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Abstract— This paper is focused on the output tracking
control problem of a wave equation with both matched and
unmatched boundary uncertainties. An adaptive boundary
feedback control scheme is proposed by utilizing radial basis
function neural networks (RBF NNs) to deal with the effect of
system uncertainties. Specifically, two RBF NN models are first
developed to approximate the matched and unmatched system
uncertain dynamics respectively. Based on this, an adaptive NN
control scheme is derived, which consists of: (i) an adaptive
boundary feedback controller embedded by the NN model
approximating the matched uncertainty, for rendering stable
and accurate tracking control; and (ii) a reference model
embedded by the NN model approximating the unmatched
uncertainty, for generating a prescribed reference trajectory.
Rigorous analysis is performed using the Lyapunov theory
and the C0-semigroup theory to prove that our proposed
control scheme can guarantee closed-loop stability and well-
posedness. Simulation study has been conducted to demonstrate
effectiveness of the proposed approach.

I. INTRODUCTION

Flexible distributed parameter systems (DPSs) represent a
class of very important modern engineering systems, such
as spacecraft with flexible attachments, flexible link robot
arm, and flexible marine riser [1]. Such systems are usually
described by wave equation and/or beam equation—a class of
second-order partial differential equations. The fundamental
research on control of wave equations and beam equations
has been attracting ever-increasing attention in recent years,
see, e.g., [2], [3], [4] and the references therein.

Boundary control of DPSs has been of particular interests,
due to its practical advantage of demanding fewer sensors
and actuators in control design and implementation. Some
research efforts have been devoted to the development of
boundary feedback control of DPSs modeled by wave equa-
tions. For example, [5] proposed a backstepping technique-
based boundary control scheme for the stabilization problem
of an unstable wave equation. [6] considered the stabilization
problem of a wave equation that has anti-damping on the
uncontrolled boundary. All these schemes are developed for
the stabilization problem of wave equations. In addition
to the stabilization problem, many practical applications,
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e.g., flexible structures in robotics or manufacturing [7],
[8], require the operating system’s states/output to accu-
rately track certain prescribed trajectories or to realize high-
performance point-to-point motion. In these situations, the
tracking-control design will be of theoretical and practical
importance. A few research efforts have been dedicated to the
boundary tracking control design of wave equations, e.g., [9],
[10], [11], which however still leave some challenging issues
yet to be adequately addressed. For example, [9] proposed
an adaptive servomechanism output feedback control scheme
for a wave equation with boundary disturbance, which is
limited to the case of harmonic disturbances. [10] devel-
oped a disturbance estimator for general disturbance, in-
cluding internal uncertainty and external disturbance, which
is applicable only to unmatched uncertainties, i.e., system
uncertainties and control input are at different boundaries.
[11] considered the control problem of a wave equation that
has in-domain and boundary uncertainties, which however
required system uncertainties to be structured by a finite-
dimensional exosystem. Despite rich literature, most of these
schemes cannot be applied to wave equations that have both
matched and unmatched boundary uncertainties, especially
to the ones where system uncertainties are presented with
unstructured nonlinear dynamics. In this case, associated
boundary control design problem is still under-explored.

For the control design of systems with uncertain nonlinear-
ities, neural networks (NNs) together with adaptive control
techniques provide useful tools due to their inherent approx-
imation and online learning capabilities. Some attempts have
been made for the development of adaptive NN-based control
design of uncertain nonlinear DPSs, e.g., existing research
works in [12], [13], [14]. These schemes utilized adaptive
NN to deal with the effect of system uncertainties, such that
system stability, control accuracy and robustness property of
the resulting control system can be guaranteed based on the
Lyapunov stability theory. However, most of these schemes
are interior or distributed control approaches, and their
implementation requires the system states to be measurable
for all spatial locations and all time instants, which may not
be feasible in many application scenarios. For extending NN
technique to the boundary feedback control design, which is
a more effective control strategy developing better practical
applicability for DPSs, only a few research results have been
obtained in [15], [1]. In [15], radial basis function neural
network (RBF NN) was used to deal with unknown input
saturations, dead zones and model uncertainties occurring
in a flexible manipulator. [1] developed an adaptive neural
boundary feedback control scheme for nonlinear flexible



DPSs modeled by a nonuniform wave equation. However,
these schemes are applicable only to the stabilization prob-
lem of DPSs, and required the system uncertainty to be
matched with control input. It is therefore of interest to
develop a new adaptive NN-based boundary control scheme
for the tracking problem of flexible DPSs with both matched
and unmatched system uncertain nonlinearities.

In this paper, we focus on the output tracking control prob-
lem of a wave equation that has both matched and unmatched
system uncertain nonlinearities, i.e., the system uncertainties
that respectively lie at the controlled boundary and the un-
controlled boundary. An adaptive NN-based boundary feed-
back control scheme will be proposed by employing RBF NN
to deal with the effect of system uncertainties. Specifically,
we first develop two RBF NN models to respectively approx-
imate the matched and unmatched system uncertain nonlinear
dynamics. An adaptive NN-based control framework will be
proposed with these RBF NN models, which consists of: (i)
an adaptive boundary feedback controller embedded with the
NN model approximating the matched uncertainty, to render
stable and accurate tracking control; and (ii) a reference
model with the NN model approximating the unmatched
uncertainty, to generate a prescribed reference trajectory.
Rigorous analysis is performed based on the Lyapunov
stability theory and the C0-semigroup theory to prove that
our proposed control scheme can guarantee overall system
stability and closed-loop well-posedness. Simulation study of
a numerical example is conducted to justify the effectiveness
of the proposed approach.

The main contributions of this paper are summarized as
follows. (i) we investigate the reference-tracking problem
of a wave equation with both matched and unmatched un-
certainties; (ii) we propose an adaptive NN-based boundary
control scheme by extending the adaptive RBF NN technique
to an uncertain wave equation; and (iii) we provide rigorous
analysis for the performances of our proposed approaches,
including the overall system stability and closed-loop well-
posedness.

The rest of this paper is organized as follows. Section II
provides preliminary results and problem formulation. Sec-
tion III presents the proposed adaptive NN-based boundary
feedback tracking control scheme. Simulation results are in
Section IV. Finally, the conclusion is in Section V.
Notation. C, R, R+ and N+ denote, respectively, the set of
complex numbers, the set of real numbers, the set of positive
real numbers and the set of positive integers; Rm×n denotes
the set of m×n real matrices; Rn denotes the set of n×1 real
column vectors; | · | is the absolute value of a real number;
∥·∥ is the 2-norm of a vector or a matrix; C1(Ω) denotes
the class of all differentiable functions whose derivative is
continuous on a measure space Ω; L2(Ω) denotes the set
of square integrable L2-functions on a measure space Ω,
i.e., L2(Ω) = {ϕ(x) : Ω → C,

∫
Ω
|ϕ(x)|2 dx < ∞};

L2
loc(Ω) denotes the set of locally square integrable L2-

functions on a measure space Ω, i.e., L2
loc(Ω) = {ϕ(x) :

Ω → C, |ϕ|Ω0
∈ L2(Ω0),∀Ω0 ⊂ Ω, Ω0 is compact}; L∞(Ω)

denotes the set of functions that are almost everywhere (a.e.)

bounded on a measure space Ω, i.e., L∞(Ω) = {ϕ(x) : Ω →
C, ϕ is a.e. bounded}; H1(Ω) denotes Sobolev space of
order 1 on the space Ω, i.e., H1(Ω) = {ϕ(x) ∈ L2(Ω), ∂ϕ∂x ∈
L2(Ω)}; (·)x and (·)′ denote ∂(·)

∂x ; (·)xx and (·)′′ denote ∂2(·)
∂x2 ;

(·)t and ˙(·) denote ∂(·)
∂t ; (·)tt and (̈·) denote ∂2(·)

∂t2 .

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Preliminaries

1) RBF NNs: The RBF networks can be described by
fnn(Z) =

∑Nn

i=1 wisi(Z) = W⊤S(Z) [16], where Z ∈
ΩZ ⊂ Rq is the input vector, W = [w1, · · · , wNn ]

⊤ ∈ RNn

is the weight vector, Nn is the NN node number, and
S(Z) = [s1(∥Z − ς1∥), · · · , sNn

(∥Z − ςNn
∥)]⊤, with si(·)

being a radial basis function, and ςi (i = 1, 2, · · · , Nn) being
distinct points in state space. The Gaussian function si(∥Z−
ςi∥) = exp[−(Z−ςi)

⊤(Z−ςi)
η2
i

] is one of the most commonly
used radial basis functions, where ςi = [ςi1, ςi2, · · · , ςiq]⊤ is
the center of the receptive field and ηi is the width of the
receptive field. The Gaussian function belongs to the class
of localized RBFs in the sense that si(∥Z − ςi∥) → 0 as
∥Z∥ → ∞. It is noted that S(Z) is bounded. And, there
exists a real constant SM ∈ R+ such that ∥S(Z)∥ ⩽ SM

[17, Lemma 2.1]. It has been shown in [16] that for any
continuous function f(Z) : ΩZ → R where ΩZ ⊂ Rq

is a compact set, and for the NN approximator, where the
node number Nn is sufficiently large, there exists an ideal
constant weight vector W ∗, such that for any ϵ∗ > 0,
f(Z) = W ∗⊤S(Z) + ϵ, ∀Z ∈ ΩZ , where |ϵ| < ϵ∗ is the
ideal approximation error. The ideal weight vector W ∗ is an
“artificial” quantity required for analysis, and is defined as
the value of W that minimizes |ϵ| for all Z ∈ ΩZ ⊂ Rq , i.e.,
W ∗ ≜ argminW∈RNn {supZ∈ΩZ

|f(Z)−W⊤S(Z)|}.
2) C0-semigroup: Let Ω be a (real or complex) Banach

space. A C0-semigroup on Ω is defined as follows:
Definition 1: A C0-semigroup on Ω (also a strongly con-

tinuous semigroup) is a function T : [0,+∞) → L(Ω),
where L(Ω) denotes the space of bounded linear operators
in Ω with domain all of Ω, satisfying

(i) T (t+ s) = T (t)T (s), for all t, s ≥ 0;
(ii) limt→0+T (t)x = x for all x ∈ Ω.
Particularly, the C0-semigroup T (t) on Ω will be asso-

ciated with the solutions of the initial value problem for a
linear autonomous differential equation on [0,+∞), i.e.,

d

dt
y(t) = Ay(t), y(0) = y0, (1)

where A is a linear operator with dense domain D(A) in Ω.
If y0 ∈ D(A), then, the function y : [0,+∞) → Ω given by
y(t) = T (t)y0 should be the unique solution of the initial
value problem given in (1).



B. Problem Formulation

Consider a one-dimensional wave equation with matched
and unmatched boundary uncertainties as follows:

ytt(x, t) = yxx(x, t), x ∈ (0, 1), t > 0

yx(0, t) = c1yt(0, t) + f1(ym(0, t))

yx(1, t) = u(t) + f2(ym(1, t))

y(x, 0) = y0(x), yt(x, 0) = y1(x)

ym(x, t) = [y(x, t), yt(x, t)]
⊤

yout(t) = y(1, t),

(2)

where y(x, t) ∈ R is the system state variable at the position
x ∈ [0, 1] for time t ≥ 0; u ∈ R is the boundary system
control input; c1 > 0 is a known constant; f1(ym(0, t))
and f2(ym(1, t)) are unknown nonlinear functions satisfying
locally Lipschitz continuous, which represent the system
uncertainties that are unmatched and matched with control
input, respectively; y0(x) and y1(x) are unknown func-
tions representing initial conditions; yout(t) is the perfor-
mance output signal to be regulated/controlled; ym(0, t) =
[y(0, t), yt(0, t)]

⊤ and ym(1, t) = [y(1, t), yt(1, t)]
⊤ are

boundary state signals that are assumed to be measurable.
In this paper, our objective is to design a boundary

feedback control scheme for the system (2), aiming to drive
the system output yout(t) = y(1, t) to track a prescribed ref-
erence signal yref (t) with guaranteed system well-posedness
and stability. To this end, adaptive NNs will be used to deal
with the system uncertainties f1(ym(0, t)) and f2(ym(1, t)).

Assumption 1: The reference signal satisfies yref (t) ∈
W 2,∞(0,∞) := {y | y ∈ L∞(0,∞), ẏ ∈ L∞(0,∞), ÿ ∈
L∞(0,∞)}.

Before proceeding, we first study the well-posedness of the
system (2). Define a Hilbert space H = H1(0, 1)×L2(0, 1)
with inner product:〈

(ϕ1, ψ1)
⊤, (ϕ2, ψ2)

⊤〉
H

=c2ϕ1(1)ϕ2(1) +

∫ 1

0

(
ϕ′1(x)ϕ

′
2(x) + ψ1(x)ψ2(x)

)
dx

+ µ

∫ 1

0

(−2 + x)
(
ϕ′1(x)ψ2(x) + ψ1(x)ϕ′2(x)

)
dx,

∀(ϕ1, ψ1)
⊤, (ϕ2, ψ2)

⊤ ∈ H,
(3)

where (·) represents the conjugate of (·), c2 > 0, 0 < µ <
min{ c1

1+c21
, 1

2} with c1 > 0 given in (2). This inner product
is well-defined and positive-definite because ∀(ϕ, ψ)⊤ ∈ H,

∥(ϕ, ψ)∥2H =
〈
(ϕ, ψ)⊤, (ϕ, ψ)⊤

〉
H

≥ (1− 2µ)

∫ 1

0

(
|ϕ′(x)|2 + |ψ(x)|2

)
dx.

(4)

Lemma 1: The system (2) is well-posed, i.e., for any ini-
tial value [y0(·), y1(·)]⊤ ∈ H, and u(t) ∈ L2

loc(0,∞), there
exists a unique solution to (2) such that [y(·, t), yt(·, t)]⊤ ∈
C1([0,∞);H).

Proof: To show the well-posedness of the system (2),
we can rewrite this system into the following form:

d

dt
ym(·, t) =Aym(·, t) + B1f1(ym(0, t))

+ B2(c2y(1, t) + u(t) + f2(ym(1, t))),
(5)

for ym(·, 0) ∈ H, where ym(·, t) = [y(·, t), yt(·, t)]⊤,
ym(·, 0) = [y0(·), y1(·)]⊤, B1 = [0,−δ(x)]⊤, B2 = [0, δ(x−
1)]⊤ with δ(·) being a Dirac delta distribution, and the
operator A : D(A) → H is defined as:

A(ϕ, ψ)⊤ = (ψ, ϕ′′)⊤,

D(A) = {(ϕ, ψ)⊤ ∈ H |A(ϕ, ψ)⊤ ∈ H, ϕ′(0) = c1ψ(0),

ϕ′(1) = −c2ϕ(1)}.
(6)

We first verify that the operator A of (6) can generate an
exponentially stable C0-semigroup on H. To this end, we
consider the following system:

d

dt
ym(·, t) = Aym(·, t). (7)

Define a positive-definite Lyapunov function as:

Vy(t) =c2y
2(1, t) +

∫ 1

0

(y2x(x, t) + y2t (x, t))dx

+ 2µ

∫ 1

0

(−2 + x)yx(x, t)yt(x, t)dx.

(8)

From (6)–(7), noting that 0 < µ < c1
1+c21

, the derivative of
Vy(t) can be derived as follows:

V̇y(t) = 2c2yt(1, t)y(1, t)

+ 2

∫ 1

0

(yx(x, t)yxt(x, t) + yt(x, t)ytt(x, t)) dx

+ 2µ

∫ 1

0

(−2 + x) (yx(x, t)ytt(x, t) + yxt(x, t)yt(x, t)) dx

=2yx(x, t)yt(x, t)|10 + µ(−2 + x)
(
y2x(x, t) + y2t (x, t)

)
|10

− µ

∫ 1

0

(
y2x(x, t) + y2t (x, t)

)
dx+ 2c2yt(1, t)y(1, t)

=− 2(c1 − µ(1 + c21))y
2
t (0, t)− µ(c22y

2(1, t) + y2t (1, t))

− µ

∫ 1

0

(
y2x(x, t) + y2t (x, t)

)
dx

≤− µc22y
2(1, t)− µ

∫ 1

0

(
y2x(x, t) + y2t (x, t)

)
dx.

(9)
From (8)–(9), it can be deduced that there exists a positive
constant κ such that V̇y(t) ≤ −κVy(t). This implies that
the operator A of (7) is dissipative [18]. Furthermore, it is
easily seen that A−1 exists and is bounded in H. A simple
computation shows:

A−1(ϕ, ψ)⊤ = (ϕ∗, ψ∗)⊤, ∀(ϕ, ψ)⊤ ∈ H, (10)

with
ϕ∗(x) = (x− 1)

∫ x

0
ψ(s)ds+

∫ 1

x
(s− 1)ψ(s)ds

− 1
c2

∫ 1

0
ψ(s)ds− c1ϕ(0)(1− x+ 1

c2
),

ψ∗(x) = ϕ(x).

(11)



Thus, according to the Lumer-Phillips theorem [18], it can be
deduced that the operator A of (6) generates an exponentially
stable C0-semigroup on H.

Then, consider the system (5), following a similar line
of the analysis in [10], it can be verified that B1, B2

are admissible to eAt. Furthermore, note that the func-
tions f1(ym(0, t)) and f2(ym(1, t)) in (2) are both locally
Lipschiz continuous. According to [19, Proposition 4.2.5],
the system (5) will be well-posed, i.e., for any tf > 0,
ym(·, 0) ∈ H and u(t) ∈ L2

loc(0, tf ), there exists a unique
solution in H to system (2) with the form of ym(·, t) =
eAtym(·, 0) +

∫ t

0
eA(t−s)(B1f1(ym(0, s)) + B2(c2y(1, s) +

u(s) + f2(ym(1, s))))ds, t ∈ [0, tf ].

III. MAIN RESULTS

In this section, an adaptive NN-based boundary feedback
control scheme will be presented. First of all, according to
Section II-A, we know that there exist constant NN weights
W ∗

1 ∈ RNn1 and W ∗
2 ∈ RNn2 with Nni

(i = 1, 2) denoting
the number of NN nodes, such that:

f1(ym(0, t)) =W ∗⊤
1 S1(ym(0, t)) + ϵ1,

f2(ym(1, t)) =W ∗⊤
2 S2(ym(1, t)) + ϵ2,

(12)

where S1(·) : R2 → RNn1 and S2(·) : R2 → RNn2 are
smooth RBF vectors, ϵi ∈ R (i = 1, 2) is the estimation
error satisfying |ϵi| < ϵ∗ with ϵ∗ being a positive constant
that can be made arbitrarily small given a sufficiently large
number of neurons.

Based on (12), we first design a reference model to
generate a prescribed reference trajectory yref (t) as follows:

ŷtt(x, t) = ŷxx(x, t)

ŷx(0, t) = c1ŷt(0, t) + Ŵ⊤
1 S1(ym(0, t))

ŷ(1, t) = yref (t)

ŷ(x, 0) = ŷ0(x), ŷt(x, 0) = ŷ1(x),

(13)

where ŷ(x, t) ∈ R is the state of reference model, Ŵ1 ∈
RNn1 is the estimate of W ∗

1 in (12), ŷ0(x) and ŷ1(x) are
initial conditions, and c1 is a known constant given in (2).
Then, we propose to develop an adaptive NN-based boundary
feedback controller as:

u(t) = −c2 (y(1, t)− yref (t))+ ŷx(1, t)−Ŵ⊤
2 S2(ym(1, t)),

(14)
where Ŵ2 ∈ RNn2 is the estimate of W ∗

2 in (12), and c2 > 0
is a design constant. The adaptation law of NN weights Ŵ1

and Ŵ2 for (13) and (14) are given as:

˙̂
W1 = Γ1(2µc1 − 1)ỹt(0, t)S1 − Γ1γ1Ŵ1,

˙̂
W2 = Γ2(ỹt(1, t) + µc2ỹ(1, t))S2 − Γ2γ2Ŵ1,

(15)

where ỹ(x, t) = y(x, t) − ŷ(x, t), Γi = Γ⊤
i > 0, γi > 0

(i = 1, 2) and 0 < µ < min{ c1
1+c21

, 1
2} are design constants.

Lemma 2: The reference system (13) is well-posed. That
is, for any initial value [ŷ0(·), ŷ1(·)]⊤ ∈ H, Ŵ⊤

1 S1 ∈
L2
loc(0,∞), and yref (t) ∈ W 2,∞(0,∞) (with W 2,∞(0,∞)

defined in Assumption 1), there exists a unique solution to
(13) such that [ŷ(·, t), ŷt(·, t)]⊤ ∈ C1([0,∞);H).

Proof: We first transform the model (13) into the
following system by using the transformation ν(x, t) =
ŷ(x, t)− xyref (t):

νtt(x, t) = νxx(x, t)− xÿref (t)

νx(0, t) = c1νt(0, t) + Ŵ⊤
1 S1 − yref (t)

ν(1, t) = 0

ν(x, 0) = ν0(x), νt(x, 0) = ν1(x),

(16)

where ν0(x) = ŷ0(x) − xyref (0), and ν1(x) = ŷ1(x) −
xẏref (0). Then, this system can be rewritten as:

d

dt
υ(t) =A0υ(t) + F (·, t) + B1(Ŵ

⊤
1 S1 − yref (t)), (17)

for υ(0) ∈ H, where υ(t) = [ν(·, t), νt(·, t)]⊤, υ(0) =
[ν0(·), ν1(·)]⊤, F (x, t) = [0,−xÿref (t)]⊤, B1 = [0,−δ(x)]⊤
and the operator A0 : D0(A0) → H is defined as:

A0(ϕ, ψ)
⊤ = (ψ, ϕ′′)⊤,

D0(A0) = {(ϕ, ψ)⊤ ∈ H |A0(ϕ, ψ)
⊤ ∈ H, ϕ′(0) = c1ψ(0),

ϕ(1) = 0}.
(18)

Following a similar line of the proof in Lemma 1, it can be
verified that the operator A0 is dissipative, and A−1

0 exists
and is bounded, which can be seen using a simple example:

A−1
0 (ϕ, ψ)⊤ = (ϕ∗, ψ∗)⊤, ∀(ϕ, ψ)⊤ ∈ H, (19)

with{
ϕ∗(x) = c1ϕ(0)(x− 1)−

∫ 1

x

∫ z

0
ψ(s)dsdz,

ψ∗(x) = ϕ(x).
(20)

Thus, it is seen that the operator A0 can generate an
exponentially stable C0-semigroup on H. Furthermore, B1

is admissible to eA0t following the analysis of [10]. Then,
note that for any yref (t) ∈W 2,∞(0,∞), we have yref (t) ∈
L2
loc(0,∞) and F (·, t) = [0,−xÿref (t)]⊤ ∈ L2

loc(0,∞). It
can be deduced that for any tf > 0, yref (t) ∈W 2,∞(0,∞),
Ŵ⊤

1 S1 ∈ L2
loc(0, tf ), and υ(0) ∈ H, there exists a unique

solution in H to system (17) with the form of υ(t) =
eA0tυ(0) +

∫ t

0
eA0(t−s)(F (·, s) + B1(Ŵ

⊤
1 S1 − yref (s)))ds,

t ∈ [t, tf ]. This ends the proof of well-posedness of (13).
Remark 1: The above analysis implies that the signals

υ(t) = [ν(·, t), νt(·, t)]⊤ will be bounded as long as Ŵ⊤
1 S1,

yref (t) and ÿref (t) are bounded. Based on this, noting that
ŷ(x, t) = ν(x, t) + xyref (t) and yref (t), ẏref (t), ÿref (t)
are all bounded under Assumption 1, it can be deduced that
the state signals [ŷ(x, t), ŷt(x, t)]⊤ of the designed reference
model (13) can be bounded as long as Ŵ⊤

1 S1 is bounded.
Based on Lemma 1 and Lemma 2, well-posedness and

overall stability of the closed-loop system consisting of (2)
and (13)–(15) are established in the following theorem.

Theorem 1: Consider the closed-loop system consisting of
the plant (2), the reference model (13), the controller (14) and
the weight adaptation law (15). Under Assumption 1, if the
design constants γ1 > 0 and µ > 0 satisfy: γ1 − µS2

M > 0,



with SM being the upper bound of S1(·), then, we have: (i)
the closed-loop system is well-posed; and (ii) all signals of
the closed-loop system are bounded.

Proof: To prove the first part, from (2), (12), (13) and
(14), we derive the following error system:

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)− W̃⊤
1 S1 + ϵ1

ỹx(1, t) = −c2ỹ(1, t)− W̃⊤
2 S2 + ϵ2

ỹ(x, 0) = ỹ0(x), ỹt(x, 0) = ỹ1(x),

(21)

where ỹ(x, t) = y(x, t) − ŷ(x, t), ỹ0(x) = y0(x) − ŷ0(x),
ỹ1(x) = y1(x)− ŷ1(x), and W̃i = Ŵi−W ∗

i (i = 1, 2). This
system can be rewritten as:

d

dt
ỹm(·, t) =Aỹm(·, t) + B1(−W̃⊤

1 S1 + ϵ1)

+ B2(−W̃⊤
2 S2 + ϵ2),

(22)

for ỹm(·, 0) ∈ H, where ỹm(·, t) = [ỹ(·, t), ỹt(·, t)]⊤,
ỹm(·, 0) = [ỹ0(·), ỹ1(·)]⊤, the operator A is defined in
(6), B1 = [0,−δ(x)]⊤ and B2 = [0, δ(x − 1)]⊤. Based
on (22), the error system (21) can be verified to be well-
posed by following a similar line of the proof in Lemma 1.
Furthermore, it is known from Lemma 2 that the reference
system (13) is also well-posed. Thus, it can be deduced that
the closed-loop system consisting of (2), (13), (14) and (15)
is well-posed.

We further study the overall stability of the closed-loop
system. From (2), (12), (13), (14) and (15), we can obtain
the closed-loop error system as follows:

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)− W̃⊤
1 S1 + ϵ1

ỹx(1, t) = −c2ỹ(1, t)− W̃⊤
2 S2 + ϵ2

˙̃W1 = Γ1(2µc1 − 1)ỹt(0, t)S1 − Γ1γ1Ŵ1

˙̃W2 = Γ2(ỹt(1, t) + µc2ỹ(1, t))S2 − Γ2γ2Ŵ1.

(23)

For this system, we define a positive-definite Lyapunov
function candidate as follows:

V (t) = c2ỹ
2(1, t) +

∫ 1

0

(ỹ2x(x, t) + ỹ2t (x, t))dx

+ 2µ

∫ 1

0

(−2 + x)ỹx(x, t)ỹt(x, t)dx

+ W̃⊤
1 Γ−1

1 W̃1 + W̃⊤
2 Γ−1

2 W̃2.

(24)

The derivative of V (t) can be derived as follows:

V̇ (t) = 2c2ỹt(1, t)ỹ(1, t)

+ 2(−c2ỹ(1, t)− W̃⊤
2 S2 + ϵ2)ỹt(1, t)

− 2(c1ỹt(0, t)− W̃⊤
1 S1 + ϵ1)ỹt(0, t)

− µ((−c2ỹ(1, t)− W̃⊤
2 S2 + ϵ2)

2 + ỹ2t (1, t))

+ 2µ((c1ỹt(0, t)− W̃⊤
1 S1 + ϵ1)

2 + ỹ2t (0, t))

− µ

∫ 1

0

(
ỹ2x(x, t) + ỹ2t (x, t)

)
dx

+ 2W̃⊤
1 ((2µc1 − 1)ỹt(0, t)S1 − γ1Ŵ1)

+ 2W̃⊤
2 ((ỹt(1, t) + µc2ỹ(1, t))S2 − γ2Ŵ2)

(25)

=− 2(c1 − µ(1 + c21))ỹ
2
t (0, t)− µc22ỹ

2(1, t)− µỹ2t (1, t)

− µ

∫ 1

0

(ỹ2x(x, t) + ỹ2t (x, t))dx− µ(W̃⊤
2 S2 − ϵ2)

2

+ 2(2µc1 − 1)ỹt(0, t)ϵ1 − 4µW̃⊤
1 S1ϵ1 + 2µϵ21

+ 2(ỹt(1, t) + µc2ỹ(1, t))ϵ2 + 2µW̃⊤
1 S1W̃

⊤
1 S1

− 2γ1W̃
⊤
1 W̃1 − 2γ2W̃

⊤
2 W̃2 − 2γ1W̃

⊤
1 W

∗
1 − 2γ2W̃

⊤
2 W

∗
2

≤− 2(c1 − µ(1 + c21))ỹ
2
t (0, t)− µc22ỹ

2(1, t)− µỹ2t (1, t)

− µ

∫ 1

0

(ỹ2x(x, t) + ỹ2t (x, t))dx− 2(γ1 − µS2
M )

∥∥∥W̃1

∥∥∥2
− 2γ2

∥∥∥W̃2

∥∥∥2 + 2(2µc1 − 1)ỹt(0, t)ϵ1 + 2µϵ21

+ 2ỹt(1, t)ϵ2 + 2µc2ỹ(1, t)ϵ2 + 4µSM

∥∥∥W̃1

∥∥∥ |ϵ1|
+ 2γ1

∥∥∥W̃1

∥∥∥ ∥W ∗
1 ∥+ 2γ2

∥∥∥W̃2

∥∥∥ ∥W ∗
2 ∥ ,

where Ŵi = W̃i + W ∗
i (i = 1, 2) and ∥S1∥ < SM . By

completing the associated squares of (25), and noting that
|ϵi| < ϵ∗ (i = 1, 2), 0 < µ < c1

1+c21
and γ1 − µS2

M > 0, we
have:

V̇ (t) ≤− µ

2
c22ỹ

2(1, t)− µ

∫ 1

0

(
ỹ2x(x, t) + ỹ2t (x, t)

)
dx

− (γ1 − µS2
M )

∥∥∥W̃1

∥∥∥2 − γ2

∥∥∥W̃2

∥∥∥2
+ ρϵ∗2 +

2γ21
γ1 − µS2

M

∥W ∗
1 ∥

2
+ γ2 ∥W ∗

2 ∥
2
,

(26)
where ρ := (2µc1−1)2

c1−µ(1+c21)
+

8µ2S2
M

γ1−µS2
M

+ 2
µ + 2µ. Based on this,

we have V̇ (t) < 0 whenever:

ỹ2(1, t) ≥ 2ρ

µc22
ϵ∗2 +

4γ21
(γ1 − µS2

M )µc22
∥W ∗

1 ∥
2
+

2γ2
µc22

∥W ∗
2 ∥

2
;∫ 1

0

ỹ2xdx ≥ ρ

µ
ϵ∗2 +

2γ21
(γ1 − µS2

M )µ
∥W ∗

1 ∥
2
+
γ2
µ

∥W ∗
2 ∥

2
;∫ 1

0

ỹ2t dx ≥ ρ

µ
ϵ∗2 +

2γ21
(γ1 − µS2

M )µ
∥W ∗

1 ∥
2
+
γ2
µ

∥W ∗
2 ∥

2
;∥∥∥W̃1

∥∥∥2 ≥ ρ

γ1 − µS2
M

ϵ∗2 +
2γ21

(γ1 − µS2
M )2

∥W ∗
1 ∥

2

+
γ2

γ1 − µS2
M

∥W ∗
2 ∥

2
;∥∥∥W̃2

∥∥∥2 ≥ ρ

γ2
ϵ∗2 +

2γ21
(γ1 − µS2

M )γ2
∥W ∗

1 ∥
2
+ ∥W ∗

2 ∥
2
.

(27)
This guarantees that the signals of ỹ(1, t), ỹx(x, t), ỹt(x, t),
W̃1 and W̃2 of (23) are all bounded. Based on this and
from the Poincare inequality of

∫ 1

0
ỹ2(x, t)dx ≤ 2ỹ2(1, t) +

4
∫ 1

0
ỹ2x(x, t)dx, we have: ỹ(x, t) is bounded. Then, since

Ŵi = W̃i +W ∗
i (i = 1, 2), we have: Ŵi is also bounded.

Noting that Si is bounded such that Ŵ⊤
i Si is bounded, the

control signal of (14) can be guaranteed bounded, and the
signals of reference model (13) will also be bounded, as
argued in Remark 1. Consequently, it is verified that all
signals in the closed-loop system consisting of (2), (13), (14)
and (15) are bounded. This ends the proof.



IV. SIMULATION STUDIES

In this section, we will use a numerical example to
demonstrate the effectiveness of our scheme. Specifically,
consider the system of (2) with c1 = 1, f1(y(0, t), yt(0, t)) =
0.2 sin2(y(0, t)) + 0.5y3(0, t), and f2(y(1, t), yt(1, t)) =
0.9y(1, t)) + 0.2 cos(y2t (1, t)). The reference model (13) is
designed with yref (t) = 0.5 sin(t)+0.5 cos(π2 t+2)+1. The
RBF NN Ŵ⊤

1 S1 is constructed in a regular lattice with the
number of nodes Nn = 11 × 17, the centers evenly spaced
on [−0.5, 1] × [−1, 1.5], and the widths ηi = 0.15 (i =
1, 2, · · · , 187); and Ŵ⊤

2 S2 is with the number of nodes Nn =
11 × 19, the centers evenly spaced on [0, 2] × [−1.8, 1.8],
and the widths ηi = 0.2 (i = 1, 2, · · · , 209). The controller
(14) and the NN weight adaptation law (15) are implemented
with c2 = 3, Γ1 = Γ2 = 5, µ = 0.45, γ1 = 0.5 and
γ2 = 0.02. The initial conditions are given as: y0(x) =
0.2 − 0.2x, y1(x) = 0.1 − 0.2x, ŷ0(x) = 0.15 − 0.15x,
ŷ1(x) = 0.075− 0.15x, Ŵ1(0) = 0 and Ŵ2(0) = 0.

Fig. 1: Open-loop system state y(x, t) of (2) with control
input u(t) = 0.

Consider the system (2), the system state y(x, t) with
control signal u(t) = 0 (i.e., the system (2) is open-
loop) is shown in Fig. 1. For this system, with the control
scheme (13)–(15), associated tracking control performances
are plotted in Figs. 2–3. Specifically, Fig. 2 shows that all
the signals, including the real-time system state y(x, t), the
reference signal ŷ(x, t), the control signal u(t), and the NN
weights Ŵ (t) = [Ŵ1(t); Ŵ2(t)], are stable. Fig. 3 illustrates
that the system output yout(t) = y(1, t) can accurately track
the given reference trajectory yref (t). These results justify
the effectiveness of our scheme.

V. CONCLUSIONS

In this paper, an adaptive RBF NN-based boundary feed-
back control scheme has been proposed for output tracking
control of a wave equation with both matched and unmatched
boundary uncertainties. Two RBF NN models were devel-
oped to respectively approximate matched and unmatched
system uncertain nonlinear dynamics, based on which an
adaptive NN-based controller was proposed for stable track-
ing control. Rigorous analysis has been performed based
on the Lyapunov stability theory and C0-semigroup theory,
which demonstrates that our proposed approach can guaran-
tee overall system stability and closed-loop well-posedness.

Based on the scheme proposed in this paper, there are
several promising directions worth for future investigations,
including (i) to extend the proposed tracking control scheme

(a)

(b)
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Fig. 2: Closed-loop system response of (2) with control
scheme (13)–(15): (a) system state y(x, t); (b) reference
state ŷ(x, t); (c) control signal u(t); and (d) NN weights
Ŵ (t) = [Ŵ1(t); Ŵ2(t)].

0 10 20 30 40 50 60 70

0

1

2

Fig. 3: Tracking performance for the output yout(t) = y(1, t)
of system (2) to a prescribed reference trajectory yref (t).

to a more general problem of driving the holistic system
state to track a prescribed infinite-dimensional reference tra-
jectory; (ii) to investigate a new adaptive NN-based learning
control scheme to enable not only stable tracking control but
also accurate dynamics learning for PDE systems.
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