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Abstract: For each A > 0 and under necessary conditions on the parameters, we con-
struct normalized waves for second order PDE’s with mixed power non-linearities, with
||u||i2 ®R") = A,n > 1. We show that these are bell-shaped smooth and localized func-
tions, and we compute their precise asymptotics. We study the question for the smooth-
ness of the Lagrange multiplier with respect to the L? norm of the waves, namely the
map A — w,, a classical problem related to its stability. We show that this is intimately
related to the question for the non-degeneracy of the said solitons. We provide a wide
class of non-linearities, for which the waves are non-degenerate. Under some minimal
extra assumptions, we show that a.e. in A, the map A — f,, is differentiable and the
waves e/® f,, are spectrally (and in some cases orbitally) stable as solutions to the
NLS equation. Similar results are obtained for the same waves, as traveling waves of the
Zakharov—Kuznetsov system.

1. Introduction
We consider the Schrodinger equation with general Hamiltonian non-linearity
iug+Au+ F(u?)u=0, u:R, x R" > C, (1.1)

where F : R; — R will be henceforth assumed to be C!'(R,) function. These type of
models are ubiquitous in current applications (especially in quantum mechanical context,
such as nonlinear optics and additionally in the theory of water waves). Of particular
importance of the theory and applications to physics and technology, is the study of the
existence and properties of ground states, that is, standing wave solutions in the form
€' f,,, where f,, > 0. Clearly, they satisfy the elliptic profile equation

— Af+@fy — F(f2) fo = 0. (1.2)
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The existence of solutions of (1.2), together with their properties, including their unique-
ness has been the subject of hundreds of papers in the literature, we refer the reader to
the landmark papers, [2,20,34] and for some recent developments to the review paper
[36].

In addition, and somewhat in parallel of the study of the solitary waves, various
mathematical aspects of the theory have been rigorously established in the literature—
such as conditions on the parameters guaranteeing local and global well-posedness,
asymptotic properties of the solutions etc. We do not even attempt to review these here,
instead we refer to the excellent (and by now classical) books, [5] and [35].

More recently, more advanced topics of investigations have been concerned with the
questions of the global dynamics of these models. In these studies (and in many previous
works), it became clear that the behavior near solitary waves is of utmost importance. In
particular, we should mention the soliton resolution conjecture (SRC), which predicts
that if the system does not support unstable solitons, any sufficiently smooth and localized
data, produces a global solution which resolves, as t — oo, into a solitonic part plus
a radiation term. This has been established in a variety of NLS models, in different
dimensions and specific non-linearities in the form F(z) = z”. The SRC is otherwise
widely believed to hold true, at least in very generic circumstances. Important advances
were made towards that goal in that various dispersive estimates for the Schrodinger
evolution, [9], we also refer to [6,32,33] for further related issues and discussions.

As one can see from the recent developments—the existence, functional and most
importantly stability properties of the solitons are really a starting point towards an
attempt at understanding the global dynamic of a model like (1.1). It should be mentioned
though, as this will be the focus of this paper, that the cases outside of the simple power
non-linearity, that is F(z) = zP, have not been well-understood at all-at least from
point of view of existence and stability of the corresponding solitary waves. Clearly, this
is an important question, both from a theoretical and practical point of view.

As an example of a model of this type, which naturally appears in the shallow water
waves approximation models is the Gardner equation, which features cubic and quintic
terms, or in terms of F, F(z) = az =+ bz%, a, b > 0. One should note that this is a model
in one spatial dimension, where the profile equation (1.2) allows reduction of order. In
fact, it should be pointed out that matters in this particular case, that is n = 1 are more
or less fully understood.! For the one dimensional case, in the paper [14], under pretty
general conditions on the non-linearity F, the authors have established the existence of
ground state waves. In addition, the stability of such waves was reduced to a sign of an
explicit quadrature involving the nonlinearity F. As this condition is very non-explicit
(even for simple combinations of two powers), Ohta, [29], followed by Maeda, [25], have
further studied the conditions for power nonlinearities of the form F(z) = az? + bz4.
They discovered an interesting new paradigm, namely that even for fixed a, b, p, g, the
stability of the waves f,,, may change with w. This is a complete departure from the case
of a single power non-linearity, F'(z) = z”, since the stability in such a case happens
exactly for p : 0 < p < 2, and then for all values of w. In fact, we provide a quick
and self-contained introduction to the existence and stability of the waves in one spatial
dimension—see Appendix C.

U In the periodic case, the theory is slightly more technical, due to the appearance of an additional integration
constant, but the theory goes through.
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The purpose of this work is to examine these questions for general power non-
linearities, in high dimensions, n > 2. We work with power functions of the form

K L
F(r):Zakr”"—Zbqu’, 0<pr<---<pkg,ai,...,ag > 0;q
k=1 =1
<-~-<qL;b1,...,bL > 0.

Within this class, we require that we work with nonlinearities with at least one focusing
term, that is K > 1. There are several reasons in favor of working with explicit power
functions. One reason is to avoid imposing hard to verify conditions on F. A second
one is to be able to illustrate the results better - including how they stack up against the
standard threshold results for stability, non-degeneracy> among others.

In closing of the introductory remarks, let us point out that our results for NLS will
transfer nicely to the Zakharov—Kuznetsov equation. This is a higher dimensional version
of the KdV equation, and more precisely,

+ 0y, (Au+ Fu®u) =0, u:R, xR" > R (1.3)

The problem was initially derived in three spatial dimensions (and quadratic nonlinearity)
by Zakharov and Kuznetsov, [37] to describe weakly magnetized ion-acoustic waves in
a strongly magnetized plasma, but later found applications in two spatial dimensions as
well, [26,27]. Finally, in [21], the equation was derived from the Euler-Poisson system
with magnetic field in the long wave limit approximation.

Here, we consider waves, traveling in the direction of x1, with a speed of w. In other
words, we impose the traveling wave ansatz, u(x, t) = f,(x1 — wt, x2, ..., x,). After
plugging in (1.3) and taking into account that f,, is vanishing at infinity, we obtain the
same profile Eq. (1.2).

1.1. The linearized problem. In this section, we consider the linearized problems and
introduce the relevant notions of stability. Taking the ansatz u = €'®'[ f,, + v(, -)] into
the NLS problem (1.1), we obtain, after ignoring O (v?) terms,

1] i 01 Z 0 vy . D
<U2>t—(—1o)( 0 z_)(vz)_' S L 4
where v = vy + iv2, and the self-adjoint operators, %1 (with D(Zx) = H*(R")) are
given by
L= —A+o—F(f2)
L= —A+o—F(f2) —2F (f2) 12

Applying the ansatz u = f,,(x; — wt, x') +v(t, x| — wt, x’) in the Zakharov—Kuznetsov
model, (1.3), we arrive at the linearized problem

v = 0y, Z4v. (1.5)

It is immediate that by (1.2), Z_[ f,,] = 0, while taking a derivative in any x;, j =
1, ..., nresults® in 20 fol =0, j =1,...,n. Actually, from Nother’s principle, all

2 To be defined shortly.
3 This is all formal for now, but it will turn out to be justified, once we review the relevant properties of f;,.
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elements of* K er[.Z] arising out of the known symmetries of the system—translational
and modulational, are accounted for. Still, it is unclear whether these are all elements
of Ker[-Z]. While it is usually pretty easy to establish that zero is the bottom of the
spectrum for .Z_, whence zero is a simple eigenvalue spanned by f,,, (see Theorem 3
below), the fact that Ker[.%,] is spanned by V f,, is not straightforward and it is an
open question in a surprising number of applications. In fact, we shall introduce an
intermediate property.

Definition 1. We say that the wave f, is non-degenerate, if
Ker[Z\] = spanld; fo,, j =1,...,n].

We say that f,, is weakly non-degenerate, if f,, L Ker[-Z,].

The weak non-degeneracy of course easily follows from the non-degeneracy. While
it does not seem to be a standard notion in the literature, we introduce it herein since it
turns out it plays an important role in stability considerations and it is also closely related
to the differentiability of the map w — f,,. This brings us to the second main objective
of this paper—beside the construction of the waves, it is a common assumption in the
literature that “the map w — f,, is a C! in some interval . This is of course easily
verifiable in the case of a single power non-linearity, F(z) = z”, but it is a non-trivial
fact for just about any other non-linearity. We address this issue, in the framework of
normalized waves, in Theorems 1 and 4 below.

Finally, we formally introduce the different notions of stability.

Definition 2. We say that the wave f,, as a solution to the NLS problem (1.1), is spec-
trally stable, if the equation

J LT =43,

does not have solutions, with v € H>(R"), v # 0, A : %A > 0. Similarly, f,, is stable
as a solution to (1.3), if 9,,-Zyv = Av does not have solutions v € H?*(R"), v #0,A:
RA > 0.

We say that the wave f,, is orbitally stable solution of (1.1), if for any € > 0, there
exists § > 0, so that whenever the initial data is picked so that [uo — follg1Rrer) < 6,
then the corresponding solution u satisfies

. »
su inf u(t, - —y) —é 1 e
t>](;))9€[0,271],yeR" lue y) fw”[-[ (R

For traveling wave solutions of (1.3), orbital stability means that for every € > 0, there
is 8 > 0, so that for all [ug — full g1 Ry < &, one has sup,_ g infyern [lu(z, x —y) —

Jori — ot x| g1 gey < €

There is of course the notion of asymptotic stability, but since we claim no results in
this direction, we do not introduce it here.

4 And here, it is important to note that we are interested in a description of all elements of Ker[£+] C
D(Z4) = H*R").
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1.2. Variational setup: normalized waves. Of specific interests are the properties of the
so-called normalized ground states. More specifically, these are solutions (if they exist!)
of the following constrained minimization problem

Iu] := [go IVu@)> = fgo Gu()|*)dx — min
:fR,, lu(x)Pdx = A, A > 0 (o
where G(0) = 0, G'(r) = F(r), or equivalently,
Gy = XK: et XL: b g (1.7)
Pt pr+1 P q+1

The question for existence of solutions to (1.6) is in fact a hard one to analyze, despite
many recent advances. In fact, this is one of the central issues that we would like to address
in this paper. To that end, introduce the following function m : [0, co) — R U {—o0},

m(\) = inf Iu].
fR" lu(x)|2dx=x
Note thatm = m Wb.pg (1) and itis possible that m (L) = —oo for a substantial portion of
the domain. Clearly, m (1) > —oo is a necessary condition for (1.6) to have a solution, in
which case we refer to (1.6) as well-posed. In addition, it turns out that the requirement
that m is a non-increasing function in A is a sufficient’ condition for the existence of
solution to the constrained minimization problem (1.6).
More precisely, we have the following existence results.

1.3. Existence results. The standard notion of bell-shapedness will appear frequently,
so we introduce it formally here-namely, we say that a function f : R” — R is bell
shaped, if there exists a decreasing function p : (0, o00) — R4, so that f(x) = p(]x]|).

Theorem 1. If
2
Pk < max <—, CIL) (1.8)
n

then® the constrained minimization problem (1.6) is well-posed, that is m(1) > —o0. In
such case, m(0) = 0. Ifin addition, px < % and the parameters p = (p1, ..., Pk), q

=(q1,...,qL).a = (al,...,aK),l;: (b1, ...,br) are so that
m is non-increasing on the interval 2, (1.9)

then, the problem (1.6) has a solution @, : & € 2, which is smooth and bell-shaped. It
also satisfies the Euler-Lagrange equation (1.2), that is there is a Lagrange multiplier
w = w;, so that (1.2) holds in a distributions sense. There are the following properties

(1) the linearized operator £, satisfies £ | toyt = 0. In fact, it has exactly one negative
eigenvalue.

5 And as we will show, in the most important cases, it is necessary as well.
6 With the understanding that in the absence of de-focusing terms, that is by = --- = by = 0,

2 _ 2
max(ﬁ,qL) =7
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(2) The function m(A) is locally Lipschitz, that is for each interval (a, b) C (0, 00), there
is Cyp So that SUPy ve(a,b) |m(x) —m(y)| < Cqplx — y|. As such, it is differentiable

a.e. and its derivative is m' (L) = —%. In addition, there is the representation
formula
1 [
mGa) = m) = =5 [ war. (1.10)
Al

for each A1, ko > 0.
Remarks:

e The condition (1.8) is necessary for the existence of the waves, otherwise m(X) =
—00, see Proposition 1 below.

e The condition (1.9) is also necessary, see Proposition 1.

e Implicitly in the statement, we have that the Lagrange multiplier w; also depends
on the particular minimizer ¢,. That is, we cannot rule out the possibility that for

the same A > 0, there are two minimizers ¢;, @, : |¢.]> = ”@‘”i2 = A, with
;.9 # ;- On the other hand, on the set where m’ exists (which is a.e.), we have
that w; = —2m’(1), which is independent on the minimizers.

Next, we turn to the necessity of the assumptions made in Theorem 1.
Proposition 1. For the constrained minimization problem (1.6), we have the following

e (necessity of (1.8)) If px > max (%, qL), then m(L) = —o0.

e (normalized waves exist only for o > 0) If f, € H'(R") N L?Pk*(R™) N
L?9L*Y(R") is a minimizer of (1.6), then & > 0.

e Suppose that (1.8) holds and the constrained minimization problem (1.6) has a
solution for each A > 0. Then, . — m(L) is a non-increasing function.

As an easy and useful corollary of Theorem 1, we have the following

Proposition 2. Let ¢ be one of the constrained minimizers described in Theorem 1. If
in addition, (Z,¢, @) = =2 fR" F'(9¥)¢*dx < 0, then the wave ¢ is weakly non-
degenerate, i.e. ¢ L Ker[ %]

In particular, if F' has only focusing terms, the corresponding wave is always weakly
non-degenerate. We now discuss the properties of the solutions to (1.2). In doing so, one
has to keep in mind that in general, we do not know uniqueness for (1.2), while on the
other hand, some solutions are generated by the constrained minimization procedure, as
described in Theorem 1.

Theorem 2. Assume w > 0, (1.8) holds, and f is a bell-shaped function, with f €
L2(R"), so that f is a strong solution of (1.2), that is

f=EA+o) P f1 (1.11)

Then, f € L (R") and moreover, f has exponential decay rate at 0co. More precisely,
fx)<C(+ |x|)*%e_‘/5|x‘ and in fact, there is ¢ > 0, so that for all large |x|,

e—Volx| (e—ﬁpc)
f(x)=c — +0 .

—1
Ix|“7 x|

Next, we have a general result about .Z_, .Z,.
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1.4. Spectral results about £, %;.

Theorem 3. Suppose w > 0, f,, > 0, f., € H*(R") solves (1.2) and it has exponential
decay. Then, the operators £, L enjoy the following spectral properties:

(1) Z- >0, so that 0 is a simple eigenvalue, with an eigenspace spanned by f,,.

(2) %4 has at least one negative eigenvalue.

(3) Assume in addition that n # 2, n(%4) = 1. Then, Ker[Z.] 2 {01 fu», ... On fol is
eithern orn+1 dimensional. In the former case, K er[£}] = span{d1 fu, .. ., O fwl
while in the latter Ker[.%,] = span{0i fu., ..., Oy fu, Yo}, where Wy is a function,
depending on the radial variable only, with exactly one zero in (0, 00). In addition,
Wy is a bounded function and there is the exponential bound |Vo(x)| < C(1 +

|x|)_%e_*/5|"|. In fact, there is ¢ > 0, so that for all large |x|,

e~ Volxl <e—ﬂ|x)
Yo(x) =c¢ +0 .

n—1 n—1

x| 2" x| 2

Remark: The requirement for exponential decay of f,, could be weakened significantly.
However, in view of the result listed in Theorem 2, the minimizers of (1.6) do have
exponential decay. Thus, generalizing Theorem 3 to cover f,, with less than exponential
decay seems like a mute point.

1.5. Smoothness of . — m(A) and the non-degeneracy of the constrained minimizers.
We start with a lemma that is interesting in its own right, but it will turn out to be relevant
for the smoothness A — m(}).

Proposition 3. Assume that (1.8) and (1.9) holds on an interval Q2 = (a, b). Let A €
(a, b) be a point of differentiability for w(A). Then, for each sequence §; — O, there
exists a subsequence §j, and ®, so that

o limj— oo |@a4s;, — Pallyr =0,
e @, is a constrained minimizer for (1.6), in particular it satisfies ®; € H*(R") N
L (R") and the Euler-Lagrange equation (1.2), hence Theorem 2 applies to it.

Remark: For the purposes of the presentation below, we shall call @, obtained according
to the procedure described in Proposition 3 a limit wave.”

For the next theorem, we make some remarks concerning the Lagrange multipliers
w. As we have alluded to above, in general, one cannot claim, without any additional
arguments, the continuity of the map A — w,_and even the independence of w; on the
particular minimizer ¢;. Some of the smoothness issues were touched upon by Maris,
[24].

Theorem 4. Let pg < é Assume that for a fixed interval (a,b),0 < a < b < o0,
and for each ) € (a, b), @, is a minimizer for (1.6) and

lim [[@45 — @allL2 =0 (1.12)
5§—0

then

7 This is not a standard notion by any means, but it arises naturally in our considerations, we name it.
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(1) » — w(A) is a continuous function on (a, b) and A — m(A) is a Cl(a, b) function,
given by (1.10).

(2) The function . — m(X) is a strictly concave function on (a, b). In particular, m
is twice differentiable almost everywhere, ' (L) = —2m" (L) > 0, whenever ' (1)
exists.

(3) Assuming that o' (\) exists, then the waves @, are weakly non-degenerate, that is
o L Ker[ L.

For the rest, assume n > 3 and o' (\) exists.

(1) If @, is non-degenerate, that is K er[£}] = span[d1¢y, . . ., 0,9,], then the function
A — @y is differentiable as an L*(R™)-valued mapping, at all points of differentia-
bility of w. Also, we have the formula

B = —0' W)L ;.

In particular, (£ g3, ¢3) = __250'1@) <0.
(2) If @3 is degenerate, i.e. Ker[Z:] = span[d1¢s, ..., 0nps, Wol, but we assume the
stronger condition

lim l@res — @allz2
50 VI3
then again, the function . — @y is differentiable as an L*>(R")-valued mapping, at
all points of differentiability’ of w and

=0, (1.13)

dhpr = —' V)L on,
and consequently (.,Z__l(p;” o) = _ﬁ(k) < 0.

Remarks:

e The assumptions (1.12), in the non-degenerate case, is very weak, compared to the
conclusions. Note that it is claimed that A — ¢;_is differentiable,® which implies

los+s — @all L2

= =1’ WV [1L sl
Jim == lrgall = I/ WILZ g2

Clearly, this last identity implies (5.3) and it is indeed stronger.
e Even in the weakly non-degenerate case, the stronger assumption (1.13) is much

weaker than the subsequent claim. In the same fashion, it is claimed that in particular

limg_ 0 % exists, which implies, and it is in fact stronger than, (1.13).

Our next result concerns some cases in which we can assert the non-degeneracy of
Pr-
Proposition 4. Assume that ¢ is a bell-shaped wave, which is weakly non-degenerate,

that is ¢, L Ker[%}). Assume in addition that n > 3, n(%;) = 1 and one of the
following holds

K
F(r)y=)ar'*, (1.14)
k=1

8 Which is at least almost everywhere.
9 At the points of differentiability of .
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or
K
F(r):Zakrp" —br1,0<q < p1 (1.15)
k=1
or
K
F(r):Zakrpk—brq,O<pK <gq. (1.16)
k=1

Then, the corresponding constrained minimizer @, is non-degenerate, i.e. Ker[ %] =
span[V].

Clearly, in order to ensure that a wave ¢ like that exists, we need further assumptions

in Proposition 4, like px < 2 in (1.14) and (1.15), and px < -2 in (1.16).

1.6. Applications to the stability of normalized waves for Schrodinger and Zakharov—
Kuznetsov equation. We finally state our results concerning the stability of the waves
constructed in Theorem 1.

Theorem S (Focusing nonlinearity). Let (1.14) holds and n > 3. Then, for every A > 0,
there exists an a.e. differentiable function w = w(A) > 0 and a bell-shaped constrained
minimizer f,, € H>(R") N L>®R") for the problem (1.6) with

e~ Valx] (emx)
Jo(x) =co +0 , x| = oo.

n—1 n—1
x| = |x|"2
In addition, for every point of differentiability of A — w (), let f,,, be the limit wave,
in the sense of Proposition 3. Then, f, is non-degenerate, in the sense of Definition 1.
Finally, &' f,,, is orbitally stable solution of the NLS and the Zakharov—Kuznetsov
system.

Remark: We show that the assumption (1.14) implies (1.9). The rest of the statement
is a combination of Theorems 1, 2, 3, Proposition 4 and Proposition 3.

Our next result concerns mixed nonlinearities—some focusing and one defocussing, as
in (1.15) or (1.16). The only difference with Theorem 5 is that we now need to explicitly
assume that (1.9) holds. Note that such assumption is necessary, by Proposition 1, if we
were to expect normalized waves.

Theorem 6 (nonlinearity with at most one defocussing term). Let the nonlinearity be
in the form (1.15) or (1.16) holds. Assume that (1.9) holds. Then, for every . > 0,
there exists an a.e. differentiable function w = w(A) > 0 and a bell-shaped constrained
minimizer f,, € H>(R") N L>®(R") for the problem (1.6) with

e~ Valx] (emx)
Jo(x) =cy +0 , x| = oo.

Miex x|
In addition, assuming that n > 3 and for every point of differentiability of A — w(}),
let f,, be a limit wave, in the sense of Proposition 3. Then, fi, is non-degenerate, in
the sense of Definition 1. Finally, &'“* f,,, is orbitally stable for the NLS Eq. (1.1), and
Sfo(x1 — wyt, x') is spectrally stable solution to the Zakharov—Kuznetsov model (1.3).
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Our most general result, applies to general mixed power non-linearities, satisfying (1.8).
Unfortunately, in this case, in order to obtain any stability result, we need to require
(1.13).

Theorem 7. Assume (1.8), (1.9). Then, for every . > 0, there exists an a.e. differentiable
function o = w(A) > 0 and a bell-shaped constrained minimizer f, € H*(R™) N

L®(R™) for the problem (1.6) with f,(x) = ¢y &2 4o <”‘“

as |x| — oo. If in

n—1
x| 2

n—1

|x
addition n > 3, A is a point of differentiability for w () and

; —1/2
Tim (81721 fuys = fon |2y =0,

then the wave ¢'®*' Jw, 1s a spectrally stable solution of NLS (1.1), while f,(x1—wxt, x”)
is spectrally stable solution to the Zakharov—Kuznetsov equation, (1.3).

Let us finish this introduction with an outline of the paper. In Sect. 2, we introduce
some basic notions and standard results, in particular we present the basics of the Hamil-
ton instability index count in Sect. 2.3. In Sect. 3, we give the variational construction
of the waves, including the Euler-Lagrange equations, some initial smoothness results
about the important function m as well as the necessity of the assumptions of Theorem 1,
formulated in Proposition 1 above. Section 3 finishes with the simple proof of Proposi-
tion 2. In Sect. 4, we discuss the general functional properties of the waves, beyond the
basics established in Sect. 3. In fact, for most of this section, we take (the more general)
viewpoint of the waves as solutions to PDE, rather than constrained minimizers. We
establish L bounds at zero as well as precise asymptotic behavior at co. In Sect. 5,
we start with an in depth analysis of the spectral properties of the linearized operators
Z_, Z. Init, we need to resort to the spherical harmonic decomposition, thanks to the
radiality of the potential. In Sect. 6, we show smoothness and non-degeneracy proper-
ties of the normalized waves. In particular, we prove Proposition 3. We also discuss the
subtle issues of the dependence of the Lagrange multiplier w; on the particular mini-
mizer ¢,, its continuity and concavity of A — m (). In Sect. 6.4, we establish the weak
non-degeneracy of the waves, under the assumptions in Theorem 4. In Sects. 6.5 and 6.6
, we explore the differentiability of the (Banach space valued) mapping A — ¢;, under
weak non-degeneracy and non-degeneracy assumptions. This allows us to compute the
sign of Vakhitov-Kolokolov index, which in turn implies spectral stability. As it turns
out, this is intimately related to the concavity properties of m. In Sect. 6.7, we establish
the non-degeneracy of the wave in the cases considered in Theorems 5, 6, 7. This is
the key remaining ingredient of the orbital stability of the corresponding waves for the
NLS models, as stated in the aforementioned theorems. This is done via an abstract
result yielding orbital stability from spectral stability and non-degeneracy. Finally, due
to the failure of the abstract theory to cover the Zakharov—Kuzntesov case, we provide a
direct proof of the orbital stability for the Zakharov—Kuznetsov model in Sect. 7.2, see
Proposition 8.

2. Preliminaries

We use standard notations for L? spaces, W*? for Sobolev spaces etc. We use the
following definition of Fourier transform and its inverse

f&) = /R e dx, f(x) = /R f@®emEs,
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In this setting, the Laplacian is given by the symbol —472|£|?. A decreasing rearrange-
ment for a function f : R" — C is the radially decreasing function f* : R* — R,
which has the same distribution function as f. It is standard that for all lattice norms (i.e.
those that depend only on the distribution function d¢(e) = [{x € R" : | f(x)| > a}|),
| fllx = Il f*|lx. In addition, there is the Polya-Szegd inequality

IVl = IV L2, 2.1)

where in addition, equality is achieved only if f = f*, modulo the usual invariance
group. This is then a good place to introduce bell-shaped functions.

Definition 3. We say that a function f : R” — R is bell-shaped, if f = f*.

The bell-shaped functions will have the following point-wise decay property that
will be used throughout in the sequel. Let x : |x| = R, then a bell-shaped function f
satisfies, for all ¢ > 0,

1£13 = /I . [fW¥dy = cn R"| f(0)]7,
y|<

whence

0< f(x) < Cullfllzalx]| 5.

The uniform convexity property of the L", r > 1 norms will be useful in the varia-
tional arguments in the sequel.

Proposition 5. Let r > 1, {f,} be a bounded sequence in L", with a weak limit f,
fn — f. Then,

timinf || fullLr = 1 f 1l

Ifinadditionlim,, || fyllLr = || fllLr, then f, — finL" norm, thatislim, || f,— fllor =
0.

2.1. Precise asymptotic of the Green’s function of (—A + 1)~!. We record the formula
for the Green function of (—A + 1)1, thatis Q(¢) = (1 +472|£12)~! (see [10], p-418)

0(x) = 2vm)™ / e*H%d—/Q. (2.2)

tn
Note that O > 0, radial and radially decreasing. Also, Q| 1grn) = fR" QOx)dx =

Q(O) = 1, but note that Q(0) = +oo for n > 2. In fact, we have the following lemma
about Q.

Lemma 1. The Green’s function Q introduced in (2.2) satisfies, for all |x| > 1,
|0(x)] < Ce™ ™
For |x| < 1, we have the asymptotic formula

x> "+0() n=>3
Q(x)w{ln(ﬁ)+0(l) n=2"

In particular, Q € L9(R"), whenever q < " (or q < 0o, whenn = 2).
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Remark: More precise asymptotics will give the optimal decay rate for large |x|, which
is Q)| < Clx| "7 7.

Proof. The asymptotics near zero are well-known, see Proposition 6.1.5, p. 418, [10].
Regarding |x| >> 1, we start by rewriting Q in (2.2). We obtain

—x] 00
0(x) = ¢ /O e*lxl(ufﬁ)2 dﬁl‘

x|z~ ! u”

It remains to check that

o0
oo 12 du
supf e M2 — < o0.
n>1J0 u

This follows easily, once we split the integration in (0, 1/2), (1/2, 1) and (1, 00). O
2.2. Eigenspaces of spherical Laplacians and applications to Schrodinger operators

with radial potentials. The Laplacian operator can be written in its radial and angular
components as follows

n — Asn—l

1
A =0+ O+ —>
r r

Let 2y = Lf .o (R") be the radial subspace of L?(R™), defined by

o= L2, R = (f(-]): /0 f P dr < oo).

It is well-known that for each k = 1,2, ..., the eigenvalues of Ag.-1 are given by
—k(k +n — 2), with the spherical harmonics Y as eigenfunctionslo Agn1 Yy = —k(k+
n — 2)Yx. In fact, it is easy to identify the eigenfunctions corresponding to k = 1, as
these are exactly )%,j =1,...,n,

Xj X
—Ag-1—==m—-1)—, j=1,...,n. (2.3)
r r
Accordingly, introduce the invariant for A subspaces

Zi = span{f(N)Yy : fr € L2, (R"), —Agu1 Yy = k(k+n —2)V; )}, k=1,2,...

rad

so that there is a orthogonal decomposition
L*(R") = & Zi.

Next, consider a Schrodinger operator in the form 57 := —A + w — V(|x|), where the
potential is a radial function. Clearly, .5 acts invariantly on 2%,k =0, 1, ... as well.

10 1t s also well-known that the multiplicity of the eigenvalue k(k + n — 2) is exactly (n * ]li -1 ) -

<" Z ]ig 3 ), but this fact will not be used later on.
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Denoting 77 := J°| 9, , we observe that 7 can be viewed as an operator acting on
the subspace of radial functions Lf 2R, through the formula

n—1 k(k+n —2)

A= =y — —— O + 0 + > V@)L, k=0,1,2,.... (2.4
r r

In addition, 74 < 74 < --- < S < ---, as operators acting on Lfad(R”), in
particular,
O—LZ(R")(%) = Ul?iOgLfad(Rn)(ﬁ).

It is now easy to apply these ideas to the operator .Z;. Suppose that f,, is radial and
sufficiently smooth and decaying. Since Z4[V f,,] = 0 and 9; f,, = xr—’ f.(r), whence
(recall that by (2.3), x;/r is an eigenfunction corresponding to k = 1)

0= $+[3jfw] = $+,l[f/]-

That is, the function f,, is an eigenfunction, corresponding to zero eigenvalue for % ;.
Recalling that %, o = %41 — ”r;z], we conclude

(Lol f'1 )

(Zealf1.f) = (=1 fo (f' ()" dr

=—(n-1) /oo(f/(r))zr"_3dr <0.
0

Applying the Ritz-Rayleigh principle implies the following lemma.

Lemma 2. .2, always has at least one negative eigenvalue.

2.3. Index theory and spectral stability. In this section, we introduce some basic con-
sequences of the index theory, as developed over the last thirty years. In its most basic
form, it was put forward by Grillakis, Shatah and Strauss in a series of seminal papers,
[11,12]. Their theory applies to the eigenvalue problem of the type (1.4), where the skew
symmetric operator _¢ is invertible. For eigenvalue problem (1.5), _# = 9, in particular
fails to be invertible, the GSS theory does not apply to it. This case is covered in more
recent works, [18,30] and more recently [23]. For the results that we quote below, we
follow the book [17] for (1.4) and the recent paper [23] for the eigenvalue problem (1.5).
For (1.4), we have the following setup. The eigenvalue problem is in the form

ILf =\, (2.5)
where ¢ is assumed to be bounded, invertible and skew-symmetric (_#* = — _¢),
while (.Z, D(2)) is self-adjoint(.Z* = .£’) and not necessarily bounded, with finite
dimensional kernel K er[.Z]. Assume in addition that .Z has a finite number of negative
eigenvalues, n(.¢) and /‘1 : Ker[£] — Ker[.£]*". Letk, denote the number of pos-
itive eigenvalues of (2.5), k. be the number of quadruplets of eigenvalues with non-zero
real and imaginary parts, and k; , the number of pairs of purely imaginary eigenvalues

with negative Krein-si gnature.1 I'let Ker [Z]1={1,..., dm},,thenintroduce a matrix
D = (Dij);’fljzl

Dij = (L7 7\l #70)), i,j=1,....m (2.6)

11 The precise definition of those is provided in [15]. For us, ki_ = 0, so this will be irrelevant.
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where the formula is meaningful, since _# ~lgi € Ker[.Z]*. The index counting the-
orem, see Theorem 1, [16] states that if det (D) # 0, then

ke + 2k + 2k = n(Z) —n(D). 2.7)

The most common corollary, which we use, is that n(.¥) = 1, whence stability fol-
lows once we establish n(D) > 1. In the case of the eigenvalue problem (1.4), this is
simply a consequence of (,Z:l fws fo) < 0. The case of the eigenvalue problem (1.5)
is slightly more involved, as is was alluded to above. Nevertheless, as shown in [23],
spectral stability follows in the same way (formula similar to (2.7) holds true), provided
(X;l fws fo) < 0. Thus, in all our spectral stability calculations, we have reduced mat-
ters to the computation of the scalar index (ffl fo, fo) < 0, sometimes referred to as
Vakhitov-Kolokolov criteria for stability. In short, we have shown the following

Proposition 6. For the eigenvalue problem (1.4), assume that

en(%)=1,n%)=0,
o f L Ker[ L) and (L5 [, fu) <O.

Then, (1.4) is spectrally stable, in the sense of Definition 2. For the eigenvalue problem
(1.5), assume

en(%) =1
o [ L Ker[ L) and (L7 fo, fo) < O.
Then, (1.5) is spectrally stable, in the sense of Definition 2.
Regarding orbital stability for the NLS problem, it follows from spectral stability,

the non-degeneracy of f,, (i.e. Ker[ %] = span[01 fy, ..., 0y fo]), in addition to the
smoothness of the map w — f,, as an H" valued mapping.

Remark: The last statement about orbital stability is a corollary of a very general result,
namely Theorem 5.2.11, [17]. Note the requirement about smoothness w — f,, as an
H'! valued mapping, right under (5.2.47) on p. 139.

3. Existence of the Waves

3.1. Proof of Theorem 1. We first show that the problem is well-posed, i.e. m(1) > —o0
for each & > 0, if (1.8) holds. If px < %, we have by Sobolev embedding, for each

p e, 2),

11 l—n(l—#)
L < IVl TR ),

lullzzpe < Cllull g1y

Noting that 2(p + l)n(% — Thz) < 2, we conclude that for each u : ||u||i2 = A, We
have the estimate

K
ak 2pi+2 2

> P lull 2p2 < €lVull> + Cen (3.1)

k=1

for each € > 0. Choosing € = %, it follows that

L
1 ) by 2g1+2
Iu) 2 S 1Vull7, +Zmnun 2 = C1, 2 —Ci

L2ql+2 3
=1
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If on the other hand, px < qL, we have by Gagliardo- Nirenberg inequality for all
p € 0.qu), lullgzpe < ullf,, llull;”, where 6 € 0, 1) : 5y = 305 + 152,

Thus,
K
> =
Pk + 1

k=1

Zpk+2
” L2pk+2 —

eV 4 C . (32)

L2qL +2

Once again,

2q1+2 2q1+2
“||L2q,+2 - E||”||L2§L+z — Ce > —Cep,

for appropriate choice of €.

Next, we take on the existence of a minimizer, now that we know that m(1) > —oo.
First, observe that when minimizing I [u], it is always better to take u™ instead of u.
Indeed, by Polya-Szego inequality and |jul| - = ||ju™*||zr, we conclude that I[u] > I[u*],
while ||u|| iz =L =|u* 22' Furthermore, by the conditions for equality in Ploya-Szego,
the minimizer, if it exists is necessarily a bell-shaped function,'? i.e. u = u*. So, it
suffices to focus our attention to bell-shaped functions.

Take aminimizing sequence, say u ;, of bell-shaped functions, which satisfy ||u ; Ik
A and

2=

Iu;] < m(k)+l,.
J

We have shown that due to the assumption (1.8), we have either (3.1)or (3.2). In either
case, we have

2q1+2 2pi+2
Va7, + Z ujl Gy < m() + -+ Z Lo
1
2 2q;+2
<m)+~ +e(|Vujlg + ||u,-|| Sa2) + Ce
L L%
J =1
Thus, for appropriate choice of €, we conclude
L
2 2q1+2
IVuill2+ Yl 4 < Ca, (3.3)
=1

where C, is an explicit and continuous function of A, depending only on n and the
parameters p, . Since this last quantity controls [|u ||, »;, {u;} is a bounded sequence
in all these spaces. By taking a subsequence, we can without loss of generality assume
that u ; converges to u; — ¢, in all of these weak topologies. Recall now that u; = uj :

flu; > = A, whence

A=/ lu (x)|2dx zf lu; (x)2dx > ¢ R |uj(x)|?,
R" [x|<R

12 After accounting for translations.
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—n/2

for every x : |x| = R. We have |u;(x)| < c,|x] , whence

/ luj(0)|***Pdx < ¢, R7P.
|x|>R

In addition, we have that for p < % a=1-— 2("’:1) > ( and hence by Sobolev em-
bedding, [|lujllwer®r) < Cllujllg1@ny < Ca. Thus, by the Riesz-Relich compactness
criteria, u, is a compact subsequence in the strong topology of all L2P¢*2 whence (after
eventual taking a subsequence), lim; |lu; — ull;2p+2 = 0,k = 1, ..., K. Using the
lower semi-continuity of the weak norm, with respect to the strong normin L, r > 1,
we have [l¢[|7, <liminf; |u;|?, = 4 and

L
mG) = lim Iuj] 2 lim inf| [V 112 +Z 11292

LZq/+2

. 2pk+2
_hmz L2Pk+2 j
=P
L
by
2 2q;+2
LSS
> || ‘P”Lz g+ 1 ||L2q1+2

=1
K ar
2 2
=2 el = el = mAlie)?) = mG,
=1 Pk

where in the last step, we have used the fact that m is non-increasing. Clearly, in all the
above chain of inequalities we have equalities. In particular, ||(,0||i2 = A Il =mO),
whence ¢ is a minimizer of (1.6). In addition, observe that liminf; |[Vu |2 = Vel 2
and liminf; [|uj|l;2q+2 = @l 2q+2.1 =1, ..., L. By Proposition 5, u; tends to ¢ in
the norm of H'(R") N L24L*2(R™).

3.2. Euler-Lagrange equations. We now derive the Euler-Lagrange equation, which are
satisfied by the minimizers ¢, . The starting point is that for arbitrary test function 4 and
a real parameter €, there is the inequality

|: R +¢€h
llor +e€hll 2

} > Iga ], (3.4)

which exploits the fact that ¢, is a minimizer. For simplicity, take 4 real-valued so that
h:(h, @) =0, |lgx +e€hll3, = A +€?||h]|*. Expanding in orders of €, we find

|: . @) +eh
llgs, +€hll 2

}=/ |vm+eh]|2—f G (g2 +2eg,h) + O(e)
Rn Rn

= I[p3] +2e((—Ags — G'(@9D)ps, b)) + O(€?).

It follows that (—Ag; — G’ (go)%)(px, h) = 0, whenever h L ¢, . Equivalently, there is a
Lagrange multiplier w,, so that

— Ags — F(gD)gn = —Agy — G'(¢D)pr = —w 5. (3.5)
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Note that so far, this equation is only satisfied in weak sense, since we only know
@ € H'(R")! This is of course nothing but the elliptic profile Eq. (1.2). Taking dot
product with ¢, (which is justified even for weak solutions ¢, ) gives the useful relation
g F@De; = IVl

w) = Y .

Taking into account (3.6) and expanding up to second order in € in (3.4) (keeping in
mind that 2 L ¢, ), we obtain

+eh
! [ﬁL] _
llos + €l 2

e 2 2
=(1—7llhll) N [V +€h]]

(3.6)

2
- / G ((so% +2egh + €27 (1 — ETuhnz))
= I[g3] + € (<<—A — F(¢?) = 2F (9P ¢Hh, h)

1
+( /R F(p})p} — ||V§0A||2)||h||2> +0(e)

= I[pp] + €2(Lh, h) + O(€Y).

It follows that (Zh, h) > 0, whenever h | ¢,. It follows that %, has at most one
negative eigenvalue. In Morse index notations, n(.%;) < 1. It follows from Lemma 2
that n(%,) > 1, so we conclude that n(%,) = 1.

3.3. Properties of the function m(A).

Lemma 3. The functionm : (0, co) — RU{—o00} is a non-positive function. In addition,
supposing that the requirement (1.8) of Theorem 1 is met, then m is a Lipschitz function,
with a locally bounded Lipschitz constant.

n/2

Proof. Fix A > 0and a Schwartz function x : || x ||i2 = A,sothat x, (x) := u"x (ux),

112

has the property || x,.||* = A. Then, m(X) < I[x,] for each u > 0, whence

m(h) < liminf 7[x,,] = lim inf[? | Vx |17, —p" f G("x*(x))dx] = 0.
n—0+ n—0+ R

Suppose now that (1.8) is satisfied. According to'? (3.3), we may define
m(k) = inf Iu] = inf I[u].
lullP=Allull ;1 2g+2 <2C lulP=Allull ;1 2q+2 <1.5C5,
Upon introducing a new variable, U : u = U , We can write
K pi—1

m(i) . agh 2
koy=—"=  inf MUY . / U |2+2P
IUIR=1,1U1 ;1 -, 2042 <2C =1 Pk !
L a-!
bir 2
+Z 1 / U2,
=1 q1+1 n

13 Which holds whenever m(X) > —oo, hence it is enough to assume only (1.8).
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Clearly, it suffices to check that k is Lipschitz. Fix an U that satisfies the constraint for
A+, thatis Ul =1, Ul g1qz2a4+2 < 2Cr4s. For each such U we have

K g+ L b+ 8) '
daj [
IvVUi? =Y :—1/ U2+ —1/ |U |2+
=1 pk+ n =1 q[+ n
K pi—1 L q—1
axh 2 22 bir 2 242
= |VU|? - U|>2Pe 4 U4 + Es 5,
IO =3 = [ Uy T [ b

k=1 =1

where the error term Ej ; clearly can be estimated as follows

1 242 242
|Es | < CISI(X + AL+ APEY (1 + ||U||L§+§1fL + ||U||L;+fp1§() < 18|Dy,

where again D;, is an explicit, continuous (and computable in terms of C;, p, g etc.)
function of A. It follows that, by taking |§] small enough so that 2C; s > 1.5C), and
consequently taking infimum over all U satisfying the constraints for A + 6 (and hence,
by the choice of § for A as well)

k(X)) — Dy |6] < k(A +8) < k(L) + D,lé]. 3.7
This is the desired Lipschitzness for k, with a constant D, . Due to the fact that m is

Lipschitz, we have that it is differentiable a.e. We show now that w; > 0 and whenever
m'(}) exists, we have the formula m'(1) = —%*. Indeed, start with the inequality

gy + €h] = m(llgs + €hl|?) = m(r +2e (s, h) + € |h]?), (3.8)

valid for all € and all test functions /. On the other hand, there is

g +€h] = I[ga] — €wplpa, h) + §<<$+ — w)h, h) + 0(€)
=m(A) — ewp{gn. h) + O(e?). (3.9)
Taking h = ¢, yields
m(h +2he + €21) < m(A) — erwy + O(€2). (3.10)

2
mitahere )=m@) *whence by taking liminfe_o_ and

taking into account that m is decreasing (and since 21¢ + Ae? < 0 for all small enough
€ <0),

For ¢ < 0, we have —w; <

A+ 2h€ +€20) — m(h
o, < liminf ™ crer) —md) _

€—0— re

Oa

0, wy > 0. If m’()) exists, we can compute it from (3.10). Indeed, taking ¢ — 0+
yields

, Com+2re +€20) —m() wy,
m'(A) = lim < -——, (3.11)
€e—0+ 2\€ 2
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whereas taking lim._,o_ yields

23) —

m'G) = lim m(A+2xe +€“A) —m()) . _ﬂ'
e—~>0— 2A€ 2

Combining the last two inequalities gives the desired formula m’() = — %, whenever

m’ exists. Since m is Lipschitz and hence absolutely continuous, there is the formula

(1.10). o

In the case w; > 0, we can actually say that ¢;, is a classical solution of (3.5). Indeed,
for ¢;, (which is initially known to be only in H'(R") N L242+>(R")), we can write

9. = (A +w) [Fle 1] (3.12)

Since the radial potential V = F [(pf] has some decay at oo, we conclude from
Theorem 2 that in fact |@ (x)| < Ce vV®*I Going back to (3.12), it is clear that
the bell-shaped function ¢, is in fact H>(R™). This can clearly be bootstrapped further,
we will not need to do so here.

3.4. Necessity of the assumptions: Proof of Proposition 1.

3.4.1. (1.8) is necessary Assuming that (1.8) fails, let A > 0 and fix a Schwartz func-
tion yx : ||)(||%2 = A. Consider testing (1.6) with the sequence xy = N2y (Nx) :

II)(NIIi2 = A, for N >> 1. We obtain

242 242
Ixn) = N2V 2, = N"PK [ 17505, + N[ x 175005 + o(N"PK).

Clearly, N"P¥ is the dominant term, whence m(A) < liminfy I[xy] = —ooc.

3.4.2. Waves exist only for w;, > 0 One can directly use the Pohozaev’s identities (A.2).
From it, and assuming that f,, is a minimizer, we have

ol fol* =n fR G(fa)dx — (1 =DV ful® = 21V full* = nm () > 0,

taking into account that m (1) < 0, as established earlier. It follows that w, > 0. Note for
future reference that if f,, is a constrained minimizer, then w; > —@. In particular,
on an interval (A1, A2), since m is non-increasing, we obtain

m(A1)

inf > — . 3.13
)\E(IAI,)LZ)w)L_ Al G-1)

3.4.3. A — m()\) must be non-increasing We have essentially showed this already.
Indeed, recall that A — m (L) was shown to be Lipschitz, only under the assumption
(1.8) (see Lemma 3). As such, it is absolutely continuous function, with a derivative
a.e. Finally, assuming that a minimizer for (1.6) exists, we have (3.8) and subsequently
(3.10), whence we compute the derivative to be m’(A) = —%~. Since a.c. functions are
integrals of their derivatives, we have for each 0 < A1 < A,

A2 1 A2
m' (\)dr = —5/ wydir <0,

Al

m(A) —m(ry) = /

Al

since w; > 0. Thus, m is non-increasing.
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3.5. Proof of Proposition 2. Recall that by Theorem 1, $+|{<p}J- > (. Take any element
v € Ker[%,]. Then, ¥ — ||g0||_2(lll, Q) € {<p}J-. Thus, it follows that

0 < (LW — ol 72(W, 9)p), W — lloll (¥, p)p) = ol (W, 9)*(Lig, ¢).

But since (Z, ¢, ¢) < 0, we conclude that (¥, ¢) = 0, otherwise a contradiction with
the previous inequality. This establishes Proposition 2.

4. Proof of Theorem 2

In the next lemma, we show that the solutions to (1.2) are bounded at zero, provided
(1.8) is assumed. Recall the notation V (x) = F(fZ(x)).

4.1. Bounds at zero.

Lemma 4. Assume w > 0, (1.8) holds, and f is a bell-shaped function, with f €
L%(R"), so that f is a strong solution of (1.2), that is

f@) = (=a+o) V] =0t /R OWox = yDF(2 NS ()dy. (4.1)

Then, f € L*°R").

Proof. Since f is bell-shaped, clearly f(0) = sup,cgn | f(x)], so we need to show that
f(0) < oo. Since Q > 0, f > 0 and after ignoring the negative part of the function F,
we obtain

K
0<f()<wi™! [R 0wl =y af*r (n)dy

k=1
K
= 2! Zak /R" O(Va(x — y) 2P+ (y)dy.
k=1

By the exponential decay of Q, the integral clearly converges for large y, so the issue is
controlling the integration, say over |y| < 1.

Assumen > 3, the case n = 2 is treated similarly. As we saw in our earlier arguments
for bell-shaped functions in LY spaces, we have that f(x) < ¢l f|lz«|x|™*/4, for all
x # 0. Consider

so = inf{s > 0:|f(x)| < Cslx|™*, for |x| < 1}.
Clearly, since f € L2, we have that 0 < so < % We will actually show sg = 0. Assume

not, so so > 0 and take any s > sg. Take § € (0, 1) and x : |x| = §. Then,
/ Ly QW= IS )y = / QW =) A (dy +
y <

yI<3

s / O(Wa(x — ) 2P (y)dy < 570D f Iy 4
%<\y|<28 ly

8
\<§

+87(2p+1)s/ |)C _ y|f(n72)dy < 827(2p+1)s.
$<|yl<28 ~



On the Ground States of Second Order PDE’s with Power Non-linearities 949

We have also good bounds for f25<|y|<1 O(Jw(x — y))le’“(y)dy. Indeed, for kg :
2k=l§ < 1 < 2%§, we have

/ O(Jarlx — 1)) 27 (3)dy
25<|yl<1

ko

<> O(/arlx — ) f7 ()dy <
=1 2k§<|y|<2k+D3s
ko
syo e | ey
k2=1: 2k3<‘y|<2(k+1)8
ko
< Z(2k8)2—(2p+l)s < maX(l, 82—(2p+l)S)
k=1

nential bounds for Q. The least favorable bounds occur of course for p = pk, so this
shows that | £ (x)| < C max(|x|~(@P&+Ds=2) 1) If 2pg +1)s —2 < 0, we have sg = 0
and we are done. Otherwise, if 2pg + 1)s —2 > 0,

and also, a bound by a constant for fb =1 Q(Jo(x — ) f27*1(y)dy, due to the expo-

s0 < 2px+1)s—2

for all s > s9. This leads to the inequality so > PLK' But, px < %, whence sg > % But,
we already know that sy < %, a contradiction. So, s9 = 0.

This means that for all ¢ > 0, there is C¢, so that f(x) < C¢|x| €. Clearly, by our
argument above, with s = ¢,

/ O(Watx — y) 2P (ndy < 82~ CrxsDe < 5
ly|<28

for small enough €. Similar to the previous estimate, now with s = €, fz s<ly| O(Jw(x—
y)) £2P*1(y)dy < 1. Thus, the boundedness of f(0) is established. O

4.2. Asymptotics at infinity for eigenfunctions and waves. The next lemma is about
the existence and properties of Jost solutions, with the expected prescribed behavior
at co. This result will be an important ingredient in two related, but overall different
situations. First, to establish that the (radial portion of the) eigenfunctions for Schrédinger
operators with radial potentials have exponential asymptotics at oo, and second, to
actually show that the waves (which are solutions to a non-linear problem!) actually
do decay exponentially at co.

Lemmas5s. Letk > 0, « € R, A >> 1 and let V be a smooth potential, with V €
L'(A, 00). Let ® be a non-trivial C*® decaying solution in (A, o) of the problem

— (1) + KD + 5D — V(D) = 0. (4.2)
r
Then, as r — oo,
O (r) = coe " + o7,

with some cy # O.
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Remark: Assuming faster decay for V, say V = o(r ), we can explicitly calculate the
next asymptotic term, namely

() = cole ™ + = r~le ] 4 o(r k).
2k
Proof. Atissue here is the construction of a complete system of linear independent Jost
solutions for (4.2). We will show that there are solutions g1 = e %" + o(e %), g» =
kr 4 0(e*") of (4.2). Once this is done, the proof follows easily, since this is a complete
system and any solution, and in particular &, is a linear combination of g1, g». Since
®, g1 are localized, whereas g5 is growing at oo, it follows that ® = cpg1, which is the
claim.
In order to construct g1 (construction of g, is identical), recall the formula for solu-
tions of the inhomogeneous problem —h” + k*h = G, which takes the form

1 [ 1 [
h(r)z—ﬂ/; ek(s_r)G(s)ds+§/r e K= G (s)ds. (4.3)

We will show that the ansatz g; (r) = e ¥

bounds. Note that ¥ solves

+ W (r) produces a solution with the required

—W{(r) + K20 () + (ra_z —VO) @ + Wi =0.

Thus, we need to solve the integral equation

W, (r) = 21k k) (V(s) - ;12) (e + W, (5))ds
1 o0
+ﬂ/r ¢ kG=n) (V(s) - :‘—2) (e + W, (s))ds.

Introduce ¥ (r) := ek W (r), so

Vi) = =5 [ (Vo) = 5) A+ patsnas
2kr [ee)
+82k/r e~ 2ks (V()— )(1+1//1(s))ds 4.4)
The linear operator
1 00 o eZkr 00 ks
Mo =5 | (Vo= 5) rods+ 5 / # (Vi) = 55) fs)ds

clearly has small norm, when acting on the space L>°(A, oo) for A >> 1, say

N =

I Al Lo (A, 00)—> LA, 00) <

Thus, we can resolve (4.4) as follows
2kr

¥ =d- A)‘l[—% froo (vor - 5)as+ 5 /oo (Vi) = 55 ) ds).

r
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It follows that

1 [ o
Wl <20 = 50 | (V6 = ) ds
2kr

¢ = ks
e[ (YO - ) dslipin.

Since V € L'(A, 00), for large enough A, it follows that
IVl Lo, 00) < Ck,af [V ()] + —]ds < Cro(A™! f [V(s)D
A A

so the result is established. If V has even faster decay, say o(s~>), we can compute
explicitly the next order term for i to be

o]

Y (V(s) )ds 2kr +0(r*1).

Thus, we have the asymptotic formula (for large r)

d(r) = ek 4 ;—kr_le_kr +0(r_1e_kr).

O

Next, we deal with the question of the asymptotic behavior at oo of bell-shaped solutions
of (1.2). Clearly, Lemma 5 will be helpful in this regard. Indeed, a solution of (1.2)
satisfies the ODE

—f" () = —f (M) +aof(r) =V fr)=0r¢e(,o00)

where recall V. = F(f 2). We make the transformation gr) == r% f(r), so that g
satisfies

(n—1(1n-73)

"
— +
g (r) 12

g(r)+wg(r) —V(r)g(r) =0. 4.5)
Note that by the bell-shapedness of f, we have 0 < f(x) < ¢, fll2 |x|~/2, whence
0 < g(r) < cur~"/2. Clearly, (4.5) is in the form (4.2), with = k> and @ = @=1=3)

The only missing piece is that the potential V (r) = F(f%) = F(r="Yg2(r)), does
not satisfy a priori the required integrability condition V € L' (1, 00). Indeed, since we
only assume f € L?(R™), we can only infer a decay f(r) ~ |r|_% whence V (r) ~
min(|r|~PM", r~"41). This does not satisfy the condition only when min(py, g1) < rl:’
but it turns out that one can address this issue, even for small min(py, ¢q1).

We set up a bootstrap argument as follows. Let

=sup{o >0: f(r) < Cor=?, for r > 1}.

We already know that og > % It remains to show that oy = 0o, whence the result will

follow, since V (r) = F(f2(r)) < (f*(r))™nr1:9) < Cyr~N forany N and r > 1.
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Assume that oy < oo and let 0 < o < o¢. Use the representation of f (as a function
on R")

f(x)=aﬁ‘ljglQ(JEQF—yDFKf%ny(de
Letx : |x| > 1, so we estimate (by using the boundedness of f),
fu)iﬁnlﬂQw@@—ymFU%wﬁbmw
YiI<7%

+ﬁ| Q(ﬁ(x —y))lylfﬂ(Zmin(pl,ql)+1)dy
3 <yl

< e_@‘xllxln + le_g(zmin(p"q‘)ﬂ)/ O(Vo(x —y)dy
< e*@‘“lxl" + |x| "o @min(pr.g+D)

It follows that og > o (2min(py, q1) + 1) for all ¢ < 0y, a contradiction.

5. Proof of Theorem 3

We start with the spectral analysis of .Z_.

5.1. The operator £—. Denote V(r) := F(fj(r)), sothat Z = —A+w—V(-]).
Clearly .Z_[f,] = 0. We apply the spectral decomposition of Sect. 2.2. We obtain a

sequence of operators .Z_ x, k =0, 1, ... acting on L%ad, sothat Z_ o< Z_1 < ...

In order to show that .Z_ > 0, with a simple eigenvalue at zero, it clearly suffices to
show .Z_ o > 0, with a simple eigenvalue at zero. Set the eigenvalue problem .Z_ ¢ for
radial valued functions f

—1
— O f = =0 f +f —V)f = uf. 5.1

Introduce achange of variables, g : g(r) = r%f(r).Notethat gl 220,000 = I/ NI 2 JRY)
and so, (5.1) becomes, in terms of g

, (m=1)(1n-=73)
+ —_—
472

- g+wg —V(r)g = ug. (5.2)
Denoting Vi(r) := V(r) — %, we recast the eigenvalue problem in the form
—g" +wg — Vi(r)g = g, where g € L?(0, 00). This is slightly unusual eigenvalue
problem, but observe that the operator L_ ¢ := — j% +w — V] is essentially self-adjoint

on the Hilbert space L?(0, 00), when considered over the domain {u:uce Cgo (0, 0c0)}.
See laso [31], p. 91, where similar eigenvalue problems arise.

Clearly, L,,O[fw] =0, fw(r) = r% Jfo(r). We will show that this is the bottom of
the spectrum. This is essentially contained in the Sturm oscillation theorem (Lemma 2,
p- 92, [31]), but we shall give a direct proof, as the result in [31] is stated with boundary
conditions at zero, which are not relevant for us.
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So, assume for a contradiction, that there is a negative eigenvalue for .Z_ (. That is,
a function W and o > 0, so that L_ o[W] = —ooleJ. Following the proof of Lemma 2,
p- 92, [31], let (ro, r1) : O < rp < r; < 00, is an interval in which ¥ does not change
sign, but W(rg) = W(r1) = 0. Without loss of generality, W|,,.-) > 0, otherwise take
—W. Note that ¥/ (r9) > 0 and ¥/ (r;) < 0 (in fact ¥'(r;) < 0, if r{ < 00). Consider

ry - ~ - ~/
1= / W' foy— W Ydr = W' fy — W
ro
= (V' (r1) fo(r1) — W (1) fo (r1)) — (¥ (r0) fon (r0) — W(r0) foy (r0)) < O,

since W(rg) = 0, ¥(r;) =0, ¥'(r;) <0, \I/’(ro)~ > 0 and fw > (. On the other hand,
using the fact that L_ o[W] = —002\11 and L_ o[ f,,] = 0, we have

r - -~} r -
1=/ (\IJ”fw—\I/fw/)drzzrg/ W f,dr > 0.
ro T

0

This is of course a contradiction, whence W has only one zero, at r| = +00. This means
that the function ¥ > 0, in particular (W, fw) > 0. This is a contradiction again, since
eigenfunctions corresponding to different eigenvalues are orthogonal.

So, Z_ o does not have a negative eigenvalue and zero is at the bottom of o (Z_ ).
Similar argument produces a contradiction, if one assumes that there is a second, inde-

pendent from foo eigenfunction, corresponding to the zero eigenvalue. Thus, zero is a
simple eigenvalue for .Z_ ( and hence for .Z_.

5.2. The operator £,. We apply the decomposition in eigenspaces of the spherical
Laplacian as described in Sect. 2.2. More specifically, the operators % x, k =0, 1, ...
act on the space ‘,ija 4. as follows

n—1

og/ﬂ.h() == —3” - r ar +ow — Wl(r)9
-1 k(k+n—2

.ﬂ,k:—arr—" oy + ( Z )+a)—V1(r),k=1,2,...
r r

where Wi (r) := F(f2(r)) + 2F'(f2(r)) f2(r),r > 0. Note that 0 = Z[Vf,] =

Z,[% f,]is equivalent to 2 1[ f,,] = 0, since %, j =1, ..., n are the first non-trivial
harmonics, corresponding to the eigenvalue (n — 1).
Since L4 0 < %41 < ..., and by the assumption n(%;) = 1, we clearly must have

that n(Z0) = 1, while Z, x > 0,k = 1, 2, .... The remaining statements about .Z;
in Theorem 3 amount to establishing the following

Ker[Z: 0l = {0} or Ker[Z:ol = span{W¥}, (5.3)
L1 = span{f,}, ZLiile >0, (5.4)

where {-} is in the sense of the Hilbert space Lfa 4.» €quipped with its dot product

(f.8) = [y~ frgr)yrdr.
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5.2.1. Proof of (5.4) We apply the transformation g(r) = P f(r). Thus, the eigen-
value problem, for the zero eigenvalue of .Z; | becomes

— D+
—g”+%g+wg—wl(r)g=o (5.5)

where g € L%(0, o0) : fooo |g(r)|2dr < oo. It suffices to show that there is no second

localized eigenfunction for (5.5), other than go(r) = r% f/(r). To look for a second

eigenfunction, we set the usual ansatz go(r)G(r), which leads us to the ODE G" gy =

—2g,G’. Solving it, we obtain a solution G (r) = flr ﬁdr. Note that the function g
0

does not vanish in (0, o), whence this formula makes sense for all r € (0, c0) and a
second eigenfunction is in the form

A |
g(l”)zgo(r)/l %dﬂ

1
go(D)

The function g is linearly independent from gg, because g(1) = 0, while g’(1) =

g g MY _
go(D) go(H) ) —

We now argue that g is not localized at » = oo, hence precluding the possibility
for a second eigenfunction, corresponding to eigenvalue zero. To this end, note that for
r>2,

and so the Wronskian is non-trivial, since det <

1 "ol go(r)
d d = b
e LR Mo

¢(r) = go(r) /1

for some 7 € (r — 1, r). We now show that lim,_, o, g(r) = oo. Recall that the function
go solves (5.5). By Lemma 5, go(r) = coe’\/a’ + o(e’*/a’) as r — o00. Thus,

go(r) . e—Vor

lim g(r) > lim 00.
r—00

R G =) e e D
It follows that g is the only localized eigenfunction (and hence zero is simple eigen-

value for .Z; o), since every other eigenfunction must be a non-trivial linear combination
of go, g, and as such it will not be localized at co.

5.2.2. Proof of (5.3) As before, with the change of variables g(r) = r%f(r), we
consider the operator

Lio:= —92 4 w

. ) +w— Wi(r).

More specifically, we consider L, ¢ as given by the Friedrich’s extension for the form
2
domain'* {g € L%(0,00) : g(0) = 0, [;° |g'(r)|*dr < oo, fol gr_g”dr < o00}. Note

2
that in order to satisfy the integrability condition at zero (that is fol gr—(zr)dr < 00), for

2

functions in the form g = o fr), felLs,,

(R™), we need n > 3. Thus, forn > 3,

14 For the case n = 3, the integrability at zero condition is clearly not necessary.
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the spectral problem of interest, that is .Z; o on Lfa d~(R”), becomes equivalent to the
spectral problem for L, ¢ (as a Friedrich’s extension).

Per our assumptions, n(.%}) = 1, whence n(.Z4 o) = 1, whence n(L+ o) = 1. That
is, L4 o has a negative eigenvalue, say —002. Similar to the arguments for .Z_, the next
eigenfunction, say Wy (if there is one at all!) must change sign at least once in (0, 00).
Clearly, this eigenfunction cannot correspond to a negative eigenvalue, as this would
contradict n(L4 o) = 1. Therefore, it may correspond to a positive eigenvalue, in which
case we are done—this implies Ker[L. o] = {0}. Finally, there is the possibility that the
eigenfunction Wy, corresponds to a zero eigenvalue, that is L, oW = 0.

We will now show that W cannot change sign twice. Suppose that it does changes
signs twice, say at 1,12 : 0 < ri < rp < oo. Following the argument in Lemma 1,
p- 91, [31], we set ¥ (r) = “IjOX((),rl)’ U (r) = “I’OX(rl,rz)’ Ui (r) = ‘IJOX(rz,oo)~ Note

Wo(0) = O and f; 0 g < oo,
Clearly, ¥;, j = 1,2, 3 are continuous and piecewise C!, but they do not belong

to H%(0, 00) = D(—%). On the other hand, they do belong to the form domain. For
arbitrary coefficients a;, j = 1,2, 3, we compute

3 3
(> a;W;. Liol)_a;w;])
j=1 j=1

(n—1Dn—=3) 125=147 Yl
=/ 1> a W) Pdr + n / - dr
o O 0 r

00 3
+/0 (@ = Wi Y _a; ¥, dr

j=1

(n—1)(n—3) |¥;(r)?
4 r2

3 -y
=2 _lajl
j=1 g

j—1

[|\If}(r)|2+ +(w— V1(r))|‘Pj(V)I2] dr

3 .
=> |aj|2/ ' v [—\y;’+ w% + (0w — Wl(r))‘llj] dr =0.
) - 4r
j=1 E

It follows that on a three dimensional subspace X, sup fex (f, L+of) <0.Hence, L.
has either two negative eigenvalues (a contradiction withn (L, o) = 1), orzerois adouble
eigenvalue. We can rule out the second eigenfunction at zero (and hence contradiction
with the two zero of the function Wy) in a similar manner as in Sect. 5.2.1. Clearly W
satisfies L1 o[W] = 0 in (4, 00), whence by Lemma 5, W (r) = coe_\/ar + o(e_\/‘T”)
asr — oo. In particular, W (r) # O for all large enough r. Take r, to be the largest zero
of W( and define a second eigenfunction, in (r,, co) via the formula

r 1
W) = Wo(r) / o
re Y

Similar to our arguments before, thereis7 € (r—1,r), ¥ (r) >
for Wy, it follows that

()
W3 ()

. By the asymptotics

. . Wo(r)
Iim ¥(r) > lim =
—00 r—00 \IJO (r)

r
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Thus W is not localized and so no eigenfunction, other than Wy, is localized. Thus, we
have reached a contradiction again, which was due to our previous assumption that W
has two zeros in (0, 0o). Thus, Wy has exactly one zero in (0, 00).

6. Smoothness and Non-degeneracy Properties of the Normalized Waves

We start with the proof of Proposition 3.

6.1. Proof of Proposition 3. Let us first show that there is a convergent subsequence of
@a+s; - Recall that in the course of the proof of Theorem 1, we have shown there that each

minimizing sequence has a convergent subsequence (denoted the same), in H' sense, to

a constrained minimizer, ®, . It remains to show that #(p Jery is minimizing. Clearly,
J

= I = a
)\’+8j(p),+8j = A.
[
1] A+5jm+a,]=I[¢x+,sj]+0[5j]=m(x+5,-)+0(5j)_>m()\),

since the function m is continuous. It follows that ﬁ(pﬂg ; is minimizing and hence
; .

Also,

converges to what we call ®;. Clearly,

[ A
lim =1lim | —— =,
; Pr+s; s Pr+s; A

in H'! sense. From here on, the proof of Proposition 3 follows the scheme of the proof
of Theorem 4, except we have a discrete sequence 4, instead of a continuous variable
8, as it approaches zero.

6.2. On the independence of w; on the minimizer, its continuity and m € C'(a, b).
First, we note that while w; might potentially depend on the minimizer, m(A) certainly
does not. On the other hand, it was already established that m’ (1) = — %, whenever the
derivative exists. Thus, on the full measure subset of Ry, o7 := {A > 0 : m’(}) exists}, w;,
is independent on the minimizers, in the sense described in the statement of Theorem 4.
Clearly <7 is a dense set as well. Recall the formula (1.10), where we can think of the
integrand w, as being only defined over <7, and hence independent on the minimizers.
If we are able to show now that the function |z, p) has a continuous extension over
(a, b), then we can use (1.10) to conclude that the derivative of m is a continuous function
and hence in class C!(a, b). Hence, we will have a legitimate formula w; = —2m’())
for all A € (a, b). In particular, w; would be independent of minimizers as a derivative
of m, which is naturally independent on the minimizers, due to its definition. Thus, it
remains to establish the continuity of w| /. In fact, it is enough to establish the following
proposition.
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Proposition 7. Suppose that lims_, o4 ||@a+5 — Pl ;2 = 0. Then, foreachr : 0 < r < 00,

n:20r0<r<ﬁ,nz&wehavethat

lim [ @3f5rdx = / OH . (6.1)
§—0+ R” n

Let us show how to obtain the continuity of A — w(X) under the assumption (1.12).
Supposing that (1.12) holds, we have from the proof of Proposition 3 lims_.¢ ||@s+s —
@l y1q20.+2 = O-indeed, for every sequence 6; — 0+, we will be able to take a
subsequence §,, so that ¢; ;s j, converges to & in H' N L?9*2 which implies exactly
that limg—o ||@a+s — q)”HlﬁquL*z =0.

Now, the formula (3.6) for w, ¢ represents it as a linear combination of ||[V®||
and various LP%, L9/ norms. The convergence of the L? norms is guaranteed already,
whereas Proposition 7 (more specifically (6.1)) provides the convergence of the L”
norms. With that, supposing that for any {A + 6;}; C (a, b), we will have proven
lim Wh4s; = lim DikSj, prvs; = D, Thus, the function | o/, ) can be extended as

a continuous function on (a, b).

Proof. We have already shown that lims_, o+ [|@a+s — P2 = O implies lims—0 ||@r+5 —
@l yiqp2a+2 = 0. The formula (6.1) is a consequence of the Sobolev embedding
H'(R") < L*?"(R"), valid for exactly the range of r specified in the statement. O

The next order of business is the concavity of m. Note that the concavity property is
independent on the assumption (1.12).

6.3. The function ». — m(X) is concave down. Our starting point is the inequality (3.8)
established earlier. Taking into account (3.9), it reads

2
€
mQ.+2e(ga, h) + €2 h|?) < m(r) — ews g, h) + 5 (L —onh, h) + 0(e?).
(6.2)
Writing the same inequality with € — —e and adding the two yields
m(k +2€(@a, h) + €2 |h]1*) + m(A — 2@y, h) + €| h]1%)
<2m) +€2((L — w)h, h) + 0(ed). (6.3)

This inequality is valid for all &, but we wish to apply it for the eigenfunction, cor-
responding to the negative eigenvalue for .%;. Recall that according to Theorem 1 and
Theorem 3, %, has exactly one (simple) negative eigenvalue, say —af, with anormalized
eigenfunction x, : ||| = 1.
We note that (x,, @) # 0, since otherwise, we will get a contradiction with the
X

property Z4|;,,11 > 0. Take h := IR Applying (6.3), we obtain

m+ e+ 2 |h)?) +m — e + €2|h)>) — 2m(X)
€202
< —oW|h)? - —2— + 0(). (6.4)
4(xr, @1)
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We have by (1.10)
Ate+e||h)? Ate+e?|h)?
m@ie+eﬂhf}—m@ie):/‘ IMQMZZ—E/‘ w(2)dz
A

rte +e

whence by the uniform continuity of w(X) on (a, b),

20512 €2(|n)?
mE e + R —m( £ &) + — o)
1 Ate+e2|h)? )
= _E/ [0(z) —w(A)]dz = Ouniform()h €),
Ate

2
Ouniform (A,€7)
€2

meaning lime—0 SUP; ¢ (4.5 = 0. Thus, applying this in (6.4), we obtain for

alle #0,
620'2
A 2
mA+e)+mh—e) —2m(A) < —ﬁ + Ouniform(h, €°). (6.5)
Xxs O
It follows that
A+e)+m(h —e) —2m(h 2
lim sup sup m( €) +m( 3 ©) m() < — in U—Az <0. (6.6)
>0 Ae(a,b) € re(a,b) 4{ X, 1)

We now finish with the following Lemma.
Lemma 6. Let f : (a, b) — R be a continuous function that satisfies

i JA+)+fh—€)-2f()
imsup sup 5 <0.
e—0 Ae(a,b) €

Then, f is concave down on (a, b).

We postpone the proof of Lemma 6 to the Appendix. Based on the lemma, we conclude
that the function m is concave down. As such, m is twice differentiable a.e.. In fact,

2
based on (6.5), we have that m” (L) < — W for almost all A. Thus, for all points of

differentiability of w (which is a.e. in 1),

02
o' W) ==2m"(\) > A

— > 0. 6.7
200 0002 (©7)

6.4. The weak non-degeneracy for ¢,. In this section, we establish that under the as-
sumptions in Theorem 4, we have that ¢, | Ker[Z,]. In view of Theorem 3, this
is something to worry about only in case where the (strong) non-degeneracy does not
hold, namely when Ker[.Z,] = span{di¢;, ..., 0,¢x, Yo}. Indeed, we trivially have
that @) L span{d1¢;, ..., d,¢,}. Thus, we only need to show that ¢, L Wy, (if such a
function exists in the first place!).

To this end, starting with the elliptic problem (1.2), which ¢, satisfies, with v = w;,.
Let & € (a, b) be a point of differentiability > for w(1). Let § > 0 be so small that

15 Which applies to a.e. point.
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A +6 € (a,b). We will write the equations for ¢, and ¢, s respectively and eventually,
we will take their difference. In doing so, it is convenient to introduce the notation

Pr+8 — P

s =: @) +08Zs, (6.8)

Oi+s = @a +4

and to prepare a few calculations. First, the key assumption (1.12) reads lims_.o 8[| Zs || ; 2
= 0. Since the functions ¢, , ¢;+s are bounded, we have that for each r € (2, 00),

_2 2
81 ZsllLrwey < (BN Zsll<)' "7 (811 Zsl12)7 — 0,
as 6 — 0+. Next, for each power p > 0, we use the first order expansion
2p+1 2p+1 2
Oy =90 +8Zs2p+ 19" + Es s,

where the error term satisfies

o B2 812Zs(0)| < # ©9)
(8Zs)2* 8Zs(x)| = &Y

|Es 5 p(0)] = C

It may appear that there are terms with exponential growth in the spatial variables, such
as gofp _l, when p < % (recall that p is generally small in our assumptions). This turns

out not to be the case. As we know while ¢ ~ e~ valxl | zs| < e~ Min(y/or, o) x|,
So, for example Ejs ; , has decay rate

|Es.» p| < Ce—[Z(min«/ﬁm/wua)ﬂzl’—l)«/ﬁ]\xl’

or about e~ CP*DvV@ x| since § << 1 and A is a point of continuity for w;.
Plugging in the formula (6.8) in (1.2) and taking differences and dividing by §, we
obtain

W)H+§ — Wy _
L Zs] + *T(m +8Z5) — 8 VE5, =0, (6.10)

K L
where E(S,A = Zk:l akE(;,;hpk — Zl:l blEé,A,ql-
We now take a decomposition of Zg across the spectrum of %,. Since Z; is radial,
the only non-trivial projection onto K er[.%}] is potentially only over Wy, so we have

Zs = (Zs, Yo)¥o +z5 =: a(§) Yo + 25,

where z5 L Ker.%,, so in particular z5 L Wy. Note that since §2a%(8) + 8°|zs||> =
8211Zs)|?>, — 0, it follows that lims_, o4 8a(8) = 0 and lims_.o; 8||zs]| = 0. In view of
that and our earlier arguments, it follows that for each r € (2, 00), limg_, g+ 8||zs|lz- = 0
as well. In addition, the exponential bounds for Zs and Wy carry over to zs. We collect
the estimates for a(6), zs in the following

Slzs(x)| < Ce™Vmin(@n@s)lxl, Jim Slizsllr = 0,2 <r < o0; lim Sa(8) =0,
—0+ —0+
(6.11)

where C is independent on § > 0.
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Since %, [Zs] = Z,[zs], we have from (6.10)

WH+§ — W,

25 = L7 Py~ % (r +8Zs) + 87 Es ). (6.12)

Since D(.%,) = H*R"), Z! Ppyyyr : L2 — H*(R") and we obtain the bound

|w)45 — w3 ]

<C
lzsll g2 < < 5

(el +8||Zé||)+8_1||E8,A||L2>- (6.13)

We now need appropriate estimate for § ! || Es 2.

Lemma 7.
U Es ll2 < o(D)lzsll g2 + C8a*(8).

Proof. In the regime §|Z;| < ‘lp—g, the function § ! | Es.5| is estimated as follows

K
5 NEsallp2gsiz= ) < D lal 9?7~ 81a* (8) W +2a(8)Wozs + 23]l 2
k=1
L
+ " Ibilllg* " 81a (8) WG +2a(8) Wozs + 231 12
=1

< C8a%(8) sup w32 =1,
FepPl,---PKq1,---qL
2r—1 2r—1_2
+C8la(d)| sup Wozs@2™ M2 + C8 sup g 22112

rep1,...PK:q1,---4L rE€pi,...PK:q1,---4L

Clearly, since W, @5 ~ e~ Vel 4 p(e=vV@rlxl) | we have that (pk_l\llo is a bounded

function. Hence ||\Ifg<p)2f71 ;2 < oo, II\DQQD)%FI lL~ < oo. For the last term, choose

any 0 : 2 < o < 00, so that there is the Sobolev embedding H2(R") — L°(R"),i.e.

2n
o < =5. We have

212 2r—1 21
Sl zslle < llzslleo gy dzsllLor < Cllzsll 2 llgy ™ 8zsliLen,

where o7 : $+ 0—11 = % Thus,

1
2r—1 1-60 2r—1 0 -0
oy~ 8zs o < 18251~ llon gy 182517 Il < Cldzsll, o) 1-e) = 0(1)

where 6 € (0, 1) is designed so that the L term is bounded. This is possible, since
there is the estimate

_ —_(r— —6.J/min(ws,wr19)|
¢}%r 1|8Z8|9 < Ce Q2r l)a/wxlxle 0v/min(wy ,wy+s)]x|

which can be made exponentially decaying at co (and hence bounded), provided 1 >
0 > 1 — 2r and § is sufficiently small. Combining it all together, in view of (6.11), we
have shown the required estimate for § 1| Es s ”LZ(B\ZaIs%)'

The estimate for 81| Es il 2 (51Zs1> %) is in fact simpler. More specifically, note that

since lims_, o+ 8a(8) = 0, we have that for all small enough § > 0, §a(§)Vy << ¢,
whence 8|zs| > 38|Zs| > %.
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For every r € {p1,...pk;q1,-..qL}, we estimate by Holder’s witho : 0 < 0 —
2 << 1andr1:%=%+(}—1
2 2
l1zs(8zs) " L2 < llzsllLe (Sllzsll p200r) ™"

We now select o so close to 2 (and consequently o7 can be made as big as we wish), so
that 2017 > 2. As a consequence, ||zs]| o (8|25l 201-)* = o(1)||zs Il 2Ry according
to (6.11). O

Going back to (6.13), we see that for all small enough 8, and taking into account that
A is a point of differentiability for w; (and hence lims_, o 45—~ = /) there is the
bound

lzsll g2 < Crll/ W]+ o(D)llzs |l g2 + 8a*(8)).

Since we can hide o(1)||zs|| ;2 behind the left hand side, we arrive at the bound, in a
schematic form,

lzsll g2 < Ca*(8) + O(1) = o(D)|a(®)| + O(1), (6.14)

in view of lims_.o+ a(§) = 0. We now show that this by itself implies the weak non-
degeneracy of ¢; . Compute

SN ZsI1* = (@ras — Pas Pras — 91) = 20+ 8 — 2{@ass, @2) = 8(1 — 2(Zs, 93)).

(6.15)
On the other hand,
311Zs|1* = 8a*(8) +5llz51%,
while
1 =2(Zs, p2) = 1 —2a(8)(Wo, ¢1.) — 2(zs, 1)
It follows that
2a(8)(Wo, 1) = 1 — 2z, ¢3) — 8a°(8) — 8zs1I°. (6.16)

From (6.14), |(zs. 1) < Cillzsll < Ci(0(8)]a(8)| + O(1)) and 8]|z5]1> < 0(8)|a(8)] +
0(6). Hence,
2a(8)(Wo, @) = 0(8)|a ()| + O(1).

So, if it happens that (W, @) # 0 (i.e. we assume weak degeneracy for a contradiction),
we must have a(§) = O(1). In that case, take a dot product of (6.10)with W, so that
(Lrzs5, Wo) = 0. We have

WH+§ — W)
)

Note that the right hand side is o(1), if a(§) = O(1). On the other hand, this is contra-
diction, since

WH+§ — W),

[{(Wo, )| < 81(Zs, Wo)| + 87" |(Es 1, Wo)l.

Wh+§ — W)
1)

according to (6.7). This leads us to the conclusion that (W, ¢ ) = 0, which is the weak
non-degeneracy of ¢, . Let us record, for future reference, the identity that follows from
(6.15), in view of the fact that (g, ¢,) =0,

2z, 93) = 1 — 8a*(8) — 8llzsI>. (6.17)

lim

§—0+

(o, 92)] = |’ (W[{Wo, p1)| > 0,
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6.5. On the differentiability of the map . — ¢, in the non-degenerate case. In this sec-
tion, we assume that the wave ¢, is non-degenerate, thatis Ker[.%Z;] = span{di1¢y, . ..,
d,9;,.}. Under these assumptions for the kernel, we can essentially run the same argument
as in the previous section, by assuming a(8) = 0 or equivalently Zs = z;. In particular,
Lemma 7 applies to yield

8 M Esalli2 < oW1 Zsl g2 (6.18)
From (6.13), combined with (6.18), we obtain
1Z5)l 2 < Cle' )l gall + o[ Zsll g2 + o(1).
All in all, it follows that lim sups_, | Zsll g2 < Clo'(M)|ll¢sll < oo. Using this in-
fﬁgmation, we can actually take limits as § — 0 in (6.10). Indeed, applying ffl to
Zs + ' WL g+ op2(1) + 0611 Zs ] o) = 0.
Thus,

lim || Zs + o' (1) 2 sl ;2 = 0.
§—0

This means that the function ¢ : (a, b) — L?*(R") is differentiable, at least at the points
of differentiability of w. In fact,

B = - WL s

Finally,

<0

1 1
—1 = —— (0 =———9 2 = —
(Z or o) w/(k)< L @15 1) IS el IS

6.6. Differentiability of A — ¢, in the weakly non-degenerate case. We have already
established the weak non-degeneracy of ¢;, when ’()) exists. For § > 0, we have the
identity

8 N@res — @all> = 811 Zs 11> = 8a*(8) + 8z 1%,

whence the assumption (1.13) implies that lims_.o 8a”(8) = 0 = lims_.¢ 8|zs||>. This
simplifies matters quite a bit—by combining (6.13) and the estimate in Lemma 7, we
obtain

Izsll g2 < Cle' ()] +0(1) + C8(|a(®)] + l|zs]l 2) + C8a* () + o(D)| 25| 2.

Thus, ||zsllg2 = O(1). In particular by Lemma 7, 8_1EM = o(1). We now easily
obtain, by taking limit as § — 0 in (6.12),

lim ||zs + @' (1).Z sl = 0.
5—0

16 This is justified since all the terms appearing in (6.10) are radial and hence orthogonal to Ker[.Z;] by
the non-degeneracy assumption.
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In particular, the (L(R") valued) function A — ¢ is differentiable, and

hor = - WL sl
Also,

lim (25, ) = — L al, 01)

while by virtue of (6.16) (recall (Wo, ¢,) = 0), we have limgs_, ¢(zs, ¥2) = %

6.7. Non-degeneracy of ¢,.: Proof of Proposition 4. According to Theorem 3, we only
need to rule out the existence of a radial eigenfunction Wy in K er[.Z,], which vanishes
at exactly one point, say r,. € (0, 00).

Recall ¢ L Ker[%4;]. A direct inspection establishes the well-known identity

LY xjdjpl = —2A¢. (6.19)
j=1

This shows that Agp 1 Ker[.%,] as well. In addition,
Zilol = =2F' (9*)¢’,

while from the profile equation F(p?)¢ = —Ap + wp L Ker[.Z,]. It follows that
F'(9*)¢*, F(p*)¢ L Ker[Z;].

We will show that in the three examples, (1.14), (1.15) and (1.16), listed in Proposition
4, this allows us to rule out Wy. Recall that Wo(r) > 0,r € (0,ry), Yo(r) < 0,r €

(ry, 00). Assume (1.14). Choose ¢y > 0, so that ¢ Z,le ak(pipk (ry) = 1. Consider the
function

h(r) == coF (9*)p — ¢.

On one hand, & L Ker[.%,], as linear combination of two functions in K er[.Z:]+. On
the other hand, since ¢ is bell-shaped17 forr € (0, ry),

K K
h(r) = @(r)(co Y axp* (r) = 1) > p(r)(co Y arp™(r:) — 1) =0.
k=1 k=1

For r € (r«, 00), we have the opposite inequality, since
K K
h(r) = @(r)(co Y axg™ (r) = 1) < p(r)(co Y _ axg**(ry) — 1) = 0.
k=1 k=1

Clearly, (h, Vo) = Or* h(r)Wo(r)r"Ldr + frio h(r)Wo(r)r"~1dr > 0, in contradiction
with i L Ker[%4,] and in particular i 1 .

17 And so strictly decreasing in (0, 00)).
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The proof in the cases of (1.15) and (1.16) follows the same logic, but it is slightly
more involved. The conditions F'(¢?)¢3, F(¢*)¢ L Ker[.Z,] read

K
F@hg =) ag®* —bp**! L Ker[ 2]
k=1
K
Fl(phe® =Y Cpi+ Darg?™ ' — bQ2q + 1)e™*! L Ker[£,].
k=1

Taking a linear combination (2q + 1) F (g02)<p —F ((pz)go3, we eliminate the term ¢2q+1

and we obtain yet another element of Ker[.Z, ], namely Yf_ 2(q — pr)arp®Pc+.

Clearly, in the cases when ¢ > pk or ¢ < pi, we have an element of Ker[.%;]* in the
form

K

~ 20r+1 ~
> "arg,™ > 0,
k=1

which can be used to produce a contradiction with the existence of Wy, the same way as
we did under the assumption (1.14).

7. Proof of Theorems 5, 6, 7

We first check (1.9) for the case of a purely focusing nonlinearity (1.14).

7.1. Verifification of (1.9) for focussing non-linearities. Write as before

m() = inf I[u]=A inf |:/|Vv|2—k_1/G(A|v(x)|2)dx:|

flul 2= vl2=1
ag Ak / 242
= A inf Vv V|7 PRdx | = AM (A
v|21U' il .

Clearly, the function A — M (A) is decreasing. In addition M (L) = @ < 0, since
m(L) < 0. So, for 0 < A1 < Ao, we have

m(Ay) =AM (A1) > AaM (A1) > AaM (X)) = m(Xy).

Thus, (1.9) holds true.

We now turn our attention to the stability claims in Theorems 5, 6, 7 as the others
were explained in details immediately after the statements. The spectral stability of the
waves is a consequence of the formulas (.,%r_lgo;” 0L) = —m < 0, the fact that
n(%Z) = 1,n(Z-) = 0 and the index theory, introduced in Sect. 2.3, more specifically
Proposition 6.

Orbital stability follows from the end of the same proposition, once we take into
account the non-degeneracy of the waves ¢, the local invertibility of the map A — w;,
and the smoothness of . — ¢, stated in Theorem 4. Unfortunately, there is no abstract
result providing orbital stability for the Zakharov—Kuznetsov model, due to the failure
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of a key assumption in Theorem 5.2.11 in [17], namely the invertibility of ¢ = 9y,
does not hold.

In the section below however, we provide a direct proof of this fact, by adapting
slightly the Benjamin’s method, [1]. Similar, albeit slightly more elaborated method can
be applied to produce a direct proof of the orbital stability of the NLS equation, instead
of referring to Theorem 5.2.11, [17], but we will not do so here.

7.2. Orbital stability for the Zakharov—Kuznetsov models. The local well-posedness
theory for the ZK, (1.3) follows by classical semigroup theory in the energy space
H'(R"), under the assumptions for L? sub-critical powers, as considered herein. This
is then upgraded to global well-posedness theory in H'(R”"), thanks to the conservation
laws

%[u]=f |Vu(x)|2—/ G(|u<x>|2)dx,9(u)=/ |u(x)*dx.
R” R” R”

Thus, we are reduced to showing the following proposition.

Proposition 8. Let ¢ be a smooth wave, satisfying
— Ap+wp — F(pP)p =0 (7.1)

and the following assumptions:

e The operator £, = —A + w — F(p?) — 2F (¢*)¢? satisfies Ll = 0.
e ¢ is non-degenerate, i.e. Ker[£,] = span[di¢, ..., d,¢].

Then, ¢ is orbitally stable in the sense of Definition 2.

Remark: Clearly, the proposition above applies to the limit waves ¢ = f,, described
in Theorems 5, 6, 7 as they were established to enjoy the desired properties described
above. Note also that the method that we present does not require the differentiability '8
of w.

Proof. The proof proceeds by a contradiction argument. Assuming that orbital stability
does not hold, there is a ¢y > 0 and a sequence u; — ¢ in H', so that the corresponding
solutions

sup inf [lur(t.) = ¢(- =)l = eo. (72)

0<t<oo’€

For 0 < € << 1, consider a neighborhood %; in the set of all real-valued functions,
which are closed to translations of ¢,

U= € Hioy®") : inf flu—g( =iy <el.

By Lemma 3.2, [11], there exists €g(¢) > 0, so that for all 0 < € < €p(¢), there is a
unique C' map 8 : % — R, such that

(u(-+pW),dj9)=0,j=1,...,n. (7.3)

18 Which is on the other hand used already in the proof of the non-degeneracy of the waves.
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Note that S(¢) = 0. Since we need € < min(eg(¢p), €p), take the new €y to be the
minimum of the €p, € (¢). Introduce the total energy functional & (u) = 7 (u)+w P (u).
In terms of 7, & the profile equation (7.1) reads

E'el = A (¢) + 0P (p) = 0.
Let
€ = 1Ew(1) = E@|+ 12w (1)) — P(p)l,

which is conserved in time. Note that lim; ¢, = 0, since limy |[u; — ¢ || g1 = 0.
By the continuity of the solution map and the map 8, we have that there exists #; > 0,
so that fort € (0, #;), lui (¢, ) — @l g1 < % and B(u; (1)) is so close to B(¢) = 0, that

€
llp =€ =B @ONlipr < 3
Consequently,

i (2, -+ Bur(1)) — @llgr = llur(z, ) — (- = Bur ()|

<Nt ) = @l + lo — 9 — Baur @)l < §+ g =e.

With that in mind, take

T =sup{to: sup |lu(z, +Bu)) —eO)lig < e}

O<t<19

The previous calculation shows T;* > 1, > 0. We aim at showing that for all sufficiently
small € and for all large enough /, Tl* = 00, which will provide the sought contradiction
with (7.2). We henceforth work with ¢ € (0, 7;*). Denote

Yit, ) =ut, -+ Bw) —eC) =w@®e+n(t, ), nle.
‘We have that
Pui(1)) = P(9) +2e. e +m) + 1Wil7 = 2 @)+ 2uillel* + 1Vl ».

It follows that 2p/ll¢|* = 2 (ur) — P (¢) — |¥1l17,, whence

|2 w) — 2|+ 1¥ill7,
2|2

But &’(¢) = 0. So expansion in Taylor’s and various Sobolev embedding estimates
yield the formula

Ew D) — E@) = Ewt, -+ B (1)) — E@) = E(@ + ) — E(@)
1
= S (L Yu) + OUal}0)

()] < < Cle +Wil32). (7.4)

1 1
= §<$+m, M) + 5(/@2(3&, ©) +2u(Lep.m)) + Ol
By construction, 1; L ¢. In addition, from (7.3), we have forall j = 1,2, ...n,

(i, 3j) = (uy(t, -+ Bui(1)) — ¢ — e, djp) = 0.



On the Ground States of Second Order PDE’s with Power Non-linearities 967

So, it turns out that n; L span{g, Ve}. But recall that we have assumed .,Sﬂl{(p}L > 0.
In addition, by the non-degeneracy assumption, K er[.%Z;] = span[V¢]. Thus,

g‘*"‘?pan{(o,V(p}l > K > 0.

In particular,

(Lo, m) = kil (7.5)

Plugging this information into the expression for & (u;) — &(¢) = & (u;(t)) — &(p), we
arrive at

K 2 3

P 1= 1 1 1- .

2||77IIH = Cea+Clnlly (7.6)
By the definition of n; and (7.4), we have however

Il = 190 = gl = Wl = lwllellgr = 19l g = Cle+ vl
(7.7)

We now select € so small that Ce < min(l(l)—o, 1), forany C that appears in the argument.
1
We claim that for all large enough n, [V (#)||;1 < 614’ for t € (0, T;*). Suppose
1

not-this will then yield a subsequence, denoted the same, so that ||y () || 51 > ef for
some 7; € (0, 7;*). Note that by the definition of 7;*, we still have ||V (7|1 < e.
From (7.7), we have now, for large enough n,

1 1
I ()l g1 = Ellxlfz(Tz)IIHl —Ce¢ > ZIII//I(TZ)IIHI (7.8)

since by the choice of €, we have ||y (7)) || g1 — C||1p1(rl)||il1 > %HW!(TI)HHI (since
1

Ce < 1gp)- In addition, 3 [[Y1(w)llz1 — Cer = F1¥i(m)ll g since ¢ >> €. Using
this in (7.6) yields

K K
3—2||1//z(n>||i,1 < Ce+Cllyr(m)ll3; < Cer + anwmuiﬂ. (7.9)
It follows that

K
anvn(n)uzl <Cq.

1

which is a contradiction with ||y (77) || g1 > 614 forlarge /. Thus, forlarge [, || () || g1 <
1

614 fort € (0, Tl*). But this exactly means that for all large /, Tl* = 00, whence we

arrive at a contradiction with (7.2). O
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Appendix A. Pohozaev
Proposition 9. Any weak solution f € H'(R") N L®(R") of (1.2) satisfy

IV foll® + ol foll* — /R F(f2(x) f2(x)dx =0, (A.1)

(= 2|V folP* + onll fo* — n fR G(fa)dx =0. (A2)

Proof. We first verify it for classical solutions. The relation (A.1) follows by taking dot
product of (1.2) with fw For (A.2), take dot product with Z” 1 Xx;9; f. Since,

—Af, ija f) = Z[Z/ X0 fO1 fdx

j=1 k#j

—/ 3jf31jij‘dx]=——g IV £I2.
Rﬂ

-> f F(f?(0) f (¥)x;9; f (x)dx
j=1

=2 [etran 3 [xron rwax = -ise
j=1

we conclude (A.2).

For weak solutions, take dot products with fx(x/N) and 27:1 x;0; fx(x|/N)
respectively, where x is a C§° function, supported in (-2, 2),sothat x (r) = 1 : [r| < 1.
After integration by parts and taking limy_, o, we get again (A.1) and (A.2). O

Appendix B. Concavity Lemma

We prove Lemma 6. Assume that f is not concave. Then, since it is continuous, it
is not “concave” with 6 = % That is, there is Ao € (a, b) and €y, 59 > 0, so that
ro T €0 € (a, b),

fo+e€p)+ f(ho—€0) =2f(ho) + do.

We claim that at least one of the following three inequalities will hold true

S (o +e€0) + f(ro) — 2f(k0+—) > Z

O
F o =€)+ f(ho) —2f(ho — —) =
€0 50
f(?»0+?)+f(ko—7) 2f (o) = —
Indeed, assuming all three are false, add the first two to twice the third one. We obtain
f (o +e€0) + f(ho — €0) —2f(Xo) < o,

which is a contradiction. Thus, we have shown that inside (Ao — €g, Ag + €0) there is an
interval, with half the length, on which f is not concave with 6 = % Continuing in this
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fashion, we construct a sequence of nested intervals I; = [A; — Aj+ 60] on which

. . . 2/ ’
there is the inequality

8o
G545+ 0= 59 =2 (0)) = 335
Since A; — X = ﬂ?’;olj C (a, b), we obtain as a consequence

FOG+5D+fO =5 =2f() &

lim sup 5 > > 0.
j (6_0) €
2J

This is however in contradiction with the assumption in Lemma 6.

Appendix C. The one dimensional case

In this section, we provide an alternative approach to the existence and stability of solitary
waves for NLS with general non-linearity, in one spatial dimension. Note that here, we
do not necessarily restrict ourselves to normalized waves, but we in fact consider all
waves.

The existence and stability of these waves is a known result, but we wanted to present
a version here, with explicit assumptions, in order to be able to directly compare with
the higher dimensional case, considered herein.

Theorem 8. Let F : (0, 00) — R be a C' function, so that the function H(z) :=
where G : G' = F, G(0) = 0 satisfies

e There exist zg = zo(w) : H(zo) = w, so that H(z) < w, for z € (0, z0(w)). In
addition, z( is non-degenerate zero of H(z) — w = 0, i.e. H'(zo(w)) # 0.
e |H(z)| < C|z|° for z € (0, zo(w)) and some § > 0.

Then, there exists a bell-shaped solution f,, with f,(0) = +/zo(w). In addition, the
20(®)
function w — f ﬁdz > 0 is differentiable for all w > 0 and the wave f,, is

orbitally stable'® if and only if

20(w) 1
0, / —dz>0.
“h Vo—H®

G@)
Z ’

Proof. The profile equation is

—f"+of —F(fA)f =0.

This can be of course integrated once to

[l = —\/a)fz(x) - G(f*(x)), xeR. C.DH

An easy analysis shows that a bell-shaped solution of (C.1) exists with f(0) = /zo(®),
f'(0) = 0. Note that f,, must be strictly decreasing. It is easier to work with the new
variable z(x) := fz(x). In it, the Eq. (C.1) becomes

7(x) = =2z(x)y/o — H(z(x)), x € R. (C.2)

19 Outside of the points, where this quantity is zero, which is known to be a delicate issue. However, in all
cases where this has been studied in detail, nonlinear instability has been established.
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The non-degeneracy condition H'(zo(w)) ensures that a solution with z(0) = zo(w)
exists, since we have from (C.2) that for every x > 0,

1 [zo@) dz
X =z —,
2 /z(x) 2o —H(2)
so the last integral needs to be convergent close to zo(w). This is of course not the case,
unless H'(zo(w)) # 0, which we have assumed to be true.

The linearized operators £+, as previously defined are now second order self-adjoint
operators, with domain D(.Z+) = H*(R). In addition, Z_[ f] = 0 and f > 0, whence
Z_ > 0, the zero is a simple eigenvalue and .Z_ | £t > 0. By direct differentiation of
the profile equation, .Z.[ f'] = 0. Since f’ has an unique zero, at zero, Sturm-Liouville
theory applies to imply that the zero is the second smallest (simple) eigenvalue, the
smallest one being strictly negative. So, n(%;) = 1.

The classical stability theory, say Grillakis-Shatah-Strauss applies to imply that the

stability of such waves is dictated by the sign of the quantity 3, || f., ||> 72> namely the sta-
bility occurs exactly when || f,, || 72 > 0. Before we proceed with this, let us explicitly

compute || f,, ||iz. We use the z variable again. We have, by (C.2)

2 * O ax (@) 1
=2 " Pon=2 [ B [T L
N 0 w0 42 0 Vo — H(2)

In the last formula, it is not even clear that this is differentiable in w, due to the (mild)
singularity at zo(w). It turns out, after some elementary calculations that this is not an

20(®)
issue and @ — [ W
z0(w)
condition is exactly 9, [, mdz > 0.
For the particular case of a single power non-linearity, F (z) = z”, we have H(z) =

(p + 1)~'zP and we obtain f 20(@) . The stability is then

dz is indeed differentiable in w. The precise stability

. \/a)—T(ZdZ = const. (,()”
equivalent to d,[w? 2] > 0 or the familiar p < 2. O
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