
Cybersickness Prediction from Integrated HMD’s Sensors: A Multimodal
Deep Fusion Approach using Eye-tracking and Head-tracking Data

Rifatul Islam * Kevin Desai† John Quarles‡

The University of Texas at San Antonio

ABSTRACT

Cybersickness prediction is one of the significant research chal-
lenges for real-time cybersickness reduction. Researchers have
proposed different approaches for predicting cybersickness from
bio-physiological data (e.g., heart rate, breathing rate, electroen-
cephalogram). However, collecting bio-physiological data often
requires external sensors, limiting locomotion and 3D-object manip-
ulation during the virtual reality (VR) experience. Limited research
has been done to predict cybersickness from the data readily avail-
able from the integrated sensors in head-mounted displays (HMDs)
(e.g., head-tracking, eye-tracking, motion features), allowing free
locomotion and 3D-object manipulation. This research proposes a
novel deep fusion network to predict cybersickness severity from
heterogeneous data readily available from the integrated HMD sen-
sors. We extracted 1755 stereoscopic videos, eye-tracking, and
head-tracking data along with the corresponding self-reported cy-
bersickness severity collected from 30 participants during their VR
gameplay. We applied several deep fusion approaches with the
heterogeneous data collected from the participants. Our results
suggest that cybersickness can be predicted with an accuracy of
87.77% and a root-mean-square error of 0.51 when using only eye-
tracking and head-tracking data. We concluded that eye-tracking and
head-tracking data are well suited for a standalone cybersickness
prediction framework.

Keywords: Cybersickness Prediction, Visually induced motion
sickness, Eye-tracking, Multimodal Deep Fusion Network.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Virtual reality; Human-
centered computing—Human computer interaction (HCI)—HCI
design and evaluation methods—User studies;

1 INTRODUCTION

Virtual reality(VR) has gained immense popularity in recent years
with the rapid development of head-mounted displays (HMDs). Cur-
rent HMDs can render virtual stereoscopic images at 90Hz with a
resolution of 2160 x 2160 per eye, and 180◦ field of view (FOV) [50].
However, VR experience can often induce motion sickness, com-
monly referred to as cybersickness or visually induced motion sick-
ness(VIMS) [19, 55]. Cybersickness-related discomforts during VR
gameplay include dizziness, nausea, stomach awareness, headache,
eyestrain, disorientation, fatigue, etc. [36]. These discomforts pose
a significant threat to the comfortable use of VR [8, 11]. In order to
reduce the effect of cybersickness, it is vital to know when the users
feel cybersickness during the VR immersion. Real-time cybersick-
ness prediction could be used in the future to automate cybersickness
reduction techniques during VR gameplay [21].
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Figure 1: Overview of the proposed deep fusion approach. The model
takes stereo-images, eye-tracking, and head-tracking data, which are
readily available from the HMDs, and can be used in a deep fusion
approach for cybersickness severity prediction

Prior research had success in assessing and predicting cybersick-
ness with bio-physiological signals (e.g., heart rate, galvanic skin
responses, electroencephalogram) [6, 23, 34, 59]. However, collect-
ing bio-physiological signals requires external sensors, which are
hard to deploy as a standalone cybersickness predictor in current
consumer-level HMDs (e.g., Oculus Quest, HTC Vive, Valve Index,
etc.). Moreover, users are often instructed to limit their movements
during the bio-physiological (e.g., electroencephalogram, heart-rate)
data collection process to avoid noisy data [6,23,32,34]. Thus, using
external sensors can limit VR locomotion and 3D-object manipu-
lation during the immersion, often requiring tethering and affixing
sensors to the users’ hands. This is not conducive to room-scale
VR experiences (e.g., Beat Saber, Half-Life: Alyx). Motivated by
the above-mentioned limitations, recent research is trying to predict
cybersickness from the data that are readily available from the in-
tegrated sensors (e.g., eye-tracking, head-tracking) of the current
consumer-level HMDs [2, 9].

In addition to using bio-physiological signals, researchers also
have investigated cybersickness prediction from stereoscopic video
[32,37,49]. In most prior research, a short pre-recorded stereoscopic
video was rendered in the HMDs [37, 49]. Other research used
stereoscopic images to predict visual discomforts [27, 47]. How-
ever, rendering pre-recorded stereoscopic video with an HMD does
not allow VR locomotion and 3D-object manipulation during VR
gameplay; thus, they are not an ideal sample of VR experiences. In
addition to that, most of the stereoscopic videos used by prior re-
search were very short (e.g., 1-2mins), which is not a representative
sample as cybersickness usually grows over time [43,52]. Therefore
generalizable VR experiences should offer the participants different
types of locomotion (i.e., walking, teleportation), 3D-object manipu-
lation (i.e., touching and interacting with 3D objects), and sufficient
exposure time.

In this research, we propose a novel deep fusion approach for pre-
dicting cybersickness from the data that are readily available in many
current HMDs (Figure 1) (e.g., eye-tracking, head-tracking, game-
play stereoscopic video). In addition to that, the VR simulations
that we used to collect our data allow the users to perform different
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types of locomotion and 3D-object manipulation, which are also
generalizable to consumer VR games. We collected VR gameplay
stereoscopic image data from 30 healthy participants along with the
eye-tracking and head-tracking data. Cybersickness ground truth
was constructed using a shortened version of verbally reported fast-
motion scale (FMS) [23, 31] rating from the participants at each 30s
interval during VR gameplay. In short our contribution includes:

• A novel dataset (SET) includes stereo-images, eye-tracking,
and head-tracking for cybersickness research.

• A deep fusion approach to predict and classify cybersickness
severity from the SET dataset.

• Insight into how eye movements significantly change due to
cybersickness.

• An evaluation of the accuracy and performance of the proposed
deep fusion model on SET dataset.

Our proposed deep fusion approach with eye-tracking (e.g., pupil di-
ameter, gaze data) and head-tracking (head rotation and orientation)
predicted the FMS score with a root-mean-square (RMSE) value of
0.51 on SET, which can be considered low error based on previous
research on other cybersickness datasets [37, 49]. In addition, we
also classified the severity of cybersickness and achieved an accu-
racy of 88.77% in classifying the severity of cybersickness from
eye-tracking and head-tracking data.

2 RELATED WORKS

Cybersickness is often described as the motion-sickness-like symp-
toms that usually happen during or after an immersive experience.
These symptoms include but are not limited to dizziness, nausea,
stomach awareness, burping, etc., and can last up to a week [30].
Although cybersickness is often referred to as motion sickness for
immersive systems, the root causes are different [55]. The popular
theories for cybersickness are sensory conflict theory, poison theory,
and postural instability theory [10, 36]. Among these theories, the
sensory conflict theory is the most accepted one, which states that
cybersickness occurs due to pseudo-motion-perception perceived
by human visual stimuli, whereas in reality, the person is stationary.
Other factors of cybersickness are display technologies, flickering,
lag, and individual differences [36].

Cybersickness often causes changes in human bio-physiological
signals. Researchers reported that heart rate (HR) and galvanic
skin responses (GSR), eye-blink rate, pupil diameter, and electroen-
cephalogram (EEG) change significantly due to the onset of cy-
bersickness [45, 48, 59] and found a significant positive correlation
between cybersickness and HR, EEG delta waves, and negative cor-
relation with EEG beta-waves [38, 59]. Other researchers reported
that GSR on the forehead has a higher correlation with cybersickness
and could be used to predict cybersickness [16,58]. Motivated by the
significant correlation between cybersickness and bio-physiological
signals, prior research proposed different approaches in predicting
cybersickness using bio-physiological signals [12, 26]. Islam et
al. [23] used HR and GSR to predict cybersickness with an accuracy
of 87.38% using deep neural networks that were collected from 22
participants. Kim et al. [34] reported accuracy of 89.16% using
EEG data. They collected EEG data from 200 participants using
8-channel EEG while the participants were immersed in 44 different
VR simulations. However, most of the cybersickness studies involv-
ing bio-physiological signals are only limited to seated conditions
with limited locomotion and 3D-object manipulation to avoid arti-
facts during bio-physiological data collection [3, 25]. In addition,
using bio-physiological data requires external sensors for cybersick-
ness prediction [26, 34]. For example, Islam et al. used NeuLog

GSR sensors attached to participant’s fingers, and Kim et al. used 8-
channel EEG sensors, which makes it harder to deploy a closed-loop
standalone cybersickness prediction and reduction system [22].

Recent research has investigated the efficacy of using stereo-
image datasets collected from VR Videos to predict cybersickness
[32, 37, 49]. Padmanaban et al. used 19 VR videos (i.e., 2 mins
length) as their dataset and used depth and optical flow features
to predict cybersickness with a root-mean-square error (RMSE)
of 12.6. Later, Lee et al. improved the results with an RMSE
value of 8.49 by using a 3D-convolutional neural network [29] and
using a multimodal deep fusion approach with optical-flow, disparity,
and saliency features. Kim et al. [32], used a convolutional auto-
encoder [42] to predict cybersickness by utilizing reconstruction
error captured from exceptional motion videos (i.e., fast motion
video). However, the videos used in most of the prior research
are pre-recorded and were rendered using the HMDs, instead of
allowing the participants to interact in the VR simulations. For
example, Kim et al. [32] used KITTI dataset [17], which are not
VR videos. Padmanaban and Lee et al. used pre-recorded short VR
videos (1-2 mins long), which also did not allow free locomotion and
3D-object manipulation and may not have included a long enough
exposure to introduce cybersickness [43, 52]. Jin et al. [28] used
five different VR videos and allowed users to do different types of
locomotion and 3D-object manipulation and achieved a coefficient
of determination (R2) value of 86.8% in predicting cybersickness
from the video features.

Due to the limitations of the approaches mentioned above
of cybersickness prediction from stereoscopic video and bio-
physiological signals, recent research has been focused on predicting
cybersickness from eye-tracking, and motion data [9, 14, 18, 39].
Chang et al. [9] reported that different eye features (e.g., fixation
duration and distance between the eye gaze and the object position
sequence) are highly correlated when the participants felt cybersick-
ness and proposed and support vector machine (SVM) regression
for cybersickness prediction. Lopes et al. [39] reported that pupil
position and eye-blink rate between the sickness group and the
non-sickness groups were significantly different. Guo et al. ex-
amined the use of optokinetic after nystagmus (OKAN) to predict
cybersickness reported that the cybersickness group had a consis-
tent pattern of OKAN, which had a significant correlation with the
corresponding subjective measures. Some other researchers also
investigated using head-tracking and postural data for cybersickness
prediction [2, 14, 52, 57]. Feigl et al. used motion parameter as an
objective measure of cybersickness [14]. Other research reported
that postural instability when standing can be used to predict the
likelihood of cybersickness [52].

In addition to using objective measurements (i.e., bio-
physiological signals, stereoscopic video) for cybersickness studies,
researchers often use subjective measures to detect cybersickness
severity. The most commonly used cybersickness subjective mea-
sures are simulator sickness questionnaire (SSQ) [30]. However,
several researchers have argued that cybersickness is different from
simulator sickness [5, 55] and proposed cybersickness susceptibility
questionnaire [15] and virtual reality sickness questionnaire [33] for
subjective measurement of cybersickness. However, these subjective
measures are often collected after the VR immersion. Therefore they
do not provide sufficient granular understanding of cybersickness
severity during VR immersion. Motivated by the shortcomings of
subjective measures after VR immersion, Keshavarz et al. proposed
the Fast Motion Scale (FMS) [31] to collect subjective measures dur-
ing VR immersion. In addition, jin et al. [28] used a Ranking-Rating
(RR) method to rate cybersickness during VR immersion on a scale
from [0-10]. They reported a significant correlation (i.e., .838) with
the RR method and SSQ, which they used for their ground-truth con-
struction. Similar to Jin et al., and [28], and Keshavarz et al. [31] we
used a shortened FMS scale [0-10] to collect the subjective measures
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of cybersickness during VR immersion.
This research presents a novel approach for cybersickness pre-

diction from the readily available HMD’s integrated sensors. More
specifically, we used eye-tracking, head-tracking, and stereoscopic
video data for cybersickness prediction. In addition to that, we also
used five different VR experiences that allowed the participants dif-
ferent locomotion and 3D-object manipulations. We had significant
prediction accuracy by using a deep fusion approach with eye and
head-tracking data, which we believe can be used to develop a stan-
dalone cybersickness prediction framework. We plan to explore this
direction in future studies.

3 USER STUDY

Motivated by the limitations of the currently available cybersickness
datasets that include eye-tracking, head-tracking, and stereo-images,
we conducted our data collection through a user study. We proposed
a total of 1755 short stereoscopic videos and their corresponding eye-
tracking and head-tracking data, collected from the 30 participants
(i.e., SET dataset). The data were extracted from five different VR
simulations. The following subsection details the user study and the
proposed SET dataset.

3.1 Virtual Environments
We used a total of five VR simulations in our study (Figure 2). Each
simulation lasted 7 minutes long unless the participants choose to
terminate earlier. The study simulations were developed based on
four criteria: a) Locomotion, b) Use of Controllers, c) Experience,
and d) Motion Perception. The simulations are as follows:

Beach City: In the Beach City simulation, participants used both
the controllers to navigate and manipulate 3D objects. The simula-
tion was rendered at room scale and was experienced while standing.
The participants were allowed to do both teleportation and natural
walking. The task was to shoot the virtual targets with the bow and
arrow from different pre-defined locations in the virtual environment.
Participants used both controllers for 3D-object manipulation.

Road Side: The task for the Road Side simulation was similar
to the Beach City simulation. However, the participants were only
allowed to navigate by walking, and teleportation was disabled. Par-
ticipants walked in the virtual environment to different pre-defined
locations to shoot the flying balloons and the targets using the long-
bow and arrow. The simulation was experienced at room scale while
standing, and participants were allowed to use both the controllers.

Furniture Shop: In the Furniture Shop simulation, participants
were only allowed to do teleportation for navigation. The task was
to find the longbow hidden in a virtual room environment and shoot
the virtual targets with the longbow. Participants were also allowed
to interact with the 3D objects in the virtual environment. The expe-
rience was room-scale, and participants could use both controllers.
Participants were also allowed to experience the simulation in both
”Seated” and ”Room-scale” conditions.

SeaVoyage: In the SeaVoyage simulation, participants were
placed in a virtual boat, and the task was to steer the boat using
one controller (i.e., participants were allowed to choose) and pass
all the checkpoints around the island. Participants experienced the
SeaVoyage simulation in a seated condition, and the participants
controlled the motion of the boat.

Roller Coaster: Participants experienced the Roller coaster in a
seated condition. The roller coaster takes 57s to complete a cycle,
and there was a pause of 10s between two consecutive roller coaster
cycles. Participants could freely orient their view but did not control
the movement of the roller coaster, and none of the controllers were
used.

3.2 Apparatus
We used an HTC-Vive Pro Eye for rendering the virtual simulations
with a resolution of 1440 x 1600 per eye and a refresh rate of 90Hz.

(a)

(b) (c)

(d) (e)

Figure 2: VR simulations used for the study. (a) Road Side Simulation,
(b) The SeaVoyage Simulation, (c) VR Roller Coaster Simulation,
(d)Beach City Simulation, (e) Furniture Shop Simulation

The field of view of the HMD was 110◦. The sound was played from
the integrated Vive headphones. The HMD was also configured
with the Vive wireless adapter to allow the participants a smooth
VR experience. All the simulations were executed on an Intel i7
CPU with 32Gb of memory and Nvidia RTX 2070 GPU. The virtual
reality simulations were developed using Unity 3D. The Dynamic
Water Physics 2 1 asset was used for the water simulations, and
Beach City Props 2 asset was used for the Beach City simulation.
For collecting the eye-tracking data (e.g., gaze, pupil diameter), we
used HTC SRanipal SDK and Tobii HTC Vive Devkit. In order to
collect all the data safely without blocking the VR simulation, we
developed an asynchronous LogAPI module 3 for Unity software.
Table 1 summarizes the raw data collected from using the LogAPI,
which we plan to make open-source in the future. In order to sanitize
the HMD and the controllers, we used Cleanbox4, which emits
UVC light provides safe, hospital-grade hygiene, killing 99.99% of
contagions.

3.3 Participants
We recruited 30 participants (M:15, F15) for our user study. The
mean age was 29.04 years, and the standard deviation was 9.26
years. Their races include Asian, Black Caucasian, Hispanic and
Pacific Islander. None of the participants reported any vestibular
dysfunction and were not taking any medication related to motion
sickness. All the participants had normal or corrected-to-normal
vision. The data were safely collected using an Institutional Review
Board (IRB)-approved COVID-19 protocol reviewed by a medical
professional. All the participants filled out a verbal and written
COVID-19 screening questionnaire before starting the study. The
temperature reading on the forehead was also taken before entering
the lab facility. Participants were instructed to wear a facial mask
during the study, and a 6ft distance between the participants and the
experimenters was ensured. Among the 30 participants, three partic-
ipants’ data could not be used due to technical issues (i.e., Bluetooth
and HTC-Vive wireless adapter black screen issue5). Therefore for
this study, we only considered the data collected from 27 partici-

1https://bit.ly/3bX7D6n
2https://bit.ly/3eZLDtm
3https://github.com/shovonis/HMDLogManager
4https://cleanboxtech.com
5https://bit.ly/2RBjjVe
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Table 1: List of raw data collected from the HTC-Vive Pro Eye’s
integrated Sensors

Data Type Data

Eye-Tracking Data

Left pupil diameter (mm)

Right pupil diameter (mm)

Left normalized gaze direction

Right normalized gaze direction

Convergence distance (mm)

Head-Tracking Data Head Quaternion

Rotation (i.e., x, y, z and w)

Stereo Images data

Left Image

Right Image

Optical Flow

Disparity Map

(a) (b) (c)

Figure 3: (a) Left view image of a stereoscopic frame from the VR
roller coaster simulation, (b) The corresponding optical flow of the
same frame and (c) The corresponding disparity map using the semi-
global block matching method.

pants. All the participants were paid $30 hourly for their time and
efforts, and each study took approximately 2 hours.

3.4 Data Collection Procedure

Participants were instructed to verbally report their discomfort on an
FMS scale [31] from [0-10] whenever a pre-recorded voice prompt
was played at each 30s interval during the VR simulations. Rating
”0” means no significant change of discomfort compared to resting
baseline, and rating ”10” means significant discomfort compared
to resting conditions. Participants had the flexibility to quit or post-
pone the study at any point in time. Data were collected using the
following steps:

1. First, the participants filled out their demographic information
and whether they have a prior immersive VR experience.

2. Participants then completed a training VR session to under-
stand how to use the controllers for different locomotion tech-
niques(e.g., teleportation) and 3D object manipulation.

3. After completing the VR training session, the five VR simu-
lations were played in counter-balanced order. Eye and head
position was calibrated before the start of each simulation.
Each VR simulation lasted 7 minutes long unless the partici-
pants decided to quit earlier.

4. After completing each VR simulation, participants filled out an
SSQ questionnaire and rested (i.e., participants were allowed to
rest until they felt normal) before starting the next simulation.

4 DATA PROCESSING AND ANALYSIS

The HTC-Vive Pro Eye rendered the simulation at 90Hz. However,
collecting stereo-image data at 90Hz per frame is a computationally
expensive process that caused flickering to the simulation (i.e., I/O
operations to save 90 images per frame refresh causes flickering to
the VR simulation). Therefore, all the data were collected with a
20Hz sampling rate to minimize flickering issues. We extracted a
total of 9 features from the eye-tracking data (i.e., pupil diameter
of both eyes, normalized gaze direction, convergence distance) and
four features from the Head-Tracking data (i.e., Head quaternion
values-x, y, z, and w). The eye-tracking and head-tracking data were
normalized using the following formula:

Di =
Di −μ

σ
(1)

Here, μ represents the mean of the data, and σ is the standard
deviation of the data. For stereo images, we extracted the left and
right eye images at 256 x 256 resolution. Table 1 summarizes the
collected raw features from the integrated HMD’s sensors.

We used only the left view image for optical flow calculation
similar to prior works [37,49]. The optical flow was calculated using
the dense optical flow algorithm proposed by Gunnar Farneback [13].
The motion displacement was represented using the RGB color
representation, and the optical flow was transformed to the polar
HSV values. Finally, the calculated optical flow is mapped back to
RGB representation (Figure 3.b).

A disparity map represents the horizontal differences of each
pixel between the left and right view of the stereo images, which
prior researchers used to predict cybersickness [37, 49]. Similar to
Lee et al., [37] we used a semi-global block matching [20] method
with a filter of size (5 x 5) to obtain our disparity maps from the
stereo images (Figure 3.c)

FMS 
Reported

Dt

Disparity(t-10)

Optical Flow(t-10)

Frames(t-10)

Eye-Tracking(t-10)

Head-Tracking(t-10)

FMS 
Reported

Dt+1

Disparity(t+1-10)

Optical Flow(t+1-10)

Frames(t+1-10)

Eye-Tracking(t+1-10)

Head-Tracking(t+1-10)

30s Interval

Figure 4: Data slicing process and ground truth construction. Dt
represents one data point at time t, which consists of the optical flow,
disparity, frames, eye-tracking and head-tracking data from (t −10)s
to ts.

4.1 Ground-Truth Construction
In order to construct the ground truth, we used the FMS score col-
lected at each 30s interval during the VR simulations. Although we
have collected SSQ after each simulation, SSQ scores do not provide
granular cybersickness severity during the simulation; therefore, we
used the FMS scores for ground truth construction in this study.

4.1.1 Cybersickness Regression
Let’s consider that at time t the user reported their current FMSt
on a scale from [0-10]. Since cybersickness provokes delay in reac-
tion time [45, 46], the point in time when the participants reported
FMSt might not be the exact time when they started feeling that
corresponding discomforts. Therefore, we considered all the data,
D (i.e., frames, eye-tracking and head-tracking) from (t −10)s to ts
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Figure 5: Normalized Gaze Heat Map of a particular Individual for
”Beach City” Simulation (a) Normalized gaze heat-map when the
Individual felt moderate to high sickness (b) Normalized gaze heat-
map when the Individual felt None or low sickness.

Table 2: Summary of the paired t-test of the gaze data (normalized-X)
between the sickness and non-sickness measures (df=26). * denotes
significant with p-value < .05

Simulations Mean SD t-value

Beach City (Non-Sickness)* -0.012 0.13

Beach City (Sickness) -0.043 0.15 3.52

Road Side(Non-Sickness)* -0.0031 0.146

Road Side(Sickness) 0.028 0.152 -3.28

Furniture Shop (Non-Sickness) -0.007 0.118

Furniture Shop (Sickness) -0.008 0.134 -0.014

Sea Voyage (Non-Sickness)* -0.013 0.15

Sea Voyage (Sickness ) 0.009 .11 -2.55

Roller Coaster (Non-Sickness)* -0.013 0.13

Roller Coaster (Sickness ) 0.004 0.10 -2.30

to construct the region of interests data points associated with the
corresponding FMSt (Figure 4). Formally, the ground-truth can be
represented as follow:

[Dt−10,Dt−9,Dt−8, ...,Dt ]→ FMSt

Here, D represents the consecutive frames, optical flow, disparity
map, eye-tracking, and head-tracking data sampled at 20Hz. We
collected a total of 11s (i.e., including data Dt ) of data. The task of
regression is to predict the FMSt given the data from [D(t−10) – Dt ].

4.1.2 Cybersickness Severity Classification
We conducted a distribution analysis on the collected FMS scores
from all participants for the cybersickness severity classification
task similar to prior research [23]. The first quantile (Q1) of the
distribution was 1.0, the second quantile (Q2) of the distribution
was 2.0, and the third quantile (Q3) of the distribution was 4.0. We
used the following rule for cybersickness severity classification CSt
similar to a prior study [23].

CSt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

None, if, 0≤ FMSt ≤Q1

Low, if, Q1 < FMSt ≤Q2

Medium, if, Q2 < FMSt ≤Q3

High, if, FMSt >Q3

(2)

Based on the FMSt the cybersickness severity (CSt ) was cat-
egorized into four groups: 1) None, 2) Low, 3) Medium and 4)
High. The classification task is to classify CSt given the data points
[D(t−10) – Dt ].

Table 3: Summary of the paired t-test of the gaze data (normalized-Y)
between the sickness and non-sickness measures (df=26). * denotes
significant with p-value < .05

Simulations Mean SD t-value

Beach City (Non-Sickness)* -0.114 0.132

Beach City (Sickness) -0.130 0.110 2.01

Road Side(Non-Sickness)* -0.114 0.140

Road Side(Sickness) -0.158 0.117 5.36

Furniture Shop (Non-Sickness) -0.053 0.130

Furniture Shop (Sickness) -0.056 0.133 0.35

Sea Voyage (Non-Sickness)* -0.03 0.096

Sea Voyage (Sickness ) 0.051 0.080 -14.93

Roller Coaster (Non-Sickness)* -0.175 0.159

Roller Coaster (Sickness ) -0.099 0.172 -7.26

Table 4: Summary of the paired t-test of the pupil diameter (mm)
between the sickness and non-sickness measures (df=26). * denotes
significant with p-value < .05

Simulations Mean SD t-value

Beach City (Non-Sickness)* 3.19 1.30

Beach City (Sickness) 2.99 0.86 3.01

Road Side(Non-Sickness)* 3.20 1.16

Road Side(Sickness) 2.79 0.76 5.56

Furniture Shop (Non-Sickness) 2.50 1.64

Furniture Shop (Sickness) 2.55 1.60 -0.34

Sea Voyage (Non-Sickness)* 2.82 0.35

Sea Voyage (Sickness ) 2.27 1.01 11.55

Roller Coaster (Non-Sickness)* 3.56 0.83

Roller Coaster (Sickness ) 3.00 1.01 9.29

We had a total of 27 participants and five VR simulations, each
lasting 7 minutes. The FMS was collected at each 30s interval.
We extracted 1755 stereoscopic videos with their corresponding
eye-tracking and head-tracking data. Each video was 11s seconds
long; therefore, we had a total data sample of 19,305. (i.e., each Dt
contains 11s of stereoscopic video, corresponding eye-tracking, and
head-tracking data).

4.2 Data Analysis

We conducted an initial data analysis of the eye-tracking and head-
tracking data. Figure 5 illustrated the normalized gaze heat-map
when a participant reported they felt moderate to severe cybersick-
ness (Figure 5.a) and when the same participant reported they were
not feeling cybersickness (Figure 5.b). The figure shows that the
participant fixated their gaze in the middle of the screen without any
cybersickness and gazed all over the screen when feeling cybersick-
ness.

We also conducted paired t-tests of the eye-tracking and head-
tracking data between the non-sickness (i.e., When the participant’s
FMSt ≤ 2) and sickness (i.e., when same participant’s FMSt > 2)).
For these paired t-tests, we used the repeated measure data from
all 27 participants, grouping and averaging their eye-tracking data
into sickness and non-sickness measurements for each VR simu-
lation. Each simulation had a different task and different types of
locomotion and motion perception. So the eye-tracking data from
one simulation was not directly comparable with other simulations;
therefore, we report the paired t-test analysis for each simulation.
We have found significant differences (p < .05) in the gaze data and
pupil-diameter between sickness and non-sickness measurements for
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Figure 6: Overview of the proposed Deep Fusion Model. (a) Proposed 3D-CNN architecture for the stereoscopic video data, (b) Proposed Time
Distributed CNN-LSTM layer for Eye-tracking and Head-Tracking data and (c) The Deep Fusion Layer to fuse different modalities and predict
cybersickness

all the simulations except the ”Furniture Shop” simulation. Paired
t-test results for the ”Gaze data” for all the simulations are summa-
rized in Table 2 and 3 . Significant differences(p < .05) in pupil
diameter were also found for the simulations (Table 4) between
sickness and non-sickness measurements. During the ”Furniture
Shop” Simulation, only two participants reported FMSt > 2, and no
significant difference(p > .05) in gaze data and pupil diameter were
found. For the head-tracking data, we did not find any significant
differences in the quaternion values (x, y, z, and w) of head rota-
tion grouped by the sickness and the non-sickness data from each
simulation (p > .05).

5 MULTI-MODAL NEURAL NETWORK

We proposed a multi-modal deep fusion network for predicting
the FMSt and classifying CSt . The model takes input from the
heterogeneous data inputs Dt . We used a 3D-CNN [29] model for the
video data. In order to learn features from the eye-tracking and the
head-tracking data, we used a Time-distributed CNN-LSTM model
similar to Islam et al., [23]. Features learned from each modalities
are fused together using a late fusion approach [54] (Figure 6).

5.1 3D-CNN For Learning Spatiotemporal Features
We used multi-layered 3D-CNN architecture for learning the spa-
tiotemporal features from the stereoscopic video, optical flow, and
disparity map (Figure 6). The model takes input as a sequence of
consecutive frames from the video source and learns the hidden
spatiotemporal features. The timestep is set to 60, which means that
the model will take 60 consecutive frames at a time at a single input.
Therefore, the input shape of the model is (60 x 256 x 256 x 3). The
kernel size for the convolutional layer is set to (3 x 3 x 3). We used
ReLU activation functions [1] for the convolutional layer, and the
L2 kernel regularizes with the regularization factor as 0.01. A 3D
max-pool layer follows the 3D-convolutional layer with a pool size
of (2 x 2 x 2) with a stride of 2. After the 3D max-pool layer, we per-
formed a batch-normalization to reduce batch overfitting. We used a

total of 3 sets of convolutional, max-pool, and batch-normalization
operations. The final output is flattened, which was used as input for
the late-fusion operation. A summary of the 3D-CNN operations is
illustrated in Figure 6 (a).

5.2 Time-Distributed CNN-LSTM
We used Time-distributed CNN-LSTM layers for learning the fea-
tures from the eye-tracking and head-tracking data (Figure 6.b).
The timestep is set to 60, forwarded into four subsequence time-
distributed 1-D convolutional layers of shape (4 x 15). This process
allows the network to learn the four subsequences of features simul-
taneously from the eye and head-tracking data. The eye-tracking
data have nine features, and the head-tracking data have four features
(Table 1). Therefore, the eye-tracking input data shape is (4 x 15
x 9), and the head-tracking input data shape is (4 x 15 x 4). We
used ReLU as the activation function for the convolutional layers.
The convolution layers are followed by a time-distributed 1D max-
pool layer with a stride of size two and a pool size of 2. We add a
Dropout layer with a dropout rate of 50% to reduce the overfitting
of the model. The output from the dropout layer is then flattened
for the next LSTM layer, which learns the temporal features from
the data. The LSTM layer had a recurrent dropout of 20%, and the
output is followed by a fully connected Dense layer with 256 filters.
The output from the Dense layer is then flattened and forwarded to a
batch-normalization layer to reduce batch overfitting of the data.

5.3 Deep Fusion Layer
The flattened outputs from the 3D-CNN and the CNN-LSTM layers
are fused together using a concatenate layer. The output from the
concatenate layer is then passed to a fully connected Dense Layer
with 256 neurons and ReLU as the activation function (Figure 6 (c)).
The final output layer then outputs the result. For cybersickness
severity classification, we used ’Softmax’ as the activation function
with four neurons. The softmax function outputs the probability of
each one of the classes (e.g., None, Low, Medium, or High), and
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Table 5: Mean Accuracy, Precision and Recall of the 10-Fold Cross Validation on Cybersickness Severity Classification

Fusing Modalities % Accuracy % Precision % Recall
None Low Medium High None Low Medium High

Video 45.83 66.67 50.0 83.33 62.50 1.0 25.0 55.55 71.42

Video + Optical Flow 54.17 87.50 42.85 80.0 87.50 87.50 75.0 44.44 98.56

Video + Opt. + Disparity 50.78 92.05 50.0 85.71 87.5 87.50 75.0 66.67 98.32

Video + Opt. + Disp. + Eye + Head 52.15 95.35 54.41 62.71 53.84 50.21 55.55 66.67 94.38

Head-Tracking 73.2 73.94 66.82 73.57 79.79 88.42 81.03 41.80 81.63

Eye-Tracking 80.7 87.31 72.41 75.88 85.90 98.11 68.33 72.12 84.37

Eye + Head Tracking 87.7 96.78 83.34 79.58 91.73 96.23 78.87 85.87 89.92

Table 6: Mean R2, PLCC and RMSE of the 10-fold Cross Validation of
the FMS Regression

Fusing Modalities R2 PLCC RMSE
Video 0.12 0.27 4.23

Video + Optical Flow 0.15 0.34 3.89

Video + Optical + Disparity 0.09 0.24 3.65

Video + Opt. + Disp. + Eye + Head 0.02 0.25 3.27

Head-Tracking 0.18 0.52 1.23

Eye-Tracking 0.56 0.79 0.93

Eye + Head Tracking 0.67 0.84 0.51

the maximum probability value is used to predict the cybersickness
severity class. We used several late fusion approaches from the
different modalities in Table 1. For cybersickness FMSt prediction,
we used the Linear activation function for the final Dense output
layer with one neuron, which outputs the predicted ˆFMSt .

5.4 Loss Function
We used different loss functions for the regression and the classifica-
tion task. For the regression task (e.g., predicting FMSt ) we used
root-mean-square error as the loss function (Equation 3).

RMSE =

√
∑N

i=1(FMSi
t − ˆFMSi

t)
2

N
(3)

Here, FMSi
t is the actual verbally reported FMS score from the

participant at time t and ˆFMSi
t is the predicted FMS score by the

network. N represents the number of samples. For the cybersickness
severity classification task CSt we use categorical cross-entropy loss
function (Equation 4).

L =−
K

∑
i=0

(CSt ∗ log( ˆCSt)) (4)

Here, CSt refers to the ground truth class of the cybersickness
severity and ˆCSt refers to the predicted severity class, and K is the
total number of classes.

6 EXPERIMENT SETUP

We used TensorFlow for training and evaluating our models. All
the models were run in an NVidia DGX-1 Server with Ubuntu 18.0
operating system. The server had 2 x Intel Xeon processors and 4 x
NVIDIA Tesla P100 GPU. The system had a memory of 512GB.

6.1 Model Evaluation
We used a 10-fold cross-validation method to train and test the
performance of the proposed model similar to prior works [4, 40, 49,
53].In k-fold cross-validation, the dataset is partitioned into k groups.

Out of the k partition, a single partition is used for testing the model,
and the rest (k-1) partitions are used for training the model [24]. The
process is repeated k times each time by selecting a different test
partition and the remaining (k-1) partition as a training dataset, thus
reducing any bias from the dataset [4].

6.1.1 Hyper-Parameter and Validation
In order to fine-tune the model parameters during the training pro-
cess, we used 20% of the training dataset as validation data during
each fold [51].6 We used Adam as the optimizer for our model
with epochs of 300 and a batch size of 512. The parameters are set
using hyper-parameter tuning. In order to prevent the model from
overfitting, we deployed an early-stopping strategy with a patience
value of 20 while training the model [7].

7 RESULTS

The proposed multimodal deep fusion approach for predicting FMSt
and classifying the cybersickness severity achieved significant accu-
racy while using eye-tracking and head-tracking data.

7.1 Cybersickness Severity Classification
The mean accuracy, precision and recall of the during the 10-fold
cross validation are presented in Table 5. The proposed deep fu-
sion approach with eye-tracking and head-tracking data achieved
an accuracy of 87.7%. The model achieved higher precision and
recall value for the ”None” severity class, which was 96.78% and
96.23% respectively, and 91.23% and 89.91% for the ”High” cyber-
sickness severity class, respectively. However, the model struggled
in differentiating between the ”low” and ”Moderate” classes. When
only using the eye-tracking data, the model achieved an accuracy
of 80.70%. The model also achieved an accuracy of 73.2% while
only using head-tracking data. The precision and recall value for
the eye-tracking and head-tracking data was significantly higher
than the other fusion approaches. However, the accuracy of using
the stereoscopic video data and other modalities resulted in poor
performance. For example, while using stereoscopic video, optical
flow, disparity, eye, and head-tracking data, the model only achieved
an accuracy of 52.15%.

7.2 Cybersickness FMSt Prediction
The R-squared (R2), Pearson-Linear-Correlation coefficient (PLCC)
and the RMSE value for the 10-fold cross-validation for the cyber-
sickness FMSt prediction results are summarized in Table 6. The
PLCC represents the linear correlation between the predicted ˆFMSt
and the actual FMSt , while the R2 value represents the proportion
of the variance between them. Similar to the cybersickness classi-
fication task, the model achieved significantly better results while
using eye-tracking and head-tracking data. The PLCC, RMSE, and
R2 value, while using eye-tracking and head-tracking data for the

6Validation data is not test data and 20% validation data is randomly

extracted during each fold of the 10-fold cross-validation process.
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model, was 0.84, 0.51, and 0.67, respectively. With eye-tracking
data, the model achieved a PLCC of 0.79 with an RMSE value of
0.93. Compared to prior works [37, 49], this is a significant im-
provement in terms of PLCC and RMSE. Although the proposed
deep-fusion approach achieved significant results with eye and head-
tracking data, the model struggled with fusing the video data (Table
6).

8 DISCUSSION

In this research, we present a novel deep fusion approach of cyber-
sickness prediction and classification using the data that are readily
available from the integrated HMD sensors. The proposed deep
fusion model achieved an accuracy of 87.7% in classifying cyber-
sickness severity from eye-tracking and head-tracking data. The
precision and recall percentage for different cybersickness sever-
ity classes were also significantly higher with fused eye-tracking
and head-tracking data. The model also predicted the FMSt with
an RMSE value of 0.51. The model also had significantly better
precision and recall value in predicting No cybersickness and High
Cybersickness (Table 5).

Since there is a minimal eye-tracking dataset for the cybersickness
study, our results are not directly comparable with the prior works.
However, we compared our results in terms of using integrated
sensors versus using external sensors. Chang et al.; reported an R2

value of 34.8% using integrated eye-tracking data from FOVE VR
headset for cybersickness prediction [9]. Wibirama et. al reported an
R2 value of 4.2% using eye-tracking data [56]. Our proposed deep
fusion approach with eye-tracking data only achieved an R2 value
of 56%, using both eye-tracking and head-tracking data; the model
achieved an R2 value of 67%. When using external physiological
sensors, Dennison et al.; reported accuracy of 78% in classifying
cybersickness severity [12]. Using the cognitive features of EEG,
Kim et al. reported accuracy of 89.16% [34]. Padmanaban et al.
[49] reported accuracy of 51.94% using video and optical features
of cybersickness. Using a 3D-CNN architecture, Lee et al., [37]
improved PLCC to 84.51% using the Padmanaban et al. video data.
Our proposed approach achieved an accuracy of 87.77% using eye-
tracking and head-tracking data, which is slightly less than the using
EEG data and significantly better than using external physiological
data [12].

The primary objective of cybersickness prediction is to know
when the user is feeling discomfort during VR immersion and dy-
namically apply reduction techniques to alleviate cybersickness-
related discomfort [22, 35]. Researchers have long been trying to
predict cybersickness severity from bio-physiological signals and
achieved significant accuracy in predicting the onset of cybersick-
ness from bio-physiological signals [23, 37, 38]. However, since
bio-physiological sensors data collection relies on external sensors
and often get corrupted by locomotion and 3D-object manipulation,
most of the prior research was only conducted in seated conditions
with limited 3D-object manipulation [23, 37, 38], which is not an
ideal representation of widely available VR simulations (e.g., many
VR games require 3D object manipulation and free locomotion).
In contrast, using an HMD’s integrated sensors does not suffer
from these limitations. Inspired by the above-mentioned limitations,
Hewlett-Packard (HP) has recently released a commercial VR HMD
(i.e., Reverb G2 Omnicept Edition), which includes HR and Eye-
tracking sensors. We firmly believe that using integrated sensors is
highly suitable for standalone real-time cybersickness prediction and
reduction framework and other adaptive VR frameworks [22, 44].

9 LIMITATIONS

Although our proposed deep fusion model achieved significant per-
formance improvement by using eye-tracking and head-tracking
data, the model performed poorly on stereoscopic video data (Table
5 and 6). The 3D-CNN model could not learn the temporal features
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Figure 7: An misclassification example of the video data by the model.
The proposed model was unable to capture the temporal features
from the video data.

from the stereoscopic video, optical flow, and disparity map. A
misclassification example is illustrated in Figure 7. We had a total of
1755 stereoscopic videos captured from the five VR simulations. The
video clips are different concerning temporal features because every
participant did the task differently at a different time during each VR
simulation. However, there are potential spatial similarities between
the video clips. It is likely that the model only learned the spatial
features of the video clips and ignoring the temporal features. In this
research, we only used the SET dataset that we proposed. The model
needs to be evaluated with the video datasets that are available [49].
In addition, for ground-truth construction (Figure 4), we used only
FMSt reported by the participants at time t, which is likely to be
suffered from the individual difference among the participants. Ide-
ally, the 10-fold cross-validation should be performed with respect
to the number of participants on each fold. However, this would
require a large number of participants (e.g., typically more than 1000
participants) to to learn individual biases [49]. Therefore we used
10-fold cross validation similar to prior studies for cybersickenss
prediction [32, 37, 49].

10 CONCLUSION AND FUTURE WORKS

The proposed deep fusion model with eye-tracking and head-
tracking data achieved an accuracy of 87.77% in cybersickness
prediction. The model also performed well according to the other
performance evaluation metrics (i.e., RMSE, PLCC). To the best of
our knowledge, this is the state-of-the-art performance for predict-
ing cybersickness using eye-tracking and head-tracking data. Since
most of the current commercial head-mounted displays are inte-
grated with eye and head tracking sensors, we believe that a similar
approach can help develop a standalone cybersickness prediction
and reduction framework [22]. We intend to explore the efficacy of
using standalone cybersickness predictor from the integrated HMD
sensors and test the standalone model with additional user studies in
the future. We also plan to improve the ground-truth construction by
utilizing SSQ scores collected after each simulation [49]. Since the
model did not have expected performance with the video data, in the
future, we also want to improve the performance of the stereoscopic
video data by using a deep convolutional graph network [41].
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