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Abstract
In this article, we provide an alternative way to construct small amplitude traveling waves for
general Whitham type equations, in both periodic and whole line contexts. More specifically,
Fourier analysis techniques allow us to reformulate the problem to the study of waves that
are small and regular perturbations of well-understood ODE’s. In addition, rigorous spectral
stability of these waves is established.

Keywords Whitham equation · Full-dispersion models · Solitary waves · Nonlocal
systems · Water waves · Orbital stability

1 Introduction

The equation,

ut + W ux + ∂x (u
2) = 0, ̂W u(k) =

√
tanh(k)

k
û(k) (1)

was proposed byWhitham [17] as an alternative model to the ubiquitous Korteweg–de Vries
(KdV) approximation (ut +uxxx +2uux = 0) for water waves. In particular, (1) is driven by
the non-local operatorW ,which (modulo some rescalings) gives the “full-dispersion” relation
for the corresponding water waves equation. At the rigorous level, (1) is asymptotically as
accurate amodel for the full water-wave problem asKdV [13], and in fact performs better than
KdVwhen its solutions are compared directly with experimental data [1] or with numerically
computed solutions of the water wave problem [15]. It also allows for wave breaking [18], a
desirable realistic feature for such models.
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Let us mention some well-known facts about the dynamics of (1), which will be helpful
in the sequel. There are three known formally conserved quantities, namely the Hamiltonian,
the energy P and the average

H [u] := 1

2
〈W ∗ u, u〉 + 1

3

∫
u3(x)dx, P[u] :=

∫
u2(x)dx and I [u] =

∫
u(x)dx .

The question of when this formally conserved quantities are actually conserved for particular
solutions is a delicate one, as it is for the Euler equation. It is in fact related to the well-
posedness theory for (1), which is unfortunately rather incomplete. The main reason is that
wave breaking actually does occur and one needs to account for that aspect of the theory.
Nevertheless, in [2], the authors show local well-posedness in H3/2+, both in the periodic
and whole line contetxts. In [3], it is shown that H1 solutions conserve H [u] and P[u].

In this articlewe study a generalization of (1).More specifically,we allow for the following
sort of “pseudo-differential equations of Whitham type”:

ut + (Lu + n(u))x = 0, u = u(x, t) ∈ R, x ∈ R and t ∈ R, (2)

where n : R → R is purely nonlinear. The operator L is a Fourier multiplier operator with
symbol m. That is

L̂ f (k) = m(k) f̂ (k)

where f̂ (k) is the Fourier transform of f (x). Precise conditions on m and n will be set forth
below, but the prototypical choices will be of course

m(k) = √
tanh(k)/k and n(u) = u2,

which then leads us to the original model (1). The main focus of the current work lies in the
existence and the properties of a class of special solutions, namely traveling waves.

More specifically, we make the traveling wave ansatz u(x, t) = w(x − νt), where ν ∈ R
is an as yet undetermined wave speed. After one integration we arrive at:

(ν − L)w = n(w). (3)

Thequestionof existence and the correspondingproperties of travelingwaves, that is solutions
of (3), in either the whole line or periodic context, has been the subject of numerous papers
over the last ten years.Wemention the papers [4–6], where the question for existence periodic
waves is investigated, both rigorously and numerically. Finally, in the tour de force, [3],
the authors have constructed (through an involved constrained variational with penalization
construction), traveling waves for the whole line problem, with speeds slightly bigger than
the sonic speed ν = 1. The question of stability of these waves, mostly in the periodic
context, was considered recently in [16]. It should be noted that both in the analytical and
numerical results discussed herein and elsewhere, it appears that there is some natural barrier
for the the wave speeds, 1 < ν < 1.141 . . ., which is still not fully understood. Thus, the
“slightly supersonic” assumption in these papers appears to be well-warranted. The methods
in these papers are varied and rather technical. In some cases, the analysis is supplemented
by numerical simulations, which is justified given the lack of precise formulas, even in the
classical case (1).

In this article,we take a slightly different point of view.A rescaling of the problem, together
with some Fourier analysis reformulates the problem in such a way that the governing equa-
tions for the traveling waves are small and regular perturbations of well-understood ordinary
differential equations. Then we use an implicit function theorem to prove the existence of
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solutions when the scaling parameter is small. The main ideas of the method are inspired
by the work of Friesecke and Pego [7] and Friesecke and Mikikits-Leitner [8] on traveling
waves in Fermi–Pasta–Ulam–Tsingou lattices, whose governing equations are nonlocal in a
way similar to those we study here.

1.1 Assumptions andMain Results

We make the following assumption regarding n(u).

Assumption 1 There exists δ∗ > 0 such that the nonlinearity n : (−δ∗, δ∗) → R is C2,1

(that is, its second derivative exists and is uniformly Lipschitz continuous) and satisfies

n(0) = n′(0) = 0 and n′′(0) > 0.

And here is our assumption on themultiplierm, which is a sort of combination of convexity
near zero with boundededness for large k:

Assumption 2 The multiplier m : R → R is even and there exists k∗ > 0 which has the
following properties:

• m is C3,1 (that is, its third derivative exists and is uniformly Lipschitz continuous) on
[−k∗, k∗] and

m2 := max|k|≤k∗
m′′(k) < 0. (4)

In particular m′′(0) < 0.
•

m1 := sup
k≥k∗

m(k) < m(0). (5)

Both Assumptions 1 and 2 are easily verified for the choices which give the full-dispersion
Whitham equation (1). An important quantity that will arise in the analysis is

γ := − n′′(0)
m′′(0)

, (6)

which, by Assumptions 1 and 2, is positive.
Here are our main results. Note that our construction provides explicit leading order terms

for both for the wave speed and the traveling wave profile.1

Theorem 1 The following hold when Assumptions 1 and 2 are met. There exists ε0 > 0, so
that for every ε ∈ (0, ε0), there is a traveling wave solution u(x, t) = ε2Wε(ε(x − νε t))
of (2). Moreover, Wε ∈ H1

even(R),

νε = m(0) − 1

2
m′′(0)ε2, (7)

Wε(x) = 3

2γ
sech2

( x
2

)
+ OH1(R)(ε

2). (8)

In addition, assume the boundedness of m. Then, the waves ε2Wε(ε(x − νε t)) are in fact
spectrally stable, for all small enough values of ε.

1 In principle, one could compute explicitly the next terms, up to any degree of accuracy.
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Remark (1) Assuming higher regularity of n, say Cl+2,1(R), we have that Wε ∈ Hl(R).
(2) In the proof, we can actually verify the non-degeneracy of the solution ε2Wε(εx) in the

sense that the linearized operator has kernel spanned exactly by the group of symmetries.2

It is expected that under these circumstances, one can in fact show orbital stability. The
main obstacle towards that is a good local well-posedness result.

We also prove the existence of periodic “cnoidal” solutions of (2).

Theorem 2 The following hold when Assumptions 1 and 2 are met. There exists P0 > 0 such
that the following holds for all P > P0. There exists εP > 0, so that for every ε ∈ (0, εP ) there
is a 2P/ε-periodic, even, non-zero traveling wave solution u(x, t) = ε2WP,ε(ε(x − νε t))
of (2). Moreover, WP,ε ∈ H1

even(TP ),

νε = m(0) − 1

2
m′′(0)ε2, (9)

WP,ε(x) = φP (x) + OH1(TP )(ε
2), (10)

where φP is the unique even, non-zero 2P-periodic solution of −φ′′
P + φP − γφ2

P = 0.
In addition, assume the boundedness of m. For 0 < ε 
 1, the waves WP,ε are spectrally

stable, with respect to co-periodic perturbations (that is perturbations of the same period
2P/ε).

Finally, regarding orbital stability - as we have discussed above, such result should follow
by the general theory, see for example Theorem 5.2.11 in [11]. The issue here is again that
we are lacking good well-posedness theory. In addition, the Hamiltonian, having W as a
leading order differential operator term, does not control any L p norms by virtue of Sobolev
embedding. As is well-known, this is problematic with any sort of general approach.We leave
this technical issue aside for the moment, we plan on addressing it in a future publication.

1.2 Conventions

By Hs(R) we mean the usual L2-based order s Sobolev space defined on R. By Hs(TP )

we mean the usual L2-based order s Sobolev space of periodic functions with period 2P .
Restricting attention only to even functions in the above results in the spaces Hs

even(R) and
Hs
even(TP ). If X is a Banach space then B(X) is the space of bounded linear maps from X

to itself, endowed with the usual norm.
For a function f ∈ Hs(R) we use the following normalizations for the Fourier transform

and its inverse:

f̂ (k) = 1

2π

∫
R

f (x)e−i xkdx and f (x) =
∫
R

f̂ (k)eixkdk.

For a function f ∈ Hs(TP ) we use the following normalizations for the Fourier series and
its inverse:

f̂ (k) := 1

2P

∫ P

−P
f (x)e−ikπx/Pdx and f (x) =

∑
k∈Z

f̂ (k)eikπx/P .

If X is a Banach space and qε is an ε dependent quantity in X , we write

qε = OX (ε p)

2 In this case, the only symmetry is the translation in the x variable.
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if there exists ε0 and C > 0 such that

‖qε‖X ≤ Cε p

for 0 < ε ≤ ε0.

2 Existence of Small Solutions

We present a detailed proof for the whole line case. The result for the periodic waves, which
proceeds in an almost identical fashion, is proved in Sect. 2.3.

Our approach consists of introducing and analyzing a rescaled system, which is then
showed to approximate the standard equation which gives the traveling wave solutions for
KdV.

2.1 The Rescaled System

We make the “long wave/small amplitude/slightly supersonic” scalings

w(y) = ε2W (εy) and ν = m(0) − 1

2
m′′(0)ε2

where 0 < ε 
 1.3 With this, (3) becomes(
m(0) − 1

2
m′′(0)ε2 − Lε

)
W = ε−2n(ε2W ) (11)

where Lε is the Fourier multiplier operator with symbol

mε(k) = m(εk). (12)

Since n(u) is C2,1 by assumption, Taylor’s theorem tells us that

ε−2n(ε2W ) = ε2

2
n′′(0)W 2 + ε4ρε(W )

with

|ρε(W )| ≤ C |W |3 and |∂x [ρε(W (x))]| ≤ C |W ′(x)||W 2(x)| (13)

when |W | ≤ δ∗/ε2. Thus (11) becomes:(
m(0) − 1

2
m′′(0)ε2 − Lε

)
W = ε2

2
n′′(0)W 2 + ε4ρε(W ). (14)

Assumption 2 implies the following result.

Lemma 3 Given Assumption 2, there exists C > 0 such that

sup
K∈R

∣∣∣∣∣
ε2

m(0) − 1
2m

′′(0)ε2 − m(εK )
+ 1

1
2m

′′(0)(1 + K 2)

∣∣∣∣∣ ≤ Cε2 (15)

when ε is sufficiently close to zero.

3 Note that the precise form for ν is primarily for convenience. We could let ν = m(0) + κε2 for any κ > 0
and all that would really change are some nonessential coefficients.
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We postpone the technical proof until “Appendix”, below. Note however that quite a bit
of information is packed into this Lemma. The first piece is that it guarantees that the symbol
(m(0) − 1

2m
′′(0)ε2 − m(εK ))−1 is bounded. And so we can rewrite (14) as:

W − ε2
(
m(0) − 1

2
m′′(0)ε2 − Lε

)−1 (
1

2
n′′(0)W 2 + ε2ρε(W )

)
︸ ︷︷ ︸

�(W , ε)

= 0. (16)

Our goal is to resolve (16), at least for 0 < ε 
 1. To do so, we will rely on the implicit
function theorem and as such we need the behavior of the limiting system at ε = 0. To be

clear, in (16) by
(
m(0) − 1

2m
′′(0)ε2 − Lε

)−1
we mean the operator with symbol (m(0) −

1
2m

′′(0)ε2 − m(εK ))−1.
Moreover, Lemma 3 implies that

ε2
(
m(0) − 1

2
m′′(0)ε2 − Lε

)−1

= − 2

m′′(0)
(1 − ∂2x )

−1 + OB(X)(ε
2) (17)

where X is either Hs(R) or Hs(TP ). Thus, if we set ε = 0 in (16), we get:

W − γ (1 − ∂2X )−1W 2 = 0 (18)

or rather

− W ′′ + W − γW 2 = 0. (19)

Here γ > 0 is given above in (6).

2.2 Existence of Localized TravelingWaves

Observe that (19), and so (18), has (a unique!) non-zero even localized solution, namely

W (X) = σ(x) := 3

2γ
sech2

( x
2

)
. (20)

In other words, we have �(σ, 0) = 0. The linearization of (19) about σ(x) results in the
self-adjoint operator

L := −∂2x + 1 − 2γ σ,

which is well-studied in the literature.

Remark 1 It is known that L has exactly one simple negative eigenvalue, −ζ 2
0 , a simple

eigenvalue at zero, spanned by σ ′, and outside of these two directions, the operator L is
strictly positive.

2.2.1 Solvability of (16)

If we compute K := DW�(σ, 0) we get

K = I d − 2γ (1 − ∂2x )
−1 (σ ·) .

The following lemma is proved in [7]:
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Lemma 4 For all l ≥ 0, l ∈ Z, K : Hl
even(R) → Hl

even(R) is bounded and has a bounded
inverse.

Here is a brief explanation of the proof. It is by now a classical result that (1−∂2x )
−1 (σ ·) :

L2(R) → L2(R) and indeed (1−∂2x )
−1 (σ ·) : H1(R) → H1(R) is a compact operator. Thus,

the set σ(K ) \ {1} has only eigenvalues of finite multiplicity. Note that when restricted to
the even (and also odd subspaces), K acts invariantly, that is K : H1

even(R) → H1
even(R).

We claim that K is invertible on H1
even(R). Indeed, assuming otherwise, it must be, by

the Fredholm alternative, that there is an eigenfunction f0 ∈ H1
even : K f0 = 0. One

quickly realizes that this implies f0 ∈ H2(R) and L f0 = 0. This is a contradiction, since
f0 ∈ Ker [L ] = span[σ ′], which then implies that f0 is an odd function.
We use the following version of the implicit function theorem:

Theorem 5 Let X be a Banach space and suppose that � : X × R → X has the following
properties: (a) � is continuously differentiable (b) �(x∗, μ∗) = 0 and (c) Dx�(x∗, μ∗)
has bounded inverse from X to X. Then there exists a neighborhoods U of x∗ and M of
μ∗ and a continuously differentiable function χ : M → U such that �(χ(μ), μ) = 0 and
�(x, μ) = 0 iff x = χ(μ) for all (x, μ) ∈ U × M.

According to Theorem5, the solvability of (16), that is�(W , ε) = 0, holds. Indeed, by our
previous considerations,�(σ, 0) = 0, the functional� : H1

even(R)×R → H1
even(R), s > 1

2
is continuously differentiable. In addition, K = DW�(σ, 0) : H1

even(R) → H1
even(R) is

invertible, according to Lemma 4. This gives a family of solutions, say Wε ∈ H1
even(R), at

least in a small neighborhood of ε ∈ (0, ε0), ε0 < 1. That Wε − σ is OH1(R)(ε
2) follows

in routine way from (16), (17) and (13). This finishes the proof of the existence part of
Theorem 1.

Remark Note that with the current assumptions on m, one cannot obtain a higher regularity

results on Wε , since the operator
(
m(0) − 1

2m
′′(0)ε2 − Lε

)−1
cannot be guaranteed to be

smoothing.4 We can however claim higher regularity, by essentially the same arguments as

above, once we know a higher regularity of the remainder term ρε(z) = n(ε2z)− n′′(0)
2 ε4z2

ε3
or,

what is the same, a higher regularity of the nonlinearity n. Indeed, assuming n ∈ Cl+2,1(R),
we obtain ρ ∈ Cl,1(R) and then, we can claim that the map � : Hl

even(R) ×R → Hl
even(R)

is continuously differentiable. Since K will also be invertible on Hl
even(R), an application

of the implicit function theorem will produce a solution Wε ∈ Hl
even(R).

2.3 Existence of Periodic TravelingWaves

Return attention to (19). In addition to the solitary wave solution σ(X), this equation has a
one-parameter family of even periodic solutions. While there are explicit formulas available
for these solutions [8] in termsof the elliptic functions “cn” (hence the nomenclature “cnoidal”
waves) we do not need these formulas here. Instead, we summarize the properties of such
waves.

Theorem 6 For all γ > 0 there exists P0 > 0 and a family functions {φP (x)}P>P0 with the
following properties

(1) φP (x) is C∞, non-constant and even.

4 And in fact, for the Whitham example, where m(k) =
√

tanh(k)
k it is not smoothing.
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(2) φP (x) is periodic with principal period 2P.
(3) W (x) = φP (x) solves (19) (and thus (18))
(4) The kernel of

LP := −∂2x + 1 − 2γφP

(as an operator in Hs(TP )) is exactly span
{
φ′
P (x)

}
.

This theorem tells us that �(φP , 0) = 0. Our strategy for continuing such solutions to
ε > 0 via the implicit function theorem is not that different than the one used for the localized
waves above. If we compute KP := DW�(φP , 0) we get

KP = I d − 2γ (1 − ∂2x )
−1 (φP ·) .

In [8] (their Lemma 5.1) the following is shown:

Lemma 7 KP : L2
even(TP ) → L2

even(TP ) is bounded and has a bounded inverse. Also, for
any l ≥ 1, we have KP : Hl

even(TP ) → Hl
even(TP ) is bounded and invertible.

This follows from part (3) of Theorem 6 and the argument is very much the same as the
proof of Lemma 4. Indeed, the operator Kp is easily seen to map Hl

even into itself for any
l ≥ 1, due to the smoothness of φP . Finally, the spectrum ofKP is independent on the space
Hl , so 0 /∈ σL2(KP ) = σHl (KP ), hence KP is invertible on those as well.

At this stage we appeal to the implicit function theorem as above and arrive at the con-
clusions of Theorem 2.

3 Proof of Theorem 1: The Stability of the Small WhithamWaves

Now that we have constructed the solutions Wε for 0 < ε 
 1, let us address the question
for their stability. We first linearize around the traveling wave solution.

3.1 The Linearized Problem and Stability

We take the perturbation of the solution ε2Wε(ε(x − νt)) in the form u = ε2(Wε(ε(x −
νt)) + v(εt, ε(x − νt))). Plugging in this ansatz in the Eq. (2) and ignoring terms of order
O(v2) and transforming x − νt → x , we obtain the following linearized system

vt + ∂x [Lεv − νv + n′(ε2Wε)v] = 0. (21)

Introduce the linearized operator

Lε := −Lε + ν − n′(ε2Wε).

Passing to the time independent problem via the map v(t, x) → eλt z(x), we arrive at the
eigenvalue problem

∂xLεz = λz (22)

It is then time to introduce the notion of stability.

Definition 1 We say that the traveling wave ε2Wε(ε(x − νt)) is spectrally stable, if the
eigenvalue problem (22) does not have non-trivial solutions (λ, z) : 
λ > 0, z ∈ L2(R).
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Next, we discuss the instability index count theory, which gives sufficient (and in many
cases necessary) conditions for stability/instability. We mostly follow the general theory, as
developed in [14], although earlier relevant results are available, see [9–12].

3.2 Instability Index Theory

For the eigenvalue problem

JL f = λ f (23)

make the following assumptions regarding L ,J . There exists a real Hilbert space X , so
that5

(1) The operator L : X → X∗ is bounded and symmetric, in the sense that (u, v) →
〈L u, v〉, understood as a pairing of an element of X∗ with an element of X , is a symmetric
bilinear form on X .

(2) dim(Ker [L ]) < ∞ and there is the L invariant decomposition of the space X ,

X = X− ⊕ Ker [L ] ⊕ X+,

where dim(X−) < ∞, and for some δ > 0, L |X− ≤ −δ (i.e. 〈L u−, u−〉 ≤ −δ‖u−‖2X
for all u− ∈ X−), L |X+ ≥ δ > 0.

(3) J : D(J ) ⊂ X∗ → X is anti-symmetric, in the sense that for every u, v ∈ D(J ),
one has 〈J u, v〉 = −〈u,J v〉.

Moreover, introduce the Morse index n−(L ) = dim(X−). Consider the generalized
eigenspace at zero for the operatorJL , that is E0 = {u ∈ X : (JL )ku = 0, k = 1, 2, . . .}.
Clearly, Ker [L ] is a (finite dimensional) subspace of E0 and so, one can complement it as
follows E0 = Ker [L ] ⊕ Ẽ0. Then,

k≤0
0 := max{dim(Z) : Z subspace of Ẽ0 : 〈L z, z〉 < 0, z ∈ Z}.

Under these assumptions, it was proved (see Theorem 2.3, [14]) that6

kunstable ≤ n−(L ) − k≤0
0 (L ). (24)

where kunstable is the number of non-trivial (that is pairs (λ, z) with 
λ > 0, z �= 0, z ∈ X )
and linearly independent unstable solutions to (23). In the next section, we apply this theory
to the linearized problem (22).

3.3 Spectral Stability Analysis for the SmallWhithamWaves

For the eigenvalue problem (22), we have J = ∂x , which is anti self-adjoint, while clearly
Lε : L ∗

ε = Lε is a bounded symmetric operator, if we assume the boundedness of its
symbol m, which we do in this section. In the setup of the instability index theory, we take
X = L2(R), while D(∂x ) = H1(R).

We will establish below that Lε has, at least for small enough values of ε, a single and
simple negative eigenvalue (i.e. n−(Lε) = 1), while its kernel is one dimensional and it is
in fact spanned byW ′

ε . Assuming that for the moment, let us proceed to establish a sufficient

5 The most common example one should think is X = Hs , a Sobolev space, with dual X∗ = H−s .
6 A much more precise result is contained in Theorem 2.3, [14], but we state this corollary, as it is enough for
our purposes.
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condition for the stability. According to (24), kunstable ≤ 1 − k≤0
0 . Thus, the stability of the

solitary waves ε2Wε(εx), will be established, once we show that7 k≤0
0 (Lε) ≥ 1.

To this end, we can identify an element in gKer(∂xLε) \ Ker [∂xLε]. Note that
Ker [∂xLε] = Ker [Lε] = span{W ′

ε}. In addition, Wε ⊥ W ′
ε , whence Wε ⊥ Ker [Lε].

Thus, �ε := L −1
ε [Wε] is well-defined. Since,

(∂xLε)
2[�ε] = ∂xLε∂x [Wε] = ∂xLε[W ′

ε] = 0,

we have that �ε ∈ gKer(∂xLε) \ Ker [∂xLε]. According to the definition of k≤0
0 (Lε), we

will have established k≤0
0 (Lε) ≥ 1, once we verify that

0 > 〈Lε�ε,�ε〉 = 〈L −1
ε [Wε], ε2Wε〉.

Thus, we will need to verify the negativity of the Vakhitov–Kolokolov type quantity

〈L −1
ε [Wε],Wε〉 < 0, (25)

once we check that for all small enough ε, n−(Lε) = 1, Ker [Lε] = span{W ′
ε}. We do this

in the next Lemma.

Lemma 8 There exists ε0 > 0 so that for all ε ∈ (0, ε0), n−(Lε) = 1, K er [Lε] =
span{W ′

ε}.
Proof Start by taking a sufficiently large μ > 0, to be specified later. We will construct the

operator
(
ε−2Lε + μ

)−1
for all small enough ε. Indeed, since

n′(ε2Wε) = n′′(0)ε2Wε + OH1(ε4) = n′′(0)ε2σ + OH1(ε4),

where σ is the explicit sech2 function, see (20). We have

ε−2Lε + μ = ε−2[Lε + με2] = ε−2[−Lε + ν − ε2n′′(0)σ + με2 + OH1(ε4)]
= [I d − [n′′(0)σ − μ + OH1(ε2)]ε2(ν − Lε)

−1]ε−2(ν − Lε).

Recall now that the operator ε2(ν−Lε)
−1 is associatedwith themultiplier ε2

m(0)−1
2m

′′(0)ε2−m(εk)
.

So, according to Lemma 3 [and more precisely (15)],

ε2(ν − Lε)
−1 = − 2

m′′(0)
(1 − ∂2x )

−1 + OB(L2)(ε
2). (26)

Thus,

ε−2Lε + μ =
(
I d + 2

m′′(0)
[n′′(0)σ − μ + OH1(ε2)](1 − ∂2x )

−1
)

ε−2(ν − Lε)

=
(
I d + 2

[
−γ σ − μ

m′′(0)
+ OH1(ε2)

]
(1 − ∂2x )

−1
)

ε−2(ν − Lε).

Recall now that L := −∂2x + 1 − 2γ σ . So,

L − 2μ

m′′(0)
+ OH1(ε2) = 1 − ∂2x − 2γ σ − 2μ

m′′(0)
+ OH1(ε2)

=
[
I d + 2

[
−γ σ − μ

m′′(0)
+ OH1(ε2)

]
(1 − ∂2x )

−1
]

(1 − ∂2x ).

7 And hence k≤0
0 (Lε) = 1, since the left hand side of (24) is non-negative.
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Now, we select μ > 0 large and ε 
 1, so that L − 2μ
m′′(0) + OH1(ε2) is invertible. This

is possible, since − 2μ
m′′(0) > 0 and L is bounded from below.8 Moreover, (L − 2μ

m′′(0) +
OH1(ε2))−1 : L2 → H2. Thus, we can write

[
I d + 2[−γ σ − μ

m′′(0)
+ OH1(ε2)](1 − ∂2x )

−1
]−1

= (1 − ∂2x )

(
L − 2μ

m′′(0)
+ OH1(ε2)

)−1

: L2 → L2.

Hence, we can invert [by means of the previous formula and (26)]

(ε−2Lε + μ)−1 = ε2(ν − Lε)
−1

[
I d + 2

[
−γ σ − μ

m′′(0)
+ OH1 (ε2)

]
(1 − ∂2x )

−1
]−1

=
(

− 2

m′′(0)
(1 − ∂2x )

−1 + OB(L2)(ε
2)

)
(1 − ∂2x )

(
L − 2μ

m′′(0)
+ OH1 (ε2)

)−1

= − 2

m′′(0)

(
L − 2μ

m′′(0)

)−1

+ OB(L2)(ε
2).

That is,

(ε−2Lε + μ)−1 =
(

−m′′(0)
2

L + μ

)−1

+ OB(L2)(ε
2). (27)

We can now use this formula to study the spectrum of Lε . To this end, recall the negative
eigenvalue of L is −ζ 2

0 , so that for some ψ0, ‖ψ0‖ = 1, Lψ0 = −ζ 2
0 ψ0. Then,

sup
f :‖ f ‖=1

〈(
−m′′(0)

2
L + μ

)−1

f , f

〉
≥

〈(
−m′′(0)

2
L + μ

)−1

ψ0, ψ0

〉
= 1

−m′′(0)
2 (−ζ 2

0 ) + μ
>

1

μ
.

Thus, by (27) and for all ε << 1,

sup
f :‖ f ‖=1

〈(ε−2Lε + μ)−1 f , f 〉 >
1

μ
. (28)

Next, take f : f ⊥ ψ0, ‖ f ‖ = 1. Since we have L |{ψ0}⊥ ≥ 0 and L [σ ′] = 0,

1

μ
=

〈(
−m′′(0)

2
L + μ

)−1
σ ′

‖σ ′‖ ,
σ ′

‖σ ′‖

〉
≤ sup

f ⊥ψ0,‖ f ‖=1

〈(
−m′′(0)

2
L + μ

)−1

f , f

〉
≤ 1

μ
,

so supg sup f ⊥g,‖ f ‖=1〈(−m′′(0)
2 L +μ)−1 f , f 〉 = sup f ⊥ψ0,‖ f ‖=1〈(−m′′(0)

2 L +μ)−1 f , f 〉
= 1

μ
, whence

sup
g

sup
f ⊥g,‖ f ‖=1

〈(ε−2Lε + μ)−1 f , f 〉 = 1

μ
+ O(ε2). (29)

Further, according to the spectral information for L , see Remark 1, its second smallest
eigenvalue - zero, is also simple, in particular, L |span{ψ0,σ ′}⊥ ≥ δ I d > 0. Therefore,

sup
f ⊥ψ0, f ⊥σ ′,‖ f ‖=1

〈(
−m′′(0)

2
L + μ

)−1

f , f

〉
≤ 1

−δ
m′′(0)

2 + μ
<

1

μ
. (30)

8 And in fact it has a single negative eigenvalue.
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Again,

sup
g1,g2

sup
f ⊥g1, f ⊥g2,‖ f ‖=1

〈(
−m′′(0)

2
L + μ

)−1

f , f

〉
= sup

f ⊥ψ0, f ⊥σ ′,‖ f ‖=1

〈(
−m′′(0)

2
L + μ

)−1

f , f

〉

so from (27) and for all ε << 1,

sup
g1,g2

sup
f ⊥g1, f ⊥g2,‖ f ‖=1

〈(ε−2Lε + μ)−1 f , f 〉 <
1

μ
. (31)

Usingmin–max formulas for the eigenvalues of self-adjoint operators, the relations (28), (29)
and (31) imply that the spectrum of the bounded operator (ε−2Lε + μ)−1 is bounded from
above by two simple eigenvalues, κ0 > κ1, so that κ0 > 1

μ
and κ1 = 1

μ
+O(ε2). In addition,

the rest of the spectrum is smaller than κ1, that is σ((ε−2Lε +μ)−1) ⊂ (−∞, κ1). Note that
since Lε[W ′

ε] = 0, we know that 1
μ
is an eigenvalue for (ε−2Lε + μ)−1, so κ1 = 1

μ
.

Equivalently, ε−2Lε has the smallest eigenvalue in the form λ0(ε
−2Lε) = 1

κ0
− μ +

O(ε2) < 0, while the second smallest eigenvalue is λ1(ε
−2Lε) = 0, while the rest of the

spectrum of ε−2Lε satisfies

σ(ε−2Lε) \ {λ0, λ1} ⊂
(

−δ
m′′(0)
2

+ O(ε2),∞
)

⊂ (0,∞),

according to (30). This finishes the proof of Lemma 8. ��
It remains to finally verify (25). Now that we know that Ker [Lε] = span{W ′

ε}, we
conclude thatLε is invertible on the even subspace L2

even . In fact, wemay use the formula (27)
with μ = 0. In addition, from (8), we have

〈L −1
ε [Wε],Wε〉 = − 2

m′′(0)
ε−2〈(L −1 + OB(L2)(ε

2)[σ + OH1(ε2), σ + OH1(ε2)〉

= − 2

m′′(0)
ε−2[〈L −1σ, σ 〉 + O(ε2)].

The quantity 〈L −1σ, σ 〉 is well-known in the theory of stability for the corresponding
KdV/NLS models. Its negativity is exactly in the same way equivalent to the (well-known)
stability of the corresponding traveling/standing waves. It actually may be computed explic-
itly as follows.

Consider (19) and a function Wλ := λ2σ(λ·), λ > 0. This solves

−W ′′
λ + λ2Wλ − γW 2

λ = 0.

Taking a derivative in λ and evaluating at λ = 1 yields

L

[
d

dλ
Wλ|λ=1

]
= −2σ

Thus, L −1σ = − 1
2

d
dλ

Wλ|λ=1 = − 1
2 (2σ + xσ ′). It follows that

〈L −1σ, σ 〉 = −1

2
〈2σ + xσ ′, σ 〉 = −3

4
‖σ‖2 < 0.

Thus, the Vakhitov–Kolokolov condition (25) is verified and the proof of Theorem 1 is
complete.
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3.4 Spectral Stability of the PeriodicWaves

The stability calculation for the periodicwaves proceed in an identical fashion. The eigenvalue
problem is in the form (22), where now the operators are acting on the corresponding periodic
spaces Hs(TP ). In fact, noting that for λ �= 0, the right hand side z is an exact derivative,
allows us to restrict the consideration of (22) to the space L2

0(TP ) = { f ∈ L2(TP ) :∫ P
−P f (x)dx = 0}. The advantage of this is that nowJ = ∂x is boundedly invertible, hence
allowing for the results of [11] to kick in.

The instability index theory outlined in Sect. 3.2 applies.According to (24) and the analysis
in Sect. 3.3—(25) implies the spectral stability. Moreover, Lemma 8 applies as well to the
periodic waves. That is, the Morse index ofLε is one and the wave is non-degenerate, in the
sense that Ker [Lε] = span[W ′

P,ε]. The verification of (25) is reduced, in the same way, to

the verification of the inequality 〈L −1
P φP , φP 〉 < 0. This quantity can be computed fairly

precisely, in terms of elliptic functions, but we will not do so here.

Appendix: Assorted Proofs

Proof (Lemma 3) Take K > k∗/ε. Then we clearly have
∣∣∣∣∣

1
1
2m

′′(0)(1 + K 2)

∣∣∣∣∣ ≤ 2ε2

|m′′(0)|k∗
≤ Cε2.

Since K > k∗/ε, we know that m(εK ) ≤ m1 by (5). Thus we have

m(0) − 1

2
m′′(0)ε2 − m(εK ) > m(0) − m1 > 0.

Here we have used that fact that m′′(0) < 0, which is implied by (4). This in turn implies:
∣∣∣∣∣

ε2

m(0) − 1
2m

′′(0)ε2 − m(εK )

∣∣∣∣∣ ≤ ε2

m(0) − m1
≤ Cε2.

The triangle inequality gives:

sup
|K |≥k∗/ε

∣∣∣∣∣
ε2

m(0) − 1
2m

′′(0)ε2 − m(εK )
+ 1

1
2m

′′(0)(1 + K 2)

∣∣∣∣∣ ≤ Cε2. (32)

Now suppose that |K | ≤ k∗/ε. We have

ε2

m(0) − 1
2m

′′(0)ε2 − m(εK )
+ 1

1
2m

′′(0)(1 + K 2)

= m(0) + 1
2m

′′(0)ε2K 2 − m(εK )

[m(0) − 1
2m

′′(0)ε2 − m(εK )][ 12m′′(0)(1 + K 2)] (33)

The fact thatm is even and C3,1 implies, by way of Taylor’s theorem, that there exists C > 0
such that ∣∣∣∣m(0) + 1

2
m′′(0)k2 − m(k)

∣∣∣∣ ≤ Ck4
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when |k| ≤ k∗. This implies that∣∣∣∣m(0) + 1

2
m′′(0)ε2K 2 − m(εK )

∣∣∣∣ ≤ Cε4K 4 (34)

when |K | ≤ k∗/ε.
The fundamental theorem of calculus implies that

m(0) − 1

2
m′′(0)ε2 − m(k) = −1

2
m′′(0)ε2 −

∫ k

0

∫ s

0
m′′(σ )dσds.

Here we used the fact that m(k) is even. Then we use (4) to see that

m(0) − 1

2
m′′(0)ε2 − m(k) ≥ −1

2
m′′(0)ε2 − 1

2
m2k

2

so long as |k| ≤ k∗. Thus, for |K | ≤ k∗/ε we have

m(0) − 1

2
m′′(0)ε2 − m(εK ) ≥ ε2

(
−1

2
m′′(0) − 1

2
m2K

2
)

Since m′′(0) and m2 are both negative this implies:∣∣∣∣m(0) − 1

2
m′′(0)ε2 − m(εK )

∣∣∣∣ ≥ Cε2
(
1 + K 2) (35)

when |K | ≤ k∗/ε.
Thus we can control the left hand side of (33) using (34) and (35) as:∣∣∣∣∣

ε2

m(0) − 1
2m

′′(0)ε2 − m(εK )
+ 1

1
2m

′′(0)(1 + K 2)

∣∣∣∣∣ ≤ Cε2K 4

(1 + K 2)2

when K ≤ k∗/ε. Since K 4/(1 + K 2)2 ≤ 1 we have

sup
|K |≤k∗/ε

∣∣∣∣∣
ε2

m(0) − 1
2m

′′(0)ε2 − m(εK )
+ 1

1
2m

′′(0)(1 + K 2)

∣∣∣∣∣ ≤ Cε2

��
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