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ABSTRACT. We consider the Kawahara model and two fourth order semi-linear
Schrédinger equations in any spatial dimension. We construct the correspond-
ing normalized ground states, which we rigorously show to be spectrally stable.

For the Kawahara model, our results provide a significant extension in pa-
rameter space of the current rigorous results. In fact, our results establish
(modulo an additional technical assumption, which should be satisfied at least
generically), spectral stability for all normalized waves constructed therein -
in all dimensions, for all acceptable values of the parameters. This, combined
with the results of [5], provides orbital stability, for all normalized waves enjoy-
ing the non-degeneracy property. The validity of the non-degeneracy property
for generic waves remains an intriguing open question.

At the same time, we verify and clarify recent numerical simulations of
the spectral stability of these solitons. For the fourth order NLS models, we
improve upon recent results on spectral stability of very special, explicit so-
lutions in the one dimensional case. Our multidimensional results for fourth
order anisotropic NLS seem to be the first of its kind. Of particular interest
is a new paradigm that we discover herein. Namely, all else being equal, the
form of the second order derivatives (mixed second derivatives vs. pure Lapla-
cian) has implications on the range of existence and stability of the normalized
waves.

1. Introduction. We consider several dispersive models in one and multiple space
dimensions. Our main motivating example will be the (generalized) Kawahara
equation, which is a fifth order generalized KdV equation, which allows for third
order dispersion effects as well. Namely, we set

Ut + Ugpprrs + OUgrs — (\u|p71u)x =0,zeR,t>0,p>1 (1.1)

This is a model that appears in the study of plasma and capillary waves, where
the third order dispersion is considered to be weak. In fact, Kawahara studied the
quadratic case' [26] and he argued that the inclusion of a fifth order derivative is
necessary for capillary-gravity waves, for values of the Bond number close to the
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Lwhere the nonlinearity is in the form (u?),, slightly different than ours
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critical one. Craig and Groves, [8] offered some further generalizations. Kichenas-
samy and Olver, [28] have studied the cases where explicit waves exist, see also
Hunter-Scheurle, [15] for existence of solitary waves.

Another model important in the applications, is the non-linear Schrédinger equa-
tion with fourth order dispersion. We consider two versions of it, which will turn
out to be qualitatively different, from a the point of view of the stability of their
standing waves. More precisely,

iug + A2u+e((b,V)?u— [uP"'u =0, (t,2) € R xR, (1.2)
iug + A%+ bAu — |ulP"lu =0, (t,z) € R x R, (1.3)

where d > 1, p > 1,6 = £+1. These have been much studied, both in the NLS as
well as Klein-Gordon context, since the early 90’s, see for example [1, 2].

For both models, we will be interested in the existence of solitons, and the corre-
sponding close to soliton dynamics, in particular spectral stability. For the Kawa-
hara, the relevant objects are traveling waves, in the form u(z,t) = ¢(x+wt), where
¢ is dying off at infinity. These satisfy profile equation of the form

"+ b + we — |¢‘P—1¢ =0. (1.4)

Similarly, standing wave solutions in the form u = e~!¢, w > 0, with real-valued
¢ for the fourth order NLS (1.2) and (1.3) solve the elliptic profile equations

A2+ e((0, V)¢ +wo — |g[P Lo =0 (1.5)
A%+ bAG + we — |p[P 1 = 0. (1.6)

Constructing solutions to (1.4), and more generally (1.5) and (1.6), is not straight-
forward task. In fact, it depends on the parameter p, the sign of the parameter b,
as well as the dimension d > 1. Here, it is worth noting the works of Albert, [1]
and Andrade-Cristofani-Natali, [2] in which the authors have mostly studied the
stability of some explicitly available solutions in one spatial dimension.

We proceed differently, by means of variational methods. More specifically, we
employ the constrained minimization method, which minimizes total energy with
respect to a fixed particle number, or L? mass. In addition to being the most
physically relevant, the waves constructed this way (which we refer to henceforth
as normalized waves) have good stability properties.

This brings us to the second important goal of the paper. Namely, we wish to
examine the spectral stability of waves arising as solutions of (1.4) and (1.5). Our
constructions will not yield explicit waves?. Thus, we need to decide about their
stability, based on their construction and properties.

1.1. Previous results.

1.1.1. The Kawahara model. We would like to review the history of the problem
for existence and stability of the traveling waves. We concentrate mostly on some
recent results in the last twenty years or so, which we feel are most pertinent to
our results. We would like to emphasize an important point, namely that since
uniqueness results are generally lacking?®, it is hard to compare different results
about waves obtained by different methods, as they may be different in shape and
stability properties.

2although some do exist, for very specific values of the parameter b and d = 1, more on this
below
3both as minimizers of constrained variational problem and as solutions of the PDE
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In [16], [21], the authors have shown that certain waves of depression (i.e. b <
0) are stable. In [21], the author establishes an important, Vakhitov-Kolokolov
type criteria for certain waves, but it appears that it is hard to verify outside of
a few explicit examples. In [6], Bridges and Derks, have studied a Kawahara-type
model, with more general nonlinearity. They have employed the Evans function
method to locate the point spectrum (and hence the stability) of the corresponding
linearizations. The results of their work are mostly computationally aided.

Levandosky, [29] has studied the problem for existence of such waves via an
energy - momentum type argument and concentration compactness. Groves, [13]
has shown the existence of multi-bump solitary waves for certain homogeneous
nonlinearities. Haragus-Lombardi-Scheel, [14] have considered spatially periodic
solutions and solitary waves, which are asymptotic to them at infinity. They showed
spectral stability for such small amplitude solutions. We should also mention the
work [2], in which the authors consider the orbital stability for explicit periodic
solutions of the Kawahara problem, subjected to a quadratic nonlinearity.

The paper of Angulo, [3] gives some sufficient conditions for instability of such
waves, both for the cases b > 0 and b < 0. Levandosky, [30] nicely summarizes the
results in the literature* and offers rigorous analysis for stability /instability close to
bifurcation points. Furthermore, his paper provides an useful, numerically aided,
classification of solitary waves of the Kawahara model, based on the type of non-
linearity (i.e. the power p) and the parameters of the problem b, w. The exhaustive
tables on p. 164, [30] provided a good starting point for our investigation. We
should mention that the waves considered in [30] are produced as the constrained
minimizers of the following variational problem

{ Julu] = [ra |[Au(z)]? — b|Vu(z)|* + wu?(z)dz — min
fRd [u(z)[PHde =1

We take different approach below, by constructing the normalized waves. These are
the waves that precisely minimize energy, when one constrains the L? norm, see
Section 5.1.

An important point we would like to make however is that the procedure out-
lined by (1.7) provides waves for a considerably wider range of p, than the ones pro-
duced in Section 3.1. Namely, the minimizers of (1.7) exist for p € (1, pmax), with

d=1,2,3,4
Pmax(d) = { 1 +oo ﬁ d ’Z ’53’ whereas, the normalized waves constructed

(1.7)

herein are only available for p € (1,1 + %).

1.1.2. Fourth order NLS model. The fourth order Schrodinger equation was intro-
duced in [24], [25], where it plays an important role in modeling the propagation
of intense laser beams in a bulk medium with Kerr nonlinearity. Moreover, the
equation was also used in nonlinear fiber optics and the theory of optical solitons
in gyro tropic media. The problem for the existence and the stability of the waves
arising in (1.5) has been the subject of investigations of a few recent works, the
results of which we summarize below.

For the case of d = 1,p = 3 (and in fact only for the special value of e = —1,b =
1 and w = 5), the elliptic problem (1.4) (or equivalently (1.5)) was considered
by Albert, [1] in relation to soliton solutions to related approximate water wave

models. The explicit soliton, ¢o(z) = 1/ 15 sech? (\/%), was studied in detail in [1].

4but he considers more general non-linearities, containing powers of derivatives as well
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Important properties of the corresponding linearized operators were established.
These properties allowed Natali and Pastor, [33] to establish the orbital stability
of this wave, see also [9] for alternative approach and extensions to Klein-Gordon
solitons. One of the central difficulties that the authors faced is that this solution is
only available explicitly for an isolated value of® w = 2%. Additionally, the problem
for stability of the equation (1.2) in d = 1, e = —1,b = 1 and general p were
addressed in the works [22] and [23]. The numerically generated waves were shown
to exists for every p > 1, but they are stable only for p € (1,5). Further (mostly
numerical) investigations regarding this model are available in the papers [24], [25].

Finally, it is important to discuss the recent work [5], as it has significant overlap
with ours. In it, the authors have studied (1.3) in great detail, including the stability
of the waves. They have constructed the waves in a similar manner, in fact the
existence part of our Theorem 1.4 is similar in nature®. In addition, they discuss
some cases, in which they can show the important non-degeneracy property, that is
Ker[L}] = span[V¢]. This is rigorously verified in two cases only:

o the one dimensional case, d = 1, with b < 0, b% > 4w.
e for any dimension d > 2, but with b < 0 and |b| sufficiently large,

Concerning stability of the waves, the authors of [5] do not actually establish stability
for any given example. On the other hand, they show that orbital stability holds,
once one can verify non-degeneracy and the index condition <L'jrlq§, ¢) < 0. The
concrete details of these results are provided in [5], although this is a more general
theorem, see for example Theorem 5.2.11, [19]. The non-degeneracy was already
discussed, while the verification of <£_T_1¢, ¢) < 0 is left as an open problem in [5].
This last condition however is essentially equivalent, modulo some easy to establish
technical assumptions, to the spectral stability, see Corollary 1 below.

In this work, we actually do show (L'jrlqb,\,qb)\} < 0 for all waves produced in
Theorems 1.1, 1.3, 1.4, thus answering the open problem in [5]. With the exception
of the case (EIlqﬁ,\,(ﬁ,\} = 0 (which is a non-degeneracy condition of sort, that we
cannot rule out), our results provide rigorously for spectral stability for all waves
constructed therein - in all dimensions d > 1, for all allowed values of b:d =1,b €
R and d > 2,b < 0. This, in combination with the results of [5], shows orbital
stability, for all normalized waves enjoying the non-degeneracy property of the wave
as well as the property <£;1<p,\,g0,\> # 0.

1.2. Main results: Kawahara waves. It is easy to informally summarize our
results - all normalized waves, whenever they exist, turn out to be spectrally stable.
This is an interesting paradigm, which is currently under investigation in a variety of
models. Our hope is that the approach here will shed further light on this interesting
phenomena in a much more general setting. As we have alluded to above, our focus
will be the Kawahara problem, (1.1), for both positive and negative values of b.

1.2.1. Kawahara waves: Fxistence. In order to construct solutions to the elliptic
problem (1.4) we shall work with the following variational problem

{ f |¢H b|¢/(x| dx +1 fR |p(x |p+1d$ — min

5which precludes one from differentiating with respect to the parameter w as is customary in
these types of arguments

Salthough more details on radial symmetry, the zero set and exponential decay of the waves
are derived as well
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where one could take ¢ in the Schwartz class, in order to make I[¢] meaningful.
Introduce the scalar function
mp(A) = inf 1
GEH2(R),[|9]5=X
which plays a prominent form in the subsequent arguments. Let us emphasize that

it is not a priori clear whether the problem (1.8) is well-posed (i.e. mp(A) > —o0)
for all \. We have the following existence result.

Theorem 1.1. (Existence of the normalized Kawahara traveling waves)
Letp € (1,9),A > 0,b € R satisfy one of the following

1. 1<p<bHA>0
2. For 5 <p <9 and all sufficiently large” X

Then, the constrained minimization problem (1.8) has a solution, ¢, € H*(R) :
[9]12. = X and w = w(b, X, ¢). Moreover, ¢, satisfies the Euler-Lagrange equation
(1.4) in a classical sense. We call such solutions ¢ normalized waves.

Remark. The Lagrange multiplier w may depend on the normalized wave ¢. In
particular, we can not rule out the existence of two constrained minimizers of (1.8),
b, b, with WA, dr) # w(A, (;NSA) This is of course related to the uniqueness problem
for the minimizers of (1.8) (and it should be a much simpler one), but it is open at
the moment.

1.2.2. Kawahara waves: Stability. We now discuss our results concerning the sta-
bility of the waves produced in Theorem 1.1 - we employ the standard definition of
spectral stability, see Definition 2.2 in Section 2.3 below. Before we give the formal
statements, we need to state an important property of the waves ¢ constructed in
Theorem 1.1. Namely, upon introducing the self-adjoint linearized operator

Ly =05 +b02 4wy —ploaP,

we say that ¢, is weakly non-degenerate, if ¢ L Ker[L,]. In particular, Ejrl(;ﬁ)\ is
well-defined.

Theorem 1.2. Let A > 0 and p satisfy the requirements of Theorem 1.1, and ¢y
is any minimizer constructed therein. Then, ¢y is weakly non-degenerate. If in
addition, the condition (/.3;1(;5)\, o) # 0 is satisfied, then the wave ¢y is spectrally
stable, as a solution to the Kawahara problem (1.1), in the sense of Definition 2.2
below.

Remarks.

e The condition <£;1¢,\, o) # 0 appears frequently as a non-degeneracy con-
dition in the literature, [19]. It is worth noting that such a condition has a
clear physical spectral meaning, namely that the eigenvalue at zero for 9, L,
generated by the translational invariance, has an associated Jordan cell of or-
der exactly two. Physically, such an eigenvalue is expected to be of algebraic
multiplicity exactly two and geometric multiplicity one, as this is the only
invariance in the system, so this must hold generically. We do not have a
rigorous proof of this fact at the moment.

"Here, for all given p € [5,9), for both b > 0,b < 0, there is a specific value\p ;, and we assume
that A > X
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e The results of Theorem 1.2 present rigorous sufficient conditions for stability
of traveling waves in much wider range than previously available. In fact, our
results confirm® the available numerical simulations by Levandosky, [30]. For
example, it is quite obvious that the bifurcation point is at? p = 5. More
precisely, for powers p < 5 all waves are stable!®, while for p > 5, some
unstable waves start to appear (which are of course not normalized). For
p > 9, Levandosky observed a very small set of stable waves, again none of
them normalized, but rather generated as minimizers of (1.7).

e The Cauchy problem for the particular version of the Kawahara problem (1.1)
considered herein, has not been studied methodically, to the best of our knowl-
edge. Based on the results of the standard NLS though, one might conjecture
that the problem is globally well-posed for all values 1 < p < 9. An impor-
tant related issue is the conservation of Hamiltonian, momentum and L? mass
along the evolution of solutions emanating from sufficiently nice data.

e In the presence of satisfactory well-posedness theory, as outlined above, non-
linear (or strong orbital) stability of the wave ¢(x + wt) follows from our
arguments, once one can establish that the linearized operator £, has one
dimensional kernel, namely Ker[£,] = span[¢’]. This is in essence standard,
but it does not follow directly within the Grillakis-Shatah-Strauss formalism,
[12], since this approach would require the smoothness of the mapping A — ¢,
which is currently unknown. In particular, we refer to a method pioneered
by T. B. Benjamin in [4], for the stability of the KdV waves, which has since
been refined and improved by other authors. On the other hand, we refer to
the arguments for the NLS case to [5].

e The non-degeneracy Ker[L] = span[¢’] appears to be a hard problem in the
theory. An easier version would be to establish such a non-degeneracy of the
kernel, if ¢ is a minimizer of (1.8). A harder problem would be to do so,
knowing that ¢ is just a solution to the PDE (1.4). In both cases, the non-
degeneracy is directly relevant to the uniqueness of the ground state, which
is even harder open problem in the area. See [10] for discussion about these
and related issues.

1.3. Main results: Fourth order NLS waves. We start with the existence
result for the models.

1.3.1. Emistence of normalized waves for fourth order NLS models. Before we state
the results for the fourth order NLS models, we need to make an obvious reduction
of the equation (1.2). Namely, picking a matrix A € SU(n), so that b = |bAe7,
we can clearly reduce matters (both the existence of the solutions of the profile
equation (1.5) and its stability analysis), by the transformation @(§) — @(A*¢), to
the following problem:

iug + A%+ e[b|?07 u — [ufPlu =0 (1.9)

8With the usual caveat, that since there is no uniqueness, it is possible that the waves considered
in [30] are different than ours!

9corresponds to the case p = 6 in the notations of [30]

Oexcept at p = 4 (p = 5 in the notations of [30]) - for a small region in the parameter space,
an instability is observed numerically. This must be a fluke of the computations in [30], because
as we see from Theorem 1.1, the stable region is up to p < 5
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and its associated elliptic profile equation

A6+ e|b07, 6 +wo — o' ~1o = 0. (1.10)
That is, the existence of solutions to (1.10) is equivalent to the existence of solutions
to (1.5) (under the appropriate transformation) and their stability is equivalent to
the stability of their counterparts. Thus, it suffices to discuss the fourth order

NLS problem (1.9), with its solitons satisfying (1.10). Our variational setup in the
anisotropic case is as follows

{( LIl AR — P10 0PI 5 el i
Jra #*(x)dx = X,
We denote for the sequel the cost functional
1 - 1
16 =5 [ 180 = <l on, o(@)Pids — 1 [ o)+
R4 P+ 1 R4

Theorem 1.3. (Stability of the normalized waves for the fourth order NLS: mized
derivatives)

Letd>1,e=—1. Letpe (1,14 8), A >0 and

L1<p<l+g5,A>0

2. If 1+ % <p<l+ %, assume a sufficiently large .
Then, there erxists ¢ € H*(R?) N LPT1(RY) satisfying (1.10), with an appropriate
w = (X ).

The wave ¢y is constructed as constrained minimizer of (1.11), with ||¢x|%. =
A, Assuming in addition the condition <£;1¢A,¢5>\> # 0, then e” ¢y (1) is a
spectrally stable solution of (1.9), in the sense of Definition 2.2 below.

Remark. The case ¢ = 1, in the higher dimensions d > 2, while undoubtedly
interesting in the applications, is much more subtle, and it cannot be analyzed with
the methods of this paper. We will address some aspects of it in a forthcoming
publication [27].

Despite the obvious similarities with (1.5), the fourth order NLS with pure Lapla-
cian, (1.3) and its associated profile equation (1.6), turn out quite different - even at
the level of the existence of the waves and their stability. We introduce the relevant
variational problem

{ 11¢] = § [rallAd(@)]> = bIVe(2)Pldz — 17 [ra lé(2)[P+!dz — min
fRd ¢ (x)dx = N,
Theorem 1.4. (Stability of the normalized waves for the fourth order NLS: pure
Laplacian case)

Letd>1,b<0. Letpe (1,14 2), A> 0 and

1.1<p<1l+3,X>0

2. If 1+ % <p<1l+ %, assume a sufficiently large \.
Then, there exists a normalized wave ¢y € H*(R?) N LPHIRY) : [|ga|? = A,
satisfying (1.6), with an appropriate w = w(\,¢). The soliton e~ ¢y (x) is a
spectrally stable solution of (1.3), under the additional condition (E;lgb)\,qb)) #0,
in the sense of Definition 2.2.

(1.12)

Remarks.

e The results extend the stability results of Albert, [1] for the one dimensional
cubic case p = 3.
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e The results here also extend the NLS related results of [9] (namely, stability
forp <1+ % and instability otherwise), which apply to the case b = 0.

e Both results, Theorem 1.3 and 1.4 of course coincide for d = 1, but are different
for d > 2. We do not have a good physical explanation as to why the range of
existence and stability of standing waves for the models (1.9) vis a vis (1.3)
differ. In particular, the mixed derivative model, (1.9) seems to support all
stable normalized waves in the wider range p € (1,1 + %), A > 0, compared
tope (1,14 %) for (1.3). This topic clearly merits further investigations.

e The cases b > 0,d > 2 will be analyzed in a forthcoming publication, [27].

The rest of the paper is organized as follows. In Section 2, we show that distri-
butional solutions of the elliptic problems are in fact strong solutions. We also set
up the relevant eigenvalue problems, and in regards to that, we review the relevant
instability index counting theories and some useful corollaries. Finally, we present
the Pohozaev identities, which imply some necessary conditions for the existence
of the waves. We also note that better necessary conditions (which are closer to
what we conjecture are the optimal ones) are possible, under a natural spectral
condition. In Section 3, we develop the existence theory in the one dimensional
problem - this already contains all the difficulties, that one encounters in the higher
dimensional situation as well. In particular, we discuss the well-posedness of the
constrained minimization problem, the compensated compactness step, as well as
the derivation of the Euler-Lagrange equation and various spectral properties of the
linearized operators, which are useful in the sequel. In Section 4, we indicate the
main steps in the variational construction for the waves in the higher dimensional
case. In Section 5, we provide a general framework for spectral stability, based on
the index counting formula, which is easily applicable in our setting.

2. Preliminaries.

2.1. Function spaces and GNS inequalities. The LP,1 < p < oo spaces are

defined via
1/p
I = ([ 15@pas)

For integer k, the classical Sobolev spaces WP 1 < p < oo are taken to be the
closure of Schwartz functions in the norm || f|[we» = || fllze + 22,0 = 10%fllLr-

Next, we need some Fourier analysis basics. Fourier transform and its inverse
are defined via

fO = | fl@e e, f(z) = / Fe)eminta
Rd R

Recall the sharp Sobolev inequality || f||Lemd) < Cspllfllwsr@may, Where 1 < p <

g<oocand s=n (% — %) Note that for non-integer values of s, the norm on the

right-hand side is defined via
£ llwen = 111 = A)*2 f | n,

where (1 — A)2g(§) = (1+ 47%[¢[*)?4(E).
In addition, we shall make use of the Gagliardo-Nirenberg-Sobolev (GNS) in-
equality, which combines the Sobolev estimate with the well-known log-convexity
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of the complex interpolation functor || f|l(x,, x,1, ||f||§(00|\f||x1 For example, the
following estimate proves useful in the sequel

4G— 4(3-9)
lull o) < Coalldull 158 a2 : (2.1)

whenever ¢ € (2,00), for d=1,2,3,4 and 2 < ¢ < %,d > 5.
We record the formula for the Green function of (—A + 1)~1, that is Q(¢) =
(1 + 472[€]?) 71 (see [13], p. 418)

Q) = v [ et (22)

Note that @ > 0, radial and radially decreasing. Also, [|Q||z1(r») = fRﬂ x)dx =

Q(0) = 1, but note that Q(0) = +oo for n > 2. In fact, there are the followmg
classical estimates for it, p. 418, [13],

Q)| < Ce™ 1, [z > 1 (2.3)

)~ { 1|§(I|T; H 08)) Zi g ol <1. 24)

In particular, @ € LY(R"™), whenever ¢ < -5 (or ¢ < oo, when n = 2).
2. Distributional vs strong solutions of the Euler-Lagrange equation.

Definition 2.1. We say that g € H?(R%) N LPTY(R?) is a distributional solution
of the equation
A% 4+ bAg +wg — |glP"lg =0,z € R? (2.5)
if the following relation holds for every h € H?(R%) N L>°(R%):
<Agv Ah> + <bAg + wy, h> - <g|pilga h> =0.

Proposition 1. Letp € (1,1+%) and b,w be so that b*—4w < 0 or b*—4w > 0,w >
0,b < 0. Then, any weak solution g of (2.5) is in fact g € H*(R?) N L>®R) N
LY*e(RY) for any € > 0. In particular, the weak solutions of (2.5) in fact satisfy
(2.5) as L? functions.

Proof. Note that by the restrictions on b, w, we have that the operator (A% + bA +
w) is invertible on L2(R%). Let § := (A% 4+ bA + w)7![|g[P"tg]. From Sobolev

embedding, we easily get that § € H*(R), oo < 4 — ggg;g,

191l e ray < 9P~ gll oo may < ClllglP~ gl 2s1 < Cllgl i
L p
In addition, for every test function h, we have
(Ag, Ah) + (bAG +wg, h) = (|9~ g, h) = (Ag, Ah) + (bAg +wg, h).

It follows that g = § in the sense of distributions, whence g € H*(R%). We will
show that g € L>(R%). Denote gy = sup{q : g € LY(R%)}. Clearly, qo > p+ 1, by
assumption. We will show first that ¢y = co. Assume not. By Sobolev embedding,
we have

l9llze®ay = 9/l Laray < C|H9|p*19|\L% < Cllglfppsn <00
as long as % > z% — %. In particular, we can take ¢ as close to oo (and hence
qo = 00), if d < 4. So, assume d > 5. It follows that qio < # - %.

Take any gy < g < co. We have, by Sobolev embedding
191l Laray < ClllgP~ gl < CllglFrn, (2.6)
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solongasd(%f%) §40r% < %+%. If%Jr% <1, we take r : %:%+é,whereas,
if we have % + % > 1, we can take r = %} and we have a contradiction right away,
since the left-hand side of (2.6) is unbounded (by the definition of qg), while the
right-hand is bounded. For the remainder, take r : % = % + %.

Clearly, if p < qg, this would be a contradiction, because the left-hand side is
supposed to be unbounded (by the definition of ¢g), while the right-hand side clearly
is. We claim that this is the case, under our restrictions for p € (1,1+ %) We have

1 »p 4+1 p:4 p—1

So, if we show that % > pq—_ol, we will have achieved the contradiction, as we can take

q very close to qg. Indeed, by the inequality for qio, we have pq—_ol < (p-1) (L - é)

p+1 d
P 4 4
(P 1) <p+1 d) ST
leads to the solution 1 < p < 1+ ﬁ, which of course contains the set (1, 1+ %), so it
is true for all p in the set that we are interested in. We have reached a contradiction,
with gg < oc.

Thus, gy = co. This does not mean yet that g € L>(R?), but this follows easily
by Sobolev embedding, once we know that g € ﬂg§q<ooLq(Rd). Furthermore, we
see that the same type of arguments imply g € H°(R?) and that for every p < oo
and for every ¢ > 0, g € W4==P(R%).

For our next step, we shall need a representation of the Green’s function of the
operator (A? + bA + w) ! as follows. We have

Resolving the inequality

(A2 +bA +w) = (-A+ ——F—)H(-A+ f)_l -

2
= (0% —4w)"V2[(-A + “ho Vb - V2[’2_4w)—1 — (A + —ht Vb~ dw V2b2_4w)—1]_

In the case b2 — 4w > 0,w > 0,b < 0, both =bEvb"—dw V2b2_4“’ are positive numbers, so

N
clearly the corresponding Greens function G has decay e 2 |w|7 according
to (2.3).
As far as the case b?> — 4w < 0 is concerned, it is not hard to see, in the same
way, that the Green’s function G has decay rate e #~!*| where

7”‘?“’ b<0
7\/2\/54) b>0

2

k, =

In both cases, the Green’s function enjoys exponential rate of decay.
For p > 2, we can actually conclude that g € L'(R?) since by the Hardy-
Littlewood-Sobolev inequality

13l zr mey < NGl llgl" gl mey < Cllgll s gay < o0,

as g € L2 N L™, in particular g € LP(R?). For p < 2, denote qo = inf{q : g €
LY(R%)}. Our claim is that gy = 1. Assume for a contradiction that go > 1. We
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will show that for every ¢ > qg, we have that g € L%(Rd), which would be a
contradiction with gy > 1. Indeed, by Hardy-Littlewood-Sobolev

191l 2 gay < 1G L2 wa)lllg”™ "l 2 e < ClGH LIl 0 a-

Lv (R4) —

This establishes the contradiction with go > 1, hence g € Ny, L9(R?). O

2.3. Linearized problems and spectral stability. We next discuss the lin-
earized problems and the stability of the waves. For solutions ¢ of (1.4), we in-
troduce the traveling wave ansatz, u(t,z) = ¢(z + wt) + v(t,x + tw). Plugging
this back in (1.1) and ignoring all terms O(v?), we obtain the following linearized
problem

v 4 0,[0% + b0 + w — plo[P v = 0. (2.7)

Denoting £, := 9%+bd?+w—p|¢|P~1, the associated eigenvalue problem is obtained
by setting v(t,x) — e #tz(z) in (2.7), which results in

0 L4z = pz (2.8)

We proceed similarly with the linearization of the NLS problem (1.2). Consider
solutions ¢ of (1.10) and then perturbations of the solution u(t, z) = e~*!¢ of (1.9)
in the form u = e~™?*[¢ + 27 + iz]. Plugging this ansatz into (1.2), retaining only
the linear in z terms and taking real and imaginary parts leads us to the system

Oz1 = —(A% +¢|b]292, 4+ w — p|g|P~ V)2
S el o (2.9)
8,522 = (A + €|b| a$1 +w — |¢‘p )Zl

Thus, we introduce the scalar self-adjoint operators L1 (note £, < L_)

Ly =N +e[bPO2 +w—plelP~t,
Lo = A2+ eb202, +w— g

so that the eigenvalue problem associated with (2.9) and the assignment Z — e#'Z,
takes the form

JLZ = pz. (2.10)

7= (V)0 L)

1
Finally, for solutions ¢ of (1.6), the linearized problem appears in the form

at( 2 ) :jﬁ( 2 ) (2.11)

This is again in the form (2.10), once we perform the assignment Z — e“'Z, with
slightly different £y, namely

Ly =A%+ bA+w—ple/P1,
Lo =A2+bA+w—|g|P7h

where

We are now ready to give the definition of spectral stability. Note that the essential

spectrum is, by Weyl’s theorem, is the range of the function ¢ € R — |¢|*—b|¢|?+w.

Clearly, this is the interval [w — %, 00), when b > 0 and [w, 00), when b < 0.
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Definition 2.2. The Kawahara waves are spectrally stable, provided the eigenvalue

problem (2.8) does not have non-trivial solutions'! (u, z) : Ry > 0,2z € H5(R).
The waves ¢ are spectrally stable, if the eigenvalue problems (2.10) ((2.11) re-

spectively) do not have non-trivial solutions (u, 2) : ®u > 0,7 € H*(R?) x H*(R?).

2.4. Stability of linearized systems and index counting theories. We need
a quick introduction of the instability index count theory, as developed in [17], [18],
[34] (see also the book [19]) and more recently in [20], [31]. We will only consider
appropriate representative corollaries, which serve our purposes. For the purposes
of this paper, we will follow closely the approach and the notations in [31]. To that
end, we consider an eigenvalue problem in the form'?

JLf = Af. (2.12)

We need to introduce a a real Hilbert space, so that f € X, its dual X*, so that
L : X — X* so that the bilinear form (u,v) — (Lu,v) is a bounded symmetric
bilinear form on X x X. Next, we shall need to assume that J has a domain
D(J) Cc X*,sothat J : D(J) = X, J* = —J. Furthermore, ssume that there is
an L invariant decomposition of the base space in the form

X=X_oKerlf]+0X,

where (see Section 2.1, [31]), £|x_ < 0, n(L) := dim(X_) < oo, dim(Ker[L]) < co
and L|x, > 0, for some 6 > 0. In general, we will denote by n(M) the (finite)
number of negative eigenvalues (counted with multiplicities) of a generic self-adjoint
operator M.

Next, consider the finite dimensional generalized eigenspace at the zero eigenva-
lue, defined as follows

Ey =gKer[JL] = span[uiozl[Ker[jE]kH

Note that Ker[£] C Fy and introduce Ey : Ey = Ker[L] @ Ey. Consider the integer

kOSO(E) :=n(L|g,). Equivalently, taking an arbitrary basis in Eo, {t1,...,Nn} C

D(L), define kOSO(E) to be the number of negative eigenvalues of the IV x N matrix
D = ({LYi, ¥5))iji<ij<n-

Under these general assumptions, it is proved in [31] (see Theorem 2.3 and also
Theorem 1, [18] for the case where J has a bounded inverse) that

Ky + 2ke + 2k50 < n(L) — n(D), (2.13)

where k, is the number of real and positive solutions A in (2.12) (i.e. real insta-
bilities), 2k. is the number of solutions A in (2.12) with positive real part (i.e.
modulational instabilities).

2.4.1. NLS-like problem. For the eigenvalue problem in the form (2.10), we have
that J is invertible and anti-symmetric, 7' = J* = =7 and X = H? (Rd), X* =
H72(R%),d > 1. In addition,assume that J : Ker[£] — (Ker[L])*. We now
introduce the matrix D as follows.

1 Note that by the Hamiltonian symmetry of the problem p — —p, the existence of eigenvalues
w: Ru < 0 is equivalent to the existence of p: Rp > 0

12Before we embark on further details, let us once again emphasize that the examples that we
will be interested in herein will be either in the form (2.8) (i.e. the KdV-like case) or in the form
(2.10) (i.e. the NLS like case).
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Let Ker[L] = {¢1,...,¢n}, then ¢, : TLyY; = ¢;. Note that the last equation
has solution, since J ~1¢; € Ker[L]* and hence £L71[7 ~1¢;] is well-defined. Hence
the matrix D is

Dyj = (Liyhy) = (LT "¢, T ) = (L7 T ], Ty). (2.14)

By the index counting inequality (2.13) if n(£) < n(D), we can conclude that
spectral stability holds true, since the right-hand side of (2.13) is non-positive,
hence all the indices on the left are zero as well.

Next, we discuss gKer[JL]. We have at least d 4+ 1 elements in Ker[L], namely
o = ( 25 ) and ¢; := ( 5'{;;5 ) ,7=1,...,d. Assuming that ¢ L Ker[L,] and
V¢ L Ker[L_], we can identify at least d+1 more elements of the generalized kernel

-1
FEy, namely ¥y = ( E‘B ¢ ) and ¢; = ( —£:013j¢> > ;i =1,...,d. This means
that the algebraic multiplicity of the zero eigenvalue is at least 2(d+1), consisting of
d+1 eigenfunctions and d+ 1 generalized eigenfunctions. One may wonder whether
there is any more non-trivial elements in gKer[7L]. The non-degeneracy condition
(E;lqb, @) # 0, which appears in the statement of the main result is necessary
condition that the Jordan block associated to the eigenvector ¢q is exactly two
dimensional. To this end, assume that there is a third element, ¢ : JLq = .
This would mean, that there is ¢ : L_q = L;lqﬁ. By the self-adjointness of £_,
the solvability condition is exactly (Ejrl(b, #) # 0. Indeed, R(L_) = Ker(L_)+ =
span{$}~, so a third element in the Jordan cell for ¢y does not exist exactly when

(Li'e,0) #0.
2.4.2. Kawahara-like problem. For eigenvalues problem in the form (2.8)
0 Lf = \f, (2.15)

where we set up again X = H*(R),X* = H %(R), while ,L=L,,J = 9,,J* =
—J. This satisfies the requirements of the theory put forward in the beginning of
this section. Next, regarding the generalized kernel of 0, L., we clearly have that
¢’ € Ker[L] C Ker[0,L]. Furthermore, if ¢ L Ker[L.], there is additional element
in gKer[0,L], namely £1'¢, since (9,£1)%[¢'] = 0,L4[0.L+[L7"¢]] = 0. This
means that the zero is multiplicity two eigenvalue for 0, L, which is generated by
the translational invariance.

2.4.3. Sufficient condition for spectral stability. Based on the inequality (2.13), it
is clear that spectral stability holds, if n(£) = 1 and n(D) > 1. Furthermore, in
both cases under considerations, and under the assumption ¢ L Ker[L,], we have
the vector ¢ = E;lqb in the generalized kernel of JL£. Thus, Dy = <£;1¢, o),
whence since Dy; < 0, we can assert that the matrix D has at least one negative
eigenvalue (since (Dej,e;) = D11 < 0, which would then imply stability. Thus,
when we specify to the specific problems that we face, we can formulate the following
sufficient condition for spectral stability.

Corollary 1. For the spectral problems (2.8) and (2.10), spectral stability follows,
provided

[ ] ’I’L(E+) = 1, L_ Z 0.

o ¢ L KerlCi], (£L'¢,6) <O0.



4144 IURII POSUKHOVSKYI AND ATANAS G. STEFANOV

2.5. Necessary conditions for existence of (1.5). We have the following Po-
hozaev identities.

Lemma 2.3. (Pohozaev’s identities) Let some smooth and decaying ¢ satisfy

A2p+ azn: bibr0;kp +wo — [pP 1 = 0. (2.16)

Then "
/Rdw)|2 _ d(p21()p+21()p+1) /RdWHJr“/RdW'Z’ (2.17)
[ evep = M= 5D [ gpiian [ ep. @as)

Proof. Multiplying (2.16) by ¢ and integrating over RY we get

/ |A¢\2dx—g/ \5-v¢|2dx—/ |¢|P+1dx+w/ |p|?dz = 0.
R Rd R Rd

Also, multiplying (2.16) by x - V¢ and integrating over R? we get

d d -
(2—2) /Rd|A¢|2dx— (1—2>€/Rd|b~v¢2dx+

d d
2 Py — WS 2dz = 0.
+ et %/Rd“ﬁ' v

Let A= [g.|A¢[Pdz, B=¢ [g. b-Vo|2dz, C = Jral@lPTtdz and D = [, |¢|*da.
Solving for A and B in terms of C' and D we get

{A — dle-b)- 28p+1)c+wD
5 +1
B = 2(p+1)p )C + 2wD.
which is (2.17) and (2.18). O

Corollary 2. Ifd=1,2, thenw > 0. Ife = —1 and w > 0, then p < Pmax-
Ifb=0, then w > 0 and p < Pmax-

Proof. If d = 1,2, the first term on the right of (2.17) is negative, forcing the
positivity of the second term, so w > 0. Next, from the relation (2.18), we see that

if w>0,e = —1, then %—Jﬁ({)-&-l) <0, or p < Prmax-

If b = 0, it is clear from (2.18) that either w > 0 and p < Pmax or w < 0 and
P > Pmax (the second one being impossible immediately for d = 1,2,3,4). For d > 5,
assume for a moment that w < 0 and p > ppax = %. Let us look at (2.17). The
second term is now negative, while for the first term, since p > ppax > %, we also

conclude its negativity. It follows that the right hand side of (2.17) is negative a
contradiction. Thus, w > 0, p < Pmax- O

As we see from the results of Corollary 2, the Pohozaev’s identities are by them-
selves not strong enough to derive necessary conditions on w, p that are close to the
sufficient ones.

We believe that indeed, the necessary conditions are close to the ones required by
[30] to construct solutions of the constrained minimization problem (1.7). Namely,
we expect p < Prpax and w > % for b > 0 to be necessary for existence of localized
and smooth solutions to (2.16) and (1.6). Let us show that in fact, these follow
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from a natural assumption on the spectrum for the operator £, namely that zero
cannot be an embedded eigenvalue in the continuous spectrum of £. Let us note
that while for second order Schrodinger operators H = —A + V| this is generally
the case'? under decay conditions on V, this is not the case for their fourth order
counterparts, [11]. In physically relevant situations however (and the case of £
certainly merits this designation), embedded eigenvalues should not exist. If this is
the case for £, we see that since by Weyl’s theorem

b2
Oq.c. [['-i-] - Ua.CA(A2+bA+W_p|¢|p_1) = Ua.c.(A2+bA+W) = { W= 4 b Z 0
w b<0
. . . . Y op>0
Clearly, if zero is not embedded, it must be that w satisfies w > { 6 b 2 0 If

that holds, at least in the case b < 0, it follows from Corollary 2 that p < ppax as
well.

3. Variational construction in the one dimensional case. We start with some
preparatory results.

3.1. Variational problem: Preliminary steps. We now discuss the variational
problem (1.8). It is certainly not a priori clear that for a given A > 0, such a value
is finite (that is my(A) > —o0) and non-trivial (i.e. mp(A) < 0). In fact, in some
cases, it is not finite, as we show below. Note that

p—1
my(A) = inf 1/ |2 — b|¢'|*dx — /\72/ |p|PT da p = inf J[¢].
A lol3=1 | 2 /r p+1Jr lll3=1

(3.1)
This is, clearly, a non-increasing function. In particular, mbf()‘) is differentiable a.e.
and so is mp(N). Our considerations naturally split in two case, b > 0 and b < 0.

3.1.1. The case b < 0. In this section, we develop criteria (based on the parameters
in the problem), which address the question for finiteness and non-triviality of
mp(A). The next lemma shows this for p € (1,5) and in addition, it establishes that
mp(A) = —oo for p > 9.

Lemma 3.1. Forp e (1,5),b <0, —co < my(A) <0 for all A > 0. For p>9 then
mp(A) = —oo for all A > 0.

Proof. Let ¢(x) = c'/2¢(cx), where H<b||§ = A. We have that

+1
I T A [ e

I[¢e] = 5 € 5 ¢ P ez . (3.2)
Since 0 < % < 2for 1 < p < 5, we see that my(A) < 0 in this case by choosing
¢ small enough. On the other hand, if p > 9, it is clear that lim. ,~ I[¢:] = —00,
whence my(A) = —oo in this case.
By the GNS inequality
3, 1 11
¢l m) < Coplll  3- 2y < Colldlipa 7 116712 "7, (3.3)

13 That is point spectrum does not embed into the continuous one
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we have

1 1
g = : / 1 = b e~ / 6P de
> / (672 — bl [2dz — 6" 15T 2T

> Z||¢H||L2 —pnlI8l;T +1) = 7,
for some v > 0 because the function g(x) = %xQ — cp7,\x%, clearly, has a negative
minimum on [0,00) for p € (1,9). Therefore, my(A) > —y > —oo for p € (1,9).
Letting € — oo in (3.2) shows that my(\) = —oo for p > 9.

Consider now the case p = 9. Clearly, for large A, my(A\) < 0, as it is evident from
the formula (3.1). Assuming that my(\) € (—00,0) for some A, let ¢ be such that
my(\) < I[¢g] < ™4 ™) Using ¢y as in the formula (3.2), we see that lonl2s = A,
while for N > 1, We have

19”1122 bl¢'llZ=  llollzo 19”1122 blg'llZ2  llollzo

I = N* <N*

low] 3 22 0 =N 2 0
< N4 mb()\)
_— 2 .

But then mp(\) < liminfy I[¢pn] = —o0, a contradiction. O

Our next lemma shows that for p € [5,9), there is a threshold value A, > 0,
below which my(\) is trivial.

Lemma 3.2. Ifb <0 and p € [5,9), then there exists a finite number A, > 0 such
that

o for all A < A, we have my(X) =0,
o for all A > X\, we have —oco < my(A) < 0.

Proof. Take ¢, as in Lemma 3.1 with [|¢[> = 1. We have

mbA(A) < lim J[¢.] = 0. (3.4)

which implies that m,(A) < 0. Now, we are going to show that for each p € [5,9]
there exists a constant ¢, > 0 such that

5" (Jg 9" ]? — bl¢'|?dx)
égéo f |g|PHdz > cp.

Using the GNS inequality (2.1), we get the following estimates for the LP*! norm:

1612 < ap 16”157 llly™
1112 /12 %l %
ap [ 10" =bl¢'Pdz ) 8l (3.6)

1612 < by 1657 llls™

(3.5)

and

p—1

<1, ( A |¢"|2b|¢>’|2dx) el (3.7)
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Note that for p € [5,9), we have that pT_l <1< %. Therefore, interpolating
between estimates (3.6) and (3.7) we get

Jollzsts < eolioll= [ 16 = o/ .
Thus we have that for all ¢ € H2 with ||¢|2 = 1

1
/ 6P — bl¢/Pda — - / 6P+ da > 0,
R Cp JR

2
this implies that for A : 0 < A < v, = (%) Y J[¢] > 0, which together with
(3.4) implies that my(A) = 0.
Observe that for a very large A, the quantity

1 A
inf 7/ ¢”2—b¢'2dag——/ P da
|¢|§—1{2 R| Sadd p+1 R‘ |

is strictly negative'*, so Ap < 0o. Clearly,
Ap =sup{y > 0: mp(A) =0 for all A <~}

O

Lemma 3.3. Suppose b < 0, 1 < p < 9 and —oo < mp(A) < 0. Let ¢y be a
minimizing sequence. Then, there exists a subsequence ¢y such that:

/ 60 (@)Pde — L, / |4 (2) 2 — Lo, / |64(x) P — Ls,
R R R

where L1 > 0, Ly > 0 and L3 > 0.

Proof. We have already established in Lemma 3.1 that

1 " 1 B2l
Ig] = 7ll¢ 72 = cpan(lle”ll - +1). (3.8)

Since, ¢y, is minimizing, it follows that the sequence { [ [¢}(x)[*dz}x is bounded.
By GNS inequality, the sequences {[g |9} (2)]?dz}y and [ [¢n ()Pt da}y are
bounded as well. Passing to a subsequence a couple of times we get a subsequence
{¢r} such that all of the above sequences converge. We claim that L3 cannot be
zero. Indeed, otherwise,

1 b
o) =il [ (oo = 3 [ 1oh(a)Pde] > 0

which is a contradiction with the fact that m;(A) < 0. By Sobolev embedding,
neither L1 nor Lo could be zero, as this would force L3 = 0, which we have shown
to be impossible. O

Mwhich can be seen by fixing ¢ in the infimum and taking A > \(¢)
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3.1.2. The case b > 0.
Lemma 3.4. Ifb>0 and 1 <p <9, then —oo < mp(A\) < 0 for all A > 0.

Proof. Since 0 < 251 < 4, the dominant term in (3.2) is max(e?, 8%4), so if we just

take e small enough, we see that m(A) < 0. Boundedness from below follows from
(3.8). O

Lemma 3.5. Letp:1<p<5,b>0 and fixr a constant c. Then, the inequality
_ b2
ot < cloll” | [ 10" @P - @ + loPas|. @9

cannot _hold for all ¢ € H*(R).
Forp € [5,9], b > 0, there is a ¢, so that

_ b2
ol < clloll” | [ 7@ - o) + Glowas] . a0
R

Proof. Let p € [5,9]. Write

1@ o @ + SlotPa = [ 1o ((ro? —g)st.

Introducing g, so that ¢(&) := §(2r& — \/g) Clearly, (3.10) is equivalent to the
estimate

Il < cllglat / G(E)PIEPIE — Cy e (3.11)
R

for some Cp # 0. We show (3.11) as follows: we decompose the function in three
regions - near the two singularities £ = 0, £ = C} and away from them. That is, for
values of |{] << 1, we estimate by Sobolev embedding and Holder’s inequality

1/2
l9<<illprer < Cllg<<all ;3- 4 ( O)Plel p“dE) <
l€l< <1
T

ClllFF / 9(6) 21 5= < Clgla / GO PIEPRIE — e
€l<<1 R

Clearly, this last estimate holds as long as 2 < ’72;1 (since then |£ — Cp| ~ 1, when
|€] << 1), which is the same as p > 5. The estimate is similar, with the same
constraint p > 5, at the singularity £ = C,.

Finally, away from the two singularities, we have |£|?|¢ — Cp|? ~ |€|4, which
means that following the estimates above, we need 2 1 < 4, which gives the other
restriction p < 9.

Let now p € (1,5). Take a Schwartz function X and then ¢(x) = x(ex). Testing
(3.9) for this choice of ¢ leads us to e~ < Ce~ = (€3 +¢). This is a contradiction
as € = 0+, so (3.9) cannot hold. O

Lemma 3.6. Supposeb > 0,A >0 andl <p<9. Let ¢ be a minimizing sequence
for inf g2 _xI[¢]. Then, assuming that
L

e pe(1,5), A>0,
e p€[5,9) and for some sufficiently large App, A > App.



GROUND STATES FOR THE KAWAHARA EQUATION 4149

Then, there exists a subsequence ¢y, , such that:

1
3 [ 100 @F = L, [ 6, @F > Lo and [ (0,77 e = Ly
where L1 >0, Ly > 0 and L3 > 0.

Proof. First, by (3.8), the quantity [g |¢}(x)[*dz is bounded. By Sobolev embed-
ding so are the other two. By passing to a subsequence (denoted again ¢y ), we can
assume that they converge to three non-negative reals, L1, Lo, L.

Suppose first that Lg = 0. Then, consider the following minimization problem

f "( -b 2dr == inf T
u¢1\]|a A2/ 7@ ¢(@)fde: \|<z>lu%fA 9]

Observe that since I[¢] > I[¢], we have

lim I[¢y] = lim I[¢] = inf I[¢] < inf I[¢]
k k lloll3=A lloll3=A

Thus, ¢, is minimizing for I as well and

inf I[¢]= inf I[¢]
I $lI3=x ll$li3=x

On the other hand, inf,>_y I[@)] is easily seen to be —)‘TZ’Q. Indeed, for function

¢ : ||¢]|2: = A, we have by Plancherel’s

o= [ e

whence inf) g2y I[¢] > _T' On the other hand, for any Schwartz function ¥,
consider

2

(2m€)? — g ¢ > 0. (3.12)

s (A
*O = T |\

which has [|¢||3. = A and saturates the inequality (3.12) in the sense that

2

. b
lim. / B(€) |(2m€)? — 5| dE 0.
r,[‘hU.S7 1nf|‘¢|‘2:/\ I[QS] = —T So , We have

2y < 3 [P oot [ ot

8 ~ 2 Jr p+1/r '
holds for all ¢ with ||¢||§ = \. Applying this to an arbitrary f and ¢ := ﬁW’
so that ||¢H22 = ) the following inequality holds

b2
VT sttt < st ([ 15r -+ D)

for all f # 0. This last inequality however contradicts Lemma 3.5 - for every A > 0,
if p € (1,5) and for all large enough A, if p € [5,9). Thus L3 # 0. Clearly, by
Sobolev embedding L; > 0, Ly > 0, otherwise Ls must be zero, which previously
lead to a contradiction. O
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3.1.3. Strict sub-additivity.
Lemma 3.7. Let 1 <p <9 and A >0 Then for all o € (0, \) we have

mp(A) < mp(a) + mp(A — ). (3.13)
Proof. First, suppose that 1 < p <5 and b < 0. Then
m) = 2 it 5 [ 10 @P - e @Pa - BT - / 6(x) Pz} <
Bl3=a
A
< amb(a),

where the last strict inequality holds because there exists a minimizing sequence
for mp (), which has the property limy, [|¢kll,,, > 0. This means that the function

A= mb()‘) is strictly decreasing. Assuming that o € [, \) (and otherwise we work

with )\ — «) we get

A — o

mp(A) < 2mb(a) =mp(a) + mp(a) < mp(a) + mp(A — ),

d my () < my (A—a)
a

where we have use < 55

€ (1,5),b<0.
Let 5 < p < 9 and b < 0. Note that in this case, my(z) is zero for small x, by
Lemma 3.2. So, there are three possibilities:

, since @ > A\ — «. This completes the case

1. mp(a) = mp(A—a) = 0. In this case (3.13) trivially holds, since by assumption
mp(A) < 0.
2. mp(A) <0, but mp(A — ) = 0. In this case we have

A A
mp(A) < amb(a) =mp() + (a — Dmp(a) < mp(a) + mp(X — ).

3. When both my(a), mp(A — o) are negative, the proof is the same as in the

case 1 <p <5 forb<0.

Next, we consider the cases when b > 0. In this case for all 1 < p < 5 and
all A > 0 we have that —oo < mp(A) < 0. The proof is the same as in the case
b < 0,p € (1,5), since we never develop the complication that my(A\) = 0 for any
A > 0. The case p € [5,9) and A > X, is similar as well. O

3.2. Existence of the minimizer. Now, suppose

l<p<b A>0
5<p<I A> Ay

so that Lemma 3.3 and Lemma 3.6 hold. Let {¢x}2, C H? be a minimizing
sequence, i.e.

/R pw|*da = A, I[pr] — mp(A).

Therefore, by passing to a further subsequence, by Lemma 3.3 and Lemma 3.6, we
have

2
6715 = L1 >0, |Igills = L2 >0, [léxlf3ts — Ls > 0.
Let pr = |¢x|?, so [ pr(x)dz = X\. By the concentration compactness lemma of

P.L.Lions (see Lemma 1.1, [32]), there is a subsequence (denoted again by pg), so
that at least one of the following is satisfied:
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1. Tightness. There exists yx € R such that for any £ > 0 there exists R(e) such

that for all k
/ prdx > / Pk — €.
B(yk,R(¢)) R

2. Vanishing. For every R > 0

lim sup/ prdx = 0.
k—ooyeR JB(y,R)

3. Dichotomy. There exists a € (0,)), such that for any € > 0 there exist
R, R;, — 00,y and kg, such that

/ prdx
R<|z—yk|<Ry

i pkdx—(A—a)|<5.
Re<|z—yk|

[ prdz — «
B(yk,R)

<e, <e,

(3.14)

We proceed to rule out the dichotomy and vanishing alternatives, which will leave
us with tightness.

3.2.1. Dichotomy is not an option. Assuming dichotomy, we have by (3.14) and
J pr(z)dz = X that ’ka<\x7yk| prdr — (N — a)’ < 2e. Let ¢, € C(R), satis-
fying 0 < 91,42 <1 and

1 1, |z >1,

1 jel<, B
wl(m)_{o, 2 > 2, wQ(x)_{o, ol <172,

Define ¢5,1 and ¢y, o as follows:

bk,1(z) = dr(x)P1 (xR;/ySk) , Oral(r) = dr()hy (”2;5’“) .

Clearly, for k large enough we have

[ awiao-a
R

< 2e.

< 2¢ and ‘/R Dp o(@)dz — (A — a)

In fact, by taking a sequence €, — 0, we can find subsequence of ¢, 1, ¢ 2 (denoted
again the same) and sequences {yx}7>, C R, {Rx}72, with Ry — oo as k — oo,
such that

{ Mmoo [g [0k12de =, limpoo [ okl dz = A — a,

FEs (3.15)

Ry /5<|z—yK| <Rk ‘¢k|

Consider I[¢x] — I[pk.1] — I[¢r,2]. Using (3.15) we get

14 = Tlona) - Ligwal = 5 |

"2 _ /12 7# +1
[ ot~ bloiao - — [ o
2
1 T — Yk
5/, (d)’“wl(Rk/s))

(s (5)) |

—-b dxr
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SACHCIRCHES)
el G i (o (22))
s (-0t (5 ) - 3 (S52)) ik - Gkt as
p+1/ i ()P (wp“(R /5)+¢P+1 (?) —1) dz + E.

The error term Fj, contains only terms having at least one derivative on the cut-
off functions, therefore generating R,;l. At the same time, there is at most one
derivative falling on the ¢y. So, we can estimate these terms away as follows

C
By,

dzx

p+1

|Ex| < == / (16w (@)]* + |64 (2)]*)da < *ll(ﬁkHLZ(H%HLz + l16Klz2)-
Since supy, ||k || L2, supy, |¢}]| L2 < oo, we conclude that limy Ej, = 0. For the next

term, we have the positivity relation [ (1 —p? (%;%) 0 (m Y )) 16/ () 2dz >

0. Integration by parts yields
- (58) - (52
=~ [ oo ( —w%(R;/y;) - %(m;ky’“)) (@)de

Thus, by Holder’s inequality
%) 64 a) el <

IAGCORS

< Cllogl2llonllLz(ry 5<) 1<) + k||¢§c||L2||¢k||L2-

Note that since Ry — oo and on the other hand ||¢|| g2 is uniformly bounded in &,
this term goes to zero, by the last estimate in (3.15). Finally,

|/ i () [P+ (Wl ( T ) + ot (”“'];ky’“) —1) dz| <
< Py,
S A G

Since by GNS

(@) dz < CllLILT el iy :
/Rk/5<3c Yk | <Rk Lz LQ(Rk/Sq I<Re)

and [|¢} ||z is uniformly bounded in k, we conclude that this term also goes to zero
as k — o0.
It follows that

lim inf [I{gx] — I[¢n,1] = I[¢r2]] 2 0. (3.16)
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Now, let {ax}72, and {b;}32, be sequences such that ||ak¢k71||§ = q, ku¢k72||§ =
A — «. Note that ag, by — 1. Using (3.16), there is S : limy B = 0, so that

Iow] = Iora] + I[dr,2] + Br
> Iaggra] + I[bedr2] + Bx — C(|1 — ax| + [1 — br])
> mp(a) + mp(X —a) + B, — C(]1 — ar| + |1 — by|).

where we have used that supy, ||¢x| gz < oo, the estimate |I(¢)—I(ag)| < C(||¢] =)
|1 — a| (which is a direct consequence of the definition of the functional I[]) and
the definition of m;(z). Taking limits in k, we see that

mp(N) = lim T[] > my(a) +mp(A = a),

which is a contradiction with the sub-additiivity of m;(-) established in Lemma 3.7.
So, dichotomy cannot occur.

3.2.2. Vanishing does not occur. Suppose vanishing occurs and € > 0. Let ¢ € C™
be such that
L fz[ <1,

nie) = {o, 2| > 2.
Using GNS we have for all R and y € R

IoulE sy < [ fenlrtidn < [
’ B(y,R) R

< H(m(;y))

We can cover R with balls of radius 2 such that every point is contained in at most
3 balls, let it be {B(y;,2)}. Moreover, we can choose these balls so that {B(y;,1)}
still covers R. Choose N € N so large that for all £k > N,

/ o1 [*dz < e,
B(y,2)
for all y € R. We can estimate the LPT1(R) norm of ¢, as follows

[eS) [eS) 3p-3
”st”i—«p—ﬁl-l(l{) = Z/B(y N |¢k|p+1d:17 < ZO R H(kai?(B(ng)) HQSkHL;(B(yj,Q))
Jj=1 (A

Jj=1

p+1
dx

o) (m}—%y)

zEe eER
19kl L2 B y.2m)) < Onr 19kl L2 By 2R, -
L2(R)

A

3p=3
< 3Cype T ||¢k||iZ(R)'

So, we get that ||¢k||’£ﬁ1(R) — 0 as k — oo which is a contradiction. Therefore,
the sequence py, = |¢y|? is tight.

3.2.3. Existence of the minimizer. We have that there exists a sequence {yx}72
such that for all € > 0 there exists R(e) such that

/ |Bu g+ 2) Pz < .
|z|>R(g)

Define ug () := ¢x(yx+2). The sequence {uy}32, C H? is bounded, therefore there
exists a weakly convergent subsequence( renamed to {uy}$,), say, to u € H% . By
the tightness and the compactness criterion on L?(R™), the sequence {uy}7, has a
strongly convergent subsequence in L?(R), say, to u € H?. Since weak convergence
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on H? implies weak convergence on L?, we have that u = @ by uniqueness of weak
limits. In addition, |ju||?, = limy, [|ukl|2, = A, so u satisfies the constraint.

We also have that wuy converges to u in LP*! norm. Indeed, using GNS inequality
we get

)//H 4(p+1) 4(p+1)

H“k_u||Lp+1(R < || (s L2(R) s — UHL2

< C|lug — uHL2 4“’“) —0as k— oo.
Also, since
Jug, — |72 < Juf —u"[| g2 lug = w2 < (lufllzz + "l 2)lfus — w22,

we conclude that limy |u), — «/[[zz = 0, and in addition limy [(u}(z))?dx
= [(v/(x))?dx.

Fmally, by the lower semicontinuity of the L? norm with respect to weak con-
vergence, we have liminfy, [ [uf|* > [ [u”|>. We conclude that

1 1
liminff/ [ul|? — bluj,|*dx — 7/ Jug [P da >

1 1
> f/ |u”|2—b\u'\2dm—7/ [P+ da,

whence we have that my,(\) > Iu], therefore I(u) = my(A) and w is a minimizer.

3.3. Euler-Lagrange equation.

Proposition 2. Let p € (1,9),A > 0, be so that

e l<p<b A>0
e 5<p<IYA> N, > 0.

Then, there exists a function w(X) > 0, so that the minimizer of the constrained
minimization problem (1.8) ¢ = ¢ constructed in Section 3.2.3, satisfies the Euler-
Lagrange equation

//// + b¢ ‘¢)\‘p*1¢)\ +w(A)gr =0 (3.17)

where
=5 | MO 10 - (@4

In addition, n(Ly) = 1, that is L4 has exactly one negative eigenvalue. In fact
£+|{¢>\}L > 0.

Proof. We have shown that minimizers for the constrained minimization problem
exists in the two cases described above, for both b > 0 and b < 0.

Consider us = ﬁ%, where h is a test function. Note that ||us||2. = X, so

it satisfies the constraint. Expanding I[us] in powers of § we obtain

us) = mp(A)+

w6 | [ onr—iteh s~ onds
)
S5 0z o - @) do [ onns
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52 _
#5002 -0 = o2 o

52
45 000) [ (o4 DRIOP6+ 2006} — 20 s

R
2
+ a6 [ (04 3)loaP™ +40(5)° - 4(65)%dar+
R

52 / /1
4 IBIP [ 107 4 b6 )? — (@52 de +O°).
R

Using only the first order in § information and the fact that I{us] > my(\) for all
§ € R, we conclude that

(o, B +b{da, B) — (|oalP " dr + w(N)pa, h) =0

where w(X) = 5 [g b(¢4)2+|pa[PT—(¢%)dx. Since this is true for any test function
h, we conclude that ¢, is a distributional solution of the Euler-Lagrange equation
(3.17). According to Proposition 1, this turns out to be a solution in stronger sense,
in particular ¢y € H*(R).

Now, using the fact that the function g,(d) := I[us] has a minimum at zero,
we also conclude that g (0) > 0. This is of course valid for all h, but in order to
simplify the expression, we only look at h : ||k = 1, which are orthogonal to the

wave ¢y, i.e. (h,¢y) =0. This implies that
(K" 4+ bh" + w(A\)h — p|¢>A|p71h, h) > 0.

In other words, (£Lih,h) > 0, whenever h : ||h| = 1,(h,¢5) = 0. This is ex-
actly the claim that £4] {¢x3+ = 0. In particular, this implies that the second
smallest eigenvalue of £, is non-negative or n(£,) < 1. On the other hand, since
(Lidr, dr) =—(p—1) [|¢x(z)PTldz < 0, it follows that there is a negative eigen-
value or n(£4) = 1. O

4. Variational construction in higher dimensions. In this section, we follow
the approach and constructions from Section 3. Most, if not all, of the steps go
through essentially unchanged, save for the numerology, which is of course impacted
by the dimension d. Thus, we will be just indicating the main points, without
providing full details, where the arguments follow closely the one dimensional case.
Recall that we work with the variational problem (1.11). Again, we introduce

A) = inf I[o].
m(A) ¢eH2mL1PIi%H¢H§:A 2

Note that since

b()\) . 1/ 2 712 2 )‘pgl —+1
——~ = inf <= A¢(x)|* — €]b|*|0p, ¢(z)|7]dr — —— o(x)|Pdx 3,
e |¢|§_1{2 [ 186 — elf0., 00 ldr — 55 [ o)

(4.1)
the function A — mbT()‘) is non-increasing, we conclude that m;(\) is differentiable
a.e. As we have previously discussed, the case € = 1 seems much more technically
complicated, and it is to be addressed in a subsequent publication [27].

We concentrate on the case € = —1. We have the following regarding mg -

Lemma 4.1. Let e = —1. Then,

o Forpe (1,14 %) and X\ > 0, we have that —oo < mz(A) <0,
e Forpe (1,14 %), mz(A) > —o0,



4156 IURII POSUKHOVSKYI AND ATANAS G. STEFANOV

. Forp21+%, mg = —oc for all A > 0.

d+1

Proof. The proof goes through the same steps as in Lemma 3.1. Pick ¢5 = § 2
¢(6%x1,6x"), with ||¢[|7. = A. Clearly, ||¢s]|7. = A, while

T R ) N 2 [ [N TP
2 2 p+1 '
Clearly, for § small enough and p < 1"‘%4—17 the last term is dominant, so my(A) < 0.

Igs] =

Similarly, using 15 = 5%¢((5x) we obtain

= LP+1
54 ||A(7ZS||2 + 52|b‘2 ||¢):El ||2 o ||¢||p+1 5‘1(1’2—1)
2 p+1
and taking the limit § — oo yields m;(A) = —oo, for p > 1+ 5.
Next, by GNS, we have that

9l r+1 (rey < Cpll@ll .

I[s] =

)

1—d(%—5c5+) o[ Rp——
< Cpligll* P AG] T P

d<f—m) >
Thus,
! bl 1
Il¢] = §/Rd“A¢(J;)|2 + |b|2|8£1¢($)|2]dx— ﬁ |¢)(q;)|p+1dx
1 —
> §Ad|A¢|2+|b‘2|6wl (z)|? da;—cp”A(b”L2 ||¢Hp+1 qp=1

p—1
d&7

1
> Z||A¢I|iz — cpab] > -7,

where in the last inequality, we have used that p < 1+ % (whence d¥5= < 2) and
hence ||A¢[|%, is dominant. The fact that m;(\) = —oo, when p =1+ 2 follows in
the same fashion as in Lemma 3.1. O

Next, we present a technical lemma.

Lemma 4.2. For 1+ % <p<l+ %, there is Cp, so that for all functions g,

1
ol ey < Cpllalls” [ 189 +100,5da (42)
Forpe (1,14 %), such an estimate cannot hold.

Proof. We apply the Sobolev embedding in the variables z; and then in 2/ =
(T2, ..., 2q)

lgllzo gy < V| DTV, 37750 2 . (43)
Next, by Plancherel’s, Holder’s inequality and Young’s inequality
12| DG 7|9, 370 g ey =

) ) 1/2
- ([ |g<s>|2|s’<d—”“—p+l>|£1|1-p+1ds) <

Cllgll i (/Rm @D 75 )s

1

clalfEt ([ Pl + a1 1)

IN

IN
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where ¢ = Mﬁ' Clearly, (4.2) follows, provided 2 < @ < 4. Solving this
inequality yields exactly 1 + % <p<1l+ %.

Ifp<l+ %, take ¢ = x(e2z1,e2’) in (4.2). Assuming the validity of (4.2), we
obtain a contradiction for e << 1. O

The next two lemmas are the generalizations of Lemma 3.2 and Lemma 3.3 to
higher dimensions.
Lemma 4.3. Ife=—-1andp€e[l+ %, 1+ 2), then there exists a finite number
Ag, > 0 such that

e for all A < A;  we have my(A) =0,

o for all A > X\, we have —oo < my(A) < 0.

Proof. The inequality m(\) < 0 follows in the same way as in Lemma 3.2. Then,
by Lemma 4.2, we have

o 19153 pall AP — elbl? |6z, [*)da
70 Jra lolPTda

Thus, for all ¢ € H2(R?), we have

- Cyr
[ 80P = el Pldo = 2 [ jop s > o

> Cp > 0. (4.4)

Ap—1

2
which by (4.1) implies that for A < Ay = := (W) T mgz(A) > 0. Since we
always have the opposite inequality, this implies mz(A) = 0, when X is small enough.

Note that for very large A, the quantity in (4.1) is clearly negative, so this implies
that /\Ep < 00. O

The next lemma is the generalization of Lemma 3.3 to the higher dimensional
case. Its proof follows an identical arguments and it is thus omitted.

Lemma 4.4. Suppose e =—1,p€ (1,14 &) and —oo < my(A) < 0. That is
epe(l,14+75),A>0
e pe[l+ g, 1+5) and >N .

Let ¢1, be a minimizing sequence for the constrained minimization problem (1.11).
Then, there exists a subsequence ¢y, such that:

/ |Agy(z)|>dx — Ll,/ |0, Ok () |2dx — Lo, / |pp(x)[PT dx — L,
Rd Rd Rd
where L1 > 0, Ly > 0 and L3z > 0.

4.1. Existence of minimizers. Before we go ahead with the existence of mini-
mizers, we need an analog of Lemma 3.7. Their proofs in the higher dimensional
case goes in an identical manner.

Lemma4.5. Let1 <p < 145 and A > 0. Then A — mg,,(A) is strictly subadditive.
That is, for every a € (0, \),

mg,(A) <mg (a) +mg (A —a)

In addition, A — myg (X) is twice differentiable a.e.
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With the basic results in place, we can now proceed to establish the existence of
the minimizers of (1.11). Supposing

l<p<l+y A>0
1+ 25 <p<14+5 A> N,

we take a minimizing sequence {¢;} C H?(R?), with I[¢;] — mg,,(A). By eventu-
ally passing to a subsequence, we can without loss of generality assume, by using
Lemma 4.4,

1

5/ | A, ()| — Ll,/ |02, bn,. (2)|> — Ly and / |, [P dz — L,
Rd Rd Rd

where'® L; > 0, Ly > 0 and Ls > 0. The next task is to show that this sequence
does not split nor vanish. The absence of splitting is established in the same way
as the first part of Section 3.2.

Next, we rule out vanishing. The proof presented in Section 3.2 works for d =
1,2,3,4, but breaks down in d > 5, so let us present another one that works in all
dimensions. More concretely, for all R > 0 and y € R? and a cutoff function 7
introduced in Section 3.2.2, we have by the GNS inequality

|z =Y\ \ps1 p+1
||¢’€”Lp+1(3(y Ry = / |¢k(93)77( 7 o C||¢k77RHHd<2 ) <
(r+1)4(3—541 +1)—(p+1) 4 (311
< clalgemllyy T gy g )
Since p < 1+ 8, it follows that (p + 1)4 (5 - ﬁ) < 2. In addition ||¢xnr|rz <

|kl L2(B(y,2R), Whence

H(ZSICHLPJrl(B(y R)) = CRnH(kaH2 (B(y, 2R))||¢kHL2(B (y,2R))"

So, if we assume that vanishing occurs, then for every € > 0, we will be able to
cover R? with balls of radius 1, say B(y;,1), so that fB (43,3) |px(z)|>dz < . Then,

Z/B( ) 6w [P de < ZCn R ||¢k||H2(B(y] oy 165172 (5 ,2)
j=17B(;,

Jj=1

IN

+1
||¢k||IL)p+1(Rd)

—1
< 10C, re" ™ ||¢k||§{2(Rd)'

Clearly, since || | 2 (g ) is uniformly bounded in k, we conclude that limy, ||¢x||pr+1
= 0, which is in a contradiction with limy fRd |pr|PHidx = Ly > 0.

From here, it follows that the sequence pi = |¢x(2)]? is tight and the existence
of the minimizer is done as in Section 3.2.3.

The Euler-Lagrange equation, together with the appropriate properties of the
linearized operators is done similar to Proposition 2.

Proposition 3. Let p € (1,1+%),)\>0, be so that
e l<p<l+75,A>0
e 1+ <p<1+5 0> N, >0.

Then, there exists a function w(X) > 0, so that the minimizer of the constrained
minimization problem (1.11) ¢ = (b)\ satisfies the Euler-Lagrange equation

A%py + e[b?d — [P o + w(N)pa =0 (4.5)

15For conciseness, we use ¢y, instead of Dy,
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In addition, n(Ly) = 1, that is L4 has exactly one negative eigenvalue. Finally,
L_ >0, with a simple eigenfunction at zero, i.e. Ker[L_] = span[p,].

As we mentioned above, the proof goes along the lines of Proposition 2. The
only new element are the statements about £_, which we now prove. Note that
by direct inspection, £_[¢,] = 0, by (4.5), so zero is an eigenvalue. Assuming that
there is a negative eigenvalue, say £_[¢)] = —o21), ||¢|| = 1, we clearly would have
¥ L ¢y. In addition, since'® £, < £_,

<£+¢ﬂ/}> < <‘C—'(/)7¢> = _02
(Lydr, da) <0.

This would force n(L;) > 2, a contradiction. Thus, £_ > 0. Finally, 0 is a simple
eigenvalue of £_ along the same line of reasoning. Indeed, take ¥ : £L_1 = 0,9 L
ox. Again, we conclude n(L,) > 2, which leads to a contradiction.

4.2. Discussion of the proof of Theorem 1.4: Existence of the waves. We
do not provide an extensive review of the existence claims in Theorem 1.4 ,as this
would be repetitious, but we would like to make a few notable points. We work
with the variational problem (1.12), where we set up b = —1 for simplicity as this
will not affect the calculations.

Our goal in this section is to clarify the range of indices in p. More concretely,
we have the following analogue of Lemmas 4.2.

Lemma 4.6. Forl+%§p<1—|—%,
1 —1
o175 ey < Collalls | 189 + Vol (46)

Forpe (1,14 %), such an estimate cannot hold.

The proof proceeds in a similar fashion, so we omit it. A combination of argu-
ments in the flavor of the proofs for Lemma 4.1 and Lemma 4.3 leads us to the
following variant of Lemma 4.3 and Lemma 4.4.

Lemma 4.7. If b < 0 and p € [1 + %,1 + %), then there exists a finite number
Abp > 0 so that

o for all A < Ay, we have my(X) =0,

o for all A > X\, we have —co < mp(A) < 0.
In addition, assuming that —oco < mp(A) < 0, that is

epe(L1+3)A>0

epe[l+4,1+58) and X > Ny p.
and ¢i be a minimizing sequence for the constrained minimization problem (1.11),
there exists a subsequence ¢y such that:

/ |Agy () [Pdr — Lh/ |Vor(z)|>de — Lo, / |pp(x) [P dx — L,
R4 R4 R4
where L1 >0, Ly >0 and L3 > 0.

With these tools at hand, the existence of the waves follows in the same manner
as before, so we omit the details.

16This is an obvious statement, once we realize that ¢, cannot vanish on an interval. Indeed,
otherwise, since it solves the fourth order equation (4.5), it follows that ¢, is trivial, which it is
not.
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5. Stability of the normalized waves. Interestingly, the proof of the spectral
stability proceeds by a common argument, both for the Kawahara and the fourth
order NLS case. By Proposition 1, it suffices to show that n(L£;) =1, L_ > 0,
¢x L Ker[£] and to verify that the index (£L1'¢x, ¢x) < 0. Indeed, the condition
n(L4) = 1 was already verified as part of the variational construction, see Propo-
sition 2 and 3. Similarly, £_ > 0 was verified in the higher dimensional case in
Proposition 3.

5.1. Weak non-degeneracy and non-positivity of the Vakhitov-Kolokolov
quantity.

Lemma 5.1. For each constrained minimizer ¢, we have that ¢y L Ker[L].

Proof. Take any element of Ker[L.],say ¥ : ||¥]|r2 = 1. We need to show (U, ¢,) =
0. To this end, consider ¥ — ||| 72(¥, pr)px L ¢x. Recall that due to the
construction £+|{¢>\}L > 0. We have

0 < (LW — [[oal 72T, r) AN T — [[oa] 72T, pr)or) =
= ol 1Y, da)? (L, da) <O,

where we have used that (L4 ¢z, ¢x) = —(p—1) [ [#2|PT! < 0. The only way the last
chains of inequalities is non-contradictory, is if (¥, ¢») = 0, which is the claim. O

Our next result is a general lemma, which is of independent interest.

Lemma 5.2. Suppose that H is a self-adjoint operator on a Hilbert space X, so that
Hl(goyr > 0. Neat, assume & L Ker[H], so that H™'&y is well-defined. Finally,
assume (H&o, &) < 0. Then

(H™"¢0,&0) <0.
Proof. We can without loss of generality assume that ||£,]| = 1. Consider H~1& —
(H1&0,&0)&0 L &. Tt follows that
0 < (H[H 6 — (H "0, €0)é0), H™ 160 — (H 60, &0)é0) =
(€0 — (H™ 60, Co)HEo, H™ 60 — (M 160, &0)60) =
= —(H '€, &) (HEo, H™ ) + (H™ €0, £0)* (Mo, &o) =
= —(H '€, &) + (M€, &)* (HEo, &) < —(H™ '€, &),

where we have used the assumption (H&p, &) < 0. It follows that (H =&y, &) <0,
which is the claim. O

Remark. Unfortunately, it is impossible to conclude that (H 1&g, &) < 0, based
on the assumptions made in Lemma 5.2. It turns out that such a statement is in
general false, that is it is in general impossible to rule out (H 1&g, &) # 0.

To that end, consider the following example!”: Take H = R? and H =

( _11 (1) > b = ( (1) > which has Ker[H] = {0}, (H&,&) = —1 < 0, while
(H™10, &) = 0. Nevertheless, we always have (H 1, &) < 0 as claimed in Lemma
5.2.

1"We owe this to a generous remark made by an anonymous referee in response to our initial
claims to the contrary.
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5.2. Conclusion of the proof of spectral stability. Apply Lemma 5.2 to the
vector & = ¢, and the operator H := L. Recall that as a byproduct of the
construction of ¢y, we have established the property £ | {¢x}3+ = 0. By Lemma 5.1,
we have that ¢y L Ker[Ly]. Finally, (Li¢x, ¢r) < 0 was established as well (and
used repeatedly throughout). Thus, we conclude that <£jrl¢>\, o) < 0. Clearly, our
additional assumption, namely (E__Flgb,\,gb,w # (0 guarantees that <E_T_1¢>\, or) <0,
which is enough for the spectral stability by Corollary 1. It would be interesting to
see whether one can prove <£:Ll¢ A, ®x) # 0 in a straightforward manner, instead of
making it an extra requirement.

These arguments establish rigorously the spectral stability of the waves for the
Kawahara made in Theorem 1.2 and in the high dimensional fourth order NLS
problems in Theorem 1.3 and Theorem 1.4.

Acknowledgments. We would like to thank Dmitry Pelinovsky for the numerous
discussions on these and related topics.
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