the design
of FDI schemes for general nonlinear uncertain systems, see


http://arxiv.org/abs/2203.15850v1

[25], [26], [27], [28]]. This has opened new doors to the
field though, existing DL-based FDI schemes still suffer from
some limitations. For example, the FI methods of [25], [26],
[27] require the dynamics of occurring faults to perfectly
match those pre-defined/pre-trained faults. However, in many
practical situations, e.g., when the system suffers disturbances
resulting in changes of initial conditions or system parameters,
the dynamics of occurring fault often exhibit some differences
from those of the matched fault, which thus could result
in missed/false alarm under the FI schemes of [23], [26],
[27]. Furthermore, virtually all of these existing FDI methods
are focused on lumped parameter systems (LPSs) modeled
by finite-dimensional ordinary differential equations (ODEs),
which cannot be directly applied for infinite-dimensional DPSs
as considered in the current paper.

To extend the DL theory to the FDI problem of DPSs, one
promising strategy is to use a finite set of ODEs to approximate
the PDE model based on model reduction methods [29]. Con-
ventional spatial discretization-based approaches often lead
to a high-order ODE system [30], which however could be
computationally expensive for real-time implementation. An
alternative approach is based on the Galerkin method [2], [[19],
[31]. The key idea of the Galerkin method is as follows. It is
known that for dissipative parabolic DPSs, the eigenspectrum
of the associated spatial differential operator can be partitioned
into a finite set of slow eigenvalues and an infinite set of
fast but stable eigenvalues [34]. By neglecting the fast stable
components, a low-order ODE system can be obtained to
approximate the dominant dynamics of the PDE system, which
then could be utilized to facilitate the subsequent FDI design.
It is worth mentioning that for FDI of DPSs, only a few
research results have been obtained in [15], [6l], [17], [18],
which unfortunately are applicable only to some special types
of faults such as actuator faults, but cannot address the FDI
problem for DPSs with more general faults.

In this paper, we aim to investigate effective detection and
isolation approaches for general faults occurring in DPSs
modeled by a class of parabolic PDEs with nonlinear un-
structured uncertain dynamics. A novel Galerkin-DL-based
FDI scheme will be proposed. Specifically, with the Galerkin
method, an approximate ODE model is first derived to capture
the dominant dynamics of the PDE system. A DL-based
adaptive dynamics identification approach is then developed
based on this ODE system to realize locally-accurate identi-
fication of the uncertain system dynamics under normal and
all faulty modes. The associated knowledge can be obtained
and stored in constant RBF NN models. Afterwards, a bank
of FDI estimators are designed with these constant models,
where the FD estimators are used to detect the occurrence
of a fault, and the FI estimators (which will be activated
once the occurring fault is detected) are used to identify
the type of the occurring fault. Their generated residuals
can be used to characterize the dynamics of the occurring
fault and distinguish it from the system uncertain dynamics
for accurate FDI. Adaptive thresholds associated with such
FDI residuals are further designed to facilitate real-time FDI
decision making. In particular, to address the aforementioned
robustness issue encountered by the FI methods of [23],

[26], [27]], novel adaptive thresholds instead of fixed/constant
thresholds are designed in this paper, such that successful
isolation can still be guaranteed even when the occurring
fault does not exactly match any of the pre-trained faults. As
such, the proposed FI scheme possesses improved robustness
against slight deviations of fault dynamics due possibly to
unexpected system changes in, for example, initial conditions
and system parameters, as discussed above. We stress that our
FDI scheme does not require the faults to be of any special
type (e.g., actuator faults as required in [17], [L18]], [[15] and/or
sensor faults as required in [16]]), but is applicable to general
system faults. Rigorous analysis on the FDI performance is
conducted to demonstrate that our approach develops better
fault detectability and isolatability compared to the existing
methods of [16]], [6], [32]], [9]. Moreover, extensive simulations
applied to a representative transport-reaction process are also
conducted to demonstrate the effectiveness and advantage of
the proposed new methodologies.

It should be pointed out that this research work significantly
expands our previous work [14] which was focused on only the
FD problem of uncertain parabolic PDE systems; while in this
paper, we consider both the FD and FI problems. In addition,
new adaptive thresholds are proposed for more accurate and
efficient FDI, which advance the fixed/constant thresholds
proposed in [[14]. Furthermore, this paper also provides rig-
orous analysis to characterize the properties of the proposed
FDI scheme, which include: (i) fault detectability conditions
characterizing the class of faults that can be detected, and (ii)
fault isolatability conditions characterizing the class of faults
that can be isolated.

The contributions of this paper are summarized as fol-
lows: (i) The FDI problem for uncertain nonlinear parabolic
PDE systems is addressed using a novel Galerkin-DL-based
adaptive dynamics identification approach, which can achieve
locally-accurate identification of the dominant uncertain dy-
namics of the PDE system; (ii) New adaptive-threshold-based
FDI decision making schemes are proposed, which are capable
of dealing with general faults occurring in parabolic PDE
systems, including those faults that do not exactly match
the pre-defined/pre-trained faults; (iii) Rigorous analysis on
FDI performance, including fault detectability and isolatability
conditions, is provided to demonstrate the effectiveness of the
proposed approaches.

The remainder of this paper is organized as follows. Some
preliminaries and the problem statement are provided in Sec-
tion [l The DL-based adaptive dynamics learning approach is
presented in Section [l The FD scheme is proposed in Section
and the FI scheme is given in Section[V] Simulation studies
are presented in Section [VIl Section concludes the paper.

Notation. R, R, and N, denote, respectively, the set of real
numbers, the set of positive real numbers and the set of positive
integers; R™>*"™ denotes the set of m X n real matrices; R"
denotes the set of n x 1 real column vectors; || is the absolute
value of a real number; J\H is the 2-norm of a vector or a

matrix, ie. ||z = (z7z)>.



II. PRELIMINARIES AND PROBLEM FORMULATION
A. Radial Basis Function Neural Networks

The RBF NNs can be described by f,,(Z) =
SN wisi(Z) = WTS(Z) [33], where Z € Qz C RY
is the input vector, W = [wy, -+ ,wy,]T € RV is the
weight vector, N,, is the NN node number, and S(Z) =
[s11Z = all),- - sna(1Z = s, D], with si(-) being a
radial basis function, and ¢; (i = 1,2,--- , N,,) being distinct
points in state space. The Gaussian function s;(||Z — ¢||) =

[7(Z7<il)/2T(Z*<i)]

basis functi(;ns, where ¢; = [s;1,i2, -+ ,Sig] ' is the center of
the receptive field and v; is the width of the receptive field. The
Gaussian function belongs to the class of localized RBFs in the
sense that s;(||Z—«;||) — O as || Z|| — oo. Itis noted that S(2)
is bounded, i.e., there exists a real constant S3; € R, such
that ||S(Z)|| < Sar [23) Lemma 2.1]. It has been shown in
[33] that for any continuous function f(Z) : Q7 — R where
Qz C R? is a compact set, and for the NN approximator,
where the node number N,, is sufficiently large, there exists
an ideal constant weight vector W*, such that for any €* > 0,
f(Z) = W*TS(Z) + ¢,YZ € Qgz, where |¢] < € is the
ideal approximation error. The ideal weight vector W* is an
“artificial” quantity used for analysis, which is defined as
the value of W that minimizes |¢| for all Z € Qz C RY,
ie, W* £ argminycgn. {supscq, |f(Z) — WTS(Z)|}.
Moreover, based on the localization property of RBF NNs
[23]], for any bounded trajectory Z(t) within the compact set
Qz, f(Z) can be approximated by using a finite number of
neurons located in a local region along the trajectory: f(Z) =
we TSc(Z) + €, where ¢, is the approximation error, with
e¢ = 0(e) = O(¢"), 8c(Z) = [511(2), -+ 5j¢c(Z)]T € RYe,
Wg = [wjy, - ,w;C]T € RN, N; < N, and the integers
Ji = j1,- -, jc are defined such that |s;,(Z,)| > 6 (§ > Oisa
small positive constant) for some Z, € Z(t). In addition, it is
shown in [23] that for a localized RBF network W TS(Z)
whose centers are placed on a regular lattice, almost any
recurrent trajectoryﬂ Z(t) can lead to the satisfaction of the
PE condition of the regressor subvector S¢(Z). This result is
summarized in the following lemma.

is one of the most commonly used radial
T

exp

Lemma 1 ([23])). Consider any recurrent trajectory Z(t) that
remains in a bounded compact set )z C R9. For RBF network
WTS(Z) with centers placed on a regular lattice (large
enough to cover compact set Slz), the regressor subvector
Sc(Z) consisting of RBFs with centers located in a small
neighborhood of Z(t) satisfies the PE condition.

B. Problem Formulation

Consider a class of nonlinear parabolic PDE systems in one
spatial dimension with a state-space description in the form of’:
0x(z,1) 0x(z,t) 0%x(z,t)
a1 o, +a 022 + v
+ B(t - t0)¢k (‘Tv u)v

ey

YA recurrent trajectory represents a large set of periodic and periodic-
like trajectories generated from linear/nonlinear dynamics systems. A detailed
characterization of recurrent trajectories can be found in [23].

subject to the following boundary conditions and initial con-
dition:

Ox
i (zi,t ia-(2ist) = d,
m;x(z,t) +n 62(,2 )

x(z,0) = zo(2),

i=1,2 .

where z(z,t) € R is system state; u € R? is system
input; z € [z1,22] is the spatial coordinate; ¢ € [0,0)
is the time; f(x,u) € R and ¢*(x,u) € R are unknown
nonlinear functions satisfying locally Lipschitz continuous,
which represent nonlinear uncertain system dynamics and
deviations in system dynamics due to fault k € {1,2,--- , N}
(N € N,), respectively; B(t — to) is the time profile of the
occurring fault, with 3(t—t9) = 0 for ¢ < to and S(t—tg) =1
for t > tg; to is the unknown fault occurrence instant; % and
‘227”2” are the first-order and second-order spatial derivatives of
x(z,t), respectively; ay, as, my, ma,n1,na,d;,ds are known
constants. In this paper, it is assumed that the system state
x(z,t) is measurable at all locations z € [z1, 22| for all time

t € [0, 00).

Assumption 1. For the PDE system (I)—(2), the system input
u(t) and state x(z0,t) at any spatial point zy € [z1, 22| are
bounded and recurrent for all t € [0, 00).

Denote H as a Hilbert space of 1-D functions defined on
[21, 22] that satisfies the boundary conditions (), with inner

product and norm: (Ci,G) = [77Ci(2)G(2)dz, [|Gll, =
(1, C1>%, where (1(2), (2(z) are two elements of H. Accord-
ing to [6], [19], the PDE system (I)—(2) can be formulated as
an infinite-dimensional system:

X = Ax + fOu) + Bt —to)d"(x,u),  x(0) = x0, (3)

where x(t) = x(z,t) is the state function defined in H,
and A is a differential operator in H defined as Ax =
a1 22 —I—ag%, reD(A) :={reH|Ar € H, mjz(z,t)+
ni%ge (2i,t) = dy, i = 1,2}. For the operator A, the eigenvalue
problem is defined as Ap; = \jo; (j =1,2,---,00), where
A; denotes an eigenvalue, and ¢; denotes an eigenfunction.
The eigenspectrum of A, denoted by o(.A), is defined as the
set of all eigenvalues of A, ie., o(A) = {A1, A2, -+ , Ao}
According to [6], [19], for highly-dissipative PDE systems,
the eigenspectrum of A can be partitioned into a finite-
dimensional part consisting of m (m € N ) slow eigenvalues
and a stable infinite-dimensional complement containing the
remaining fast eigenvalues, and the separation between the
slow and fast eigenvalues of A is large. These properties can
be satisfied by the majority of diffusion-convection-reaction
processes [6], and are formalized in the following assumption.

Assumption 2. (i) Re{\1} > Re{X2} > --- > Re{\;} > ---,
where Re{\;} denotes the real part of \j; (ii) o(A) can
be partitioned as o(A) = o4(A) + o¢(A), where o4(A)
consists of the first m number of eigenvalues, that is, o0(A) =

A, A2, 000 s A}, and ‘g:{{;g’ = O(1); (iii) Re{Am+1} < 0
and RI:S/,\,:ﬂ} = O(v), where 1 := % < 1lis a small

positive constant.



Based on this assumption, consider the decomposition
H = Hs @ Hy, in which Hy = span{p1, 92, - ,@om}
denotes the finite dimensional space spanned by the
slow eigenfunctions corresponding to o4(A), and Hy =
span{ @1, ©m+2, "+ Yoo denotes the infinite dimensional
complement one spanned by the fast eigenfunctions corre-
sponding to of(.A). Under such a decomposition and through
separation of time and spatial variables [6], [19], the PDE
system (3) can be rewritten in the following equivalent form:

j75 = Asxs + fs(xsa Xfs u) + ﬁ(t - tO)(b?(Isa Xfs u),
X5 =Apxy + frl@s, xp,u) + Bt — to)df(zs, X5 u), @)
:Z?S(O) = Tsp, Xf(o) = Xfo>

where Zs = [Tg,, Xsas T ] € R™ X5 = [Xfmirs " s

Xfao]T € R*, Ay = diag{\i,---, A}, fs = (g5, [),
(bl; = <<P5a ¢k>’ Lsg = <<P5aX0>’ Af = diag{)‘erlv T a/\OO}’
ff = <90f7f>’ (b]; = <90f7¢k>’ Xfo = <90f=X0> with s =
(01, om] T and @ = [Pmi1, o) - By neglecting
the fast modes, we can obtain the following finite-dimensional
ODE model to characterize the dominant dynamics of the PDE

system in (G):
&5 = Astst f(@s,u)+B(E—t0) 0 (25, 0), ©5(0) = 24y ()

Remark 1. The process of model-reduction in Egs. (B)—(3)
is based on the Galerkin method, as adopted in existing
works [06l], [19|], which is included here for the completeness
of presentation. Note that such a process is not the major
contribution of this paper, thus its thorough analysis is not
provided here. Interested readers are referred to [34], [6]],
[19] for more details.

In the next sections, a novel FDI scheme will be proposed
based on the ODE system (3), so as to achieve accurate
detection and isolation for the occurring fault ¢*(z,,u).
Note that since the functions fs(z,u) and ¢¥(zs,u) are
both unknown, the model (3) cannot be directly used for
the FDI design. In view of this, the FDI scheme proposed
in this paper will consist of three components: (i) adaptive
dynamics learning, to achieve locally-accurate identification
of the uncertain dynamics f,(z,u) and ¢*(zs,u) in system
@) under the normal mode and all faulty modes; (ii) FD
scheme, to achieve rapid detection of fault occurrence; and
(iii) FI scheme, to realize accurate fault isolation, which will
be activated once the occurring fault is detected.

ITI. IDENTIFICATION OF SYSTEM UNCERTAIN DYNAMICS

In this section, a DL-based adaptive dynamics learning
approach will be developed to achieve accurate identification
of the uncertain dynamics fs(zs,u) and ¢*(zs,u) in system
(@) under all normal and faulty modes.

Consider the following faulty dynamic systems:

iy = Agxs + fs(s,u) + 8 (25, u), (6)

where £k = 0,1,--- N denotes the k-th faulty mode, with
k = 0 representing the normal mode, i.e., ¢%(zs,u) = 0.
Since the system uncertainty f(zs,u) and occurring fault
"% (xs,u) in (@ cannot be decoupled, by considering them

together and defining a general fault function n*(z,,u) :=
fs(zs,u) + ¢¥ (x4, u), we can rewrite the system (6)) as:

s, = Nis, —i-nf(xs,u), 1=1,2,---,m. @)

For the unknown function 1% (x5, u) in (Z), according to the
RBF NN approximation theory as presented in Section [I-Al
we know that there exists an ideal constant NN weight vector
Wi’“* € RN» (with N,, denoting the number of NN nodes)
such that

77? (Isv u) = Wik*TS(ISv u) + Ei’cov (3

where S(zs,u) : R™ x R? — R™» is a smooth RBF vector
and €¥ is the estimation error satisfying |e¥ | < &7 with &}
being a positive constant that can be made arbitrarily small
given a sufficiently large number of neurons. Based on this,
an adaptive dynamics identifier can be constructed:

A N trkT

T = — ai(&; — s,) + Nizs, + WFET S (24, ),
Wk = — ,TsWF —Ti(2 — x5,)S (s, 1),
foralli=1,2,--- ,mand k=0,1,--- N, where ; is the
identifier state, x5, is the state of system (7)), Wf € RV s
the estimate of W** in @), a; >0, T; =T >0, 0; > 0 are
design constants with o; being a small number.

C))

Theorem 1. Consider the adaptive learning system consisting
of the plant ([Q) and the identifier ([Q). Under Assumption [}
with initial condition WF(0) = 0, for all i = 1,---,m
and k = 0,1,--- N, we have: (i) all signals in the
system remain bounded; (ii) the estimation error |&; — x,
converges to a small neighborhood around the origin; and
(iii) a locally-accurate approximation of the unknown func-
tion nF(xs,u) is achieved by WFTS(z,,u) as well as
WETS(x,,u) along the recurrent system trajectory (zs,u),
where WF .= tzitl :12 Wk (r)dr with [t1, ts] representing a
time segment after the transient process.

Detailed proof can be completed by following a similar line
of the proof of [23| Th. 3.1], thus is omitted here.

Remark 2. Implementing (9) requires information of the
system state x4(t), which can be obtained by measuring the
state signal x(z,t) from the original PDE system (I)—(2) via

zs(t) = (ps(2), 2(2,1))-

Through the above learning process, the knowledge of
unknown function 7} (s, u) of (@) can finally be obtained and
stored in the constant RBF NN model WX T S(z, u), i.e.,

i (@s,u) = WFTS(ws,u) +€f, (10)

for all ¢ = 1,2,--- ,m and £ = 0,1,--- , N, where the
approximation error ¥ satisfies [eF| = O(e}) < &, with &
being a positive constant that can be made arbitrarily small by

constructing a sufficiently large number of neurons [22].

IV. FAULT DETECTION SCHEME

With the results obtained from the above section, a novel
FD scheme will be proposed in this section to achieve rapid
FD of system (3). The associated analysis of FD performance
will also be provided.



A. FD Estimator Design and Decision Making

With the constant RBF NN models W? T S(xz,,u) in (10),
a bank of FD estimators can be constructed as follows:

= 027 — ;) + Nz, WP S (s, u), (11)
where i = 1,---,m, xo is the estimator state with initial
condition z9(0) = z, (0), Zs, is the i-th state of system

@D, bY is a positive design constant, ); is the i-th diagonal
element of A in (B), and WP T S(z, u) is used to approximate
the function fs,(zs,u) in (@). Comparing the FD estimators
() with the monitored system (3), and based on (I0), the

following residual system (with residual 79 := 7% — ;) can
be derived:
e —ﬁ(t—to)¢ (x5, u), (12)

where ¢? is the approximation error of model WZ-OTS (zg,u)
for function f;, (x5, u) as defined in (I0), and ¢% (z,,u) is
the faulty dynamlcs occurring in system ([S]) The El norm of
residual signal 7¥ in ([2), i.e., ||1 * ft |2 (7)| dr
(t > T) with T being a design parameter will be used for
real-time FD decision making Before proceeding further, a
threshold, denoted as €7, will be further designed to upper
bound || z2( Hl when the monitored system (3) is operating
in normal mode (i.e., for time ¢ < tg). To this end, consider the
residual system (I2) for time ¢ < ¢, note that #(0) = 0 and
€9 < &, foralli=1,--- ) satisfies:

,m, the system state 77
¢
#20)] = |0 = [ ettt

t t *
g/ e bl (=) |5?| dr < / e bit= t=merdr < bO'
0 0

It implies that the FD residual signal H:E?(t)”l < g—%; holds
under the normal mode for all time ¢ < t3. Based on this, the
FD threshold &) can be designed as:

13)

50 .
€, =

%(5:""91)7 i=1,---,m, (14)
where ¢ is a small constant given in (I0), b is a design
constant from (1)), and p; > 0 is a small constant added as an
auxiliary parameter for preventing possible FD misjudgment.

With the FD estimators (I1)) and FD thresholds (I4)), the FD
decision making is based on the following principle: when
no fault occurs in the monitored system (3), the residuals
Hx Hl remain smaller than the corresponding thresholds

0 for all i = 1,--- ,m. If there exists a time instant ¢4, such
that for some i € {17 ---,m}, the FD residuals H:E?(td)Hl
become larger than the corresponding thresholds &%, i.e.,
|29 (ta)||, > €. it indicates that a certain fault must occur
in the system ([S]) As a result, the occurrence of fault can be
detected at time t4. The idea is formalized as follows:

Fault detection decision making: Compare the FD residual
signals ||Z0(¢)||, with the FD thresholds & for all i =
1,--- ,m. If there exists a finite time ¢4, such that, for some
ie{l,---, @) (ta)||, > & holds. Then, the occurrence
of a fault is deduced at time ¢,.

Remark 3. The parameter & in (I4) represents the
upper bound of steady absolute approximation error
|WikTS(:cs,u) — nf(xs,u)} of D) for all k = 0,1,---,m
Direct derivation of this parameter is quite difficult since the
function nf(xs,u) is not available. Alternatively, the value
of & could be evaluated in the following way: in the train-
ing phase of Section [[Ill with the obtained constant models
WikTS(xs,u), a bank of estimators in the form of (L1) (with
k=0,1,---,N) can be developed by setting b¥ = 1. Then,
followmg a similar line of the analysis in Egs. (-) {13), it
can be proved that the associated state error ¥ = 7% — x,
satisfies: |T¥(t)| < &F. Thus, with such estimators, the value
of & can be obtained as the upper bound of steady absolute
state error ~f =0,1,---,N.

Remark 4. The parameter o; in the FD threshold (I4) is
designed to improve robustness against system uncertainties.
More specific, note that although our FD scheme is developed
based on the approximate ODE system (Q)), the real-time FD
process will be carried out on the original PDE system (). The
associated system dynamics of models (3)) and () have a small
difference due to the fast dynamics of state x ;. The parameter
0i is thus introduced to compensate such a difference and
mitigate its potential effects on the FD performance.

Remark 5. The FD threshold (I4) can be made very small,
because the parameter £ can be made arbitrarily small by
constructing a sufficiently large number of neurons in the
training process of Section [l and the parameter o; can be
selected also as a very small number.

Remark 6. Most of existing FD schemes (e.g., [I0], [I3],
[32l], [9]) cannot deal with the effect of system uncertainty on
FD process. As a result, these schemes require the occurring
faults to be of sufficiently large magnitudes (larger than that
of system uncertainty) for successful detection, quite limiting
their fault detectability. However; this issue can be addressed
under our scheme. Specifically, as established in Section [Il
the system uncertainty fs,(zs,u) in (3 can be accurately
identified with the DL-based dynamics learning scheme and
the associated knowledge can be obtained and stored in
a constant NN model W2 S(xg,u) of (I0). By using this
model to design the FD estimator (L), the fault dynamics
¢F (x5, u) in system [B) can be accurately distinguished from
the uncertain dynamics f,(zs,u), and will be captured by the
FD signal 79 in (I2) for accurate detection. It will facilitate
our scheme to develop improved fault detectability compared
to the ones in [10], [I3|], [32], [9)]. Associated rigorous
analysis will be conducted in the next section.

Remark 7. Rapid FD process can be achieved with our ap-
proach. Note that the FD estimators of (1) are designed with
the constant NN models WP S(z5,u), whose implementation
does not involve any parameter adaptation. This will largely
shorten the FD time, such that FD process of (1) can be
achieved in a rapid manner.

B. Detectability Condition

To analyze the performance of the proposed FD scheme, in
the following, we will study the fault detectability condition,



i.e., under what conditions the occurring fault in system (3) is
detectable with our proposed FD scheme.

Theorem 2. Consider the system () and the fault detection
system consisting of estimators (L1) and thresholds (I4). If

there exists a time interval I = [to,tp] C [ty — T, tp] with
ta > to, such that for some i € {1,--- ,m},
|0k (zs(t), u(t))| > 267 + 205, VtET (15)
and
i P T(4E +4os
Limty— > S 060 TUEG o)
by g — 28] 3ps — 267

where p1; == min{|¢¥ (z,,u) j?(tb)Hl > é?
holds and the occurrence of a fault will be detected at time
ty, i.e., tqg = tp.

Proof. Consider the residual signal z9(t) of (I2). In the time
interval I, we assume that there exists a subinterval I’ C [
such that the signal ‘:E?(t)‘ has a very small magnitude, i.e.,

- 3,uz — 25*
- . 0 i
IV—{tEI-Wﬂﬂhi—jEr—}v

where p; > 26 + 2p; from (I3). For ¢ € I’, by denoting
t/, = min{¢t,t € I'}, the residual signal ¥ of (I2) satisfies

a7)

2] =

t
B(t)e M = [T (w0 + )ar
ta

> 8l e bY(E—15)

A

t
[ etk ) + i
ta

(18)
From (I3) and (IQ), for all t € I’, ¢% (x5, u) + &) satisfies

> o (zs,w)| = [2] > i — & (19)

Note that y1; — & > 0, it is easily seen that ¢¥ (z,,u) + €7
has an unchanged sign for all ¢ € I’, such that

|¢1; (ws,u) + 5?|

t
/ W) (B (24u) + 0)dr
178

t
= / et (t=T) |¢f§ (xs,u) + ag‘ dr
ty

t *
_bo —T * /’LZ - gz —bo —t
= / e T s = G)dr = St (1= eTHIT),
i (20)
Then, since |20 (¢,)| < 3u 14;02 & | inequality (I8) reduces to
~0 pi — & —b9(t—t’ '—25
2D

As a result, it can be deduced that |z (¢)| > % holds

for t — ¢/, > %ln Z‘foéﬁ , and the length of time interval I’ in
(T2, denoted by I', satisfies I’ < Elgln 7: ?:2655; . Furthermore,

it is easily verified that there exists at most one subinterval I’
defined in () over the time interval I. This implies that for
the time interval I — I’, we have:

3y, — 26
2 (t)] > “Tog Vel T, 22)

and the length of time interval I — I’ (i.e., | — 1) satisfies
I-U>1- 1 1n7”1 65 Based on this, from (I6), we have:

—2¢; *
), == [ @elarzi [ e
z; (ty :—/ Z; (T de—/ Z; ()| dr
1 T tb7 T I
1 i — 267 —2;
— LELS——L -
>T - 46 ( T 4b9
Ty — 67 3m—2§* &+o
l__l 1 1 > 1 .
7 oy A T R
(23)

Thus, ||Z(t,)||, > € holds and the occurrence of fault in
system (3) can be detected at time ¢,. This ends the proof. [

Remark 8. The detectability conditions (I3)—(I6) show that
if there exists a time interval [t,,ty] of (I6) such that the
occurring fault (b]; (zs,u) has a sufficiently large magnitude,
i.e., larger than the lower bound 2} + 29, of (I3), then, fault
detection can be achieved. Particularly, note that the lower
bound 2€} + 20; can be made arbitrarily small, as argued in
Remark [3) the conditions (I3)-(I6) are thus satisfiable even
for those faults with relatively small magnitudes.

V. FAULT ISOLATION SCHEME

Once the occurring fault is detected at time ¢4 (t4 > o), the
FI scheme will be activated to identify the type of the occurring
fault. This section will present the design of such an FI
scheme, as well as the associated analysis of FI performance.
To ease the presentation, we assume without loss of generality
that an unknown fault !’ that is similar to (but not necessarily

perfectly match) the trained fault I (I € {1,---,N}) is
occurring in system (), i.e.,
By = Asxs + fols,u) + 0L (x5, ). (24)

A. FI Estimator Design and Decision Making

With the constant models W} T S(z4,u) of (I0) obtained
from the identification phase of Section Il we propose to
construct a bank of FI estimators in the following form

= —bi(if + WikTS(:vs, u),

where i = 1,--- ,m, k =1,--- , N, Z¥ is the estimator state
with initial condmon z (td) = x,(tq), x5, is the i-th state
of system @4), \; is the i-th diagonal element of matrix A,
in @4), b; is a positive design constant, and WrTS(x, u)
approximates the function n¥ (z,u) = fs, (x5, u) + ¢¥ (x4, u)
of system (6). Comparing the FI estimators (23) with the
monitored system (24)), and based on (I0), the residual systems
(with residual ¥ k — 2,,) can be derived as follows:

=X
oh (s, ), (26)

where ¥ is the approximation error of model W/ T S(z, u)
for function n¥(z,,u) as defined in ([I0), ¢* (z,,u) is the k-
th faulty dynamics that has been learned/trained in Section
ML and ¢ v (x5, u) is the faulty dynamics occurring in system
@24). For the purpose of analy51s we introduce a so-called fault
mismatch function pZ (:175, u) = ¢F (z5,u) — (bl (zs,u) to
represent the dynamics difference between the trained fault &

— Ts,) + ANis, (25)

R Y A (s, u) —



and occurring fault [’. Then, the residual system (26) can be
rewritten as:

27)

2 ~k k k.U’
Ty = —bizy —ep +p; (s, u).

Similar to the FD case the £ norm of residual signal ¥
@D.ie. |ZF0)|, =+ L [ |#¥(r)|dr with T being a des1gn
parameter, will be utilized for real time FI decision making.

In the following, for FI decision making, an adaptive
threshold, denoted as ¥ (¢), will be further designed to upper
¥(t)||, when the occurring fault
I” in @4) is similar to the trained fault [. To this end, the
following assumption on the dynamics difference between the
occurring fault /" and similar fault [ is made.

Assumption 3. The dynamics difference between any pair of
the occurring fault I and its similar fault 1 (1 € {1,--- ,N}),
denoted by pé"l (xs,u), is bounded by a known function

pt(zs,u), ie., pé’l/(xs,u) < pi(zs,u) foralli=1,---,m

Remark 9. Assumption B3] indicates that the occurring fault
U is allowed to have a certain degree of difference from its
similar fault I, and such difference can be quantified by the
function ﬁﬁ(xs, w). In other words, it allows that the occurring
fault is not necessarily required to exactly match any of
the pre-defined/pre-trained faults, which however is typically
required by existing methods of [25]], [26l], [27)]. This property
renders our FI scheme a better robust capability of preventing
false/missed FI alarm in the presence of slight fault difference
during the FI process.

Based on the above setup, to design the FI adaptive thresh-
old, we consider the [-th residual system in (27)), its time-
domain solution can be derived as:

t
a(0) = al(ta)e ) 4 [ D ) — ey
t
' (28)
Note that Z\(ts) = 0 and |e}| < & from (I0), under
Assumption B], we have:

t
|ji(t)| S ‘/t e—bi(t—T)(|Ei
d

A @, w)|yar

. (29)
<§—i +/ —bit=m) 5l (24, u)dr.
b; t
It guarantees that the FI residual signal H:Eﬁ(t)Hl satisfies:
Jattoll, < 5+ | [ et - co
1

Thus, the FI adaptive threshold é.(¢) can be designed as:

aw:i+/e<”%mmm
ta

b;
for all ¢ = 1,---,m, where £ is a small constant given in
(), b; is a design constant from @3), and pl(zs,u) is a
known function defined in Assumption 3]

Remark 10. The FI thresholds (31) can be implemented in
a simplified form if the function pl(xs,u) is a constant p..
Specifically, with pl(xs,u) = pl, the threshold is given

;o (BD
1

by ei(t) = i—: + 'Z—%(l — e~bilt=ta))

simplified as a constant threshold éé =

H , which can be further
5 (& + )

Consequently, for the monitored system (24)), the proposed
FI scheme consists of the FI estimators (23) and the adaptive
threshold (B1). Real-time FI decision making is based on the
following principle. If there exists a unique residual system
in 27), say the [-th one, such that for all i = 1,---,m the
residual signals 7! satisfy || (t)”l < él(t) for all time ¢ > t4,
then, it can be deduced that the occurring fault I’ in @4) is
similar to the trained fault /. Using this idea, the FI decision
making scheme can be devised as follows.

Fault isolation decision making: Compare the FI residual
signals Hi:f(t)Hl with the FI adaptive thresholds e¥(¢) for
time ¢t > tg and all ¢ = 1,---,m, k = 1,---, N. If there
exists a unique [ € {1,---, N} such that: (i) Vi=1,--- ,m,
|Z4(t)]|, < ei(t) holds for all time ¢ > tq; and (i)
VEe{l,-- | N}/{1}, Ji € {1,--- ,m}, ||&F(t")]|, > eF(t¥)
holds at some time instant t* > 4. Then, the occurring fault
!’ can be identified similar to the fault /, and the isolation time
can be obtained as: t;5, = max {t*, k € {1,--- ,N}/{l}}.

Remark 11. Similar to the FD scheme of Section the
proposed FI scheme can effectively deal with the effect of
system uncertainty fs(zs,u) in (24) for accurate isolation,
and the associated FI process can be achieved in a rapid
manner. This is owing to the utilization of constant NN
models W} S(zs,u) (obtained through the training process
of Section [lTl) in the design of FI estimators (23).

Remark 12. Existing FI schemes in [I5|], [16], [I7] rely on
“constant” thresholds for FI, which would limit the ability
to separate the temporal dynamics of different type of faults
for accurate isolation. These schemes can be applicable only
to the faults that have sufficiently distinct differences. For
example, the FI schemes in [15|], [I/] can distinguish the
actuator faults occurring at different locations, but cannot
recognize the actuator faults that occur at the same location
but have different magnitudes. Advanced over these schemes,
our approach design an “adaptive” threshold of (31) by using
the nonlinear function pt(zs,u) that can accurately specify the
similarity of each l-th type of faults, as defined in Assumption
Bl With such a threshold, our FI scheme can achieve accu-
rate isolation even for the faults that have relatively small
differences. Improved FI accuracy and fault isolatability with
our scheme compared to the ones in [15)], [16|], [17] will be
demonstrated later.

Remark 13. Our FI scheme provides a unified framework to
address the isolation problem of general faults occurring in the
PDE system (I)—(2), which possesses enhanced applicability
compared to most existing FI schemes, e.g., [10], [15], [16],
L7], [18|]. Specifically, note that the schemes of [6l], [15],
[16l], [17], L8] are applicable only to some special cases.
For example, the FI scheme in [6] is tailored only to systems
with precisely known model; the method of [16] is tailored
to linear PDE systems; while the approaches in [15)], [17],
[18] are applicable only for actuator faults. Advanced over
these approaches, our FI scheme is developed for a class



of general PDE system with the form of (I)—2), in which
the occurring fault ¢*(x,u) is not required to be of any
special type and the system model is allowed to have uncertain
nonlinear component f(x,u).

B. Isolatability Condition

To analyze the performance of the proposed FI scheme,
the fault isolatability condition will be studied, i.e., under
what conditions the occurring fault I’ in system (24) can be
identified similar to a unique trained fault [.

Theorem 3. Consider the monitored system (24) and the fault

isolation system consisting of estimators (23) and adaptive
thresholds (31). For each k € {1,--- ,N}/{l} and some i €

{1,---,m}, if there exists a time interval I* = [tF t¥] C
[tk — T, t8] with t& > t4, such that
o @ow)| > b (eew) 426, vee Tt (32
and
26F +2pF 1. pi+2pF  +&
ko t’; t]lf > & _pkzmax (T + —lnu pZn]ax* & )
Hiq + 2pimax bl Hi = 251
pim 2 1 n3ui+4ﬁfm)
wi 4208 b =288 7
(33)
where p; = min{}pf’l (ZCS,U)} — pF(zs,u),Vt € I’“} and
ﬁzmax = max{pf(zs,u),Vt > ta}, then, ||ZF( >

(tk) holds, the occurring fault I will be ldenttﬁed szmzlar
to fault 1, and the isolation time is obtained as t;so =

max {ty,Vk € {1,--- ,N}/{l}}.

Proof. Consider the k-th residual signal #¥(t) of (27)
and the associated FI threshold &¥(t) of (3I), with k €
{1,--- ,N}/{l}. For the purpose of analysis, we introduce
a new variable V% (¢) satisfying

o0 =Sy [ i, 120 38
7 tq
and thus we have
; +
95 (t) < i— + / “biltmmIph  dr < 6 F Pl bp max - (35)
4 ta 7

where pf = max{ﬁl (:vs, ) Vi >t} ObViously, to
guarantee that ||3: ||1 ) holds at a time t = tb,
light of definitions (Iﬂl) and (]E[) it is necessary to examine
the magnitude of |Z¥(t)| — V¥ (t) for t € [t’C T,tr].

We first consider the time mterval IF C [th—T,tF]. Assume
that there exists a subinterval I¥ C I* such that the residual

signal }a: } — 9%(t) has a very small magnitude, i.e.,
i — 28]
Iy = {t eIt |z - vkt < %} (36)

where u; = mln{’p :vs,u)’ — pF(zs,u),Vt € TF} > 2¢7

from (32). For t € IF, by denotmg t* = min{t,t € IF},
based on (I0), the residual signal ¥ (¢ ) of @7) satisfies

|25 ()|
, t
- ff(t’f)e‘bi“‘tﬁw/ e

bi(t—7)
k! (
a
t
o
tk’

t
_ / .
24
~k gk
Z; (ta) €

t *
> / e_bi(t_T)pf’l (zs,u)dr| — & _
tk’ brL

(ZCS, u) — af)dT

l

bi(t—‘r)pf,[’ (xs,u)dT —b;(t—7) ygﬂ dr

Y

—bi(t—tF)

(k)| b

(37)

Under condition (32), it is seen that for all ¢ € I¥, pf’l (zs,u)

has an unchanged sign. Then, inequality (37) yields:

t
25 ()| > / e bilt=7)
t’

From (34) and (B8), we have:

t
> / e*bi(th)
tk’

T (s, w)

267

#4005 2

156
:/W
- k() - e

t *
2/ it gy — B
. b

k! )

ro g — 48T
)+ o )e
Hi oy b=ty _ 260
b, (1-e ) b;

ot (s w)| dr

B (e | et

5*
bi

bi(tftﬁl)

WD (b (g, )| = B (g w))dr —

=) gk e

— (205 (2% bttt

4pzmx + 7bi(t7t§/)
2b; '
(39

kU’
pi (:I:S7 ‘ -
, according to (33)

where

| = ) + mgE
P (g, u) > pi, and 95 (tF) < %

and (B6). Based on (B9), it can be deduced that: ]:Ek ] —
(1) > H250 holds for ¢ — ¢ > LI % Thus, the
length of time interval I {“ in (36, denoted by [;, satisfies:

1. 3 +4pF
[} < —In——t— Ttmax
bi i — 28

(40)
It is easy to verify that there exists at most one subinterval I¥
of (36) in the time interval I*, which implies

wi — 287

2] - 050 > B

vt e IF — IV, 41)



Next, following a similar line of the above analysis, we can
further deduce that there exists at most one subinterval 15 in
the time interval ¥, such that:

|ZF ()| -9k @) <0, vtell;

42
0 < [t 2

i — 28]
)|_19f(t)§%7 Vtelf—l§,

and the length of the time interval Ig, denoted by [5, satisfies:

1. i +2pF  +&
I < _lnw, (43)
bi i — 27

* | =k
Particularly, note that 9% (¢) < % from (33), inequality

yields:

x4 ok
_51 +p1max <}.’Z’;€(

44
h, (44)

)| —vi(t) <0, Vtels.

Finally, consider the signal |ZF(¢)| — 9¥(t) in the time
interval [t} — T, t}]. Dividing [t§ — T, t¥] into four subintervals,
e, [th—T,tF] = ([th =T, t5] = 1¥)U(I* —IFYU(IF — IF)U Ik,
from (33) and @0)—(@4), we obtain:

/ (j2t(7)| - k(r)ar
[tp—T,th]—I*

* * 4 gk
> / ( 5 pzmdx )dT — —(T _ lk)gz plmax :
[th—T,t5]— 1k b; b;
i — 28]
/ (’.’Z‘f(T)‘ — 19?(7’))d7’ > / udT
Ik 1k ok 2b;
;— 26F 1 3u +4pF o —28r

— lk_l Hi 7 lk__l Tmax v 7.

A A

7')} - ﬁf(T))dT > (I3 —12)0=0;

zk Ik

* ok
/k(|if(7')‘ —ﬁf(T))dT > /jg(_%ﬁh

€*+pl 14205+ &5 & +E
= Z—max 5 (—In max ) max.
(45)
Based on this, with condition (33), we have:
&5 (t5)]], — & (t5)
1 -
= (ja ()| ~ 9% (r)yar
([t =T tf]—I*)u(I*—IF)u(IF—I§)uIk
1 i+ 207 1. 3u; +4pF - 28
>_{(%)lk _ (_m H Pl o )M 57,
1o 4208 & pE &
— (T + 1 e B0
(T + b n o= 267 ) b >
(46)

Zy(ty)||, > eF(ty) holds, and the possibility that the
fault I’ occurring in system (24) is similar to the trained
fault k& (for any & € {1,---,N}/{l}) can be excluded.
Consequently, the fault I’ will be identified similar to the
trained fault [, and the isolation time is obtained as: t;5, =
max {t},Vk € {1,---,N}/{l}}. This ends the proof. O

Remark 14. The isolatability conditions (32)—(33) show that,
for different types of faults ¢} (x4,u) and ¢¥(xs,u) (I # k),

if their dynamic difference pf’l/ (xs,u) has sufficiently large
magnitudes (larger than the bound function p¥(zs,u) + 2£F)
over some time interval [tk t’g], then, these two types of faults
can be effectively isolated. Essentially, these conditions imply
that the FI process is achieved by utilizing the known nonlinear
function p¥ (x4, u) to separate the faulty dynamics of ¢é/ (zs,u)
and ¢F (zs,u).

VI. SIMULATION STUDIES

Consider a typical transport-reaction process in chemical
industry, i.e., a long, thin catalytic rod in a reactor, which is
borrowed from [6]], [19]. The spatio-temporal evolution of the
rod temperature is described by the following parabolic PDE:

2
8x((9,2;, t) _ 0 :(1;(;2, t) b (e T — )
+ Bu(b(2)u(t) — x(z, ) + B(t — to) " (x, u),

(47)
with boundary and initial conditions: :(0,t) = 0, z(m,t) =
0, z(z,0) = 15sin(z), where z(z,t) denotes the rod temper-
ature, u(t) is the manipulated input, f(z,u) = Br(e
e~ ")+ By (b(z)u—x) is an unknown function representing the
system uncertainty, and ¢* (z,u) is the fault function. 37 = 50
is a heat of action, v = 4 is an activation energy, 3, = 2 is
a heat transfer coefficient, b(z) = 1.5sin(z) + 1.8sin(2z) +
2sin(3z) is the actuator distribution function, ¢ty = 30s is
the fault occurrence time. For simulation purpose, the system
input is set as u(t) = 1.1 + 2sin(5t) — 2 cos(5t). Three types
of faults are considered. (i) Fault 1: an actuator fault with
a faulty actuator distribution function: b’'(z) = 1.8sin(z) +
1.8 sin(2z) +2sin(3z), leading to the associated fault function
¢ (x,u) = b(2)Buu with b(z) = b(z) — ' (z) = —0.3sin(z).
(ii) Fault 2: a state fault with fault function ¢2(z, u) = h(z)z,
where h(z) = h(z — 1) — h(z — 1.3) and h(-) is a heaviside
function. (iii) Fault 3: a component fault with a faulty system
parameter: BT = 48 and the associated fault function is thus

¢*(x,u) = fr(e” ™% — e ) with fr = fr — B = 2.

For the PDE system (47), we first derive its approximate
ODE model. Specifically, the eigenvalue problem of the spatial
differential operator in @J), i.e., Az = $%, 2 € D(A) =
{r e H|x(0,t) =0, x(m,t) = O}, can be solved analytically
by using the method of [34], resulting in the solution: \; =
—i%, ¢i(z) = y/Zsin(iz) with i = 1,--+,00. By choosing
the first m = 3 number of eigenvalues as dominant ones, we
can obtain the following ODE system to describe the dominant
dynamics of the PDE system (@7):

Ts, = NiTs; + fo, (Ts,u)+ B(t — tO)(b];- (zs,u), (48)
where i = 1,2,3, k = 1,2,3, z4,(t) = fg’*x(z,t)gpi(z) dz,
fsi(xs,u) = =By, (t +fo 5T T @y (D9 (2) _e—v)_|_
Bub(2)u(t))pi(2) dz, ¢} (zs,u) = Buu(t) [y b(2)pi(2) dz,
E(enw) = f7 2z DR(G)ei(z) dz and 6, s
Br foﬂ(e_”zizl’”%(”*’i(” — e ")p;(z)dz. Note that the
model cannot be directly used for the design of FDI

scheme, due to the existence of uncertain functions f;, (zs, )
and ¢% (x5, u). The state signals z,,, which are needed for

.
I+ —
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Fig. 1: Identification of function 19 (xs,u) with identifier (9. (a) Convergence of NN weight Wlo ; (b) estimation performance
of x5, by 21; and (c) function approximation performance of 10 (x5, u) by WPT S(zs,u).
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Fig. 2: FDI performance when fault 1’ occurs at time ¢y = 30s in system (@7): (a) FD residuals and thresholds; (b) 1-st FI

residuals and thresholds; (c¢) 2-nd FI residuals and thresholds;

the subsequent implementation, will be obtained based on
the measurement from the original PDE system @7) via
2, (t) = [y @(2,t)pi(z) dz, as discussed in Remark 2

With the system signals (xs,u), we can implement the
identification process for the uncertain dynamics 7 (zs,u)
fs, (s, u) + OF (x5,u) (Vi =1,2,3) of system (48) under all
normal and faulty modes with k£ = 0, 1, 2, 3. Specifically, ac-
cording to (@), the RBF network W*T S(z,, u) is constructed
in a regular lattice, with nodes N, = 14 x 9 x 8 x 13, the
center evenly spaced on [17.5,24] x [—1, 3] x [0, 3.5] x [—2, 4]
and the widths v; = 0.5. The design parameters in (9) are
a; = 4, I'; = 035 and 0; = 0.001 (Vi = 1,2,3). The
initial conditions are set as W*(0) = 0 and (0) = z,(0).
Consider the system (@8) operating in normal mode (with

and (d) 3-rd FI residuals and thresholds.

k=0, gbgi (zs,u) = 0), with identifier (@), the identification
performance for the dynamics of the 1-st state subsystem
of @S8) is shown in Fig. [l Particularly, Fig. [Tal shows the
convergence of NN weight Wlo. Fig. shows the accurate
tracking performance of Z; over the system state x,,. Based
on the identification result, a constant model W' S(x,u)
is obtained by WY = £ 114500 WO(r) dr, which can achieve
accurate approximation of the associated unknown function
n{(zs,u), as illustrated in Fig. [[d Then, following a similar
procedure established as above, simulation results for the
cases of faulty modes £ = 1,2,3 can also be obtained,
which are similar to those in Fig. Il and thus omitted here.
Consequently, with the method given in Remark 3] the values
of & (4 1,2,3) that are needed for implementing the
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Fig. 3: FDI performance when fault 2’ occurs at time ¢y = 30s in system (@Z): (a) FD residuals and thresholds; (b) 1-st FI

residuals and thresholds; (¢) 2-nd FI residuals and thresholds;

subsequent FDI scheme can be obtained as & =
& = 0.0430, and &5 = 0.0703.

0.0860,

Based on the above identification results, we can implement
the proposed FDI scheme for system (@8). Specifically, the
FD estimators ({I)) are implemented with constant NN models
WOTS(zs,u) and parameters b) = 2 (Vi = 1,2,3). The FD
thresholds (T4) are implemented with parameters £§ = 0.0860,
& = 0.0430, &5 = 0.0703, and g; = 0.12. The parameter of
L1 norm is set as T = 2.5s. Similarly, the FI estimators (23))
are implemented with constant NN models W* " S(x4, u) and
parameters b; = 2 (Vi = 1,2,3 and Vk = 1,2,3). The FI
adaptive thresholds (IE]) are implemented with given func-

tions pf(zs,u) = [ " (z,u)|pi(z )|dz where ¢!(z,u) =
| A;Buul w1th A = 0.25, ¢*(z,u) = }Ahx’ with A; =
(= = 1) = h(z = 1.3), and 3 (x,w) ’A T e 7)]
with A - = 1. For testing purpose, we assume three oc-

curr1ng faults to be detected and isolated, including fault 1:

¢V (x,u) = V(2)Buu with V'(z) = —0.5sin(z); fault 2":
% (z,u) = W (z)x with #/(z) = h(z — 1) — h(z — 1.2);
and fault 3: ¢% (z,u) = Br (e” T — e~ 7) with Br =
49. These faults satisfy lqﬁk(:r,u) —¢k/(;v,u)l < oF(x,u)
and l o )| = |70 (@) = oMo ueu(is] <
fo (z,u) |pi(2)|dz = pE(xs,u) for all k = 1,2,3 and

i =1,2,3, which verifies Assumption 3

In the testing phase, consider the fault 1’ occurring in system

and (d) 3-rd FI residuals and thresholds.

@) at time ty = 30s, the associated FDI simulation results
are displayed in Fig. 2l We first observe the FD performance
in Fig. 2al It is shown that once the fault 1’ occurs at time
to = 30s, all FD residuals ||3:0H (t=1,2 3) increase and
become larger than the assocrated thresholds ) at time tg =
30.9s, indicating that the occurring fault 1’ can be detected
at time ty = 30.9s. Once fault 1’ is detected, the FI system
consisting of FI estimators (23)) and FI adaptive thresholds (31))
is activated, and the FI performance can be seen in Figs. 2B
For the performance of the matched/similar FI estimator
(i.e., the 1-st FI estimator) as shown in Fig. [2bl it is seen that
all the residual signals H:z: || (=12, 3) remain smaller
than the associated threshold ¢; ( ) for all time ¢ > ¢4 = 30.9s.
For those estimators with unmatched/unsimilar faults (i.e., the
2-nd and the 3-rd FI estimators), the associated performance is
presented in Figs. IZI, d, respectively. It is shown that the 2-
nd FI residual ||3: Hl (W1th 1 = 3) becomes larger than the
threshold €7 (t) at t1me t? = 32.06s (see Fig. 2d); and all the
3-rd FI residuals H || 1 (W1th all i = 1,2, 3) become larger
than the respective thresholds e2(t) at time > = 32.03s (see
Fig. 2d). Thus, it can be deduced that the occurring fault 17 is
similar to the fault 1, and the isolation time can be obtained at:
tiso = max{t? t3} = 32.06s. Next, we further consider the
cases when faults 2’ and 3’ are occurring respectively in system
@7 at time ty = 30s, and the associated FDI performances
are illustrated in Figs. Bl and [] respectively. It is seen that the
occurring fault 2’ is detected at time ¢4 = 30.85s and isolated



12

— — —threshold: & residual: H??Hl — — —threshold: &)

0.6

residual: Ha":ng — — —threshold: &) residual: Hing

| 04

tqg = 31.93s S
0.25 |- - == e 3
| N N 0 L L
% 15 30 45 60 0 15 30 45 60 0 15 30 45 60
Time (sec) Time (sec) Time (sec)
@
) - =T 12 | - =1 2 =) - =1
— — —threshold: e} residual: Hzl Hl — — —threshold: &; residual: HTZHI — — —threshold: e3 residual: Hz3H1
1.6F F
0.8 jm————————A 5
t! = 33.84s ! T e
0.8 N 04 | |
/ 05f
! ! [
0 0 0
0 15 30 45 60 0 15 30 45 60 0 15 30 45 60
Time (sec) Time (sec) Time (sec)

(b)

— — —threshold: &? — — —threshold: &3

residual: Hif H |

residual: Hi%“l

— — —threshold: é§

residual: Hif Hl

o N A O
o~
N
o
w
w
—
w
|
|
|
|
|
|
|
T
{
-
o =

30
Time (sec)

Time (sec)

30
Time (sec)

©
0.9 - - : por - —
— — —threshold: &} residual: ij”l 0.75|— — —threshold: &} residual: Hw}“l 0.75|— — —threshold: &} residual: Hz;Hl
06 [ — Y (T T T T T T 05 (T T T T T T
! ) ]
03 [ 1 0.25¢ [ 0.25 I
 —
o . . 0 . , 0 . .
0 15 30 45 60 0 15 30 45 60 0 15 30 45 60
Time (sec) Time (sec) Time (sec)

(d
Fig. 4: FDI performance when fault 3’ occurs at time ¢ty = 30s in system (@Z): (a) FD residuals and thresholds; (b) 1-st FI

residuals and thresholds; (c¢) 2-nd FI residuals and thresholds;

at time t¢;5, = 32.52s; while the occurring fault 3’ is detected
at time t4 = 31.93s and isolated at time t;5, = 33.845s. These
simulation results demonstrate feasibility and effectiveness of
our proposed FDI scheme.

To further justify the advantage of our FI scheme in dealing
with the system uncertainty for accurate isolation, we compare
the performance of our scheme with the existing method
in [6]. A PDE system in the form of (7) is considered,
where the system structures/parameters keep unchanged except
b(z) =[h(z)—h(z—7/2),h(z—7/2) — h(z — )] and u(t) =
[1.1+6sin(3t); 1.1—6 cos(3t)]. This system model is assumed
partially-unknown, i.e., it consists of (known) nominal com-
ponent g%ﬁ + f(x)+ Bub(z)u = 227”2” +0.98r(e" T —e ) +
Bu(b(2)u — x) and uncertain/unknown component N (z)
0.187(e” ™% — e~ 7). Two types of actuator faults at differ-
ent locations are considered, i.e., ¢¥(x,u) = B.b(2)f¥(x)
(k =1,2) with f}(x) = [-0.052(%,t); 0] denoting fault 1 and
f2(x) = [0; —0.05z(%,t)] denoting fault 2. The approximate
ODE model of this system is derived with order m = 2.
For the FI scheme of [6], a bank of FI filters (generating
FI residuals r;(t), ¢ = 1,2) are constructed according to [6}
Eq. (27)] and the corresponding FI thresholds are given as
01 0.62 and 6o 0.64, which are determined based on
the upper bound of system uncertainty N(z), according to
[6 Remark 19]. For our scheme, the implementation process
follows a similar line established as above, in which the RBF
network is constructed with nodes V,, = 13 X 9 x 15 x 15, the

and (d) 3-rd FI residuals and thresholds.

center evenly spaced on [14, 26]x [—4, 4] x [—6, 8] x[—6, 8] and
the widths v; = 1; and the associated parameters are given as
bW =b; =1, 0, =0.02 (i = 1,2), & = 0.0495, & = 0.0191,
pr = 0.05, p7 = 0.2 and T = 2s. For testing purpose,
two test faults, i.e., fault 1/ with f1'(z) = [—0.043x(5,t); 0]
and fault 2/ with f2'(z) = [0; —0.043x(%,t)], are considered
occurring at time ty = 30s. Specifically, considering the case
when fault 1’ occurs, with our scheme, it can be seen in
Fig. [ that the occurring fault 1’ can be detected at time
tq 30.36s and be identified similar to fault 1 at time
tiso = 12 = 31.36s. With the scheme of [6], it is shown in
Fig. |6 that after fault occurrence time ¢y = 30s, the matched
FI residual r1(¢) do not increase and cross the associated
FI threshold ¢, indicating that isolation for fault 1’ cannot
be achieved. For the case of fault 2/, similar observations
can be seen in Figs. [[H8l where fault 2’ can be detected
at tg 30.38s and isolated at t;,,, = 32.29s with our
scheme; but isolation failed with the scheme of [6]. For such
results, one important reason lies in that: the FI method of [6]
cannot deal with the effect of the system uncertainty N (x)
during the FI process, such that the occurring fault dynamics
®*(x,u) are hidden within the uncertain dynamics N (z) and
cannot be captured for successful isolation; while our method
has successfully overcome this issue by achieving accurate
identification of system uncertainty N (z). These comparison
results are consistent with the discussions in Remarks [6] and
[[1l demonstrating the advantage of our FI scheme compared
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Fig. 8: FI performance with the method of [6] when actuator fault 2’ occurs at time to = 30s (for comparison study): (a) 1-st
FI residual and threshold; and (b) 2-nd FI residual and threshold.

to that of [6].

thus

Remark 15. Comparison study for the proposed FD scheme
has been performed in our preliminary work [[[4)], which is

not repeated here.



VII. CONCLUSIONS

In this paper, we have proposed a novel FDI scheme for
a class of uncertain nonlinear parabolic PDE systems. The
design was based on an approximate ODE system derived via
the Galerkin method, which is used to capture the dominant
dynamics of the original PDE system. Specifically, based on
the ODE system, a DL-based adaptive dynamics learning
approach was first developed to achieve locally-accurate iden-
tification of the system uncertain dynamics under normal and
all faulty modes. The learned knowledge was obtained and
stored in constant RBF NN models. Then, a bank of FDI
estimators can be designed with these models. In particular,
the FD estimators are used to detect the occurrence of a fault;
while the FI estimators, which will be activated once the
fault is detected, are used to identify the type of occurring
fault. The thresholds associated with these estimators were
further designed for real-time decision making. The associated
analysis on FDI performance, i.e., fault detectability and
isolatability conditions, has also been provided. Simulation
studies have been conducted to verify the effectiveness and
advantage of the proposed methodologies.
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