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Abstract: For each λ > 0 and under necessary conditions on the parameters, we con-
struct normalized waves for second order PDE’s with mixed power non-linearities, with
‖u‖2

L2(Rn)
= λ, n ≥ 1. We show that these are bell-shaped smooth and localized func-

tions, and we compute their precise asymptotics. We study the question for the smooth-
ness of the Lagrange multiplier with respect to the L2 norm of the waves, namely the
map λ → ωλ, a classical problem related to its stability. We show that this is intimately
related to the question for the non-degeneracy of the said solitons. We provide a wide
class of non-linearities, for which the waves are non-degenerate. Under some minimal
extra assumptions, we show that a.e. in λ, the map λ → fωλ is differentiable and the
waves eiωλt fωλ are spectrally (and in some cases orbitally) stable as solutions to the
NLS equation. Similar results are obtained for the same waves, as traveling waves of the
Zakharov–Kuznetsov system.

1. Introduction

We consider the Schrödinger equation with general Hamiltonian non-linearity

iut + �u + F(|u|2)u = 0, u : R+ × Rn → C, (1.1)

where F : R+ → R will be henceforth assumed to be C1(R+) function. These type of
models are ubiquitous in current applications (especially in quantummechanical context,
such as nonlinear optics and additionally in the theory of water waves). Of particular
importance of the theory and applications to physics and technology, is the study of the
existence and properties of ground states, that is, standing wave solutions in the form
eiωt fω, where fω > 0. Clearly, they satisfy the elliptic profile equation

− � fω + ω fω − F( f 2ω) fω = 0. (1.2)
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The existence of solutions of (1.2), together with their properties, including their unique-
ness has been the subject of hundreds of papers in the literature, we refer the reader to
the landmark papers, [2,20,34] and for some recent developments to the review paper
[36].

In addition, and somewhat in parallel of the study of the solitary waves, various
mathematical aspects of the theory have been rigorously established in the literature–
such as conditions on the parameters guaranteeing local and global well-posedness,
asymptotic properties of the solutions etc. We do not even attempt to review these here,
instead we refer to the excellent (and by now classical) books, [5] and [35].

More recently, more advanced topics of investigations have been concerned with the
questions of the global dynamics of these models. In these studies (and in many previous
works), it became clear that the behavior near solitary waves is of utmost importance. In
particular, we should mention the soliton resolution conjecture (SRC), which predicts
that if the systemdoes not support unstable solitons, any sufficiently smooth and localized
data, produces a global solution which resolves, as t → ∞, into a solitonic part plus
a radiation term. This has been established in a variety of NLS models, in different
dimensions and specific non-linearities in the form F(z) = z p. The SRC is otherwise
widely believed to hold true, at least in very generic circumstances. Important advances
were made towards that goal in that various dispersive estimates for the Schrödinger
evolution, [9], we also refer to [6,32,33] for further related issues and discussions.

As one can see from the recent developments–the existence, functional and most
importantly stability properties of the solitons are really a starting point towards an
attempt at understanding the global dynamic of amodel like (1.1). It should bementioned
though, as this will be the focus of this paper, that the cases outside of the simple power
non-linearity, that is F(z) = z p, have not been well-understood at all–at least from
point of view of existence and stability of the corresponding solitary waves. Clearly, this
is an important question, both from a theoretical and practical point of view.

As an example of a model of this type, which naturally appears in the shallow water
waves approximation models is the Gardner equation, which features cubic and quintic
terms, or in terms of F , F(z) = az ± bz2, a, b > 0. One should note that this is a model
in one spatial dimension, where the profile equation (1.2) allows reduction of order. In
fact, it should be pointed out that matters in this particular case, that is n = 1 are more
or less fully understood.1 For the one dimensional case, in the paper [14], under pretty
general conditions on the non-linearity F , the authors have established the existence of
ground state waves. In addition, the stability of such waves was reduced to a sign of an
explicit quadrature involving the nonlinearity F . As this condition is very non-explicit
(even for simple combinations of two powers), Ohta, [29], followed byMaeda, [25], have
further studied the conditions for power nonlinearities of the form F(z) = az p ± bzq .
They discovered an interesting new paradigm, namely that even for fixed a, b, p, q, the
stability of the waves fω, may change withω. This is a complete departure from the case
of a single power non-linearity, F(z) = z p, since the stability in such a case happens
exactly for p : 0 < p < 2, and then for all values of ω. In fact, we provide a quick
and self-contained introduction to the existence and stability of the waves in one spatial
dimension–see Appendix C.

1 In the periodic case, the theory is slightlymore technical, due to the appearance of an additional integration
constant, but the theory goes through.
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The purpose of this work is to examine these questions for general power non-
linearities, in high dimensions, n ≥ 2. We work with power functions of the form

F(r) =
K∑

k=1

akr pk −
L∑

l=1

blr
ql , 0 < p1 < · · · < pK , a1, . . . , aK > 0; q1

< · · · < qL ; b1, . . . , bL > 0.

Within this class, we require that we work with nonlinearities with at least one focusing
term, that is K ≥ 1. There are several reasons in favor of working with explicit power
functions. One reason is to avoid imposing hard to verify conditions on F . A second
one is to be able to illustrate the results better - including how they stack up against the
standard threshold results for stability, non-degeneracy2 among others.

In closing of the introductory remarks, let us point out that our results for NLS will
transfer nicely to theZakharov–Kuznetsov equation. This is a higher dimensional version
of the KdV equation, and more precisely,

ut + ∂x1(�u + F(u2)u) = 0, u : R+ × Rn → R (1.3)

Theproblemwas initially derived in three spatial dimensions (andquadratic nonlinearity)
by Zakharov and Kuznetsov, [37] to describe weakly magnetized ion-acoustic waves in
a strongly magnetized plasma, but later found applications in two spatial dimensions as
well, [26,27]. Finally, in [21], the equation was derived from the Euler-Poisson system
with magnetic field in the long wave limit approximation.

Here, we consider waves, traveling in the direction of x1, with a speed of ω. In other
words, we impose the traveling wave ansatz, u(x, t) = fω(x1 − ωt, x2, . . . , xn). After
plugging in (1.3) and taking into account that fω is vanishing at infinity, we obtain the
same profile Eq. (1.2).

1.1. The linearized problem. In this section, we consider the linearized problems and
introduce the relevant notions of stability. Taking the ansatz u = eiωt [ fω + v(t, ·)] into
the NLS problem (1.1), we obtain, after ignoring O(v2) terms,

(
v1
v2

)

t
=

(
0 1

−1 0

)(
L+ 0
0 L−

) (
v1
v2

)
=: JL �v (1.4)

where v = v1 + iv2, and the self-adjoint operators, L± (with D(L±) = H2(Rn)) are
given by

L− := −� + ω − F( f 2ω)

L+ := −� + ω − F( f 2ω) − 2F ′( f 2ω) f 2ω.

Applying the ansatz u = fω(x1 −ωt, x ′)+v(t, x1 −ωt, x ′) in the Zakharov–Kuznetsov
model, (1.3), we arrive at the linearized problem

vt = ∂x1L+v. (1.5)

It is immediate that by (1.2), L−[ fω] = 0, while taking a derivative in any x j , j =
1, . . . , n results3 inL+[∂ j fω] = 0, j = 1, . . . , n. Actually, from Nöther’s principle, all

2 To be defined shortly.
3 This is all formal for now, but it will turn out to be justified, once we review the relevant properties of fω .
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elements of4 K er [L ] arising out of the known symmetries of the system–translational
and modulational, are accounted for. Still, it is unclear whether these are all elements
of K er [L ]. While it is usually pretty easy to establish that zero is the bottom of the
spectrum for L−, whence zero is a simple eigenvalue spanned by fω, (see Theorem 3
below), the fact that K er [L+] is spanned by ∇ fω is not straightforward and it is an
open question in a surprising number of applications. In fact, we shall introduce an
intermediate property.

Definition 1. We say that the wave fω is non-degenerate, if

K er [L+] = span[∂ j fω, j = 1, . . . , n].

We say that fω is weakly non-degenerate, if fω ⊥ K er [L+].
The weak non-degeneracy of course easily follows from the non-degeneracy. While

it does not seem to be a standard notion in the literature, we introduce it herein since it
turns out it plays an important role in stability considerations and it is also closely related
to the differentiability of the map ω → fω. This brings us to the second main objective
of this paper–beside the construction of the waves, it is a common assumption in the
literature that “the map ω → fω is a C1 in some interval �”. This is of course easily
verifiable in the case of a single power non-linearity, F(z) = z p, but it is a non-trivial
fact for just about any other non-linearity. We address this issue, in the framework of
normalized waves, in Theorems 1 and 4 below.

Finally, we formally introduce the different notions of stability.

Definition 2. We say that the wave fω, as a solution to the NLS problem (1.1), is spec-
trally stable, if the equation

JL �v = λ�v,

does not have solutions, with �v ∈ H2(Rn), �v �= 0, λ : �λ > 0. Similarly, fω is stable
as a solution to (1.3), if ∂x1L+v = λv does not have solutions v ∈ H2(Rn), �v �= 0, λ :
�λ > 0.

We say that the wave fω is orbitally stable solution of (1.1), if for any ε > 0, there
exists δ > 0, so that whenever the initial data is picked so that ‖u0 − fω‖H1(Rn) < δ,
then the corresponding solution u satisfies

sup
t>0

inf
θ∈[0,2π ],y∈Rn

‖u(t, · − y) − eiθ fω‖H1(Rn) < ε.

For traveling wave solutions of (1.3), orbital stability means that for every ε > 0, there
is δ > 0, so that for all ‖u0 − fω‖H1(Rn) < δ, one has supt>0 inf y∈Rn ‖u(t, x − y) −
fω(x1 − ωt, x ′)‖H1

x (Rn) < ε.

There is of course the notion of asymptotic stability, but since we claim no results in
this direction, we do not introduce it here.

4 And here, it is important to note that we are interested in a description of all elements of K er [L±] ⊂
D(L±) = H2(Rn).
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1.2. Variational setup: normalized waves. Of specific interests are the properties of the
so-called normalized ground states. More specifically, these are solutions (if they exist!)
of the following constrained minimization problem

{
I [u] := ∫

Rn |∇u(x)|2 − ∫
Rn G(|u(x)|2)dx → min

∫
Rn |u(x)|2dx = λ, λ > 0

(1.6)

where G(0) = 0, G ′(r) = F(r), or equivalently,

G(r) =
K∑

k=1

ak

pk + 1
r pk+1 −

L∑

l=1

bl

ql + 1
rql+1. (1.7)

The question for existence of solutions to (1.6) is in fact a hard one to analyze, despite
many recent advances. In fact, this is one of the central issues thatwewould like to address
in this paper. To that end, introduce the following function m : [0,∞) → R ∪ {−∞},

m(λ) := inf∫
Rn |u(x)|2dx=λ

I [u].

Note thatm = m�a,�b, �p,�q(λ) and it is possible thatm(λ) = −∞ for a substantial portion of
the domain. Clearly, m(λ) > −∞ is a necessary condition for (1.6) to have a solution, in
which case we refer to (1.6) as well-posed. In addition, it turns out that the requirement
that m is a non-increasing function in λ is a sufficient5 condition for the existence of
solution to the constrained minimization problem (1.6).

More precisely, we have the following existence results.

1.3. Existence results. The standard notion of bell-shapedness will appear frequently,
so we introduce it formally here–namely, we say that a function f : Rn → R is bell
shaped, if there exists a decreasing function ρ : (0,∞) → R+, so that f (x) = ρ(|x |).
Theorem 1. If

pK < max

(
2

n
, qL

)
(1.8)

then6 the constrained minimization problem (1.6) is well-posed, that is m(λ) > −∞. In
such case, m(0) = 0. If in addition, pK < 2

n−2 and the parameters �p = (p1, . . . , pK ), �q
= (q1, . . . , qL), �a = (a1, . . . , aK ), �b = (b1, . . . , bL) are so that

m is non-increasing on the interval �, (1.9)

then, the problem (1.6) has a solution ϕλ : λ ∈ �, which is smooth and bell-shaped. It
also satisfies the Euler-Lagrange equation (1.2), that is there is a Lagrange multiplier
ω = ωλ, so that (1.2) holds in a distributions sense. There are the following properties

(1) the linearized operator L+ satisfies L+|{ϕλ}⊥ ≥ 0. In fact, it has exactly one negative
eigenvalue.

5 And as we will show, in the most important cases, it is necessary as well.
6 With the understanding that in the absence of de-focusing terms, that is b1 = · · · = bL = 0,

max
(
2
n , qL

)
= 2

n .
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(2) The function m(λ) is locally Lipschitz, that is for each interval (a, b) ⊂ (0,∞), there
is Ca,b so that supx,y∈(a,b) |m(x) − m(y)| ≤ Ca,b|x − y|. As such, it is differentiable
a.e. and its derivative is m′(λ) = −ωλ

2 . In addition, there is the representation
formula

m(λ2) − m(λ1) = −1

2

∫ λ2

λ1

ωλdλ. (1.10)

for each λ1, λ2 > 0.

Remarks:

• The condition (1.8) is necessary for the existence of the waves, otherwise m(λ) =
−∞, see Proposition 1 below.

• The condition (1.9) is also necessary, see Proposition 1.
• Implicitly in the statement, we have that the Lagrange multiplier ωλ also depends
on the particular minimizer ϕλ. That is, we cannot rule out the possibility that for
the same λ > 0, there are two minimizers ϕλ, ϕ̃λ : ‖ϕλ‖2 = ‖ϕ̃λ‖2L2 = λ, with
ωλ,ϕ �= ωλ,ϕ̃ . On the other hand, on the set where m′ exists (which is a.e.), we have
that ωλ = −2m′(λ), which is independent on the minimizers.

Next, we turn to the necessity of the assumptions made in Theorem 1.

Proposition 1. For the constrained minimization problem (1.6), we have the following

• (necessity of (1.8)) If pK > max
( 2

n , qL
)
, then m(λ) = −∞.

• (normalized waves exist only for ω > 0) If fω ∈ H1(Rn) ∩ L2pK +1(Rn) ∩
L2qL+1(Rn) is a minimizer of (1.6), then ω > 0.

• Suppose that (1.8) holds and the constrained minimization problem (1.6) has a
solution for each λ > 0. Then, λ → m(λ) is a non-increasing function.

As an easy and useful corollary of Theorem 1, we have the following

Proposition 2. Let ϕ be one of the constrained minimizers described in Theorem 1. If
in addition, 〈L+ϕ, ϕ〉 = −2

∫
Rn F ′(ϕ2)ϕ4dx < 0, then the wave ϕ is weakly non-

degenerate, i.e. ϕ ⊥ K er [L+].
In particular, if F has only focusing terms, the corresponding wave is always weakly
non-degenerate. We now discuss the properties of the solutions to (1.2). In doing so, one
has to keep in mind that in general, we do not know uniqueness for (1.2), while on the
other hand, some solutions are generated by the constrained minimization procedure, as
described in Theorem 1.

Theorem 2. Assume ω > 0 , (1.8) holds, and f is a bell-shaped function, with f ∈
L2(Rn), so that f is a strong solution of (1.2), that is

f = (−� + ω)−1[F( f 2) f ]. (1.11)

Then, f ∈ L∞(Rn) and moreover, f has exponential decay rate at ∞. More precisely,

f (x) ≤ C(1 + |x |)− n−1
2 e−√

ω|x | and in fact, there is c > 0, so that for all large |x |,

f (x) = c
e−√

ω|x |

|x | n−1
2

+ o

(
e−√

ω|x |

|x | n−1
2

)
.

Next, we have a general result about L−,L+.
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1.4. Spectral results about L−,L+.

Theorem 3. Suppose ω > 0, fω > 0, fω ∈ H2(Rn) solves (1.2) and it has exponential
decay. Then, the operators L−,L+ enjoy the following spectral properties:

(1) L− ≥ 0, so that 0 is a simple eigenvalue, with an eigenspace spanned by fω.
(2) L+ has at least one negative eigenvalue.
(3) Assume in addition that n �= 2, n(L+) = 1. Then, K er [L+] ⊇ {∂1 fω, . . . , ∂n fω} is

either n or n+1 dimensional. In the former case, K er [L+] = span{∂1 fω, . . . , ∂n fω},
while in the latter K er [L+] = span{∂1 fω, . . . , ∂n fω,
0}, where 
0 is a function,
depending on the radial variable only, with exactly one zero in (0,∞). In addition,

0 is a bounded function and there is the exponential bound |
0(x)| ≤ C(1 +
|x |)− n−1

2 e−√
ω|x |. In fact, there is c > 0, so that for all large |x |,


0(x) = c
e−√

ω|x |

|x | n−1
2

+ o

(
e−√

ω|x |

|x | n−1
2

)
.

Remark: The requirement for exponential decay of fω could be weakened significantly.
However, in view of the result listed in Theorem 2, the minimizers of (1.6) do have
exponential decay. Thus, generalizing Theorem 3 to cover fω with less than exponential
decay seems like a mute point.

1.5. Smoothness of λ → m(λ) and the non-degeneracy of the constrained minimizers.
We start with a lemma that is interesting in its own right, but it will turn out to be relevant
for the smoothness λ → m(λ).

Proposition 3. Assume that (1.8) and (1.9) holds on an interval � = (a, b). Let λ ∈
(a, b) be a point of differentiability for ω(λ). Then, for each sequence δ j → 0, there
exists a subsequence δ jk and �λ, so that

• limk→∞ ‖ϕλ+δ jk
− �λ‖H1 = 0,

• �λ is a constrained minimizer for (1.6), in particular it satisfies �λ ∈ H2(Rn) ∩
L∞(Rn) and the Euler-Lagrange equation (1.2), hence Theorem 2 applies to it.

Remark:For the purposes of the presentation below,we shall call�λ obtained according
to the procedure described in Proposition 3 a limit wave.7

For the next theorem, we make some remarks concerning the Lagrange multipliers
ω. As we have alluded to above, in general, one cannot claim, without any additional
arguments, the continuity of the map λ → ωλ and even the independence of ωλ on the
particular minimizer ϕλ. Some of the smoothness issues were touched upon by Maris,
[24].

Theorem 4. Let pK < 2
n−2 . Assume that for a fixed interval (a, b), 0 < a < b ≤ ∞,

and for each λ ∈ (a, b), ϕλ is a minimizer for (1.6) and

lim
δ→0

‖ϕλ+δ − ϕλ‖L2 = 0 (1.12)

then

7 This is not a standard notion by any means, but it arises naturally in our considerations, we name it.
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(1) λ → ω(λ) is a continuous function on (a, b) and λ → m(λ) is a C1(a, b) function,
given by (1.10).

(2) The function λ → m(λ) is a strictly concave function on (a, b). In particular, m
is twice differentiable almost everywhere, ω′(λ) = −2m′′(λ) > 0, whenever ω′(λ)

exists.
(3) Assuming that ω′(λ) exists, then the waves ϕλ are weakly non-degenerate, that is

ϕλ ⊥ K er [L ϕλ
+ ].

For the rest, assume n ≥ 3 and ω′(λ) exists.

(1) If ϕλ is non-degenerate, that is K er [L+] = span[∂1ϕλ, . . . , ∂nϕλ], then the function
λ → ϕλ is differentiable as an L2(Rn)-valued mapping, at all points of differentia-
bility of ω. Also, we have the formula

∂λϕλ = −ω′(λ)L −1
+ ϕλ.

In particular, 〈L −1
+ ϕλ, ϕλ〉 = − 1

2ω′(λ)
< 0.

(2) If ϕλ is degenerate, i.e. K er [L+] = span[∂1ϕλ, . . . , ∂nϕλ,
0], but we assume the
stronger condition

lim
δ→0

‖ϕλ+δ − ϕλ‖L2√|δ| = 0, (1.13)

then again, the function λ → ϕλ is differentiable as an L2(Rn)-valued mapping, at
all points of differentiability8 of ω and

∂λϕλ = −ω′(λ)L −1
+ ϕλ,

and consequently 〈L −1
+ ϕλ, ϕλ〉 = − 1

2ω′(λ)
< 0.

Remarks:

• The assumptions (1.12), in the non-degenerate case, is very weak, compared to the
conclusions. Note that it is claimed that λ → ϕλ is differentiable,9 which implies

lim
δ→0

‖ϕλ+δ − ϕλ‖L2

|δ| = ‖∂λϕλ‖ = |ω′(λ)|‖L −1
+ ϕλ‖.

Clearly, this last identity implies (5.3) and it is indeed stronger.
• Even in the weakly non-degenerate case, the stronger assumption (1.13) is much
weaker than the subsequent claim. In the same fashion, it is claimed that in particular

limδ→0
‖ϕλ+δ−ϕλ‖L2|δ| exists, which implies, and it is in fact stronger than, (1.13).

Our next result concerns some cases in which we can assert the non-degeneracy of
ϕλ.

Proposition 4. Assume that ϕ is a bell-shaped wave, which is weakly non-degenerate,
that is ϕλ ⊥ K er [L+]. Assume in addition that n ≥ 3, n(L+) = 1 and one of the
following holds

F(r) =
K∑

k=1

akr pk , (1.14)

8 Which is at least almost everywhere.
9 At the points of differentiability of ω.
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or

F(r) =
K∑

k=1

akr pk − brq , 0 < q < p1 (1.15)

or

F(r) =
K∑

k=1

akr pk − brq , 0 < pK < q. (1.16)

Then, the corresponding constrained minimizer ϕλ is non-degenerate, i.e. K er [L+] =
span[∇ϕ].

Clearly, in order to ensure that a wave ϕ like that exists, we need further assumptions
in Proposition 4, like pK < 2

n in (1.14) and (1.15), and pK < 2
n−2 in (1.16).

1.6. Applications to the stability of normalized waves for Schrödinger and Zakharov–
Kuznetsov equation. We finally state our results concerning the stability of the waves
constructed in Theorem 1.

Theorem 5 (Focusing nonlinearity). Let (1.14) holds and n ≥ 3. Then, for every λ > 0,
there exists an a.e. differentiable function ω = ω(λ) > 0 and a bell-shaped constrained
minimizer fω ∈ H2(Rn) ∩ L∞(Rn) for the problem (1.6) with

fω(x) = cω

e−√
ω|x |

|x | n−1
2

+ o

(
e−√

ω|x |

|x | n−1
2

)
, |x | → ∞.

In addition, for every point of differentiability of λ → ω(λ), let fωλ be the limit wave,
in the sense of Proposition 3. Then, fω is non-degenerate, in the sense of Definition 1.
Finally, eiωλt fωλ is orbitally stable solution of the NLS and the Zakharov–Kuznetsov
system.

Remark: We show that the assumption (1.14) implies (1.9). The rest of the statement
is a combination of Theorems 1, 2, 3, Proposition 4 and Proposition 3.

Our next result concernsmixed nonlinearities–some focusing and one defocussing, as
in (1.15) or (1.16). The only difference with Theorem 5 is that we now need to explicitly
assume that (1.9) holds. Note that such assumption is necessary, by Proposition 1, if we
were to expect normalized waves.

Theorem 6 (nonlinearity with at most one defocussing term). Let the nonlinearity be
in the form (1.15) or (1.16) holds. Assume that (1.9) holds. Then, for every λ > 0,
there exists an a.e. differentiable function ω = ω(λ) > 0 and a bell-shaped constrained
minimizer fω ∈ H2(Rn) ∩ L∞(Rn) for the problem (1.6) with

fω(x) = cω

e−√
ω|x |

|x | n−1
2

+ o

(
e−√

ω|x |

|x | n−1
2

)
, |x | → ∞.

In addition, assuming that n ≥ 3 and for every point of differentiability of λ → ω(λ),
let fωλ be a limit wave, in the sense of Proposition 3. Then, fω is non-degenerate, in
the sense of Definition 1. Finally, eiωλt fωλ is orbitally stable for the NLS Eq. (1.1), and
fω(x1 − ωλt, x ′) is spectrally stable solution to the Zakharov–Kuznetsov model (1.3).
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Our most general result, applies to general mixed power non-linearities, satisfying (1.8).
Unfortunately, in this case, in order to obtain any stability result, we need to require
(1.13).

Theorem 7. Assume (1.8), (1.9). Then, for every λ > 0, there exists an a.e. differentiable
function ω = ω(λ) > 0 and a bell-shaped constrained minimizer fω ∈ H2(Rn) ∩
L∞(Rn) for the problem (1.6) with fω(x) = cω

e−√
ω|x |

|x | n−1
2

+ o

(
e−√

ω|x |

|x | n−1
2

)
as |x | → ∞. If in

addition n ≥ 3, λ is a point of differentiability for ω(λ) and

lim
δ→0

|δ|−1/2‖ fωλ+δ − fωλ‖L2(Rn) = 0,

then the wave eiωλt fωλ is a spectrally stable solution of NLS (1.1), while fω(x1−ωλt, x ′)
is spectrally stable solution to the Zakharov–Kuznetsov equation, (1.3).

Let us finish this introduction with an outline of the paper. In Sect. 2, we introduce
some basic notions and standard results, in particular we present the basics of the Hamil-
ton instability index count in Sect. 2.3. In Sect. 3, we give the variational construction
of the waves, including the Euler-Lagrange equations, some initial smoothness results
about the important functionm as well as the necessity of the assumptions of Theorem 1,
formulated in Proposition 1 above. Section 3 finishes with the simple proof of Proposi-
tion 2. In Sect. 4, we discuss the general functional properties of the waves, beyond the
basics established in Sect. 3. In fact, for most of this section, we take (the more general)
viewpoint of the waves as solutions to PDE, rather than constrained minimizers. We
establish L∞ bounds at zero as well as precise asymptotic behavior at ∞. In Sect. 5,
we start with an in depth analysis of the spectral properties of the linearized operators
L−,L+. In it, we need to resort to the spherical harmonic decomposition, thanks to the
radiality of the potential. In Sect. 6, we show smoothness and non-degeneracy proper-
ties of the normalized waves. In particular, we prove Proposition 3. We also discuss the
subtle issues of the dependence of the Lagrange multiplier ωλ on the particular mini-
mizer ϕλ, its continuity and concavity of λ → m(λ). In Sect. 6.4, we establish the weak
non-degeneracy of the waves, under the assumptions in Theorem 4. In Sects. 6.5 and 6.6
, we explore the differentiability of the (Banach space valued) mapping λ → ϕλ, under
weak non-degeneracy and non-degeneracy assumptions. This allows us to compute the
sign of Vakhitov-Kolokolov index, which in turn implies spectral stability. As it turns
out, this is intimately related to the concavity properties of m. In Sect. 6.7, we establish
the non-degeneracy of the wave in the cases considered in Theorems 5, 6, 7. This is
the key remaining ingredient of the orbital stability of the corresponding waves for the
NLS models, as stated in the aforementioned theorems. This is done via an abstract
result yielding orbital stability from spectral stability and non-degeneracy. Finally, due
to the failure of the abstract theory to cover the Zakharov–Kuzntesov case, we provide a
direct proof of the orbital stability for the Zakharov–Kuznetsov model in Sect. 7.2, see
Proposition 8.

2. Preliminaries

We use standard notations for L p spaces, W s,p for Sobolev spaces etc. We use the
following definition of Fourier transform and its inverse

f̂ (ξ) =
∫

Rn
f (x)e−2π iξ ·x dx, f (x) =

∫

Rn
f̂ (ξ)e2π iξ ·x dξ.
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In this setting, the Laplacian is given by the symbol −4π2|ξ |2. A decreasing rearrange-
ment for a function f : Rn → C is the radially decreasing function f ∗ : Rn → R+,
which has the same distribution function as f . It is standard that for all lattice norms (i.e.
those that depend only on the distribution function d f (α) = |{x ∈ Rn : | f (x)| ≥ α}|),
‖ f ‖X = ‖ f ∗‖X . In addition, there is the Polya-Szegö inequality

‖∇ f ‖L2 ≥ ‖∇ f ∗‖L2 , (2.1)

where in addition, equality is achieved only if f = f ∗, modulo the usual invariance
group. This is then a good place to introduce bell-shaped functions.

Definition 3. We say that a function f : Rn → R is bell-shaped, if f = f ∗.
The bell-shaped functions will have the following point-wise decay property that

will be used throughout in the sequel. Let x : |x | = R, then a bell-shaped function f
satisfies, for all q > 0,

‖ f ‖q
Lq ≥

∫

|y|<R
| f (y)|qdy ≥ cn Rn| f (x)|q ,

whence

0 ≤ f (x) ≤ Cn‖ f ‖Lq |x |− n
q .

The uniform convexity property of the Lr , r > 1 norms will be useful in the varia-
tional arguments in the sequel.

Proposition 5. Let r > 1, { fn} be a bounded sequence in Lr , with a weak limit f ,
fn ⇀ f . Then,

lim inf
n

‖ fn‖Lr ≥ ‖ f ‖Lr .

If in addition limn ‖ fn‖Lr = ‖ f ‖Lr , then fn → f in Lr norm, that is limn ‖ fn − f ‖Lr =
0.

2.1. Precise asymptotic of the Green’s function of (−� + 1)−1. We record the formula
for the Green function of (−�+1)−1, that is Q̂(ξ) = (1+4π2|ξ |2)−1 (see [10], p. 418)

Q(x) = (2
√

π)−n
∫ ∞

0
e−(t+ |x |2

4t ) dt

tn/2 . (2.2)

Note that Q > 0, radial and radially decreasing. Also, ‖Q‖L1(Rn) = ∫
Rn Q(x)dx =

Q̂(0) = 1, but note that Q(0) = +∞ for n ≥ 2. In fact, we have the following lemma
about Q.

Lemma 1. The Green’s function Q introduced in (2.2) satisfies, for all |x | > 1,

|Q(x)| ≤ Ce−|x |.

For |x | ≤ 1, we have the asymptotic formula

Q(x) ∼
{ |x |2−n + O(1) n ≥ 3
ln( 1

|x | ) + O(1) n = 2 .

In particular, Q ∈ Lq(Rn), whenever q < n
n−2 (or q < ∞, when n = 2).
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Remark: More precise asymptotics will give the optimal decay rate for large |x |, which
is |Q(x)| ≤ C |x |− n−1

2 e−|x |.

Proof. The asymptotics near zero are well-known, see Proposition 6.1.5, p. 418, [10].
Regarding |x | >> 1, we start by rewriting Q in (2.2). We obtain

Q(x) = e−|x |

|x | n
2−1

∫ ∞

0
e−|x |(u− 1

2u )2 du

un−1 .

It remains to check that

sup
μ>1

∫ ∞

0
e−μ(u− 1

2u )2 du

un−1 < ∞.

This follows easily, once we split the integration in (0, 1/2), (1/2, 1) and (1,∞). ��

2.2. Eigenspaces of spherical Laplacians and applications to Schrödinger operators
with radial potentials. The Laplacian operator can be written in its radial and angular
components as follows

� = ∂rr +
n − 1

r
∂r +

�Sn−1

r2
.

Let X0 = L2
rad(Rn) be the radial subspace of L2(Rn), defined by

X0 = L2
rad(Rn) = { f (| · |) :

∫ ∞

0
| f (r)|2rn−1dr < ∞}.

It is well-known that for each k = 1, 2, . . ., the eigenvalues of �Sn−1 are given by
−k(k + n − 2), with the spherical harmonics Yk as eigenfunctions10 �Sn−1Yk = −k(k +
n − 2)Yk . In fact, it is easy to identify the eigenfunctions corresponding to k = 1, as
these are exactly

x j
r , j = 1, . . . , n,

− �Sn−1
x j

r
= (n − 1)

x j

r
, j = 1, . . . , n. (2.3)

Accordingly, introduce the invariant for � subspaces

Xk := span{ f (r)Yk : fk ∈ L2
rad(Rn),−�Sn−1Yk = k(k + n − 2)Yk}, k = 1, 2, . . .

so that there is a orthogonal decomposition

L2(Rn) = ⊕∞
k=0Xk .

Next, consider a Schrödinger operator in the form H := −� + ω − V (|x |), where the
potential is a radial function. Clearly, H acts invariantly on Xk, k = 0, 1, . . . as well.

10 It is also well-known that the multiplicity of the eigenvalue k(k + n − 2) is exactly

(
n + k − 1

k

)
−

(
n + k − 3

k − 2

)
, but this fact will not be used later on.
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Denoting Hk := H |Xk , we observe that Hk can be viewed as an operator acting on
the subspace of radial functions L2

rad(Rn), through the formula

Hk = −∂rr − n − 1

r
∂r + ω +

k(k + n − 2)

r2
− V (r), k = 0, 1, 2, . . . . (2.4)

In addition, H0 < H1 < · · · < Hk < · · · , as operators acting on L2
rad(Rn), in

particular,

σL2(Rn)(H ) = ∪∞
k=0σL2

rad (Rn)(Hk).

It is now easy to apply these ideas to the operator L+. Suppose that fω is radial and
sufficiently smooth and decaying. Since L+[∇ fω] = 0 and ∂ j fω = x j

r f ′
ω(r), whence

(recall that by (2.3), x j/r is an eigenfunction corresponding to k = 1)

0 = L+[∂ j fω] = L+,1[ f ′].
That is, the function f ′

ω is an eigenfunction, corresponding to zero eigenvalue forL+,1.
Recalling that L+,0 = L+,1 − n−1

r2
, we conclude

〈L+,0[ f ′], f ′〉 = 〈L+,1[ f ′], f ′〉 − (n − 1)
∫ ∞

0
( f ′(r))2rn−3dr

= −(n − 1)
∫ ∞

0
( f ′(r))2rn−3dr < 0.

Applying the Ritz-Rayleigh principle implies the following lemma.

Lemma 2. L+ always has at least one negative eigenvalue.

2.3. Index theory and spectral stability. In this section, we introduce some basic con-
sequences of the index theory, as developed over the last thirty years. In its most basic
form, it was put forward by Grillakis, Shatah and Strauss in a series of seminal papers,
[11,12]. Their theory applies to the eigenvalue problem of the type (1.4), where the skew
symmetric operatorJ is invertible. For eigenvalue problem (1.5),J = ∂x in particular
fails to be invertible, the GSS theory does not apply to it. This case is covered in more
recent works, [18,30] and more recently [23]. For the results that we quote below, we
follow the book [17] for (1.4) and the recent paper [23] for the eigenvalue problem (1.5).

For (1.4), we have the following setup. The eigenvalue problem is in the form

JL f = λ f, (2.5)

where J is assumed to be bounded, invertible and skew-symmetric (J ∗ = −J ),
while (L , D(L )) is self-adjoint(L ∗ = L ) and not necessarily bounded, with finite
dimensional kernel K er [L ]. Assume in addition thatL has a finite number of negative
eigenvalues, n(L ) andJ −1 : K er [L ] → K er [L ]⊥. Let kr denote the number of pos-
itive eigenvalues of (2.5), kc be the number of quadruplets of eigenvalues with non-zero
real and imaginary parts, and k−

i , the number of pairs of purely imaginary eigenvalues
with negative Krein-signature.11 Let K er [L ] = {φ1, . . . , φm}, , then introduce a matrix
D = (Di j )

m
i, j=1

Di j := 〈L −1[J −1φi ],J −1φ j 〉, i, j = 1, . . . , m (2.6)

11 The precise definition of those is provided in [15]. For us, k−
i = 0, so this will be irrelevant.
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where the formula is meaningful, since J −1φi ∈ K er [L ]⊥. The index counting the-
orem, see Theorem 1, [16] states that if det (D) �= 0, then

kr + 2kc + 2k−
i = n(L ) − n(D). (2.7)

The most common corollary, which we use, is that n(L ) = 1, whence stability fol-
lows once we establish n(D) ≥ 1. In the case of the eigenvalue problem (1.4), this is
simply a consequence of 〈L −1

+ fω, fω〉 < 0. The case of the eigenvalue problem (1.5)
is slightly more involved, as is was alluded to above. Nevertheless, as shown in [23],
spectral stability follows in the same way (formula similar to (2.7) holds true), provided
〈L −1

+ fω, fω〉 < 0. Thus, in all our spectral stability calculations, we have reduced mat-
ters to the computation of the scalar index 〈L −1

+ fω, fω〉 < 0, sometimes referred to as
Vakhitov-Kolokolov criteria for stability. In short, we have shown the following

Proposition 6. For the eigenvalue problem (1.4), assume that

• n(L+) = 1, n(L−) = 0,
• fω ⊥ K er [L+] and 〈L −1

+ fω, fω〉 < 0.

Then, (1.4) is spectrally stable, in the sense of Definition 2. For the eigenvalue problem
(1.5), assume

• n(L+) = 1
• fω ⊥ K er [L+] and 〈L −1

+ fω, fω〉 < 0.

Then, (1.5) is spectrally stable, in the sense of Definition 2.
Regarding orbital stability for the NLS problem, it follows from spectral stability,

the non-degeneracy of fω (i.e. K er [L+] = span[∂1 fω, . . . , ∂n fω]), in addition to the
smoothness of the map ω → fω as an H1 valued mapping.

Remark: The last statement about orbital stability is a corollary of a very general result,
namely Theorem 5.2.11, [17]. Note the requirement about smoothness ω → fω as an
H1 valued mapping, right under (5.2.47) on p. 139.

3. Existence of the Waves

3.1. Proof of Theorem 1. We first show that the problem is well-posed, i.e. m(λ) > −∞
for each λ > 0, if (1.8) holds. If pK < 2

n , we have by Sobolev embedding, for each
p ∈ (0, 2

n ),

‖u‖L2p+2 ≤ C‖u‖
Ḣ

n( 12− 1
2p+2 )

≤ C‖∇u‖n( 12− 1
2p+2 )‖u‖1−n( 12− 1

2p+2 )

L2 .

Noting that 2(p + 1)n( 12 − 1
2p+2 ) < 2, we conclude that for each u : ‖u‖2

L2 = λ, we
have the estimate

K∑

k=1

ak

pk + 1
‖u‖2pk+2

L2pk+2
≤ ε‖∇u‖2L2 + Cε,λ (3.1)

for each ε > 0. Choosing ε = 1
2 , it follows that

I [u] ≥ 1

2
‖∇u‖2L2 +

L∑

l=1

bl

ql + 1
‖u‖2ql+2

L2ql+2
− C 1

2 ,λ ≥ −C 1
2 ,λ.



On the Ground States of Second Order PDE’s with Power Non-linearities 943

If on the other hand, pK < qL , we have by Gagliardo-Nirenberg inequality for all
p ∈ (0, qL), ‖u‖L2p+2 ≤ ‖u‖θ

2qL+2
‖u‖1−θ

L2 , where θ ∈ (0, 1) : 1
2p+2 = θ

2ql+2
+ 1−θ

2 .
Thus,

K∑

k=1

ak

pk + 1
‖u‖2pk+2

L2pk+2
≤ ε‖u‖2qL+2

L2qL+2 + Cε,λ. (3.2)

Once again,

I [u] ≥ ‖∇u‖2L2 +
L∑

l=1

bl

ql + 1
‖u‖2ql+2

L2ql+2
− ε‖u‖2qL+2

L2qL+2 − Cε,λ ≥ −Cε,λ,

for appropriate choice of ε.
Next, we take on the existence of a minimizer, now that we know that m(λ) > −∞.

First, observe that when minimizing I [u], it is always better to take u∗ instead of u.
Indeed, by Polya-Szegö inequality and ‖u‖Lr = ‖u∗‖Lr , we conclude that I [u] ≥ I [u∗],
while ‖u‖2

L2 = λ = ‖u∗‖2
L2 . Furthermore, by the conditions for equality in Ploya-Szegö,

the minimizer, if it exists is necessarily a bell-shaped function,12 i.e. u = u∗. So, it
suffices to focus our attention to bell-shaped functions.

Take aminimizing sequence, sayu j , of bell-shaped functions,which satisfy‖u j‖2L2 =
λ and

I [u j ] ≤ m(λ) +
1

j
.

We have shown that due to the assumption (1.8), we have either (3.1)or (3.2). In either
case, we have

‖∇u j‖2L2 +
L∑

l=1

bl

ql + 1
‖u j‖2ql+2

L2ql+2
≤ m(λ) +

1

j
+

K∑

k=1

ak

pk + 1
‖u j‖2pk+2

L2pk+2

≤ m(λ) +
1

j
+ ε(‖∇u j‖2L2 +

L∑

l=1

‖u j‖2ql+2
L2ql+2

) + Cε,λ.

Thus, for appropriate choice of ε, we conclude

‖∇u j‖2L2 +
L∑

l=1

‖u j‖2ql+2
L2ql+2

≤ Cλ, (3.3)

where Cλ is an explicit and continuous function of λ, depending only on n and the
parameters �p, �q . Since this last quantity controls ‖u j‖L p j , {u j } is a bounded sequence
in all these spaces. By taking a subsequence, we can without loss of generality assume
that u j converges to u j ⇀ ϕ, in all of these weak topologies. Recall now that u j = u∗

j :
‖u j‖2 = λ, whence

λ =
∫

Rn
|u j (x)|2dx ≥

∫

|x |≤R
|u j (x)|2dx ≥ cn Rn|u j (x)|2,

12 After accounting for translations.
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for every x : |x | = R. We have |u j (x)| ≤ cn|x |−n/2, whence
∫

|x |>R
|u j (x)|2+2pdx ≤ cn R−np.

In addition, we have that for p < 2
n−2 , α = 1 − np

2(p+1) > 0 and hence by Sobolev em-
bedding, ‖u j‖Wα,p(Rn) ≤ C‖u j‖H1(Rn) ≤ Cλ. Thus, by the Riesz-Relich compactness
criteria, un is a compact subsequence in the strong topology of all L2pk+2, whence (after
eventual taking a subsequence), lim j ‖u j − u‖L2pk+2 = 0, k = 1, . . . , K . Using the
lower semi-continuity of the weak norm, with respect to the strong norm in Lr , r > 1,
we have ‖ϕ‖2

L2 ≤ lim inf j ‖u j‖2L2 = λ and

m(λ) = lim
j→∞ I [u j ] ≥ lim inf

j→∞ [‖∇u j‖2L2 +
L∑

l=1

bl

ql + 1
‖u j‖2ql+2

L2ql+2
]

− lim
j

K∑

k=1

ak

pk + 1
‖u j‖2pk+2

L2pk+2
≥

≥ ‖∇ϕ‖2L2 +
L∑

l=1

bl

ql + 1
‖ϕ‖2ql+2

L2ql+2

−
K∑

k=1

ak

pk + 1
‖ϕ‖2pk+2

L2pk+2
= I [ϕ] ≥ m(‖ϕ‖2) ≥ m(λ),

where in the last step, we have used the fact that m is non-increasing. Clearly, in all the
above chain of inequalities we have equalities. In particular, ‖ϕ‖2

L2 = λ, I [ϕ] = m(λ),
whence ϕ is a minimizer of (1.6). In addition, observe that lim inf j ‖∇u j‖L2 = ‖∇ϕ‖L2

and lim inf j ‖u j‖L2ql+2 = ‖ϕ‖L2ql+2 , l = 1, . . . , L . By Proposition 5, u j tends to ϕ in
the norm of H1(Rn) ∩ L2qL+2(Rn).

3.2. Euler-Lagrange equations. We now derive the Euler-Lagrange equation, which are
satisfied by the minimizers ϕλ. The starting point is that for arbitrary test function h and
a real parameter ε, there is the inequality

I

[√
λ

ϕλ + εh

‖ϕλ + εh‖L2

]
≥ I [ϕλ], (3.4)

which exploits the fact that ϕλ is a minimizer. For simplicity, take h real-valued so that
h : 〈h, ϕλ〉 = 0, ‖ϕλ + εh‖2

L2 = λ + ε2‖h‖2. Expanding in orders of ε, we find

I

[√
λ

ϕλ + εh

‖ϕλ + εh‖L2

]
=

∫

Rn
|∇[ϕλ + εh]|2 −

∫

Rn
G(ϕ2

λ + 2εϕλh) + O(ε2)

= I [ϕλ] + 2ε(〈−�ϕλ − G ′(ϕ2
λ)ϕλ, h〉) + O(ε2).

It follows that 〈−�ϕλ − G ′(ϕ2
λ)ϕλ, h〉 = 0, whenever h ⊥ ϕλ. Equivalently, there is a

Lagrange multiplier ωλ, so that

− �ϕλ − F(ϕ2
λ)ϕλ = −�ϕλ − G ′(ϕ2

λ)ϕλ = −ωλϕλ. (3.5)
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Note that so far, this equation is only satisfied in weak sense, since we only know
ϕλ ∈ H1(Rn)! This is of course nothing but the elliptic profile Eq. (1.2). Taking dot
product with ϕλ (which is justified even for weak solutions ϕλ) gives the useful relation

ωλ =
∫

Rn F(ϕ2
λ)ϕ2

λ − ‖∇ϕλ‖2
λ

. (3.6)

Taking into account (3.6) and expanding up to second order in ε in (3.4) (keeping in
mind that h ⊥ ϕλ), we obtain

I

[√
λ

ϕλ + εh

‖ϕλ + εh‖L2

]
=

= (1 − ε2

λ
‖h‖2)

∫

Rn
|∇[ϕλ + εh]|2

−
∫

Rn
G

(
(ϕ2

λ + 2εϕλh + ε2h2)(1 − ε2

λ
‖h‖2)

)

= I [ϕλ] + ε2
(

〈(−� − F(ϕ2) − 2F ′(ϕ2)ϕ2)h, h〉

+
1

λ
(

∫

Rn
F(ϕ2

λ)ϕ2
λ − ‖∇ϕλ‖2)‖h‖2

)
+ O(ε3)

= I [ϕλ] + ε2〈L+h, h〉 + O(ε3).

It follows that 〈L+h, h〉 ≥ 0, whenever h ⊥ ϕλ. It follows that L+ has at most one
negative eigenvalue. In Morse index notations, n(L+) ≤ 1. It follows from Lemma 2
that n(L+) ≥ 1, so we conclude that n(L+) = 1.

3.3. Properties of the function m(λ).

Lemma 3. The function m : (0,∞) → R∪{−∞} is a non-positive function. In addition,
supposing that the requirement (1.8) of Theorem 1 is met, then m is a Lipschitz function,
with a locally bounded Lipschitz constant.

Proof. Fix λ > 0 and a Schwartz functionχ : ‖χ‖2
L2 = λ, so thatχμ(x) := μn/2χ(μx),

has the property ‖χμ‖2 = λ. Then, m(λ) ≤ I [χμ] for each μ > 0, whence

m(λ) ≤ lim inf
μ→0+

I [χμ] = lim inf
μ→0+

[μ2‖∇χ‖2L2 − μ−n
∫

Rn
G(μnχ2(x))dx] = 0.

Suppose now that (1.8) is satisfied. According to13 (3.3), we may define

m(λ) = inf
‖u‖2=λ,‖u‖

H1∩L2ql+2≤2Cλ

I [u] = inf
‖u‖2=λ,‖u‖

H1∩L2ql+2≤1.5Cλ

I [u].

Upon introducing a new variable, U : u = √
λU , we can write

k(λ) := m(λ)

λ
= inf

‖U‖2=1,‖U‖
H1∩L2ql+2≤2Cλ

[‖∇U‖2 −
K∑

k=1

akλ
pk−1
2

pk + 1

∫

Rn
|U |2+2pk

+
L∑

l=1

blλ
ql −1
2

ql + 1

∫

Rn
|U |2+2ql ].

13 Which holds whenever m(λ) > −∞, hence it is enough to assume only (1.8).
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Clearly, it suffices to check that k is Lipschitz. Fix an U that satisfies the constraint for
λ + δ, that is ‖U‖ = 1, ‖U‖H1∩L2ql+2 ≤ 2Cλ+δ . For each such U we have

‖∇U‖2 −
K∑

k=1

ak(λ + δ)
pk−1
2

pk + 1

∫

Rn
|U |2+2pk +

L∑

l=1

bl(λ + δ)
ql −1
2

ql + 1

∫

Rn
|U |2+2ql

= ‖∇U‖2 −
K∑

k=1

akλ
pk−1
2

pk + 1

∫

Rn
|U |2+2pk +

L∑

l=1

blλ
ql −1
2

ql + 1

∫

Rn
|U |2+2ql + Eδ,λ,

where the error term Eδ,λ clearly can be estimated as follows

|Eδ,λ| ≤ C |δ|(1
λ
+ λqL + λpK )(1 + ‖U‖2+2qL

L2+2qL
+ ‖U‖2+2pK

L2+2pK
) ≤ |δ|Dλ,

where again Dλ is an explicit, continuous (and computable in terms of Cλ, �p, �q etc.)
function of λ. It follows that, by taking |δ| small enough so that 2Cλ+δ > 1.5Cλ and
consequently taking infimum over all U satisfying the constraints for λ + δ (and hence,
by the choice of δ for λ as well)

k(λ) − Dλ|δ| ≤ k(λ + δ) ≤ k(λ) + Dλ|δ|. (3.7)

This is the desired Lipschitzness for k, with a constant Dλ. Due to the fact that m is
Lipschitz, we have that it is differentiable a.e. We show now that ωλ ≥ 0 and whenever
m′(λ) exists, we have the formula m′(λ) = −ωλ

2 . Indeed, start with the inequality

I [ϕλ + εh] ≥ m(‖ϕλ + εh‖2) = m(λ + 2ε〈ϕλ, h〉 + ε2‖h‖2), (3.8)

valid for all ε and all test functions h. On the other hand, there is

I [ϕλ + εh] = I [ϕλ] − εωλ〈ϕλ, h〉 + ε2

2
〈(L+ − ωλ)h, h〉 + O(ε3)

= m(λ) − εωλ〈ϕλ, h〉 + O(ε2). (3.9)

Taking h = ϕλ yields

m(λ + 2λε + ε2λ) ≤ m(λ) − ελωλ + O(ε2). (3.10)

For ε < 0, we have −ωλ ≤ m(λ+2λε+ε2λ)−m(λ)
ε

, whence by taking lim infε→0− and
taking into account that m is decreasing (and since 2λε + λε2 < 0 for all small enough
ε < 0),

−ωλ ≤ lim inf
ε→0−

m(λ + 2λε + ε2λ) − m(λ)

λε
≤ 0,

so, ωλ ≥ 0. If m′(λ) exists, we can compute it from (3.10). Indeed, taking ε → 0+
yields

m′(λ) = lim
ε→0+

m(λ + 2λε + ε2λ) − m(λ)

2λε
≤ −ωλ

2
, (3.11)
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whereas taking limε→0− yields

m′(λ) = lim
ε→0−

m(λ + 2λε + ε2λ) − m(λ)

2λε
≥ −ωλ

2
.

Combining the last two inequalities gives the desired formula m′(λ) = −ωλ

2 , whenever
m′ exists. Since m is Lipschitz and hence absolutely continuous, there is the formula
(1.10). ��

In the case ωλ > 0, we can actually say that ϕλ is a classical solution of (3.5). Indeed,
for ϕλ (which is initially known to be only in H1(Rn) ∩ L2qL+2(Rn)), we can write

ϕλ = (−� + ωλ)
−1[F[ϕ2

λ]ϕλ]. (3.12)

Since the radial potential V := F[ϕ2
λ] has some decay at ∞, we conclude from

Theorem 2 that in fact |ϕλ(x)| ≤ Ce−√
ωλ|x |. Going back to (3.12), it is clear that

the bell-shaped function ϕλ is in fact H2(Rn). This can clearly be bootstrapped further,
we will not need to do so here.

3.4. Necessity of the assumptions: Proof of Proposition 1.

3.4.1. (1.8) is necessary Assuming that (1.8) fails, let λ > 0 and fix a Schwartz func-
tion χ : ‖χ‖2

L2 = λ. Consider testing (1.6) with the sequence χN = N n/2χ(N x) :
‖χN ‖2

L2 = λ, for N >> 1. We obtain

I [χN ] = N 2‖∇χ‖2L2 − N npK ‖χ‖2+2pK

L2pK +2 + N nqL ‖χ‖2+2qL

L2qL+2 + o(N npK ).

Clearly, N npK is the dominant term, whence m(λ) ≤ lim infN I [χN ] = −∞.

3.4.2. Waves exist only for ωλ > 0 One can directly use the Pohozaev’s identities (A.2).
From it, and assuming that fω is a minimizer, we have

ωλn‖ fω‖2 = n
∫

Rn
G( f 2ω(x))dx − (n − 2)‖∇ fω‖2 = 2‖∇ fω‖2 − nm(λ) > 0,

taking into account that m(λ) ≤ 0, as established earlier. It follows thatωλ > 0. Note for
future reference that if fω is a constrained minimizer, then ωλ ≥ −m(λ)

λ
. In particular,

on an interval (λ1, λ2), since m is non-increasing, we obtain

inf
λ∈(λ1,λ2)

ωλ ≥ −m(λ1)

λ1
. (3.13)

3.4.3. λ → m(λ) must be non-increasing We have essentially showed this already.
Indeed, recall that λ → m(λ) was shown to be Lipschitz, only under the assumption
(1.8) (see Lemma 3). As such, it is absolutely continuous function, with a derivative
a.e. Finally, assuming that a minimizer for (1.6) exists, we have (3.8) and subsequently
(3.10), whence we compute the derivative to be m′(λ) = −ωλ

2 . Since a.c. functions are
integrals of their derivatives, we have for each 0 < λ1 < λ2,

m(λ2) − m(λ1) =
∫ λ2

λ1

m′(λ)dλ = −1

2

∫ λ2

λ1

ωλdλ ≤ 0,

since ωλ ≥ 0. Thus, m is non-increasing.
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3.5. Proof of Proposition 2. Recall that by Theorem 1,L+|{ϕ}⊥ ≥ 0. Take any element

 ∈ K er [L+]. Then, 
 − ‖ϕ‖−2〈
,ϕ〉ϕ ∈ {ϕ}⊥. Thus, it follows that
0 ≤ 〈L+(
 − ‖ϕ‖−2〈
,ϕ〉ϕ),
 − ‖ϕ‖−2〈
,ϕ〉ϕ〉 = ‖ϕ‖−4〈
,ϕ〉2〈L+ϕ, ϕ〉.

But since 〈L+ϕ, ϕ〉 < 0, we conclude that 〈
,ϕ〉 = 0, otherwise a contradiction with
the previous inequality. This establishes Proposition 2.

4. Proof of Theorem 2

In the next lemma, we show that the solutions to (1.2) are bounded at zero, provided
(1.8) is assumed. Recall the notation V (x) = F( f 2(x)).

4.1. Bounds at zero.

Lemma 4. Assume ω > 0, (1.8) holds, and f is a bell-shaped function, with f ∈
L2(Rn), so that f is a strong solution of (1.2), that is

f (x) = (−� + ω)−1[V f ] = ω
n
2−1

∫

Rn
Q(

√
ω(x − y))F( f 2(y)) f (y)dy. (4.1)

Then, f ∈ L∞(Rn).

Proof. Since f is bell-shaped, clearly f (0) = supx∈Rn | f (x)|, so we need to show that
f (0) < ∞. Since Q > 0, f > 0 and after ignoring the negative part of the function F ,
we obtain

0 < f (x) < ω
n
2−1

∫

Rn
Q(

√
ω(x − y))(

K∑

k=1

ak f 2pk+1(y))dy

= ω
n
2−1

K∑

k=1

ak

∫

Rn
Q(

√
ω(x − y)) f 2pk+1(y)dy.

By the exponential decay of Q, the integral clearly converges for large y, so the issue is
controlling the integration, say over |y| < 1.

Assume n ≥ 3, the case n = 2 is treated similarly. As we saw in our earlier arguments
for bell-shaped functions in Lq spaces, we have that f (x) ≤ cn‖ f ‖Lq |x |−n/q , for all
x �= 0. Consider

s0 = inf{s > 0 : | f (x)| ≤ Cs |x |−s, for |x | < 1}.
Clearly, since f ∈ L2, we have that 0 ≤ s0 ≤ n

2 . We will actually show s0 = 0. Assume
not, so s0 > 0 and take any s > s0. Take δ ∈ (0, 1) and x : |x | = δ. Then,

∫

|y|<2δ
Q(

√
ω(x − y)) f 2p+1(y)dy =

∫

|y|< δ
2

Q(
√

ω(x − y)) f 2p+1(y)dy +

+
∫

δ
2<|y|<2δ

Q(
√

ω(x − y)) f 2p+1(y)dy � δ−(n−2)
∫

|y|< δ
2

|y|−s(2p+1)dy +

+δ−(2p+1)s
∫

δ
2<|y|<2δ

|x − y|−(n−2)dy � δ2−(2p+1)s .
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We have also good bounds for
∫
2δ<|y|<1 Q(

√
ω(x − y)) f 2p+1(y)dy. Indeed, for k0 :

2k0−1δ < 1 ≤ 2k0δ, we have
∫

2δ<|y|<1
Q(

√
ω(x − y)) f 2p+1(y)dy

≤
k0∑

k=1

∫

2kδ<|y|<2(k+1)δ
Q(

√
ω(x − y)) f 2p+1(y)dy �

�
k0∑

k=1

(2kδ)−(n−2)
∫

2kδ<|y|<2(k+1)δ
|y|−s(2p+1)dy

�
k0∑

k=1

(2kδ)2−(2p+1)s � max(1, δ2−(2p+1)s)

and also, a bound by a constant for
∫
|y|>1 Q(

√
ω(x − y)) f 2p+1(y)dy, due to the expo-

nential bounds for Q. The least favorable bounds occur of course for p = pK , so this
shows that | f (x)| ≤ C max(|x |−((2pK +1)s−2), 1). If (2pK +1)s −2 ≤ 0, we have s0 = 0
and we are done. Otherwise, if (2pK + 1)s − 2 > 0,

s0 ≤ (2pK + 1)s − 2

for all s > s0. This leads to the inequality s0 ≥ 1
pK

. But, pK < 2
n , whence s0 > n

2 . But,
we already know that s0 ≤ n

2 , a contradiction. So, s0 = 0.
This means that for all ε > 0, there is Cε , so that f (x) ≤ Cε |x |−ε . Clearly, by our

argument above, with s = ε,
∫

|y|<2δ
Q(

√
ω(x − y)) f 2p+1(y)dy � δ2−(2pK +1)ε ≤ δ

for small enough ε. Similar to the previous estimate, nowwith s = ε,
∫
2δ<|y| Q(

√
ω(x −

y)) f 2p+1(y)dy � 1. Thus, the boundedness of f (0) is established. ��

4.2. Asymptotics at infinity for eigenfunctions and waves. The next lemma is about
the existence and properties of Jost solutions, with the expected prescribed behavior
at ∞. This result will be an important ingredient in two related, but overall different
situations. First, to establish that the (radial portionof the) eigenfunctions for Schrödinger
operators with radial potentials have exponential asymptotics at ∞, and second, to
actually show that the waves (which are solutions to a non-linear problem!) actually
do decay exponentially at ∞.

Lemma 5. Let k > 0, α ∈ R, A >> 1 and let V be a smooth potential, with V ∈
L1(A,∞). Let � be a non-trivial C∞ decaying solution in (A,∞) of the problem

− �′′(r) + k2�(r) +
α

r2
� − V (r)�(r) = 0. (4.2)

Then, as r → ∞,

�(r) = c0e−kr + o(e−kr ),

with some c0 �= 0.
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Remark: Assuming faster decay for V , say V = o(r−3), we can explicitly calculate the
next asymptotic term, namely

�(r) = c0[e−kr +
α

2k
r−1e−kr ] + o(r−1e−kr ).

Proof. At issue here is the construction of a complete system of linear independent Jost
solutions for (4.2). We will show that there are solutions g1 = e−kr + o(e−kr ), g2 =
ekr + o(ekr ) of (4.2). Once this is done, the proof follows easily, since this is a complete
system and any solution, and in particular �, is a linear combination of g1, g2. Since
�, g1 are localized, whereas g2 is growing at ∞, it follows that � = c0g1, which is the
claim.

In order to construct g1 (construction of g2 is identical), recall the formula for solu-
tions of the inhomogeneous problem −h′′ + k2h = G, which takes the form

h(r) = − 1

2k

∫ ∞

r
ek(s−r)G(s)ds +

1

2k

∫ ∞

r
e−k(s−r)G(s)ds. (4.3)

We will show that the ansatz g1(r) = e−kr +
1(r) produces a solution with the required
bounds. Note that 
1 solves

−
 ′′
1 (r) + k2
1(r) +

( α

r2
− V (r)

)
(e−kr + 
1(r)) = 0.

Thus, we need to solve the integral equation


1(r) = − 1

2k

∫ ∞

r
ek(s−r)

(
V (s) − α

s2

)
(e−ks + 
1(s))ds

+
1

2k

∫ ∞

r
e−k(s−r)

(
V (s) − α

s2

)
(e−ks + 
1(s))ds.

Introduce ψ1(r) := ekr
1(r), so

ψ1(r) = − 1

2k

∫ ∞

r

(
V (s) − α

s2

)
(1 + ψ1(s))ds

+
e2kr

2k

∫ ∞

r
e−2ks

(
V (s) − α

s2

)
(1 + ψ1(s))ds. (4.4)

The linear operator

� f (r) = − 1

2k

∫ ∞

r

(
V (s) − α

s2

)
f (s)ds +

e2kr

2k

∫ ∞

r
e−2ks

(
V (s) − α

s2

)
f (s)ds

clearly has small norm, when acting on the space L∞(A,∞) for A >> 1, say

‖�‖L∞(A,∞)→L∞(A,∞) ≤ 1

2
.

Thus, we can resolve (4.4) as follows

ψ = (I d − �)−1[− 1

2k

∫ ∞

r

(
V (s) − α

s2

)
ds +

e2kr

2k

∫ ∞

r
e−2ks

(
V (s) − α

s2

)
ds].
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It follows that

‖ψ‖L∞(A,∞) ≤ 2‖ − 1

2k

∫ ∞

r

(
V (s) − α

s2

)
ds

+
e2kr

2k

∫ ∞

r
e−2ks

(
V (s) − α

s2

)
ds‖L∞

r (A,∞).

Since V ∈ L1(A,∞), for large enough A, it follows that

‖ψ‖L∞(A,∞) ≤ Ck,α

∫ ∞

A
[|V (s)| + |α|

s2
]ds ≤ Ck,α(A−1 +

∫ ∞

A
|V (s)|)

so the result is established. If V has even faster decay, say o(s−3), we can compute
explicitly the next order term for ψ to be

− 1

2k

∫ ∞

r

(
V (s) − α

s2

)
ds = α

2k
r−1 + o(r−1).

Thus, we have the asymptotic formula (for large r )

�(r) = e−kr +
α

2k
r−1e−kr + o(r−1e−kr ).

��
Next, we deal with the question of the asymptotic behavior at∞ of bell-shaped solutions
of (1.2). Clearly, Lemma 5 will be helpful in this regard. Indeed, a solution of (1.2)
satisfies the ODE

− f ′′(r) − n − 1

r
f ′(r) + ω f (r) − V (r) f (r) = 0, r ∈ (1,∞)

where recall V = F( f 2). We make the transformation g(r) := r
n−1
2 f (r), so that g

satisfies

− g′′(r) +
(n − 1)(n − 3)

4r2
g(r) + ωg(r) − V (r)g(r) = 0. (4.5)

Note that by the bell-shapedness of f , we have 0 < f (x) < cn‖ f ‖L2 |x |−n/2, whence
0 < g(r) < cnr−1/2. Clearly, (4.5) is in the form (4.2), withω = k2 and α = (n−1)(n−3)

4 .
The only missing piece is that the potential V (r) = F( f 2) = F(r−(n−1)g2(r)), does

not satisfy a priori the required integrability condition V ∈ L1(1,∞). Indeed, since we
only assume f ∈ L2(Rn), we can only infer a decay f (r) ∼ |r |− n

2 , whence V (r) ∼
min(|r |−p1n, r−nq1). This does not satisfy the condition only when min(p1, q1) ≤ 1

n ,
but it turns out that one can address this issue, even for small min(p1, q1).

We set up a bootstrap argument as follows. Let

σ0 := sup{σ > 0 : f (r) < Cσ r−σ , for r > 1}.
We already know that σ0 ≥ n

2 . It remains to show that σ0 = ∞, whence the result will
follow, since V (r) = F( f 2(r)) � ( f 2(r))min(p1,q1) ≤ CN r−N for any N and r > 1.
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Assume that σ0 < ∞ and let 0 < σ < σ0. Use the representation of f (as a function
on Rn)

f (x) = ω
n
2−1

∫

Rn
Q(

√
ω(x − y))F( f 2(y)) f (y)dy.

Let x : |x | > 1, so we estimate (by using the boundedness of f ),

f (x) ≤
∫

|y|< |x |
2

Q(
√

ω(x − y))|F( f 2(y)) f (y)|dy

+
∫

|x |
2 <|y|

Q(
√

ω(x − y))|y|−σ(2min(p1,q1)+1)dy

� e−
√

ω
2 |x ||x |n + |x |−σ(2min(p1,q1)+1)

∫
Q(

√
ω(x − y))dy

� e−
√

ω
2 |x ||x |n + |x |−σ(2min(p1,q1)+1).

It follows that σ0 ≥ σ(2min(p1, q1) + 1) for all σ < σ0, a contradiction.

5. Proof of Theorem 3

We start with the spectral analysis of L−.

5.1. The operator L−. Denote V (r) := F( f 2ω(r)), so that L− = −� + w − V (| · |).
Clearly L−[ fω] = 0. We apply the spectral decomposition of Sect. 2.2. We obtain a
sequence of operators L−,k, k = 0, 1, . . . acting on L2

rad , so that L−,0 < L−,1 < . . ..
In order to show that L− ≥ 0, with a simple eigenvalue at zero, it clearly suffices to
showL−,0 ≥ 0, with a simple eigenvalue at zero. Set the eigenvalue problemL−,0 for
radial valued functions f

− ∂rr f − n − 1

r
∂r f + ω f − V (r) f = μ f. (5.1)

Introduce a changeof variables, g : g(r) = r
n−1
2 f (r).Note that‖g‖L2(0,∞) = ‖ f ‖L2

rad (Rn)

and so, (5.1) becomes, in terms of g

− g′′ + (n − 1)(n − 3)

4r2
g + ωg − V (r)g = μg. (5.2)

Denoting V1(r) := V (r) − (n−1)(n−3)
4r2

, we recast the eigenvalue problem in the form

−g′′ + ωg − V1(r)g = μg, where g ∈ L2(0,∞). This is slightly unusual eigenvalue
problem, but observe that the operator L−,0 := − d2

dr2
+ω− V1 is essentially self-adjoint

on the Hilbert space L2(0,∞), when considered over the domain {u : u ∈ C∞
0 (0,∞)}.

See laso [31], p. 91, where similar eigenvalue problems arise.

Clearly, L−,0[ f̃ω] = 0, f̃ω(r) := r
n−1
2 fω(r). We will show that this is the bottom of

the spectrum. This is essentially contained in the Sturm oscillation theorem (Lemma 2,
p. 92, [31]), but we shall give a direct proof, as the result in [31] is stated with boundary
conditions at zero, which are not relevant for us.
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So, assume for a contradiction, that there is a negative eigenvalue for L−,0. That is,
a function 
 and σ0 > 0, so that L−,0[
] = −σ 2

0 
. Following the proof of Lemma 2,
p. 92, [31], let (r0, r1) : 0 ≤ r0 < r1 ≤ ∞, is an interval in which 
 does not change
sign, but 
(r0) = 
(r1) = 0. Without loss of generality, 
|(r0,r1) > 0, otherwise take
−
. Note that 
 ′(r0) ≥ 0 and 
 ′(r1) ≤ 0 (in fact 
 ′(r1) < 0, if r1 < ∞). Consider

I =
∫ r1

r0
(
 ′ f̃ω − 
 f̃ω

′
)′dr = (
 ′ f̃ω − 
 f̃ω

′
)|r1r0

= (
 ′(r1) f̃ω(r1) − 
(r1) f̃ω
′
(r1)) − (
 ′(r0) f̃ω(r0) − 
(r0) f̃ω

′
(r0)) ≤ 0,

since 
(r0) = 0, 
(r1) = 0, 
 ′(r1) ≤ 0, 
 ′(r0) ≥ 0 and f̃ω > 0. On the other hand,
using the fact that L−,0[
] = −σ 2

0 
 and L−,0[ f̃ω] = 0, we have

I =
∫ r1

r0
(
 ′′ f̃ω − 
 f̃ω

′′
)dr = σ 2

0

∫ r1

r0

 f̃ωdr > 0.

This is of course a contradiction, whence 
 has only one zero, at r1 = +∞. This means
that the function 
 ≥ 0, in particular 〈
, f̃ω〉 > 0. This is a contradiction again, since
eigenfunctions corresponding to different eigenvalues are orthogonal.

So,L−,0 does not have a negative eigenvalue and zero is at the bottom of σ(L−,0).
Similar argument produces a contradiction, if one assumes that there is a second, inde-
pendent from f̃ω eigenfunction, corresponding to the zero eigenvalue. Thus, zero is a
simple eigenvalue for L−,0 and hence forL−.

5.2. The operator L+. We apply the decomposition in eigenspaces of the spherical
Laplacian as described in Sect. 2.2. More specifically, the operators L+,k, k = 0, 1, . . .
act on the space L 2

rad. as follows

L+,0 = −∂rr − n − 1

r
∂r + ω − W1(r),

L+,k = −∂rr − n − 1

r
∂r +

k(k + n − 2)

r2
+ ω − V1(r), k = 1, 2, . . .

where W1(r) := F( f 2ω(r)) + 2F ′( f 2ω(r)) f 2ω(r), r > 0. Note that 0 = L+[∇ fω] =
L+[ x

r f ′
ω] is equivalent to L+,1[ f ′

ω] = 0, since
x j
r , j = 1, . . . , n are the first non-trivial

harmonics, corresponding to the eigenvalue (n − 1).
Since L+,0 < L+,1 < . . ., and by the assumption n(L+) = 1, we clearly must have

that n(L+,0) = 1, while L+,k ≥ 0, k = 1, 2, . . .. The remaining statements about L+
in Theorem 3 amount to establishing the following

K er [L+,0] = {0} or K er [L+,0] = span{
0}, (5.3)

L+,1 = span{ f ′
ω}, L+,1|{ f ′

ω}⊥ > 0, (5.4)

where {·}⊥ is in the sense of the Hilbert space L2
rad., equipped with its dot product

〈 f, g〉 = ∫ ∞
0 f (r)ḡ(r)rn−1dr .
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5.2.1. Proof of (5.4) We apply the transformation g(r) = r
n−1
2 f (r). Thus, the eigen-

value problem, for the zero eigenvalue of L+,1 becomes

− g′′ + (n − 1)(n + 1)

4r2
g + ωg − W1(r)g = 0 (5.5)

where g ∈ L2(0,∞) : ∫ ∞
0 |g(r)|2dr < ∞. It suffices to show that there is no second

localized eigenfunction for (5.5), other than g0(r) = r
n−1
2 f ′(r). To look for a second

eigenfunction, we set the usual ansatz g0(r)G(r), which leads us to the ODE G ′′g0 =
−2g′

0G ′. Solving it, we obtain a solution G(r) = ∫ r
1

1
g20(τ )

dτ. Note that the function g0

does not vanish in (0,∞), whence this formula makes sense for all r ∈ (0,∞) and a
second eigenfunction is in the form

g(r) = g0(r)

∫ r

1

1

g2
0(τ )

dτ.

The function g is linearly independent from g0, because g(1) = 0, while g′(1) = 1
g0(1)

and so the Wronskian is non-trivial, since det

(
g(1) g′(1)
g0(1) g′

0(1)

)
= −1.

We now argue that g is not localized at r = ∞, hence precluding the possibility
for a second eigenfunction, corresponding to eigenvalue zero. To this end, note that for
r > 2,

g(r) = g0(r)

∫ r

1

1

g2
0(τ )

dτ > g0(r)

∫ r

r−1

1

g2
0(τ )

dτ = g0(r)

g2
0(r̃)

,

for some r̃ ∈ (r − 1, r). We now show that limr→∞ g(r) = ∞. Recall that the function
g0 solves (5.5). By Lemma 5, g0(r) = c0e−√

ωr + o(e−√
ωr ) as r → ∞. Thus,

lim
r→∞ g(r) ≥ lim

r→∞
g0(r)

g2
0(r − 1)

= lim
r→∞

e−√
ωr

c0e−2
√

ω(r−1)
= ∞.

It follows that g0 is the only localized eigenfunction (and hence zero is simple eigen-
value forL+,0), since every other eigenfunction must be a non-trivial linear combination
of g0, g, and as such it will not be localized at ∞.

5.2.2. Proof of (5.3) As before, with the change of variables g(r) = r
n−1
2 f (r), we

consider the operator

L+,0 := −∂2r +
(n − 1)(n − 3)

4r2
+ ω − W1(r).

More specifically, we consider L+,0 as given by the Friedrich’s extension for the form

domain14 {g ∈ L2(0,∞) : g(0) = 0,
∫ ∞
0 |g′(r)|2dr < ∞,

∫ 1
0

g2(r)

r2
dr < ∞}. Note

that in order to satisfy the integrability condition at zero (that is
∫ 1
0

g2(r)

r2
dr < ∞), for

functions in the form g = r
n−1
2 f (r), f ∈ L2

rad.(R
n), we need n ≥ 3. Thus, for n ≥ 3,

14 For the case n = 3, the integrability at zero condition is clearly not necessary.
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the spectral problem of interest, that is L+,0 on L2
rad.(R

n), becomes equivalent to the
spectral problem for L+,0 (as a Friedrich’s extension).

Per our assumptions, n(L+) = 1, whence n(L+,0) = 1, whence n(L+,0) = 1. That
is, L+,0 has a negative eigenvalue, say −σ 2

0 . Similar to the arguments for L−, the next
eigenfunction, say 
0 (if there is one at all!) must change sign at least once in (0,∞).
Clearly, this eigenfunction cannot correspond to a negative eigenvalue, as this would
contradict n(L+,0) = 1. Therefore, it may correspond to a positive eigenvalue, in which
case we are done–this implies K er [L+,0] = {0}. Finally, there is the possibility that the
eigenfunction 
0, corresponds to a zero eigenvalue, that is L+,0
0 = 0.

We will now show that 
0 cannot change sign twice. Suppose that it does changes
signs twice, say at r1, r2 : 0 < r1 < r2 < ∞. Following the argument in Lemma 1,
p. 91, [31], we set 
1(r) = 
0χ(0,r1), 
2(r) = 
0χ(r1,r2), 
3(r) = 
0χ(r2,∞). Note


0(0) = 0 and
∫ 1
0

|
0(r)|2
r2

dr < ∞.

Clearly, 
 j , j = 1, 2, 3 are continuous and piecewise C1, but they do not belong

to H2(0,∞) = D(− d2

dr2
). On the other hand, they do belong to the form domain. For

arbitrary coefficients a j , j = 1, 2, 3, we compute

〈
3∑

j=1

a j
 j , L+,0[
3∑

j=1

a j
 j ]〉

=
∫ ∞

0
|

3∑

j=1

a j

′
j (r)|2dr +

(n − 1)(n − 3)

4

∫ ∞

0

| ∑3
j=1 a j
 j |2

r2
dr

+
∫ ∞

0
(ω − W1(r))|

3∑

j=1

a j
 j |2dr

=
3∑

j=1

|a j |2
∫ r j

r j−1

[
|
 ′

j (r)|2 + (n − 1)(n − 3)

4

|
 j (r)|2
r2

+ (ω − V1(r))|
 j (r)|2
]

dr

=
3∑

j=1

|a j |2
∫ r j

r j−1


 j

[
−
 ′′

j +
(n − 1)(n − 3)

4r2

 j + (ω − W1(r))
 j

]
dr = 0.

It follows that on a three dimensional subspace X , sup f ∈X 〈 f, L+,0 f 〉 ≤ 0. Hence, L+,0
has either twonegative eigenvalues (a contradictionwithn(L+,0) = 1), or zero is a double
eigenvalue. We can rule out the second eigenfunction at zero (and hence contradiction
with the two zero of the function 
0) in a similar manner as in Sect. 5.2.1. Clearly 


satisfies L+,0[
] = 0 in (r∗,∞), whence by Lemma 5, 
0(r) = c0e−√
ωr + o(e−√

ωr )

as r → ∞. In particular, 
0(r) �= 0 for all large enough r . Take r∗ to be the largest zero
of 
0 and define a second eigenfunction, in (r∗,∞) via the formula


(r) = 
0(r)

∫ r

r∗

1


2
0 (y)

dy.

Similar to our arguments before, there is r̃ ∈ (r−1, r),
(r) ≥ 
0(r)


2
0 (r̃)

.By the asymptotics

for 
0, it follows that

lim
r→∞ 
(r) ≥ lim

r→∞

0(r)


2
0 (r̃)

= ∞.
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Thus 
 is not localized and so no eigenfunction, other than 
0, is localized. Thus, we
have reached a contradiction again, which was due to our previous assumption that 
0
has two zeros in (0,∞). Thus, 
0 has exactly one zero in (0,∞).

6. Smoothness and Non-degeneracy Properties of the Normalized Waves

We start with the proof of Proposition 3.

6.1. Proof of Proposition 3. Let us first show that there is a convergent subsequence of
ϕλ+δ j . Recall that in the course of the proof of Theorem 1, we have shown there that each
minimizing sequence has a convergent subsequence (denoted the same), in H1 sense, to

a constrainedminimizer,�λ. It remains to show that
√

λ
λ+δ j

ϕλ+δ j is minimizing. Clearly,

‖
√

λ

λ + δ j
ϕλ+δ j ‖2 = λ.

Also,

I [
√

λ

λ + δ j
ϕλ+δ j ] = I [ϕλ+δ j ] + O[δ j ] = m(λ + δ j ) + O(δ j ) → m(λ),

since the function m is continuous. It follows that
√

λ
λ+δ j

ϕλ+δ j is minimizing and hence

converges to what we call �λ. Clearly,

lim
j

ϕλ+δ j = lim
j

√
λ

λ + δ j
ϕλ+δ j = �λ,

in H1 sense. From here on, the proof of Proposition 3 follows the scheme of the proof
of Theorem 4, except we have a discrete sequence δ j , instead of a continuous variable
δ, as it approaches zero.

6.2. On the independence of ωλ on the minimizer, its continuity and m ∈ C1(a, b).
First, we note that while ωλ might potentially depend on the minimizer, m(λ) certainly
does not. On the other hand, it was already established that m′(λ) = −ωλ

2 , whenever the
derivative exists. Thus, on the fullmeasure subset ofR+,A := {λ > 0 : m′(λ) exists},ωλ

is independent on the minimizers, in the sense described in the statement of Theorem 4.
Clearly A is a dense set as well. Recall the formula (1.10), where we can think of the
integrand ωλ as being only defined over A , and hence independent on the minimizers.
If we are able to show now that the function ω|A ∩(a,b) has a continuous extension over
(a, b), thenwe can use (1.10) to conclude that the derivative ofm is a continuous function
and hence in class C1(a, b). Hence, we will have a legitimate formula ωλ = −2m′(λ)

for all λ ∈ (a, b). In particular, ωλ would be independent of minimizers as a derivative
of m, which is naturally independent on the minimizers, due to its definition. Thus, it
remains to establish the continuity of ω|A . In fact, it is enough to establish the following
proposition.
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Proposition 7. Suppose that limδ→0+ ‖ϕλ+δ−�‖L2 = 0. Then, for each r : 0 < r < ∞,
n = 2 or 0 < r < 2

n−2 , n ≥ 3, we have that

lim
δ→0+

∫

Rn
ϕ2+2r

λ+δ dx =
∫

Rn
�2+2r dx . (6.1)

Let us show how to obtain the continuity of λ → ω(λ) under the assumption (1.12).
Supposing that (1.12) holds, we have from the proof of Proposition 3 limδ→0 ‖ϕλ+δ −
�‖H1∩L2qL+2 = 0–indeed, for every sequence δ j → 0+, we will be able to take a
subsequence δ jk , so that ϕλ+δ jk

converges to � in H1 ∩ L2qL+2, which implies exactly
that limδ→0 ‖ϕλ+δ − �‖H1∩L2qL+2 = 0.

Now, the formula (3.6) for ωλ,� represents it as a linear combination of ‖∇�‖
and various L pk , Lq j norms. The convergence of the Lq norms is guaranteed already,
whereas Proposition 7 (more specifically (6.1)) provides the convergence of the L p

norms. With that, supposing that for any {λ + δ j } j ⊂ (a, b), we will have proven
lim j ωλ+δ j = lim j ωλ+δ j ,ϕλ+δ j

= ωλ,�. Thus, the function ω|A ∩(a,b) can be extended as
a continuous function on (a, b).

Proof. We have already shown that limδ→0+ ‖ϕλ+δ −�‖L2 = 0 implies limδ→0 ‖ϕλ+δ −
�‖H1∩L2qL+2 = 0. The formula (6.1) is a consequence of the Sobolev embedding
H1(Rn) ↪→ L2+2r (Rn), valid for exactly the range of r specified in the statement. ��
The next order of business is the concavity of m. Note that the concavity property is
independent on the assumption (1.12).

6.3. The function λ → m(λ) is concave down. Our starting point is the inequality (3.8)
established earlier. Taking into account (3.9), it reads

m(λ + 2ε〈ϕλ, h〉 + ε2‖h‖2) ≤ m(λ) − εωλ〈ϕλ, h〉 + ε2

2
〈(L+ − ωλ)h, h〉 + O(ε3).

(6.2)

Writing the same inequality with ε → −ε and adding the two yields

m(λ + 2ε〈ϕλ, h〉 + ε2‖h‖2) + m(λ − 2ε〈ϕλ, h〉 + ε2‖h‖2)
≤ 2m(λ) + ε2〈(L+ − ωλ)h, h〉 + O(ε3). (6.3)

This inequality is valid for all h, but we wish to apply it for the eigenfunction, cor-
responding to the negative eigenvalue for L+. Recall that according to Theorem 1 and
Theorem3,L+ has exactly one (simple) negative eigenvalue, say−σ 2

λ , with a normalized
eigenfunction χλ : ‖χλ‖ = 1.

We note that 〈χλ, ϕλ〉 �= 0, since otherwise, we will get a contradiction with the
property L+|{ϕλ}⊥ ≥ 0. Take h := χλ

2〈χλ,ϕλ〉 . Applying (6.3), we obtain

m(λ + ε + ε2‖h‖2) + m(λ − ε + ε2‖h‖2) − 2m(λ)

≤ −ε2ω(λ)‖h‖2 − ε2σ 2
λ

4〈χλ, ϕλ〉2 + O(ε3). (6.4)
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We have by (1.10)

m(λ ± ε + ε2‖h‖2) − m(λ ± ε) =
∫ λ±ε+ε2‖h‖2

λ±ε

m′(z)dz = −1

2

∫ λ±ε+ε2‖h‖2

λ±ε

ω(z)dz

whence by the uniform continuity of ω(λ) on (a, b),

m(λ ± ε + ε2‖h‖2) − m(λ ± ε) +
ε2‖h‖2

2
ω(λ)

= −1

2

∫ λ±ε+ε2‖h‖2

λ±ε

[ω(z) − ω(λ)]dz = ouni f orm(λ, ε2),

meaning limε→0 supλ∈(a,b)
ouni f orm (λ,ε2)

ε2
= 0. Thus, applying this in (6.4), we obtain for

all ε �= 0,

m(λ + ε) + m(λ − ε) − 2m(λ) ≤ − ε2σ 2
λ

4〈χλ, ϕλ〉2 + ouni f orm(λ, ε2). (6.5)

It follows that

lim sup
ε→0

sup
λ∈(a,b)

m(λ + ε) + m(λ − ε) − 2m(λ)

ε2
≤ − inf

λ∈(a,b)

σ 2
λ

4〈χλ, ϕλ〉2 ≤ 0. (6.6)

We now finish with the following Lemma.

Lemma 6. Let f : (a, b) → R be a continuous function that satisfies

lim sup
ε→0

sup
λ∈(a,b)

f (λ + ε) + f (λ − ε) − 2 f (λ)

ε2
≤ 0.

Then, f is concave down on (a, b).

We postpone the proof of Lemma 6 to the Appendix. Based on the lemma, we conclude
that the function m is concave down. As such, m is twice differentiable a.e.. In fact,

based on (6.5), we have that m′′(λ) ≤ − σ 2
λ

4〈χλ,ϕλ〉2 for almost all λ. Thus, for all points of
differentiability of ω (which is a.e. in λ),

ω′(λ) = −2m′′(λ) ≥ σ 2
λ

2〈χλ, ϕλ〉2 > 0. (6.7)

6.4. The weak non-degeneracy for ϕλ. In this section, we establish that under the as-
sumptions in Theorem 4, we have that ϕλ ⊥ K er [L+]. In view of Theorem 3, this
is something to worry about only in case where the (strong) non-degeneracy does not
hold, namely when K er [L+] = span{∂1ϕλ, . . . , ∂nϕλ,
0}. Indeed, we trivially have
that ϕλ ⊥ span{∂1ϕλ, . . . , ∂nϕλ}. Thus, we only need to show that ϕλ ⊥ 
0, (if such a
function exists in the first place!).

To this end, starting with the elliptic problem (1.2), which ϕλ satisfies, with ω = ωλ.
Let λ ∈ (a, b) be a point of differentiability 15 for ω(λ). Let δ > 0 be so small that

15 Which applies to a.e. point.
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λ + δ ∈ (a, b). We will write the equations for ϕλ and ϕλ+δ respectively and eventually,
we will take their difference. In doing so, it is convenient to introduce the notation

ϕλ+δ = ϕλ + δ
ϕλ+δ − ϕλ

δ
=: ϕλ + δZδ, (6.8)

and to prepare a few calculations. First, the key assumption (1.12) reads limδ→0 δ‖Zδ‖L2

= 0. Since the functions ϕλ, ϕλ+δ are bounded, we have that for each r ∈ (2,∞),

δ‖Zδ‖Lr (Rn) ≤ (δ‖Zδ‖L∞)1−
2
r (δ‖Zδ‖L2)

2
r → 0,

as δ → 0+. Next, for each power p > 0, we use the first order expansion

ϕ
2p+1
λ+δ = ϕ

2p+1
λ + δZδ(2p + 1)ϕ2p

λ + Eδ,λ;p,

where the error term satisfies

|Eδ,λ,p(x)| ≤ C

{
ϕ
2p−1
λ (δZδ)

2 δ|Zδ(x)| ≤ ϕλ(x)
10

(δZδ)
2p+1 δ|Zδ(x)| ≥ ϕλ(x)

10

. (6.9)

It may appear that there are terms with exponential growth in the spatial variables, such
as ϕ

2p−1
λ , when p < 1

2 (recall that p is generally small in our assumptions). This turns
out not to be the case. As we know while ϕλ ∼ e−√

ωλ|x |, |Zδ| ≤ e−min(
√

ωλ,
√

ωλ+δ)|x |.
So, for example Eδ,λ,p has decay rate

|Eδ,λ,p| ≤ Ce−[2(min
√

ωλ,
√

ωλ+δ)+(2p−1)
√

ωλ]|x |,

or about e−(2p+1)
√

ωλ|x |, since δ << 1 and λ is a point of continuity for ωλ.
Plugging in the formula (6.8) in (1.2) and taking differences and dividing by δ, we

obtain

L+[Zδ] + ωλ+δ − ωλ

δ
(ϕλ + δZδ) − δ−1Eδ,λ = 0, (6.10)

where Eδ,λ = ∑K
k=1 ak Eδ,λ,pk − ∑L

l=1 bl Eδ,λ,ql .
We now take a decomposition of Zδ across the spectrum of L+. Since Zδ is radial,

the only non-trivial projection onto K er [L+] is potentially only over 
0, so we have

Zδ = 〈Zδ, 
0〉
0 + zδ =: a(δ)
0 + zδ,

where zδ ⊥ K erL+, so in particular zδ ⊥ 
0. Note that since δ2a2(δ) + δ2‖zδ‖2 =
δ2‖Zδ‖2L2 → 0, it follows that limδ→0+ δa(δ) = 0 and limδ→0+ δ‖zδ‖ = 0. In view of
that and our earlier arguments, it follows that for each r ∈ (2,∞), limδ→0+ δ‖zδ‖Lr = 0
as well. In addition, the exponential bounds for Zδ and 
0 carry over to zδ . We collect
the estimates for a(δ), zδ in the following

δ|zδ(x)| ≤ Ce−√
min(ωλ,ωλ+δ)|x |; lim

δ→0+
δ‖zδ‖Lr = 0, 2 ≤ r < ∞; lim

δ→0+
δa(δ) = 0,

(6.11)

where C is independent on δ > 0.
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Since L+[Zδ] = L+[zδ], we have from (6.10)

zδ = L −1
+ P{
0}⊥[−ωλ+δ − ωλ

δ
(ϕλ + δZδ) + δ−1Eδ,λ]. (6.12)

Since D(L+) = H2(Rn),L −1
+ P{
0}⊥ : L2 → H2(Rn) and we obtain the bound

‖zδ‖H2 ≤ C

( |ωλ+δ − ωλ|
δ

(‖ϕλ‖ + δ‖Zδ‖) + δ−1‖Eδ,λ‖L2

)
. (6.13)

We now need appropriate estimate for δ−1‖Eδ,λ‖L2 .

Lemma 7.

δ−1‖Eδ,λ‖L2 ≤ o(1)‖zδ‖H2 + Cδa2(δ).

Proof. In the regime δ|Zδ| ≤ ϕλ

10 , the function δ−1|Eδ,λ| is estimated as follows

δ−1‖Eδ,λ‖L2(δ|Zδ |≤ ϕλ
10 ) ≤

K∑

k=1

|ak |‖ϕ2pk−1δ[a2(δ)
2
0 + 2a(δ)
0zδ + z2δ ]‖L2

+
L∑

l=1

|bl |‖ϕ2ql−1δ[a2(δ)
2
0 + 2a(δ)
0zδ + z2δ ]‖L2

≤ Cδa2(δ) sup
r∈p1,...pK ;q1,...qL

‖
2
0ϕ

2r−1
λ ‖L2

+Cδ|a(δ)| sup
r∈p1,...pK ;q1,...qL

‖
0zδϕ
2r−1
λ ‖L2 + Cδ sup

r∈p1,...pK ;q1,...qL

‖ϕ2r−1
λ z2δ‖L2 .

Clearly, since 
0, ϕλ ∼ e−√
ωλ|x | + o(e−√

ωλ|x |), we have that ϕ−1
λ 
0 is a bounded

function. Hence ‖
2
0ϕ

2r−1
λ ‖L2 < ∞, ‖
0ϕ

2r−1
λ ‖L∞ < ∞. For the last term, choose

any σ : 2 < σ < ∞, so that there is the Sobolev embedding H2(Rn) ↪→ Lσ (Rn), i.e.
σ < 2n

n−2 . We have

δ‖ϕ2r−1
λ z2δ‖L2 ≤ ‖zδ‖Lσ ‖ϕ2r−1

λ δzδ‖Lσ1 ≤ C‖zδ‖H2‖ϕ2r−1
λ δzδ‖Lσ1 ,

where σ1 : 1
σ
+ 1

σ1
= 1

2 . Thus,

‖ϕ2r−1
λ δzδ‖Lσ1 ≤ ‖|δzδ|(1−θ)‖Lσ1 ‖ϕ2r−1

λ |δzδ|θ‖L∞ ≤ C‖δzδ‖
1

1−θ

Lσ1(1−θ) = o(1)

where θ ∈ (0, 1) is designed so that the L∞ term is bounded. This is possible, since
there is the estimate

ϕ2r−1
λ |δzδ|θ ≤ Ce−(2r−1)

√
ωλ|x |e−θ

√
min(ωλ,ωλ+δ)|x |

which can be made exponentially decaying at ∞ (and hence bounded), provided 1 >

θ > 1 − 2r and δ is sufficiently small. Combining it all together, in view of (6.11), we
have shown the required estimate for δ−1‖Eδ,λ‖L2(δ|Zδ |≤ ϕλ

10 ).

The estimate for δ−1‖Eδ,λ‖L2(δ|Zδ |> ϕλ
10 ) is in fact simpler. More specifically, note that

since limδ→0+ δa(δ) = 0, we have that for all small enough δ > 0, δa(δ)
0 << ϕλ,
whence δ|zδ| ≥ 1

2δ|Zδ| ≥ ϕλ

10 .
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For every r ∈ {p1, . . . pK ; q1, . . . qL}, we estimate by Hölder’s with σ : 0 < σ −
2 << 1 and r1 : 1

2 = 1
σ
+ 1

σ1

‖zδ(δzδ)
2r‖L2 ≤ ‖zδ‖Lσ (δ‖zδ‖L2σ1r )2r .

We now select σ so close to 2 (and consequently σ1 can be made as big as we wish), so
that 2σ1r > 2. As a consequence, ‖zδ‖Lσ (δ‖zδ‖L2σ1r )2r = o(1)‖zδ‖H2(Rn), according
to (6.11). ��

Going back to (6.13), we see that for all small enough δ, and taking into account that
λ is a point of differentiability for ωλ (and hence limδ→0+

ωλ+δ−ωλ

δ
= ω′

λ) there is the
bound

‖zδ‖H2 ≤ Cλ(|ω′(λ)| + o(1)‖zδ‖H2 + δa2(δ)).

Since we can hide o(1)‖zδ‖H2 behind the left hand side, we arrive at the bound, in a
schematic form,

‖zδ‖H2 ≤ Cδa2(δ) + O(1) = o(1)|a(δ)| + O(1), (6.14)

in view of limδ→0+ δa(δ) = 0. We now show that this by itself implies the weak non-
degeneracy of ϕλ. Compute

δ2‖Zδ‖2 = 〈ϕλ+δ − ϕλ, ϕλ+δ − ϕλ〉 = 2λ + δ − 2〈ϕλ+δ, ϕλ〉 = δ(1 − 2〈Zδ, ϕλ〉).
(6.15)

On the other hand,

δ‖Zδ‖2 = δa2(δ) + δ‖zδ‖2,
while

1 − 2〈Zδ, ϕλ〉 = 1 − 2a(δ)〈
0, ϕλ〉 − 2〈zδ, ϕλ〉.
It follows that

2a(δ)〈
0, ϕλ〉 = 1 − 2〈zδ, ϕλ〉 − δa2(δ) − δ‖zδ‖2. (6.16)

From (6.14), |〈zδ, ϕλ〉| ≤ Cλ‖zδ‖ ≤ Cλ(o(δ)|a(δ)| + O(1)) and δ‖zδ‖2 ≤ o(δ)|a(δ)| +
O(δ). Hence,

2a(δ)〈
0, ϕλ〉 = o(δ)|a(δ)| + O(1).

So, if it happens that 〈
0, ϕλ〉 �= 0 (i.e. we assumeweak degeneracy for a contradiction),
we must have a(δ) = O(1). In that case, take a dot product of (6.10)with 
0, so that
〈L+zδ, 
0〉 = 0. We have

∣∣∣∣
ωλ+δ − ωλ

δ

∣∣∣∣ |〈
0, ϕλ〉| ≤
∣∣∣∣
ωλ+δ − ωλ

δ

∣∣∣∣ δ|〈Zδ, 
0〉| + δ−1|〈Eδ,λ,
0〉|.
Note that the right hand side is o(1), if a(δ) = O(1). On the other hand, this is contra-
diction, since

lim
δ→0+

∣∣∣∣
ωλ+δ − ωλ

δ

∣∣∣∣ |〈
0, ϕλ〉| = |ω′(λ)||〈
0, ϕλ〉| > 0,

according to (6.7). This leads us to the conclusion that 〈
0, ϕλ〉 = 0, which is the weak
non-degeneracy of ϕλ. Let us record, for future reference, the identity that follows from
(6.15), in view of the fact that 〈
0, ϕλ〉 = 0,

2〈zδ, ϕλ〉 = 1 − δa2(δ) − δ‖zδ‖2. (6.17)
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6.5. On the differentiability of the map λ → ϕλ in the non-degenerate case. In this sec-
tion, we assume that the wave ϕλ is non-degenerate, that is K er [L+] = span{∂1ϕλ, . . . ,

∂nϕλ}. Under these assumptions for the kernel, we can essentially run the same argument
as in the previous section, by assuming a(δ) = 0 or equivalently Zδ = zδ . In particular,
Lemma 7 applies to yield

δ−1‖Eδ,λ‖L2 ≤ o(1)‖Zδ‖H2 . (6.18)

From (6.13), combined with (6.18), we obtain

‖Zδ‖H2 ≤ C |ω′(λ)|‖ϕλ‖ + o(1)‖Zδ‖H2 + o(1).

All in all, it follows that lim supδ→0 ‖Zδ‖H2 ≤ C |ω′(λ)|‖ϕλ‖ < ∞. Using this in-
formation, we can actually take limits as δ → 0 in (6.10). Indeed, applying L −1

+ to
it16

Zδ + ω′(λ)L −1
+ ϕλ + oL2(1) + O(δ‖Zδ‖H2) = 0.

Thus,

lim
δ→0

‖Zδ + ω′(λ)L −1
+ ϕλ‖L2 = 0.

This means that the function ϕ : (a, b) → L2(Rn) is differentiable, at least at the points
of differentiability of ω. In fact,

∂λϕλ = −ω′(λ)L −1
+ ϕλ.

Finally,

〈L −1
+ ϕλ, ϕλ〉 = − 1

ω′(λ)
〈∂λϕλ, ϕλ〉 = − 1

2ω′(λ)
∂λ‖ϕλ‖2 = − 1

2ω′(λ)
< 0.

6.6. Differentiability of λ → ϕλ in the weakly non-degenerate case. We have already
established the weak non-degeneracy of ϕλ, when ω′(λ) exists. For δ > 0, we have the
identity

δ−1‖ϕλ+δ − ϕλ‖2 = δ‖Zδ‖2 = δa2(δ) + δ‖zδ‖2,
whence the assumption (1.13) implies that limδ→0 δa2(δ) = 0 = limδ→0 δ‖zδ‖2. This
simplifies matters quite a bit–by combining (6.13) and the estimate in Lemma 7, we
obtain

‖zδ‖H2 ≤ C |ω′(λ)| + o(1) + Cδ(|a(δ)| + ‖zδ‖L2) + Cδa2(δ) + o(1)‖zδ‖L2 .

Thus, ‖zδ‖H2 = O(1). In particular by Lemma 7, δ−1Eδ,λ = o(1). We now easily
obtain, by taking limit as δ → 0 in (6.12),

lim
δ→0

‖zδ + ω′(λ)L −1
+ [ϕλ]‖ = 0.

16 This is justified since all the terms appearing in (6.10) are radial and hence orthogonal to K er [L+] by
the non-degeneracy assumption.
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In particular, the (L2(Rn) valued) function λ → ϕλ is differentiable, and

∂λϕλ = −ω′(λ)L −1
+ [ϕλ].

Also,

lim
δ→0

〈zδ, ϕλ〉 = −ω′(λ)〈L −1
+ [ϕλ], ϕλ〉

while by virtue of (6.16) (recall 〈
0, ϕλ〉 = 0), we have limδ→0〈zδ, ϕλ〉 = 1
2 .

6.7. Non-degeneracy of ϕλ: Proof of Proposition 4. According to Theorem 3, we only
need to rule out the existence of a radial eigenfunction 
0 in K er [L+], which vanishes
at exactly one point, say r∗ ∈ (0,∞).

Recall ϕ ⊥ K er [L+]. A direct inspection establishes the well-known identity

L+[
n∑

j=1

x j∂ jϕ] = −2�ϕ. (6.19)

This shows that �ϕ ⊥ K er [L+] as well. In addition,
L+[ϕ] = −2F ′(ϕ2)ϕ3,

while from the profile equation F(ϕ2)ϕ = −�ϕ + ωϕ ⊥ K er [L+]. It follows that
F ′(ϕ2)ϕ3, F(ϕ2)ϕ ⊥ K er [L+].

Wewill show that in the three examples, (1.14), (1.15) and (1.16), listed in Proposition
4, this allows us to rule out 
0. Recall that 
0(r) > 0, r ∈ (0, r∗), 
0(r) < 0, r ∈
(r∗,∞). Assume (1.14). Choose c0 > 0, so that c0

∑K
k=1 akϕ

2pk
λ (r∗) = 1. Consider the

function

h(r) := c0F(ϕ2)ϕ − ϕ.

On one hand, h ⊥ K er [L+], as linear combination of two functions in K er [L+]⊥. On
the other hand, since ϕ is bell-shaped17 for r ∈ (0, r∗),

h(r) = ϕ(r)(c0

K∑

k=1

akϕ
2pk (r) − 1) > ϕ(r)(c0

K∑

k=1

akϕ
2pk (r∗) − 1) = 0.

For r ∈ (r∗,∞), we have the opposite inequality, since

h(r) = ϕ(r)(c0

K∑

k=1

akϕ
2pk (r) − 1) < ϕ(r)(c0

K∑

k=1

akϕ
2pk (r∗) − 1) = 0.

Clearly, 〈h, 
0〉 = ∫ r∗
0 h(r)
0(r)rn−1dr +

∫ ∞
r∗ h(r)
0(r)rn−1dr > 0, in contradiction

with h ⊥ K er [L+] and in particular h ⊥ 
0.

17 And so strictly decreasing in (0, ∞)).
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The proof in the cases of (1.15) and (1.16) follows the same logic, but it is slightly
more involved. The conditions F ′(ϕ2)ϕ3, F(ϕ2)ϕ ⊥ K er [L+] read

F(ϕ2)ϕ =
K∑

k=1

akϕ
2pk+1 − bϕ2q+1 ⊥ K er [L+]

F ′(ϕ2)ϕ3 =
K∑

k=1

(2pk + 1)akϕ
2pk+1 − b(2q + 1)ϕ2q+1 ⊥ K er [L+].

Taking a linear combination (2q + 1)F(ϕ2)ϕ − F ′(ϕ2)ϕ3, we eliminate the term ϕ2q+1

and we obtain yet another element of K er [L+]⊥, namely
∑K

k=1 2(q − pk)akϕ
2pk+1.

Clearly, in the cases when q > pK or q < p1, we have an element of K er [L+]⊥ in the
form

K∑

k=1

ãkϕ
2pk+1
λ , ãk > 0,

which can be used to produce a contradiction with the existence of 
0, the same way as
we did under the assumption (1.14).

7. Proof of Theorems 5, 6, 7

We first check (1.9) for the case of a purely focusing nonlinearity (1.14).

7.1. Verifification of (1.9) for focussing non-linearities. Write as before

m(λ) = inf
‖u‖2=λ

I [u] = λ inf
‖v‖2=1

[∫
|∇v|2 − λ−1

∫
G(λ|v(x)|2)dx

]

= λ inf
‖v‖2=1

[∫
|∇v|2 −

∑

k

akλ
pk

pk + 1

∫
|v|2+2pk dx

]
=: λM(λ).

Clearly, the function λ → M(λ) is decreasing. In addition M(λ) = m(λ)
λ

< 0, since
m(λ) < 0. So, for 0 < λ1 < λ2, we have

m(λ1) = λ1M(λ1) > λ2M(λ1) > λ2M(λ2) = m(λ2).

Thus, (1.9) holds true.
We now turn our attention to the stability claims in Theorems 5, 6, 7 as the others

were explained in details immediately after the statements. The spectral stability of the
waves is a consequence of the formulas 〈L −1

+ ϕλ, ϕλ〉 = − 1
2ω′(λ)

< 0, the fact that
n(L+) = 1, n(L−) = 0 and the index theory, introduced in Sect. 2.3, more specifically
Proposition 6.

Orbital stability follows from the end of the same proposition, once we take into
account the non-degeneracy of the waves ϕλ, the local invertibility of the map λ → ωλ

and the smoothness of λ → ϕλ, stated in Theorem 4. Unfortunately, there is no abstract
result providing orbital stability for the Zakharov–Kuznetsov model, due to the failure
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of a key assumption in Theorem 5.2.11 in [17], namely the invertibility of J = ∂x1
does not hold.

In the section below however, we provide a direct proof of this fact, by adapting
slightly the Benjamin’s method, [1]. Similar, albeit slightly more elaborated method can
be applied to produce a direct proof of the orbital stability of the NLS equation, instead
of referring to Theorem 5.2.11, [17], but we will not do so here.

7.2. Orbital stability for the Zakharov–Kuznetsov models. The local well-posedness
theory for the ZK, (1.3) follows by classical semigroup theory in the energy space
H1(Rn), under the assumptions for L2 sub-critical powers, as considered herein. This
is then upgraded to global well-posedness theory in H1(Rn), thanks to the conservation
laws

H [u] =
∫

Rn
|∇u(x)|2 −

∫

Rn
G(|u(x)|2)dx,P(u) =

∫

Rn
|u(x)|2dx .

Thus, we are reduced to showing the following proposition.

Proposition 8. Let ϕ be a smooth wave, satisfying

− �ϕ + ωϕ − F(ϕ2)ϕ = 0 (7.1)

and the following assumptions:

• The operator L+ = −� + ω − F(ϕ2) − 2F ′(ϕ2)ϕ2 satisfies L+|{ϕ}⊥ ≥ 0.
• ϕ is non-degenerate, i.e. K er [L+] = span[∂1ϕ, . . . , ∂nϕ].

Then, ϕ is orbitally stable in the sense of Definition 2.

Remark: Clearly, the proposition above applies to the limit waves ϕ = fωλ described
in Theorems 5, 6, 7 as they were established to enjoy the desired properties described
above. Note also that the method that we present does not require the differentiability18

of ω.

Proof. The proof proceeds by a contradiction argument. Assuming that orbital stability
does not hold, there is a ε0 > 0 and a sequence ul → ϕ in H1, so that the corresponding
solutions

sup
0≤t<∞

inf
r∈Rn

‖ul(t, ·) − ϕ(· − r)‖H1 ≥ ε0. (7.2)

For 0 < ε << 1, consider a neighborhood Uε in the set of all real-valued functions,
which are closed to translations of ϕλ

Uε = {u ∈ H1
real(R

n) : inf
r∈Rn

||u − ϕ(· − r)||H1 < ε}.

By Lemma 3.2, [11], there exists ε0(ϕ) > 0, so that for all 0 < ε < ε0(ϕ), there is a
unique C1 map β : Uε �→ R, such that

〈u(· + β(u)), ∂ jϕ〉 = 0, j = 1, . . . , n. (7.3)

18 Which is on the other hand used already in the proof of the non-degeneracy of the waves.
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Note that β(ϕ) = 0. Since we need ε < min(ε0(ϕ), ε0), take the new ε0 to be the
minimumof the ε0, ε0(ϕ). Introduce the total energy functionalE (u) = H (u)+ωP(u).
In terms of H ,P the profile equation (7.1) reads

E ′[ϕ] = H ′(ϕ) + ωP ′(ϕ) = 0.

Let

εl := |E (ul(t)) − E (ϕ)| + |P(ul(t)) − P(ϕ)|,
which is conserved in time. Note that liml εl = 0, since liml ‖ul − ϕ‖H1 = 0.

By the continuity of the solution map and the map β, we have that there exists tl > 0,
so that for t ∈ (0, tl), ‖ul(t, ·) − ϕ‖H1 < ε

2 and β(ul(t)) is so close to β(ϕ) = 0, that

‖ϕ − ϕ(· − β(ul(t)))‖H1 <
ε

2
.

Consequently,

‖ul(t, · + β(ul(t))) − ϕ‖H1 = ‖ul(t, ·) − ϕ(· − β(ul(t)))‖H1

≤ ‖ul(t, ·) − ϕ‖H1 + ‖ϕ − ϕ(· − β(ul(t)))‖H1 <
ε

2
+

ε

2
= ε.

With that in mind, take

T ∗
l = sup{τ0 : sup

0<τ<τ0

‖ul(τ, · + β(ul)) − ϕ(·)‖H1 < ε}.

The previous calculation shows T ∗
l ≥ tl > 0. We aim at showing that for all sufficiently

small ε and for all large enough l, T ∗
l = ∞, which will provide the sought contradiction

with (7.2). We henceforth work with t ∈ (0, T ∗
l ). Denote

ψl(t, ·) = ul(t, · + β(ul)) − ϕ(·) = μl(t)ϕ + ηl(t, ·), ηl ⊥ ϕ.

We have that

P(ul(t)) = P(ϕ) + 2〈ϕ,μlϕ + ηl〉 + ‖ψl‖2L2 = P(ϕ) + 2μl‖ϕ‖2 + ‖ψl‖2L2 .

It follows that 2μl‖ϕ‖2 = P(ul) − P(ϕ) − ‖ψl‖2L2 , whence

|μl(t)| ≤ |P(ul) − P(ϕ)| + ‖ψl‖2L2

2‖ϕ‖2 ≤ C(εl + ‖ψl‖2L2). (7.4)

But E ′(ϕ) = 0. So expansion in Taylor’s and various Sobolev embedding estimates
yield the formula

E (ul(t)) − E (ϕ) = E (ul(t, · + β(ul(t)))) − E (ϕ) = E (ϕ + ψl) − E (ϕ)

= 1

2
〈L+ψl , ψn〉 + O(‖ψl‖3H1)

= 1

2
〈L+ηl , ηn〉 + 1

2
(μ2

l 〈L+ϕ, ϕ〉 + 2μl〈L+ϕ, ηl〉) + O(‖ψl‖3H1).

By construction, ηl ⊥ ϕ. In addition, from (7.3), we have for all j = 1, 2, . . . n,

〈ηl , ∂ jϕ〉 = 〈ul(t, · + β(ul(t))) − ϕ − μlϕ, ∂ jϕ〉 = 0.
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So, it turns out that ηl ⊥ span{ϕ,∇ϕ}. But recall that we have assumed L+|{ϕ}⊥ ≥ 0.
In addition, by the non-degeneracy assumption, K er [L+] = span[∇ϕ]. Thus,

L+|span{ϕ,∇ϕ}⊥ ≥ κ > 0.

In particular,

〈L+ηl , ηl〉 ≥ κ‖ηl‖2H1 . (7.5)

Plugging this information into the expression for E (ul)−E (ϕ) = E (ul(t))−E (ϕ), we
arrive at

κ

2
‖ηl‖2H1 ≤ Cεl + C‖ψl‖3H1 . (7.6)

By the definition of ηl and (7.4), we have however

‖ηl‖H1 ≥ ‖ψl − μlϕ‖H1 ≥ ‖ψl‖H1 − |μl |‖ϕ‖H1 ≥ ‖ψl‖H1 − C(εl + ‖ψl‖2H1).

(7.7)

We now select ε so small thatCε < min( 1
100 ,

κ
64 ), for anyC that appears in the argument.

We claim that for all large enough n, ‖ψl(t)‖H1 < ε
1
4

l , for t ∈ (0, T ∗
l ). Suppose

not–this will then yield a subsequence, denoted the same, so that ‖ψl(τl)‖H1 ≥ ε
1
4

l for
some τl ∈ (0, T ∗

l ). Note that by the definition of T ∗
l , we still have ‖ψl(τl)‖H1 ≤ ε.

From (7.7), we have now, for large enough n,

‖ηl(τl)‖H1 ≥ 1

2
‖ψl(τl)‖H1 − Cεl ≥ 1

4
‖ψl(τl)‖H1 (7.8)

since by the choice of ε, we have ‖ψl(τl)‖H1 − C‖ψl(τl)‖2H1 ≥ 1
2‖ψl(τl)‖H1 (since

Cε < 1
100 ). In addition, 1

2‖ψl(τl)‖H1 − Cεl ≥ 1
4‖ψl(τl)‖H

α
2
since ε

1
4

l >> εl . Using
this in (7.6) yields

κ

32
‖ψl(τl)‖2H1 ≤ Cεl + C‖ψl(τl)‖3H1 ≤ Cεl +

κ

64
‖ψl(τl)‖2H1 . (7.9)

It follows that

κ

64
‖ψl(τl)‖2H1 ≤ Cεl ,

which is a contradictionwith ‖ψl(τl)‖H1 ≥ ε
1
4

l for large l. Thus, for large l, ‖ψl(t)‖H1 <

ε
1
4

l for t ∈ (0, T ∗
l ). But this exactly means that for all large l, T ∗

l = ∞, whence we
arrive at a contradiction with (7.2). ��
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968 A. Stefanov

Appendix A. Pohozaev

Proposition 9. Any weak solution f ∈ H1(Rn) ∩ L∞(Rn) of (1.2) satisfy

‖∇ fω‖2 + ω‖ fω‖2 −
∫

Rn
F( f 2ω(x)) f 2ω(x)dx = 0, (A.1)

(n − 2)‖∇ fω‖2 + ωn‖ fω‖2 − n
∫

Rn
G( f 2ω(x))dx = 0. (A.2)

Proof. We first verify it for classical solutions. The relation (A.1) follows by taking dot
product of (1.2) with fω. For (A.2), take dot product with

∑n
j=1 x j∂ j f . Since,

〈−� f,
n∑

j=1

x j∂ j f 〉 =
n∑

j=1

[
∑

k �= j

∫

Rn
x j∂k f ∂ jk f dx

−
∫

Rn
∂ j f ∂ j j f x j dx] = −n − 2

2
‖∇ f ‖2.

−
n∑

j=1

∫
F( f 2(x)) f (x)x j∂ j f (x)dx

= n

2

∫
G( f 2)dx,

n∑

j=1

∫
x j f (x)∂ j f (x)dx = −n

2
‖ f ‖2

we conclude (A.2).
For weak solutions, take dot products with f χ(x/N ) and

∑n
j=1 x j∂ j f χ(|x |/N )

respectively, where χ is aC∞
0 function, supported in (−2, 2), so that χ(r) = 1 : |r | < 1.

After integration by parts and taking limN→∞ we get again (A.1) and (A.2). ��

Appendix B. Concavity Lemma

We prove Lemma 6. Assume that f is not concave. Then, since it is continuous, it
is not “concave” with θ = 1

2 . That is, there is λ0 ∈ (a, b) and ε0, δ0 > 0, so that
λ0 ± ε0 ∈ (a, b),

f (λ0 + ε0) + f (λ0 − ε0) ≥ 2 f (λ0) + δ0.

We claim that at least one of the following three inequalities will hold true

f (λ0 + ε0) + f (λ0) − 2 f (λ0 +
ε0

2
) ≥ δ0

4
,

f (λ0 − ε0) + f (λ0) − 2 f (λ0 − ε0

2
) ≥ δ0

4
,

f (λ0 +
ε0

2
) + f (λ0 − ε0

2
) − 2 f (λ0) ≥ δ0

4
.

Indeed, assuming all three are false, add the first two to twice the third one. We obtain

f (λ0 + ε0) + f (λ0 − ε0) − 2 f (λ0) < δ0,

which is a contradiction. Thus, we have shown that inside (λ0 − ε0, λ0 + ε0) there is an
interval, with half the length, on which f is not concave with θ = 1

2 . Continuing in this
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fashion, we construct a sequence of nested intervals I j = [λ j − ε0
2 j , λ j +

ε0
2 j ], on which

there is the inequality

f (λ j +
ε0

2 j
) + f (λ j − ε0

2 j
) − 2 f (λ j ) ≥ δ0

22 j
.

Since λ j → λ̃ = ∩∞
j=0 I j ⊂ (a, b), we obtain as a consequence

lim sup
j

f (λ j +
ε0
2 j ) + f (λ j − ε0

2 j ) − 2 f (λ j )
(

ε0
2 j

)2 ≥ δ0

ε20
> 0.

This is however in contradiction with the assumption in Lemma 6.

Appendix C. The one dimensional case

In this section,we provide an alternative approach to the existence and stability of solitary
waves for NLS with general non-linearity, in one spatial dimension. Note that here, we
do not necessarily restrict ourselves to normalized waves, but we in fact consider all
waves.

The existence and stability of these waves is a known result, but we wanted to present
a version here, with explicit assumptions, in order to be able to directly compare with
the higher dimensional case, considered herein.

Theorem 8. Let F : (0,∞) → R be a C1 function, so that the function H(z) := G(z)
z ,

where G : G ′ = F, G(0) = 0 satisfies

• There exist z0 = z0(ω) : H(z0) = ω, so that H(z) < ω, for z ∈ (0, z0(ω)). In
addition, z0 is non-degenerate zero of H(z) − ω = 0, i.e. H ′(z0(ω)) �= 0.
• |H(z)| ≤ C |z|δ for z ∈ (0, z0(ω)) and some δ > 0.

Then, there exists a bell-shaped solution fω, with fω(0) = √
z0(ω). In addition, the

function ω → ∫ z0(ω)

0
1√

ω−H(z)
dz > 0 is differentiable for all ω > 0 and the wave fω is

orbitally stable19 if and only if

∂ω

∫ z0(ω)

0

1√
ω − H(z)

dz > 0.

Proof. The profile equation is

− f ′′ + ω f − F( f 2) f = 0.

This can be of course integrated once to

f ′(x) = −
√

ω f 2(x) − G( f 2(x)), x ∈ R. (C.1)

An easy analysis shows that a bell-shaped solution of (C.1) exists with f (0) = √
z0(ω),

f ′(0) = 0. Note that fω must be strictly decreasing. It is easier to work with the new
variable z(x) := f 2(x). In it, the Eq. (C.1) becomes

z′(x) = −2z(x)
√

ω − H(z(x)), x ∈ R. (C.2)

19 Outside of the points, where this quantity is zero, which is known to be a delicate issue. However, in all
cases where this has been studied in detail, nonlinear instability has been established.
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The non-degeneracy condition H ′(z0(ω)) ensures that a solution with z(0) = z0(ω)

exists, since we have from (C.2) that for every x > 0,

x = 1

2

∫ z0(ω)

z(x)

dz

z
√

ω − H(z)
,

so the last integral needs to be convergent close to z0(ω). This is of course not the case,
unless H ′(z0(ω)) �= 0, which we have assumed to be true.

The linearized operatorsL±, as previously defined are now second order self-adjoint
operators, with domain D(L±) = H2(R). In addition,L−[ f ] = 0 and f > 0, whence
L− ≥ 0, the zero is a simple eigenvalue and L−|{ f }⊥ > 0. By direct differentiation of
the profile equation,L+[ f ′] = 0. Since f ′ has an unique zero, at zero, Sturm-Liouville
theory applies to imply that the zero is the second smallest (simple) eigenvalue, the
smallest one being strictly negative. So, n(L+) = 1.

The classical stability theory, say Grillakis-Shatah-Strauss applies to imply that the
stability of such waves is dictated by the sign of the quantity ∂ω‖ fω‖2

L2 , namely the sta-

bility occurs exactly when ∂ω‖ fω‖2
L2 > 0. Before we proceed with this, let us explicitly

compute ‖ fω‖2
L2 . We use the z variable again. We have, by (C.2)

‖ fω‖2 = 2
∫ ∞

0
f 2(x)dx = 2

∫ 0

z0(ω)

z
dx

dz
dz =

∫ z0(ω)

0

1√
ω − H(z)

dz.

In the last formula, it is not even clear that this is differentiable in ω, due to the (mild)
singularity at z0(ω). It turns out, after some elementary calculations that this is not an
issue and ω → ∫ z0(ω)

0
1√

ω−H(z)
dz is indeed differentiable in ω. The precise stability

condition is exactly ∂ω

∫ z0(ω)

0
1√

ω−H(z)
dz > 0.

For the particular case of a single power non-linearity, F(z) = z p, we have H(z) =
(p + 1)−1z p and we obtain

∫ z0(ω)

0
1√

ω−H(z)
dz = const.ω

1
p − 1

2 . The stability is then

equivalent to ∂ω[ω 1
p − 1

2 ] > 0 or the familiar p < 2. ��
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