

1 **TITLE:** Conserved Molecular Pathways Underlying Biting in Two Divergent
2 Mosquito Genera

3 **RUNNING TITLE:** The molecular basis of mosquito biting

4
5 **AUTHORS:** Alden Siperstein^{1*}, Sarah Marzec^{2*}, Megan L. Fritz³, Christina M. Holzapfel⁴,
6 William E. Bradshaw⁴, Peter A. Armbruster², Megan E. Meuti¹

7
8 **CONTACT INFORMATION:**

9
10 ¹ Department of Entomology, The Ohio State University, Coffey Road, Kottman Hall,
11 Columbus, Ohio 43210

12 ²Department of Biology, Georgetown University, 37th and O sts. NW, Washington, DC 20057

13 ³ Department of Entomology, University of Maryland, College Park, MD 20742

14 ⁴ Laboratory of Evolutionary Genetics, Institute of Ecology and Evolution, University of Oregon,
15 Eugene, OR 97403

16 * These authors contributed equally to this work

17
18 **ABSTRACT:** Mosquitoes transmit a wide variety of devastating pathogens when they bite
19 vertebrate hosts and feed on their blood. However, three entire mosquito genera and many
20 individual species in other genera have evolved a non-biting life history in which blood is not
21 required to produce eggs. Our long-term goal is to develop novel interventions that reduce or
22 eliminate the biting behavior in vector mosquitoes. A previous study used biting and non-biting
23 populations of a non-vector mosquito, *Wyeomyia smithii*, as a model to uncover the
24 transcriptional basis of the evolutionary transition from a biting to a non-biting life history.
25 Herein, we ask whether the molecular pathways that were differentially expressed due to
26 differences in biting behavior in *W. smithii* are also differentially expressed between subspecies
27 of *Culex pipiens* that are obligate biting (*Culex pipiens pipiens*) and facultatively non-biting
28 (*Culex pipiens molestus*). Results from RNAseq of adult heads show dramatic upregulation of
29 transcripts in the ribosomal protein pathway in biting *Culex pipiens*, recapitulating the results in
30 *Wyeomyia smithii*, and implicating the ancient and highly conserved ribosome as the intersection
31 to understanding the evolutionary and physiological basis of blood feeding in mosquitoes. Biting
32 *Culex* also strongly upregulate energy production pathways, including oxidative phosphorylation
33 and the citric acid (TCA) cycle relative to non-biters, a distinction that was not observed in *W.*
34 *smithii*. Amino acid metabolism pathways were enriched for differentially expressed genes in
35 biting vs. non-biting *Culex*. Relative to biters, non-biting *Culex* upregulated sugar metabolism
36 and transcripts contributing to reproductive allocation (vitellogenin and cathepsins). These
37 results provide a foundation for developing strategies to determine the natural evolutionary
38 transition between a biting and non-biting life history in vector mosquitoes.

39
40 **KEYWORDS:** mosquito-borne disease, blood feeding, vector control, *Culex pipiens*, *Wyeomyia*
41 *smithii*, life-history evolution.

43 **INTRODUCTION**

44 Mosquitoes transmit a wide variety of vector-borne diseases, including malaria, dengue,
45 and filariasis (Roberts, 2002). Furthermore, the rapid emergence and global spread of additional
46 mosquito-borne viruses such as chikungunya and Zika are of increasing public health concern
47 (Bradshaw et al. 2018, Fauci et al. 2016, Kilpatrick and Randolph 2012). Effective vaccines and
48 drug treatments are not available for the majority of mosquito-borne pathogens. Consequently,
49 efforts to reduce disease transmission have traditionally focused on reducing mosquito
50 abundance, usually by reducing larval habitats (a.k.a. source reduction) or applying insecticides.
51 However, the effectiveness of these traditional approaches is limited by the proliferation of man-
52 made habitats (e.g., discarded tires and cisterns) and the evolution of insecticide resistance.
53 Hence, novel approaches to control the transmission of mosquito-borne pathogens are
54 desperately needed (McGraw and O’Neil 2013).

55 Over the last two decades, a variety of new and promising strategies have been developed
56 to either reduce mosquito abundance or inhibit pathogen transmission (McGraw and O’Neil
57 2013, Crawford et al. 2020, Wang et al. 2021). However, all of these emerging approaches
58 assume that a bite will occur. We are pursuing an alternative strategy to identify existing genetic
59 variation in natural populations that enables a proportion of females to produce eggs without
60 imbibing blood. Our long-term goal is to develop genetic or chemical interventions that turn
61 blood-feeding mosquitoes into non-biters based on the simple but powerful logic that if no bite
62 occurs, transmission of blood-borne pathogens is not possible (Armbruster, 2018).

63 The evolutionary transition from a biting to a non-biting life-history has occurred
64 multiple times in mosquitoes. In fact, three complete genera of mosquitoes never bite (*Malaya*,
65 *Topomyia*, *Toxorhynchites*), and several non-biting species occur in genera comprised mostly of
66 species that do bite (Downes 1958, Foster 1995, Miyagi et al. 2012, Rattanarithikul et al. 2007,
67 Wahid et al. 2007, Zhou et al. 2014). Furthermore, many species are able to produce a single
68 clutch of eggs without biting, but then require a blood meal for all subsequent egg clutches
69 (Rioux et al. 1975, Spielman 1971; O’Meara 1985). The selective pressures driving the repeated,
70 independent evolution of a non-biting life history in mosquitoes are likely related to the costs of
71 blood feeding, which are not widely appreciated. These costs include allocating energetic
72 resources to locating vertebrate hosts, preparing to digest a blood meal (Bradshaw et al. 2018),
73 surviving on a host (Edman & Scott, 1987), mitigating the thermal stress of imbibing a hot blood

74 meal (Benoit et al. 2011), as well as detoxifying heme and iron as the blood is digested (Graca-
75 Souza et al. 2006). Bearing these myriad costs in mind, it is perhaps not surprising that northern,
76 obligate non-biting populations of the pitcher-plant mosquito, *Wyeomyia smithii*, achieve higher
77 lifetime reproductive success than southern populations of ancestrally biting mosquitoes,
78 regardless of the presence or absence of a host (Bradshaw 1980, 1986; Borowczak 2017).

79 Bradshaw et al. (2018) used the pitcher-plant mosquito, *Wyeomyia smithii*, as a model
80 system to determine the molecular physiology underlying the evolutionary transition from a
81 biting to a non-biting life history by artificially selecting a genetically variable population of *W.*
82 *smithii* from Florida to generate two populations: avid biters and disinterested biters. The
83 transcriptional response in the presence of a vertebrate host of these artificially selected
84 populations were then compared to a naturally evolved, obligate non-biting population from
85 Maine. When all three populations were provided with the opportunity to blood-feed, 1,459
86 genes (<6% of the *W. smithii* genome) exhibited parallel differential gene expression between
87 *both* the artificially selected avid biters and the unselected, disinterested biters from within the
88 same Florida population *and* between avid biters from Florida and naturally evolved obligate
89 non-biters from Maine (Bradshaw et al. 2018). Results based on KEGG pathway analyses found
90 that relative to non-biting females, biting females of *W. smithii* transcriptionally up-regulate
91 several physiological processes with clear functional significance to blood feeding *before* blood
92 is actually ingested. These artificially selected and naturally evolved populations of *W. smithii*
93 that differed in biting behavior demonstrated an extraordinarily high level of genetic parallelism.
94 We now seek to answer the question: Do the genes and pathways that distinguish blood-feeding
95 from obligate non-biting populations of *W. smithii* (Bradshaw et al. 2018) predict pathways and
96 genes that distinguish blood-feeding from facultatively non-biting individuals in two subspecies
97 of the vector mosquito *Culex pipiens*?

98 To answer this question, we conducted similar experiments to those with *W. smithii*
99 (Bradshaw et al. 2018), utilizing *Culex pipiens* L., a primary vector of West Nile virus and
100 filarial worms (Hamer et al. 2008; Lewandowski et al. 1980; Rajagopalan et al. 1977). The *Culex*
101 *pipiens* L. complex includes two interfertile subspecies, *Cx. p. pipiens* (hereafter, Pipiens) and
102 *Cx. p. molestus* (hereafter, Molestus). The Pipiens and Molestus subspecies differ in a suite of
103 ecophysiological traits, including above- vs. below-ground habitat utilization, mating behavior,
104 host preference, and the ability to reproduce without biting (Spielman 1971, O'Meara 1985;

105 Strickman and Fonseca 2012, Noreuil and Fritz 2021, Haba and McBride 2022). Thus, similar to
106 the comparison of *W. smithii* populations described above (Bradshaw et al. 2018), the challenge
107 of our experimental design is that even when tissue samples are collected in the context of a
108 behavioral biting assay, transcriptional differences between the Pipiens and Molestus subspecies
109 could be due to differences unrelated to biting behavior. We address this challenge by
110 specifically identifying transcriptional differences between biting Pipiens and non-biting
111 Molestus that were also associated with differences in biting behavior between populations of *W.*
112 *smithii*. The simplest interpretation of these shared differences between biting and non-biting
113 mosquitoes from two genera separated by ~200 Mya of evolutionary divergence (Reidenbach et
114 al. 2009) is that the differences represent a conserved molecular physiological response to
115 differences in biting behavior. Additionally, we focus on transcriptional differences between
116 biting Pipiens and non-biting Molestus that have a clear functional relevance to metabolism and
117 reproductive physiology when producing eggs with or without ingesting blood.

118 Herein, we compare transcriptional differences in heads of biting Pipiens and non-biting
119 Molestus, utilizing previously characterized populations of these two subspecies with established
120 differences in biting behavior and the capacity to reproduce without biting (Noreuil and Fritz
121 2021). We identify KEGG pathways enriched for differentially expressed genes (DEGs) to
122 elucidate the molecular physiology underlying the divergence between a biting vs. non-biting life
123 history. We also determine transcriptional similarities and distinctions between biters vs. non-
124 biters of *Cx. pipiens* with biters vs. non-biters of *W. smithii* predicted *a priori* from direct
125 selection on biting in *W. smithii*. Our results present novel insights that provide a foundation for
126 our long-term goal of developing pharmacological or genetic strategies to reduce global
127 transmission of pathogens by disease vectors.

128

129 MATERIALS AND METHODS

130 *Insect colony maintenance*

131 Colonies of Molestus and Pipiens utilized in this study correspond to BG1 (Molestus) and
132 AG2 (Pipiens), respectively of Noreuil & Fritz (2021). The Molestus population was established
133 from the drainage sump in the Calumet Water Reclamation Plant in Chicago, Illinois (USA) in
134 January of 2009 (Mutebi & Savage 2009). The Pipiens population was collected from above
135 ground field sites in Evanston, Illinois (USA) in August of 2016, and the 51st and 52nd lab

136 generation were used in these experiments. Consistent with Noreuil & Fritz (2021), our
137 preliminary experiments confirmed that >90% of Molestus females produced eggs without a
138 blood meal within the first ~100 hours of eclosion. Hence most females from this population
139 were disinterested in biting on the third day of adult life when tissue collections occurred (see
140 below). Females from the Pipiens population required a bloodmeal to complete every
141 gonotrophic cycle.

142 All mosquito life-stages were reared in an environmental chamber at 26°C with ~70%
143 relative humidity and a photoperiod consisting of 16 hours of light and 8 hours of dark (L:D
144 16:8). One-hundred and fifty first instar larvae of Pipiens or Molestus were placed in pans with
145 600 mL of reverse osmosis (RO) water. Larvae were initially fed a slurry of beef liver powder (3
146 mL of 2.53% weight/volume solution) and subsequently fed 650 mg of ground Tetramin fish
147 food over a period of 6 days. For both strains, one hundred pupae were placed into circular
148 plastic containers (4.61 cm in diameter) containing ~200 ml of RO water, which previous
149 experiments showed resulted in a high rate of emergence and low pupal mortality. The pupae in
150 these containers were then placed inside 12" x 12" x 12" mesh cages (BioQuip) provisioned with
151 10% sucrose solution, organic raisins, and honey-soaked sponges, which served as food sources
152 for male and female mosquitoes. To ensure that the adults in each cage were the same age, cups
153 containing pupae were moved every 24 hrs to new cages each day at Circadian Time (CT) 8.5
154 (i.e., 8.5 hrs after lights had turned on).

155

156 ***Head tissue collections***

157 Non-biting females of Molestus and biting females of Pipiens were collected using
158 methods that were as close as possible to a previous study of transcriptional changes associated
159 with differences in biting behavior in the pitcher-plant mosquito, *W. smithii* (Bradshaw et al.
160 2018). All females were collected three days post-adult emergence during an approximately one-
161 hour period between CT12 and CT15, corresponding to between 4 to 1 hour(s) respectively
162 before the lights turned off. This narrow collection window was used to minimize any
163 differences in gene expression that might arise due to the timing of collections. All food sources
164 were removed on Day 2 (CT12; 24 hours before collections) to encourage females to bite. Both
165 the Molestus and Pipiens were reared in the same incubator at the same time, and whenever
166 possible, samples of both strains were collected on the same day.

167 Non-biting females of *Molestus* were collected by discarding any females that attempted
168 to bite the human blood source during the one-hour trial period (0-5 females/cage; <1.7% of total
169 females attempted to bite). After the one-hour period, 35 of the remaining, non-biting *Molestus*
170 were removed from the cage, snap frozen in ethanol on dry ice, and decapitated. These 35
171 collected heads were pooled into a single biological replicate sample for RNAseq analysis. An
172 additional sample containing 10 heads was collected for qRT-PCR analyses. One biological
173 replicate sample for RNAseq and one biological replicate sample for qRT-PCR were collected
174 from a single cage containing 3 day-old female mosquitoes each day over a four-day period (n =
175 3 replicate samples for RNAseq; n = 5 replicate samples for qRT-PCR; see Table S1).

176 Biting female *Pipiens* were collected by aspirating any females that landed on the human
177 blood source, probed their mouthparts into the source and inserted their proboscis until the
178 labium was bent and the fascicle was exposed. Importantly, these biting females were collected
179 *before* they had the opportunity to imbibe any blood. Females were snap frozen in EtOH on
180 dry ice and decapitated. Two biological replicate samples containing 35 heads and one biological
181 replicate sample containing 31 heads of 3 day-old biting *Pipiens* were collected over 3 days for
182 RNAseq experiments (See Table S1). Any additional females who bit were also collected for
183 subsequent qRT-PCR analyses (9-15 heads/sample; n = 5 samples; Table S1).

184

185 ***RNA extraction, library preparation, and sequencing***

186 All samples for RNAseq analysis were homogenized in 500 ul of TRIzol (Invitrogen) and
187 shipped to the University of Oregon Genomics and Cell Characterization Core Facility (GC3F)
188 where RNA extraction, cDNA library preparation, and sequencing were performed. Briefly, head
189 tissue of each sample was disrupted by beating with Silica grinding beads in a Spex Genogrinder
190 2100 (2 x 1500 RPM for 2 minutes). RNA was extracted using a Zymo Direct-Zol kit (Zymo
191 Research) and mRNA was isolated using Oligo dT beads according to manufacturer's
192 instructions. Integrity assessment was performed on an RNA chip (Bioanalyzer 2100) and all
193 samples that were sequenced had a RNA Quality Number between 6.7 – 10.0. Six RNA samples
194 (three biting, three non-biting) were utilized for paired-end, barcoded, and stranded library
195 construction with the Universal Plus mRNA-Seq protocol (Tecan Genomics). All six libraries
196 were combined in equimolar ratios and 150 bp reads were sequenced on single lane of an

197 Illumina HiSeq 4000 instrument. The raw reads are available in NCBI's sequence read archive
198 (SRA) under accession number [dataset] PRJNA787258.

199

200 ***Bioinformatics Analyses***

201 Details of the bioinformatics workflow can be found on the GitHub repository here: [dataset]
202 https://github.com/srmarzec/Culex_Biting_RNAseq/blob/main/MasterNotes.md. Briefly, reads
203 were cleaned with Trimmomatic (version 0.39) using default settings with the exception of a flag
204 for HEADCROP:15 to remove the first 15 bases from each read. Reads were then mapped using
205 a two-pass method in STAR (version 2.7.1a) to the most recent available *Culex quinquefasciatus*
206 JHB strain reference genome sequence (GCF_015732765.1). Read counts were obtained from
207 the resulting bam files with HTSeq (version 0.13.5). We included genes that had at least 10 reads
208 across all six samples. To determine if biological replicate samples within treatments (biting,
209 non-biting) exhibited similar overall transcriptional profiles, read counts were transformed to a
210 log₂ scale using rlog and then a principle components analysis (PCA) was performed using
211 plotPCA in DESeq2 (version 1.30.1). Next, differential expression analysis was performed using
212 DESeq2 on normalized read counts in an R environment (version 4.0.2). Differentially expressed
213 genes (DEGs) were identified as genes with a Benjamini-Hochberg false discovery rate adjusted
214 *p-value* less than 0.05 and a log₂ fold change >|1|.

215 Because the most recent *Cx. quinquefasciatus* genome sequence (GCF_015732765.1)
216 does not have available KEGG pathway annotations, locus tags (CpipJ_CPIJ IDs) were retrieved
217 from the previous *Cx. quinquefasciatus* genome sequence (GCA_000209185.1) using the NCBI
218 efetch utility (Entrez Direct E-utility). Locus tags corresponding to GCF_015732765.1 gene IDs
219 were used to identify KEGG pathways that were enriched for DEGs. All *Cx. quinquefasciatus*
220 KEGG pathways and genes within those pathways were downloaded from KEGG using
221 KEGGREST (version 1.30.1) in R. A custom script was used to identify the number of DEGs
222 relative to the total number of genes in each pathway. Significant enrichment was tested using a
223 Wilcoxon Rank Sum test. Only KEGG pathways that had and 5 or more DEGs and a *p-value* less
224 than 0.05 were considered to be enriched for DEGs.

225 Finally, common DEGs between biting vs. non-biting mosquitoes were identified for *Cx.*
226 *pipiens* and *W. smithii*. To do so, for each differentially expressed gene between biting Pipiens
227 and non-biting Molestus that was present in the significantly enriched KEGG pathways, putative

228 orthologues between *W. smithii* and *Cx. pipiens* were identified based on matching CpipJ_CPIJ
229 IDs (locus tags). The *Cx. pipiens* CpipJ_CPIJ IDs were obtained as described above for KEGG
230 pathway analysis. For *W. smithii* transcripts, the *orthologous* *Cx. pipiens* transcript (CpipJ_CPIJ
231 ID) was obtained as previously described in Bradshaw et al. (2018). As some *W. smithii*
232 transcripts were assigned matching CpipJ_CPIJ IDs and thus are duplicated, there are some
233 duplicate occurrences of *Cx. pipiens* transcripts as orthologs from our work.

234

235 ***Confirming differential gene expression using qPCR***

236 Quantitative Real-Time PCR (qPCR) of independent tissue samples was used to confirm
237 the differential gene expression results from RNAseq analysis. Heads of 3 day-old, non-biting
238 Molestus and 3 day-old, biting Pipiens (n = 9-15 heads/biological replicate; 5 biological
239 replicates/subspecies; Table S1) were collected as described above and RNA was isolated from
240 the samples using TRIzol according to the manufacturer's protocol, using 1/2 of the reaction
241 volumes. The amount and quality of the RNA were measured using a Nanodrop
242 spectrophotometer. cDNAs for each sample were synthesized using 0.1 mg of total RNA and the
243 Maxima First Strand cDNA Synthesis Kit (Thermo Fisher) according to the manufacturer's
244 instructions. Primers for six genes that were upregulated in non-biting Molestus and five genes
245 that were upregulated in biting Pipiens were designed using Primer3 (Untergasser et al. 2012;
246 Table S2). Prior to qPCR analyses, melt and standard curves were run to ensure that each primer
247 set met MIQE specificity and efficiency guidelines (Bustin et al. 2009; Table S2). qRT-PCR was
248 performed in a 96-well plate using an CFX Connect qPCR detection system (Bio-Rad). All
249 reactions were performed in triplicate in a total volume of 10 μ L containing 5 μ L iTaq Universal
250 SYBR green PCR Master Mix (Bio-Rad), 400 nmol of each primer, and 1 μ L sample cDNA.

251 The qPCR data were analyzed by first averaging the relative cycle threshold (CT) of three
252 technical replicates. The resulting CT value for each gene of interest within each biological
253 replicate was normalized to the geometric average of the CT values of three reference genes
254 (*Rp49*, *RpL19*, and *28S*) by subtracting the average CT of reference genes from the CT value for
255 the gene of interest ($2^{-\Delta CT}$ method). A Student's T-test was then used to compare the average
256 relative expression of a gene of interest between the five biological replicates in biting Pipiens
257 and non-biting Molestus samples ($\alpha = 0.05$).

258

259 **RESULTS**

260 RNA sequencing of three biological replicate samples of non-biting *Molestus* head tissue and
261 three biological replicate samples of biting *Pipiens* head tissue produced a total of 369,193,543
262 raw read pairs (range = 66,888,763 to 53,998,743 read pairs per sample). Of these, between
263 86.3% and 78.5% of read pairs per replicate sample remained after filtering with Trimmomatic.
264 The STAR two-pass alignment produced alignment rates between 72.5% and 62.0% per sample.
265 Finally, HTseq identified between 19,932,197 and 31,239,605 reads pairs per sample that aligned
266 to gene models (Table S3). 13,601 gene models had at least ten mapped read pairs across the six
267 samples, corresponding to 90% of the 15,094 annotated protein coding genes in the *Culex*
268 *quinquefasciatus* reference genome sequence (GCF_015732765.1). Principal components
269 analysis showed that transcriptional profiles of biting vs. non-biting samples were clustered
270 within treatments and strongly separated on the first principal components axis, which explained
271 75% of the variance in gene expression (Figure S1). Biting samples were also strongly clustered
272 on the second principal components axis (15% of variance), while one non-biting sample was
273 distinct from the other two replicate samples (Figure S1). Overall, a total of 1,444 genes were
274 significantly differentially expressed ($p < 0.05$, $\log_2FC > 1$) between non-biting *Molestus* and
275 biting *Pipiens* samples (Fig. 1, Table S4). A list of the top 15 upregulated and downregulated
276 genes in *Pipiens* relative to *Molestus* is presented in Table 1.

277 KEGG pathway enrichment analysis resulted in 17 pathways significantly enriched for
278 DEGs (Table 2). Below, we focus on the specific results for KEGG pathways and related
279 individual genes of particular biological interest. We begin by discussing pathways upregulated
280 in *Pipiens* relative to *Molestus*. For example, pathways related to transcription, translation and
281 energy metabolism were upregulated in biting relative to non-biting mosquitoes. Concerning
282 translation, the KEGG pathway for “Ribosome” contained 123 annotated *Cx. quinquefasciatus*
283 genes, of which 85 were differentially expressed; all of these 85 DEGs were up-regulated in
284 *Pipiens* relative to *Molestus*. Additionally, the ribosome pathway contained 18 inferred orthologs
285 between *Cx. pipiens* and *W. smithii*, all of which were up-regulated in avid- vs. reluctant-biting
286 *W. smithii*. Furthermore, the transcript for SUMO, which encodes a protein involved in post-
287 translational modification, was also upregulated in both biting *Pipiens* and biting *W. smithii*
288 relative to their non-biting counterparts (Table 1, Table S4). Relevant to transcription, the “RNA
289 polymerase” KEGG pathway contained 27 annotated *Cx. pipiens* genes. Seven genes were DEG,

290 of which six were significantly upregulated in biting relative to non-biting mosquitoes. The two
291 KEGG pathways related to energy metabolism that were significantly enriched for DEGs were
292 “Citrate cycle (TCA cycle)” and “Oxidative phosphorylation.” In the oxidative phosphorylation
293 pathway, the 80 annotated genes included 50 DEGs, all of which were upregulated in biting
294 Pipiens. The citrate cycle included 27 annotated genes, of which nine were DEG and seven were
295 upregulated in biting Pipiens.

296 Two KEGG pathways involved in amino acid degradation were upregulated in biting
297 Pipiens. The “Valine, Leucine, and Isoleucine degradation” pathway included 35 annotated
298 *Culex* genes, of which eight were DEG with seven upregulated in biters. The “Lysine
299 degradation” KEGG pathway included 28 annotated *Culex* genes, of which eight were DEG,
300 with six upregulated in biters.

301 Compared to the results above describing KEGG pathways upregulated in biting Pipiens
302 relative to non-biting Molestus, fewer KEGG pathways were enriched for upregulated DEGs in
303 non-biting mosquitoes. The “Fructose and mannose metabolism” KEGG pathway contained 28
304 annotated *Culex* genes of which six were DEG. Five of these six DEGs were upregulated in non-
305 biting Molestus relative to biting Pipiens. The “Tyrosine metabolism” KEGG pathway was also
306 upregulated in non-biters relative to biters, with 20 annotated genes, of which 8 were DEG and 6
307 were upregulated in non-biters.

308 A previous study in *W. smithii* (Bradshaw et al. 2018) identified 1,459 transcripts that
309 were consistently differentially expressed in two comparisons between biting and non-biting
310 mosquitoes of this species. As noted above, all of these *W. smithii* transcripts were assigned
311 putative *Culex* orthologues (CpipJ_CPIJ IDs) as described in Bradshaw et al. (2018). In the
312 current study, we identified 1,444 transcripts that were differentially expressed between biting
313 Pipiens and non-biting Molestus, of which 1,089 could be assigned CpipJ_CPIJ IDs using the
314 efetch utility in Entrez Direct E-utility (see above). Of these 1,459 *W. smithii* transcripts and
315 1,089 *Cx. pipiens* transcripts that were differentially expressed between biters and non-biters,
316 172 transcripts in *W. smithii* are homologous to 156 transcripts in *Cx. pipiens*. Of the transcripts
317 that were unique to *Cx. pipiens*, 84 were upregulated in biting Pipiens and avid-biting *W. smithii*
318 relative to their non-biting and reluctant-biting counterparts. In contrast, only 11 transcripts were
319 upregulated in non-biting Molestus and reluctant-biting *W. smithii* relative to biters (Table S5).

320 qRT-PCR results support the results of the RNAseq analysis by finding that DEGs
321 identified by RNAseq are differentially expressed in independent samples of biting and non-
322 biting *Cx. pipiens*. Specifically, qRT-PCR results demonstrate that *angiopoietin-related protein 6*
323 (LOC6052987), *probable cytochrome P450 6a14* (LOC6037495), and *ficolin-3* (LOC6046433)
324 were upregulated in Pipiens head-tissue samples, similar to the RNAseq results (Table S6). The
325 remaining 3 genes that RNAseq analyses indicate were upregulated in biting Pipiens relative to
326 non-biting *Molestus* (*hexamerin 1.1*, *larval cuticle protein A3A* and *cuticle protein 38*) were not
327 found to be differentially expressed in our qRT-PCR analyses (Table S6). However, *vitellogenin-1*
328 (LOC6043252), *fumarylacetoacetate* (LOC6052229), *esteraseB1* (LOC6030831), *cathepsinB*
329 (LOC6049222) and *L-galactose dehydrogenase* (LOC6037771) were over-expressed in *Molestus*
330 when measured with both RNAseq (Table 1) and qRT-PCR (Fig. S2), representing all five
331 *Molestus*-upregulated genes that we selected for qRT-PCR analysis. Moreover, the differences in
332 fold change were similar in our qRT-PCR analyses and in our RNAseq results (Table S6).

333

334 **DISCUSSION:**

335 The evolutionary transition from a biting to non-biting life-history has occurred multiple
336 times in mosquitoes, including three entire genera of mosquitoes that never bite (*Malaya*,
337 *Topomyia*, *Toxorhynchites*), and several non-biting species that occur in genera comprised
338 mostly of species that do bite (Downes 1958, Foster 1995, Miyagi et al. 2012, Rattanarithikul et
339 al. 2007, Wahid et al. 2007, Zhou et al. 2014, Rioux et al. 1975, Spielman 1971). Additionally,
340 several mosquito species make a transition from a biting to a non-biting life history when they
341 enter adult, reproductive diapause in response to short days (reviewed in Denlinger and
342 Armbruster 2014, 2016). Differences in gene expression between non-diapausing (biting) and
343 diapausing (non-biting) *Cx. pipiens pipiens* have previously been measured using suppression
344 subtractive hybridization (Robich and Denlinger 2005; Robich et al. 2007). Our long-term goal is
345 to identify common molecular and physiological differences between biting and non-biting
346 mosquitoes so that we may develop novel strategies to prevent biting in vector species. A
347 previous study used *W. smithii* as a model system to determine the molecular underpinnings of
348 the evolutionary transition from a biting to a non-biting life history between populations within a
349 single species (Bradshaw et al. 2018). Herein, we extend the range of evolutionary divergence
350 from that study to determine whether molecular pathways involved in the evolutionary

351 divergence of a blood-feeding vs. non-blood-feeding life history in *W. smithii* are also
352 differentially regulated between two previously characterized subspecies of *Culex pipiens* that
353 are obligate blood feeding (Pipiens) and facultatively non-biting (Molestus) (Noreuil and Fritz
354 2021). This comparison establishes the unprecedented opportunity to identify conserved
355 transcriptional responses related to biting vs. non-biting across a broad evolutionary timescale
356 between different genera of mosquitoes estimated to have diverged in nature ~200 Mya
357 (Reidenbach et al. 2009).

358 We first briefly review the transcriptional changes associated with the transition from an
359 ancestral blood-feeding life history to an evolutionarily derived non-blood-feeding life history in
360 *W. smithii*. We then discuss our current experimental results on transcriptional differences in
361 head tissues between populations of biting Pipiens and non-biting Molestus. We focus on
362 pathways and gene clusters relevant to unifying concepts such as anticipatory costs and
363 metabolic flexibility, in preference to discussing distinctions on a gene-by-gene basis.
364 Throughout, we highlight similarities and distinctions between biting and non-biting *Culex* and
365 *Wyeomyia*. Finally, we discuss directions for future research.

366 **Transcriptional differences between biting vs. non-biting *Wyeomyia smithii*.**

367 As described above (see Introduction), the previous study of Bradshaw et al. (2018)
368 utilized a comparison of *both* naturally evolved *and* artificially selected populations of *W. smithii*
369 to identify transcriptional differences that contribute to the evolution of a non-biting life history.
370 Bradshaw et al. (2018) concluded that the evolution of a non-biting life history resulted in
371 reduced anticipatory costs of biting and increased opportunistic metabolic flexibility. The
372 reduced anticipatory costs include reduced pre-biting investment in proteasomal, spliceosomal,
373 ribosomal, and odorant receptor proteins. The opportunistic metabolic flexibility includes
374 increased expression of enzymes that produce metabolic intermediates in the pyruvate metabolic
375 pathway (Acetyl-CoA) and the purine metabolic pathway (Inosine monophosphate), providing
376 non-biters with the opportunity to exploit diverse downstream metabolic pathways in response to
377 varied environmental conditions. As we show below, differential gene expression between
378 obligate biting Pipiens and non-biting Molestus both overlap with and differ from *W. smithii*.

379 **Anticipatory upregulation of translational machinery in biting Pipiens**

380 Biting Pipiens exhibit dramatic upregulation of the translational machinery, starting with
381 three of the six genes encoding components of RNA polymerase I, which specifically transcribes
382 ribosomal RNAs and two components of RNA polymerase III, which, in turn, transcribes
383 transfer RNAs (Khatter et al. 2017). Furthermore, the KEGG pathway associated with ribosomes
384 is highly enriched for DEGs, with 69% of genes encoding ribosomal proteins upregulated in
385 biting female mosquitoes (Table 2, Fig. 2A). Specific genes upregulated in Pipiens relative to
386 Molestus include two eukaryotic translation initiation factors (*eIF5A*, LOC6032328 and *eIF6*,
387 LOC6045183) and the post-translational protein modifier SUMO (*small, ubiquitin-related*
388 *modifier 3*; LOC604408) (Table S4). The upregulation of SUMO is particularly interesting as
389 this protein can post-translationally modify hundreds of different proteins (Hay, 2005; Hannoun
390 et al. 2010) and is involved in a diverse range of pathways (Mauri et al. 2008), including
391 suppressing arboviruses (Stokes et al. 2020).

392 Upregulation of transcripts encoding ribosomal proteins and SUMO in biting Pipiens closely
393 parallels the transcriptional response of blood-feeding *Wyeomyia*, with remarkable overlap in the
394 two genera in both the large and small ribosomal subunits (Fig. S3). These results represent a
395 clear affirmative answer to our original question: Are homologous genes associated with blood-
396 feeding in the same functional pathway similarly differentially expressed between selected lines
397 within a population of *W. smithii*, between populations of *W. smithii*, and between genera of
398 mosquitoes (*Wyeomyia* vs. *Culex*)? Because this upregulation of the translational machinery and
399 SUMO occurs before blood is actually imbibed, and because translation is energetically costly
400 (Lynch and Miranov, 2015; Kafri et al. 2016), we conclude that this response represents an
401 anticipatory cost of blood feeding in blood-feeding Pipiens as well as *W. smithii* (Bradshaw et al.
402 2018).

403 **Differential energy production and reproductive allocation in biters vs. non-biters.**

404 The energetically demanding investment in translation by biting Pipiens coincides with a strong
405 upregulation of energy production pathways. Both the oxidative phosphorylation and citric acid
406 (TCA) KEGG pathways are strongly enriched for DEGs that are upregulated in Pipiens relative
407 to Molestus (Table 2). Upregulation of the citric acid (TCA) cycle in Pipiens relative to Molestus
408 includes not only many TCA enzymes, but involvement of the by- or end-products of at least six
409 other KEGG pathways enriched for DEGs that are primarily upregulated in Pipiens vs. Molestus

410 (Fig. 3, Table 2). These inputs include contributions from pathways involved in glycolysis and
411 gluconeogenesis, pyruvate metabolism, metabolism of five amino acid metabolic pathways, and
412 oxidative phosphorylation, including proteins involved in the terminal electron transfer of all five
413 complexes (Fig. S4). Additionally, biting Pipiens strongly upregulate *hexamerin 1.1*
414 (LOC6041441), a key storage protein (Table S4). This finding is consistent with a previous study
415 comparing gene expression in whole bodies of Pipiens and Molestus (Kang et al. 2021). Thus,
416 biting Pipiens exhibit an anticipatory and coordinated response in which they initiate translation
417 and upregulate enzymes involved in energy production pathways *before* the blood meal is
418 actually consumed.

419 Non-biting Molestus invest in sugar metabolism and reproductive allocation pathways
420 that represent a commitment to ovary maturation without blood. First, the fructose and mannose
421 metabolism KEGG pathway is enriched for DEGs, with five of six transcripts upregulated in
422 Molestus relative to Pipiens (Table 2). Adult sugar metabolism supports the synthesis of
423 glycogen and triacylglycerols; the latter are the primary constituent of lipid droplets in the
424 ooplasm (Clements, 1992, p. 363). Additionally, upregulation four genes in non-biting Molestus
425 imply that these females have initiated the deposition of yolk protein into their eggs or
426 vitellogenesis; these genes include two isoforms of *vitellogenin-A1* [LOC6043252;
427 LOC6043250] as well as two *Cathepsin B* transcripts (LOC6031544, LOC6031556) and two
428 *Cathepsin B-like protein* transcripts (LOC119766533, LOC119770564; Table 1). While
429 Cathepsin-family proteases can have diverse physiological functions (Mort and Buttle, 1997),
430 Cathepsin B proteins are known to be involved in degrading vitellogenin during embryogenesis
431 in *Ae. aegypti* (Cho et al. 1999). Additionally, Moura et al. (2015) demonstrate that two
432 *cathepsin B* transcripts are highly expressed in vitellogenic females of *Cx. quinquefasciatus*, and
433 their associated proteins are subsequently active within the ovaries of females. Moreover, Kang
434 et al. (2021) found that *Cathepsin C* (CIPJ000566) is also upregulated in whole bodies of non-
435 biting Molestus relative to biting Pipiens. Taken together, these results illustrate that non-biting
436 Molestus constitutively produce the transcripts necessary to provision their embryos with energy.
437 In non-biting *W. smithii*, *cathepsin B* mRNAs were also upregulated in reluctant-biting relative
438 to biting females (Bradshaw et al. 2018), highlighting *cathepsin B* as a critical gene involved in
439 the evolution of a nonbiting life history across mosquito genera.

440 **Metabolism of excess amino acids from acquired or stored resources**

441 Two different amino acid metabolism pathways offset contrasting excesses of specific
442 amino acids in biting Pipiens and non-biting Molestus. These differences reflect a metabolic
443 response to acquired resources in adult Pipiens (i.e., blood) vs. stored larval resources in
444 Molestus (i.e., hexamerin storage proteins). Interestingly, neither of these pathways was
445 detected in the comparison of biting vs. non-biting *W. smithii*.

446 In biting Pipiens, the principal environmental source of protein is hemoglobin acquired in
447 vertebrate blood. In particular, Valine and Leucine comprise over 20% of the amino acids in
448 hemoglobin and Lysine another 7.6% (UniProtKB, 2021). Up-regulating the Valine-Leucine-
449 Isoleucine and Lysine metabolic pathway not only results in end products that can enter the TCA
450 cycle (Fig. 3), but also serves to deplete an upstream excess of Valine, Leucine and Lysine that
451 released when hemoglobin is catabolized.

452 In non-biting Molestus, reproduction must be fueled from proteins accumulated and
453 stored as larvae. The main storage proteins in the fat body and hemolymph of larvae are
454 hexamerins (Beintema et al. 1994; Burmester 1999), which in addition to their role as a source of
455 amino acids during metamorphosis, have been implicated as a source of amino acids that support
456 vitellogenesis in non-blood feeding mosquitoes (Zakharkin et al. 2001, Wheeler and Buck 1996).
457 Hexamerins are particularly rich in Tyrosine and Phenylalanine (Burmester 1999; Korochkina, et
458 al. 1997; Crampton et al. 1999, Table 1; UniProtKB 2021), the latter being catalyzed to the
459 former by *phenylalanine-4-hydroxylase* (Fig. 4) (Li & Christensen 1993). This enzyme is not a
460 DEG; nonetheless, depletion of Tyrosine should enhance the Phenylalanine to Tyrosine reaction
461 through mass action. Upregulation of Tyrosine metabolism in Molestus (Table 2, Fig. 4) is then
462 consistent with metabolism of stored hexamerins and compensatory degradation of excess of
463 Tyrosine and Phenylalanine (Fig. 4).

464 In addition to the benefit of metabolizing excess Tyrosine and Phenylalanine, Tyrosine
465 metabolism in Molestus also generates fumarate that enters directly into the TCA cycle and
466 generates dopamine that acts as a substrate for eumelanin synthesis. Generation of both products
467 is consistent with ongoing embryogenesis: *Fumarylacetooacetate* (Fig. 4) enhances late-stage
468 embryogenesis and successful hatching in *Rhodnius prolixus* (Sterkel & Oliveira 2017). A
469 transcriptional commitment to melanization in non-biting Molestus is also indicated by up-

470 regulation of *serine protease Hayan* (Table S4), which is responsible for eventual hardening of
471 egg chorions (Li, 1994, Dudzic et al. 2019). Additionally, *chitin synthase (ch-2)* and
472 *endochitinase* (Table S4) are upregulated in Molestus and are important for recycling old to new
473 chitin (Hamid et al. 2013; Muthukrishnan et al. 2019). In sum, Tyrosine metabolism in non-
474 biting Molestus females supports energy production, embryonic viability, and the eventual
475 development and hardening of egg chorions, as well as serving to maintain amino acid balance
476 generated by metabolizing stored larval protein (Fig 4).

477

478 **Conclusions and Future Directions**

479 Anticipatory upregulation of transcripts in the ribosomal protein pathway in biting mosquitoes
480 relative to their non-biting counterparts exhibits remarkably strong overlap in both the mosquito
481 genera *Wyeomyia* and *Culex*. All 18 upregulated ribosomal proteins in biting *W. smithii*
482 overlapped with the upregulated ribosomal proteins in biting *Cx. pipiens* (Fig. 2), making the
483 ancient and highly conserved ribosome the intersection to understanding the evolutionary and
484 physiological basis of the anticipation of blood-feeding in mosquitoes. In blood-feeding Pipiens,
485 this anticipatory commitment to the energetically costly process of translation coincides with
486 increased energy production by oxidative phosphorylation, the TCA cycle, and multiple diverse
487 pathways feeding into the TCA cycle. In contrast, sugar metabolism is upregulated in non-biting
488 Molestus, as well as constitutively provisioning the maturing ovaries with energy in the absence
489 of a blood meal by upregulating *vitellogenin* and *cathepsin B* transcripts. Finally, contrasting
490 patterns of amino acid metabolism in biting Pipiens and non-biting Molestus are both
491 mechanisms that maintain amino acid homeostasis in response to the utilization of acquired
492 resources (blood for Pipiens) or stored resources (hexamerins for Molestus).

493 In sum, blood-feeding in both *W. smithii* and *Cx. pipiens* was associated with anticipation
494 of acquired resources and ribosomal protein synthesis was strikingly upregulated in blood-
495 feeders of both species. Non-biting in *W. smithii* was associated with an opportunistic life
496 history, characterized by sensory input and by metabolic pathways ending at “gateway” branch
497 points; non-biting in *Cx. pipiens* was associated with alternative pathways including
498 metabolizing sugar and stored larval resources to support ongoing ovarian maturation.
499 Uncovering a conserved, highly overlapping transcriptional response in biters of both species,

500 and more diverse, non-overlapping transcriptional responses in non-biters, reflects biting as the
501 ancestral character state in the Culicidae and the independent evolution of non-biting in *W.*
502 *smithii* and *Cx. pipiens molestus* (Mans 2011; Grimaldi & Engel, 2005). An immediate next step
503 will be to confirm the broad generality of anticipatory upregulation of the ribosome pathway by
504 performing similar experiments in additional vector mosquito species. The commonality of this
505 highly conserved response may provide a novel opportunity to interrupt or inhibit pathways
506 necessary for the transmission of blood-borne disease due to biting. Because the biting rate has a
507 large impact on disease transmission as estimated by vectorial capacity, even relatively modest
508 decreases in the biting rates of vector species are expected to have a large impact on reducing
509 disease transmission (Black and Moore, 2005). An additional goal will be to perform
510 mechanistic studies to determine whether enhanced sugar metabolism and constitutively
511 provisioning maturing ovaries with both lipids and yolk proteins in non-biting mosquitoes is
512 necessary for reproduction without a blood meal. Ultimately, understanding the costs of biting
513 and the molecular pathways underlying the evolution of a non-biting life history will provide a
514 foundation to develop pharmacological or genetic strategies to recapitulate this evolutionary
515 transition, which has already occurred multiple times in nature.

516

517 **DATA ARCHIVING STATEMENT:**

518 Data for this manuscript are available at *to be completed after manuscript is accepted for*
519 *publication*. The raw reads are available in NCBI's sequence read archive (SRA) under accession
520 number PRJNA787258.

521

522

523 **REFERENCES:**

524 Armbruster, P.A. (2018). Molecular pathways to nonbiting mosquitoes. *Proceedings of the*
525 *National Academy of Sciences U.S.A.*, 115, 836-838.

526 Beintema, J.J., Stam, W.T., Hazes, B., & Smidt, M.P. (1994). Evolution of arthropod
527 hemocyanins and insect storage proteins (hexamerins). *Molecular Biology and Evolution*, 11,
528 493-503.

529 Benoit, J.B., Lopez-Martinez, G., Patrick, K.R., Phillips Z.P., Krause, T.B., & Denlinger, D.L.
530 (2011). Drinking a hot blood meal elicits a protective heat shock response in mosquitoes.
531 *Proceedings of the National Academy of Sciences U.S.A.* 108, 8026-8029.

532 Black, W.C., IV & Moore, C.G. (2005). Population biology as a tool to study vector-borne
533 diseases. In: W.C. Marquardt (Eds.), *Biology of Disease Vectors* (pp.187-206). New York:
534 Elsevier.

535 Borowczak, R. J. (2017). The evolutionary consequences of the transition to non-blood-feeding
536 in the pitcher-plant mosquito *Wyeomyia smithii*. Doctoral Dissertation, University of Oregon.
537 https://scholarsbank.uoregon.edu/xmlui/bitstream/handle/1794/22715/Borowczak_oregon_0171_A_11917.pdf?sequence=1

539 Bradshaw, W.E. (1980). Blood-feeding and capacity for increase in the pitcher-plant mosquito,
540 *Wyeomyia smithii*. *Environmental Entomology*, 9, 86-89.

541 Bradshaw, W.E. (1986). Variable iteroparity as a life-history tactic in the pitcher-plant mosquito,
542 *Wyeomyia smithii*. *Evolution*, 40, 471-478.

543 Bradshaw, W.E., Denlinger, D.L., Burkhardt, J., Colbourne, J., Borowczak R., Lopez, J.,
544 Denlinger, D.L., Reynolds, J.A., Pfrenger, M.E., & Holzapfel, C.M. (2018). Evolutionary
545 transition from blood-feeding to obligate non-biting in a mosquito. *Proceedings of the National
546 Academy of Sciences U.S.A.*, 115, 1009-1014.

547 Burmester, T. (1999). Evolution and function of the insect hexamerins. *European Journal of
548 Entomology*, 96, 213-226.

549 Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R.,
550 Nolan, T., Pfaffl, M.W., Shipley, G.L., & Vandesompele, J. (2009). The MIQE Guidelines:
551 Minimum Information for Publication of Quantitative Real-Time PCR Experiments. *Clinical
552 Chemistry*, 55, 611-622.

553 Cho, W.L., Tsao, S.M., Hays, A.R., Walter, R., Chen, J.S., Snigirevskaya, E.S. & Raikhel, A.S.
554 (1999). Mosquito cathepsin B-like protease involved in embryonic degradation of vitellin is
555 produced as a latent extraovarian precursor. *Journal of Biological Chemistry*, 274, 13311-13321.

556 Clements, A.N. (1992). The Biology of Mosquitoes. Vol. 1. Development, Nutrition, and Reproduction.
557 London, UK: Chapman and Hall.

558 Crampton, J.M., James, A.A., Gordadze, A.V., Korochkina, S.E., Zakharkin, S.O., Norton, A.L., &
559 Beneš, H. (1999). Molecular cloning and expression of two hexamerin cDNAs from the mosquito, *Aedes
560 aegypti*. *Insect Molecular Biology*, 8, 55-66.

561 Crawford, J.E., Clarke, D.W., Criswell, V., Desnoyer, M., Cornel, D., et al. (2020).
562 Efficient production of male Wolbachia-infected *Aedes aegypti* mosquitoes enables large-scale
563 suppression of wild populations. *Nature Biotechnology*, 38, 482-492.

564

565

566

567 Denlinger, D.L., & Armbruster, P.A. (2014). Mosquito diapause. *Annual Review of*
568 *Entomology*, 59, 73-93.

569 Denlinger, D.L., & Armbruster, P.A. (2016). Molecular physiology of mosquito diapause.
570 In *Advances in Insect Physiology* (Vol. 51, pp 329-361). Academic Press.

571 Downes, J.A. (1958). The feeding habits of biting flies and their significance in classification.
572 *Annual Review of Entomology*, 3, 249-66.

573 Dudzic, J.P., Hanson, M.A., Iatsenko, I., Kondo, S., & Lemaitre, B. (2019). More than black or
574 white: melanization and toll share regulatory serine proteases in *Drosophila*. *Cell reports*, 27,
575 1050-1061.

576 Edman, J.D., & Scott, T.W. (1987). Host defensive behavior and the feeding success of mosquitoes.
577 *International Journal of Tropical Insect Science*, 8, 617–622.

578

579 Fauci, A.S., & Morens, D.M. (2016). Zika virus in the Americas - Yet another arbovirus threat.
580 *New England Journal of Medicine*, 374, 601-604.

581 Foster, W.A. (1995). Mosquito sugar feeding and reproductive energetics. *Annual Review of*
582 *Entomology*, 40, 443-474.

583 Graca-Souza, A.V., Maya-Monteiro, C., Paiva-Silva, G.O., Braz, G.R.C., Paes, M.C., Sorgine,
584 M.H.F., Oliveira, M.F., & Oliveira, P.L. (2006). Adaptations against heme toxicity in blood-
585 feeding arthropods. *Insect Biochemistry and Molecular Biology*, 36, 322-335.

586 Grimaldi, D., & Engel, M.S. (2005). Evolution of the Insects. *Evolution of the Insects*, p.772.

587 Haba, Y., & McBride, L. (2022). Origin and status of *Culex pipiens* ecotypes. *Current Biology*,
588 32, R237-R246.

589 Hannoun, Z., Greenhough, S., Jaffray, E., Hay, R.T., & Hay, D.C. (2010). Post-translational
590 modification by SUMO. *Toxicology*, 278, 288-293.

591 Hamer, G.L., Kitron, U.D., Brawn, J.D., Loss, S.R., Ruiz, M.O., Goldberg, T.L., & Walker, E.D.
592 (2008). *Culex pipiens* (Diptera: Culicidae): a bridge vector of West Nile virus to
593 humans. *Journal of Medical Entomology*, 45, 125-128.

594 Hamid, R., Khan, M.A., Ahmad, M., Ahmad, M.M., Abdin, M.Z., Musarrat, J. & Javed, S.
595 (2013). Chitinases: an update. *Journal of Pharmacy & Bioallied Sciences*, 5, 21-29.

596 Hay, R.T. (2005). SUMO: A history of modification. *Molecular Cell*, 18, 1-12.

597 Kafri, M., Metzl-Raz, E., Jona, G., & Barkai, N. (2016). The cost of protein production. *Cell*
598 *Reports*, 14, 22-31.

599 Kang, D.S., Kim, S., Cotten, M.A., & Sim, C. (2021). Transcript assembly and quantification by
600 RNA-Seq reveals significant differences in gene expression and genetic variants in mosquitoes
601 of the *Culex pipiens* (Diptera: Culicidae) complex. *Journal of Medical Entomology*, 58, 139-145.

602 Khatter, H., Vorlaender, M.K., & Mueller, C.W. (2017). RNA polymerase I and III: similar yet
603 unique. *Current Opinion in Structural Biology*, 47, 88-94.

604 Kilpatrick, A.M., & Randolph, S.E. (2012). Drivers, dynamics, and control of emerging vector-
605 borne zoonotic diseases. *Lancet*, 380, 1946-1955.

606 Korochkina, S.E., Gordadze, A.V., York, J.L., & Beneš, H. (1997). Mosquito hexamerins:
607 characterization during larval development. *Insect Molecular Biology*, 6, 11-21.

608 Lewandowski Jr, H.B., Hooper, G.R., & Newson, H.D. (1980). Determination of some important
609 natural potential vectors of dog heart-worm in central Michigan. *Mosquito News*, 40, 73-79.

610 Li, J. (1994). Egg chorion tanning in *Aedes aegypti* mosquito. *Comparative Biochemistry and*
611 *Physiology Part A: Physiology*, 109, 835-843.

612 Li, J., & Christensen, B.M. (1993). Involvement of l-tyrosine and phenol oxidase in the tanning
613 of *Aedes aegypti* eggs. *Insect Biochemistry and Molecular Biology*, 23, 739-748.

614 Lynch, M. & Marinov, G.K. (2015). The bioenergetic costs of a gene. *Proceedings of the*
615 *National Academy of Sciences U.S.A.*, 112, 15690-15695.

616 Mans, B.J. (2011). Evolution of vertebrate hemostatic and inflammatory control mechanisms in
617 blood-feeding arthropods. *Journal of Innate Immunity*, 3, 41-51.

618 Mauri, F., McNamee, L.M., Lunardi, A., Chiacchiera, F., Del Sal, G., Brodsky, M.H., &
619 Collavin, L. (2008). Modification of *Drosophila* p53 by SUMO modulates its transactivation and
620 pro-apoptotic functions. *Journal of Biological Chemistry*, 283, 20848-20856.

621 McGraw, E.A., & O'Neill, S.L. (2013). Beyond insecticides: new thinking on an ancient
622 problem. *Nature Reviews in Microbiology*, 11, 181-93.

623 Miyagi, I., Toma, T., Okazawa, T., Wong, S.F., Leh, M.U., & Yong, H.S. (2012). Three new
624 phytotelmata mosquitoes of the genus *Topomyia* (Diptera: Culicidae) from Katibas, Lanjak-
625 Entimau, Sarawak, Malaysia. *Journal of Science and Technologies in the Tropics*, 8, 97-117.

626 Mort, J.S. & Buttle, D.J. (1997). Cathepsin b. *The International Journal of Biochemistry & Cell*
627 *Biology*, 29, 715-720.

628 Moura, A.S., Cardoso, A.F., Costa-da-Silva, A.L., Winter, C.E., & Bijovsky, A.T. (2015). Two
629 cathepsins B are responsible for the yolk protein hydrolysis in *Culex quinquefasciatus*. *PloS one*,
630 e0118736.

631 Muthukrishnan, S., Merzendorfer, H., Arakane, Y., & Yang, Q. (2019). Chitin organizing and
632 modifying enzymes and proteins involved in remodeling of the insect cuticle. *Targeting Chitin-
633 containing Organisms*, 142, 83-114.

634 Mutebi, J.P., & Savage, H.M. (2009). Discovery of *Culex pipiens pipiens* form *molestus* in
635 Chicago. *Journal of the American Mosquito Control Association*, 25, 500-503.

636 Noreuil A., & Fritz, M.L. (2021). Differential gene expression in the heads of

637 behaviorally divergent *Culex pipiens* mosquitoes. *Insects*, 12, 271.

638

639 O'Meara, G.F. (1985). Interactions in mosquitoes: Kicking the blood-feeding
640 habit. *The Florida Entomologist*, 68, 122-133.

641

642 Rajagopalan, P.K., Kazmi, S.J., & Mani, T.R. (1977). Some aspects of transmission of
643 *Wuchereria bancrofti* and ecology of the vector *Culex pipiens fatigans* in Pondicherry. *Indian*
644 *Journal of Medical Research*, 66, 200-215.

645

646 Rattanarithikul, R., Harbach, R.E., Harrison, B.A., Panthusiri, P., Coleman, R.E. (2007).
647 Illustrated keys to the mosquitoes of Thailand V. Genera *Orthopodomyia*, *Kimia*, *Malaya*,
648 *Topomyia*, *Tripteroides*, and *Toxorhynchites*. *Southeast Asian Journal of Tropical Medicine and*
649 *Public Health*, 38, 1-65.

650

651 Reidenbach, K.R., Cook, S., Bertone, M.A., Harbach, R.E., Wiegmann, B.M., & Besansky,
652 N.J. (2009). Phylogenetic analysis and temporal diversification of mosquitoes
653 (Diptera: Culicidae) based on nuclear genes and morphology. *BMC Evolutionary*
654 *Biology*, 9, 1-14.

655

656 Rioux, J.A., Broset, H., Pech-Périères, J., Guivard, E., & Belmonte, A. (1975).
657 L'autogenèse chez les diptères culicides: Tableau synoptique des espèces
658 autogènes. *Annales de Parasitologie Humaine et Comparée*, 50, 134-140.

659

660 Roberts, L. (2002). Mosquitoes and disease. *Science*, 298, 82-83.

661

662 Robich, R.M., & Denlinger, D.L. (2005). Diapause in the mosquito *Culex pipiens* evokes a metabolic
663 switch from blood feeding to sugar gluttony. *Proceedings of the National Academy of Sciences*
664 *U.S.A.*, 102, 15912-15917.

665

666 Robich, R.M., Rinehart, J.P., Kichen, L.J., & Denlinger, D.L. (2007). Diapause-specific gene
667 expression in the northern house mosquito, *Culex pipiens* L., identified by suppressive subtractive
668 hybridization. *Journal of Insect Physiology*, 51, 235-245.

669

670 Spielman, A. (1971). Bionomics of autogenous mosquitoes. *Annual Review of*
671 *Entomology*, 16, 231-248.

672

673 Sterkel, M., & Oliveira, P.L. (2017). Developmental roles of tyrosine metabolism enzymes in the blood-
674 sucking insect *Rhodnius prolixus*. *Proceedings of the Royal Society B: Biological Sciences*, 284,
675 20162607.

676 Stokes, S., Almire, F., Tatham, M.H., McFarlane, S., Mertens, P., Pondeville, E., & Boutell, C.
677 (2020). The SUMOylation pathway suppresses arbovirus replication in *Aedes aegypti* cells. *PLoS*
678 *Pathogens*, 16, <https://doi.org/10.1371/journal.ppat.1009134>.

679 Strickman, D., & Fonseca, D.M. (2012). Autogeny in *Culex pipiens* complex mosquitoes from the San
680 Francisco Bay Area. *American Journal of Tropical Medicine and Hygiene*, 87, 719-726.

681
682 UniProt Consortium. (2021). UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids*
683 *Research*, 49, D480.

684
685 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., & Rozen, S.G. (2012).
686 Primer3--new capabilities and interfaces. *Nucleic Acids Research*, 40, e115.

687
688 Wahid, I., Sunahara, T., & Mogi, M. (2007). The hypopharynx of male and female
689 mosquitoes. *Open Entomology Journal*, 1, 1-16.

690
691 Wang, G.H., Gamez, S., Raban, R.R., Marshall, J.M., Alphey, L., Li, M., Rasgon, J.L., & Akbari, O.S.
692 (2021). Combating mosquito-borne diseases using genetic control technologies. *Nature*
693 *Communications*, 12, 1-12.

694
695 Wheeler, D.E., & Buck, N.A. (1996). A role for storage proteins in autogenous reproduction in *Aedes*
696 *atropalpus*. *Journal of Insect Physiology*, 42, 961-966.

697
698 Zakharkin, S.O., Headley, V.V., Kumar, N.K., Buck, N.A., Wheeler, D.E., & Beneš, H. (2001). Female-
699 specific expression of a hexamerin gene in larvae of an autogenous mosquito. *European Journal of*
700 *Biochemistry*, 268, 5713-5722.

701
702 Zhou, X., Rinker, D.C., Pitts, R.J., Rokas, A., & Zwiebel, L.J. (2014). Divergent and
703 conserved elements comprise the chemoreceptive repertoire of the nonblood-feeding mosquito
704 *Toxorhynchites amboinensis*. *Genome Biology and Evolution*, 6, 2883-2896.

705
706
707 **DATA ACCESSIBILITY AND BENEFIT-SHARING**

708
709 Marzec, S. 2021. Culex Biting RNAseq Pipeline; GitHub.
710 https://github.com/srmarzec/Culex_Biting_RNAseq/blob/main/MasterNotes.md

711
712 Siperstein, A.S., Marzec, S., Fritz, M.L., Holzapfel, C., Bradshaw, W.E., Armbruster, P.A., and Meuti,
713 M.E. 2022. NCBI's sequence read archive (SRA) Accession Number PRJNA787258.

714
715

716 **TABLES:**

717 Table 1: Top 30 differentially expressed genes by \log_2 fold change (FC) for Pipiens relative to
 718 Molestus. p -values are adjusted for multiple comparisons using a Benjamini-Hochberg false
 719 discovery rate correction.

720

Gene ID	Gene Name	\log_2 FC	p-value
LOC6047742	general odorant-binding protein 72	15.702	2.02e-25
LOC6043552	microfibril-associated glycoprotein 4	13.704	8.7e-20
LOC119767898	CLIP domain-containing serine protease 14D-like	13.293	6.41e-19
LOC119769981	cuticle protein 16.5-like	13.138	3.13e-18
LOC6045845	phenoloxidase-activating factor 2	12.849	3.08e-17
LOC6033001	cuticle protein	12.341	4.84e-15
LOC119767852	cuticle protein 16.5-like	10.095	2.54e-14
LOC6032993	larval cuticle protein A3A	11.779	2.57e-13
LOC6046699	cuticle protein 8	11.250	5.67e-12
LOC119769968	cuticle protein 12.5-like	10.837	2.23e-09
LOC119769830	cuticle protein 21-like	10.174	9.06e-09
LOC119770586	cuticle protein 16.5-like	10.103	1.51e-08
LOC6049801	flexible cuticle protein 12	9.991	1.64e-08
LOC119769857	cuticle protein 38-like	9.961	3.78e-08
LOC6049115	CD209 antigen	9.922	1.08e-07
LOC6039374	phenoloxidase 2	-14.367	3.18e-21
LOC119766533	cathepsin B-like	-9.533	1.89e-18
LOC119770564	cathepsin B-like	-11.986	1.77e-17
LOC6043264	probable cytochrome P450 9f2	-12.353	2.75e-16
LOC6043252	vitellogenin-A1	-9.653	1.42e-11
LOC6030831	esterase B1	-10.795	2.91e-11
LOC6040913	dynein light chain 1, axonemal	-8.990	1.21e-10
LOC6051506	probable cytochrome P450 6a13	-10.326	9.73e-10
LOC6043250	vitellogenin-A1	-9.889	2.96e-09
LOC6031554	cathepsin B	-9.713	3.45e-08
LOC6031556	cathepsin B	-8.997	4.34e-07
LOC6044517	polyserase-2	-9.163	1.25e-06
LOC6031746	trans-1,2-dihydrobenzene-1,2-diol dehydrogenase	-9.068	1.98e-06
LOC6038440	EF-hand calcium-binding domain-containing protein 1	-8.996	2e-06
LOC6035285	lamin Dm0	-9.127	2.52e-05

721

722 Table 2: KEGG pathways that were significantly enriched (Total DEGs > 5 and *p*-value < 0.05)
 723 for differentially expressed genes of biting Pipiens or non-biting Molestus mosquitoes.

724

Pathway Code	Pathway Name	Annotated Culex Genes in Pathway	Total DEGs	Up-Regulated Biting DEGs	Up-Regulated Nonbiting DEGs	p-value
cqu03010	Ribosome	123	85	85	0	2.22e - 35
cqu00190	Oxidative phosphorylation	80	50	50	0	5.94e - 18
cqu00520	Amino sugar and nucleotide sugar metabolism	44	15	3	12	0.002
cqu03013	RNA transport	118	28	11	17	0.007
cqu00380	Tryptophan metabolism	21	9	7	2	0.010
cqu04215	Apoptosis - multiple species	21	7	4	3	0.011
cqu04214	Apoptosis - fly	49	12	5	7	0.019
cqu00981	Insect hormone biosynthesis	30	8	4	4	0.020
cqu00310	Lysine degradation	28	8	6	2	0.020
cqu00010	Glycolysis / Gluconeogenesis	35	8	5	3	0.025
cqu00350	Tyrosine metabolism	20	8	2	6	0.026
cqu00620	Pyruvate metabolism	31	11	8	3	0.030
cqu00513	Various types of N-glycan biosynthesis	30	10	4	6	0.030
cqu00051	Fructose and mannose metabolism	28	6	1	5	0.031
cqu00280	Valine, leucine and isoleucine degradation	35	8	7	1	0.033
cqu00020	Citrate cycle (TCA cycle)	27	9	7	2	0.047
cqu03020	RNA polymerase	26	7	6	1	0.048

725

726

727 **FIGURE LEGENDS:**

728 Figure 1. Differential gene expression of 13, 601 genes in Pipiens and Molestus. Each point
729 represents differential expression for a single gene. Gray points indicate no significant
730 differences, green points show \log_2 fold change values that are not statistically significant, blue
731 points show statistical significance but low \log_2 fold change values, and red points indicate genes
732 that show both statistical significance and an absolute fold change value greater than 2.

733

734 Figure 2. Differentially expressed genes in each significantly enriched KEGG pathway. A)
735 Proportion of total annotated *Culex* genes that are differentially expressed genes (upregulated) in
736 either biting Pipiens (red) or nonbiting Molestus (blue). B) Number of significantly differentially
737 expressed orthologs in each KEGG pathway for either biting (Pipiens and *W. Smithii* – avid
738 biting; red) or nonbiting (Molestus and *W. Smithii* – disinterested; blue). Numerical labels on the
739 x-axis of each panel correspond to KEGG pathway labels in Table 2.

740

741 Figure 3. Citric Acid (TCA) cycle. Dashed outlines, significantly enriched KEGG pathways in
742 *Cx. pipiens*: red, upregulated in Pipiens; blue, upregulated in Molestus; arrows indicate tracks
743 from/to/within pathways. Pathway numeric labels correspond to those in Table 2 and Figure 2.
744 Red dots and circle, upregulated in Pipiens; blue dot, upregulated in Molestus.

745

746 Figure 4. Tyrosine metabolism in *Cx. pipiens*. Relevant enzymes are indicated by arrows: Red,
747 upregulated in Pipiens; Blue, upregulated in Molestus; Black solid, non-DEG steps; Black
748 dashed, inferred. Specific enzymes are indicated by numbers or letters associated with arrows.