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Abstract
Wecompute the sharp time decay rates of the solutions of the IVP for quasi-geostrophic
equation and the Boussinesq model, subject to fractional dissipation. Moreover, we
explicitly identify the asymptotic profiles, the kernel of the α stable processes, which
are analogues of the Oseen vortices.
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1 Introduction

The initial value problem for the Navier–Stokes equation,

{
ut + u · ∇u − �u = ∇ p, x ∈ Rn, t > 0
u(0, x) := u0(x),∇ · u = 0

(1.1)

where u is the fluid velocity and p is the pressure, is ubiquitous andmuch studiedmodel
in the modern PDE theory. Basic issues like global well-posedness remain elusively
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unresolved in spatial dimensions n ≥ 3. In the case of two spatial dimensions though,
the problem is globally well-posed. This is mostly due to the following representation,
which eliminates the pressure term and leads to equivalent vorticity formulation,

{
ωt + u · ∇ω − �ω = 0, x ∈ R2, t > 0
ω(0, x) := ω0(x),

(1.2)

where the vorticity ω, a scalar1 quantity, is given by ω = ∂1u2 − ∂2u1. We denote

∇⊥ =
(−∂2

∂1

)
for future reference, so that ω = ∇⊥u. Many generalizations of this

model have been considered, in particular to respond to modeling situations where
the actual physical dissipation is different than the one provided by the Laplacian,
in particular in large-scale atmospheric models and large-scale ocean modeling, see
Abidi and Hmidi (2007), Chae (2006) and Jiu et al. (2014). In particular, we consider
the following “umbrella” model

{
∂t z + u · ∇z + |∇|αz = 0, x ∈ R

2, t > 0,

u = (∇⊥)−β z,∇ · u = 0.
(1.3)

where α > 1 and β ≥ 0, (∇⊥)−β = ∇⊥m−β−1(|∇|) = m−β(ξ), wherema is a sym-
bol of order a, see Sect. 2.1 for precise definition.2 These types of equations frequently
arise in fluid dynamics, and as such, they have been widely studied, especially so in
the last 20years. We refer the reader to the works Abidi and Hmidi (2007), Ben-Artzi
(1994), Carpio (1994), Chae (2006), Cordoba and Cordoba (2004), Giga and Kambe
(1988), Jiu et al. (2014), Niche and Schonbek (2007), Wu (2012), Yang et al. (2014)
and references therein.

A few examples, that we would like to emphasize as model cases, are as follows.
The 2D Fractional Navier–Stokes equation arises, if we take z = ω and β = 1,

ωt + u · ∇ω + |∇|αω = 0. (1.4)

If we let z = θ be the temperature of a flow, α > 1 and β = 0, the resulting equation
is the so-called active scalar equation,

θt + u · ∇θ + |∇|αθ = 0, (1.5)

where u1 = −R2θ, u2 = R1θ , and R j , j = 1, 2 are the Riesz transforms, given by

the symbols m j (ξ) = i
ξ j
|ξ | .

1 Note that in the 3D case, where the vorticity formulation is still available, it is a vector quantity and it
does not seem to lead to any improvement over the original formulation
2 Note that it is a requirement that m−β−1(|∇|) is a radial symbol of order −β − 1.
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The Boussinesq system, with general dissipations, reads

⎧⎪⎨
⎪⎩

∂t u + u · ∇u + |∇|σ1u = −∇ p + θe2, x ∈ R
2, t > 0,

∂tθ + u · ∇θ + |∇|σ2θ = 0, x ∈ R
2, t > 0,

∇ · u = 0.

(1.6)

where u is the velocity of the fluid, θ is its temperature, p is the pressure and σ1, σ2 > 0
are the dissipation rates for the velocity and the temperature respectively, see Abidi
and Hmidi (2007), Brandolese and Schonbek (2012), Chae (2006), Hadadifard and
Stefanov (2017), Jiu et al. (2014), Wu (2012) and Yang et al. (2014) for background
and various well-posedness results.

We consider the equivalent vorticity formulation, with the usual scalar vorticity
variable is given by ω = ∂1u2 − ∂2u1. For the purposes of this work, we will only
consider the diagonal case σ1 = σ2 = α. That is in vorticity formulation, the system
consists of the following coupled equations

⎧⎪⎨
⎪⎩

∂tω + u · ∇ω + |∇|αω = ∂1θ, x ∈ R
2, t > 0,

∂tθ + u · ∇θ + |∇|αθ = 0, x ∈ R
2, t > 0,

u = (∇⊥)−1ω, ∇ · u = 0.

(1.7)

1.1 Previous Results

As we have mentioned earlier, a lot of work has been done on the question of well-
posedness, regularity of the solutions to these systems. We do not even attempt to
overview the results, as this is only tangentially relevant for the current work, but the
previously mentioned references contain lots of information about these issues. As
the purpose of this paper is to study the long-time behavior of the said models, we
discuss some recent works on the topic. Most of the research has been done in the
important (and classical) Navier–Stokes case in two- and three-dimensional cases. As
the global regularity for this model remains a challenging open problem in 3D, some
authors restricted themselves toweak solutions3 or they considered eventual4 behavior
of strong solutions. In this regard, we would like to reference the following works,
Carpio (1994), Gallay andWayne (2002a, b), Giga and Kambe (1988), Miyakawa and
Schonbek (2001), Schonbek (1985, 1991, 1992), Schonbek and Schonbek (2000) and
Schonbek and Wiegner (1996).

In Schonbek (1991), the author has exhibited lower time decay bounds for the solu-
tions, which match the upper bounds and are therefore sharp. The approach in Gallay
and Wayne (2002a, b), for the same question, uses the method of the so-called scaled
variables. This was pioneered in Giga and Kambe (1988) and Carpio (1994), although
the idea really took of after the work (Gallay and Wayne 2002a). It showed not only
the optimal decay rates for the Navier–Stokes equation (this was actually previously
established in Brandolese and Schonbek 2012), but it provided an explicit asymptotic

3 Which may be non-unique.
4 That is, past eventual singularity formation.
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expansion of the solution, which explains the specific conditions on the initial data in
Brandolese and Schonbek (2012), under which there are better decay rates. Recently,
Goh and Wayne (2018) have considered the Boussinesq model, with rapid rotation in
3D. They have shown, using the method of scaled variables, convergence to the Oseen
vortex and associated leading order asymptotics.

In this paper, we follow this idea, to provide an explicit asymptotic expansion
for the two models under consideration—the generalized quasi-geostrophic equation
(1.3) and the Boussinesq system (in vorticity formulation) (1.7). Note that we work
exclusively in two spatial dimensions. There are several reasons for this—2D is the
natural playground for (1.3), while the IVP for the Boussinesq system, the three (and
higher)-dimensional case, faces the same difficulties as the Navier–Stokes problem,
namely absence of a global regularity theory. Moreover, we explore relatively low
levels of dissipation, which in some sense brings the global regularity theory to its
limits, and we are still able to analyze the asymptotic behavior. Another interesting
feature that we deal with is the fractional dissipation. These have been studied in the
recent literature, but there are certain technical (and conceptual!) difficulties associated
with them, that we deal with by applying advanced Fourier analysis methods.

1.2 Main Results

The main goal of this work is to establish the sharp time decay rates of (various norms
of) the solutions to (1.3) and (1.7). Our results actually provide explicit asymptotic
profiles, of which the precise asymptotic rates are a mere corollary.

Since it is clear that the equation for θ in (1.7) is basically5 (1.3), it is essential that
we start with (1.3). This is the content of our first result, but in order to state it, we shall
need to introduce a function G:Ĝ(p) = e−|p|α , see Sect. 2.4 for proper definitions

and properties. This is a variant of the function e− |x |2
2 , or the Oseen vortex in the case

α = 2.
In order to state our results, we shall need to introduce weighted spaces. More

specifically, for any m ≥ 0 we define the Hilbert space L2(m) as follow

L2(m) =
{

f ∈ L2 : ‖ f ‖L2(m) =
(∫

R2
(1 + |x |2)m | f (x)|2dx

) 1
2

< ∞
}

(1.8)

One can show by means of Hölder’s, the embedding L2(2) ↪→ L p(R2), whenever
1 ≤ p ≤ 2. We are now ready for the statement of the main result.

Theorem 1 (Global decay estimates for SQG) Let 1 < α < 2, and α + β ≤ 3. Then,
assuming that the initial data z0 is in L2(2) ∩ L∞, the Cauchy problem (1.3) has a
unique, global solution in L2(2) ∩ L∞. Moreover, for all ε > 0, there is a constant

5 Albeit the relation of u with θ is not a direct one, but through the vorticity ω.
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C = Cα,β,ε and for all p ∈ [1, 2] and t ≥ 0,

‖z(t, ·) −
∫
R2 z0(x)dx

(1 + t)
2
α

G

(
·

(1 + t)
1
α

)
‖L p ≤ Cα,β,ε‖z0‖L2(2)∩L∞

(1 + t)
3
α
− 2

α p −ε
. (1.9)

Moreover, if β > 1, we have that (1.9) holds for the full range of indices 1 ≤ p < ∞.
In particular, for generic initial data, i.e.,

∫
R2 z0(x)dx �= 0, we have from (1.9),

after selecting ε < 1
α

and for large t, that

‖z(t, ·)‖L p ∼ (1 + t)−
2(p−1)

α p , 1 ≤ p ≤ 2. (1.10)

which extends to all 1 ≤ p < ∞, provided β > 1.

Remark

• Perhaps, we need to explain a bit the conclusion (1.10). The right-hand side of
(1.9) is Cε

(1+t)
3
α − 2

α p −ε
, that is, for each ε > 0, there is Cε , so that this estimate holds.

That is, one get better statement for large t (which is the goal here), every time ε

is smaller, but pays with a larger and larger constant, basically our construction
here says limε→0+ Cε = ∞. The explicit expression inside the norm in (1.9) has
decay rate in L p, which is 1

(1+t)
2
α − 2

α p
. Clearly, for small enough ε > 0 (namely

ε < 1
α
), one has that

Cε

(1 + t)
3
α
− 2

α p −ε
<<

1

(1 + t)
2
α
− 2

α p

.

for large t . Thus, fixing ε < 1
α
, say ε = 1

2α , and applying (1.9) yields

C

(1 + t)
2
α
− 2

α p

− Cε

(1 + t)
3
α
− 2

α p −ε
≤ ‖z(t)‖L p ≤ C

(1 + t)
2
α
− 2

α p

+ Cε

(1 + t)
3
α
− 2

α p −ε
.

From this, one gets (1.10).
• Our results extend those in Constantin and Wu (1999), as they provide an upper
bound for the time decay, for weak solutions of the SQG.

• In Gallay andWayne (2002a, b), the authors go one step further in deriving explic-
itly the next order asymptotic profiles. The analysis required for this step is
performed in higher order weighted L2 space. This cannot be done in this frame-
work, since the function G does not belong to the next order weighted space,
namely L2(3), see Proposition 3. This is in sharp contrast with the case α = 2,
considered in Gallay and Wayne (2002a, b), where the function is in Schwartz
class.

• Related to the previous point, we need to address a problem, where the function
G and the heat kernel of the semigroup eτL have limited decay at infinity. Thus,
any attempt to use the dynamical system approach in Gallay and Wayne (2002a)
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to construct stable manifolds faces serious obstacles. We take a different approach
to the problem in that we use a priori estimates and estimates on the evolution
operator to establish the asymptotic decomposition.

Our next result concerns (1.7).

Theorem 2 (Global decay estimates for Boussinesq) Let α ∈ (1, 3
2 ). Consider the

Cauchy problem for (1.7), with initial data w0, θ0 ∈ Y := L2(2) ∩ L∞ ∩ H1(R2).
Then, the Cauchy problem (1.7) is globally well-posed in Y - that is for every t > 0,
the solution (w(t), θ(t)) ∈ Y × Y .

Moreover, for every δ > 0, there exists C = C(α, δ, ‖w0‖Y , ‖θ0‖Y ), so that for all
p ∈ [1, 2] and for all t > 0,

‖w(t, ·) − γ2(0)

(1 + t)
3
α
−1

∂1G

(
·

(1 + t)
1
α

)

− γ1(0)

(1 + t)
2
α

G

(
·

(1 + t)
1
α

)
‖L p ≤ Cα,δ‖(w0, θ0)‖Y

(1 + t)
6
α
−3− 2

α p −δ
, (1.11)

‖θ(t, ·) − γ2(0)

(1 + t)
2
α

G

(
·

(1 + t)
1
α

)
‖L p

≤ Cα,δ‖(w0, θ0)‖Y

(1 + t)
5
α
−2− 2

α p −δ
, (1.12)

where γ1(0) = ∫
R2 w0(x)dx, γ2(0) = ∫

R2 θ0(x)dx. In particular, if γ2(0) �= 0, we
have

‖w(t, ·)‖L p ∼ 1

(1 + t)
3
α
−1− 2

α p

, ‖θ(t, ·)‖L p ∼ 1

(1 + t)
2
α
− 2

α p

, (1.13)

Remark

• Again, we shall need to explain (1.13). We only discuss the w, the argument for θ

is similar. We have the following decay for the two terms inside of (1.11),

1

(1 + t)
3
α
−1

∥∥∥∥∥∂1G

(
·

(1 + t)
1
α

)∥∥∥∥∥
L p

∼ 1

(1 + t)
3
α
− 2

α p −1
,

1

(1 + t)
2
α

∥∥∥∥∥G

(
·

(1 + t)
1
α

)∥∥∥∥∥
L p

∼ 1

(1 + t)
2
α
− 2

α p

.

For α ∈ (1, 3
2 ), the slowest rate is

1

(1+t)
3
α − 2

α p −1
, which is clearly slower than the

decay rate on the right-hand side of (1.11).More precisely, for small δ : δ = 3
2α −1,

we have that for large t
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1

(1 + t)
6
α
−3− 2

α p −δ
<<

1

(1 + t)
3
α
− 2

α p −1

whence (1.13) follows.
• Related to the previous point, for α ∈ ( 43 ,

3
2 ), the correction term

γ1(0)

(1+t)
2
α

G

(
·

(1+t)
1
α

)
is faster decaying than the error term and we can restate the

result as follows
∥∥∥∥∥w(t, ·) − γ2(0)

(1 + t)
3
α
−1

∂1G

(
·

(1 + t)
1
α

)∥∥∥∥∥
L p

≤ Cα,δ‖(w0, θ0)‖Y

(1 + t)
6
α
−3− 2

α p −δ
,

• As in Theorem 1, the results can be extended to provide asymptotic expansions
for w, θ in the norms L p, p ∈ (2,∞), with the exact same statement.

The paper is organized as follows. In Sect. 2.1, we introduce some basic Sobolev
spaces, weighted L2 spaces and some relevant estimates that will be useful in the
sequel. In Sect. 3.1, we study the operator L—we establish the basic structure of
its spectrum, as well as an explicit form of the semigroup eτL . The semigroup is
shown to act boundedly on certain weighted L2 spaces. This is helpful for the study of
the nonlinear evolutions problem, but it also helps us identify the spectrum, through
the Hille-Yosida theorem, see Sect. 3.4. In Sect. 4, we develop the local and global
well-posedness theory for the generalized quasi-geostrophic equation, both in the
original variables and then in the scaled variables. This is done via standard energy
estimates methods. Even at this level, the optimal decay estimates start to emerge, in
the scaled variables context.6 Our asymptotic results for the quasi-geostrophic model
are in Sect. 6. In it, we use the a priori information from Sect. 4, together with new
estimates for the Duhamel’s operator to derive the precise asymptotic profiles for
the solutions. For the Boussinesq system, we provide the necessary local and global
well-posedness theory in Sect. 5. Some of these results are basic and could have been
recovered from earlier publications. Others provide new a piori estimates for the scaled
variables system, which are used in Sect. 7. In Sect. 7, we provide the proof of our
main result about the precise asymptotic profiles for the Boussinesq evolution.

2 Preliminaries

2.1 Fourier Transform, Function Spaces andMulitpliers

The Fourier transform and its inverse are taken in the form

f̂ (p) =
∫
Rn

f (x)e−i x ·pdx, f (x) = (2π)−n
∫
Rn

f̂ (p)ei x ·pdp

6 But at this point, we cannot yet conclude the optimality of these estimates, as we are missing an estimate
from below.
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Consequently, since −̂� f (p) = |p|2 f̂ (p), we define the operators |∇|a :=
(−�)a/2, a > 0, via its action on the Fourier side |̂∇|a f (p) = |p|a f̂ (p). More
generally, the operators F(|∇|), for reasonable functions F , are acting as multipliers
by F(|p|). We also make use of the following notation—we say that m is a symbol of
order a, a ∈ R, if it is a smooth, possibly vector-valued function onRn \{0}, satisfying
for all multi-indices α ∈ Nn ,

|∂αm(ξ)| ≤ Cα|ξ |a−|α|.

It is actually enough to assume this inequality for a finite set of indices, say |α| ≤ n.
The prototype will be something of the form m(ξ) = |ξ |a , but note that a will be often
negative in our applications. We schematically denote a symbol of order a by ma .

The L p spaces are defined by the norm ‖ f ‖L p =
( ∫ | f (x)|p dx

) 1
p

, while the

weak L p spaces are

L p,∞ =
{

f : ‖ f ‖L p,∞ = sup
λ>0

{
λ |{x : | f (x)| > λ}| 1p

}
< ∞

}
.

In this context, recall the Hausdorff–Young inequality which reads as follows: For
p, q, r ∈ (1,∞) and 1 + 1

p = 1
q + 1

r

‖ f ∗ g‖L p ≤ C p,q,r‖ f ‖Lq,∞‖g‖Lr .

For an integer k and p ∈ (1,∞), the Sobolev spaces are the closure of the Schwartz
functions in the norm ‖ f ‖W k,p = ‖ f ‖L p + ∑

|α|≤k ‖∂α f ‖L p , while for a non-integer
s one takes

‖ f ‖W s,p = ‖(1 − �)s/2 f ‖L p ∼ ‖ f ‖L p + ‖|∇|s f ‖L p .

The Sobolev embedding theorem states ‖ f ‖L p(Rn) ≤ C‖|∇|s f ‖Lq (Rn), where 1 <

q < p < ∞ and n( 1q − 1
p ) = s, with the usual modification for p = ∞, namely

‖ f ‖L∞(Rn) ≤ Cs‖ f ‖W s,q (Rn), s > n
q . In particular, an estimate that will be useful for

us, is

‖(∇⊥)−β f ‖L p ≤ C‖ f ‖Lq , 1 < q < p < ∞, β = n

(
1

q
− 1

p

)
(2.1)

This follows from theMikhlin’s criteria for L p, 1 < p < ∞ boundedness. Sometimes,
we use the following replacement of (2.1), when p = ∞ and β < n,

‖(∇⊥)−β f ‖L∞ ≤ Cε

(
‖ f ‖

L
n
β

+ε + ‖ f ‖
L

n
β

−ε

)
. (2.2)

We provide a proof for this inequality in “Appendix A.” Note that these estimates hold
in a more general setting, when (∇⊥)−β is replaced by an arbitrary symbol of order
−β, that is
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‖m−β(∇) f ‖L∞ ≤ Cε

(
‖ f ‖

L
n
β

+ε + ‖ f ‖
L

n
β

−ε

)
. (2.3)

Another useful ingredient will be the Gagliardo–Nirenberg interpolation inequality,

‖|∇|s f ‖L p ≤ ‖|∇|s1 f ‖θ
Lq ‖|∇|s2 f ‖1−θ

Lr ,

where s = θs1 + (1 − θ)s2 and 1
p = 1

q + 1
r .

2.2 The ScaledVariables

We now introduce the scaled variables, for the models under consideration. Basically,
the method consists of introducing a new time variable τ : eτ ∼ t and the correspond-
ing variables in x are rescaled to accommodate this scaling, by keeping the linear part
of the equation autonomous. In this way, an algebraic decay in t will manifest itself
as an exponential decay in τ . As is well-known, algebraic decays in time (especially
non-integrable ones) are notoriously hard to propagate along nonlinear evolution equa-
tions, while any (however small) exponential decay, due to its integrability, is more
amenable to this type of analysis. Here are the details.

2.2.1 The Scaled Variables: The SQG Equation

Consider the Eq. (1.3) and use the scaled variables to rewrite the variables in terms of

ξ = x

(1 + t)
1
α

, τ = ln(1 + t). (2.4)

We define new functions Z(ξ, τ ) and U (ξ, τ ) correspond to z(x, t) and u(x, t) as
follows:

z(x, t) = 1

(1 + t)1+
β−1
α

Z

(
x

(1 + t)
1
α

, ln(1 + t)

)
, (2.5)

u(x, t) = 1

(1 + t)1− 1
α

U

(
x

(1 + t)
1
α

, ln(1 + t)

)
. (2.6)

The choices of the parameters are clearly dictated by the stricture of the corresponding
equation—the goal is to ensure an autonomous PDE in the new variables. Indeed, a
straightforward calculation shows

zt = Zτ

(1 + t)2+
β−1
α

− 1

α

1

(1 + t)2+
β−1
α

x

(1 + t)
1
α

· ∇ξ Z − 1 + β−1
α

(1 + t)2+
β−1
α

Z ,

|∇|αz = 1

(1 + t)2+
β−1
α

|∇|α Z ,
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u · ∇z = 1

(1 + t)2+
β−1
α

U · ∇ξ Z .

Hence, Z(ξ, τ ) satisfies the equation

Zτ = L Z − U · ∇ξ Z (2.7)

where

L Z = −|∇|α Z + 1

α
ξ · ∇ξ Z +

(
1 + β − 1

α

)
Z . (2.8)

Note that the relation u = (|∇|⊥)−β z transforms into U = (|∇|⊥)−β Z . In addition,
the property ∇ · u = 0 is retained, i.e., ∇ · U = 0.

Next, we introduce the scaled variables for the Boussinesq system.

2.2.2 The Scaled Variables: The Boussinesq System

Similar to the SQG case, we use the scaled variables

ξ = x

(1 + t)
1
α

, τ = ln(1 + t).

We define new functions W (ξ, τ ), U (ξ, τ ) and �(ξ, τ ), corresponding to ω(x, t),
u(x, t) and θ(x, t) as follows

ω(x, t) = 1

(1 + t)
W

(
x

(1 + t)
1
α

, ln(1 + t)

)

u(x, t) = 1

(1 + t)1− 1
α

U

(
x

(1 + t)
1
α

, ln(1 + t)

)

θ(x, t) = 1

(1 + t)2− 1
α

�

(
x

(1 + t)
1
α

, ln(1 + t)

)

Then, we calculate

ωt = Wτ

(1 + t)2
− 1

α

1

(1 + t)2
x

(1 + t)
1
α

· ∇ξ W − 1

(1 + t)2
W ,

|∇|αω = 1

(1 + t)2
· |∇|αW , u · ∇ω = 1

(1 + t)2
U · ∇W , ∂1θ = 1

(1 + t)2
∂1�.

For the θ equation similar computation shows that

θt = �τ

(1 + t)3− 1
α

− 1

α

1

(1 + t)3− 1
α

x

(1 + t)
1
α

· ∇ξ� − 2 − 1
α

(1 + t)3− 1
α

�,
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|∇|αθ = 1

(1 + t)3− 1
α

|∇|α�, u · ∇θ = 1

(1 + t)3− 1
α

U · ∇�.

Therefore W (ξ, τ ) and �(ξ, τ ) satisfy (with the L defined above in (2.8), but with
β = 1)

{
Wτ = L W − U · ∇ξ W + ∂1�

�τ = (L + 1 − 1
α
)� − (U · ∇ξ�)

(2.9)

Clearly, the relations ∇ · u = 0 and u = (|∇|⊥)−1ω continue to hold for the capital
letter variables as well, that is ∇ · U = 0 and U = (|∇|⊥)−1W . In addition to the

above equations, we can define p(x, t) = 1

(1+t)2− 2
α

P

(
x

(1+t)
1
α

, log(1 + t)

)
and find

the following equation for U (ξ, τ ),

Uτ = (L − 1

α
)U − (U · ∇ξU ) − ∇ P + � · e2 (2.10)

2.3 The Fractional Laplacian

First, we record the following kernel representation formula for negative powers of
Laplacian. This is nothing, but a fractional integral—for a ∈ (0, 2),

|∇|−a f (x) = ca

∫
R2

f (y)

|x − y|2−a
dy. (2.11)

For positive powers, we have a similar formula—for a ∈ (0, 2),

|∇|a f (x) = Ca p.v.

∫
R2

f (x) − f (y)

|x − y|2+a
dy.

see Cordoba and Cordoba (2004, Proposition 2.1). Next, we have the following result
(Cordoba and Cordoba 2004), see also Theorem 2, (Chamorro and Lemarié-Rieusset
2012) for a more refined version.

Lemma 1 For p : 1 ≤ p < ∞, a ∈ [0, 2] and f ∈ W a,p(R2),

∫
R2

| f (x)|p−2 f (x)[|∇|a f ](x)dx ≥ 0. (2.12)

If in addition, p = 2n, n = 1, 2, . . ., there is the stronger coercivity estimate

∫
R2

| f (x)|p−2 f (x)[|∇|a f ](x)dx ≥ 1

p
‖|∇| a

2 [ f
p
2 ]‖2L2(R2)

. (2.13)
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Finally, for p ∈ [1,∞), a ∈ (0, 2),

∫
R2

| f (x)|p−2 f (x)[|∇|a f ](x)dx ≥ 1

p
‖ f ‖2

L
2p
2−a (R2)

. (2.14)

2.4 The Function G

The function G defined by Ĝ(p) = e−|p|α , p ∈ R2 will be used frequently in the
sequel. We list and prove some important properties.

Lemma 2 For any p ∈ [2,∞] and α ∈ (1, 2),

(1 + |ξ |2) G(ξ), (1 + |ξ |2)∇G(ξ) ∈ L p
ξ (2.15)

In particular, G,∇G ∈ L1(R2) ∩ L∞(R2).

Note For α ∈ (1, 2), the function G does not belong to L2(3), due to the lack of
smoothness of Ĝ at zero (or what is equivalent to the lack of decay of G at ∞).

Proof For the L2 estimate, ‖G‖L2 = ‖Ĝ‖L2 < ∞. Since ̂| · |2G(·)(p) = −�pĜ(p),
we obtain by Plancherel’s,

‖|ξ |2G(ξ)‖L2 = ‖�pĜ(p)‖L2 = ‖�pe
−|p|α‖L2 = ‖(∂ρρ + 1

ρ
∂ρ)(e−ρα

)‖L2(ρdρ).

where in the last identity, we have used that Ĝ is a radial function. But, (∂ρρ +
1
ρ
∂ρ)(e−ρα

) = −α(α − 1)ρα−2e−ρα + α2ρ2(α−1)e−ρα
. Therefore, ‖|ξ |2G(ξ)‖2

L2 ≤
I1 + I2, where I1 = ‖ρα−2e−ρα‖2

L2(ρdρ)
, I2 = ‖ρ2(α−1)e−ρα‖2

L2(ρdρ)
. We have

I1 ≤
∫ 1

0

1

ρ2(2−α)−1
dρ +

∫ ∞

1
ρ2(α−2)+1e−2ρα

ρ dρ.

Since 2(2 − α) − 1 < 1, the first term is bounded. The second term is also
bounded by the exponential decay, whence I1 is bounded. The second term, I2 =
‖ρ2(α−1)e−ρα‖2

L2(ρdρ)
is also bounded—no singularity at zero and exponential decay

at ∞. This proves the L2 estimate.
For the L∞ estimate, we can use the Hausdorff–Young’s to bound ‖G‖L∞ ≤

‖Ĝ‖L1 < ∞. Similarly,

‖|ξ |2G(ξ)‖L∞ ≤ ‖�pĜ(p)‖L1 ≤ α(α − 1)
∫ ∞

0
ρα−2e−ρα

ρdρ + α2
∫ ∞

0
ρ2(α−1)e−ρα

ρdρ

≤ α(α − 1)
∫ ∞

0
ρα−1e−ρα

dρ + α2
∫ ∞

0
ρ2α−1e−ρα

dρ < ∞.

Now the interpolation between L2 and L∞ yields (1+|ξ |2) G(ξ) ∈ L p
ξ , 1 ≤ p ≤ ∞.
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Regarding the claims about ∇G, note that ̂| · |2∇G(p) = −�p[pĜ(p)], whence
by Plancherel’s ‖|ξ |2∇G‖L2 = ‖�p[pe−|p|α ]‖L2 < ∞. The last conclusion follows
easily from an identical argument as the one above, as the central issue was the singu-
larity at zero for ‖�pe−|p|α‖L2 . Now the situation is better as we multiply by p, which
actually alleviates the singularity at zero. Similar argument applies to ‖|ξ |2∇G‖L∞ ,
so we omit the details. ��

The following Lemma will be used frequently in the next sections—it is an easy
consequence of the Hausdorff–Young’s inequality.

Lemma 3 Let α > 0, then for any t > 0 and 1 ≤ p ≤ ∞,

‖e−t |∇|α f ‖L p ≤ C‖ f ‖L p (2.16)

‖e−t |∇|α∇ f ‖L p ≤ Ct−
1
α ‖ f ‖L p (2.17)

Proof Clearly,

e−t |∇|α f =
∫

Gt (x − y) f (y)dy

where Ĝt (p) = Ĝ(t
1
α p). Then ‖e−t |∇|α f ‖L p ≤ ‖Gt‖L1‖ f ‖L p = C‖ f ‖L p , where

C = ‖G‖L1(R2).

‖e−t |∇|α∇ f ‖L p = t−
1
α

∥∥∥∥
∫

∇G(t−
1
α (· − y)) f (y)dy

∥∥∥∥
L p

≤ Ct−
1
α ‖ f ‖L p ,

where C = ‖∇G‖L1(R2). ��

2.5 Kato–Ponce and Commutator Estimates

The classical by now product rule estimate, usually attributed to Kato–Ponce, can be
stated as follows.

Lemma 4 Let a ∈ (0, 1) and 1 < p, q, r < ∞, so that 1
p = 1

q + 1
r . Then, there exists

C = C p,q,r ,a

‖|∇|a[ f g]‖L p ≤ C p,q,r ,a(‖|∇|a f ‖Lq ‖g‖Lr + ‖|∇|ag‖Lq ‖ f ‖Lr )

We also make use of the following Lemma from Hadadifard and Stefanov (2017).

Lemma 5 Let s1, s2 be two reals so that 0 ≤ s1 and 0 ≤ s2 − s1 ≤ 1. Let p, q, r be
related via the Hölder’s 1

p = 1
q + 1

r , where 2 < q < ∞, 1 < p, r < ∞. Finally, let
∇ · V = 0. Then for any a ∈ [s2 − s1, 1]

‖|∇|−s1 [|∇|s2 , V · ∇]ϕ‖L p ≤ C‖|∇|a V ‖Lq ‖|∇|s2−s1+1−aϕ‖Lr (2.18)
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In addition, we have the following end-point estimate. For s1 > 0, s2 > 0, s3 > 0 and
s1 < 1, s3 < 1, s2 < s1 + s3, there is

‖|∇|−s1 [|∇|s2 , |∇|−s3V · ∇]ϕ‖L2 ≤ C‖V ‖L∞‖|∇|s2−s1+1−s3ϕ‖L2 . (2.19)

2.6 AVariant of the Gronwall’s Inequality

We shall need a version of the Gronwall’s inequality as follows.

Lemma 6 Let σ > 0, μ > 0, κ > 0 and a ∈ [0, 1). Let A1, A2, A3 be three positive
constants so that a function I : [0,∞) → R+ satisfies I (τ ) ≤ A1e−γ τ , for some real
γ and

I (τ ) ≤ A2e−μτ + A3

∫ τ

0

e−σ(τ−s)

(min(1, |τ − s|)a
e−κs I (s)ds. (2.20)

Then, there exists C = Ca,σ,μ,κ,γ , so that

I (τ ) ≤ Ca,σ,μ,κ,γ (1 + |A1| + |A2| + |A3|)e−μτ .

The proof of Lemma 6 is rather elementary, but we provide it for completeness in the
“Appendix B.”

3 The OperatorL in L2(2): Spectral Analysis and Semigroup
Estimates

3.1 Spectral Theory forL

The following result discusses the spectrum of L .

Proposition 1 Let L be as defined in (2.8), then

(1) The discrete spectrum: Let k ∈ N ∪ {0} be fixed and σ = (σ1, σ2) be such that
|σ | = σ1 + σ2 = k . Then the function φσ (ξ) defined by

φσ (ξ) = ∂
σ1
1 ∂

σ2
2 G, (3.1)

is an eigenfunction of L of the multiplicity greater or equal to
(k+1

k

) = k + 1

related to the eigenvalue λk = 1 − 3−β+k
α

. In fact,

σd(L ) ⊇
{
λk ∈ C : λk = 1 − 3 − β + k

α
; k = 0, 1, 2, · · ·

}
.

(2) The continuous spectrum: Let μ ∈ C be such that �μ ≤ − 1
α

and define, ψμ ∈ L2

such that

ψ̂μ(p) = |p|−αμe−|p|α . (3.2)
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Then ψμ is an eigenfunction of the operatorL with the corresponding eigenvalue7

λ = 1 + μ − 3−β
α

. In fact,

σess(L ) ⊇
{
λ ∈ C : �λ ≤ 1 − 4 − β

α

}
.

Proof Regarding discrete spectrum, we start with a calculation, which will allow us to
identify some of the eigenvalues. Let φ0(ξ) be a radial function, i.e., φ̂0(p) = g(|p|).
Then

L̂ φ0(p) = ̂−|∇|αφ0 + 1

α
̂ξ · ∇ξ φ0(p) +

(
1 + β − 1

α

)
φ̂0(p)

= −|p|αφ̂0(p) − 2

α
φ̂0(p) − 1

α

2∑
j=1

p j ∂ j φ̂0(p) +
(
1 + β − 1

α

)
φ̂0(p)

= −|p|αg(|p|) − 2

α
φ̂0(p) − 1

α

2∑
j=1

p j g′(|p|) p j

|p| +
(
1 + β − 1

α

)
φ̂0(p)

=
(
1 + β − 3

α

)
φ̂0(p) +

(
− |p|αg(|p|) − 1

α
|p| g′(|p|)

)
(3.3)

Now if g satisfies,

− |p|αg(|p|) − 1

α
|p| g′(|p|) = 0 (3.4)

then clearly λ =
(
1 − 3−β

α

)
is an eigenvalue for L . The solution of (3.4), gives the

eigenfunction, φ̂0(p) = e−|p|α or φ0 = G.

Now, letφk be an eigenfunction corresponding to the eigenvalueλk =
(
1 − 3−β+k

α

)
,

that is

L φk(ξ) =
(
1 − 3 − β + k

α

)
φk (3.5)

Taking a derivative ∂ j in (3.5), we obtain

(
1 − 3 − β + k

α

)
∂ jφk = ∂ jL φk(ξ) = −|∇|α∂ jφk + 1

α
∂ j (ξ · ∇φk)

+
(
1 + β − 1

α

)
∂ jφk

= −|∇|α∂ jφk + 1

α
∂ jφk + 1

α
ξ · ∇(∂ jφk)

+
(
1 + β − 1

α

)
∂ jφk(ξ)

7 Note however that all this eigenvalues are not isolated; hence, they are in the essential spectrum.
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= L [∂ jφk] + 1

α
∂ jφk .

It follows that

L [∂ jφk] =
(
1 − 3 − β + (k + 1)

α

)
∂ jφk

It follows that
(
1 − 3−β+k+1

α

)
is an eigenvalue, corresponding to an eigenfunction

∂ jφk . Thus, we have identified a family of eigenvalues and eigenvectors as follows.
Fix k ∈ N, and let (σ1, σ2) be so that σ1 + σ2 = k. Then, by induction, for the
function φk := ∂

σ1
1 ∂

σ2
2 φ0, we have (3.5). Note that what we have proved so far does

not guarantee that there is not any more discrete spectrum, but merely an inclusion,
as stated.

Regarding essential spectrum, we compute L̂ψμ. From the calculation (3.3), we
have

L̂ψμ(p) =
(

μ + 1 + β − 3

α

)
ψ̂μ(p),

whence ψμ is an eigenfunction. Indeed, ψμ ∈ L2(2), when �μ ≤ − 1
α
. This is easy

to see with a computation similar to the ones performed in Lemma 2.

‖|ξ |2ψμ‖2L2 = ‖�pψ̂μ‖2L2 =
∫ ∞

0
|(∂ρρ + 1

ρ
∂ρ)ρ−αμe−ρα |2ρdρ.

The worst term (when α > 1) is exactly
∫ 1
0 ρ−(3+2αμ)dρ, which converges for �μ <

− 1
α
. ��

3.2 The Semigroup e�L

The following proposition yields an explicit formula for the semigroup eτL . This is
an extension of the formula established in Gallay and Wayne (2002a).

Proposition 2 The operator L defines a C0 semigroup on L2(2)(R2), eτL . In fact,
we have the following formula for its action

̂(eτL f )(p) = e(1− 3−β
α

)τ e−a(τ )|p|α f̂ (e− τ
α p), (3.6)

(eτL f )(ξ) = e(1− 1−β
α

)τ

a(τ )
2
α

∫
R2

G

(
ξ − η

a(τ )
1
α

)
f (e

τ
α η)dη, (3.7)
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where a(τ ) = 1 − e−τ . In particular, for 1 ≤ p ≤ ∞,

‖eτL f ‖L p ≤ Ce(1− 1−β
α

− 2
α p )τ‖ f ‖L p (3.8)

‖eτL ∇ f ‖L p ≤ C
e(1− 2−β

α
− 2

α p )τ

a(τ )
1
α

‖ f ‖L p . (3.9)

Remark Note that a(τ ) ∼ min(1, τ ). This will be used frequently in the sequel.

Proof The generation of the semigroup would follow, once we prove that the function

g : ĝ(τ, p) := e(1− 3−β
α

)τ e−a(τ )|p|α f̂ (p ·e− τ
α ) satisfies ∂τ ĝ(τ, p) = L̂ g(τ, ·). Clearly,

ĝ(0, p) = f̂ (p), so g(0, ξ) = f (ξ). Next, we compute ∂τ ĝ(τ, p). We have

∂τ ĝ(τ, p) =
[
(1 − 3 − β

α
− a′(τ )|p|α) f̂ (p · e− τ

α ) − 1

α
e− τ

α p · ∇p f̂ (p · e− τ
α )

]

eτ(1− 3−β
α

)e−a(τ )|p|α

=
(
1 + β − 3

α

)
ĝ(τ, p) + (a(τ ) − 1)|p|α ĝ(τ, p)

− 1

α
e− τ

α p · ∇p f̂ (p · e− τ
α )eτ(1− 3−β

α
)e−a(τ )|p|α ,

where we have used the relation a′(τ ) = 1 − a(τ ). Next, by (3.3), we have

L̂ g(τ, ·) = −|p|α ĝ(τ, p) − 1

α

2∑
j=1

p j∂ j ĝ(τ, p) +
(
1 + β − 3

α

)
ĝ(τ, p).

But,

1

α

2∑
j=1

p j ∂ j ĝ(τ, p) = 1

α

2∑
j=1

p j

(
− αa(τ )p j |p|α−2 f̂ (p · e− τ

α ) + e− τ
α ∂ j f̂ (p · e− τ

α )

)

eτ(1− 3−β
α

)e−a(τ )|p|α

= −a(τ )|p|α f̂ (p · e− τ
α )eτ(1− 3−β

α
)e−a(τ )|p|α

+ 1

α
e− τ

α p · ∇p f̂ (p · e− τ
α )eτ(1− 3−β

α
)e−a(τ )|p|α .

Altogether,

L̂ g(τ, ·) = −|p|α ĝ(τ, p) +
(
1 + β − 3

α

)
ĝ(τ, p) + a(τ )|p|α ĝ(τ, p) −

− 1

α
e− τ

α p · ∇p f̂ (p · e− τ
α )eτ(1− 3−β

α
)e−a(τ )|p|α .

An immediate inspection reveals that ∂τ ĝ(τ, p) = L̂ g(τ, ·)(p) and so the semigroup
formula (3.6) is established. The formula (3.7) is just a Fourier inversion of (3.6).

123



2248 Journal of Nonlinear Science (2019) 29:2231–2296

Regarding the estimate (3.8), we proceed as follows

‖eτL f ‖L p ≤ e(1− 1−β
α

)τ‖G
a(τ )

1
α
‖L1‖ f (e

τ
α ·)‖L p = e(1− 1−β

α
− 2

α p )τ‖G‖L1‖ f ‖L p .

For (3.9), note that integration by parts yields

(eτL ∂ j f )(ξ) = e(1− 1−β
α

)τ

a(τ )
2
α

∫
R2

G

(
ξ − η

a(τ )
1
α

)
(∂ j f )(e

τ
α η)dη

= e(1− 2−β
α

)τ

a(τ )
3
α

∫
R2

∂ j G

(
ξ − η

a(τ )
1
α

)
f (e

τ
α η)dη,

whence

‖(eτL ∇ f )(ξ)‖L p ≤ e(1− 2−β
α

− 2
α p )τ

a(τ )
1
α

‖∇G‖L1‖ f ‖L p .

��
We need a variant of Proposition A.2 in Gallay and Wayne (2002a), which discusses
the commutation of the semigroup with differential operators.

Lemma 7 We have the following commutation relation for eτL

∇eτL = e
τ
α eτL ∇ (3.10)

Proof Let u(x, τ ) = eτL f (x), then u satisfies the following equation

{
uτ = L u,

u(0, x) = f (x).

Clearly, taking a derivative ∂ j in (2.8) yields, for j = 1, 2

{
(∂ j u)τ = ∂ j (L u) = L ∂ j u + 1

α
∂ j u,

∂ j u(x, 0) = ∂ j f (x),

which has the solution ∂ j u(x, τ ) = eτ [L+ 1
α
]∂ j f (x). In other words ∇eτL =

e
τ
α eτL ∇. ��

3.3 Semigroup Estimates

We need to address an important question, namely the behavior of the bounded opera-
tors eτL on L2(2). The next Proposition does that.More precisely, we are interested in
the decay of the operator norms ‖eτL ‖L2(2)→L2(2). Importantly, good decay estimates
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only happen, when the functions have mean value zero. The proof of this proposition
will be given in “Appendix D.”

Proposition 3 Let f ∈ L2(2), f̂ (0) = 0 and γ = (γ1, γ2) ∈ N2, |γ | = 0, 1 and
0 < ε << 1. Then there exists C = Cε > 0, such that for any τ > 0,

‖∇γ (eτL f )‖L2(2) ≤ C
e

(
1− 4−β

α
+ε

)
τ

a(τ )
|γ |
α

‖ f ‖L2(2), (3.11)

or

‖∇γ (eτL f )‖L2(2) ≤ C‖ f ‖L2(2) ·
⎧⎨
⎩

τ− |γ |
α , τ ≤ 1

e

(
1− 4−β

α
+ε

)
τ
, τ > 1

(3.12)

3.4 The Decay Estimates for e�L Give a Description of the Spectrum ofL

In this section, we show that the spectral inclusions in Proposition 1 are actually
equalities. We also compute explicitly the Riesz projectionP0 onto the eigenvalue of
L with the largest real part. In Proposition 1, we have already identified G as being
an eigenfunction for L corresponding to an eigenvalue λ0 = 1 − 3−β

α
. On the other

hand, applying Proposition 3, for functions with f̂ (0) = 0 and γ = (0, 0), implies

‖eτL f ‖L2(2) ≤ Cεe

(
1− 4−β

α
+ε

)
τ‖ f ‖L2(2). (3.13)

Denote the co-dimension one subspace X0 = { f ∈ L2(2) : f̂ (0) = 0}. Clearly, the
operator L acts invariantly on X0, since for every f ∈ L2(2) : ∫

f (ξ)dξ = 0, we
have

∫
R2 ξ · ∇ f dξ = 0, whence

∫
L f (ξ)dξ = 0.

Introduce L0 := L |X0 , with domain D(L0) = D(L ) ∩ X0 = Hα ∩ X0. By the

Hille-Yosida theorem, this estimate (3.13) implies that the set {λ : �λ >
(
1 − 4−β

α

)
}

is in the resolvent set of L0, since the integral representing (λ − L )−1, namely∫ ∞
0 e−λτ eτL dτ, converges by virtue of (3.13). Combining this with the results from

Proposition 1, we conclude that σ(L ) ∩ {λ : �λ >
(
1 − 4−β

α

)
} is a singleton—the

eigenvalue λ0 = 1 − 3−β
α

, which is simple, with eigenfunction G. We conclude that

σ(L ) =
{
1 − 3 − β

α

}
∪ σess(L ); σess(L ) =

{
λ : �λ ≤

(
1 − 4 − β

α

)}
,

Moreover, its Riesz projectionP0, a rank one operator, is given by

P0 f =
(∫

R2
f (ξ)dξ

)
G
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Clearly, such an operator is well-normalized, since P2
0 f = 〈G, 1〉P0 f =

Ĝ(0)P0 f = P0 f , since Ĝ(0) = 1. The projection Q0 := I d − P0 over the com-
plementary part of the spectrum, satisfies L0 = Q0LQ0. Also, Q0 : L2(2) → X0.
Now, (3.13) can be reformulated as

‖∇γ eτL0 f ‖L2(2) ≤ Cε

e

(
1− 4−β

α
+ε

)
τ

a(τ )
|γ |
α

‖ f ‖L2(2). (3.14)

for any function f , since eτL0 f = eτLQ0 f and the entry Q0 f has mean value
zero, so (3.13) is applicable. In addition, we can derive estimates for the action of the
semigroup eτL on L2(2), without the mean value zero property f̂ (0) = 0.

Proposition 4 Let f ∈ L2(2). Then, there exists a constant C, so that

‖∇γ (eτL f )‖L2(2) ≤ C
e

(
1− 3−β

α

)
τ

a(τ )
|γ |
α

‖ f ‖L2(2). (3.15)

Proof We use the decomposition

f = P0 f + Q0 f = 〈 f , 1〉G + [ f − 〈 f , 1〉G].

Thus,

eτL f = 〈 f , 1〉eτ(1− 3−β
α

)G + eτL0 [ f ]

It follows that

‖eτL f ‖L2(2) ≤ C |〈 f , 1〉|eτ(1− 3−β
α

)‖G‖L2(2) + Cεe

(
1− 4−β

α
+ε

)
τ‖ f ‖L2(2)

≤ Ceτ(1− 3−β
α

)‖ f ‖L2(2),

wherewehaveused (3.14) and |〈 f , 1〉| ≤ C‖ f ‖L2(2). Similar estimates canbederived,

as before, for |∇|γ eτL , we omit the details. ��

4 Local and Global Well-Posedness of the SQG

The local and global theory of the Cauchy problem for SQG has been well-studied in
the literature. Local and global well-posedness holds under very general conditions on
initial data. Regardlessly, we will present a few results for our problem (1.3). This is
necessary, since we assume a nonstandard relation between u and z, but also because
we need precise properties, beyond the scope of the well-posedness. Then, we will
turn to properties of the rescaled equation, (2.7). We will do so, both in L p spaces as
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well as in L2(2) spaces—the reason is that we will use some of our preliminary results
as a priori estimates in the subsequent Lemmas.

Our first results are about the well-posedness of the standard model (1.3) in L p

spaces.8

4.1 GlobalWell-Posedness and a Priori Estimates in Lp Spaces

Lemma 8 Suppose that z0 ∈ L1 ∩ L∞ =: X. Then, (1.3) is globally well-posed in the
space X. Moreover, for every p ∈ [1,∞], t → ‖z(·, t)‖L p is non-increasing in time.

Proof We first prove the local existence of the strong solution in the space
C([0, T ); X), that is, with T to be determined, we are looking for a fixed point of
the integral equation

z(ξ) = e−t |∇|α z0 −
∫ t

0
e−(t−s)|∇|α∇(u · z) ds. (4.1)

According to Lemma (3) ‖e−t |∇|α z0‖L1∩L∞ ≤ C0‖z0‖L1∩L∞ . For any T > 0 and
t ∈ (0, T ), consider

Q(z1, z2) :=
∫ t

0
e−(t−s)|∇|α∇(u1 · z2) ds,

where u1 is given by u1 = (∇⊥)−β z1. For t ∈ (0, T ), using (2.17)

‖Q(z1(t), z2(t))‖L1 = ‖
∫ t

0
e−(t−s)|∇|α ∇(u1 · z2) ds‖L1 ≤ C

∫ t

0

1

(t − s)
1
α

‖(u1 · z2)‖L1 ds

≤ Ct1−
1
α sup
0≤s≤T

‖u1(s, ·)‖L∞ sup
0≤s≤T

‖z2(s, ·)‖L1

� T 1− 1
α sup
0≤s≤T

(‖z1(s, ·)‖
L

2
β

+ε
+ ‖z1(s, ·)‖

L
2
β

−ε
) sup
0≤s≤T

‖z2(s, ·)‖L1

� T 1− 1
α sup
0≤s≤T

‖z1‖X sup
0≤s≤T

‖z2‖X .

where we have used the Sobolev embedding estimate (2.2). Similarly,

‖Q(z1, z2)‖L∞ ≤ CT 1− 1
α sup
0≤s≤T

‖u1‖L∞ sup
0≤s≤T

‖z2‖L∞ ≤ CT 1− 1
α sup
0≤s≤T

‖z1‖X sup
0≤s≤T

‖z2‖X .

Finally, following similar path, we also have

‖Q(z1, z1) − Q(z2, z2)‖X ≤ CT 1− 1
α (‖z1‖X + ‖z2‖X )‖z1 − z2‖X .

8 The results can be made more precise, in individual L p spaces, rather than in all L p spaces. We will not
do so here, because our goal is to extend to L2(2), which is yet smaller space.
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Upon introducing YT := {z : sup0≤t≤T ‖z(t, ·)‖X ≤ 2C0‖z0‖X } and taking into
account the estimates above, we realize that the mapping (4.1) has a fixed point in the
metric space C([0, T ], X), for small enough T = T (‖z0‖X ). In fact, the argument

shows that T ∼ ‖z0‖− α
α−1

X .
For the global existence, we need to show that the t → ‖z(t, ·)‖L p does not blow

up in finite time. In fact, we show that the t → ‖z(t, ·)‖L p is non-increasing, which
will allow us to conclude global existence as well. To that end, we dot product the
Eq. (1.3) with |z|p−2z, p ∈ (1,∞) to get

1

p
∂t‖z‖p

L p +
∫
R2

|∇|αz · |z|p−2zdξ = 0.

By the positivity estimate (2.12), we have
∫
R2 |∇|αz · |z|p−2zdξ ≥ 0. Therefore,

∂t‖z‖p
L p ≤ 0, and t → ‖z(t, ·)‖L p is non-increasing in time. For p = 1, p = ∞ the

monotonicity follows from an approximation argument from the cases 1 < p < ∞.
��

Our next result is about a priori estimates in L p spaces, but this time in the rescaled
variable formulation, (2.7). Note that the global existence of the rescaled equation is
not in question anymore, due to Lemma 8. However, we show precise decay estimates
for the norm of the solution Z . This fairly elementary Lemma already shows the
advantage of the rescaled variables approach and its far reaching consequences.

Lemma 9 Let Z0 ∈ L1 ∩ L∞(R2), α ∈ (1, 2), 0 ≤ β < 2 and p ∈ [1,∞). Then the
unique global strong solution Z of (2.7) satisfies

‖Z(τ )‖L p ≤ ‖Z0‖L p e
−τ

(
2

pα
−1− β−1

α

)
. (4.2)

Proof If we dot product (2.7) with Z |Z |p−2, we have by the positivity estimate (2.12),∫
R2 |∇|α Z · |Z |p−2Zdξ ≥ 0. Furthermore, using the divergent free property of U (ξ)

1

p

d

dτ
‖Z‖p

L p ≤ 1

α

∫
(ξ · ∇ξ Z)Z |Z |p−2 dξ −

∫
(U · ∇ξ Z)Z |Z |p−2dξ

+
(
1 + β − 1

α

)
‖Z‖p

L p =
(
1 + β − 1

α
− 2

α p

)
‖Z‖p

L p , (4.3)

therefore, we arrive at

1

p

d

dτ
‖Z‖p

L p +
(

2

α p
− 1 − β − 1

α

)
‖Z‖p

L p ≤ 0.

Now we use the Gronwall’s inequality to finish the proof. ��
The Lemma above shows a priori bound for ‖Z(τ, ·)‖L p , for any p ∈ [1,∞], and
a decay rate for p < 2

α+β−1 , but it is not giving any decay rate for p ≥ 2
α+β−1 . On

the other hand, as we shall see later, the decay rate predicted by Lemma 9 is in fact
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optimal for p = 1 (but certainly not so, for any other value of p). We can bootstrap the
results of Lemma 9 in the next Lemma to find, what it will turn out to be, the optimal
decay rate for any p ≥ 1.9

Lemma 10 Let Z0 ∈ L1 ∩ L∞(R2), 1 ≤ p ≤ ∞ and α ∈ (1, 2), α + β ≤ 3. Then,
there exists constant C = C p,α,β , so that the unique global strong solution Z of (2.7)
satisfies

‖Z(τ, ·)‖L p ≤ C p,α,β‖Z0‖L1∩L∞e−(
3−β−α

α
)τ . (4.4)

Proof Recall that the estimate (2.14) is available to us. Taking dot product |Z |p−2Z
and taking into account (2.14) which implies

∫
R2 |∇|α Z ·|Z |p−2Zdξ ≥ cp,α‖Z‖2

L
2p
2−α

.

We further add C‖Z‖p
L p , for some large C , to be determined. We have

1

p

d

dτ
‖Z‖p

L p + C‖Z‖p
L p + cp,α‖Z‖2

L
2p
2−α

≤
(

C + 1 + β − 1

α
− 2

α p

)
‖Z‖p

L p

By Gagliardo–Nirenberg’s, with γ = 2p−2
2p−2+α

, ‖Z‖L p ≤ ‖Z‖γ

L
2p
2−α

‖Z‖1−γ

L1 , whence

by Young’s inequality

1

p

d

dτ
‖Z‖p

L p + C‖Z‖p
L p + cp,α‖Z‖p

L
2p
2−α

≤
(

C + 1 + β − 1

α
− 2

α p

)
‖Z‖pγ

L
2p
2−α

‖Z‖p(1−γ )

L1

≤ ε0‖Z‖p

L
2p
2−α

+
(

C + 1 + β−1
α

− 2
α p

) 1
1−γ

ε

γ
1−γ

0

‖Z‖p
L1

and ε0 > 0 is a fixed number, say we select it ε0 = cp,α . Then

1

p

d

dτ
‖Z‖p

L p + C‖Z‖p
L p ≤

(
C + 1 + β−1

α
− 2

α p

) 1
1−γ

ε

γ
1−γ

0

‖Z‖p
L1

≤
(

C + 1 + β−1
α

− 2
α p

) 1
1−γ

ε

γ
1−γ

0

‖Z0‖p
L1e

−pτ(
3−β−α

α
),

wherewe have used Lemma (9) to estimate ‖Z(τ, ·)‖L1 . Denotingμ := (
3−β−α

α
) ≥ 0,

select C = μ + 1. We have

I ′(τ ) + p(μ + 1)I (τ ) ≤ D‖Z0‖p
L1e

−pμτ ,

9 For generic data.
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where I (τ ) = ‖Z(τ )‖p
L p , D = p1+

γ
1−γ

(
μ+2+ β−1

α
− 2

α p

) 1
1−γ

c
γ

1−γ
α

. Now we use the Gron-

wall’s inequality to derive the estimate

I (τ ) ≤ e−p(μ+1)τ I (0) + D

p
‖Z0‖p

L1e
−pμτ .

Taking pth root and simplifying yields the final estimate

‖Z(τ )‖L p ≤ (‖Z0‖L p +
(

D

p

) 1
p ‖Z0‖L1)e−μτ ≤ (1 +

(
D

p

) 1
p

)‖Z0‖L1∩L∞e−μτ .

For the case p = ∞, we take limits in the previous identity, for fixed τ > 0, as

p → ∞. Note that by the explicit form of Dp, lim p→∞
(

D
p

) 1
p = 1, so (4.4) holds

true in this case with C = 2. ��

4.2 Global Solutions and a Priori Estimates in L2(2)

From the previous section,we know that the SQGequation in its standard form, namely
(1.3), has global solutions in L p. Thus, the rescaled equation (2.7) also has unique
global (strong) solutions in L p. We nowwould like to understand the Cauchy problem
in the smaller space L2(2). In particular, even if the initial data is well-localized, say
Z(0, ·) ∈ L2(2), it is not a priori clear why the solution Z(τ ) will stay in L2(2) for
(any) later time τ > 0. In other words, one needs to start with the local well-posedness
for (2.7), and then, we shall upgrade it to a global one, by means of a priori estimates
on ‖Z(τ )‖L2(2).

Theorem 3 Suppose that Z0 ∈ L2(2)(R2)∩ L∞(R2) =: X. Then (2.7) has an unique
global strong solution Z ∈ C0([0,∞]; L2(2)(R2) ∩ L∞(R2)), with Z(0) = Z0. In
addition, there is the a priori estimate

‖Z(τ )‖L2(2)∩L∞ ≤ Ce
−τ

(
3−α−β

α

)
‖Z0‖L2(2)∩L∞ , (4.5)

where C is an absolute constant.

Proof Weset up a localwell-posedness scheme for the integral equation corresponding
to (2.7), with initial data Z(0) = f , namely

Z(τ ) = eτL f −
∫ τ

0
e(τ−s)L ∇ · (U Z) ds, (4.6)

where U = UZ = (|∇|⊥)−β Z . We have, according to (3.8) and (3.15),

‖eτL f ‖L2(2) + ‖eτL f ‖L∞ ≤ C(e(1− 1−β
α

)τ + e(1− 3−β
α

)τ )‖ f ‖L2(2)∩L∞
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Thus, with T ≤ 1 to be determined later, set

YT := {Z(τ, ·) ∈ X : sup
0≤s≤T

‖Z(s, ·)‖X ≤ 2C
(
e(1− 1−β

α
) + e(1− 3−β

α
)
)

‖ f ‖X },

where the bound in Y is selected to be twice the value of the bound above, at τ = 1.
For the nonlinear term, we have for each τ ∈ (0, T ),

∥∥∥∥
∫ τ

0
e(τ−s)L ∇ · (UZ1 Z2) ds

∥∥∥∥
L∞

≤ C
∫ τ

0
C
e(1− 2−β

α
)(τ−s)

a(τ − s)
1
α

‖UZ1(s)Z2(s)‖L∞ds ≤

≤ C sup
0≤s≤T

‖UZ1‖L∞ sup
0≤s≤T

‖Z2‖L∞
∫ τ

0

1

(τ − s)
1
α

ds ≤

≤ CT 1− 1
α sup
0≤s≤T

(‖Z1‖
L

2
β

+ε
+ ‖Z1‖

L
2
β

−ε
) sup
0≤s≤T

‖Z2‖L∞

≤ CT 1− 1
α sup
0≤s≤T

‖Z1‖X sup
0≤s≤T

‖Z2‖X ,

where we have used (3.9), e(1− 2−β
α

)(τ−s) ≤ 3, a(τ − s) = 1 − e−(τ−s) ∼ (τ − s),
for 0 < s < τ ≤ 1, the Sobolev embedding estimate (2.2) and finally the fact that
X = L2(2) ∩ L∞ ↪→ L1 ∩ L∞. For the other norm in the definition of X , we have
by Lemma 7,

∥∥∥∥
∫ τ

0
e(τ−s)L ∇ · (UZ1 · Z2) ds

∥∥∥∥
L2(2)

=
∫ τ

0
e− (τ−s)

α ‖∇ · e(τ−s)L (UZ1 · Z2)‖L2(2) ds

≤ C
∫ τ

0

e− (τ−s)
α e(1− 3−β

α
)(τ−s)

a(τ − s)
1
α

‖UZ1(s) · Z2(s)‖L2(2) ds ≤

≤ C sup
0≤s≤T

‖UZ1(s)‖L∞ sup
0≤s≤T

‖Z2(s)‖L2(2)

∫ τ

0

1

(τ − s)
1
α

ds

≤ CT 1− 1
α sup
0≤s≤T

‖Z1‖X sup
0≤s≤T

‖Z2‖L2(2).

Having these two bilinear estimates allows us to conclude that for sufficiently small

T , of the form T ∼ ‖ f ‖− α
α−1

X (which should also be taken T ≤ 1), we have local
well-posedness in the space X .

Regarding global existence in X = L2(2) ∩ L∞, we obviously need a priori
estimates for the solution to prevent potential blow up. We already have those in
L∞ and in L2, by the results of Lemma 10. Thus, it remains to control the norm
J (τ ) := ∫

R2 |ξ |4|Z(τ, ξ)|2dξ . To this end, take a dot product of the Eq. (2.7) with
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|ξ |4Z . We have

∂τ

1

2

∫
|ξ |4Z2dξ +

∫
|ξ |4|∇|α Z · Zdξ =

= 1

α

∫
(ξ · ∇ξ Z)|ξ |4Z dξ −

∫
(U · ∇ξ Z)|ξ |4Z dξ + (1 + β − 1

α
)

∫
|ξ |4Z2dξ.

We first analyze the terms on the right-hand side. Integration by parts yields

1

α

∫
(ξ · ∇ξ Z)|ξ |4Zdξ = − 3

α

∫
|ξ |4Z2dξ ;

∫
(U · ∇ξ Z)|ξ |4Z dξ

= −2
∫

|ξ |2(ξ · U )Z2dξ.

Note that by Young’s inequality, we have for all ε > 0

∣∣∣∣
∫

|ξ |2(ξ · U )Z2dξ

∣∣∣∣ ≤ C
∫

|ξ |3‖U‖L∞ Z2(ξ)dξ

≤ ε

∫
|ξ |4Z2(ξ)dξ + Cε−3‖U‖4L∞‖Z‖2L2 .

By the Sobolev embedding (2.2) and Lemma 10, we have

‖U‖L∞ ≤ C

(
‖Z‖

L
2
β

+ε
+ ‖Z‖

L
2
β

−ε

)
≤ Ce−(

3−β−α
α

)τ ,

where C = C(Z0). So for every ε > 0, we have the estimate

∣∣∣∣
∫

|ξ |2(ξ · U )Z2dξ

∣∣∣∣ ≤ ε

∫
|ξ |4Z2(ξ)dξ + Cε−3e−6τ(

3−β−α
α

).

The term
∫ |ξ |4|∇|α Z · Zdξ will give rise to some harder error terms (involving

commutators between the |∇|α/2 and the weights), which we need to eventually con-
trol. It turns out that the most advantageous way to reign in the error terms is to split
the weight |ξ |4 between the two entries. More precisely,

∫
|ξ |4|∇|α Z · Zdξ =

∫
|ξ |2|∇|α Z · |ξ |2Zdξ = 〈|ξ |2|∇|α/2[|∇|α/2Z ], |ξ |2Z〉

= 〈|∇|α/2|ξ |2[|∇|α/2Z ], |ξ |2Z〉 − 〈[|∇|α/2, |ξ |2][|∇|α/2Z ], |ξ |2Z〉
= 〈|ξ |2[|∇|α/2Z ], |∇|α/2[|ξ |2Z ]〉 − 〈[|∇|α/2, |ξ |2][|∇|α/2Z ], |ξ |2Z〉
= 〈|ξ |2|∇|α/2Z , |ξ |2|∇|α/2Z〉 + 〈|ξ |2|∇|α/2Z , [|∇|α/2, |ξ |2]Z〉

−〈[|∇|α/2, |ξ |2][|∇|α/2Z ], |ξ |2Z〉
=

∫
|ξ |4||∇| α

2 Z |2dξ + 〈|ξ |2|∇|α/2Z , [|∇|α/2, |ξ |2]Z〉
−〈[|∇|α/2, |ξ |2][|∇|α/2Z ], |ξ |2Z〉.
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Denote the error terms E := 〈|ξ |2|∇|α/2Z , [|∇|α/2, |ξ |2]Z〉 − 〈[|∇|α/2, |ξ |2]
[|∇|α/2Z ], |ξ |2Z〉. Putting it all together implies

1

2
J ′(τ ) +

(
4 − α − β

α
− ε

)
J (τ ) +

∫
|ξ |4||∇| α

2 Z |2dξ ≤ |E | + Cε−3e−6τ(
3−β−α

α
)

� ‖|ξ |2|∇|α/2Z‖L2‖[|∇|α/2, |ξ |2]Z‖L2

+‖[|∇|α/2, |ξ |2][|∇|α/2Z ]‖L2‖|ξ |2Z‖L2 + ε−3e−6τ(
3−β−α

α
). (4.7)

��
At this point, it becomes clear that we need to control the commutator expression

above. In fact, we have the following Lemma.

Lemma 11 Let α ∈ (1, 2). Then, there is C = Cα , so that

‖[|∇|α/2, |ξ |2] f ‖L2(R2) ≤ C‖|ξ |2− α
2 f ‖L2(R2). (4.8)

We postpone the proof of Lemma 11 for the “Appendix,” see Section C. We finish
the proof of Theorem 3 based upon it. By Gagliardo–Nirenberg’s inequality

‖|ξ |2− α
2 g‖L2 ≤ ‖|ξ |2g‖1−

α
4

L2 ‖g‖
α
4
L2 .

Continuing with our arguments above [see (4.7)], we conclude from Lemma 11 that

1

2
J ′(τ ) +

(
4 − α − β

α
− ε

)
J (τ ) + ‖|ξ |2|∇|α/2Z‖2L2 ≤ ε‖|ξ |2|∇|α/2Z‖2L2

+ ε‖|ξ |2Z‖2L2 + Cε‖Z‖2L2 + ε−3e−6τ(
3−β−α

α
)

All in all, for all ε < 1, we have by Lemma 10,

1

2
J ′(τ ) +

(
4 − α − β

α
− 2ε

)
J (τ ) ≤ Cε‖Z‖2L2 ≤ C‖Z0‖2L1∩L∞e−2τ(

3−β−α
α

)

+ ε−3e−6τ(
3−β−α

α
).

By Gronwall’s, we finally conclude that

J (τ ) ≤ J (0)e−2τ(
4−α−β

α
−2ε) + C‖Z0‖2L1∩L∞e−2τ(

3−α−β
α

).

As a consequence

‖|ξ |2Z(τ )‖L2 ≤ C‖Z0‖L2(2)∩L∞e−τ(
3−α−β

α
).

This completes the proof of Theorem 3. ��
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5 Local and Global Existence of the Solutions to the Boussinesq
System

The results of this section closely mirror Sect. 4. Consequently, we omit many of
the arguments, when they are virtually the same. There are however a few important
distinctions, which we will highlight herein.

5.1 Global Regularity for the Vorticity (!,�) Boussinesq System in Lp(R2)

Our first result is, non-surprisingly, a local existence and uniqueness result in L p(R2).
Most of the claims in this Lemma are either well-known or follow classical arguments,
but we provide a sketch of the proof for completeness.

Lemma 12 Suppose that ω0, θ0 ∈ L p, 1 ≤ p ≤ ∞. Then there exists T =
T (‖(ω0, θ0)‖L1∩L∞), such that unique strong solutions ω, θ ∈ C([0, T ); L1 ∩ L∞)

exist.
Moreover, the solutions ω(t), θ(t) exist globally. In addition, the function t →

‖θ(t, ·)‖L p , 1 ≤ p ≤ ∞ is non-increasing, ‖θ(t, ·)‖L p ≤ ‖θ0‖L p , 1 < p < ∞,
while

‖u(t, ·)‖L2 ≤ ‖u0‖L2 + t‖θ0‖L2 .

Proof For the local existence, we work in the space X = L1∩ L∞ = ∩L p. The strong
solutions of the system of Eq. (1.7) are solutions of the integral equations

{
ω(ξ, t) = e−t |∇|αω0 + ∫ t

0 e
−(t−s)|∇|α∇(u · ω) ds − ∫ t

0 e
−(t−s)|∇|α ∂1θ ds,

θ(ξ, t) = e−t |∇|α θ0 + ∫ t
0 e

−(t−s)|∇|α∇(u · θ) ds.
(5.1)

By (2.16), we have that

‖e−t |∇|αω0‖X + ‖e−t |∇|α θ0‖X ≤ C(‖ω0‖X + ‖θ0‖X )

One can now consider the space Y := {(ω, θ) : sup0≤t≤T [‖ω‖X + ‖θ‖X ] ≤
2C(‖ω0‖X + ‖θ0‖X )}. For the bilinear forms

Q1(ω1, ω2) =
∫ t

0
e−(t−s)|∇|α∇(u · ω2) ds, Q2(ω1, θ) =

∫ t

0
e−(t−s)|∇|α∇(u · θ) ds

where u = (∇⊥)−1ω1, we establish the estimates

‖Q1(ω1, ω2) − Q1(ω̃1, ω̃2)‖X ≤ CT 1− 1
α (‖(ω1, ω2)‖X

+‖(ω̃1, ω̃2)‖X )(‖ω1 − ω̃1‖X + ‖ω2 − ω̃2‖X )

‖Q2(ω1, θ) − Q2(ω̃1, θ̃ )‖X ≤ CT 1− 1
α (‖(ω1, θ)‖X

+‖(ω̃1, θ̃ )‖X )(‖ω1 − ω̃1‖X + ‖θ − θ̃‖X )
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for j = 1, 2. This is done in an identical manner as in the proof of Lemma 8. It remains
to deal with the integral term

∫ t
0 e

−(t−s)|∇|α ∂1θ ds, for which we have

∥∥∥∥
∫ t

0
e−(t−s)|∇|α ∂1(θ − θ̃ ) ds

∥∥∥∥
L1∩L∞

≤ C
∫ t

0

1

(τ − s)
1
α

‖θ − θ̃‖L1∩L∞ds

≤ CT 1− 1
α sup
0<s<T

‖θ(s) − θ̃ (s)‖L1∩L∞ ,

for 0 < t < T . All in all, we can guarantee that with an appropriate choice of T , the
nonlinear map given by (5.1)has a fixed point ω, θ in the space X .

Regarding the global well-posedness, we can continue the solution, as long as the
norm t → ‖θ(t, ·)‖L p stay under control. First, for 1 < p < ∞, take dot product
of the θ equation with |θ |p−2θ , p ∈ (1,∞) and using the fact the positivity estimate
(2.12), we obtain

1

p
∂t‖θ(t, ·))‖p

L p ≤ 1

p
∂t‖θ‖p

L p +
∫
R2

|θ |p−2θ · |∇|αθdx = 0

It follows that t → ‖θ(t, ·)‖L p is non-increasing in any interval (0, t), whence the
solution is global and ‖θ(t, ·)‖L p ≤ ‖θ0‖L p . For p = 1, p = ∞, we use approxima-
tion arguments to establish the same result.

Finally, we use this information to establish the global well-posedness of the u
equation in (1.6). Taking dot product with u, we obtain

1

2
∂t‖u(t, ·)‖2L2 ≤ 1

2
∂t‖u(t, ·)‖2L2 + ‖|∇| α

2 u‖2L2

= 〈u2, θ〉 ≤ ‖u2‖L2‖θ(t)‖L2 ≤ ‖u2(t)‖L2‖θ0‖L2

It follows that

‖u(t, ·)‖L2 ≤ ‖u0‖L2 + t‖θ0‖L2 ,

which provides the necessary bound to conclude global regularity, as stated. ��
The next Lemma provides a global existence and uniqueness result for the (ω, θ)

system.

Lemma 13 Let α > 1. Then, assuming ω0 ∈ L2, θ0 ∈ H
α
2 , the Cauchy problem

(1.7) has unique global solutions. In addition, for any T > 0, there exists C =
CT ,‖ω0‖L2 ,‖θ0‖

H
α
2

> 0, so that the solutions satisfy

sup
0≤t≤T

‖ω‖L2 + sup
0≤t≤T

‖|∇| α
2 θ‖L2 ≤ C . (5.2)

Remark The constant CT obtained in this argument is exponential in T , which is very
non-efficient. On the other hand, it is sufficient for our purposes in bootstrapping the
solution.
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Proof The global regularity for (1.7) is of course very similar to the global regularity
established in Lemma 12. For the energy estimates, needed for (5.2), we can dot
product the first equation in (1.7) with ω and the second one with |∇|αθ to get the
following energy estimate

1

2

d

dt

(
‖ω‖2L2 + ‖|∇| α

2 θ‖2L2

)
+ ‖|∇| α

2 ω‖2L2 + ‖|∇|αθ‖2L2

≤
∣∣∣∣
∫

ω · ∂1θdξ

∣∣∣∣ +
∣∣∣∣〈[|∇| α

2 , u · ∇]θ, |∇| α
2 θ〉

∣∣∣∣
:= I1 + I2.

Then for some 0 < γ < 1,

I1 =
∣∣∣∣
∫

ω · ∂1θdξ

∣∣∣∣ ≤ ‖|∇| α
2 ω‖L2‖∂1|∇|− α

2 θ‖L2 ≤ ε‖|∇| α
2 ω‖2L2 + Cε‖∂1|∇|− α

2 θ‖2L2

≤ ε‖|∇| α
2 ω‖2L2 + Cε‖|∇|αθ‖2γ

L2‖θ‖2(1−γ )

L2

≤ ε‖|∇| α
2 ω‖2L2 + ε‖|∇|αθ‖2L2 + Cε‖θ0‖2L2 .

We also have

I2 =
∣∣∣∣〈[|∇| α

2 , u · ∇]θ, |∇| α
2 θ〉

∣∣∣∣ ≤ ‖|∇|− α
2 [|∇| α

2 , u · ∇]θ‖L2‖|∇|αθ‖L2

We can make use of the inequality (2.18) with a = 1, s1 = s2 = α
2 , p = 2, q = 8

4−α

and r = 8
α
to get

‖|∇|− α
2 [|∇| α

2 , u · ∇]θ(t)‖L2 ≤ C‖θ‖
L

8
α
‖∇u‖

L
8

4−α

≤ C‖θ0‖
L

8
α
‖ω‖

L
8

4−α
≤ C‖θ0‖

L
8
α
‖|∇| α

4 ω‖L2

≤ C‖θ0‖
L

8
α
‖|∇| α

2 ω‖
1
2
L2‖ω‖

1
2
L2 .

wherewe have used the Sobolev embedding and theGagliardo–Nirenberg’s inequality.
Then,

I2 ≤ ε‖|∇| α
2 ω‖2L2 + ε‖|∇|αθ‖2L2 + Cε(‖θ0‖

L
8
α
‖ω‖

1
2
L2)

4.

Therefore, for ε < 1
2 , we can hide the terms ‖|∇| α

2 ω‖2
L2 and ‖|∇|αθ‖2

L2 and we obtain

d

dt

(
‖ω‖2L2 + ‖|∇| α

2 θ‖2L2

)
≤ C‖θ0‖4

L
8
α

(
‖ω‖2L2 + ‖|∇| α

2 θ‖2L2

)
+ C‖θ0‖2L2 .

We use Gronwall’s to conclude (5.2). ��
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5.2 Some a Priori Estimates for the ScaledVorticity Boussinesq Problem (W,2) in
Lp

We now turn our attention to the scaled vorticity system. By the results of Lemmas 13
and 14, such solutions exist globally, by virtue of the change of variables. Now that we
have a global solution, together with the global estimate (5.6), we can actually obtain
global a priori estimates for � in all L p spaces.

Lemma 14 Let p ≥ 1, and �0 ∈ L1 ∩ L∞(R2) ∩ Hα(R2), W0 ∈ L2. Then for any
τ > 0, � ∈ C0([0, τ ]; L p), there exists C = Cα,p such that

‖�(τ, ·)‖L p ≤ Cα,p‖�0‖L p(R2)e
(2− 1

α
− 2

α p )τ
. (5.3)

Proof We take a dot product of the � equation in (2.9) with |�|p−2�, p ≥ 1. We
obtain

1

p
∂τ‖�‖p

L p +
∫
R2

|∇|α�|�|p−2�dξ =
(
2 − 1

α
− 2

α p

)
‖�‖p

L p .

Recall however that
∫
R2 |∇|α�|�|p−2�dξ ≥ 0, by Lemma 1. Thus, integrating this

inequality yields (5.3). ��
Lemma 14 provides us with a decay rate for �(τ, ·) for 1 ≤ p < 2

2α−1 , but clearly

an increasing exponential bound for p ≥ 2
2α−1 . However, we can use it to get a decay

rate for any p ≥ 1.

Lemma 15 Let p ≥ 1, and �0 ∈ L1 ∩ L∞(R2) ∩ Hα(R2), W0 ∈ L2. Then for any
τ > 0, � ∈ C0([0, τ ]; L p), there exists C = Cα,p such that

‖�(τ, ·)‖L p ≤ Cα,p‖�0‖L p(R2)e
(2− 3

α
)τ . (5.4)

Proof Similar to Lemma 10, we have the following energy estimate

1

p
∂τ‖�‖p

L p + cp,α‖�‖p

L
2p
2−α

≤ (2 − 1

α
− 2

α p
)‖�‖p

L p .

In other words

∂τ‖�‖p
L p + pcp,α‖�‖p

L
2p
2−α

≤ p(2 − 1

α
− 2

α p
)‖�‖p

L p

≤
(
2 − 1

α
− 2

α p

)
‖�‖γ p

L
2p
2−α

‖�‖(1−γ )p
L1

≤
[

p
(
2 − 1

α
− 2

α p

)] 1
1−γ

ε
γ

1−γ

‖�‖γ p

L
2p
2−α

‖�‖(1−γ )p
L1

≤ p

(
2 − 1

α
− 2

α p

)
‖�‖p

L1 + ε‖�‖p

L
2p
2−α

.
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Now we use (5.3) with p = 1 to get the following energy estimate

∂τ ‖�‖p
L p + (pcp,α − ε)‖�‖p

L
2p
2−α

≤ p(2 − 1

α
− 2

α p
)‖�‖p

L1 ≤ p(2 − 1

α
− 2

α p
)ep(2− 3

α
)τ .

Finally, we use Gronwall’s inequality to finish the proof. ��
We can use above Lemma to find some decay rate for U (τ, ·). We need this to be

able to get some bounds for W in higher L p spaces.

Lemma 16 Let U0 ∈ L2(R2). There exists C = Cα,p, such that for any τ > 0,
U ∈ C0([0, τ ]; L2) and

‖U (τ, ·)‖L2 ≤ Cα,p‖U0‖L2(R2)e

(
2− 3

α

)
τ
. (5.5)

Proof If we dot product the equation (2.10) with U , we get the following relation

1

2
∂τ‖U‖2L2 + ‖|∇| α

2 U‖2L2 = 1

α

∫
(ξ · ∇U )Udξ + (1 − 1

α
)‖U‖2L2 +

∫
� · Udξ.

Then

∂τ‖U‖2L2 + 2‖|∇| α
2 U‖2L2 = 2

(
1 − 2

α

)
‖U‖2L2 +

∫
� · Udξ

≤ 2

(
1 − 2

α

)
‖U‖2L2 + ‖�‖L2‖U‖L2

≤ 2

(
1 − 2

α
+ ε

)
‖U‖2L2 + Cε‖�‖2L2

≤ 2

(
1 − 2

α
+ ε

)
‖U‖2L2 + Cεe

2(2− 3
α
)τ .

We finish the proof by the Gronwall’s inequality. ��
The next lemma provides a priori estimates for W and � in L2 spaces, which allows
us to conclude global regularity.

Lemma 17 Let α ∈ (1, 3
2 ), W0 ∈ L2. Then the solution W of (2.9), satisfies

‖W (τ, ·)‖L2 + ‖�(τ, ·)‖L2 ≤ Ce(2− 3
α
)τ , (5.6)

sup
0≤τ<∞

∫ τ

0

(
‖|∇| α

2 W (s)‖2L2 + ‖|∇| α
2 �(s)‖2L2

)
ds ≤ C (5.7)

for some C = C(‖W0‖L2 , ‖�0‖L2 , α), independent on τ .
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Proof We dot product the first equation in (2.9) with W , and the second equation with
�. We also use the trick from Lemma 10—we add the term A(‖W‖2

L2 + ‖�‖2
L2),

where A is a large constant to be determined. Then

1

2

d

dt

(
‖W‖2L2 + ‖�‖2L2

)
+ A(‖W‖2L2 + ‖�‖2L2) + ‖|∇| α

2 W‖2L2 + ‖|∇| α
2 �‖2L2

≤
∣∣∣∣
∫

∂1�Wdξ

∣∣∣∣ +
(

A + 1 − 1

α

)
‖W‖2L2 +

(
A + 2 − 2

α

)
‖�‖2L2 .

But by Gagliardo–Nirenberg (and taking into account that 1 − α
2 < α

2 ) and Young’s
inequalities,

∣∣∣∣
∫

∂1�Wdξ

∣∣∣∣ ≤ ‖|∇|1− α
2 �‖L2‖|∇| α

2 W‖L2 ≤ ε‖|∇| α
2 �‖2L2 + ε‖|∇| α

2 W‖2L2 + Cε‖�‖2L2

≤ ε‖|∇| α
2 �‖2L2 + ε‖|∇| α

2 W‖2L2 + Cεe
2(2− 3

α
)τ .

where we have used the estimate for ‖�‖L2 from (5.3), with p = 2. We also have

(
A + 1 − 1

α

)
‖W‖2

L2 ≤ C

(
A + 1 − 1

α

)
‖∇U‖2

L2 ≤ C

(
A + 1 − 1

α

)
‖U‖2γ

L2‖|∇|1+ α
2 U‖2(1−γ )

L2

≤ C

(
A + 1 − 1

α

)
‖U‖2γ

L2‖|∇| α
2 W‖2(1−γ )

L2 ≤ ε‖|∇| α
2 W‖2

L2

+
[C

(
A + 1 − 1

α

)
]

1
1−γ

ε
γ

1−γ

‖U‖2
L2

≤ ε‖|∇| α
2 W‖2

L2 + [C(A + 1 − 1
α )]

1
1−γ

ε
γ

1−γ

e2(2− 3
α )τ .

Considering the estimate for ‖�‖L2 from (5.3)(with p = 2)

d

dt

(
‖W‖2L2 + ‖�‖2L2

)
+ 2A(‖W‖2L2 + ‖�‖2L2) + 2(1 − 2ε)‖|∇| α

2 W‖2L2

+2(1 − 2ε)‖|∇| α
2 �‖2L2

≤ 2[C(A + 1 − 1
α
)] 1

1−γ

ε
γ

1−γ

e2(2−
3
α
)τ .

We choose A = 2( 3
α

−2) (recall α < 3
2 ). Then the last relation has two consequences.

First we can drop the term 2(1 − 2ε)‖|∇| α
2 W‖2

L2 + 2(1 − 2ε)‖|∇| α
2 �‖2

L2 , so

d

dt

(
‖W‖2L2 + ‖�‖2L2

)
+ 4

(
3

α
− 2

) (
‖W‖2L2 + ‖�‖2L2

)
≤ [C( 5α − 3)] 1

1−γ

ε
γ

1−γ

e2(2− 3
α
)τ .
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and then use the Gronwall’s inequality for the following inequality and get the decay
rate (5.6). The second consequence is that we get

∫ τ

0
(‖|∇| α

2 W (t)‖2L2 + ‖|∇| α
2 �(t)‖2L2)dt ≤

(
‖W0‖2L2 + ‖�0‖2L2

)
+ Cε

2( 3
α

− 2)
.

This implies (5.7). ��
We shall need some a priori estimates for ‖W‖L p for some p > 2, as these will be

necessary in our subsequent considerations. This turns out to be non-trivial. It turns
out that it is easier to control ‖W‖H1 , ‖�‖H1 and then use Sobolev embedding to
control ‖W‖L p , ‖�‖L p , 1 < p < ∞. In this way, we get the control needed, but we
end up needing to require smoother H1 initial data.

Proposition 5 W0,�0 ∈ H1. Then, the global solution satisfies W ,� ∈ C0([0, τ ];
H1(R2)). Moreover,

‖W (τ )‖H1 + ‖�(τ)‖H1 ≤ Ce(2− 3
α
)τ . (5.8)

C = C(‖W0‖H1 , ‖�0‖H1 , α), independent on τ .

Proof Local well-posedness in the space H1, for the original (unscaled) equations
works as in Lemma 13, so we omit it. Thus, we have local solutions for the scaled
system as well. We now need to establish a priori estimates to show that these are
global.

We differentiate each of the equations in (2.9). Then, we dot product it with10 ∂W
and ∂� respectively.We add the two resulting equations to obtain the following energy
inequality

1

2

d

dt

(
‖∂W‖2L2 + ‖∂�‖2L2

)
+ ‖|∇| α

2 +1W‖2L2 + ‖|∇| α
2 +1�‖2L2 ≤

≤ ∣∣ ∫ ∂1∂�∂Wdξ
∣∣ +

(
1 − 1

α

)
‖∂W‖2L2 + 2(1 − 1

α
)‖∂�‖2L2 + |〈∂U∇W , ∂W 〉|

+|〈∂U∇�, ∂�〉|.

By Gagliardo–Nirenbergs’ and Young’s

‖∂W‖2L2 + ‖∂�‖2L2 ≤ ε(‖∇| α
2 +1W‖2L2 + ‖∇| α

2 +1�‖2L2) + Cε(‖W‖2L2 + ‖�‖2L2)

Next,

∣∣∣∣
∫

∂1∂�∂Wdξ

∣∣∣∣ ≤ C‖|∇| α
2 +1�‖L2‖|∇|2− α

2 W‖L2

≤ ε(‖∇| α
2 +1W‖2L2 + ‖∇| α

2 +1�‖2L2) + Cε‖W‖2L2 ,

10 Here ∂ means either ∂1 or ∂2.
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where in the last estimate we have used that 2 − α
2 < 1 + α

2 . Finally,

|〈∂U · ∇W , ∂W 〉| = |〈∇ · (∂U W ), ∂W 〉| ≤ C‖∇| α
2 +1W‖L2‖|∇|1− α

2 (∂U W )‖L2

≤ ε‖∇| α
2 +1W‖2L2 + Cε‖|∇|1− α

2 (∂U W )‖2L2

By product estimates, lemma (4) and Sobolev embedding

‖|∇|1− α
2 (∂U W )‖L2 ≤ C(‖|∇|1− α

2 ∂U‖
L

8
4−α

‖W‖
L

8
α

+ ‖|∇|1− α
2 W‖

L
8

4−α
‖∂U‖

L
8
α
)

≤ C‖|∇|1− α
4 ∂U‖L2‖|∇|1− α

4 W‖L2 ≤ C‖|∇|1− α
4 W‖2L2 ≤ ‖|∇|1+ α

2 W‖
2− α

2
1+ α

2
L2 ‖W‖

3α
2

1+ α
2

L2 ,

where we have used ∂U ∼ W (in all Sobolev spaces) and Gagliardo–Nirenberg’s.
This allows us to estimate by Young’s

|〈∂U · ∇W , ∂W 〉| ≤ 2ε‖|∇| α
2 +1W‖2L2 + Cε‖W‖

3α
α−1

L2 .

Clearly, the appropriate estimate, obtained in the same way holds for

|〈∂U∇�, ∂�〉| ≤ 2ε‖|∇| α
2 +1�‖2L2 + Cε‖W‖

3α
α−1

L2 .

All in all, we obtain

1

2

d

dt

(
‖∂W‖2L2 + ‖∂�‖2L2

)
+ (1 − 6ε)(‖|∇| α

2 +1W‖2L2 + ‖|∇| α
2 +1�‖2L2)

≤ Cε(‖W‖
3α

α−1

L2 + ‖W‖2L2 + ‖�‖2L2).

Set ε = 1
10 . For every A > 0, there is cα,A, so that ‖|∇| α

2 +1W‖2
L2 ≥ A‖∂W‖2

L2 −
cA,α‖W‖2

L2 and similar for �, so we end up with

d

dt

(
‖∂W‖2L2 + ‖∂�‖2L2

)
+ A

(
‖∂W‖2L2 + ‖∂�‖2L2

)
≤ CA,αe

2(2− 3
α
)τ .

where we have used the exponential bounds from (5.6). Setting sufficiently large A,
namely A = 2( 3

α
− 2), and applying Gronwall’s yields the result. ��

As an immediate corollary, we have control of the L p norms for W .

Corollary 1 Let W0,�0 ∈ H1. Then, for all p ∈ (2,∞), there is the bound

‖W (τ, ·)‖L p ≤ C(‖W0‖H1 , ‖�0‖H1 , α, p)e(2− 3
α
)τ . (5.9)
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5.3 Global Regularity for the ScaledVorticity Boussinesq Problem (W,2) in
L2(2) ∩ L∞(R2)

Let us mention that the results in this section are valid under the assumption that
α ∈ (1, 2). The more restrictive assumption α ∈ (1, 3

2 ) comes up later in Theorem 5,
in the more subtle estimates of the evolution of the solution, projected on various
pieces of the spectrum.

The next Lemma is a local well-posedness result, which is a companion to Theo-
rem 3.

Lemma 18 Suppose that W0,�0 ∈ L2(2) ∩ L∞. Then, there exists time T =
T (‖(W0,�0)‖L2(2)∩L∞), so that the system of equation (2.9) has unique local solution
W ,� ∈ C0([0, T ]; L2(2) ∩ L∞) with W (0) = W0 and �(0) = �0.

Proof We are looking for strong solutions in the space X = L2(2) ∩ L∞, that is a
solutions of the following system of integral equations

W (τ ) = eτL W0 −
∫ τ

0
e(τ−s)L ∇(U · W )ds +

∫ τ

0
e(τ−s)L (∂1�)ds,

�(τ) = eτ(L+1− 1
α
)�0 −

∫ τ

0
e(τ−s)(L+1− 1

α
)∇(U · �)ds

For the free solutions, according to (3.15) and (3.8),

‖eτL W0‖L2(2)∩L∞ + ‖eτ(L +1− 1
α )�0‖L2(2)∩L∞ ≤ Ceτ (‖W0‖L2(2)∩L∞ + ‖�0‖L2(2)∩L∞ ).

For 0 < T < 1, to be determined, introduce the space

YT := {(W , �) : sup
0≤τ≤T

[‖W (τ, ·)‖X + ‖�(τ, ·)‖X ] ≤ 2Ce(‖W0‖L2(2)∩L∞ + ‖�0‖L2(2)∩L∞ ).}.

According to (3.10) and (3.15),

∥∥∥∥
∫ τ

0
e(τ−s)L ∇(U · W )ds

∥∥∥∥
L2(2)∩L∞

≤
∫ τ

0

e−
(τ−s)

α (e(1− 2
α )(τ−s) + eτ−s )

a(τ − s)
1
α

‖U · W‖L2(2)∩L∞ ds

≤ C sup
0≤τ≤T

‖U W‖L2(2)∩L∞
∫ τ

0

1

|τ − s| 1α
ds ≤ CT 1− 1

α sup
0≤τ≤T

‖U‖L∞ sup
0≤τ≤T

‖W‖L2(2)∩L∞ .

and similarly

∥∥∥∥
∫ τ

0
e(τ−s)(L +1− 1

α )∇(U · �)ds

∥∥∥∥
L2(2)∩L∞

≤ CT 1− 1
α sup
0≤τ≤T

‖U‖L∞ sup
0≤τ≤T

‖�‖L2(2)∩L∞ .

Recalling that U = (∇⊥)−1W , we further estimate by (2.2),

‖U‖L∞ ≤ C(‖W‖L2+ε + ‖W‖L2−ε ) ≤ C‖W‖L2(2)∩L∞ ,
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since L2(2) ↪→ L2−ε and L2(2) ∩ L∞ ↪→ L1 ∩ L∞ ↪→ L2+ε . Finally,

∥∥∥∥
∫ τ

0
e(τ−s)L (∂1�)ds

∥∥∥∥
L2(2)∩L∞

≤ CT 1− 1
α sup
0≤τ≤T

‖�‖L2(2)∩L∞ .

Clearly, appropriate estimate hold for the differences, whence the integral equa-

tions provide a contraction mapping in the space YT , provided, T 1− 1
α <<

1
2Ce(‖W0‖L2(2)∩L∞+‖�0‖L2(2)∩L∞ )

. ��

Our next result provides a global regularity for the W ,� system in the space L2(2).

Lemma 19 The system of equations (2.9), with W0,�0 ∈ X = L2(2) ∩ L∞, and
also W0,�0 ∈ H1(R2) has an unique global solution, in space X. There exists
C = C(‖W0‖X , ‖�‖X ) such that

sup
0≤τ<∞

(‖W (τ, ·)‖L2(2) + ‖�(τ, ·)‖L2(2)
) ≤ C . (5.10)

Remark The decay rate by a constant is very inefficient. One could improve the argu-
ment below, at a considerable technical price, to obtain better decay estimates. Since
the results in Sect. 7 will supersede these anyway, we choose to present the simpler
arguments.

Proof The existence of a local solutions are guaranteed by Lemma 18. So, it remains to
establish energy estimates, which keep the relevant L2(2) norms under control. Note
that the unweighted portion of the norm has an exponential decay, by (5.3) and (5.6).
So, it remains to control the weighted norms.

We run a preliminary argument only on the � variable. As usual, this is easier, due
to the lack of problematic term ∂1�, which appears in the equation for W . We dot
product the � equation in (2.9) with |ξ |4�. We have

1

2

d

dτ

∫
|ξ |4�2dξ +

∫
|ξ |4|∇|α� · �dξ +

(
4

α
− 2

)∫
|ξ |4�2dξ

= −
∫

(U · ∇ξ�)|ξ |4�dξ.

Then

−
∫

(U · ∇ξ�)|ξ |4�dξ = 2
∫

|ξ |2(ξ · U )�2dξ.

But

∣∣∣∣
∫

|ξ |2(ξ · U )�2dξ

∣∣∣∣ ≤ C
∫

|ξ |3‖U‖L∞|�|2dξ ≤ ε

∫
|ξ |4|�|2dξ + Cε−3‖U‖4L∞‖�‖2

L2 .
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Now, according to (2.2), for every δ > 0

‖U‖L∞ ≤ Cδ(‖W‖L2+δ + ‖W‖L2−δ ) ≤ Cδ(e
(2− 3

α
)τ + ‖W‖

2−2δ
2−δ

L2 ‖W‖
δ

2−δ

L1 )

≤ Cδ + Cδ‖W‖
δ

2−δ

L2(2)
.

We also have

∫
|ξ |4�|∇|α�dξ = 〈|ξ |2|∇| α

2 |∇| α
2 �, |ξ |2�〉

= 〈|∇| α
2 [|ξ |2|∇| α

2 �], |ξ |2�〉 − 〈[|∇| α
2 , |ξ |2] [|∇| α

2 �], |ξ |2�〉
= 〈|ξ |2|∇| α

2 �, |ξ |2|∇| α
2 �〉 + 〈|ξ |2|∇| α

2 �, [|∇| α
2 , |ξ |2]�〉 − 〈[|∇| α

2 , |ξ |2] [|∇| α
2 �], |ξ |2�〉

=
∫

|ξ |4||∇| α
2 �|2dξ + 〈|ξ |2|∇| α

2 �, [|∇| α
2 , |ξ |2]�〉 − 〈[|∇| α

2 , |ξ |2] [|∇| α
2 �], |ξ |2�〉

Now if we define I (τ ) = ∫ |ξ |4�2dξ , and put all above together we have the following
relation

1

2
I ′(τ ) +

(
4

α
− 2 − 10ε

)
I (τ ) +

∫
|ξ |4||∇| α

2 �|2dξ

≤ |〈|ξ |2|∇| α
2 �, [|∇| α

2 , |ξ |2]�〉| + |〈[|∇| α
2 , |ξ |2][|∇| α

2 �], |ξ |2�〉| + Cδ,ε‖W (τ, ·)‖
4δ
2−δ

L2(2)
.

We can use Lemma 11 to get

|〈|ξ |2|∇| α
2 �, [|∇| α

2 , |ξ |2]�〉| ≤ ‖|ξ |2|∇| α
2 �‖L2‖[|∇| α

2 , |ξ |2]�‖L2

≤ ‖|ξ |2|∇| α
2 �‖L2‖|ξ |2− α

2 �‖L2 ≤ ‖|ξ |2|∇| α
2 �‖L2‖|ξ |2�‖1−

α
4

L2 ‖�‖
α
4
L2

≤ ε(‖|ξ |2|∇| α
2 �‖2L2 + ‖|ξ |2�‖2L2) + Cε .

For the other term we have

|〈[|∇| α
2 , |ξ |2][|∇| α

2 �], |ξ |2�〉| ≤ ‖|ξ |2�‖L2‖[|∇| α
2 , |ξ |2][|∇| α

2 �]‖L2

≤ ‖|ξ |2�‖L2‖|ξ |2− α
2 [|∇| α

2 �]‖L2 ≤ ‖|ξ |2�‖L2‖|ξ |2|∇| α
2 �‖1−

α
4

L2 ‖|∇| α
2 �‖

α
4
L2

≤ ε(‖|ξ |2|∇| α
2 �‖2L2 + ‖|ξ |2�‖2L2) + Cε‖|∇| α

2 �‖2L2 .

It follows that

1

2
I ′(τ ) +

(
4

α
− 2 − 20ε

)
I (τ ) + (1 − 5ε)

∫
|ξ |4||∇| α

2 �|2dξ

≤ Cε + Cδ,ε‖W (τ, ·)‖
4δ
2−δ

L2(2)
+ Cε‖|∇| α

2 �‖2L2 .
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Choose ε = 1
200 , apply Gronwall’s and then (5.7) implies that for every δ > 0, there

is Cδ , so that

‖|ξ |2�(τ, ·)‖L2 ≤ Cε + Cδe
−( 4

α
−2−δ)τ + Cδ sup

0<s<τ

‖W (s, ·)‖
2δ
2−δ

L2(2)
. (5.11)

for every δ > 0. In addition, we obtain the L2
τ bound

∫ τ

0
‖|ξ |2|∇| α

2 �(τ, ·)‖2L2dτ ≤ C + Cδ sup
0<s<τ

‖W (s, ·)‖
4δ
2−δ

L2(2)
. (5.12)

We are now ready for the bounds for W , which are always harder. If we dot product
in (2.9), the first equation with |ξ |4W , we have the energy equality

1

2

d

dτ

∫
|ξ |4W 2dξ +

∫
|ξ |4|∇|αW · Wdξ +

(
3

α
− 1

) ∫
|ξ |4W 2dξ

= −
∫

(U · ∇ξ W )|ξ |4Wdξ +
∫

∂1� |ξ |4Wdξ

Then − ∫
(U · ∇ξ W )|ξ |4Wdξ = 2

∫ |ξ |2(ξ · U )W 2dξ . We can bound this term as
follows

∣∣∣∣
∫

|ξ |2(ξ · U )W 2dξ

∣∣∣∣ ≤ C
∫

|ξ |3‖U‖L∞|W |2dξ ≤ ε

∫
|ξ |4|W |2dξ + Cε−3‖U‖4L∞‖W‖2L2 .

Again, according to (2.1), for every δ > 0

‖U‖L∞ ≤ Cδ(‖W‖L2+δ + ‖W‖L2−δ ) ≤ C

(
e(2− 3

α
)τ + ‖W‖

2−2δ
2−δ

L2 ‖W‖
δ

2−δ

L1

)
.

Taking into account (5.3), (5.9), L2(2) ↪→ L1 and Young’s inequality, allows us to
estimate

∣∣∣∣
∫

|ξ |2(ξ · U )W 2dξ

∣∣∣∣ ≤ 2ε
∫

|ξ |4|W |2dξ + Cε,δ‖W (τ, ·)‖
4δ
2−δ

L2(2)
.

We also have, similar to the � variable calculation,

∫
|ξ |4W |∇|αWdξ = ‖|ξ |2||∇| α

2 W‖2L2 + 〈|ξ |2|∇| α
2 W , [|∇| α

2 , |ξ |2]W 〉
−〈[|∇| α

2 , |ξ |2][|∇| α
2 W ], |ξ |2W 〉
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Now if we take J (τ ) = ∫ |ξ |4W 2dξ , and put all above together we have the following
relation

1

2
J ′(τ ) +

(
3

α
− 1 − 10ε

)
J (τ ) +

∫
|ξ |4||∇| α

2 W |2dξ

≤ |〈|ξ |2|∇| α
2 W , [|∇| α

2 , |ξ |2]W 〉| + |〈[|∇| α
2 , |ξ |2][|∇| α

2 W ], |ξ |2W 〉|
+

∣∣∣∣
∫

|ξ |4(∂1�)Wdξ

∣∣∣∣
+ Cε + Cε,δ‖W (τ, ·)‖

4δ
2−δ

L2(2)
= I1 + I2 + I3 + Cε + Cε,δ‖W (τ, ·)‖

4δ
2−δ

L2(2)

We can use Lemma 11 to get

I1 = |〈|ξ |2|∇| α
2 W , [|∇| α

2 , |ξ |2]W 〉| ≤ ‖|ξ |2|∇| α
2 W‖L2‖|[|∇| α

2 , |ξ |2]W‖L2

≤ ‖|ξ |2|∇| α
2 W‖L2‖|ξ |2− α

2 W‖L2 ≤ ‖|ξ |2|∇| α
2 W‖L2‖|ξ |2W‖1−

α
4

L2 ‖W‖
α
4
L2

≤ ε(‖|ξ |2|∇| α
2 W‖2L2 + ‖|ξ |2W‖2L2) + Cε,

where we have used the bounds (5.6) for ‖W‖L2 . Next, regarding I2, we have

I2 = |〈[|∇| α
2 , |ξ |2][|∇| α

2 W ], |ξ |2W 〉| ≤ ‖|ξ |2W‖L2‖[|∇| α
2 , |ξ |2][|∇| α

2 W ]‖L2

≤ ‖|ξ |2W‖L2‖|ξ |2− α
2 |∇| α

2 W‖L2 ≤ ‖|ξ |2W‖L2‖|ξ |2|∇| α
2 W‖1−

α
4

L2 ‖|∇| α
2 W‖

α
4
L2

≤ ε(‖|ξ |2W‖2L2 + ‖|ξ |2|∇| α
2 W‖2L2) + Cε‖|∇| α

2 W‖2L2 .

I3 is normally a problematic term, but now we have the decay estimates for ‖�‖L2(2),
which we have proved in the first part of this Lemma. We have

I3 =
∣∣∣∣〈∂1�, |ξ |4W 〉

∣∣∣∣ ≤
∣∣∣∣〈|ξ |2∂1�, |ξ |2W 〉

∣∣∣∣ ≤
∣∣∣∣〈∂1|∇|− α

2 |ξ |2|∇| α
2 �, |ξ |2W 〉

∣∣∣∣
+

∣∣∣∣〈[∂1|∇|− α
2 , |ξ |2] [|∇| α

2 �], |ξ |2W 〉
∣∣∣∣ := I3,1 + I3,2.

I3,1 is estimated as follows

I3,1 =
∣∣∣∣〈∂1|∇|− α

2 |ξ |2|∇| α
2 �, |ξ |2W 〉

∣∣∣∣ ≤ C‖|ξ |2|∇| α
2 �‖L2‖|∇|1− α

2 [|ξ |2W ]‖L2

≤ ‖|ξ |2|∇| α
2 �‖L2‖|ξ |2W‖

2α−2
α

L2 ‖|∇| α
2 [|ξ |2W ]‖

2−α
α

L2 ≤ Cε‖|ξ |2|∇| α
2 �‖2L2 +

+ ε(‖|ξ |2W‖2L2 + ‖|∇| α
2 [|ξ |2W ]‖2L2)
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We bound the last term, by Lemma 11,

‖|∇| α
2 [|ξ |2W ]‖L2 ≤ ‖|ξ |2|∇| α

2 W‖L2 + ‖[|∇| α
2 , |ξ |2]W‖L2

≤ ‖|ξ |2|∇| α
2 W‖L2 + C‖|ξ |2− α

2 W‖L2

≤ ‖|ξ |2|∇| α
2 W‖L2 + C(‖W‖L2 + ‖|ξ |2W‖L2).

Collecting terms together yields the following estimate for I3,1 and using (5.8),

I3,1 ≤ 2ε(‖|ξ |2W‖2L2 + ‖|ξ |2|∇| α
2 W‖2L2) + Cε‖|ξ |2|∇| α

2 �‖2L2 + Ce2(2−
3
α
)τ .

We can easily bound I3,2, provided we know an appropriate estimate for the com-
mutator [∂1|∇|− α

2 , |ξ |2]. In fact, this commutator is morally like [|∇|1− α
2 , |ξ |2], which

was indeed considered in Lemma 11. However, there does not appear to be an easy
way to transfer the estimate (4.8) to it, so we state the relevant estimate here

‖[∂1|∇|−a, |ξ |2] f ‖L2 ≤ C‖|ξ |1+a f ‖L2 , a ∈ (0, 1) (5.13)

The proof of (5.13) is postponed to the “Appendix B.”11 Assuming the validity of
(5.13), we proceed to bound I3,2.

I3,2 =
∣∣∣∣〈[∂1|∇|− α

2 , |ξ |2] [|∇| α
2 �], |ξ |2W 〉

∣∣∣∣ ≤ ‖|ξ |2W‖L2‖[∂1|∇|− α
2 , |ξ |2] [|∇| α

2 �]‖L2

≤ ‖|ξ |2W‖L2‖|ξ |1+ α
2 |∇| α

2 �‖L2 ≤ ‖|ξ |2W‖L2‖|ξ |2|∇| α
2 �‖

2+α
4

L2 ‖|∇| α
2 �‖

2−α
4

L2

≤ ε‖|ξ |2W‖2L2 + ‖|∇| α
2 �‖2L2 + Cε‖|ξ |2|∇| α

2 �‖2L2 .

Combining all the estimates, we obtain the following energy inequality

1

2
J ′(τ ) +

(
3

α
− 1 − 20ε

)
J (τ ) + (1 − 5ε)

∫
|ξ |4||∇| α

2 W |2dξ

≤ Cε + Cδ‖W‖
4δ
2−δ

L2(2)
+ Cε(‖|ξ |2|∇| α

2 �‖2L2 + ‖|∇| α
2 W‖2L2 + ‖|∇| α

2 �‖2
L2 )

Applying Gronwall’s and taking into account the L2
τ integrability results (5.7) and

(5.12), and ‖W‖2
L2(2)

≤ J (τ ) + C , we conclude for every δ > 0

J (τ ) ≤ J (0)e−2( 3
α
−1−20ε)τ + Cετe

−2( 3
α
−1−20ε)τ + Cδ sup

0<s<τ

J (τ )
2δ
2−δ +

+ Cε

∫ τ

0
(‖|ξ |2|∇| α

2 �(s, ·)‖2L2 + ‖|∇| α
2 W (s, ·)‖2L2

+‖|∇| α
2 �‖2L2)ds ≤ Cε + Cδ sup

0<s<τ

J (τ )
2δ
2−δ

11 In fact, it can be reduced to a similar expression as in the proof of (4.8), so we prove them simultaneously.

123



2272 Journal of Nonlinear Science (2019) 29:2231–2296

Selecting small δ and solving this inequality for sup0<s<τ J (τ ) implies the
sup0<s<τ J (τ ) ≤ C , for all times τ . Inputting this last estimate in (5.11) implies
the desired bound for ‖�‖L2(2) as well. ��

6 Global Dynamics of the Solutions of the SQGModel

Theorem 3 already provides pretty good estimate about the behavior of the solutions
to the rescaled equation (2.7), in particular the solution Z disperses at∞, with the rate

of about e−τ(
3−α−β

α
). An obviously question is whether or not this is optimal, that is

whether there is a lower bound with the same exponential function, at least for generic
data. It turns out that this is indeed the case. In fact, we have a more precise result,
namely an asymptotic expansion.

Before we continue with the formal statement of the main result, we need a simple
algebraic observation, which is important in the sequel. Recall the generalized Biot-
Savart law that we imposed, u = uz = (|∇|⊥)−β z. This naturally transformed into
the relation U = UZ = (|∇|⊥)−β Z between the “scaled” velocity U and its vorticity
Z . We claim that

UG · ∇G = 0. (6.1)

Indeed, since G is a radial function,12 say G(ξ) = ζ(|ξ |), we have that ∇G =
(ξ1, ξ2)

ζ ′(|ξ |)
|ξ | . On the other hand, UG = (|∇|⊥)−βG = |∇|⊥m−β−1(|∇|)G, so UG =

|∇|⊥h(|ξ |), where h is a radial function representing [m−β−1(|∇|)G]. That is, h(|ξ |) =
[m−β−1(|∇|)G](ξ). It follows that UG = (−ξ2, ξ1)

h′(|ξ |)
|ξ | . Thus,

UG · ∇G = (−ξ2, ξ1)
h′(|ξ |)

|ξ | · (ξ1, ξ2)
ζ ′(|ξ |)

|ξ | = 0.

We are now ready to state the main theorem of this section.

Theorem 4 Let Z0 ∈ L2(2) ∩ L∞(R2), ε > 0, α ∈ (1, 2), α + β ≤ 3. Denote
γ (0) := ∫

R2 Z0(ξ)dξ . Then there exists Cε > 0 such that for any τ > 0,

‖Z(τ, ·) − γ (0)e−τ(
3−α−β

α
)G‖L2(2) ≤ Cεe−τ(

4−α−β
α

−ε). (6.2)

Assuming in addition that β > 1, we also have

‖∇[Z(τ, ·) − γ (0)e−τ(
3−α−β

α
)G]‖L2(2) ≤ Cεe−τ(

4−α−β
α

−ε). (6.3)

In particular if
∫
R2 Z0(ξ)dξ = 0, then ‖Z‖L2(2) ≤ Cεe−τ(

4−α−β
α

−ε).

12 As the Fourier transform of a radial one.
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Remark

• Wewould like to point out that the existence of solution Z (and subsequently γ (τ)

and Z̃(τ )) is not in question anymore, due to the results obtained in Theorem 3.
The purpose of this theorem is just to obtain better a priori estimates, in the form
described in above.

• The requirement β > 1, imposed so that (6.3) holds is likely only a technical one,
but we cannot remove it with our methods.

Proof (Theorem 4) According to the results in Sect. 3.4, λ0 = − 3−α−β
α

≤ 0 is an
isolated and simple eigenvalue for the operator L on L2(2), with eigenfunction G,
while the rest of the spectrum is the essential spectrum, which we have identified
before, σess(L ) = {λ : �λ ≤ − 4−α−β

α
}. We have also found the spectral projection

P0 f = 〈 f , 1〉G and Q0 = I d − P0. Thus, we can write

Z(τ, ·) = γ (τ)G(ξ) + Z̃(τ, ·), (6.4)

where γ (τ) = 〈Z(τ, ·), 1〉 = ∫
R2 Z(τ, ξ)dξ , Z̃(τ ) = Q0Z(τ, ·). Projecting the equa-

tion (2.7), with respect to the spectral decomposition provided by P0 and Q0, we
obtain an ODE for γ and a PDE for Z̃(τ ). More precisely,

∂τ γ = 〈L Z , 1〉 − 〈U · ∇Z , 1〉 = 〈−|∇|α Z + 1

α
ξ · ∇ξ Z +

(
1 + β − 1

α

)
Z , 1〉 − 〈∇(U · Z), 1〉

= α + β − 3

α
γ (τ).

Integrating this first-order ODE yields the formula γ (τ) = γ (0)e−τ
3−α−β

α . For the
PDE governing Z̃(τ ), and recalling L0 = LQ0, we obtain

Z̃τ = L0 Z̃ − Q0[U · ∇Z ] = L0 Z̃ − Q0

[
U · ∇(γ (0)e−τ

3−α−β
α G + Z̃)

]
.

In its equivalent integral formulation,

Z̃(τ ) = eτL0 Z̃(0) −
∫ τ

0
e(τ−s)L0Q0

[
U · ∇(γ (0) e−τ

3−α−β
α G + Z̃(s, ·))

]
ds.

(6.5)

Note that sinceP0∇ = 0, we have the commutation relationQ0∇ = (I d −P0)∇ =
∇, whence one can removeQ0 in front of the nonlinearity. By (3.14), we can estimate

‖Z̃(τ )‖L2(2) ≤ ‖eτL0 Z̃(0)‖L2(2)

+
∫ τ

0

∥∥∥∥e(τ−s)L0

(
(UG + UZ̃ )∇ · (γ (0) e−s 3−α−β

α G + Z̃(s)

)∥∥∥∥
L2(2)

ds

≤ ‖eτL0 Z̃(0)‖L2(2) + |γ (0)|
∫ τ

0
e−

(τ−s)
α e−s 3−α−β

α

∥∥∥∇ · e(τ−s)L0 (UZ̃ · G)

∥∥∥
L2(2)

ds

+
∫ τ

0
e−

(τ−s)
α ‖∇ · e(τ−s)L (U · Z̃)‖L2(2)ds =: I1 + I2 + I3,
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where we have used (6.1). Clearly by (3.11)

I1 ≤ Ce
−τ

(
4−β−α

α
−ε

)
‖Z̃(0)‖L2(2)

Regarding I2, we have

I2 ≤ |γ (0)|
∫ τ

0

e− (τ−s)
α e−s 3−α−β

α e
−(τ−s)

(
3−β−α

α

)
‖UZ̃ · G‖L2(2)

a(τ − s)
1
α

ds

Now to bound ‖UZ̃ · G‖L2(2) we look at two different cases, namely 0 ≤ β < 1 and
1 ≤ β < 2. If 0 ≤ β ≤ 1, then we can use Lemma 2 to get

‖UZ̃ · G‖L2(2) ≤ ‖UZ̃‖
L

2
1−β

‖(1 + |ξ |2)G‖
L

2
β

≤ C‖UZ̃‖
L

2
1−β

≤ C‖|∇|βUZ̃‖L2 ≤ C‖Z̃‖L2 ≤ ‖Z̃‖L2(2).

If 1 ≤ β < 2, then for some 0 < ε << 1 we have

‖UZ̃ · G‖L2(2) ≤ ‖UZ̃‖
L

2
ε
‖(1 + |ξ |2)G‖

L
2

1−ε

≤ C‖UZ̃‖
L

2
ε

≤ C‖|∇|βUZ̃‖
L

2
β+ε

≤ C‖Z̃‖
L

2
β+ε

≤ C‖Z̃‖L2(2).

In the last inequality, we used the fact that for 1 < p < 2, L p ↪→ L2(2) and (2.15).
Therefore

I2 ≤ C
∫ τ

0

e
−(τ−s)

(
4−β−α

α

)
e−s 3−α−β

α

(min(1, |τ − s|) 1
α

‖Z̃(s)‖L2(2)ds.

Finally, we make use of (3.15) to get

I3 ≤
∫ τ

0

e− (τ−s)
α e

−(τ−s)
(
3−β−α

α

)
‖U (s)‖L∞‖Z̃(s)‖L2(2)

a(τ − s)
1
α

ds

≤ C
∫ τ

0

e
−(τ−s)

(
4−β−α

α
−ε

)
e
−s

(
3−β−α

α

)

(min(1, |τ − s|) 1
α )

‖Z̃(s)‖L2(2) ds,

where we have used that a(τ ) ∼ min(1, τ ), the Sobolev inequality and Theorem 3 to
conclude

‖U (s)‖L∞ ≤ C

(
‖Z(s)‖

L
2
β

+ε
+ ‖Z(s)‖

L
2
β

−ε

)
≤ Ce

−s
(
3−β−α

α

)
. (6.6)

We are now in a position to use theGronwall’s inequality,more precisely the version
displayed in Lemma 6. We apply it with I (τ ) = ‖Z̃(τ )‖L2(2), μ = 4−α−β

α
− ε, σ =
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4−α−β
α

, κ = 3−α−β
α

and a = 1
α

< 1, for ε << 1. Recall that by the a priori estimates
in Theorem 3, we have

‖Z̃(τ )‖L2(2) ≤ ‖Z(τ )‖L2(2) + |γ (0)|e−τ(
3−α−β

α
)‖G‖L2(2) ≤ Ce−τ(

3−α−β
α

) ≤ C,

for all τ > 0, since 3 ≥ α + β. Thus, all the requirements of Lemma 6 are met and
we obtain the bound

‖Z̃(τ )‖L2(2) ≤ Cεe
−τ(

4−α−β
α

−ε). (6.7)

Regarding the proof of (6.3), we proceed in a similar fashion. We need to control
‖∂ Z̃‖L2(2), for large τ , say τ ≥ 1. Applying ∂ = ∂1, ∂2 to the integral equation (6.5)
and taking ‖ · ‖L2(2), we obtain

‖∂ Z̃(τ )‖L2(2) � e−τ(
4−α−β

α
−ε)‖Z̃(0)‖L2(2)

+
∫ τ

0

e− (τ−s)
α e−s 3−α−β

α

min(1, τ − s)
1
α

‖e(τ−s)L0∇(UZ̃ · G)‖L2(2)ds

+
∫ τ

0

e− (τ−s)
α

min(1, τ − s)
1
α

‖e(τ−s)L0∇(U · Z̃)‖L2(2)ds � e−τ(
4−α−β

α
−ε)

+
∫ τ

0

e−s 3−α−β
α e−(τ−s)( 5−α−β

α
−ε)

min(1, τ − s)
1
α

‖∇[UZ̃ (s)G]‖L2(2)ds

+
∫ τ

0

e−(τ−s)( 5−α−β
α

−ε)

min(1, τ − s)
1
α

‖∇[U (s)Z̃(s)]‖L2(2)ds

We estimate ‖∇[UZ̃ (s)G]‖L2(2) ≤ ‖∇UZ̃ (s)G‖L2(2) + ‖UZ̃ (s)∇G‖L2(2). Following
the strategy above, for β ≤ 1 and then for β > 1, we arrive at

‖∇[UZ̃ (s)G]‖L2(2) � ‖Z̃(s)‖L2(2) + ‖∂ Z̃(s)‖L2(2) � e−s( 4−α−β
α

−ε) + ‖∂ Z̃(s)‖L2(2),

where we have used (6.7). For the other term, it is relatively easy to bound
‖∇[U (s)Z̃(s)]‖L2(2), when β > 1,

‖∂[U (s)Z̃(s)]‖L2(2) � ‖∂U (s)‖L∞‖Z̃(s)‖L2(2) + ‖U (s)‖L∞‖∂ Z̃(s)‖L2(2)

� e−s( 3−α−β
α

)e−s( 4−α−β
α

−ε) + e
−s

(
3−β−α

α

)
‖∂ Z̃(s)‖L2(2).
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where we have used (recalling U ∼ |∇|−β Z ), ‖∂U (s)‖L∞ ≤ C(‖Z‖
L

2
β−1+ε

+
‖Z‖

L
2

β−1−ε
) ≤ Ce−s( 3−α−β

α
), (6.7), (6.6). Plugging it together yields

‖∂ Z̃(τ )‖L2(2) � e−τ(
4−α−β

α
−ε) +

∫ τ

0

e−(τ−s)( 5−α−β
α

−ε)e−s( 3−α−β
α

)

min(1, τ − s)
1
α

‖∂ Z̃(s)‖L2(2).

(6.8)

This puts us in a position to use the Gronwall’s Lemma 6. Note that in order to do
that, we need any a priori exponential bound on ‖∂ Z(τ )‖L2(2), similar to Theorem
3 for ‖Z(τ )‖L2(2). This is actually easy to achieve, one just has to differentiate the
equation and perform very coarse energy estimates.13 As a result, Lemma 6 applies
and we obtain

‖∂ Z̃(τ )‖L2(2) � e−τ(
4−α−β

α
−ε).

This is nothing but a reformulation of the statement of (6.3). ��
It is now easy to conclude the main result, Theorem 1. Realizing that L2(2) ↪→
L p, 1 ≤ p ≤ 2, one just needs to translate the L p estimates for Z , in the language of
the original variable z. In fact,

‖Z(·, τ ) − γ (0)e−τ(
3−α−β

α
)G‖L p =

[ ∫
R2

∣∣∣Z(ξ, τ ) − γ (0)e−τ(
3−α−β

α
)G(ξ)

∣∣∣p
dξ

] 1
p

=
[ ∫

R2

∣∣∣(1 + t)1+
β−1
α z(x, t) − γ (0)

(1 + t)
3−α−β

α

G

(
x

(1 + t)
1
α

) ∣∣∣p dx

(1 + t)
2
α

] 1
p

= (1 + t)1+
β−1
α

− 2
α p

∥∥∥∥∥z(t, ·) −
∫
R2 z0(x)dx

(1 + t)
2
α

G

(
·

(1 + t)
1
α

)∥∥∥∥∥
L p

.

Now if we compare this relation with the result in (6.2), we clearly see that

(1 + t)1+
β−1
α

− 2
α p

∥∥∥∥∥z(t, ·) −
∫
R2 z0(x)dx

(1 + t)
2
α

G

(
·

(1 + t)
1
α

)∥∥∥∥∥
L p

≤ Cε

(1 + t)
4−α−β

α
−ε

,

which clearly leads to proof of Theorem 1.

7 Global Dynamics of the Solutions of the BoussinesqModel

In this section, we compute the optimal decay rate in L2(2) for the solution of the
Boussinesq model (2.9). Recall that the relevant operator L has the form

L = −|∇|α + 1

α
ξ · ∇ξ + 1,

13 Which will give very inefficient exponential bounds on ‖∂ Z(τ )‖L2(2), but that is all we need to jump
start Lemma 6.
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with λ0(L ) = 1 − 2
α
and σess(L ) ⊂ {λ : �λ ≤ 1 − 3

α
}.

Theorem 5 Suppose α ∈ (1, 3
2 ) and W0,�0 ∈ Y := L2(2)(R2)∩ L∞(R2)∩ H1(R2).

Then for every δ > 0, there exists C = Cδ(‖W0‖Y , ‖�0‖Y ) > 0, such that for any
τ > 0, the solutions W ,� for the system of equations (2.9) obey

‖W − γ2(0)e
−( 3

α
−2)τ ∂1G − γ1(0)e

−( 2
α
−1)τ G‖L2(2)

+
∥∥∥� − γ2(0)e

−( 3
α
−2)τ G

∥∥∥
L2(2)

≤ Ce−2( 3
α
−2−δ)τ . (7.1)

where γ1(0) := ∫
W0(ξ)dξ , and γ2(0) := ∫

�0(ξ)dξ . In particular, if Ŵ0(0) =
�̂0(0) = 0 then

‖W‖L2(2) + ‖�‖L2(2) ≤ Cδe−2( 3
α
−2−δ)τ . (7.2)

Proof Using the spectral decomposition for L , described in Sect. 3.4, write

W (τ ) = γ1(τ )G(ξ) + W̃ (τ ) (7.3)

�(τ) = γ2(τ )G(ξ) + �̃(τ ) (7.4)

whereγ1(τ ) := 〈W (τ ), 1〉,γ2(τ ) := 〈�(τ), 1〉, W̃ = Q0W (τ, ·) and �̃ = Q0�(τ, ·).
Then, we derive the equations for γ1, γ2 as before - namely

∂τ γ1 = 〈Wτ , 1〉 = 〈L W , 1〉 − 〈U · ∇W , 1〉 + 〈∂1�, 1〉
= 〈L W , 1〉 = 〈W ,L ∗1〉 = (1 − 2

α
)〈W , 1〉 =

(
1 − 2

α

)
γ1(τ )

Similarly, ∂τ γ2 = (2 − 3
α
) γ2(τ ). Solving the ODE’s results in the formulas

γ1(τ ) = γ1(0)e
(1− 2

α
)τ , γ2(τ ) = γ2(0)e

(2− 3
α
)τ .

For the projections over the essential spectrum, we have the following PDE’s

W̃τ = L W̃ − Q0[U · ∇W − ∂1�] = L W̃ − Q0[U · ∇(γ1(0) e
(1− 2

α )τ G + W̃ )] +
+Q0[∂1(γ2(0) e(1−

2
α )τ G + �̃)],

�̃τ = (L + 1 − 1

α
)�̃ − Q0[U · ∇�] = (L + 1 − 1

α
)�̃ − Q0[U · ∇(γ2(0) e

(2− 3
α )τ G + �̃)].

We represent them via the Duhamel’s formula

W̃ (τ ) = eτL W̃0 −
∫ τ

0
e(τ−s)LQ0

[
U · ∇(γ1(0) e

(1− 2
α
)s G + W̃ (s))

]
ds

+
∫ τ

0
e(τ−s)LQ0[∂1�(s)] ds,

�̃(τ ) = eτ(L+1− 1
α
)�̃0 −

∫ τ

0
e(τ−s)(L+1− 1

α
)Q0

[
U · ∇(γ2(0) e

(2− 3
α
)s G + �̃(s))

]
ds.
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One term deserves a special attention, as it is explicit. Note that Q0∂1 = ∂1, since
P0∂1 = 0. Also for κ > 0, since G is an eigenfunction, with eigenvalue 1 − 2

α
, we

have eκL G = e(1− 2
α
)κ G. By Lemma 7,

∫ τ

0
e(τ−s)LQ0[∂1�(s)] ds =

∫ τ

0
e(τ−s)L [∂1[γ2(0) e(2− 3

α
)s G + �̃(s))]] ds

= γ2(0)
∫ τ

0
e(2− 3

α
)se− τ−s

α ∂1e
(τ−s)L [G]ds +

∫ τ

0
e− τ−s

α ∂1e
(τ−s)L �̃(s)ds

= γ2(0)∂1G
∫ τ

0
e(2− 3

α
)se− τ−s

α e(1− 2
α
)(τ−s)ds +

∫ τ

0
e− τ−s

α ∂1e
(τ−s)L �̃(s)ds

= γ2(0)(e
(2− 3

α
)τ − e(1− 3

α
)τ )∂1G +

∫ τ

0
e− τ−s

α ∂1e
(τ−s)L �̃(s)ds.

At this point, it makes more sense to introduce the new variable,

W1(τ, ξ) := W̃ (τ, ξ) − γ2(0)(e
(2− 3

α
)τ − e(1− 3

α
)τ )∂1G =: W̃ − e(2− 3

α
)τ G1(τ, ξ).

Note that the decay rate e(2− 3
α
)τ along the G1 direction is slower than the decay rate

e(1− 2
α
)τ of the evolution along the G direction. Also, G1 is basically ∂1G multiplied

by a bounded function of τ and hence an element of L2(2)∩ L∞. For future reference,

‖W1‖X − Ce(2− 3
α
)τ ≤ ‖W̃‖X ≤ ‖W1‖X + Ce(2− 3

α
)τ . (7.5)

for all Banach spaces in consideration herein.
We write the equations for W1 and �̃ as follows

W1(τ ) = eτL W̃0 −
∫ τ

0
e(τ−s)L Q0[U · ∇(γ1(0) e

(1− 2
α )s G + e(2− 3

α )s G1 + W1(s))] ds

+
∫ τ

0
e− τ−s

α ∂1e
(τ−s)L �̃(s)ds.

�̃(τ ) = eτ(L +1− 1
α )�̃0 −

∫ τ

0
e(τ−s)(L +1− 1

α )Q0[U · ∇(γ2(0) e
(2− 3

α )s G + �̃(s))] ds.

Note that U = e(1− 2
α
)sUG + e(2− 3

α
)sUG1 + UW1 and UG · G = 0.

We start the estimates for �̃

‖�̃‖L2(2) ≤ Ce(2− 4
α +δ)τ ‖�̃(0)‖L2(2)

+|γ2(0)|
∫ τ

0
e(2− 3

α )s‖e(τ−s)(L +1− 1
α )Q0[U · ∇G]‖L2(2) ds +

+
∫ τ

0
‖e(τ−s)(L +1− 1

α )Q0[U · ∇�̃(s)]‖L2(2) ds =: Ce(2− 4
α +δ)τ + J1 + J2
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For all δ > 0 small enough, there is Cδ ,

J1 =
∫ τ

0
e(2− 3

α
)s‖e(τ−s)(L+1− 1

α
)Q0[U · ∇G]‖L2(2) ds

� ‖UG1G‖L2(2)

∫ τ

0

e(2− 5
α
+δ)(τ−s)e2(2− 3

α
)s

(a(τ − s))
1
α

ds

+
∫ τ

0

e(2− 5
α
+δ)(τ−s)e(2− 3

α
)s

(min(1, |τ − s|) 1
α

‖UW1(s, ·) · ∇G‖L2(2)ds � e2(2−
3
α
)τ

+
∫ τ

0

e(2− 5
α
+δ)(τ−s)e(2− 3

α
)s

(min(1, |τ − s|) 1
α

(e(2− 3
α
)s)1−εds ≤ Cδe

2(2− 3
α
)τ .

where we have used Lemma 2, Gagliardo–Nirenberg’s, (5.6), L2(2) ↪→ L1, (5.10), to
estimate

‖UW1∇G‖L2(2) ≤ ‖UW1‖L
2
ε
‖(1 + |ξ |2)|∇G|‖

L
2

1−ε
≤ C‖UW1‖L

2
ε

≤ C‖W1‖
L

2
1+ε

≤ C‖W1‖1−ε

L2 ‖W1‖ε
L1 ≤ C(e(2− 3

α
)s)1−ε .

Similarly,

J2 =
∫ τ

0
‖e(τ−s)(L+1− 1

α
)Q0[U · ∇�̃(s)]‖L2(2) ds

≤ C
∫ τ

0

e(2− 5
α
+δ)(τ−s)

(min(1, |τ − s|) 1
α

‖U (s)‖L∞‖�̃(s)‖L2(2)ds

Thus, we need a good estimate of ‖U (s)‖L∞ . We have by (2.2)

‖U (s, ·))‖L∞ ≤ C(‖W (s, ·)‖L2+ε + ‖W (s, ·)‖L2−ε ).

By the a priori estimate (5.9), we have a good control of ‖W (s, ·)‖L2+ε , namely

‖W (s, ·)‖L2+ε ≤ Ce(2− 3
α
)s . For ‖W (s, ·)‖L2−ε , we can control it by (5.10), but this is

not efficient for our arguments—we need some, however small, decay in s, which we
can then input in the Gronwall’s, (2.20). To achieve that, we proceed by Gagliardo–
Nirenberg’s estimate. Taking into account once again L2(2) ↪→ L1, and the bounds
(5.6),

‖W (s, ·)‖L2−ε ≤ ‖W (s, ·)‖
2−2ε
2−ε

L2 ‖W (s, ·)‖
ε

2−ε

L1 ≤ C(e(2− 3
α
)s)

2−2ε
2−ε .

All in all, for all δ > 0,

‖U (s, ·)‖L∞ ≤ Cδe
−( 3

α
−2−δ)s . (7.6)
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This results in the following estimates for J2

J2 ≤
∫ τ

0

e

(
2− 5

α
+δ

)
(τ−s)

e
−

(
3
α
−2−δ

)
s

(min(1, |τ − s|) 1
α

‖�̃(s)‖L2(2)ds

Combining all the estimates obtained about14 ‖�̃(s)‖L2(2), , we have

‖�̃(τ )‖L2(2) ≤ Ce−2( 3
α
−2−δ)τ +

∫ τ

0

e

(
2− 5

α
+δ

)
(τ−s)

e−( 3
α
−2−δ)s

(min(1, |τ − s|) 1
α

‖�̃(s)‖L2(2)ds

Applying the Gronwall’s, more precisely Lemma 6, we conclude

‖�̃(τ )‖L2(2) ≤ Cδe
−( 3

α
−2−δ)τ ,

as stated. For W1, we get

‖W1‖L2(2) ≤ Ce−( 3
α
−1−δ)τ‖W̃0‖L2(2)

+
∫ τ

0
e− (τ−s)

α ‖∇e(τ−s)L0 [U · (γ1(0)e
(1− 2

α
)s G + e(2− 3

α
)s G1) + U · W1]‖L2(2)ds

+
∫ τ

0
e− (τ−s)

α ‖∂1e(τ−s)L0�̃(s)‖L2(2)ds � e(1− 3
α
+δ)τ

+
∫ τ

0

e(1− 3
α
+δ)(τ−s)e(2− 3

α
)s‖U (|G| + |G1|)‖L2(2)

(a(τ − s))
1
α

ds

+
∫ τ

0

e(1− 3
α
+δ)(τ−s)‖U‖L∞‖W1‖L2(2)

(a(τ − s))
1
α

ds

+
∫ τ

0

e(1− 4
α
+δ)(τ−s)‖�̃(s)‖L2(2)

(a(τ − s))
1
α

ds = e(1− 3
α
+δ)τ + I1 + I2 + I3

For I1, we have

‖U (|G| + |G1|)‖L2(2) ≤ ‖(e(1− 2
α
)sUG + e(2− 3

α
)sUG1)(|G| + |G1|)‖L2(2)

+‖UW1(|G| + |G1|)‖L2(2).

The first term is easily estimated, since G, G1 ∈ L2(2) (whence UG, UG1 ∈ L∞ by
Sobolev embedding and Lemma 2)

‖(e(1− 2
α
)sUG + e(2− 3

α
)sUG1)(|G| + |G1|)‖L2(2) ≤ Ce(2− 3

α
)s,

14 Note that with our restrictions on α, ( 3α − 2) < 4
α − 2, so this is the slowest rate on the right-hand sides

of ‖�̃(τ )‖L2(2).
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whence the contribution of these terms is no more than

C
∫ τ

0

e(1− 3
α
+δ)(τ−s)e2(2− 3

α
)s

min(1, |τ − s|) 1
α

ds ≤ Ce2τ(2− 3
α
).

For UW1 terms, we can use Lemma 2, the Sobolev inequality and L2(2) ↪→ L
2

1+ε to
get

‖UW1(s)(|G| + |G1|)‖L2(2) = ‖UW1 · (1 + |ξ |2)(|G| + |G1|)‖L2

≤ ‖UW1‖L
2
ε
‖(1 + |ξ |2)(|G| + |G1|)‖

L
2

1−ε

≤ C‖UW1‖L
2
ε

≤ C‖∇UW1‖
L

2
1+ε

≤ C‖W1‖
L

2
1+ε

≤ C‖W1(s)‖L2(2).

All together, the contribution of I1 is estimated by

I1 ≤ Ce−2( 3
α
−2)τ +

∫ τ

0

e−( 3
α
−1−δ)(τ−s)e−( 3

α
−2)s

min(1, |τ − s|) 1
α

‖W1(s)‖L2(2)ds

Regarding I2, we first need an appropriate estimate on ‖U‖L∞ , which is fortunately
already given by (7.6). This then gives the bound for I2,

I2 ≤
∫ τ

0

e−( 3
α
−1−δ)(τ−s)e−( 3

α
−2−δ)s

min(1, |τ − s|) 1
α

‖W1(s)‖L2(2)ds

Combining all estimates for ‖W1(τ )‖L2(2) yields

‖W1(τ, ·)‖L2(2) ≤ Ce−2( 3
α
−2)τ +

∫ τ

0

e−( 3
α
−1−δ)(τ−s)e−( 3

α
−2−δ)s

min(1, |τ − s|) 1
α

‖W1(s)‖L2(2)ds.

Applying Lemma 6, with μ = 2( 3
α

− 2), σ = ( 3
α

− 1 − δ), κ = ( 3
α

− 2 − δ) yields

‖W1(τ, ·)‖L2(2) ≤ Ce−2( 3
α
−2)τ .

This is the statement of (7.1) and Theorem 5 is proved in full. ��
Acknowledgements The authors would like to take the opportunity to thank Ryan Goh and Jiahong Wu
for stimulating discussions regarding these topics.
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Appendix A. Sobolev Embedding at L∞: Relation (2.2)

Before we start the proof of (2.2), we recall the following Bernstein inequality. Let g
satisfy

supp ĝ ⊂ {ξ ∈ Rn : C12
k ≤ |ξ | ≤ C22

k+1}

for some k, and constants C1 ≤ C2. Then for any α ≥ 0 and 1 ≤ p ≤ q ≤ ∞,

C12
αk‖g‖Lq (Rn) ≤ ‖|∇|αg‖Lq (Rn) ≤ C22

αk+nk( 1
p − 1

q )‖g‖L p(Rn).

Now let P̂k f (ξ) = ψ̂(2−kξ ) f̂ (ξ), where ψ̂ ∈ C∞, supp ψ̂ ⊆ {ξ ∈ Rn : ξ ∈ ( 12 , 2)}.
Then

‖(∇⊥)−β f ‖L∞ ≤
∞∑

k=0

‖Pk((∇⊥)−β f )‖L∞ +
∞∑

k=0

‖P−k((∇⊥)−β f )‖L∞ .

We make use of the above Bernstein inequality several times to control each of these
terms. Indeed,

∞∑
k=0

‖Pk((∇⊥)−β f )‖L∞ ≤
∞∑

k=0

2−kβ‖Pk f ‖L∞ ≤
∞∑

k=0

2
−kβ+nk( 1

n
β

+δ
)‖Pk f ‖

L
n
β

+δ

≤ ‖ f ‖
L

n
β

+δ

∞∑
k=0

2−kβ(1− n
n+βγ

) ≤ C‖ f ‖
L

n
β

+δ .

In the same way,

∞∑
k=0

‖P−k((∇⊥)−β f )‖L∞ ≤
∞∑

k=0

2kβ‖P−k f ‖L∞ ≤
∞∑

k=0

2
kβ−nk( 1

n
β

−δ
)‖Pk f ‖

L
n
β

−δ

≤ ‖ f ‖
L

n
β

−δ

∞∑
k=0

2kβ(1− n
n−βγ

) ≤ C‖ f ‖
L

n
β

−δ .

Appendix B. Generalized Gronwall’s Estimate: Lemma 6

The proof of Lemma 6 is straightforward, by a bootstrapping argument. We show that
every Lyapunov exponent less than −μ can be bootstrapped lower. First, relabeling
I (τ ) → (1 + |A1| + |A2| + |A3)

−1 I (τ ), we may assume without loss of generality
that A1 = A2 = A3 = 1. Next, assume that γ < μ is a Lyapunov exponent, that
is I (τ ) ≤ Ce−γ τ . We know by the a priori assumed boundedness of I (τ ) there is
such an exponent. Applying this in (2.20), we obtain an improved estimate for I (τ ).
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Indeed,

I (τ ) ≤ e−μτ + Ce−στ

∫ τ

0

es(σ−κ−γ )

(min(1, |τ − s|)a)
ds

If σ − κ − γ �= 0, we have for τ > 1,

∫ τ

0

es(σ−κ−γ )

|(min(1, |τ − s|)a ds ≤
∫ τ−1

0
es(σ−κ−γ )ds + eτ(σ−κ−γ )e|σ−κ−γ |

∫ τ

τ−1

1

|τ − s|a ds

≤ e(τ−1)(σ−κ−γ ) − 1

σ − κ − γ
+ Ca,σ,κ,γ e

τ(σ−κ−γ ).

whence the bound

I (τ ) ≤ e−μτ + Ca,σ,κ,γ e
−τ(κ+γ ).

It follows that min(μ, γ + κ) > γ is a new, better Lyapunov exponent than γ .
In general, we can keep σ − κ − γ away from zero (and so the previous argument

valid in all cases), if we readjust the γ if necessary.
In practice, starting with γ = 0, we jump immediately to κ by the previous argu-

ment, since σ −κ > 0, by assumption. Since κ < μ, we can apply the same argument
again with γ = κ . At this point, either 2κ > μ and we finish off (by readjusting
slightly γ by taking it smaller, like γ = 2κ

3 , if it happens that, say |σ − 2κ| ≤ κ
2 ).

If not, that is if 2κ < μ, take γ = 2κ to be our new Lyapunov exponent and repeat.
Eventually, for some n0, n0κ < μ ≤ (n0+1)κ andwewill reach a Lyapunov exponent
μ.

Appendix C. Commutator Estimates withWeights

In this section, we prove (4.8) and (5.13).

C.1. Proof of (4.8)

Recall, that for s ∈ (0, 2)

[|∇|s, g] f (x) = |∇|s(g f ) − g |∇|s f

= cs

∫
f (x)g(x) − f (y)g(y)

|x − y|2+s
dy − g(x)cs

∫
f (x) − f (y)

|x − y|2+s
dy

= cs

∫
f (y)(g(x) − g(y))

|x − y|2+s
dy.
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Introduce a smooth partition of unity, that is a functionψ ∈ C∞
0 (R), suppψ ⊂ ( 12 , 2),

so that

∞∑
k=−∞

ψ(2−k |ξ |) = 1, ξ ∈ R2, ξ �= 0.

Introduce another C∞
0 function �(z) = z2ψ(z), so that we can decompose

|ξ |2 =
∞∑

k=−∞
|ξ |2ψ(2−k |ξ |) =

∞∑
k=−∞

22k�(2−k |ξ |).

We can then write

F(ξ) := [|∇| α
2 , |ξ |2] f

∑
k

22k[|∇| α
2 , �(2−k ·)] f (ξ)

=
∑

k

22k
∫

f (y)(�(2−kξ) − �(2−k y))

|ξ − y|2+ α
2

dy.

Introducing

Fk :=
∫ | f (y)||�(2−kξ) − �(2−k y)|

|ξ − y|2+ α
2

dy,

we need to control

‖F‖2L2 =
∑

l

∫
|ξ |∼2l

|F(ξ)|2dξ =
∑

l

∫
|ξ |∼2l

∣∣∣∣∣
∑

k

22k Fk(ξ)

∣∣∣∣∣
2

dξ =

=
∑

l

∫
|ξ |∼2l

∣∣∣∣∣
∑

k>l+10

22k Fk(ξ)

∣∣∣∣∣
2

dξ +
∑

l

∫
|ξ |∼2l

∣∣∣∣∣
l+10∑

k=l−10

22k Fk(ξ)

∣∣∣∣∣
2

dξ +

+
∑

l

∫
|ξ |∼2l

∣∣∣∣∣
∑

k<l−10

22k Fk(ξ)

∣∣∣∣∣
2

dξ =: K1 + K2 + K3

We first consider the cases k > l +10. One can estimate easily Fk point-wise. More
specifically, since in the denominator of the expression for Fk , we have |ξ − y| ≥
1
2 |ξ | ≥ 2k−3,

|Fk(ξ)| ≤ 2−k(2+ α
2 )

∫
| f (y)||�(2−k y)|dy ≤ C2−k(1+ α

2 )‖ f ‖L2(|y|∼2k),
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whence

K1 ≤
∑

l

22l
∑

k1>l+10

∑
k2>l+10

2k1(1− α
2 )‖ f ‖L2(|y|∼2k1 )2

k2(1− α
2 )‖ f ‖L2(|y|∼2k2 )

≤
∑
k1

∑
k2

22min(k1,k2)2k1(1− α
2 )‖ f ‖L2(|y|∼2k1 )2

k2(1− α
2 )‖ f ‖L2(|y|∼2k2 )

≤ C
∑

k

2k(4−α)‖ f ‖2L2(|y|∼2k )
≤ C‖|ξ |2− α

2 f ‖2.

where we have used
∑

l:l<min(k1,k2)−10 2
2l ≤ C22min(k1,k2).

For the case k < l − 10, we perform similar argument, since

|Fk(ξ)| ≤ C2−l(2+ α
2 )2k‖ f ‖L2(|y|∼2k).

So,

K3 ≤ C
∑

l

22l2−l(4+α)
∑

k1<l−10

∑
k2<l−10

23k1‖ f ‖L2(|y|∼2k1 )2
3k2‖ f ‖L2(|y|∼2k2 )

≤ C
∑
k1

∑
k2

23k1‖ f ‖L2(|y|∼2k1 )2
3k2‖ f ‖L2(|y|∼2k2 )2

−(2+α)max(k1,k2)

≤ C
∑

k

2k(4−α)‖ f ‖2L2(|y|∼2k)
≤ C‖|ξ |2− α

2 f ‖2.

Finally, for the case |l − k| ≤ 10, we use

|�(2−kξ) − �(2−k y)| ≤ 2−k |ξ − y||∇�(2−k(ξ − y))| ≤ C2−k |ξ − y|,

so that

|Fk(ξ)| ≤ C2−k
∫

|y|∼2k

| f (y)|
|ξ − y|1+ α

2
dy = C2−k | f |χ|y|∼2k ∗ 1

| · |1+ α
2
.

Thus, by Hölder’s

K2 ≤ C
∑

k

∫
|ξ |∼2k

22k
∣∣∣∣| f |χ|y|∼2k ∗ 1

| · |1+ α
2

∣∣∣∣
2

dξ

≤ C
∑

k

22k‖| f |χ|y|∼2k ∗ 1

| · |1+ α
2
‖2L2(|ξ |∼2k)

≤ C
∑

k

2k(4−α)‖| f |χ|y|∼2k ∗ 1

| · |1+ α
2
‖2

L
4
α (|ξ |∼2k )

≤ C
∑

k

2k(4−α)‖ f ‖2L2(|ξ |∼2k)
≤ C‖|ξ |2− α

2 f ‖2.
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where we have used the Hausdorff–Young’s inequality

∥∥∥∥ f χ|y|∼2k ∗ 1

| · |1+ α
2

∥∥∥∥
L

4
α

≤ C

∥∥∥∥ 1

| · |1+ α
2

∥∥∥∥
L

4
2−α

,∞
‖ f ‖L2(|ξ |∼2k) ≤ C‖ f ‖L2(|ξ |∼2k).

C.2. Proof of (5.13)

For the proof of (5.13), recall the representation formula (2.11). We will reduce to the
same expressions as above. With the partition of unity displayed above, write

[∂1|∇|−a, |ξ |2] f (ξ) = ca

∞∑
k=−∞

22k [∂1|∇|−a, ψ(2−k ·)] f

= ca

∞∑
k=−∞

22k

[
∂ξ1

∫
R2

ψ(2−k y) f (y)

|ξ − y|2−a
dy

−ψ(2−kξ)∂ξ1

∫
R2

f (y)

|ξ − y|2−a
dy

]

= ca(a − 2)
∞∑

k=−∞
22k

∫
R2

ξ1 − y1
|ξ − y|

(ψ(2−k y) − ψ(2−kξ)) f (y)

|ξ − y|2−a
dy

Taking absolute values and estimating yields the bound

|[∂1|∇|−a, |ξ |2] f (ξ)| ≤ Ca

∞∑
k=−∞

22k
∫
R2

|ψ(2−k y) − ψ(2−kξ)|| f (y)|
|ξ − y|3−a

dy

This is of course exactly the same expression as before for the Fk , with a := 1 − α
2 .

Therefore, we can apply the same estimates to obtain

‖[∂1|∇|−a, |ξ |2] f ‖L2(R2) ≤ C‖|ξ |1+a f ‖L2 .

This establishes (5.13).

Appendix D. Semigroup Estimates: Proposition (3)

Proof We have

‖∂γ (eτL f )‖2
L2(2)

≤
∫
R2

|∂γ (eτL f )|2dξ +
∫
R2

||ξ |2∂γ (eτL f )|2dξ

= e2(1−
3−β
α )τ

(∫
R2

|pγ [e−a(τ )|p|α f̂ (pe− τ
α )]|2dp +

∫
R2

|�p[pγ e−a(τ )|p|α f̂ (pe− τ
α )]|2dp

)

= e2(1−
3−β
α )τ

(∫
R2

|pγ [e−a(τ )|p|α f̂ (pe− τ
α )]|2dp + γ 2

∫
R2

|p|γ |−1∇p[e−a(τ )|p|α f̂ (pe− τ
α )]|2dp

+
∫
R2

|pγ �p[e−a(τ )|p|α f̂ (pe− τ
α )]|2dp

)
.
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At this point, it is clear that it is better to divide both sides by e2(1−
3−β
α

)τ . Then, we
want to control the right-hand side of the following

‖∂γ (eτL f )‖2
L2(2)

e2(1−
3−β
α

)τ
≤

∫
R2

|pγ [e−a(τ )|p|α f̂ (pe− τ
α )]|2dp

+ γ 2
∫
R2

||p||γ |−1∇p[e−a(τ )|p|α f̂ (pe− τ
α )]|2dp

+
∫
R2

|pγ �p[e−a(τ )|p|α f̂ (pe− τ
α )]|2dp := J1 + J2 + J3.

��

D.1. Estimate for J1

To control J1 we divide the argument into two different cases, τ ≤ 1 and τ > 1. In
the case of τ ≤ 1, we have

J1 =
∫
R2

|pγ [e−a(τ )|p|α f̂ (pe− τ
α )]|2dp =

∫
R2

|q|2|γ |e−2a(τ )|q·e τ
α |α | f̂ (q)|2dq

≤
∫

{q:0≤2a(τ )|q·e τ
α |α≤1}

|q|2|γ |e−2a(τ )|q·e τ
α |α | f̂ (q)|2dq

+
∞∑
j=1

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

|q|2|γ |e−2a(τ )|q·e τ
α |α | f̂ (q)|2dq

= J 1
1 + J 2

1 .

We can estimate, since τ ≤ 1,

J 1
1 ≤

∫
0≤|q|≤ e− τ

α

(2a(τ ))
1
α

|q|2|γ || f̂ (q)|2dq ≤ 1

(a(τ ))
2|γ |
α

‖ f ‖2L2 ≤ C
e

−2τ
α

(1−ε)

(a(τ ))
2|γ |
α

‖ f ‖2L2(2).

We treat J 2
1 in a similar manner. Indeed, again for τ ≤ 1,

J 2
1 ≤

∞∑
j=1

e− j
∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q|2|γ || f̂ (q)|2dq

≤ C

(a(τ ))
2|γ |
α

∞∑
j=1

e−( j+1)( j + 1)
2|γ |
α

∫

j≤2a(τ )|qe τ
α |α≤( j+1)

| f̂ |2dq
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≤ C

(a(τ ))
2|γ |
α

‖ f ‖2L2

∞∑
j=1

e−( j+1)( j + 1)
2|γ |
α ≤ C

e− 2τ
α

(1−ε)

(a(τ ))
2|γ |
α

‖ f ‖2L2(2)

After putting together the estimates for J 1
1 and J 2

1 , we get J1 ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

a(τ )
2|γ |
α

.

Regarding the case τ > 1, first note that in this range of τ , a(τ ) ≥ 1
2 . Moreover,

| f̂ (q) − f̂ (0)| ≤ 2‖ f̂ ‖L∞ , | f̂ (q) − f̂ (0)| ≤ |q|‖∇ f̂ ‖L∞ ,

whence by interpolation, we conclude that for every ε > 0, we have

| f̂ (q) − f̂ (0)| ≤ Cε |q|1−ε‖|∇|1−ε f̂ ‖L∞ ≤ Cε |q|1−ε‖ f ‖L2(2), (D.1)

where in the last inequality we have used that by Hausdorff–Young’s ‖|∇|1−ε f̂ ‖L∞ ≤∫
R2 |ξ |1−ε | f (ξ)|dξ � ‖ f ‖L2(2). Therefore,

J1 =
∫
R2

|pγ [e−a(τ )|p|α f̂ (pe− τ
α )]|2dp = e

2τ
α (|γ |+1)

∫
R2

e−2a(τ )|q·e τ
α |α |q|2|γ || f̂ (q)|2dq

≤ e
2τ
α (|γ |+1)‖ f ‖2

L2(2)

∫
R2

e−2a(τ )|q·e τ
α |α |q|2(|γ |+1−ε)dq

≤ e
2τ
α (|γ |+1)‖ f ‖2

L2(2)

∫

{q:2a(τ )|q·e τ
α |α≤1}

e−2a(τ )|q·e τ
α |α |q|2(|γ |+1−ε)dq

+e
2τ
α (|γ |+1)‖ f ‖2

L2(2)

∞∑
j=1

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

e−2a(τ )|q·e τ
α |α |q|2(|γ |+1−ε)dq = J11 + J21 .

Now

J 1
1 = e

2τ
α

(|γ |+1)‖ f ‖2L2(2)

∫

{q:2a(τ )|q·e τ
α |α≤1}

e−2a(τ )|q·e τ
α |α |q|2(|γ |+1−ε)dq

≤ e
2τ
α

(|γ |+1)‖ f ‖2L2(2)

∫

{q:2a(τ )|q·e τ
α |α≤1}

|q|2(|γ |+1−ε)dq ≤

≤ Ce
2τ
α

(|γ |+1)‖ f ‖2L2(2)

e− τ
α

(2a(τ ))
1
α∫

0

r2(|γ |+1−ε)+1dq ≤ C
e− 2τ

α
(1−ε)‖ f ‖2

L2(2)

a(τ )
2
α
(|γ |+2−ε)

≤ C
e− 2τ

α
(1−ε)‖ f ‖2

L2(2)

a(τ )
2|γ |
α

.
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In a similar way,

J 2
1 = e

2τ
α

(|γ |+1)‖ f ‖2L2(2)

∞∑
j=1

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

e−2a(τ )|q·e τ
α |α |q|2(|γ |+1−ε)dq

≤ e
2τ
α

(|γ |+1)‖ f ‖2L2(2)

∞∑
j=1

e− j
∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

|q|2(|γ |+1−ε)dq

≤ e
2τ
α

(|γ |+1)‖ f ‖2L2(2)

∞∑
j=1

e− j
∫ (

j+1
a(τ )

)
1
α e− τ

α

(
j

a(τ )
)
1
α e− τ

α

r2(|γ |+1−ε)+1dr ≤

≤ C
e− 2τ

α
(1−ε)

a(τ )
2
α
(|γ |+2−ε)

‖ f ‖2L2(2)

∞∑
j=1

e− j ( j + 1)2(|γ |+2−ε) ≤ C
e− 2τ

α
(1−ε)‖ f ‖2

L2(2)

a(τ )
2|γ |
α

.

Therefore for τ > 1 we have J1 ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

a(τ )
2|γ |
α

.

D.2.Estimate for J2

To control J2 first note that

∇e−a(τ )|p|α = −α a(τ ) p|p|α−2e−a(τ )|p|α . (D.2)

Therefore,

J2 ≤ α2|γ |2a(τ )2
∫
R2

||p||γ |−1|p|α−1 e−a(τ )|p|α f̂ (pe
−τ
α )|2dp

+|γ |2e−2τ
α

∫
R2

|p|γ | e−a(τ )|p|α · (∇ f̂ )(pe
−τ
α )|2dp := I1 + I2.

D.2.1. Estimate for I1

To control the first term I1 we proceed as follows

I1
a(τ )2

≤
∫
R2

e−2a(τ )|p|α |p|2(α+|γ |−2)| f̂ (p · e− τ
α )|2dp

= e
2τ
α (α+|γ |−1)

∫
R2

e−2a(τ )|q·e τ
α |α |q|2(α+|γ |−2)| f̂ (q)|2dq

≤ e
2τ
α (α+|γ |−1)

∫

{q:2a(τ )|q·e τ
α |α≤1}

e−2a(τ )|q·e τ
α |α |q|2(α+|γ |−2)| f̂ (q)|2dq

+e
2τ
α (α+|γ |−1)

∞∑
j=1

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

e−2a(τ )|q·e τ
α |α |q|2(α+|γ |−2)| f̂ (q)|2dq
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= I 11 + I 21 .

We can estimate

I 11 ≤ e
2τ
α

(α+|γ |−1)
∫

|q|≤ e− τ
α

(2a(τ ))
1
α

|q|2(α+|γ |−2)| f̂ (q)|2dq

= e
2τ
α

(α+|γ |−1)
∫

|q|≤ e− τ
α

(2a(τ ))
1
α

|q|2(α+|γ |−2)| f̂ (q) − f̂ (0)|2dq

Using the relation (D.1), we obtain

I 11 ≤ e
2τ
α

(α+|γ |−1)‖ f ‖2L2(2)

∫
|q|≤ e− τ

α

(2a(τ ))
1
α

|q|2(α+γ−2)|q|2(1−ε)dq

= Ce
2τ
α

(α+|γ |−1)‖ f ‖2L2(2)

∫ e− τ
α

(2a(τ ))
1
α

0
r2(α+|γ |−ε)−1 dr = C

e− 2τ
α

(1−ε)‖ f ‖2
L2(2)

a(τ )2(1+
|γ |−ε

α
)

.

therefore, recalling that a(τ ) ≤ 1, I 11 ≤ e− 2τ
α (1−ε)‖ f ‖2

L2(2)

a(τ )2(1+
|γ |
α )

.

We treat I 21 in a similar manner. Again, using (D.1),

I 21 ≤ e
2τ
α

(α+|γ |−1)
∞∑
j=1

e− j
∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q|2(α+|γ |−2)| f̂ (q) − f̂ (0)|2dq

≤ e
2τ
α

(α+|γ |−1)
∞∑
j=1

e− j
∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q|2(α+|γ |−2)|q|2(1−ε)‖ f ‖2L2(2)dq

≤ e
2τ
α

(α+|γ |−1)‖ f ‖2L2(2)

∞∑
j=1

e− j
∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q|2(α+|γ |−1−ε)dq

≤ C
e
2τ
α

(α+|γ |−1)‖ f ‖2
L2(2)

a(τ )2(1+
|γ |
α

)

∞∑
j=1

e− j j
2(α+|γ |−ε)

α e− 2τ
α

(α+|γ |−ε) ≤ C
e− 2τ

α
(1−ε)‖ f ‖2

L2(2)

a(τ )2(1+
|γ |
α

)
.

After putting together the estimates for I 11 and I 21 we get I1 ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

a(τ )
2|γ |
α

.
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D.2.2. Estimate for I2

I2 ≤ Ce− 2τ
α

∫
R2

| |p||γ |−1e−a(τ )|p|α (∇ f̂ )(pe
−τ
α )|2dp

= e
2τ
α

(|γ |−1)
∫
R2

|q|2(|γ |−1)e−2a(τ )|q·e τ
α |α |∇ f̂ (q)|2dq

≤ e
2τ
α

(|γ |−1)
∞∑
j=0

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

(
|q|2(|γ |−1)e−2a(τ )|q·e τ

α |α |∇ f̂ (q)|2dq

)

= I 12 + I 22 .

For I 12 , we have by Hölder’s

I 12 ≤ e
2τ
α

(|γ |−1)
∫
0≤|q|≤ e−τ

α

(2a(τ ))
1
α

|q|2(|γ |−1)|∇ f̂ (q)|2dq

≤ Ce
2τ
α

(|γ |−1)‖∇ f̂ ‖2
L

2
ε

( ∫
0≤|r |≤ e−τ

α

(2a(τ ))
1
α

r
2(|γ |−1)
1−ε

+1dr

)1−ε

= Ce
2τ
α

(|γ |−1)‖∇ f̂ ‖2
L

2
ε

e− 2τ
α

(|γ |−1)− 2τ
α

(1−ε)

(2a(τ ))
2|γ |
α

− 2ε
α

≤ C
e− 2τ

α
(1−ε)

(a(τ ))
2|γ |
α

‖∇ f̂ ‖2
L

2
ε
.

By Sobolev embedding, we have ‖∇ f̂ ‖2
L

2
ε

≤ C‖∇ f̂ ‖2
H1−ε (R2)

≤ C‖(1 − �) f̂ ‖2
L2 =

C‖ f ‖2
L2(2)

. Therefore

I 12 ≤ C
e− 2τ

α
(1−ε)

(a(τ ))
2|γ |
α

‖ f ‖2L2(2).

For I 22 , we estimate

I 22 ≤ e
2τ
α

(|γ |−1)
∞∑
j=1

e− j
∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q|2(|γ |−1)|∇ f̂ |2dq

≤ e
2τ
α

(|γ |−1)‖∇ f̂ ‖2
L

2
ε

∞∑
j=1

e− j
[ ∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q| 2(|γ |−1)
1−ε dq

]1−ε

.

But,

∫
j≤2a(τ )|qe τ

α |α≤( j+1)
|q| 2(|γ |−1)

1−ε dq ≤ C

(
j

a(τ )

) 2(|γ |−1)
1−ε

+2

e
− 2τ

α (|γ |−1)
1−ε

− 2τ
α ,
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so using again the bound ‖∇ f̂ ‖
L

2
ε

≤ C‖ f ‖L2(2),

I 22 ≤ Ce
2τ
α

(|γ |−1)‖ f ‖2L2(2)

∞∑
j=1

e− j
[ (

j

a(τ )

) 2(|γ |−1)
1−ε

+2

e
− 2τ

α (α+|γ |−1)
1−ε

− 2τ
α

]1−ε

≤ C
e− 2τ (1−ε)

α ‖ f ‖2
L2(2)

a(τ )2
|γ |
α

−2ε

∞∑
j=1

e− j j2α+2|γ |−2ε ≤ C
e− 2τ

α
(1−ε)‖ f ‖2

L2(2)

a(τ )
2|γ |
α

.

Hence after putting together the estimates for I 12 and I 22

we have I2 ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

(a(τ ))
2|γ |
α

.

D.3. Estimate for J3

J3 =
∫
R2

|p|γ |�p[e−a(τ )|p|α f̂ (pe− τ
α )]|2dp ≤

∫
R2

|p|γ | �p[e−a(τ )|p|α ] f̂ (pe
−τ
α )|2dp

+2
∫
R2

|p|γ | ∇e−a(τ )|p|α · ∇( f̂ (pe
−τ
α ))|2dp +

∫
R2

|p|γ | e−a(τ )|p|α �p( f̂ (pe
−τ
α ))|2dp.

By (D.2) we have,

�p[e−a(τ )|p|α ] =
2∑

j=1

∂ j

(
− α a(τ ) p j |p|α−2e−a(τ )|p|α

)

= −α a(τ )

2∑
j=1

(
|p|α−2 + (α − 2)

p2j
|p| |p|α−3 + p j |p|α−2(−α a(τ ))

p j

|p| |p|α−1
)
e−a(τ )|p|α

=
(

− α2 a(τ )|p|α−2 + α2 a(τ )2|p|2(α−1)
)
e−a(τ )|p|α .

Hence, by allowing for a slight abuse of notations by using γ , which is a multi-index
instead of |γ |, its length,

J3 � a(τ )2
∫
R2

| |p|α+|γ |−2e−a(τ )|p|α f̂ (pe− τ
α )|2dp

+ a(τ )4
∫
R2

| |p|2(α−1)+|γ |e−a(τ )|p|α f̂ (pe− τ
α )|2dp

+ a(τ )2e− 2τ
α

∫
R2

| |p|α+|γ |−1e−a(τ )|p|α (∇ f̂ )(pe− τ
α )|2dp

+ e− 4τ
α

∫
R2

||p|γ e−a(τ )|p|α (� f̂ )(pe− τ
α )|2dp

:= I3 + I4 + I5 + I6,
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D.3.1. Estimate for I3 and I4

I3
a(τ )2

≤
∫
R2

e−2a(τ )|p|α |p|2(α+|γ |−2)| f̂ (p · e− τ
α )|2dp

= e
2τ
α

(α+|γ |−1)
∫
R2

e−2a(τ )|q·e τ
α |α |q|2(α+|γ |−2)| f̂ (q)|2dq

≤ e
2τ
α

(α+|γ |−1)
∫

{q:2a(τ )|q·e τ
α |α≤1}

e−2a(τ )|q·e τ
α |α |q|2(α+|γ |−2)| f̂ (q)|2dq

+ e
2τ
α

(α+|γ |−1)
∞∑
j=1

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

e−2a(τ )|q·e τ
α |α |q|2(α+|γ |−2)| f̂ (q)|2dq

= I 13 + I 23 .

By comparing I3 with I1 it is clear that I 13 = I 11 and I 23 = I 21 , and we treat them in

the same way. Hence I3 ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

a(τ )
2|γ |
α

.

The estimate for I4 proceeds in an identical manner, but we have a slightly different
power of p, so we present it here briefly.

I4
a(τ )4

≤
∫
R2

| |p|2(α−1)+|γ |e−a(τ )|p|α f̂ (pe
−τ
α )|2dp

= e
τ
α (4α+2|γ |−2)

∞∑
j=0

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

(
e−2a(τ )|q·e τ

α |α |q|4(α−1)+2|γ || f̂ (q)|2dq

)

:= I 24 + I 24 .

Denoting by I 14 the integral corresponding to 2a(τ )|q · e τ
α |α ≤ 1 and the rest with I 22 ,

we have by (D.1), | f̂ (q)| = | f̂ (q) − f̂ (0)| ≤ C |q|1−ε‖ f ‖L2(2),

I 14 ≤ e
τ
α (4α+2|γ |−2)

∫

{q:2a(τ )|q·e τ
α |α≤1}

|q|4(α−1)+2|γ || f̂ (q)|2dq

≤ e
τ
α (4α+2|γ |−2)‖ f ‖2

L2(2)

∫

{q:2a(τ )|q·e τ
α |α≤1}

|q|4(α−1)+2|γ |+2(1−ε)dq ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

(a(τ ))4+
2|γ |
α

.

For I 24 , we have

I 24 ≤ e
τ
α (4α+2|γ |−2)

∞∑
j=1

∫
{q: j≤2a(τ )|q·e τ

α |α≤ j+1}
|q|4(α−1)+2|γ |e−2a(τ )|q·e τ

α |α | f̂ (q)|2dq

≤ e
τ
α (4α+2|γ |−2)

∞∑
j=1

e− j
∫
{q: j≤2a(τ )|q·e τ

α |α≤ j+1}
|q|4(α−1)+2|γ || f̂ (q) − f̂ (0)|2dq
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≤ e
τ
α (4α+2|γ |−2)‖ f ‖2

L2(2)

∞∑
j=1

e− j
∫
{q: j≤2a(τ )|q·e τ

α |α≤ j+1}
|q|4(α−1)+2|γ ||q|2(1−ε)dq

≤ e
τ
α (4α+2|γ |−2)‖ f ‖2

L2(2)

e− τ
α (4α+2|γ |−2ε)

(a(τ ))4+
2|γ |
α − 2ε

α

∞∑
j=1

e− j j2(2α+|γ |−ε) ≤ C
e− 2τ

α (1−ε)

(a(τ ))4+
2|γ |
α

‖ f ‖2
L2(2)

.

Therefore I4 ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

(a(τ ))
2|γ |
α

.

D.4. Estimate for I5

I5
a(τ )2

≤ Ce− 2τ
α

∫
R2

| |p|α+|γ |−1e−a(τ )|p|α (∇ f̂ )(pe
−τ
α )|2dp

= e
2τ
α (α+|γ |−1)

∫
R2

|q|2(α+|γ |−1)e−2a(τ )|q·e τ
α |α |∇ f̂ (q)|2dq

≤ e
2τ
α (α+|γ |−1)

∞∑
j=0

∫

{q: j≤2a(τ )|q·e τ
α |α≤ j+1}

(
|q|2(α+|γ |−1)e−2a(τ )|q·e τ

α |α |∇ f̂ (q)|2dq

)

= I 15 + I 25 .

For I 15 , we have by Hölder’s

I 15 ≤ e
2τ
α

(α+|γ |−1)
∫

|q|≤ e−τ
α

(2a(τ ))
1
α

|q|2(α+|γ |−1)|∇ f̂ (q)|2dq

= Ce
2τ
α

(α+|γ |−1)‖∇ f̂ ‖2
L

2
ε

e− 2τ
α

(α+|γ |−1)− 2τ
α

(1−ε)

(2a(τ ))2+
2|γ |
α

− 2ε
α

≤ C
e− 2τ

α
(1−ε)

(a(τ ))2+
2|γ |
α

‖∇ f̂ ‖2
L

2
ε
.

However, by Sobolev embedding, we have as before ‖∇ f̂ ‖2
L

2
ε

≤ C‖ f ‖2
L2(2)

.

For I 25 , we estimate

I 25 ≤ e
2τ
α

(α+|γ |−1)
∞∑
j=1

e− j
∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q|2(α+|γ |−1)|∇ f̂ |2dq

≤ e
2τ
α

(α+|γ |−1)‖∇ f̂ ‖2
L

2
ε

∞∑
j=1

e− j
[ ∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q| 2(α+|γ |−1)
1−ε dq

]1−ε

.

But,

∫
j≤2a(τ )|qe τ

α |α≤( j+1)
|q| 2(α+|γ |−1)

1−ε dq ≤ C

(
j

a(τ )

) 2(α+|γ |−1)
1−ε

+2

e
− 2τ

α (α+|γ |−1)
1−ε

− 2τ
α ,

so using again the bound ‖∇ f̂ ‖
L

2
ε

≤ C‖ f ‖L2(2),
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I 25 ≤ Ce
2τ
α

(α+|γ |−1)‖ f ‖2L2(2)

∞∑
j=1

e− j
[(

j

a(τ )

) 2(α+|γ |−1)
1−ε

+2

e
− 2τ

α (α+|γ |−1)
1−ε

− 2τ
α

]1−ε

≤ C
e− 2τ (1−ε)

α ‖ f ‖2
L2(2)

a(τ )2+2 |γ |
α

−2ε

∞∑
j=1

e− j j2α+2|γ |−2ε ≤ C
e− 2τ

α
(1−ε)‖ f ‖2

L2(2)

a(τ )2+
2|γ |
α

.

Hence after putting together the estimates for I 15 and I 25 we have

I5 ≤ C
e− 2τ

α (1−ε)‖ f ‖2
L2(2)

(a(τ ))
2|γ |
α

.

D.5. Estimate for I6

In the same way, we can get the estimate for I6. Indeed,

I6 ≤ e− 4τ
α

∫
R2

∣∣∣∣ |p||γ |e−a(τ )|p|α (� f̂ )(pe
−τ
α )

∣∣∣∣
2

dp = e
2τ
α

(|γ |−1)
∫
R2

|q|2|γ |e−2a(τ )|q·e τ
α |α |� f̂ (q)|2dq

≤ e
2τ
α

(|γ |−1)
[ ∫

{q:2a(τ )|q·e τ
α |≤1}

+
∞∑
j=1

∫
{q: j≤2a(τ )|q·e τ

α |≤ j+1}

] (
|q|2|γ |e−2a(τ )|q·e τ

α |α |� f̂ (q)|2dq

)

= I 16 + I 26 .

For I 16 ,

I 16 ≤ e
2τ
α (|γ |−1)

∫
|q|≤ e− τ

α

(2a(τ ))
1
α

|q|2|γ ||� f̂ (q)|2dq = e
2τ
α (|γ |−1)e−

2τ |γ |
α

(a(τ ))
2|γ |
α

∫
|q|≤ e− τ

α

(2a(τ ))
1
α

|� f̂ (q)|2dq

≤ C
e− 2τ

α

(a(τ ))
2|γ |
α

‖ f ‖2
L2(2)

.

For I 26 , we have

I 26 ≤ e
2τ
α

(|γ |−1)
∞∑
j=1

e− j
∫

j≤2a(τ )|qe τ
α |α≤( j+1)

|q|2|γ ||� f̂ (q)|2dq

≤ e
2τ
α

(|γ |−1)e− 2τ |γ |
α

a(τ )
2|γ |
α

∞∑
j=1

e− j ( j + 1)
2|γ |
α

∫
|� f̂ (q)|2dq ≤ C

e− 2τ
α

(a(τ ))
2|γ |
α

‖ f ‖2L2(2).

Therefore,

I6 ≤ C
e− 2τ

α

(a(τ ))
2|γ |
α

‖ f ‖2L2(2) ≤ C
e− 2τ

α
(1−ε)

(a(τ ))
2|γ |
α

‖ f ‖2L2(2).

Putting it all together finishes off the proof. ��
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