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Abstract. We consider the Kawahara model and two fourth order semi-linear

Schrödinger equations in any spatial dimension. We construct the correspond-
ing normalized ground states, which we rigorously show to be spectrally stable.

For the Kawahara model, our results provide a significant extension in pa-

rameter space of the current rigorous results. In fact, our results establish
(modulo an additional technical assumption, which should be satisfied at least

generically), spectral stability for all normalized waves constructed therein -

in all dimensions, for all acceptable values of the parameters. This, combined
with the results of [5], provides orbital stability, for all normalized waves enjoy-

ing the non-degeneracy property. The validity of the non-degeneracy property
for generic waves remains an intriguing open question.

At the same time, we verify and clarify recent numerical simulations of

the spectral stability of these solitons. For the fourth order NLS models, we
improve upon recent results on spectral stability of very special, explicit so-

lutions in the one dimensional case. Our multidimensional results for fourth

order anisotropic NLS seem to be the first of its kind. Of particular interest
is a new paradigm that we discover herein. Namely, all else being equal, the

form of the second order derivatives (mixed second derivatives vs. pure Lapla-

cian) has implications on the range of existence and stability of the normalized
waves.

1. Introduction. We consider several dispersive models in one and multiple space
dimensions. Our main motivating example will be the (generalized) Kawahara
equation, which is a fifth order generalized KdV equation, which allows for third
order dispersion effects as well. Namely, we set

ut + uxxxxx + buxxx − (|u|p−1u)x = 0, x ∈ R, t ≥ 0, p > 1 (1.1)

This is a model that appears in the study of plasma and capillary waves, where
the third order dispersion is considered to be weak. In fact, Kawahara studied the
quadratic case1 [26] and he argued that the inclusion of a fifth order derivative is
necessary for capillary-gravity waves, for values of the Bond number close to the
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critical one. Craig and Groves, [8] offered some further generalizations. Kichenas-
samy and Olver, [28] have studied the cases where explicit waves exist, see also
Hunter-Scheurle, [15] for existence of solitary waves.

Another model important in the applications, is the non-linear Schrödinger equa-
tion with fourth order dispersion. We consider two versions of it, which will turn
out to be qualitatively different, from a the point of view of the stability of their
standing waves. More precisely,

iut + ∆2u+ ε(〈~b,∇〉)2u− |u|p−1u = 0, (t, x) ∈ R×Rd, (1.2)

iut + ∆2u+ b∆u− |u|p−1u = 0, (t, x) ∈ R×Rd, (1.3)

where d ≥ 1, p > 1, ε = ±1. These have been much studied, both in the NLS as
well as Klein-Gordon context, since the early 90’s, see for example [1, 2].

For both models, we will be interested in the existence of solitons, and the corre-
sponding close to soliton dynamics, in particular spectral stability. For the Kawa-
hara, the relevant objects are traveling waves, in the form u(x, t) = φ(x+ωt), where
φ is dying off at infinity. These satisfy profile equation of the form

φ′′′′ + bφ′′ + ωφ− |φ|p−1φ = 0. (1.4)

Similarly, standing wave solutions in the form u = e−iωtφ, ω > 0, with real-valued
φ for the fourth order NLS (1.2) and (1.3) solve the elliptic profile equations

∆2φ+ ε(〈~b,∇〉)2φ+ ωφ− |φ|p−1φ = 0 (1.5)

∆2φ+ b∆φ+ ωφ− |φ|p−1φ = 0. (1.6)

Constructing solutions to (1.4), and more generally (1.5) and (1.6), is not straight-
forward task. In fact, it depends on the parameter p, the sign of the parameter b,
as well as the dimension d ≥ 1. Here, it is worth noting the works of Albert, [1]
and Andrade-Cristofani-Natali, [2] in which the authors have mostly studied the
stability of some explicitly available solutions in one spatial dimension.

We proceed differently, by means of variational methods. More specifically, we
employ the constrained minimization method, which minimizes total energy with
respect to a fixed particle number, or L2 mass. In addition to being the most
physically relevant, the waves constructed this way (which we refer to henceforth
as normalized waves) have good stability properties.

This brings us to the second important goal of the paper. Namely, we wish to
examine the spectral stability of waves arising as solutions of (1.4) and (1.5). Our
constructions will not yield explicit waves2. Thus, we need to decide about their
stability, based on their construction and properties.

1.1. Previous results.

1.1.1. The Kawahara model. We would like to review the history of the problem
for existence and stability of the traveling waves. We concentrate mostly on some
recent results in the last twenty years or so, which we feel are most pertinent to
our results. We would like to emphasize an important point, namely that since
uniqueness results are generally lacking3, it is hard to compare different results
about waves obtained by different methods, as they may be different in shape and
stability properties.

2although some do exist, for very specific values of the parameter b and d = 1, more on this
below

3both as minimizers of constrained variational problem and as solutions of the PDE
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In [16], [21], the authors have shown that certain waves of depression (i.e. b <
0) are stable. In [21], the author establishes an important, Vakhitov-Kolokolov
type criteria for certain waves, but it appears that it is hard to verify outside of
a few explicit examples. In [6], Bridges and Derks, have studied a Kawahara-type
model, with more general nonlinearity. They have employed the Evans function
method to locate the point spectrum (and hence the stability) of the corresponding
linearizations. The results of their work are mostly computationally aided.

Levandosky, [29] has studied the problem for existence of such waves via an
energy - momentum type argument and concentration compactness. Groves, [13]
has shown the existence of multi-bump solitary waves for certain homogeneous
nonlinearities. Haragus-Lombardi-Scheel, [14] have considered spatially periodic
solutions and solitary waves, which are asymptotic to them at infinity. They showed
spectral stability for such small amplitude solutions. We should also mention the
work [2], in which the authors consider the orbital stability for explicit periodic
solutions of the Kawahara problem, subjected to a quadratic nonlinearity.

The paper of Angulo, [3] gives some sufficient conditions for instability of such
waves, both for the cases b > 0 and b < 0. Levandosky, [30] nicely summarizes the
results in the literature4 and offers rigorous analysis for stability/instability close to
bifurcation points. Furthermore, his paper provides an useful, numerically aided,
classification of solitary waves of the Kawahara model, based on the type of non-
linearity (i.e. the power p) and the parameters of the problem b, ω. The exhaustive
tables on p. 164, [30] provided a good starting point for our investigation. We
should mention that the waves considered in [30] are produced as the constrained
minimizers of the following variational problem{

Jω[u] =
∫
Rd |∆u(x)|2 − b|∇u(x)|2 + ωu2(x)dx→ min∫

Rd |u(x)|p+1dx = 1
(1.7)

We take different approach below, by constructing the normalized waves. These are
the waves that precisely minimize energy, when one constrains the L2 norm, see
Section 3.1.

An important point we would like to make however is that the procedure out-
lined by (1.7) provides waves for a considerably wider range of p, than the ones pro-
duced in Section 3.1. Namely, the minimizers of (1.7) exist for p ∈ (1, pmax), with

pmax(d) =

{
∞ d = 1, 2, 3, 4

1 + 8
d−4 d ≥ 5

whereas, the normalized waves constructed

herein are only available for p ∈ (1, 1 + 8
d ).

1.1.2. Fourth order NLS model. The fourth order Schrödinger equation was intro-
duced in [24], [25], where it plays an important role in modeling the propagation
of intense laser beams in a bulk medium with Kerr nonlinearity. Moreover, the
equation was also used in nonlinear fiber optics and the theory of optical solitons
in gyro tropic media. The problem for the existence and the stability of the waves
arising in (1.5) has been the subject of investigations of a few recent works, the
results of which we summarize below.

For the case of d = 1, p = 3 (and in fact only for the special value of ε = −1, b =
1 and ω = 4

25 ), the elliptic problem (1.4) (or equivalently (1.5)) was considered
by Albert, [1] in relation to soliton solutions to related approximate water wave

models. The explicit soliton, φ0(x) =
√

3
10sech

2
(

x√
20

)
, was studied in detail in [1].

4but he considers more general non-linearities, containing powers of derivatives as well
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Important properties of the corresponding linearized operators were established.
These properties allowed Natali and Pastor, [33] to establish the orbital stability
of this wave, see also [9] for alternative approach and extensions to Klein-Gordon
solitons. One of the central difficulties that the authors faced is that this solution is
only available explicitly for an isolated value of5 ω = 4

25 . Additionally, the problem
for stability of the equation (1.2) in d = 1, ε = −1, b = 1 and general p were
addressed in the works [22] and [23]. The numerically generated waves were shown
to exists for every p > 1, but they are stable only for p ∈ (1, 5). Further (mostly
numerical) investigations regarding this model are available in the papers [24], [25].

Finally, it is important to discuss the recent work [5], as it has significant overlap
with ours. In it, the authors have studied (1.3) in great detail, including the stability
of the waves. They have constructed the waves in a similar manner, in fact the
existence part of our Theorem 1.4 is similar in nature6. In addition, they discuss
some cases, in which they can show the important non-degeneracy property, that is
Ker[L+] = span[∇φ]. This is rigorously verified in two cases only:

• the one dimensional case, d = 1, with b < 0, b2 > 4ω.
• for any dimension d ≥ 2, but with b < 0 and |b| sufficiently large,

Concerning stability of the waves, the authors of [5] do not actually establish stability
for any given example. On the other hand, they show that orbital stability holds,
once one can verify non-degeneracy and the index condition 〈L−1+ φ, φ〉 < 0. The
concrete details of these results are provided in [5], although this is a more general
theorem, see for example Theorem 5.2.11, [19]. The non-degeneracy was already
discussed, while the verification of 〈L−1+ φ, φ〉 < 0 is left as an open problem in [5].
This last condition however is essentially equivalent, modulo some easy to establish
technical assumptions, to the spectral stability, see Corollary 1 below.

In this work, we actually do show 〈L−1+ φλ, φλ〉 ≤ 0 for all waves produced in
Theorems 1.1, 1.3, 1.4, thus answering the open problem in [5]. With the exception
of the case 〈L−1+ φλ, φλ〉 = 0 (which is a non-degeneracy condition of sort, that we
cannot rule out), our results provide rigorously for spectral stability for all waves
constructed therein - in all dimensions d ≥ 1, for all allowed values of b : d = 1, b ∈
R and d ≥ 2, b < 0. This, in combination with the results of [5], shows orbital
stability, for all normalized waves enjoying the non-degeneracy property of the wave
as well as the property 〈L−1+ ϕλ, ϕλ〉 6= 0.

1.2. Main results: Kawahara waves. It is easy to informally summarize our
results - all normalized waves, whenever they exist, turn out to be spectrally stable.
This is an interesting paradigm, which is currently under investigation in a variety of
models. Our hope is that the approach here will shed further light on this interesting
phenomena in a much more general setting. As we have alluded to above, our focus
will be the Kawahara problem, (1.1), for both positive and negative values of b.

1.2.1. Kawahara waves: Existence. In order to construct solutions to the elliptic
problem (1.4), we shall work with the following variational problem{

I[φ] = 1
2

∫
R

[|φ′′(x)|2 − b|φ′(x|2]dx− 1
p+1

∫
R
|φ(x)|p+1dx→ min∫

R
φ2(x)dx = λ,

(1.8)

5which precludes one from differentiating with respect to the parameter ω as is customary in
these types of arguments

6although more details on radial symmetry, the zero set and exponential decay of the waves
are derived as well
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where one could take φ in the Schwartz class, in order to make I[φ] meaningful.
Introduce the scalar function

mb(λ) = inf
φ∈H2(R),‖φ‖22=λ

I[φ],

which plays a prominent form in the subsequent arguments. Let us emphasize that
it is not a priori clear whether the problem (1.8) is well-posed (i.e. mb(λ) > −∞)
for all λ. We have the following existence result.

Theorem 1.1. (Existence of the normalized Kawahara traveling waves)
Let p ∈ (1, 9), λ > 0, b ∈ R satisfy one of the following

1. 1 < p < 5, λ > 0
2. For 5 ≤ p < 9 and all sufficiently large7 λ

Then, the constrained minimization problem (1.8) has a solution, φλ ∈ H4(R) :
‖φ‖2L2 = λ and ω = ω(b, λ, φ). Moreover, φλ satisfies the Euler-Lagrange equation
(1.4) in a classical sense. We call such solutions φλ normalized waves.

Remark. The Lagrange multiplier ω may depend on the normalized wave φ. In
particular, we can not rule out the existence of two constrained minimizers of (1.8),

φλ, φ̃λ, with ω(λ, φλ) 6= ω(λ, φ̃λ). This is of course related to the uniqueness problem
for the minimizers of (1.8) (and it should be a much simpler one), but it is open at
the moment.

1.2.2. Kawahara waves: Stability. We now discuss our results concerning the sta-
bility of the waves produced in Theorem 1.1 - we employ the standard definition of
spectral stability, see Definition 2.2 in Section 2.3 below. Before we give the formal
statements, we need to state an important property of the waves φ constructed in
Theorem 1.1. Namely, upon introducing the self-adjoint linearized operator

L+ = ∂4x + b∂2x + ωb,λ − p|φλ|p−1,

we say that φλ is weakly non-degenerate, if φλ ⊥ Ker[L+]. In particular, L−1+ φλ is
well-defined.

Theorem 1.2. Let λ > 0 and p satisfy the requirements of Theorem 1.1, and φλ
is any minimizer constructed therein. Then, φλ is weakly non-degenerate. If in
addition, the condition 〈L−1+ φλ, φλ〉 6= 0 is satisfied, then the wave φλ is spectrally
stable, as a solution to the Kawahara problem (1.1), in the sense of Definition 2.2
below.

Remarks.

• The condition 〈L−1+ φλ, φλ〉 6= 0 appears frequently as a non-degeneracy con-
dition in the literature, [19]. It is worth noting that such a condition has a
clear physical spectral meaning, namely that the eigenvalue at zero for ∂xL+,
generated by the translational invariance, has an associated Jordan cell of or-
der exactly two. Physically, such an eigenvalue is expected to be of algebraic
multiplicity exactly two and geometric multiplicity one, as this is the only
invariance in the system, so this must hold generically. We do not have a
rigorous proof of this fact at the moment.

7Here, for all given p ∈ [5, 9), for both b > 0, b < 0, there is a specific valueλb,p and we assume

that λ > λb,p
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• The results of Theorem 1.2 present rigorous sufficient conditions for stability
of traveling waves in much wider range than previously available. In fact, our
results confirm8 the available numerical simulations by Levandosky, [30]. For
example, it is quite obvious that the bifurcation point is at9 p = 5. More
precisely, for powers p < 5 all waves are stable10, while for p > 5, some
unstable waves start to appear (which are of course not normalized). For
p ≥ 9, Levandosky observed a very small set of stable waves, again none of
them normalized, but rather generated as minimizers of (1.7).
• The Cauchy problem for the particular version of the Kawahara problem (1.1)

considered herein, has not been studied methodically, to the best of our knowl-
edge. Based on the results of the standard NLS though, one might conjecture
that the problem is globally well-posed for all values 1 < p < 9. An impor-
tant related issue is the conservation of Hamiltonian, momentum and L2 mass
along the evolution of solutions emanating from sufficiently nice data.
• In the presence of satisfactory well-posedness theory, as outlined above, non-

linear (or strong orbital) stability of the wave φ(x + ωt) follows from our
arguments, once one can establish that the linearized operator L+ has one
dimensional kernel, namely Ker[L+] = span[φ′]. This is in essence standard,
but it does not follow directly within the Grillakis-Shatah-Strauss formalism,
[12], since this approach would require the smoothness of the mapping λ→ φλ,
which is currently unknown. In particular, we refer to a method pioneered
by T. B. Benjamin in [4], for the stability of the KdV waves, which has since
been refined and improved by other authors. On the other hand, we refer to
the arguments for the NLS case to [5].
• The non-degeneracy Ker[L+] = span[φ′] appears to be a hard problem in the

theory. An easier version would be to establish such a non-degeneracy of the
kernel, if φ is a minimizer of (1.8). A harder problem would be to do so,
knowing that φ is just a solution to the PDE (1.4). In both cases, the non-
degeneracy is directly relevant to the uniqueness of the ground state, which
is even harder open problem in the area. See [10] for discussion about these
and related issues.

1.3. Main results: Fourth order NLS waves. We start with the existence
result for the models.

1.3.1. Existence of normalized waves for fourth order NLS models. Before we state
the results for the fourth order NLS models, we need to make an obvious reduction

of the equation (1.2). Namely, picking a matrix A ∈ SU(n), so that ~b = |~b|A~e1,
we can clearly reduce matters (both the existence of the solutions of the profile
equation (1.5) and its stability analysis), by the transformation û(ξ)→ û(A∗ξ), to
the following problem:

iut + ∆2u+ ε|b|2∂2x1
u− |u|p−1u = 0 (1.9)

8With the usual caveat, that since there is no uniqueness, it is possible that the waves considered

in [30] are different than ours!
9corresponds to the case p = 6 in the notations of [30]
10except at p = 4 (p = 5 in the notations of [30]) - for a small region in the parameter space,

an instability is observed numerically. This must be a fluke of the computations in [30], because

as we see from Theorem 1.1, the stable region is up to p < 5
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and its associated elliptic profile equation

∆2φ+ ε|b|2∂2x1
φ+ ωφ− |φ|p−1φ = 0. (1.10)

That is, the existence of solutions to (1.10) is equivalent to the existence of solutions
to (1.5) (under the appropriate transformation) and their stability is equivalent to
the stability of their counterparts. Thus, it suffices to discuss the fourth order
NLS problem (1.9), with its solitons satisfying (1.10). Our variational setup in the
anisotropic case is as follows{

1
2

∫
Rd [|∆φ(x)|2 − ε|~b|2|∂x1φ(x)|2]dx− 1

p+1

∫
Rd |φ(x)|p+1dx→ min∫

Rd φ
2(x)dx = λ,

(1.11)

We denote for the sequel the cost functional

I[φ] :=
1

2

∫
Rd

[|∆φ(x)|2 − ε|~b|2|∂x1φ(x)|2]dx− 1

p+ 1

∫
Rd

|φ(x)|p+1dx.

Theorem 1.3. (Stability of the normalized waves for the fourth order NLS: mixed
derivatives)

Let d ≥ 1, ε = −1. Let p ∈ (1, 1 + 8
d ), λ > 0 and

1. 1 < p < 1 + 8
d+1 , λ > 0

2. If 1 + 8
d+1 ≤ p < 1 + 8

d , assume a sufficiently large λ.

Then, there exists φ ∈ H4(Rd) ∩ Lp+1(Rd) satisfying (1.10), with an appropriate
ω = ω(λ, φ).

The wave φλ is constructed as constrained minimizer of (1.11), with ‖φλ‖2L2 =

λ. Assuming in addition the condition 〈L−1+ φλ, φλ〉 6= 0, then e−iωλtφλ(x) is a
spectrally stable solution of (1.9), in the sense of Definition 2.2 below.

Remark. The case ε = 1, in the higher dimensions d ≥ 2, while undoubtedly
interesting in the applications, is much more subtle, and it cannot be analyzed with
the methods of this paper. We will address some aspects of it in a forthcoming
publication [27].

Despite the obvious similarities with (1.5), the fourth order NLS with pure Lapla-
cian, (1.3) and its associated profile equation (1.6), turn out quite different - even at
the level of the existence of the waves and their stability. We introduce the relevant
variational problem{

I[φ] = 1
2

∫
Rd [|∆φ(x)|2 − b|∇φ(x)|2]dx− 1

p+1

∫
Rd |φ(x)|p+1dx→ min∫

Rd φ
2(x)dx = λ,

(1.12)

Theorem 1.4. (Stability of the normalized waves for the fourth order NLS: pure
Laplacian case)

Let d ≥ 1, b < 0. Let p ∈ (1, 1 + 8
d ), λ > 0 and

1. 1 < p < 1 + 4
d , λ > 0

2. If 1 + 4
d ≤ p < 1 + 8

d , assume a sufficiently large λ.

Then, there exists a normalized wave φλ ∈ H4(Rd) ∩ Lp+1(Rd) : ‖φλ‖2 = λ,
satisfying (1.6), with an appropriate ω = ω(λ, φ). The soliton e−iωλtφλ(x) is a
spectrally stable solution of (1.3), under the additional condition 〈L−1+ φλ, φλ〉 6= 0,
in the sense of Definition 2.2.

Remarks.

• The results extend the stability results of Albert, [1] for the one dimensional
cubic case p = 3.
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• The results here also extend the NLS related results of [9] (namely, stability
for p < 1 + 8

d and instability otherwise), which apply to the case b = 0.
• Both results, Theorem 1.3 and 1.4 of course coincide for d = 1, but are different

for d ≥ 2. We do not have a good physical explanation as to why the range of
existence and stability of standing waves for the models (1.9) vis a vis (1.3)
differ. In particular, the mixed derivative model, (1.9) seems to support all
stable normalized waves in the wider range p ∈ (1, 1 + 8

d+1 ), λ > 0, compared

to p ∈ (1, 1 + 4
d ) for (1.3). This topic clearly merits further investigations.

• The cases b > 0, d ≥ 2 will be analyzed in a forthcoming publication, [27].

The rest of the paper is organized as follows. In Section 2, we show that distri-
butional solutions of the elliptic problems are in fact strong solutions. We also set
up the relevant eigenvalue problems, and in regards to that, we review the relevant
instability index counting theories and some useful corollaries. Finally, we present
the Pohozaev identities, which imply some necessary conditions for the existence
of the waves. We also note that better necessary conditions (which are closer to
what we conjecture are the optimal ones) are possible, under a natural spectral
condition. In Section 3, we develop the existence theory in the one dimensional
problem - this already contains all the difficulties, that one encounters in the higher
dimensional situation as well. In particular, we discuss the well-posedness of the
constrained minimization problem, the compensated compactness step, as well as
the derivation of the Euler-Lagrange equation and various spectral properties of the
linearized operators, which are useful in the sequel. In Section 4, we indicate the
main steps in the variational construction for the waves in the higher dimensional
case. In Section 5, we provide a general framework for spectral stability, based on
the index counting formula, which is easily applicable in our setting.

2. Preliminaries.

2.1. Function spaces and GNS inequalities. The Lp, 1 ≤ p < ∞ spaces are
defined via

‖f‖Lp =

(∫
|f(x)|pdx

)1/p

,

For integer k, the classical Sobolev spaces W k.p, 1 ≤ p < ∞ are taken to be the
closure of Schwartz functions in the norm ‖f‖Wk,p = ‖f‖Lp +

∑
|α|=k ‖∂αf‖Lp .

Next, we need some Fourier analysis basics. Fourier transform and its inverse
are defined via

f̂(ξ) =

∫
Rd

f(x)e−2πix·ξdx; f(x) =

∫
Rd

f̂(ξ)e2πix·ξdξ

Recall the sharp Sobolev inequality ‖f‖Lq(Rd) ≤ Cs,p‖f‖W s,p(Rd), where 1 < p <

q < ∞ and s = n
(

1
p −

1
q

)
. Note that for non-integer values of s, the norm on the

right-hand side is defined via

‖f‖W s,p := ‖(1−∆)s/2f‖Lp ,

where ̂(1−∆)ag(ξ) = (1 + 4π2|ξ|2)aĝ(ξ).
In addition, we shall make use of the Gagliardo-Nirenberg-Sobolev (GNS) in-

equality, which combines the Sobolev estimate with the well-known log-convexity
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of the complex interpolation functor ‖f‖[X0,X1]θ ≤ ‖f‖
1−θ
X0
‖f‖θX1

. For example, the
following estimate proves useful in the sequel

‖u‖Lq(Rd) ≤ Cq,d‖∆u‖
d
2 (

1
2−

1
q )

L2 ‖u‖1−
d
2 (

1
2−

1
q )

L2 , (2.1)

whenever q ∈ (2,∞), for d = 1, 2, 3, 4 and 2 < q < 2d
d−4 , d ≥ 5.

We record the formula for the Green function of (−∆ + 1)−1, that is Q̂(ξ) =
(1 + 4π2|ξ|2)−1 (see [13], p. 418)

Q(x) = (2
√
π)−n

∫ ∞
0

e−(t+
|x|2
4t ) dt

tn/2
. (2.2)

Note that Q > 0, radial and radially decreasing. Also, ‖Q‖L1(Rn) =
∫
Rn Q(x)dx =

Q̂(0) = 1, but note that Q(0) = +∞ for n ≥ 2. In fact, there are the following
classical estimates for it, p. 418, [13],

|Q(x)| ≤ Ce−|x|, |x| > 1 (2.3)

Q(x) ∼
{
|x|2−n +O(1) n ≥ 3
ln( 1
|x| ) +O(1) n = 2

|x| < 1. (2.4)

In particular, Q ∈ Lq(Rn), whenever q < n
n−2 (or q <∞, when n = 2).

2.2. Distributional vs strong solutions of the Euler-Lagrange equation.

Definition 2.1. We say that g ∈ H2(Rd) ∩ Lp+1(Rd) is a distributional solution
of the equation

∆2g + b∆g + ωg − |g|p−1g = 0, x ∈ Rd (2.5)

if the following relation holds for every h ∈ H2(Rd) ∩ L∞(Rd):

〈∆g,∆h〉+ 〈b∆g + ωg, h〉 − 〈g|p−1g, h〉 = 0.

Proposition 1. Let p ∈ (1, 1+ 8
d ) and b, ω be so that b2−4ω < 0 or b2−4ω > 0, ω >

0, b < 0. Then, any weak solution g of (2.5) is in fact g ∈ H4(Rd) ∩ L∞(Rd) ∩
L1+ε(Rd) for any ε > 0. In particular, the weak solutions of (2.5) in fact satisfy
(2.5) as L2 functions.

Proof. Note that by the restrictions on b, ω, we have that the operator (∆2 + b∆ +
ω) is invertible on L2(Rd). Let g̃ := (∆2 + b∆ + ω)−1[|g|p−1g]. From Sobolev

embedding, we easily get that g̃ ∈ Hα(R), α < 4− d(p−1)
2(p+1) , since

‖g̃‖Hα(Rd) ≤ ‖|g|p−1g‖H4−α(Rd) ≤ C‖|g|p−1g‖
L
p+1
p
≤ C‖g‖pLp+1 .

In addition, for every test function h, we have

〈∆g̃,∆h〉+ 〈b∆g̃ + ωg̃, h〉 = 〈|g|p−1g, h〉 = 〈∆g,∆h〉+ 〈b∆g + ωg, h〉.
It follows that g = g̃ in the sense of distributions, whence g ∈ Hα(Rd). We will
show that g ∈ L∞(Rd). Denote q0 = sup{q : g ∈ Lq(Rd)}. Clearly, q0 ≥ p + 1, by
assumption. We will show first that q0 =∞. Assume not. By Sobolev embedding,
we have

‖g‖Lq(Rd) = ‖g̃‖Lq(Rd) ≤ C‖|g|p−1g‖
L
p+1
p
≤ C‖g‖pLp+1 <∞

as long as 1
q >

p
p+1 −

4
d . In particular, we can take q as close to ∞ (and hence

q0 =∞), if d ≤ 4. So, assume d ≥ 5. It follows that 1
q0
≤ p

p+1 −
4
d .

Take any q0 < q <∞. We have, by Sobolev embedding

‖g̃‖Lq(Rd) ≤ C‖|g|p−1g‖Lr ≤ C‖g‖
p
Lrp , (2.6)
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so long as d( 1
r −

1
q ) ≤ 4 or 1

r ≤
4
d + 1

q . If 4
d + 1

q < 1, we take r : 1
r = 4

d + 1
q , whereas,

if we have 4
d + 1

q ≥ 1, we can take r = p+1
p and we have a contradiction right away,

since the left-hand side of (2.6) is unbounded (by the definition of q0), while the
right-hand is bounded. For the remainder, take r : 1

r = 4
d + 1

q .

Clearly, if rp < q0, this would be a contradiction, because the left-hand side is
supposed to be unbounded (by the definition of q0), while the right-hand side clearly
is. We claim that this is the case, under our restrictions for p ∈ (1, 1 + 8

d ). We have

1

r
− p

q0
=

4

d
+

1

q
− p

q0
=

4

d
− p− 1

q0
+ o(q − q0)

So, if we show that 4
d >

p−1
q0

, we will have achieved the contradiction, as we can take

q very close to q0. Indeed, by the inequality for 1
q0

, we have p−1
q0
≤ (p−1)

(
p
p+1 −

4
d

)
Resolving the inequality

(p− 1)

(
p

p+ 1
− 4

d

)
<

4

d
,

leads to the solution 1 < p < 1+ 8
d−4 , which of course contains the set (1, 1+ 8

d ), so it
is true for all p in the set that we are interested in. We have reached a contradiction,
with q0 <∞.

Thus, q0 =∞. This does not mean yet that g ∈ L∞(Rd), but this follows easily
by Sobolev embedding, once we know that g ∈ ∩2≤q<∞Lq(Rd). Furthermore, we
see that the same type of arguments imply g ∈ H5(Rd) and that for every p < ∞
and for every ε > 0, g ∈W 4−ε,p(Rd).

For our next step, we shall need a representation of the Green’s function of the
operator (∆2 + b∆ + ω)−1 as follows. We have

(∆2 + b∆ + ω)−1 = (−∆ +
−b+

√
b2 − 4ω

2
)−1(−∆ +

−b−
√
b2 − 4ω

2
)−1 =

= (b2 − 4ω)−1/2[(−∆ +
−b−

√
b2 − 4ω

2
)−1 − (−∆ +

−b+
√
b2 − 4ω

2
)−1].

In the case b2 − 4ω > 0, ω > 0, b < 0, both −b±
√
b2−4ω
2 are positive numbers, so

clearly the corresponding Greens function G has decay e
−

√
−b−
√
b2−4ω
2 |x|

, according
to (2.3).

As far as the case b2 − 4ω < 0 is concerned, it is not hard to see, in the same
way, that the Green’s function G has decay rate e−kω|x|, where

kω :=


√

2
√
ω+b

2 b < 0√
2
√
ω−b

2 b > 0

In both cases, the Green’s function enjoys exponential rate of decay.
For p ≥ 2, we can actually conclude that g ∈ L1(Rd) since by the Hardy-

Littlewood-Sobolev inequality

‖g̃‖L1(Rd) ≤ ‖G‖L1(Rd)‖|g|p−1g‖L1(Rd) ≤ C‖g‖
p
Lp(Rd)

<∞,

as g ∈ L2 ∩ L∞, in particular g ∈ Lp(Rd). For p < 2, denote q0 = inf{q : g ∈
Lq(Rd)}. Our claim is that q0 = 1. Assume for a contradiction that q0 > 1. We
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will show that for every q > q0, we have that g ∈ L
q
p (Rd), which would be a

contradiction with q0 > 1. Indeed, by Hardy-Littlewood-Sobolev

‖g̃‖
L
q
p (Rd)

≤ ‖G‖L1(Rd)‖|g|p−1g‖
L
q
p (Rd)

≤ C‖G‖L1‖g‖p
Lq(Rd)

.

This establishes the contradiction with q0 > 1, hence g ∈ ∩1<qLq(Rd).

2.3. Linearized problems and spectral stability. We next discuss the lin-
earized problems and the stability of the waves. For solutions φ of (1.4), we in-
troduce the traveling wave ansatz, u(t, x) = φ(x + ωt) + v(t, x + tω). Plugging
this back in (1.1) and ignoring all terms O(v2), we obtain the following linearized
problem

vt + ∂x[∂4x + b∂2x + ω − p|φ|p−1]v = 0. (2.7)

Denoting L+ := ∂4x+b∂2x+ω−p|φ|p−1, the associated eigenvalue problem is obtained
by setting v(t, x)→ e−µtz(x) in (2.7), which results in

∂xL+z = µz (2.8)

We proceed similarly with the linearization of the NLS problem (1.2). Consider
solutions φ of (1.10) and then perturbations of the solution u(t, x) = e−iωtφ of (1.9)
in the form u = e−iωt[φ+ z1 + iz2]. Plugging this ansatz into (1.2), retaining only
the linear in z terms and taking real and imaginary parts leads us to the system{

∂tz1 = −(∆2 + ε|~b|2∂2x1
+ ω − p|φ|p−1)z2

∂tz2 = (∆2 + ε|~b|2∂2x1
+ ω − |φ|p−1)z1

(2.9)

Thus, we introduce the scalar self-adjoint operators L± (note L+ < L−){
L+ = ∆2 + ε|~b|2∂2x1

+ ω − p|φ|p−1,
L− = ∆2 + ε|~b|2∂2x1

+ ω − |φ|p−1

so that the eigenvalue problem associated with (2.9) and the assignment ~z → eµt~z,
takes the form

JL~z = µ~z. (2.10)

where

J :=

(
0 −1
1 0

)
,L :=

(
L+ 0
0 L−

)
.

Finally, for solutions φ of (1.6), the linearized problem appears in the form

∂t

(
z1
z2

)
= JL

(
z1
z2

)
(2.11)

This is again in the form (2.10), once we perform the assignment ~z → eµt~z, with
slightly different L±, namely{

L+ = ∆2 + b∆ + ω − p|φ|p−1,
L− = ∆2 + b∆ + ω − |φ|p−1.

We are now ready to give the definition of spectral stability. Note that the essential
spectrum is, by Weyl’s theorem, is the range of the function ξ ∈ Rd → |ξ|4−b|ξ|2+ω.

Clearly, this is the interval [ω − b2

4 ,∞), when b > 0 and [ω,∞), when b < 0.
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Definition 2.2. The Kawahara waves are spectrally stable, provided the eigenvalue
problem (2.8) does not have non-trivial solutions11 (µ, z) : <µ > 0, z ∈ H5(R).

The waves φ are spectrally stable, if the eigenvalue problems (2.10) ((2.11) re-
spectively) do not have non-trivial solutions (µ, ~z) : <µ > 0, ~z ∈ H4(Rd)×H4(Rd).

2.4. Stability of linearized systems and index counting theories. We need
a quick introduction of the instability index count theory, as developed in [17], [18],
[34] (see also the book [19]) and more recently in [20], [31]. We will only consider
appropriate representative corollaries, which serve our purposes. For the purposes
of this paper, we will follow closely the approach and the notations in [31]. To that
end, we consider an eigenvalue problem in the form12

JLf = λf. (2.12)

We need to introduce a a real Hilbert space, so that f ∈ X, its dual X∗, so that
L : X → X∗, so that the bilinear form (u, v) → 〈Lu, v〉 is a bounded symmetric
bilinear form on X × X. Next, we shall need to assume that J has a domain
D(J ) ⊂ X∗, so that J : D(J )→ X, J ∗ = −J . Furthermore, ssume that there is
an L invariant decomposition of the base space in the form

X = X− ⊕Ker[L] +⊕X+

where (see Section 2.1, [31]), L|X− < 0, n(L) := dim(X−) <∞, dim(Ker[L]) <∞
and L|X+

≥ δ, for some δ > 0. In general, we will denote by n(M) the (finite)
number of negative eigenvalues (counted with multiplicities) of a generic self-adjoint
operator M .

Next, consider the finite dimensional generalized eigenspace at the zero eigenva-
lue, defined as follows

E0 = gKer[JL] = span[∪∞k=1[Ker[JL]k]]

Note that Ker[L] ⊂ E0 and introduce Ẽ0 : E0 = Ker[L]⊕ Ẽ0. Consider the integer

k≤00 (L) := n(L|Ẽ0
). Equivalently, taking an arbitrary basis in Ẽ0, {ψ1, . . . , ψN} ⊂

D(L), define k≤00 (L) to be the number of negative eigenvalues of the N ×N matrix
D = (〈Lψi, ψj〉)i,j,1≤i,j≤N .

Under these general assumptions, it is proved in [31] (see Theorem 2.3 and also
Theorem 1, [18] for the case where J has a bounded inverse) that

kr + 2kc + 2k≤00 ≤ n(L)− n(D), (2.13)

where kr is the number of real and positive solutions λ in (2.12) (i.e. real insta-
bilities), 2kc is the number of solutions λ in (2.12) with positive real part (i.e.
modulational instabilities).

2.4.1. NLS-like problem. For the eigenvalue problem in the form (2.10), we have
that J is invertible and anti-symmetric, J−1 = J ∗ = −J and X = H2(Rd), X∗ =
H−2(Rd), d ≥ 1. In addition,assume that J : Ker[L] → (Ker[L])⊥. We now
introduce the matrix D as follows.

11Note that by the Hamiltonian symmetry of the problem µ→ −µ, the existence of eigenvalues

µ : <µ < 0 is equivalent to the existence of µ : <µ > 0
12Before we embark on further details, let us once again emphasize that the examples that we

will be interested in herein will be either in the form (2.8) (i.e. the KdV-like case) or in the form
(2.10) (i.e. the NLS like case).
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Let Ker[L] = {φ1, . . . , φn}, then ψj : JLψj = φj . Note that the last equation
has solution, since J−1φi ∈ Ker[L]⊥ and hence L−1[J−1φi] is well-defined. Hence
the matrix D is

Dij = 〈Lψi, ψj〉 = 〈L−1[J−1φi],J−1φj〉 = 〈L−1[J φi],J φj〉. (2.14)

By the index counting inequality (2.13) if n(L) ≤ n(D), we can conclude that
spectral stability holds true, since the right-hand side of (2.13) is non-positive,
hence all the indices on the left are zero as well.

Next, we discuss gKer[JL]. We have at least d+ 1 elements in Ker[L], namely

φ0 :=

(
0
φ

)
and φj :=

(
∂jφ
0

)
, j = 1, . . . , d. Assuming that φ ⊥ Ker[L+] and

∇φ ⊥ Ker[L−], we can identify at least d+1 more elements of the generalized kernel

E0, namely ψ0 =

(
L−1+ φ

0

)
and ψj =

(
0

−L−1− ∂jφ

)
, j = 1, . . . , d. This means

that the algebraic multiplicity of the zero eigenvalue is at least 2(d+1), consisting of
d+1 eigenfunctions and d+1 generalized eigenfunctions. One may wonder whether
there is any more non-trivial elements in gKer[JL]. The non-degeneracy condition
〈L−1+ φ, φ〉 6= 0, which appears in the statement of the main result is necessary
condition that the Jordan block associated to the eigenvector φ0 is exactly two
dimensional. To this end, assume that there is a third element, q : JLq = ψ0.
This would mean, that there is q : L−q = L−1+ φ. By the self-adjointness of L−,

the solvability condition is exactly 〈L−1+ φ, φ〉 6= 0. Indeed, R(L−) = Ker(L−)⊥ =

span{φ}⊥, so a third element in the Jordan cell for φ0 does not exist exactly when
〈L−1+ φ, φ〉 6= 0.

2.4.2. Kawahara-like problem. For eigenvalues problem in the form (2.8)

∂xLf = λf, (2.15)

where we set up again X = H2(R), X∗ = H−2(R), while ,L = L+,J = ∂x,J ∗ =
−J . This satisfies the requirements of the theory put forward in the beginning of
this section. Next, regarding the generalized kernel of ∂xL+, we clearly have that
φ′ ∈ Ker[L] ⊆ Ker[∂xL]. Furthermore, if φ ⊥ Ker[L+], there is additional element
in gKer[∂xL], namely L−1+ φ, since (∂xL+)2[φ′] = ∂xL+[∂xL+[L−1+ φ]] = 0. This
means that the zero is multiplicity two eigenvalue for ∂xL+, which is generated by
the translational invariance.

2.4.3. Sufficient condition for spectral stability. Based on the inequality (2.13), it
is clear that spectral stability holds, if n(L) = 1 and n(D) ≥ 1. Furthermore, in
both cases under considerations, and under the assumption φ ⊥ Ker[L+], we have
the vector ψ = L−1+ φ in the generalized kernel of JL. Thus, D11 = 〈L−1+ φ, φ〉,
whence since D11 < 0, we can assert that the matrix D has at least one negative
eigenvalue (since 〈De1, e1〉 = D11 < 0, which would then imply stability. Thus,
when we specify to the specific problems that we face, we can formulate the following
sufficient condition for spectral stability.

Corollary 1. For the spectral problems (2.8) and (2.10), spectral stability follows,
provided

• n(L+) = 1, L− ≥ 0.
• φ ⊥ Ker[L+], 〈L−1+ φ, φ〉 < 0.
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2.5. Necessary conditions for existence of (1.5). We have the following Po-
hozaev identities.

Lemma 2.3. (Pohozaev’s identities) Let some smooth and decaying φ satisfy

∆2φ+ ε
n∑
j,k

bjbk∂j,kφ+ ωφ− |φ|p−1φ = 0. (2.16)

Then ∫
Rd

|∆φ|2 =
d(p− 1)− 2(p+ 1)

2(p+ 1)

∫
Rd

|φ|p+1 + ω

∫
Rd

|φ|2, (2.17)

ε

∫
Rd

|~b · ∇φ|2 =
d(p− 1)− 4(p+ 1)

2(p+ 1)

∫
Rd

|φ|p+1 + 2ω

∫
Rd

|φ|2. (2.18)

Proof. Multiplying (2.16) by φ and integrating over Rd we get∫
Rd

|∆φ|2dx− ε
∫
Rd

|~b · ∇φ|2dx−
∫
Rd

|φ|p+1dx+ ω

∫
Rd

|φ|2dx = 0.

Also, multiplying (2.16) by x · ∇φ and integrating over Rd we get(
2− d

2

)∫
Rd

|∆φ|2dx−
(

1− d

2

)
ε

∫
Rd

|~b · ∇φ|2dx+

+
d

p+ 1

∫
Rd

|φ|p+1dx− ωd
2

∫
Rd

|φ|2dx = 0.

Let A =
∫
Rd |∆φ|2dx, B = ε

∫
Rd |~b ·∇φ|2dx, C =

∫
Rd |φ|p+1dx and D =

∫
Rd |φ|2dx.

Solving for A and B in terms of C and D we get{
A = d(p−1)−2(p+1)

2(p+1) C + ωD,

B = d(p−1)−4(p+1)
2(p+1) C + 2ωD.

which is (2.17) and (2.18).

Corollary 2. If d = 1, 2, then ω > 0. If ε = −1 and ω > 0, then p < pmax.

If ~b = 0, then ω > 0 and p < pmax.

Proof. If d = 1, 2, the first term on the right of (2.17) is negative, forcing the
positivity of the second term, so ω > 0. Next, from the relation (2.18), we see that

if ω > 0, ε = −1, then d(p−1)−4(p+1)
2(p+1) < 0, or p < pmax.

If ~b = 0, it is clear from (2.18) that either ω > 0 and p < pmax or ω < 0 and
p > pmax (the second one being impossible immediately for d = 1, 2, 3, 4). For d ≥ 5,
assume for a moment that ω < 0 and p > pmax = d+4

d−4 . Let us look at (2.17). The

second term is now negative, while for the first term, since p > pmax >
d+2
d−2 , we also

conclude its negativity. It follows that the right hand side of (2.17) is negative a
contradiction. Thus, ω > 0, p < pmax.

As we see from the results of Corollary 2, the Pohozaev’s identities are by them-
selves not strong enough to derive necessary conditions on ω, p that are close to the
sufficient ones.

We believe that indeed, the necessary conditions are close to the ones required by
[30] to construct solutions of the constrained minimization problem (1.7). Namely,

we expect p < pmax and ω > b2

4 for b > 0 to be necessary for existence of localized
and smooth solutions to (2.16) and (1.6). Let us show that in fact, these follow



GROUND STATES FOR THE KAWAHARA EQUATION 4145

from a natural assumption on the spectrum for the operator L+, namely that zero
cannot be an embedded eigenvalue in the continuous spectrum of L+. Let us note
that while for second order Schrödinger operators H = −∆ + V , this is generally
the case13 under decay conditions on V , this is not the case for their fourth order
counterparts, [11]. In physically relevant situations however (and the case of L+

certainly merits this designation), embedded eigenvalues should not exist. If this is
the case for L+, we see that since by Weyl’s theorem

σa.c.[L+] = σa.c.(∆
2 +b∆+ω−p|φ|p−1) = σa.c.(∆

2 +b∆+ω) =

{
ω − b2

4 b ≥ 0
ω b < 0

.

Clearly, if zero is not embedded, it must be that ω satisfies ω ≥
{

b2

4 b ≥ 0
0 b < 0

. If

that holds, at least in the case b < 0, it follows from Corollary 2 that p < pmax as
well.

3. Variational construction in the one dimensional case. We start with some
preparatory results.

3.1. Variational problem: Preliminary steps. We now discuss the variational
problem (1.8). It is certainly not a priori clear that for a given λ > 0, such a value
is finite (that is mb(λ) > −∞) and non-trivial (i.e. mb(λ) < 0). In fact, in some
cases, it is not finite, as we show below. Note that

mb(λ)

λ
= inf
‖φ‖22=1

{
1

2

∫
R

|φ′′|2 − b|φ′|2dx− λ
p−1
2

p+ 1

∫
R

|φ|p+1dx

}
= inf
‖φ‖22=1

J [φ].

(3.1)

This is, clearly, a non-increasing function. In particular, mb(λ)
λ is differentiable a.e.

and so is mb(λ). Our considerations naturally split in two case, b > 0 and b < 0.

3.1.1. The case b < 0. In this section, we develop criteria (based on the parameters
in the problem), which address the question for finiteness and non-triviality of
mb(λ). The next lemma shows this for p ∈ (1, 5) and in addition, it establishes that
mb(λ) = −∞ for p > 9.

Lemma 3.1. For p ∈ (1, 5), b < 0, −∞ < mb(λ) < 0 for all λ > 0. For p ≥ 9 then
mb(λ) = −∞ for all λ > 0.

Proof. Let φε(x) = ε1/2φ(εx), where ‖φ‖22 = λ. We have that

I[φε] =
‖φ′′‖2L2

2
ε4 −

b‖φ′‖2L2

2
ε2 −

‖φ‖p+1
Lp+1

p+ 1
ε
p−1
2 . (3.2)

Since 0 < p−1
2 < 2 for 1 < p < 5, we see that mb(λ) < 0 in this case by choosing

ε small enough. On the other hand, if p > 9, it is clear that limε→∞ I[φε] = −∞,
whence mb(λ) = −∞ in this case.

By the GNS inequality

‖φ‖Lp+1(R) ≤ Cp‖φ‖
Ḣ

1
2
− 1
p+1
≤ Cp‖φ‖

3
4+

1
2(p+1)

L2 ‖φ′′‖
1
4−

1
2(p+1)

L2 , (3.3)

13That is point spectrum does not embed into the continuous one
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we have

I[φ] =
1

2

∫
R

|φ′′|2 − b|φ′|2dx− 1

p+ 1

∫
R

|φ|p+1dx

≥ 1

2

∫
R

|φ′′|2 − b|φ′|2dx− cp‖φ′′‖
p−1
4

L2 ‖φ‖
p+1− p−1

4

L2

≥ 1

4
‖φ′′‖2L2 − cp,λ,b(‖φ′′‖

p−1
4

L2 + 1) ≥ −γ,

for some γ > 0 because the function g(x) = 1
2x

2 − cp,λx
p−1
4 , clearly, has a negative

minimum on [0,∞) for p ∈ (1, 9). Therefore, mb(λ) ≥ −γ > −∞ for p ∈ (1, 9).
Letting ε→∞ in (3.2) shows that mb(λ) = −∞ for p > 9.

Consider now the case p = 9. Clearly, for large λ, mb(λ) < 0, as it is evident from
the formula (3.1). Assuming that mb(λ) ∈ (−∞, 0) for some λ, let φ be such that

mb(λ) ≤ I[φ] < mb(λ)
2 . Using φN as in the formula (3.2), we see that ‖φN‖2L2 = λ,

while for N ≥ 1, we have

I[φN ] = N4[
‖φ′′‖2L2

2
−
b‖φ′‖2L2

2N2
−
‖φ‖10L10

10
] ≤ N4[

‖φ′′‖2L2

2
−
b‖φ′‖2L2

2
−
‖φ‖10L10

10
]

≤ N4mb(λ)

2
.

But then mb(λ) ≤ lim infN I[φN ] = −∞, a contradiction.

Our next lemma shows that for p ∈ [5, 9), there is a threshold value λp > 0,
below which mb(λ) is trivial.

Lemma 3.2. If b < 0 and p ∈ [5, 9), then there exists a finite number λp > 0 such
that

• for all λ ≤ λp we have mb(λ) = 0,
• for all λ > λp we have −∞ < mb(λ) < 0.

Proof. Take φε as in Lemma 3.1 with ‖φ‖22 = 1. We have

mb(λ)

λ
≤ lim
ε→0

J [φε] = 0. (3.4)

which implies that mb(λ) ≤ 0. Now, we are going to show that for each p ∈ [5, 9]
there exists a constant cp > 0 such that

inf
φ 6=0

‖φ‖p−12

(∫
R
|φ′′|2 − b|φ′|2dx

)∫
R
|φ|p+1dx

≥ cp. (3.5)

Using the GNS inequality (2.1), we get the following estimates for the Lp+1 norm:

‖φ‖p+1
p+1 ≤ ap ‖φ

′′‖
p−1
4

2 ‖φ‖
3p+5

4
2

≤ ap
(∫

R

|φ′′|2 − b|φ′|2dx
) p−1

8

‖φ‖
3p+5

4
2 , (3.6)

and

‖φ‖p+1
p+1 ≤ bp ‖φ

′‖
p−1
2

2 ‖φ‖
3p+5

4
2

≤ bp
(∫

R

|φ′′|2 − b|φ′|2dx
) p−1

4

‖φ‖
p+3
2

2 . (3.7)
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Note that for p ∈ [5, 9), we have that p−1
8 < 1 ≤ p−1

4 . Therefore, interpolating
between estimates (3.6) and (3.7) we get

‖φ‖p+1
Lp+1 ≤ cp‖φ‖p−1L2

∫
R

|φ′′|2 − b|φ′|2dx.

Thus we have that for all φ ∈ H2 with ‖φ‖22 = 1∫
R

|φ′′|2 − b|φ′|2dx− 1

cp

∫
R

|φ|p+1dx ≥ 0,

this implies that for λ : 0 < λ ≤ γp =
(
p+1
cp

) 2
p−1

, J [φ] ≥ 0, which together with

(3.4) implies that mb(λ) = 0.
Observe that for a very large λ, the quantity

inf
‖φ‖22=1

{
1

2

∫
R

|φ′′|2 − b|φ′|2dx− λ
p−1
2

p+ 1

∫
R

|φ|p+1dx

}

is strictly negative14, so λp <∞. Clearly,

λp = sup{γ > 0 : mb(λ) = 0 for all λ ≤ γ}.

Lemma 3.3. Suppose b < 0, 1 < p < 9 and −∞ < mb(λ) < 0. Let φk be a
minimizing sequence. Then, there exists a subsequence φk such that:∫

R

|φ′′k(x)|2dx→ L1,

∫
R

|φ′k(x)|2dx→ L2,

∫
R

|φk(x)|p+1dx→ L3,

where L1 > 0, L2 > 0 and L3 > 0.

Proof. We have already established in Lemma 3.1 that

I[φ] ≥ 1

4
‖φ′′‖2L2 − cp,λ,b(‖φ′′‖

p−1
4

L2 + 1). (3.8)

Since, φk is minimizing, it follows that the sequence {
∫
R
|φ′′k(x)|2dx}k is bounded.

By GNS inequality, the sequences {
∫
R
|φ′k(x)|2dx}k and

∫
R
|φk(x)|p+1dx}k are

bounded as well. Passing to a subsequence a couple of times we get a subsequence
{φk} such that all of the above sequences converge. We claim that L3 cannot be
zero. Indeed, otherwise,

mb(λ) = lim
k

[
1

2

∫
R

|φ′′k(x)|2dx− b

2

∫
R

|φ′k(x)|2dx] ≥ 0

which is a contradiction with the fact that mb(λ) < 0. By Sobolev embedding,
neither L1 nor L2 could be zero, as this would force L3 = 0, which we have shown
to be impossible.

14which can be seen by fixing φ in the infimum and taking λ > λ(φ)
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3.1.2. The case b > 0.

Lemma 3.4. If b > 0 and 1 < p < 9, then −∞ < mb(λ) < 0 for all λ > 0.

Proof. Since 0 < p−1
2 < 4, the dominant term in (3.2) is max(ε2, ε

p−1
2 ), so if we just

take ε small enough, we see that mb(λ) < 0. Boundedness from below follows from
(3.8).

Lemma 3.5. Let p : 1 < p < 5, b > 0 and fix a constant c. Then, the inequality

‖φ‖p+1
Lp+1 ≤ c ‖φ‖p−1L2

[∫
R

|φ′′(x)|2 − b|φ′(x)|2 +
b2

4
|φ(x)|2dx

]
. (3.9)

cannot hold for all φ ∈ H2(R).
For p ∈ [5, 9], b > 0, there is a cb,p, so that

‖φ‖p+1
Lp+1 ≤ c ‖φ‖p−1L2

[∫
R

|φ′′(x)|2 − b|φ′(x)|2 +
b2

4
|φ(x)|2dx

]
. (3.10)

Proof. Let p ∈ [5, 9]. Write∫
R

|φ′′(x)|2 − b|φ′(x)|2 +
b2

4
|φ(x)|2dx =

∫
R

|φ̂(ξ)|2
(

(2πξ)2 − b

2

)2

dξ.

Introducing g, so that φ̂(ξ) := ĝ(2πξ −
√

b
2 ). Clearly, (3.10) is equivalent to the

estimate

‖g‖p+1
Lp+1 ≤ c ‖g‖p−1L2

∫
R

ĝ(ξ)|2|ξ|2|ξ − Cb|2dξ (3.11)

for some Cb 6= 0. We show (3.11) as follows: we decompose the function in three
regions - near the two singularities ξ = 0, ξ = Cb and away from them. That is, for
values of |ξ| << 1, we estimate by Sobolev embedding and Hölder’s inequality

‖g<<1‖Lp+1 ≤ C‖g<<1‖
Ḣ

1
2
− 1
p+1

= c

(∫
|ξ|<<1

|ĝ(ξ)|2|ξ|1−
2
p+1 dξ

)1/2

≤

C‖g‖
p−1
p+1

L2

(∫
|ξ|<<1

|ĝ(ξ)|2|ξ|
p−1
2 dξ

) 1
p+1

≤ C ‖g‖p−1L2

∫
R

ĝ(ξ)|2|ξ|2|ξ − Cb|2dξ.

Clearly, this last estimate holds as long as 2 ≤ p−1
2 (since then |ξ − Cb| ∼ 1, when

|ξ| << 1), which is the same as p ≥ 5. The estimate is similar, with the same
constraint p ≥ 5, at the singularity ξ = Cb.

Finally, away from the two singularities, we have |ξ|2|ξ − Cb|2 ∼ |ξ|4, which
means that following the estimates above, we need p−1

2 ≤ 4, which gives the other
restriction p ≤ 9.

Let now p ∈ (1, 5). Take a Schwartz function χ and then φ(x) = χ(εx). Testing

(3.9) for this choice of φ leads us to ε−1 ≤ Cε−
p−1
2 (ε3 + ε). This is a contradiction

as ε→ 0+, so (3.9) cannot hold.

Lemma 3.6. Suppose b > 0, λ > 0 and 1 < p < 9. Let φk be a minimizing sequence
for inf‖φ‖2

L2=λ
I[φ]. Then, assuming that

• p ∈ (1, 5), λ > 0,
• p ∈ [5, 9) and for some sufficiently large λb,p, λ > λb,p.
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Then, there exists a subsequence φnk , such that:

1

2

∫
R

|φ′′nk(x)|2 → L1,

∫
R

|φ′nk(x)|2 → L2 and

∫
R

|φnk |p+1dx→ L3,

where L1 > 0, L2 > 0 and L3 > 0.

Proof. First, by (3.8), the quantity
∫
R
|φ′′k(x)|2dx is bounded. By Sobolev embed-

ding so are the other two. By passing to a subsequence (denoted again φk), we can
assume that they converge to three non-negative reals, L1, L2, L3.

Suppose first that L3 = 0. Then, consider the following minimization problem

inf
‖φ‖22=λ

1

2

∫
R

|φ′′(x)|2 − b|φ′(x)|2dx := inf
‖φ‖22=λ

Ĩ[φ].

Observe that since Ĩ[φ] ≥ I[φ], we have

lim
k
Ĩ[φk] = lim

k
I[φk] = inf

‖φ‖22=λ
I[φ] ≤ inf

‖φ‖22=λ
Ĩ[φ].

Thus, φk is minimizing for Ĩ as well and

inf
‖φ‖22=λ

I[φ] = inf
‖φ‖22=λ

Ĩ[φ].

On the other hand, inf‖φ‖22=λ Ĩ[φ] is easily seen to be −λb
2

8 . Indeed, for function

φ : ‖φ‖2L2 = λ, we have by Plancherel’s

2Ĩ[φ] +
b2

4
λ =

∫
R

|φ̂(ξ)|2
∣∣∣∣(2πξ)2 − b

2

∣∣∣∣2 dξ ≥ 0. (3.12)

whence inf‖φ‖22=λ Ĩ[φ] ≥ −λb
2

8 . On the other hand, for any Schwartz function χ,

consider

φ̂ε(ξ) :=

√
λ√

ε‖χ‖L2

χ

ξ − 1
2π

√
b
2

ε


which has ‖φ‖2L2 = λ and saturates the inequality (3.12) in the sense that

lim
ε→0+

∫
R

|φ̂ε(ξ)|2
∣∣∣∣(2πξ)2 − b

2

∣∣∣∣2 dξ → 0.

Thus, inf‖φ‖22=λ I[φ] = −λb
2

8 . So , we have

−λb
2

8
= mb(λ) ≤ 1

2

∫
R

|φ′′(x)|2 − b|φ′|2dx− 1

p+ 1

∫
R

|φ(x)|p+1dx.

holds for all φ with ‖φ‖22 = λ. Applying this to an arbitrary f and φ :=
√
λ f
‖f‖L2

,

so that ‖φ‖2L2 = λ the following inequality holds

λ
p−1
2 b

p−9
4

p+ 1

∫
R

|f(x)|p+1dx ≤ 1

2
‖f‖p−12

(∫
R

|f ′′(x)|2 − b|f ′(x)|2 +
b2

4
|f(x)|2dx

)
for all f 6= 0. This last inequality however contradicts Lemma 3.5 - for every λ > 0,
if p ∈ (1, 5) and for all large enough λ, if p ∈ [5, 9). Thus L3 6= 0. Clearly, by
Sobolev embedding L1 > 0, L2 > 0, otherwise L3 must be zero, which previously
lead to a contradiction.
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3.1.3. Strict sub-additivity.

Lemma 3.7. Let 1 < p < 9 and λ > 0 Then for all α ∈ (0, λ) we have

mb(λ) < mb(α) +mb(λ− α). (3.13)

Proof. First, suppose that 1 < p < 5 and b < 0. Then

mb(λ) =
λ

α
inf

‖φ‖22=α
{1

2

∫
R

|φ′′(x)|2 − b|φ′(x)|2dx− (λ/α)
p−1
2

p+ 1

∫
R

|φ(x)|p+1dx} <

<
λ

α
mb(α),

where the last strict inequality holds because there exists a minimizing sequence
for mb(α), which has the property limk ‖φk‖p+1 > 0. This means that the function

λ→ mb(λ)
λ is strictly decreasing. Assuming that α ∈ [λ2 , λ) (and otherwise we work

with λ− α) we get

mb(λ) <
λ

α
mb(α) = mb(α) +

λ− α
α

mb(α) ≤ mb(α) +mb(λ− α),

where we have used mb(α)
α ≤ mb(λ−α)

λ−α , since α ≥ λ − α. This completes the case

p ∈ (1, 5), b < 0.
Let 5 ≤ p < 9 and b < 0. Note that in this case, mb(x) is zero for small x, by

Lemma 3.2. So, there are three possibilities:

1. mb(α) = mb(λ−α) = 0. In this case (3.13) trivially holds, since by assumption
mb(λ) < 0.

2. mb(λ) < 0, but mb(λ− α) = 0. In this case we have

mb(λ) <
λ

α
mb(α) = mb(α) + (

λ

α
− 1)mb(α) < mb(α) +mb(λ− α).

3. When both mb(α),mb(λ − α) are negative, the proof is the same as in the
case 1 < p < 5 for b < 0.

Next, we consider the cases when b > 0. In this case for all 1 < p < 5 and
all λ > 0 we have that −∞ < mb(λ) < 0. The proof is the same as in the case
b < 0, p ∈ (1, 5), since we never develop the complication that mb(λ) = 0 for any
λ > 0. The case p ∈ [5, 9) and λ > λb,p is similar as well.

3.2. Existence of the minimizer. Now, suppose{
1 < p < 5 λ > 0
5 ≤ p < 9 λ > λb,p

so that Lemma 3.3 and Lemma 3.6 hold. Let {φk}∞k=1 ⊂ H2 be a minimizing
sequence, i.e. ∫

R

|φk|2dx = λ, I[φk]→ mb(λ).

Therefore, by passing to a further subsequence, by Lemma 3.3 and Lemma 3.6, we
have

‖φ′′k‖
2
2 → L1 > 0, ‖φ′k‖

2
2 → L2 > 0, ‖φk‖p+1

Lp+1 → L3 > 0.

Let ρk = |φk|2, so
∫
ρk(x)dx = λ. By the concentration compactness lemma of

P.L.Lions (see Lemma 1.1, [32]), there is a subsequence (denoted again by ρk), so
that at least one of the following is satisfied:
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1. Tightness. There exists yk ∈ R such that for any ε > 0 there exists R(ε) such
that for all k ∫

B(yk,R(ε))

ρkdx ≥
∫
R

ρk − ε.

2. Vanishing. For every R > 0

lim
k→∞

sup
y∈R

∫
B(y,R)

ρkdx = 0.

3. Dichotomy. There exists α ∈ (0, λ), such that for any ε > 0 there exist
R,Rk →∞, yk and k0, such that

∣∣∣∣∣ ∫
B(yk,R)

ρkdx− α

∣∣∣∣∣ < ε,

∣∣∣∣∣ ∫
R<|x−yk|<Rk

ρkdx

∣∣∣∣∣ < ε,∣∣∣∣∣ ∫
Rk<|x−yk|

ρkdx− (λ− α)

∣∣∣∣∣ < ε.

(3.14)

We proceed to rule out the dichotomy and vanishing alternatives, which will leave
us with tightness.

3.2.1. Dichotomy is not an option. Assuming dichotomy, we have by (3.14) and∫
ρk(x)dx = λ that

∣∣∣∫Rk<|x−yk| ρkdx− (λ− α)
∣∣∣ < 2ε. Let ψ1, ψ2 ∈ C∞(R), satis-

fying 0 ≤ ψ1, ψ2 ≤ 1 and

ψ1(x) =

{
1, |x| ≤ 1,

0, |x| ≥ 2,
, ψ2(x) =

{
1, |x| ≥ 1,

0, |x| ≤ 1/2,
.

Define φk,1 and φk,2 as follows:

φk,1(x) = φk(x)ψ1

(
x− yk
Rk/5

)
, φk,2(x) = φk(x)ψ2

(
x− yk
Rk

)
.

Clearly, for k large enough we have∣∣∣∣∫
R

φ2k,1(x)dx− α
∣∣∣∣ < 2ε and

∣∣∣∣∫
R

φ2k,2(x)dx− (λ− α)

∣∣∣∣ < 2ε.

In fact, by taking a sequence εk → 0, we can find subsequence of φk,1, φk,2 (denoted
again the same) and sequences {yk}∞k=1 ⊂ R, {Rk}∞k=1 with Rk → ∞ as k → ∞,
such that{

limk→∞
∫
R
|φk,1|2dx = α, limk→∞

∫
R
|φk,2|2 dx = λ− α,∫

Rk/5<|x−yk|<Rk |φk|
2dx < 1

k .
(3.15)

Consider I[φk]− I[φk,1]− I[φk,2]. Using (3.15) we get

I[φk]− I[φk,1]− I[φk,2] =
1

2

∫
R

|φ′′k |2 − b|φ′k|2dx−
1

p+ 1

∫
R

|φk|p+1

− 1

2

∫
R

∣∣∣∣∣
(
φkψ1

(
x− yk
Rk/5

))′′∣∣∣∣∣
2

− b

∣∣∣∣∣
(
φkψ1

(
x− yk
Rk/5

))′∣∣∣∣∣
2

dx
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− 1

2

∫
R

∣∣∣∣∣
(
φkψ2

(
x− yk
Rk

))′′∣∣∣∣∣
2

− b

∣∣∣∣∣
(
φkψ2

(
x− yk
Rk

))′∣∣∣∣∣
2

dx

+
1

p+ 1

∫
R

∣∣∣∣(φkψ1

(
x− yk
Rk/5

))∣∣∣∣p+1

+
1

p+ 1

∫
R

∣∣∣∣(φkψ2

(
x− yk
Rk

))∣∣∣∣p+1

=
1

2

∫
R

(
1− ψ2

1

(
x− yk
Rk/5

)
− ψ2

2

(
x− yk
Rk

))[
|φ′′k(x)|2 − b

2
|φ′k(x)|2

]
dx

+
1

p+ 1

∫
R

|φk(x)|p+1

(
ψp+1
1

(
x− yk
Rk/5

)
+ ψp+1

2

(
x− yk
Rk

)
− 1

)
dx+ Ek.

The error term Ek, contains only terms having at least one derivative on the cut-
off functions, therefore generating R−1k . At the same time, there is at most one
derivative falling on the φk. So, we can estimate these terms away as follows

|Ek| ≤
C

Rk

∫
Rk/5<|x|<2Rk

(|φk(x)|2 + |φ′k(x)|2)dx ≤ C

Rk
‖φk‖L2(‖φk‖L2 + ‖φ′′k‖L2).

Since supk ‖φk‖L2 , supk ‖φ′′k‖L2 < ∞, we conclude that limk Ek = 0. For the next

term, we have the positivity relation
∫
R

(
1− ψ2

1

(
x−yk
Rk/5

)
− ψ2

2

(
x−yk
Rk

))
|φ′′k(x)|2dx >

0. Integration by parts yields∫
R

(
1− ψ2

1

(
x− yk
Rk/5

)
− ψ2

2

(
x− yk
Rk

))
|φ′k(x)|2dx =

= −
∫
R

φk(x)
d

dx
[

(
1− ψ2

1

(
x− yk
Rk/5

)
− ψ2

2

(
x− yk
Rk

))
φ′k(x)]dx

Thus, by Hölder’s inequality

|
∫
R

(
1− ψ2

1

(
x− yk
Rk/5

)
− ψ2

2

(
x− yk
Rk

))
|φ′k(x)|2dx| ≤

≤ C‖φ′′k‖L2‖φk‖L2(Rk/5<|·|<Rk) +
C

Rk
‖φ′k‖L2‖φk‖L2 .

Note that since Rk →∞ and on the other hand ‖φk‖H2 is uniformly bounded in k,
this term goes to zero, by the last estimate in (3.15). Finally,

|
∫
R

|φk(x)|p+1

(
ψp+1
1

(
x− yk
Rk/5

)
+ ψp+1

2

(
x− yk
Rk

)
− 1

)
dx| ≤

≤
∫
Rk/5<|x−yk|<Rk

|φk(x)|p+1dx.

Since by GNS∫
Rk/5<|x−yk|<Rk

|φk(x)|p+1dx ≤ C‖φ′′k‖
p−1
4

L2 ‖φk‖
3p+5

4

L2(Rk/5<|·|<Rk),

and ‖φ′′k‖L2 is uniformly bounded in k, we conclude that this term also goes to zero
as k →∞.

It follows that

lim inf
k→∞

[I[φk]− I[φk,1]− I[φk,2]] ≥ 0. (3.16)
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Now, let {ak}∞k=1 and {bk}∞k=1 be sequences such that ‖akφk,1‖22 = α, ‖bkφk,2‖22 =
λ− α. Note that ak, bk → 1. Using (3.16), there is βk : limk βk = 0, so that

I[φk] ≥ I[φk,1] + I[φk,2] + βk

≥ I[akφk,1] + I[bkφk,2] + βk − C(|1− ak|+ |1− bk|)
≥ mb(α) +mb(λ− α) + βk − C(|1− ak|+ |1− bk|).

where we have used that supk ‖φk‖H2 <∞, the estimate |I(φ)−I(aφ)| ≤ C(‖φ‖H2)
|1 − a| (which is a direct consequence of the definition of the functional I[·]) and
the definition of mb(z). Taking limits in k, we see that

mb(λ) = lim
k
I[φk] ≥ mb(α) +mb(λ− α),

which is a contradiction with the sub-additiivity of mb(·) established in Lemma 3.7.
So, dichotomy cannot occur.

3.2.2. Vanishing does not occur. Suppose vanishing occurs and ε > 0. Let φ ∈ C∞
be such that

η(x) =

{
1, |x| ≤ 1,

0, |x| ≥ 2.

Using GNS we have for all R and y ∈ R

‖φk‖p+1
Lp+1(B(y,R)) ≤

∫
B(y,R)

|φk|p+1dx ≤
∫
R

∣∣∣∣φkη(x− yR

)∣∣∣∣p+1

dx

≤

∥∥∥∥∥
(
φkη

(
x− y
R

))′′∥∥∥∥∥
p−1
4

L2(R)

‖φk‖
3p+5

4

L2(B(y,2R)) ≤ Cη,R ‖φk‖
3p+5

4

L2(B(y,2R)) .

We can cover R with balls of radius 2 such that every point is contained in at most
3 balls, let it be {B(yj , 2)}. Moreover, we can choose these balls so that {B(yj , 1)}
still covers R. Choose N ∈ N so large that for all k > N ,∫

B(y,2)

|φk|2dx < ε,

for all y ∈ R. We can estimate the Lp+1(R) norm of φk as follows

‖φk‖p+1
Lp+1(R) ≤

∞∑
j=1

∫
B(yj ,1)

|φk|p+1dx ≤
∞∑
j=1

Cη,R ‖φk‖2L2(B(yj ,2))
‖φk‖

3p−3
4

L2(B(yj ,2))

≤ 3Cη,Rε
3p−3

4 ‖φk‖2L2(R) .

So, we get that ‖φk‖p+1
Lp+1(R) → 0 as k → ∞ which is a contradiction. Therefore,

the sequence ρk = |φk|2 is tight.

3.2.3. Existence of the minimizer. We have that there exists a sequence {yk}∞k=1

such that for all ε > 0 there exists R(ε) such that∫
|x|>R(ε)

|φk(yk + x)|2dx < ε.

Define uk(x) := φk(yk+x). The sequence {uk}∞k=1 ⊂ H2 is bounded, therefore there
exists a weakly convergent subsequence( renamed to {uk}∞k=1), say, to u ∈ H2 . By
the tightness and the compactness criterion on L2(Rn), the sequence {uk}∞k=1 has a
strongly convergent subsequence in L2(R), say, to ũ ∈ H2. Since weak convergence
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on H2 implies weak convergence on L2, we have that u = ũ by uniqueness of weak
limits. In addition, ‖u‖2L2 = limk ‖uk‖2L2 = λ, so u satisfies the constraint.

We also have that uk converges to u in Lp+1 norm. Indeed, using GNS inequality
we get

‖uk − u‖Lp+1(R) ≤ ‖(uk − u)′′‖
p−1

4(p+1)

L2(R) ‖uk − u‖
1− p−1

4(p+1)

L2(R)

≤ C ‖uk − u‖
1− p−1

4(p+1)

L2(R) → 0 as k →∞.

Also, since

‖u′k − u′‖2L2 ≤ ‖u′′k − u′′‖L2‖uk − u‖L2 ≤ (‖u′′k‖L2 + ‖u′′‖L2)‖uk − u‖L2 ,

we conclude that limk ‖u′k − u′‖L2 = 0, and in addition limk

∫
(u′k(x))2dx

→
∫

(u′(x))2dx.
Finally, by the lower semicontinuity of the L2 norm with respect to weak con-

vergence, we have lim infk
∫
R
|u′′k |2 ≥

∫
R
|u′′|2. We conclude that

lim inf
k

1

2

∫
R

|u′′k |2 − b|u′k|2dx−
1

p+ 1

∫
R

|uk|p+1dx ≥

≥ 1

2

∫
R

|u′′|2 − b|u′|2dx− 1

p+ 1

∫
R

|u|p+1dx,

whence we have that mb(λ) ≥ I[u], therefore I(u) = mb(λ) and u is a minimizer.

3.3. Euler-Lagrange equation.

Proposition 2. Let p ∈ (1, 9), λ > 0, be so that

• 1 < p < 5, λ > 0
• 5 ≤ p < 9, λ > λb,p > 0.

Then, there exists a function ω(λ) > 0, so that the minimizer of the constrained
minimization problem (1.8) φ = φλ constructed in Section 3.2.3, satisfies the Euler-
Lagrange equation

φ′′′′λ + bφ′′λ − |φλ|p−1φλ + ω(λ)φλ = 0 (3.17)

where

ω(λ) =
1

λ

∫
R

b(φ′λ)2 + |φλ|p+1 − (φ′′λ)2dx.

In addition, n(L+) = 1, that is L+ has exactly one negative eigenvalue. In fact
L+|{φλ}⊥ ≥ 0.

Proof. We have shown that minimizers for the constrained minimization problem
exists in the two cases described above, for both b > 0 and b < 0.

Consider uδ =
√
λ φλ+δh
‖φλ+δh‖ , where h is a test function. Note that ‖uδ‖2L2 = λ, so

it satisfies the constraint. Expanding I[uδ] in powers of δ we obtain

I[uδ] = mb(λ)+

+ δ

[∫
R

φ′′λh
′′ − bh′φ′λ − h|φλ|p−1φλdx

]
+
δ

λ

[∫
R

(
b(φ′λ)2 + |φλ|p+1 − (φ′′λ)2

)
dx

∫
R

φλhdx

]
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+
δ2

2

[∫
R

(h′′)2 − b(h′)2 − ph2 |φλ|p−1 dx
]

+
δ2

λ
〈h, φ〉

∫
R

(p+ 1)h|φ|p−1φ+ 2bh′φ′λ − 2h′′φ′′λdx

+
δ2

2λ2
〈h, φ〉2

∫
R

(p+ 3) |φλ|p+1
+ 4b(φ′λ)2 − 4(φ′′λ)2dx+

+
δ2

2λ
‖h‖2

∫
R

|φλ|p+1
+ b(φ′λ)2 − (φ′′λ)2dx+O(δ3).

Using only the first order in δ information and the fact that I[uδ] ≥ mb(λ) for all
δ ∈ R, we conclude that

〈φλ, h′′′′〉+ b〈φλ, h′′〉 − 〈|φλ|p−1φλ + ω(λ)φλ, h〉 = 0

where ω(λ) = 1
λ

∫
R
b(φ′λ)2+|φλ|p+1−(φ′′λ)2dx. Since this is true for any test function

h, we conclude that φλ is a distributional solution of the Euler-Lagrange equation
(3.17). According to Proposition 1, this turns out to be a solution in stronger sense,
in particular φλ ∈ H4(R).

Now, using the fact that the function gh(δ) := I[uδ] has a minimum at zero,
we also conclude that g′′h(0) ≥ 0. This is of course valid for all h, but in order to
simplify the expression, we only look at h : ‖h‖ = 1, which are orthogonal to the
wave φλ, i.e. 〈h, φλ〉 = 0. This implies that

〈h′′′′ + bh′′ + ω(λ)h− p|φλ|p−1h, h〉 ≥ 0.

In other words, 〈L+h, h〉 ≥ 0, whenever h : ‖h‖ = 1, 〈h, φλ〉 = 0. This is ex-
actly the claim that L+|{φλ}⊥ ≥ 0. In particular, this implies that the second
smallest eigenvalue of L+ is non-negative or n(L+) ≤ 1. On the other hand, since
〈L+φλ, φλ〉 = −(p− 1)

∫
|φλ(x)|p+1dx < 0, it follows that there is a negative eigen-

value or n(L+) = 1.

4. Variational construction in higher dimensions. In this section, we follow
the approach and constructions from Section 3. Most, if not all, of the steps go
through essentially unchanged, save for the numerology, which is of course impacted
by the dimension d. Thus, we will be just indicating the main points, without
providing full details, where the arguments follow closely the one dimensional case.

Recall that we work with the variational problem (1.11). Again, we introduce

mb(λ) = inf
φ∈H2∩Lp+1,‖φ‖22=λ

I[φ].

Note that since

mb(λ)

λ
= inf
‖φ‖22=1

{
1

2

∫
Rd

[|∆φ(x)|2 − ε|~b|2|∂x1
φ(x)|2]dx− λ

p−1
2

p+ 1

∫
Rd

|φ(x)|p+1dx

}
,

(4.1)

the function λ → mb(λ)
λ is non-increasing, we conclude that mb(λ) is differentiable

a.e. As we have previously discussed, the case ε = 1 seems much more technically
complicated, and it is to be addressed in a subsequent publication [27].

We concentrate on the case ε = −1. We have the following regarding m~b,λ.

Lemma 4.1. Let ε = −1. Then,

• For p ∈ (1, 1 + 8
d+1 ) and λ > 0, we have that −∞ < m~b(λ) < 0,

• For p ∈ (1, 1 + 8
d ), m~b(λ) > −∞,
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• For p ≥ 1 + 8
d , m~b,λ = −∞ for all λ > 0.

Proof. The proof goes through the same steps as in Lemma 3.1. Pick φδ = δ
d+1
2

φ(δ2x1, δx
′), with ‖φ‖2L2 = λ. Clearly, ‖φδ‖2L2 = λ, while

I[φδ] =
δ4‖∆′φ‖2 + δ8‖∂x1x1φ‖2L2

2
+
|~b|2‖φx1

‖2

2
δ4 −

‖φ‖p+1
Lp+1

p+ 1
δ

(d+1)(p−1)
2 .

Clearly, for δ small enough and p < 1+ 8
d+1 , the last term is dominant, so mb(λ) < 0.

Similarly, using ψδ = δ
d
2 φ(δx) we obtain

I[ψδ] =
δ4 ‖∆φ‖2 + δ2|~b|2 ‖φx1

‖2

2
−
‖φ‖L

p+1

p+1

p+ 1
δ
d(p−1)

2 ,

and taking the limit δ →∞ yields mb(λ) = −∞, for p > 1 + 8
d .

Next, by GNS, we have that

‖φ‖Lp+1(Rd) ≤ Cp‖φ‖
Ḣ
d( 1

2
− 1
p+1

) ≤ Cp‖φ‖
1−d( 1

4−
1

2(p+1)
)

L2 ‖∆φ‖
d( 1

4−
1

2(p+1)
)

L2 .

Thus,

I[φ] =
1

2

∫
Rd

[|∆φ(x)|2 + |~b|2|∂x1
φ(x)|2]dx− 1

p+ 1

∫
Rd

|φ(x)|p+1dx

≥ 1

2

∫
Rd

|∆φ|2 + |~b|2|∂x1
φ(x)|2dx− cp‖∆φ‖

d p−1
4

L2 ‖φ‖p+1−d p−1
4

L2

≥ 1

4
‖∆φ‖2L2 − cp,λ,b‖∆φ‖

d p−1
4

L2 ≥ −γ,

where in the last inequality, we have used that p < 1 + 8
d (whence dp−14 < 2) and

hence ‖∆φ‖2L2 is dominant. The fact that mb(λ) = −∞, when p = 1 + 8
d follows in

the same fashion as in Lemma 3.1.

Next, we present a technical lemma.

Lemma 4.2. For 1 + 8
d+1 ≤ p < 1 + 8

d , there is Cp, so that for all functions g,

‖g‖p+1
Lp+1(Rd)

≤ Cp‖g‖p−1L2

∫
Rd

|∆g|2 + |∂x1
g|2dx (4.2)

For p ∈ (1, 1 + 8
d+1 ), such an estimate cannot hold.

Proof. We apply the Sobolev embedding in the variables x1 and then in x′ =
(x2, . . . , xd)

‖g‖Lp+1(Rd) ≤ ‖|∇x′ |(d−1)(
1
2−

1
p+1 )|∇x1 |

( 1
2−

1
p+1 )g‖L2(Rd). (4.3)

Next, by Plancherel’s, Hölder’s inequality and Young’s inequality

‖|∇x′ |(d−1)(
1
2−

1
p+1 )|∇x1

|(
1
2−

1
p+1 )g‖L2(Rd) =

=

(∫
Rd

|ĝ(ξ)|2|ξ′|(d−1)(1−
2
p+1 )|ξ1|1−

2
p+1 dξ

)1/2

≤

≤ C‖g‖
p−1
p+1

L2

(∫
Rd

|ĝ(ξ)|2|ξ′|(d−1)
p−1
2 |ξ1|

p−1
2 dξ

) 1
p+1

≤

≤ C‖g‖
p−1
p+1

L2

(∫
Rd

|ĝ(ξ)|2[|ξ′|4 + |ξ1|
q′(p−1)

2 ]dξ

) 1
p+1

,
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where q = 8
(d−1)(p−1) . Clearly, (4.2) follows, provided 2 ≤ q′(p−1)

2 ≤ 4. Solving this

inequality yields exactly 1 + 8
d+1 ≤ p < 1 + 8

d .

If p < 1 + 8
d+1 , take φ = χ(ε2x1, εx

′) in (4.2). Assuming the validity of (4.2), we
obtain a contradiction for ε << 1.

The next two lemmas are the generalizations of Lemma 3.2 and Lemma 3.3 to
higher dimensions.

Lemma 4.3. If ε = −1 and p ∈ [1 + 8
d+1 , 1 + 8

d ), then there exists a finite number
λ~b,p > 0 such that

• for all λ ≤ λ~b,p we have mb(λ) = 0,

• for all λ > λp we have −∞ < mb(λ) < 0.

Proof. The inequality m(λ) ≤ 0 follows in the same way as in Lemma 3.2. Then,
by Lemma 4.2, we have

inf
φ 6=0

‖φ‖p−1L2

∫
Rd [|∆φ|2 − ε|~b|2|φx1

|2]dx∫
Rd |φ|p+1dx

≥ c~b,p > 0. (4.4)

Thus, for all φ ∈ H2(Rd), we have∫
Rd

[|∆φ|2 − ε|~b|2|φx1
|2]dx−

c~bp
λp−1

∫
Rd

|φ|p+1dx ≥ 0,

which by (4.1) implies that for λ ≤ λ~b,p :=
(
c~b,p(p+1)

2

) 2
p−1

, m~b(λ) ≥ 0. Since we

always have the opposite inequality, this implies m~b(λ) = 0, when λ is small enough.
Note that for very large λ, the quantity in (4.1) is clearly negative, so this implies
that λ~b,p <∞.

The next lemma is the generalization of Lemma 3.3 to the higher dimensional
case. Its proof follows an identical arguments and it is thus omitted.

Lemma 4.4. Suppose ε = −1, p ∈ (1, 1 + 8
d ) and −∞ < mb(λ) < 0. That is

• p ∈ (1, 1 + 8
d+1 ), λ > 0

• p ∈ [1 + 8
d+1 , 1 + 8

d ) and λ > λ~b,p.

Let φk be a minimizing sequence for the constrained minimization problem (1.11).
Then, there exists a subsequence φk such that:∫

Rd

|∆φk(x)|2dx→ L1,

∫
Rd

|∂x1
φk(x)|2dx→ L2,

∫
Rd

|φk(x)|p+1dx→ L3,

where L1 > 0, L2 > 0 and L3 > 0.

4.1. Existence of minimizers. Before we go ahead with the existence of mini-
mizers, we need an analog of Lemma 3.7. Their proofs in the higher dimensional
case goes in an identical manner.

Lemma 4.5. Let 1 < p < 1+ 8
d and λ > 0. Then λ→ m~b,p(λ) is strictly subadditive.

That is, for every α ∈ (0, λ),

m~b,p(λ) < m~b,p(α) +m~b,p(λ− α)

In addition, λ→ m~b,p(λ) is twice differentiable a.e.
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With the basic results in place, we can now proceed to establish the existence of
the minimizers of (1.11). Supposing{

1 < p < 1 + 8
d+1 λ > 0

1 + 8
d+1 ≤ p < 1 + 8

d λ > λb,p

we take a minimizing sequence {φk} ⊂ H2(Rd), with I[φk]→ m~b,p(λ). By eventu-

ally passing to a subsequence, we can without loss of generality assume, by using
Lemma 4.4,

1

2

∫
Rd

|∆φnk(x)|2 → L1,

∫
Rd

|∂x1
φnk(x)|2 → L2 and

∫
Rd

|φnk |p+1dx→ L3,

where15 L1 > 0, L2 > 0 and L3 > 0. The next task is to show that this sequence
does not split nor vanish. The absence of splitting is established in the same way
as the first part of Section 3.2.

Next, we rule out vanishing. The proof presented in Section 3.2 works for d =
1, 2, 3, 4, but breaks down in d ≥ 5, so let us present another one that works in all
dimensions. More concretely, for all R > 0 and y ∈ Rd and a cutoff function η
introduced in Section 3.2.2, we have by the GNS inequality

‖φk‖p+1
Lp+1(B(y,R)) ≤

∫
Rd

|φk(x)η

(
|x− y|
R

)
|p+1dx ≤ C‖φkηR‖p+1

Ḣ
d( 1

2
− 1
p+1 )

≤

≤ C‖∆[φkηR]‖(p+1) d2 ( 1
2−

1
p+1 )

L2 ‖φkηR‖
(p+1)−(p+1) d2 ( 1

2−
1
p+1 )

L2

Since p < 1 + 8
d , it follows that (p + 1)d2

(
1
2 −

1
p+1

)
< 2. In addition ‖φkηR‖L2 ≤

‖φk‖L2(B(y,2R), whence

‖φk‖p+1
Lp+1(B(y,R)) ≤ CR,η‖φk‖

2
H2(B(y,2R))‖φk‖

p−1
L2(B(y,2R)).

So, if we assume that vanishing occurs, then for every ε > 0, we will be able to
cover Rd with balls of radius 1, say B(yj , 1), so that

∫
B(yj ,3)

|φk(x)|2dx < ε. Then,

‖φk‖p+1
Lp+1(Rd) ≤

∞∑
j=1

∫
B(yj ,1)

|φk|p+1dx ≤
∞∑
j=1

Cη,R ‖φk‖2H2(B(yj ,2))
‖φk‖p−1L2(B(yj ,2))

≤ 10Cη,Rε
p−1
2 ‖φk‖2H2(Rd) .

Clearly, since ‖φk‖H2(Rd) is uniformly bounded in k, we conclude that limk ‖φk‖Lp+1

= 0, which is in a contradiction with limk

∫
Rd |φk|p+1dx = L3 > 0.

From here, it follows that the sequence ρk = |φk(x)|2 is tight and the existence
of the minimizer is done as in Section 3.2.3.

The Euler-Lagrange equation, together with the appropriate properties of the
linearized operators is done similar to Proposition 2.

Proposition 3. Let p ∈ (1, 1 + 8
d ), λ > 0, be so that

• 1 < p < 1 + 8
d+1 , λ > 0

• 1 + 8
d+1 ≤ p < 1 + 8

d , λ > λb,p > 0.

Then, there exists a function ω(λ) > 0, so that the minimizer of the constrained
minimization problem (1.11) φ = φλ satisfies the Euler-Lagrange equation

∆2φλ + ε|~b|2∂2x1
φλ − |φλ|p−1φλ + ω(λ)φλ = 0 (4.5)

15For conciseness, we use φk, instead of φnk
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In addition, n(L+) = 1, that is L+ has exactly one negative eigenvalue. Finally,
L− ≥ 0, with a simple eigenfunction at zero, i.e. Ker[L−] = span[φλ].

As we mentioned above, the proof goes along the lines of Proposition 2. The
only new element are the statements about L−, which we now prove. Note that
by direct inspection, L−[φλ] = 0, by (4.5), so zero is an eigenvalue. Assuming that
there is a negative eigenvalue, say L−[ψ] = −σ2ψ, ‖ψ‖ = 1, we clearly would have
ψ ⊥ φλ. In addition, since16 L+ < L−,

〈L+ψ,ψ〉 < 〈L−ψ,ψ〉 = −σ2

〈L+φλ, φλ〉 < 0.

This would force n(L+) ≥ 2, a contradiction. Thus, L− ≥ 0. Finally, 0 is a simple
eigenvalue of L− along the same line of reasoning. Indeed, take ψ : L−ψ = 0, ψ ⊥
φλ. Again, we conclude n(L+) ≥ 2, which leads to a contradiction.

4.2. Discussion of the proof of Theorem 1.4: Existence of the waves. We
do not provide an extensive review of the existence claims in Theorem 1.4 ,as this
would be repetitious, but we would like to make a few notable points. We work
with the variational problem (1.12), where we set up b = −1 for simplicity as this
will not affect the calculations.

Our goal in this section is to clarify the range of indices in p. More concretely,
we have the following analogue of Lemmas 4.2.

Lemma 4.6. For 1 + 4
d ≤ p < 1 + 8

d ,

‖g‖p+1
Lp+1(Rd)

≤ Cp‖g‖p−1L2

∫
Rd

|∆g|2 + |∇g|2dx (4.6)

For p ∈ (1, 1 + 4
d ), such an estimate cannot hold.

The proof proceeds in a similar fashion, so we omit it. A combination of argu-
ments in the flavor of the proofs for Lemma 4.1 and Lemma 4.3 leads us to the
following variant of Lemma 4.3 and Lemma 4.4.

Lemma 4.7. If b < 0 and p ∈ [1 + 4
d , 1 + 8

d ), then there exists a finite number
λb,p > 0 so that

• for all λ ≤ λb,p we have mb(λ) = 0,
• for all λ > λp we have −∞ < mb(λ) < 0.

In addition, assuming that −∞ < mb(λ) < 0, that is

• p ∈ (1, 1 + 4
d ), λ > 0

• p ∈ [1 + 4
d , 1 + 8

d ) and λ > λb,p.

and φk be a minimizing sequence for the constrained minimization problem (1.11),
there exists a subsequence φk such that:∫

Rd

|∆φk(x)|2dx→ L1,

∫
Rd

|∇φk(x)|2dx→ L2,

∫
Rd

|φk(x)|p+1dx→ L3,

where L1 > 0, L2 > 0 and L3 > 0.

With these tools at hand, the existence of the waves follows in the same manner
as before, so we omit the details.

16This is an obvious statement, once we realize that φλ cannot vanish on an interval. Indeed,
otherwise, since it solves the fourth order equation (4.5), it follows that φλ is trivial, which it is

not.
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5. Stability of the normalized waves. Interestingly, the proof of the spectral
stability proceeds by a common argument, both for the Kawahara and the fourth
order NLS case. By Proposition 1, it suffices to show that n(L+) = 1, L− ≥ 0,
φλ ⊥ Ker[L+] and to verify that the index 〈L−1+ φλ, φλ〉 < 0. Indeed, the condition
n(L+) = 1 was already verified as part of the variational construction, see Propo-
sition 2 and 3. Similarly, L− ≥ 0 was verified in the higher dimensional case in
Proposition 3.

5.1. Weak non-degeneracy and non-positivity of the Vakhitov-Kolokolov
quantity.

Lemma 5.1. For each constrained minimizer φλ, we have that φλ ⊥ Ker[L+].

Proof. Take any element ofKer[L+], say Ψ : ‖Ψ‖L2 = 1. We need to show 〈Ψ, φλ〉 =
0. To this end, consider Ψ − ‖φλ‖−2〈Ψ, φλ〉φλ ⊥ φλ. Recall that due to the
construction L+|{φλ}⊥ ≥ 0. We have

0 ≤ 〈L+[Ψ− ‖φλ‖−2〈Ψ, φλ〉φλλ],Ψ− ‖φλ‖−2〈Ψ, φλ〉φλ〉 =

= ‖φλ‖−4〈Ψ, φλ〉2〈L+φλ, φλ〉 ≤ 0,

where we have used that 〈L+φλ, φλ〉 = −(p−1)
∫
|φλ|p+1 < 0. The only way the last

chains of inequalities is non-contradictory, is if 〈Ψ, φλ〉 = 0, which is the claim.

Our next result is a general lemma, which is of independent interest.

Lemma 5.2. Suppose that H is a self-adjoint operator on a Hilbert space X, so that
H|{ξ0}⊥ ≥ 0. Next, assume ξ0 ⊥ Ker[H], so that H−1ξ0 is well-defined. Finally,
assume 〈Hξ0, ξ0〉 ≤ 0. Then

〈H−1ξ0, ξ0〉 ≤ 0.

Proof. We can without loss of generality assume that ‖ξ0‖ = 1. Consider H−1ξ0 −
〈H−1ξ0, ξ0〉ξ0 ⊥ ξ0. It follows that

0 ≤ 〈H[H−1ξ0 − 〈H−1ξ0, ξ0〉ξ0],H−1ξ0 − 〈H−1ξ0, ξ0〉ξ0〉 =

= 〈ξ0 − 〈H−1ξ0, ξ0〉Hξ0,H−1ξ0 − 〈H−1ξ0, ξ0〉ξ0〉 =

= −〈H−1ξ0, ξ0〉〈Hξ0,H−1ξ0〉+ 〈H−1ξ0, ξ0〉2〈Hξ0, ξ0〉 =

= −〈H−1ξ0, ξ0〉+ 〈H−1ξ0, ξ0〉2〈Hξ0, ξ0〉 ≤ −〈H−1ξ0, ξ0〉,

where we have used the assumption 〈Hξ0, ξ0〉 ≤ 0. It follows that 〈H−1ξ0, ξ0〉 ≤ 0,
which is the claim.

Remark. Unfortunately, it is impossible to conclude that 〈H−1ξ0, ξ0〉 < 0, based
on the assumptions made in Lemma 5.2. It turns out that such a statement is in
general false, that is it is in general impossible to rule out 〈H−1ξ0, ξ0〉 6= 0.

To that end, consider the following example17: Take H = R2 and H =(
−1 1
1 0

)
, ξ0 =

(
1
0

)
, which has Ker[H] = {0}, 〈Hξ0, ξ0〉 = −1 < 0, while

〈H−1ξ0, ξ0〉 = 0. Nevertheless, we always have 〈H−1ξ0, ξ0〉 ≤ 0 as claimed in Lemma
5.2.

17We owe this to a generous remark made by an anonymous referee in response to our initial
claims to the contrary.
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5.2. Conclusion of the proof of spectral stability. Apply Lemma 5.2 to the
vector ξ0 := φλ and the operator H := L+. Recall that as a byproduct of the
construction of φλ, we have established the property L+|{φλ}⊥ ≥ 0. By Lemma 5.1,
we have that φλ ⊥ Ker[L+]. Finally, 〈L+φλ, φλ〉 < 0 was established as well (and
used repeatedly throughout). Thus, we conclude that 〈L−1+ φλ, φλ〉 ≤ 0. Clearly, our

additional assumption, namely 〈L−1+ φλ, φλ〉 6= 0 guarantees that 〈L−1+ φλ, φλ〉 < 0,
which is enough for the spectral stability by Corollary 1. It would be interesting to
see whether one can prove 〈L−1+ φλ, φλ〉 6= 0 in a straightforward manner, instead of
making it an extra requirement.

These arguments establish rigorously the spectral stability of the waves for the
Kawahara made in Theorem 1.2 and in the high dimensional fourth order NLS
problems in Theorem 1.3 and Theorem 1.4.

Acknowledgments. We would like to thank Dmitry Pelinovsky for the numerous
discussions on these and related topics.
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