Localized Motion Dynamics Modeling of A Soft Robot: A Data-Driven
Adaptive Learning Approach

Xiaotian Chen, Paolo Stegagno, Wei Zeng, Chengzhi Yuan

Abstract— Soft robots have recently drawn extensive atten-
tion thanks to their unique ability of adapting to complicated
environments. Soft robots are designed in a variety of shapes
of aiming for many different applications. However, accurate
modelling and control of soft robots is still an open problem
due to the complex robot structure and uncertain interaction
with the environment. In fact, there is no unified framework
for the modeling and control of generic soft robots. In this
paper, we present a novel data-driven machine learning method
for modeling a cable-driven soft robot. This machine learning
algorithm, named deterministic learning (DL), uses soft robot
motion data to train a radial basis function neural network
(RBFNN). The soft robot motion dynamics are then guaranteed
to be accurately identified, represented, and stored as an
RBFNN model with converged constant neural network weights.
To validate our method, We have built a simulated soft robot
almost identical to our real inchworm soft robot, and we have
tested the DL algorithm in simulation. Furthermore, a neural
network weight combining technique is used which can extract
and combine useful dynamics information from multiple robot
motion trajectories.

I. INTRODUCTION

Soft robotics takes inspiration from living organisms that
use compliant materials to make robots highly adaptive to
their surroundings. Thanks to this characteristic, a large
number of soft robots have been designed and researched
during the last decade. Some well-known examples of soft
manipulators include octopus inspired underwater manipula-
tors [1], flexible sac shaped grippers [2], pneumatic actuated
soft grippers [3], and many others [4], [5], [6]. As for
soft mobile robots, starfish shaped [7], meshworms [8],
caterpillars [9], four-leg inchworm soft robots [10], and so
on [11], [12] have been proposed.

Compared to conventional rigid body robots, soft robots
have more potential for safe human-robot interaction, re-
silience to perturbation, and flexibility to multi-task setup.
However, the challenge that remains for soft robotics is
how to accurately model the robot dynamics. Unlike rigid-
body robots with known finite dimensionality, soft robots are
typically of infinite-dimensional structures. Also, soft robots

This work was partially supported by the National Science Foundation
under grant: CMMI-1929729.

X. Chen and C. Yuan are with the Department of Mechanical, Industrial
and Systems Engineering, University of Rhode Island, Kingston, RI 02881,
USA xiaotian_chen@my.uri.edu; cyuan@uri.edu

P. Stegagno is with the Department of Electrical, Computer and Biomed-
ical Engineering, University of Rhode Island, Kingston, RI 02881, USA
pstegagno@uri.edu

W. Zeng is with the School of Physics, Mechanical and
Electrical Engineering, Longyan University, Longyan 364012, China
zw0597@126.com

Fig. 1: An improved prototype inchworm soft robot from
[18].

could have oscillation during the interaction with the envi-
ronments, and cause unexpected error during the modeling.
Additionally, soft robots come in many different types and
shapes making it almost impossible to find a generic model
(with unknown parameters) suitable for all soft robots. Cur-
rently, most soft robotics modeling techniques use continuous
mathematics to describe the robot dynamics and further lead
to Piecewise Constant Curvature (PCC) models. However,
this leads to a simplified approximate model with respect to
the real soft robot dynamics.

Recently, data-driven machine learning methodologies,
e.g., [13], have become popular in robotics. As robots keep
growing in complexity (especially soft robot), accurate soft
robot dynamics modeling becomes extremely difficult. By
using machine learning to analyze data from robot motion,
the modeling can be achieved with little pre-knowledge of
the robot. [14] and [15] present the ideas of using machine
learning to model and predict the external environment onto
a soft finger, proving that machine learning can deal with
complex soft sensor information. In [16] and [17], a well
designed and fabricated soft manipulator, the Bionic Han-
dling assistant (BHA), is presented to be used for modelling
and control. The authors combined the data-driven approach
with continuum kinematics model to improve the modelling
accuracy.

In this paper, we propose to use a novel machine learning
approach, named deterministic learning (DL), to achieve
locally-accurate identification of the motion dynamics of
a prototype soft robot system using radial basis function
NNs ([19], [20]). This approach is developed from the
conventional adaptive learning control theory using Lya-
punov function method to ensure provable convergence of
the trained NN model. In our previous research, we have
designed and developed an inchworm soft robot [18] which
uses a cable-motor actuator and friction switching structures

to enable locomotion of the soft robot. In this paper, we have
improved the design of the main deformable body (Fig. 1)
which will let the robot move more stably and efficiently.
Based on this robot, we have constructed a virtual robot in
a soft material simulation software, SOFA. Then we have
studied the robot’s motion and tested the modeling algorithm
in the simulation. Specifically, a set of robot motion data have
been collected in simulation, and we have used an RBFNN
to locally-accurately approximate the robot’s nonlinear un-
certain motion dynamics along each collected data trajectory.
Finally, we have computed the overall robot motion dynamics
by merging the information from each resulting individual
localized RBFNN model.

The rest of this paper is organized as follow. Section II
presents some preliminaries on the deterministic learning
theory. Section III discusses the localized dynamics learning
algorithm. Section IV introduces the detail of our soft robotic
system. Section V describes the simulation setup. Section VI
gives the experimental setup and results. Finally, Section VII
concludes the paper.

II. PRELIMINARIES

In deterministic learning theory [21], [22], identification
of system dynamics of general nonlinear systems is achieved
through the following elements: (i) employment of localized
RBFNNS; (ii) satisfaction of a partial persistence of excita-
tion (PE) condition; (iii) exponential stability of the adaptive
system along the periodic or recurrent orbit; (iv) locally
accurate neural network (NN) approximation of the unknown
system dynamics. An RBFNN can be described by f,,,(Z) =
Z,ﬁil w;s;(Z) = WTS(Z), where Z € Qz C R is the input
vector, with Qz is a compact set, W = [wl,...,wN]T e RN
is the weight vector, N is the NN node number, and
S(Z) = [s1(||Z — wil]), -, s (||Z — pi]])]T, with s;(-) being a
radial basis function, and p;(i = 1,...,N) being distinct
points in the state space. The Gaussian function s;(||Z —
wil]) = exp [7%} is one of the most commonly
used radial basis func{ions, where f1; = (i1, fhizs ooy tin]
is the center of the receptive field and 7; is the width of
the receptive field. The Gaussian function belongs to the
class of localized radial basis function s in the sense that
5i(11Z = pul[) = 0 as [|Z]| = oc.

It has been shown in [23], [24] that for any continuous
function f(Z) : Qz — R where Qz C RP is a compact set,
and for the NN approximator, where the node number N is
sufficiently large, there exists an ideal constant weight vector
W*, such that for each € > 0, f(Z)=W*TS(Z) +¢(2),
VZ € (z, where €(Z) is the approximation error and is
smaller than €*. Moreover, for any bounded trajectory Z(t)
within the compact set Qz, f(Z) can be approximated
by using a limited number of neurons located in a local
region along the trajectory: f(Z)= WgTSC(Z) + ¢c, where
S5:(2) =15q1(2), ...,S]'C(Z)]T € RN¢, with N¢e <N, |Sﬂ| >
t, (ji = jl,..,5¢), ¢ is a small positive constant,
We = [wh, ...,w;C]T, and e, is the approximation error, with
‘\q\ - \e|‘ being small.

Based on previous results on the PE property of RBFNNs
[25], it is shown in [26] that for a localized RBF network
WTS(Z) whose centers are placed on a regular lattice, al-
most any recurrent trajectory Z(t) can lead to the satisfaction
of the PE condition of the regressor sub-vector S¢(Z).

III. THE ADAPTIVE LEARNING ALGORITHM

To achieve accurate motion dynamics modeling of soft
robots, we present a new data-driven machine learning
algorithm by extending the continuous-time deterministic
learning algorithm to discrete-time systems.

We consider the following nonlinear dynamical system
described in a general form:

&= f(z;p) (D

where x is the state of the system with initial condition
x(tp) = mo, the vector p is a constant parameter of the
system, and f(x;p) is a smooth but unknown nonlinear
vector field. According to the methodology of [19], by using
the Euler approximation, a discretized system representation
of the Equation (1) can be written as

alk +1] = alk] + Ts f(2[k];p), 2[0] =20 (2)

where xz[k] is the system state, f(xz[k];p) is the unknown
dynamics representing the knowledge that we are trying
to obtain from the system states/trajectories, and 7T is the
duration of a sampling timestep. Based on the discrete-time
deterministic learning theory [19], the dynamical RBF neural
network can be employed to identify this unknown dynamics
through the following algorithm:

ik +1) = 2[k] + a(@[k] — 2[k]) + TWT [k +1]S(2[k]) (3)

where & = [£1, T2, ..., £y is the state vector, 0 < |a|] < 1 is
a constant number, W7 S(xz[k]) is the RBF neural network
with W as the neural network weight. This weight will be
updated through the following learning law:

aP(elk] — aelk — 1)) S(z[k — 1])

Wlk+11 = WK = 5 PIST Gl - 1) (k- &

where P = PT > 0, and \,4.(P) denotes the largest
eigenvalue of the matrix P, a € (0,2) is the learning gain
for design, and e[k] = &[k] — z[k].

According to [19], with Equations (3) and (4), we are able
to accurately identify the unknown dynamics f(x[k];p) in
(2) by ensuring the overall system stability and NN weights
converging to their true values. To show this, we first derive
the following error dynamics:

elk + 1] = ae[k] + TWT [k +1)S(z[k]) — Tse (5)

where € = f(z;p)—W*TS(x) is the ideal NN approximation
error, with W* defined in preliminary section. The RBF
network weight error equation can be written as

Wk+1)=W[k+1] —W*

A 6)
= A[K]W[K] + BIk).

B oy P(STx[S(x[k - 1]))
where Alk]=1— 1"‘/}27171%5 5T Ek s Yy
and Blk) = 15)5 [Sk —1))

From Equations (5) and (6), we can derive the perturbed
error dynamics as:

[ew+u}r nsﬂﬂmqu[gm}

Wk + 1] 0 Alk] W]
A[kz[K] (7)
|G Y
BIK

According to the Theorem 1 in [19], if the sampling period
T, satisfies 0 < Ts < 2/a, we can get that the state
estimation error in Equation (5) will converge to a small
neighborhood of zero and also the Wg will converge to
its optimal value WC* From these two results, we can
obtain that the RBF network W7S(pc) can be used to
locally-accurately approximate the unknown internal dynam-

ics f(x;p), i.e

f(alk];p) = WES([k]) + €, ®)
where
_ 1 LN
W=——"7"-—— Wk 9
ey D ORUL])
k=kq
and [kq, ..., ky) represents a time segment after the transient
process.

IV. THE INCHWORM SOFT ROBOT

The robot presented in this paper (shown in Fig 1) is a
cable-driven switching legged inchworm soft robot, which is
an updated/improved version from our previous work [18].
The main body of the robot is formed by a highly deformable
material, silicone rubber, combined with a switching legged
mechanism to enable locomotion of the soft robot.

As shown in the picture, the silicone body is separated
into two parts. The middle pink part is the main deformable
component of the robot. It is shaped into a diamond grid in
order to provide the desired recovering force. The two ends
of the robot body are formed by the white silicone rubber
which has lower stiffness compare to the middle part.

The four motors on top of the body control the two strings
and two legs. The two strings link the two ends of the robot
and are controlled by the two string motors, one for the
left string and the other for the right string. The other two
motors control the friction between the legs and the ground
plane. This is achieved by using two 3d printed plastic legs
that have low friction compared to the silicone rubber body.
The leg motors can bring the legs into hidden or extended
position. During the hidden position, the rubber body will
directly contact with the ground causing high friction. While
in extended position, the plastic leg will extend out and lift
up the body, creating a low friction contact.

To achieve the locomotion of the robot, the motors need to
be actuated in a coordinated manner. For example, to obtain
the forward motion the following four steps are performed:

Fig. 2: Tetrahedral meshed 3D body.

Left Cable

Right Cable

Fixed Box

Fig. 3: Main robot body (green) with strings (the gray lines
across the body) and the fixed box (red box, simulate the leg
friction).

1) Set the front legs to hidden position and the rear legs
to extended position.

2) Pull the bottom cable to shrink the body until the
vertical bending angle reaches a value 6.

3) Set the rear legs to hidden position and the front legs
to extended position.

4) Release the bottom cable to return the body to straight.

V. SIMULATION SETUP

The simulation software used during this research is called
SOFA [27]. SOFA is a physics-based simulation software
that mainly aims for soft material simulation, which can
be used to study how soft materials act under different
conditions.

In order to create a movable soft robot in SOFA, a 3d
file of the soft body (with format .stl or .obj) needs to be
imported to create a tetrahedral mesh model (Fig. 2). This
mesh model determines the mesh quality and further affects
the body action and computation speed.

Besides the main body, the robot also needs string actua-
tors and fixed boxes for locomotion. The strings link the two
ends of the robot (the gray line across the body in Fig. 3)
and their length is variable. The fixed box is used to replace
the legs in the real robot, and can fix part of the robot body
inside the box to the space, which means, this part of the
robot will not move from any force during the simulation.

To control the simulated robot, we can change the length
of the strings and the position of fixed boxes. Specifically, the
soft robot will be stretched along with the strings while the
left and right strings distinguish the robot’s stretch direction.
The position of the fixed box can be switched between the
front and backside of the robot, determining which side of
the robot will be fixed to the ground.

For example, as for one complete forward motion: start
with the fixed box at the front side of the robot and both
strings are released. Next, reduce both string length to deform

the robot body. Then switch the fixed box position from
front to back. Lastly, increase the string length to the original
length. If both strings are shortened by the same amount, the
robot will move forward by a distance that is proportional to
the strings length reduction. If the strings are shortened by
different amounts, the robot will perform a turning motion.
The turning angle is also proportional to the difference of
the two string length reduction.

The SOFA simulation can be commanded through Python
scripts. In particular, we were able to command the desired
string length and fixed box position, and extract the posi-
tion and orientation information for further model learning
purpose.

Excitation map at 0 degree (map tracking inputs)

1.0

1.0
0.8

0.5
r0.6

0.0
ro4

-0.5
0.2

-1.0
0.0

-1.0 —0.5 0.0 0.5 10

Fig. 4: Excitation levels for neural network nodes at ori-
entation 6§ = 0 degree for 3000 steps of map-tracking-input
trajectory. x and y axis are first two dimensions of the neural
network

Excitation map at 0 degree (random inputs)

=] |

Fig. 5: Excitation levels for neural network nodes at orienta-
tion 6 = 0 degree for 3000 steps of random-input trajectory.

VI. EXPERIMENT

The goal of our experimental campaign is to learn the
dynamic model of the simulated soft robot, and then use this

learned model to predict the motion of robot and compare
our results with other machine learning methods.

In this section, we will first explain the setup of the
robot system, the learning algorithm, and the experiment.
Then, the experimental results and comparison results will
be presented.

A. Data Collection

As the robot is driven by two cables and the switching
legs (represented by the fixed box in SOFA simulation), the
motion would be chaotic and inefficient if these components
do not cooperate. To this end, during our experiments, for
every step the robot is set to move in the coordinated manner
described below:

1) place the fixed box at the front side of the robot;

2) decrease the string length by /; and [, respectively;

3) place the fixed box at the rear side of the robot;

4) increasing the string length by [; and l5 (bringing the

robot back to its original shape);
where [; and [are the controlled variables that evolve with
the motion of the robot.

Considering that the robot is moving on a 2D plane, we
use the central position of the robot in Cartesian coordinates
(y1,¥2), and the orientation () of the robot as the system
states. These three states will be collected at the beginning
of each step. With the two inputs introduced previously
(i.e., l1,02) and these three position states (y1,ys,6), the
discretized motion dynamics of the robot are described as
the following equations:

yilk + 1] = yi[k] + Ts f1(l1, 12, 0)
Y2k + 1] = yolk] + T f2(l1, 12, 0)
Ok + 1] = 0[k] + Ts f5(11,12,6)

where k represents the steps of motion of the robot. In these
equations, the robot position states (y1,y2) are not included
in the unknown nonlinear function f(l1,ls,6), because the
robot’s motion direction is independent of the current/past
position.

During the data collection stage, to ensure that the col-
lected data is sufficient, there should be enough samples
to cover the whole neural network space. To this end,
we can check the excitation level of the neural network
nodes. During the DL learning process, at every step of the
trajectory we will compute the excitation level of all the
nodes by using the Gaussian radial basis function. After the
whole trajectory has been studied, the excitation values will
be compared to find out which nodes have not been well
excited. By using this strategy, the program can track the
excitation map during the robot motion and find the proper
input for the next step, so that it can quickly fill the whole
excitation map.

In addition, we also collected four random-input trajecto-
ries for testing purpose. Fig. 4 and 5 show the efficacy of
the map-tracking-input trajectory with respect to the random-
input trajectory. 3000 steps are collected for both types of
trajectory and the computed excitation values are presented in

(10)

Oriantation Dynamic Compare
T

* actural system output
|—— RBF NN model output|

* " actural system output ¥ . A
RBF NN model output \ ANA A

* actural system output
RBF NN model output
1

Fig. 6: The comparison between the actual system dynamics
(blue dot) and the dynamics from the DL RBFNN model
(red line), by using 80 steps random-input testing trajectory.

the figures. The results show that, the random-input trajectory
fills 57% of the map while the map-tracking-input trajectory
fills 75%, outperforming the random-input trajectory.

B. Neural Network Training Setup

To implement the discrete-time deterministic learning al-
gorithm for training the neural network model of the robotic
system, we collected 4 map-tracking-input trajectories and
4 random-input trajectories with an average of 4000 steps
each. During the DL training, the RBF neural network has
the number of the nodes N = 4913, the centers p; are evenly
spaced on [—-1.2:0.15:1.2] x [-1.2:0.15:1.2] x [-1.2:
0.15 : 1.2]. The design constant a in Equations (3) and (4)
is set to 0.5, « is set to 1.5, P = diag{10, 10,10, 10} which
leads to Apa.(P) = 10. The Ty is set to 1, as the robot
system is discretized based on the steps instead of the time.
All the trajectories are repeated for 300 times during the
learning process. All the data, for learning and testing, are
normalized to values between -1.2 to 1.2 (match with the
neural network space). The minimum value for the input
11,1y is when the strings are at rest (I = lo = Omm), while
the maximum input (I; = Iy = 30mm) is when the string
lengths are reduced by about 1/4 of the robots body length
(body length is about 120mm). y;, y2 range about 10 times
the robot’s body length which is the robot’s reachable area.
The orientation 6 ranges from —180° to 180°.

C. NN Weight Combination

After the learning process, every trajectory generated a set
of weights. To combine all dynamic information together, we
follow two steps from Equation (11) in [28]. First, we need
to find out all the neural network nodes’ highest excitation
levels during each trajectory. The second step is to use these
excitation values as the ratio to average the weight across the
different trajectories. This leads to the following NN weights
combination:

L k= .
W, — Zl:l éWﬁ ifk; #0
0, if k; =0

Y

where W is the final/combined weight value of the jth node.
W/ is the weight value of the jth node for the Ith trajectory
(@ = {1,...,L}, where L =4 in this experiment) resulted
from using Equation (9). ké = max{s(l1,l2,0)} denotes the
maximum excitation level and S(z) is Gaussian radial basis
function as describe in Sec. II, and k; = Zlel k;

With the fully estimated dynamic information, we can then
produce the approximated dynamics from the neural network
with combined weights. Based on Equations (2) and (3), the
system dynamics can be computed by the neural network as
f(z[k];p) = WTS(z[k]) . While the states can be estimated
as:

Tk + 1] = z[k] + T, B(z[k] — x[k])

+T (W) S ([k]),

where Z[k] is the state of the estimator, x[k] is the real state
of the testing trajectory, B = diag{bs,...,b,} is a diagonal
matrix which holds constant values for all estimators and
satisfies —1/T, < b; < 0. In this experiment, the B is set
to diag[0.8,0.8,0.8]. By combing all the weights learned
through the map-tracking-input trajectories into one final-set

of weights, we are able convey all the information into the
data-driven model of the soft robot.

12)

D. Results

Four random-input trajectories with 80, 141, 619, 7649
steps were used for testing and comparison purpose. We
verified the performance of the modeling algorithm by com-
paring the real system data and the predicted outputs from
the trained neural network model. The results for the first
test trajectory (80 steps) are plotted in Fig. 6. The blue
dots represents the real system data trajectory. The red line
represents the predicted NN model output. The plot shows
that the obtained NN model approximates well over the real
robot dynamics.

We also compared learning performance of our algorithm
with that of other existing machine learning algorithms.
Five embedded functions from Matlab Machine Learning
toolbox were used: 1) Regression Trees; 2) Regression Tree
Ensembles; 3) Gaussian Process Regression; 4) Support
vector Machine Regression (SVM) with Gaussian kernel;
5) Support vector Machine Regression (SVM) with linear
kernel. TABLE I shows the overall results of the comparison
between the six modeling algorithms. The first column indi-
cates the four different testing trajectories with the number
of steps. The second column indicates the three states of
the system (orientation 6 and position yi,¥y2). The error
values in the table are computed as the mean root square
error B = /S (f(z) — (xp1 — xx))2/k, where f(z) is
the dynamics predicted by the learned models, while x4 1,
xj, are collected from SOFA.

Based on the results, we can see that our DL model and
Model 4 have the best performance. In absolute values, the
root mean square error on the orientation is about 5 deg, and
5 mm on the y; and y» coordinates. Normalizing these errors
with respect to the range of the 6, y1, y2, the orientation
error is more significant with respect to the position error.

TABLE I: Learning performance comparison among six different machine learning algorithms, including the proposed DL
algorithms and five embedded Matlab Machine Learning Functions of 1) Regression Trees, 2) Regression Tree Ensembles,
3) Gaussian Process Regression, 4) Support vector Machine Regression (SVM) with Gaussian kernel, 5) Support vector
Machine Regression (SVM) with linear kernel. The lowest value for each row is highlighted.

Matlab Machine Learning Function

Test Trajectory | State | DL Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5
Traj. 1 0 0.03464 0.0572 0.0823 0.0331 0.0322 0.0367
step = 80 Y1 0.00597 0.0142 0.0104 0.0057 0.0051 0.0109
Y2 0.00976 0.0131 0.0154 0.0095 0.0087 0.0147

Traj. 2 0 0.06711 0.0754 0.0758 0.0617 0.0634 0.0636
step z 141 Y1 0.02069 0.0254 0.0259 0.0206 0.0206 0.0288
Y2 0.02567 0.0277 0.0277 0.0247 0.0243 0.0343

Traj. 3 0 0.05867 0.0745 0.0874 0.0595 0.0592 0.0624
step = 619 Y1 0.02011 0.0283 0.0254 0.0207 0.0207 0.0311
Y2 0.01861 0.0246 0.023 0.0189 0.0188 0.0326

Traj. 4 0 0.05873 0.0793 0.09 0.0589 0.0588 0.0624
step = '7649 Y1 0.02045 0.031 0.0248 0.0205 0.0205 0.0303
) Y2 0.01937 0.0254 0.0239 0.0194 0.0192 0.0336

However, those values are reasonable during the motion of
a soft robot.

VII. CONCLUSIONS

This paper presented a novel model learning approach for
motion dynamics modeling of a string-driven soft inchworm
robot. Through a soft robot simulation software, we collected
robot motion data that were used to train a radial basis func-
tion neural network. The network was then used to predict the
soft robot locomotion. In the experimental section, we have
shown that the resulting estimated NN model approximates
well the dynamics of the real system.

[1]

[2]

[3]

[6]

[7]

[8]

[9]

[10]

REFERENCES

C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and
P. Dario, “Soft robot arm inspired by the octopus,” Advanced robotics,
vol. 26, no. 7, pp. 709-727, 2012.

N. G. Cheng, M. B. Lobovsky, S. J. Keating, A. M. Setapen, K. L.
Gero, A. E. Hosoi, and K. D. Tagnemma, “Design and analysis of a
robust, low-cost, highly articulated manipulator enabled by jamming
of granular media,” in 2012 IEEE international conference on robotics
and automation. 1EEE, 2012, pp. 4328-4333.

Z. Wang, Y. Torigoe, and S. Hirai, “A prestressed soft gripper: design,
modeling, fabrication, and tests for food handling,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 1909-1916, 2017.

C. Li, X. Gu, and H. Ren, “A cable-driven flexible robotic grasper
with lego-like modular and reconfigurable joints,” IEEE/ASME Trans-
actions on Mechatronics, vol. 22, no. 6, pp. 2757-2767, 2017.

V. Slesarenko, S. Engelkemier, P. I. Galich, D. Vladimirsky, G. Klein,
and S. Rudykh, “Strategies to control performance of 3d-printed,
cable-driven soft polymer actuators: From simple architectures to
gripper prototype,” Polymers, vol. 10, no. 8, p. 846, 2018.

F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi,
“Dynamic model of a multibending soft robot arm driven by cables,”
IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1109-1122, 2014.
H. Jin, E. Dong, G. Alici, S. Mao, X. Min, C. Liu, K. Low, and
J. Yang, “A starfish robot based on soft and smart modular structure
(sms) actuated by sma wires,” Bioinspiration & biomimetics, vol. 11,
no. 5, p. 056012, 2016.

S. Seok, C. D. Onal, R. Wood, D. Rus, and S. Kim, “Peristaltic
locomotion with antagonistic actuators in soft robotics,” in 2010 IEEE
international conference on robotics and automation. 1EEE, 2010,
pp. 1228-1233.

H.-T. Lin, G. G. Leisk, and B. Trimmer, “Goqbot: a caterpillar-inspired
soft-bodied rolling robot,” Bioinspiration & biomimetics, vol. 6, no. 2,
p- 026007, 2011.

R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D.
Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft
robot,” Proceedings of the national academy of sciences, vol. 108,
no. 51, pp. 20400-20403, 2011.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

Y. Almubarak and Y. Tadesse, “Twisted and coiled polymer (tcp)
muscles embedded in silicone elastomer for use in soft robot,” In-
ternational Journal of Intelligent Robotics and Applications, vol. 1,
no. 3, pp. 352-368, 2017.

Z. Deng, M. Stommel, and W. Xu, “A novel soft machine table for
manipulation of delicate objects inspired by caterpillar locomotion,”
IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1702—
1710, 2016.

D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, no. 4, pp. 319-340, 2011.
Z.Y.Ding, J. Y. Loo, V. M. Baskaran, S. G. Nurzaman, and C. P. Tan,
“Predictive uncertainty estimation using deep learning for soft robot
multimodal sensing,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 951-957, 2021.

T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, “Soft robot per-
ception using embedded soft sensors and recurrent neural networks,”
Science Robotics, vol. 4, no. 26, 2019.

R. F. Reinhart and J. J. Steil, “Hybrid mechanical and data-driven
modeling improves inverse kinematic control of a soft robot,” Procedia
Technology, vol. 26, pp. 12-19, 2016.

J. E. QueiBer, K. Neumann, M. Rolf, R. F. Reinhart, and J. J. Steil,
“An active compliant control mode for interaction with a pneumatic
soft robot,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1EEE, 2014, pp. 573-579.

X. Chen, P. Stegagno, and C. Yuan, “A cable-driven switching-legged
inchworm soft robot: design and testing,” in Proceedings of the
American Control Conference, 2021.

C. Yuan and C. Wang, “Design and performance analysis of deter-
ministic learning of sampled-data nonlinear systems,” Science China
Information Sciences, vol. 57, no. 3, pp. 1-18, 2014.

——, “Performance of deterministic learning in noisy environments,”
Neurocomputing, vol. 78, no. 1, pp. 72-82, 2012.

C. Wang and D. J. Hill, “Learning from neural control,” IEEE
Transactions on Neural Networks, vol. 17, no. 1, pp. 130-146, 2006.
, “Deterministic learning and rapid dynamical pattern recogni-
tion,” IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 617—
630, 2007.

J. Park and I. W. Sandberg, “Approximation and radial-basis-function
networks,” Neural computation, vol. 5, no. 2, pp. 305-316, 1993.
——, “Universal approximation using radial-basis-function networks,”
Neural computation, vol. 3, no. 2, pp. 246-257, 1991.

D. Gorinevsky, “On the persistency of excitation in radial basis func-
tion network identification of nonlinear systems,” IEEE Transactions
on Neural Networks, vol. 6, no. 5, pp. 1237-1244, 1995.

C. Wang and D. J. Hill, Deterministic learning theory for identifica-
tion, recognition, and control. CRC Press, 2009.

J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez,
H. Delingette, and L. Grisoni, “Sofa-an open source framework for
medical simulation,” in MMVR 15-Medicine Meets Virtual Reality,
vol. 125. IOP Press, 2007, pp. 13-18.

T. Chen, C. Wang, and D. J. Hill, “Rapid oscillation fault detection
and isolation for distributed systems via deterministic learning,” I[EEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 6,
pp. 1187-1199, 2013.

