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1. Introduction

The main object of consideration in this article will be the
dynamics of the solutions to the Cauchy problem for the fractional
inhomogenous nonlinear Schrodinger equation.? More precisely,
we consider

iy + (—A¥u — |x| PluP'u=0,(t,x) eRx R, n> 1,
u(0, x) = ug(x)

(1.1)

where we henceforth restrict ourselves to parameters (b, p, s),
satisfying the following natural assumptions b > 0,p > 1,s €
(0, 1). Our goal in this article is the construction and the stability
of solitary waves for (1.1). More specifically, the solitons are in
the form of standing waves, that is special solutions in the form
u(x, t) = e~ @, (x), ® > 0. These satisfy the profile equation’

(—AYD 4+ wd — |x| °PP = 0,x € R". (1.2)

The nonlinear Schrédinger equation arises in various physical
contexts such as nonlinear optics and plasma physics [1]. The
Cauchy problem for the NLS with the inhomogenous nonlinearity
model the beam propagation in an inhomogenous medium [2].
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Fractional NLS also appears in many physical models like water
models, quantum mechanics, Lévy stable process and the frac-
tional Brownian motion [3]. Finally, the model (1.1), with b > 0
appears as an example, with a broken translational invariance,
where special treatment is needed for the analysis of the as-
sociated eigenvalue problems. We now turn to a review of the
literature regarding the well-posedness results for (1.1).

1.1. The model — well-posedness results for the classical case s = 1

The classical model, s = 1, b = 0, p > 1 has been extensively
studied in the literature, in terms of well-posedness of the Cauchy
problem, long time behavior etc. As these results are by now
classical and well-known, we will not review them here, but we
will rather refer the interested reader to the following sources
[4-15].

Recently the well-posedness of (1.1) appeared in the literature
for the Laplacian case, i.e. s = 1. In fact, Farah [16] proved a
Gagliardo-Nirenberg type estimate and use it to establish suffi-
cient conditions for global existence and blow-up in H'(R") for
£ < p < 22 and 0 < b < min(2,n), which was later
extended by Dinh [17]. Moreover, Guzman [18] showed that (1.1)
is globally well-posed for the initial data in H¥(R") with0 <s < 1
using the contraction mapping principle based on the Strichartz
estimates. In [19], the author showed the global well-posedness
in H'(R™) of (1.1) with s = 1, using the assumption that if the
initial data ug satisfies ||ugll;2 < [|¥|l;2, where ¥ is the unique
positive radial soliton of (1.2). Moreover they also showed strong
instability of the standing waves.

In the paper [20], the author showed the global existence and
blow up of solutions in R?, under various assumptions on the
initial data. In addition, the paper [21] showed that if the initial
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datum uy € H!(R3) satisfies that the momentum as well as
the Hamiltonian of (1.1) with s = 1,n = 3 is doininatedb by
1+ 1—

same conserved quantities of (1.2) similarly, || Vil lluoll/ <

14b 1—
IVQIl,7 llQll, where Q satisfies (1.2), then the solution u to
the Cauchy problem is global in H!(R?) for 0 < b < 1, and
asymptotically linear both forward and backward in time for
up radial and 0 < b < 1/2. In [22], the author studied the
decay properties of global solutions for the equation(s = 1)

when 1 < p < %2 for n > 3 and using this they showed

the energy scattering for the equation in the case 1 4 4=22 2b <

p < 1+ 42 In [23], the authors have studied the global "well-
posedness for the defocusing inhomogeneous NLS, whose scaling
critical index s. < 0. In [24], the authors showed the [*—norm
concentration for the finite time blow-up solution for the focusing
INLS. The same authors later in [25] investigated the blow-up
and scattering criteria above the threshold for the same equation.
Chen, [26] has considered the model (1.1), with non-linearity
[X|°|ulP~u, b > 0. He has identified essentially sharp conditions
under which the solutions exist globally and others, under which
the solutions blow up in finite time.

We now turn our attention to the issue of the existence of the
solitary waves and their stability.

1.2. Solitary waves and stability in the classical case s = 1

The question for existence of solitary waves (1.2) and their
stability was investigated in some specific instances of nonlin-
earity g(x, [u|?)u in the late 90’s in [27]. Specifying to the case
V(x)|uP~'u, and in particular to the case, V = V(¢|x|),0 < € <« 1
was considered in [28,29], see also the more recent work [30].

A general problem modeled by (1.1), was studied systemati-
cally for first time in the work of De Bouard-Fukuizumi, [2]. More
precisely, they consider classical NLS (i.e. s = 1) with focusing
nonlinearity V(x)[u|’~'u, where V > 0,

Vel 2 (R, lim V(x)x|” =1, (1.3)
X—>00
which of course contains the important case V(x) = |x|®, under

the constraints 0 < b < 2,n > 3,1 < p < 1+ &2,
In this work, they show the existence of non-negative solitary
wave solutions under the same assumptions. Furthermore, they
showed that there exists w, > 0, so that the stability of the said
solitary waves holds in the range 0 < b < 2,n > 3,1 < p <
1+ %222, when the spectral parameter o € (0, »,). The key step
in the stability proof is to show that the linear operator associated
with the second variation of a Lyapunov functional, which is
non-degenerate, for this they adapt a method of [31]. The work
in a way supplements the earlier work [32], where the instability
of the waves was shown in the range p > 1+ 4=22 n > 3, for
small enough w > 0. Further, more general mstablllty results
have appeared in [33].

The authors in [34,35] proved similar results (both for the
stable and unstable waves, with frequency w close to zero), but
in the case of non-degeneracy of the linearized operator they
employ the spherical of harmonics of the Laplacian.

1.3. The fractional case 0 <s < 1

The case of the fractional Schrédinger operator, that is s €
(0, 1), has also received considerable attention in recent years. Re-
garding the well-posedness for the standard power non-linearity,

4 Although a key assumption, namely b < 2 has to be revised to b < 2 in

2
the case n = 3, more on this below.

we mention the work of Dinh, [3] and the references therein. The
paper [36] studied the well-posedness of (1.1) with b < 0. Unfor-
tunately, we are not aware of any local and global well-posedness
results for (1.1). It looks however that the work [37] seems to
contain all necessary ingredients in terms of estimates and one
has to proceed as in [16]. We leave this line of investigation open
to other researchers.

Regarding solitary waves for the fractional NLS, the real break-
through came in the article [38], which deals with the case b =
0,n = 1,s < 1 about the existence of positive solution of
(1.2) has been studied by the authors in [38]. Moreover, the non-
degeneracy of the ground state is shown, which plays a very
important role in orbital stability of such solutions. In a later
work, [39] generalizes the above results in any dimension. More
precisely, the uniqueness and non-degeneracy of the ground state
solution for (—A)¥Q +Q — |QP~'Q = 0, with Q € H¥( ]R”) was
established in R",n > 1,s € (0, 1)
O<2s<nand 1 <p < oo, 25 >n.

The fractional case 0 < s < 1 and b > 0 was studied in detail
in [40] in great detail. The authors considered both the Cauchy
theory for (1.1) (and in fact for more general models), as well
as provided a construction scheme for small solitary waves. In
addition, they establish the set stability for these waves.” These
were done under conditions close to ours, as is to be expected. We
discuss their global existence results below, see Proposition 1 as
this will be important for the orbital stability arguments.

Our goal is to investigate the existence of the waves @, given
by (1.2), as well as their stability properties. Let us introduce the
formally conserved quantities of (1.1):

e the [? norm

u] :/ [u(x)|*dx
]:Rn

e the Hamiltonian

f|( A)zu( |dx——/ x|~ |u(x) P+ dx.

We will also make use of the total energy functional, defined as
follows

Hu] =

w
E[u] .= s2[u] + EKW[u].

In fact, a variant of the local well-posedness theory, presented in
Theorem 4.6.6 in [ 10] for the case s = 1, guarantees that for a data
U € HS(R"), 1 <p < 1+ %= 225 there exists time Ty = To(|uollxs),
so that a strong solution u( € H'(R") to (1.1) exists in 0 < t <
To and moreover 2 (u(t)) = @(uo) 2(u(t )) = #(up).

Next, we discuss the linearization of (1.1) around the standing
waves e~ “{@,,. We perform a standard linearization procedure,
namely we take u = e" ™[, + v], plug it in (1.1) and ignoring
the higher order terms O(v?), we arrive at the linearized system,
which after v = (fiv, Jv) =: (v1, v2) can be written as

Nv 0 -1 Z. 0 NRv
(%) -7 )% 2)(%) s

where the following fractional Schrédinger operators are intro-
duced

Ly = (=AY + o —plx| PP,
L = (—AF 4w — |x| PP,

Note that at this point, the properties of the potential |x|*®P~!
are not yet understood, but one has to definitely address the issue

5 This is however weaker than the orbital stability established herein, as it
shows that starting close to a soliton, once stays close to the shape of the same
soliton, rather than a member of some, potentially large, set of minimizers.
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of its singularity at zero. This shall be a major concern going
forward. We just mention that for the purposes of the stability
considerations, it is convenient on using the standard domain
D(%) = H*(R"), which will lead to some mild additional,
perhaps unnecessary, restrictions on the parameters.

Upon the introduction of the operators

0o -1\ ., (2 o
j:=(1 0)’“”"( 0 .z,>’

. NRv v - .
and the assignment g N et “1 ) = €M7y, we obtain

V2
the following time-independent linearized eigenvalue problem

J L0 = A (1.5)
1.4. Stability and well-posedness

Before we formally state our results, we need a few rigorous
definitions about the objects that we study. We employ the
following standard definition of stability.

Definition 1. We say that the wave e{@ is spectrally stable,
if the eigenvalue problem (1.5) has no non-trivial solutions (X, v),
with R\ > 0. Otherwise, in the cases where there is A : iL > 0
and v # 0, so that (1.5) is satisfied, we say that the wave e~ (¢
is spectrally unstable and A is referred to as an unstable mode for
(1.5).

We say that e~*! is orbitally stable in H¥(R?), if the Cauchy
problem is globally well-posed in H*(R"). In addition, for every
€ > 0, there exists § = §(¢), so that whenever |[ug— @ ||usgrn) < 6,
then the following statements hold.

e The solution u of (1.1), in appropriate sense, with initial data
up € H® is globally in H’(R"), i.e. u(t, -) € H°(R").

sup inf [[u(t, ) — e D ()| gsrny < €.

t>0 0€R
As we see, the local and global well-posedness property of the
dynamics is a necessary component of an unconditional orbital
stability statement. Fortunately, the results in [40] provide just
the right statement. We restate a simplified, yet representa-
tive, version of their result, which fits our purposes. This is the
substance of Proposition 3, [40], but see also Section 4.2

Proposition 1. Letn> 1,0 <s < 1, and

p<p*:{1+‘§_§f 2s<n 1

o0 n=1&se(31)

Consider the model

i + (—AYu —aX)|uP'lu=0,x € R", (1.6)
where a € Ll + L9(|x| > 1), with gy < q1, ¢z < 00,

2s<n
n=1&se(4,1).

Then, the problem (1.6) is locally well-posed in H*(R™). That is, there
exists Tmax = Tmax(l|Uollns), so that there is unique solution u €
LH*(R") N W1L2°(H=5) of (1.6), so that conservation of mass and
Hamiltonian hold.

Finally, regarding global well-posedness, if p < 1+ 7' and
a(x) € LN(|x| < 1), where q; > 4575,7”71)", then the solutions are
global — that is Tnax = oo and the conservation laws are globally
conserved.

2n
qo = { 2n—(p+1)(n—2s)
1

4s

As an immediate consequence of this result, for the case a(x) =
x|, we have the following Corollary.

Corollary 1. Letn > 1,0 < s < 1and b < 2s. Assuming in
addition that 1 < p < 1+ *=2_ then the Cauchy problem (1.1) is
globally well-posed in H*, with the conservation laws conserved for

alt:0 <t < o0

2Mult]] = 2luel, ult]] = #[uo].

Proof. For the proof, it suffice to note that the condition for global
well-posedness

X7 e L(|x] < 1), q1 > ‘B_(Zpin_m is met exactly for 1 < p <
1+ @ The other conditions are weaker than that, whence the
result follows. O

1.5. Main results

We now introduce a subset in the parameters space (n, p, s, b),
which will be helpful in the sequel.

Definition 2. We say that (n, p, s, b) € «, if the parameters are
in the range below

n=1, %§s<1,0<b<1, l<p<oo
1 45—2b
o = n:l,se(O,i),0<b<25,1<p<1+1s_25_
n>2s€(0,1),0<b<2s, 1<p<1+22

This set will turn out to describe the necessary and sufficient
conditions under which @, exists.

Our first theorem is a sufficiency result for the existence of the
solitary waves @,,.

Theorem 1 (Existence Results). Let (n,p,s,b) € o/, w > 0. Then,
there exists a bell-shaped function® ®,, € HS(R")NL(R") N L>®°(R"),
so that Eq. (1.2) is satisfied in a distributional sense. If (1.2) is also
satisfied in the strong sense then

B, = (—A) + o) (X D]]. (1.7)
Finally, under the assumption s € (%, 1], we have that ¢ € C}(R™ \

{0}).

Remark. We have in fact much more precise description about
the behavior of ¢, V¢ in Proposition 5.

Interestingly, we have the appropriate converse statement,
which makes 7 the necessary and sufficient set of requirements
for the solvability of (1.2).

Theorem 2. Assume that a positive function ¥ € HS(R*)NL'(R")N
L°°(R") satisfies

(—AYY + oy = x| "yP

in a distributional sense. Then (n, p, s, b) € « and w > 0.

Next, we are concerned with the stability of the waves con-
structed in Theorem 1.

Theorem 3. Let (n,p,s, b) € & and w > 0. In addition, assume
that 2b < nand s € (%, 1]. Let &, be the solution constructed in
Theorem 1. Then,

(1) the linearized operators £i,D(%) = H*(R") are self-
adjoint and @, € D(Z,).
(2) @, non-degenerate, in the sense that Ker[.#,] = {0}.

6 That is, a non-negative radial function, which is non-increasing in the radial
variable.
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For 1 < p < 14 %20 the soliton e &, is spectrally and orbitally
stable. In the complementary range,

4s — 2b { n=1
<p<

e 4E2 a2,

the soliton is spectrally unstable.

Remarks.

(1) According to the necessity statements in Theorem 2, the
results in Theorem 3 provide a full classification of the
bell-shaped solutions that exists, in the cases s € (%, 1)
and 2b < n. Note that the constraint 2b < n is already
contained in the necessity assumption for n > 4.

(2) In the case n = 3, the constraint b < % is slightly worse
than the necessity assumptions, b < 2. This was the claim
in [2], but one certainly faces some difficulties (specifically
with D(.#,)) in the range b € (%, 2). See the remarks after
Corollary 3.

(3) Our results seem to be new even in the case s = 1, in
low dimensions, n = 1, 2. The restrictions b < % for
n=1and b < 1forn = 2 are more restrictive than
the necessary assumptions (n, p, s, b) € «. It is interesting
whether one can establish rigorously the stability situation
for these parameters. As we discuss at length, the main
issue is to make sense of the functional analytic framework,
in particular the domains of the linearized operators .%;..

(4) The case p = @ is a bifurcation case, where one gets a
crossing through zero of a pair of purely imaginary eigen-
values to a pair of stable/unstable real eigenvalues. This
is also where Eq. (1.1) enjoys an extra, so called pseudo-
conformal symmetry, hence the extra pair of eigenvalues
at zero. Even though one has spectral stability for this
case, one generally expects the corresponding waves to be
spectrally unstable, as in the classical NLS, see the seminal
paper [41] for details.

The paper is planned as follows. In Section 2, we give some
necessary preliminaries such as function spaces, asymptotics of
the Green’s functions for the fractional Laplacian, the basics of
rearrangements and a weighted Sobolev inequality. In Section 3,
we introduce the Pohozaev’s identities, which in turn imply the
necessary conditions for the existence of the waves, which is the
content of Theorem 2. In Section 4, we present the variational
construction of the waves along with some further properties of
the profiles, such as boundedness, sharp asymptotics at zero and
smoothness. In Section 5, we provide a self-adjoint realization of
the linearized operators .#4, followed by some preliminary coer-
civity properties. We also introduce the Frank-Lenzman-Silvestre
Sturm oscillation theory for fractional Schrédinger operators as
well as an adaptation of their method to our situation, which has
to address singular potentials in the next section. In Section 6,
we establish the non-degeneracy of the waves. This requires
decomposition in spherical harmonics and careful analysis on
the radial subspace by using the Frank-Lenzman-Silvestre theory
developed in the previous section as well as an argument to
rule out non-trivial elements in the first harmonic subspace. In
Section 7, we provide a short introduction to the index counting
theory, which provide an useful criteria for spectral stability. In
Propositions 11 and 12, we show the coercivity of .#; on {®}*,
which is an important ingredient of the orbital stability scheme.
Finally, we show the orbital stability (whenever spectral stability
holds) in Proposition 13.

2. Preliminaries
2.1. Function spaces, Fourier transform and basic operators

In order to fix the notations, we shall use the standard expres-
sions for || - [l prny, 1 < p < oo as well as the following expression
for the Fourier transform and its inverse

fer="| fee? i, fx)= f G
R R"

The operators (—A),0 < s < 1 are defined in a classical
way on the Schwartz class” .7 via (— )f(?;‘) = (2m|ENZf(&).
Accordingly, the Sobolev spaces are taken ||f [|s := [[(—A)"2f]| 2,
Iflles = Wfllgs + IIfll2. More generally, the Sobolev spaces
WP o > 0,1 < p < oo are introduced as completions of the
Schwartz family in the norms ||f |jwer = [[(=AY?fllr + IIf .
The use of weighted spaces is necessitated by the context, so we
introduce

1/q
If lig—o = ( IXI‘bLf(X)I"dX> :
RTI

The following commutator identity, see [p. 1703, 39], will be
of special interest
[(=AY,x- V] =2s(—AY). (2.1)
We will also need properties of the kernel of the operator (I +
(=A¥)"1, s > 0. We state a precise result next.

Gi(§) =

Lemma 1. Let 0 < s < 1. Then, the function Gy(x) :
(1+ (4m2|€12F)~" satisfies.

e There is C = (s, S0 that
Gs(x) < Conlx|™"

when |x| > 1.
e For |x| < 1, there is

X®"+0(1) 2s<n
Gs(x) ~ {1 In(2/[x])+o(x) 2s=n
1+ o(x) 2s>n

e G, >0, G; € L'(R").

Regarding VG, we have the following bounds, in the regime 2s < n
x| "
|X|2$—n—1

x| > 1

X <1 (22)

IVGs(x)| < C{

Proof. First, take a partition of unity, so that there is a function

o, supported in {£ : |£] < 1} and ¢(&) := (&) — ¢(2&), whence
E)+> oo, c(27%) = 1. Let x| > 1,say |x| ~ 2,1 > 0. We have
the partition of unity

1=9(2%8)+(1-9(26)) = p2'6)+ Y ¢(27%¢)
k=1-1

whence

1
Gs(x) = /7‘1_*_(47[2'%_'2)56

I S
_/1+(4n2|s|2)se PEEME

Z / 1+(4n2|f§|

k=1-1

—27ix-& d%’

e (274 E )d

7 And then by extension in any Banach space for which . is a dense
subspace.
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In the first integral, we estimate the integrand by absolute value,
whence we obtain the bound C2~" ~ |x|~". For a given x, we
identify j € [1, n], so that |x;| > %’ Integrating by parts N times
in the variable x; (and N > n 4 1) and taking absolute values
implies a bound

o0

2.

k=1-1

zkn < z—ln ~ |X|—n'

(2¥1x; N

For |x| < 1, let us consider the case 2s < n, as the others are
similar and somewhat simpler. Say |x| ~ 27!, 1 > 0. We now use
the partition of unity

=276+ Y t(27%)

k=I+1

Again, for the integral with ¢(27'€) we estimate by the absolute

values
—2mix-& ( < Czl(n72s) ~ |X|Zsfn,

27')ds

1
f 1+ (4n2|51°)
while for tl}e other integrals, we again integrate by parts N times
in [x;] > 2% The estimates are again
o0

1
2k
Z (2K[x;| N

k=I+1

(n—2s) < CZI(n—Zs) ~ |X|2$_".

For VG, the bounds (2.2) follow in an identical manner, once
we recognize that taking derivatives results in an extra power of
x|~

The statement G; > 0 (and in fact G; is bell-shaped), can be
proved via the representation

1 . =/ooe—t(1+<4n2\s|2)3)dt=/ ot o—taTIERY gy
1+ (4m2(§]) 0 0

and the well-known fact that e~§/” is a bell-shaped function, as
long as 0 < s < 1. Thus,

IGell = / Gk = G(0)= 1. O

2.2. Rearrangements

In this subsection, we discuss the techniques of rearrange-
ments. Let A be a measurable set of finite volume in R". Its
symmetric rearrangement A* is the open centered ball whose
volume agrees with A, i.e. A* = {x € R" : |w,||x|" < Vol(A)}. For
characteristic functions of measurable sets, define (x4)* := xa*

Definition 3. Let f : R — R be a measurable function
that vanishes at infinity, i.e. for all ¢ > 0 we have ds(t) =
[{x : [f(x)[> t}] < oo.

We define the symmetric decreasing rearrangement f* of f
by symmetrizing its level set, namely f*(x) = fooo Xif=ep+dt
and dg«(t) = dp(t). A function is called bell-shaped, if f = f*.
In particular, f = f* > 0.

Recall the rearrangement inequality

FRgdx < / FH0g*(xdx, (23)
R" R"

valid for all functions vanishing at infinity. In addition, if one of
the functions, say f, is strictly decreasing, the equality is possible
only if g is bell-shaped, i.e. g = g*.

Next, we state the Polya-Szegd inequalities, which will be
instrumental in our approach.

Lemma 2. For 8 e (0,1) and f e HP(R"), its decreasing
rearrangement f* € H#(R") and

I(=2)5Fllz = (= 2)5f* 2. (24)

The full proof of this result is standard. It can be found, for
example, in [Appendix A, 42].

Our next proposition deals with a control of the weighted
norms appearing in (3.2) in terms of a Sobolev embedding.

2.3. Weighted Sobolev inequality

Proposition 2. For either one of the cases,

on:loe[%, ), 0<a<1, 2<q<oo

0<a<20, 2<q<2+4]”:2i“,
40 —2a
n—2c "’

on—10<0'<7
en>20<0<1,0<a<20,2<qg<2+

there exists C, depending on all parameters, so that
1
q
(/ |X|‘“|¢|qd><> =< Cll@llne rn). (2.5)
RTl

Remark. Note that the assumptions in Proposition 2 ensure that
a < n. Also, for g = 2, there is the estimate

1
q
—a 2
( . X" dX) <C |I¢|IH2+5(RH (2.6)
for every € > 0.
Proof. For thecasen > 2,0 > 0,0 <a < 20,and 2 < q <

2+ 4"_2” , we proceed as follows. By Sobolev embedding, we have,

since n (— - %) <o,

</ |x|*”|¢|qu)q < (f |¢|qu>q < Cllpll < Cligllse-
|x|>1 |x|>1

Next, for x| < 1

1 00
q .
</ |x|‘“|¢|‘Idx) <C EZJ“/ | |7dx
|x]<1 j=0 |x|~271

And by Holder inequality we have for every r > q,

q

q

fH e (/ |¢>|) (2719,

Thus

</|X<] I~ |¢|qu)

a<n(1—g), n
r

That is,

Z(z IR

1 o

< <
2 n r q

which is possible, due to the restriction 2 < q < 2 + 2222 We
have
1

oo

—j (1_,
@IS

j=0
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Q=

oo

= | @I e,

=0
G sup |9l r(y~ay = Gll@llr = Gl o1 < Gli@llue-
i

IA

where in the last step we have used the Sobolev embedding and

n(3 —1) <o.Thecasen = 1,0 € (0,5),a < 20,2 < q <

2 + 42220 js done in an identical manner.

For the case n = 1,0 > %,2 < q < oo is as follows. By
Sobolev embedding H? (R) < L4(R), so

(f |x|—b|¢|"dx>qs(/ |¢|qu>q§C||¢||H0-
[x|>1 [x|>1

1
7. .
is controlled in the same way as

The term (fxl<1 x|~ b|¢|qu>
above, we omit the details.

Remark. An easy formulation of the requirements in Corollary 2
would be to say that the parameters (n, g — 1, o, a) belong to the
set <.

3. Necessary conditions for the waves: proof of Theorem 1

The approach for the proof of Theorem 1 is to exploit the
scaling and the associated Pohozaev’s identities, which in due
course will lead us to the set of constraints ..

3.1. Pohozaev identities and consequences

Before we make assumptions on the smoothness and decay
properties of the profiles ¢, and in addition the sense in which
(1.2) is satisfied, (1.2) remains a formal object. In order to further
demystify the ranges in which one might expect reasonable solu-
tions of (1.2), we provide the following Pohozaev type identities.

Lemma 3 (Pohozaev Identities). Assume that 0 < b < n and
Y e HS(R") N L®(R™) N LY(R™), with ¥ > 0 satisfies

(—AYY + oy — x| PyP =0 (3.1)

in a distributional sense. Then,

bt 2ws(p + 1) /
/Rn|x| YP dx_Z(n—b) 25 1 1 Yldx. (3.2)
st . wn(p+1)=2(n—b))
/Rnu aytyfax = HEEER= S [yt (33)
o [ ydx = [ |x|7yPdx. (3.4)
Rﬂ Rl’l

Proof. A formal proof (i.e. one where we assume that v has
enough smoothness and decay properties) is as follows. Take a
dot product with ¢ in (3.1) and integrating by part we get

/ (— AV 2y dx + o / Y2 (x)dx = / [x| PP+ (x)dx

If we take a dot product with x - Vy¢y = 27:1 X;0;y, taking
into account the commutation formula (2.1) and various integra-
tion by parts2 calculations, we obtain another relation between
[1(—AY?y | dx and [ |x|"PyP+1(x)dx, namely

_n L ANS/2 2 ”_b/ by p+1
(s 2)/|( ayy e L [ty

- ”7‘" / Y2(x)dx.

Solving the last two relations for [ (= AY/2y dx, [ IxIPyPHdx,
we obtain (3.2), (3.3). Integrating (3.1) yields (3.4).

For v, which is not necessarily smooth and decaying, one
follows similar scheme. To establish (3.2), test Eq. (3.1) by a se-
quence of Schwartz function ¥y with limy [N —V || ysge)nigny =
0 and then take limits. In order to show (3.3), test (3.1) by
X - Vin. Again taking into account the commutation relation
[(—AY, x-V] = 2s(—A) and taking limits as yy — v establishes
(3.3). The formula (3.4) is proved after testing (3.1) by a function
x(x/N),N > 1 (where x is compactly supported and yx(x) =
1, |x|] < 1) and taking limits N — oco. O

Implicit in the formulas (3.2), (3.3) displayed above is that the
parameters need to satisfy certain conditions, so that i exists.
We collect the necessary conditions in the following corollary.

Corollary 2. Letp > 1,n > 1,s € (0,1),b > 0. If Y with
properties listed in Lemma 3 exist, then w > 0 and the parameters
must satisfy one of the following relations:

en=1s€[3,1,0<b<11<p<o0
on=1,0<s<%,b<2$,

1 1+4s—2b
< < .
p 1-—2s
en>2>b<2s,
4s — 2b
1<p<1+ . (3.5)
n—2s

Remark. Corollary 2 simply states that if i solves (3.1), then
(n,p,s,b) e &.

Proof. The fact that w > 0 follows from (3.4). If ¥/(0) > 0 and
the integral on the left-hand side of (3.2) exists, it is non-singular
at zero and hence b < n.

From the positivity of the left-hand sides of (3.2), (3.3) and
np+ 1) —2(n—->b) = n(p— 1)+ 2b > 0, it follows that
2(n — b) — (n — 2s)(p + 1) > 0. In particular, for n = 1, the
conditions are satisfied if s > 1 ,1<p<ooor0<s<x< —, but
then2s > b, 1 <p < 1—}—2%52S

For n > 2, note that we always have n — 2s > 0, whence we
come up with b < 2s and (3.5). O

Clearly, Corollary 2 establishes Theorem 2.

4. The variational construction and properties of the minimiz-
ers

We start with some elementary observations, which will iden-
tify conditions under which an important variational problem is
well-posed.

4.1. Well-posedness of the variational problem

Consider the following functional

Jor =AY 2ul” 0 fo
(o 1041 1) P57

We shall henceforth assume® thath < n,w >0and 0 < s < 1.
So, for any function u € H5(R") N L*°(R™) : u # 0, we have that
0< fRn [x|~®|uP*1dx < oo, so that the ratio I,,[u] is well-defined.

I,[u] =

8 And in fact, we shall pose some more restrictions later on.
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Since for u € . For every u # 0, I,[u] > 0, we will consider the
non-negative scalar function

m(w) == uisn; I,[u].

In the case when the parameters ensure that m(w) > 0, will
be referred to well-posedness, versus the trivial case m(w) = 0
(which is certainly possible for certain parameter ranges) will be
referred to as lack of well-posedness or ill-posedness. We have
the following elementary lemma.

Lemma 4. Assume that m(1) > 0. Then,

m(w) = m(])wZ(s(p+l R =3

(4.1)
Li(¢),

In addition, if ¢ is a minimizer for I;[u] — min, i.e. m(1) =
then ¢, (x) := ¢p(w2x) is a minimizer for I,[u] — min.

Proof. Take ¢(x
—n+2s |

) = ¥(Ax) then
(=AYPYI” + wr” "IIWIIz
3G (o I~yp41) BT

Taking w = A% implies the formula

L,[¢] =

Ll =0 5 L(y),

whence the formula (4.1
manipulations. O

) follows by straightforward algebraic

Remarks.

e As was have discussed above, the well-posedness is equiva-
lent to m(1) > 0. So far, we have not addressed this issue in
a satisfactory manner. Lemma 4 just establishes that m is a
specific power function, if the functional I, is bounded from
a positive constant.

e Note however that under the standing assumptions s > 0,
p > 1, the power of w appearing in (4.1) is negative exactly
when (n, p, s, b) € «.

4.2. Existence of minimizers

Our next goal is to obtain an existence result, which holds
precisely when (n, p,s,b) € . As is clear from Proposition 2,
it suffices to consider the case w = 1.

Proposition 3. Let (n,p,s,b) € . Then the unconstrained
minimization problem
I,[u] — min (4.2)

has a bell-shaped solution ¢ < HS(R") N [P*1-
m(w) > 0.

If ¢ is a minimizer of (4.2), with ||@||p+1.-» = 1, then ¢ satisfies
the Euler-Lagrange equation

(=AY + wp — m()|x|"¢P =0 (4.3)

in the following weak sense: for each h € C§°(R" \ {0}), there is
(=AY + wp — m(w)|x|"°¢P, h) = 0. Finally, for the linearized
operator,

Zy = (=AY + o — pm(w)|x| P¢P,

b in particular

we have that for each real-valued h € C5°(R" \ {0})
h(x)dx = 0, (£, h, h) > 0.

s [ 1xX7 9P (x)

Remark.

e Proposition 3 does not claim the boundedness of the min-
imizer ¢, i.e. the possibility that lim,_o ¢(x) = oo is left
open.

e Related to the previous point, the Euler-Lagrange equation
may have a significant singularity at zero, due to the pres-
ence of |x|™" and the possible singularity of ¢ at zero. We
sidestep the issue for the moment, by testing (4.3) away
from zero as h € Cg°(R" \ {0}).

o The non-negativity property of .#, over the set h € C§°(R" \
{0}), h L |x|™°¢P, normally would indicate that .#, has at
most one negative eigenvalue. This would eventually turn
out to be the case, see Proposition 6. Here, we are forced
to restrict to a restricted set of test functions, namely h €
CS°(R™\ {0}), as we have not yet resolved the issue with the
singularity of the potential x — |x|~?¢P(x) at zero.

Proof. By the arguments in Lemma 4, it suffices to consider the
case w = 1. By the assumption (n, p, s, b) € &, it follows from
Proposition 2

2
( / |x|*"¢"“>p“ < Cllol.

Whence
inf I1[u] > C~".
u#0

Thus, the variational problem (4.2) is well-posed or equivalently
m(1) > 0.

We now need to show that (4.2) actually has a solution.
To that end, observe that by the Polya-Szegd inequality (2.4),
I(=A)?ull = |(—Ay/ u* - Also, [|¢*[l2 = ll¢ll;2 and finally, by
(2.3) and the fact that |-|? is bell-shaped and strictly decreasing,

/ XS0 dx < / X210y dx

IX|7P(p* (%) dx.
Rn
We conclude that I1[u] > Ii[u*], which implies that we can
reduce the set of possible minimizers to the set of bell-shaped
functions, i.e. {u € H¥(R") N [P*P(R") : u = u*}. Next, by the
dilation property of the functional I(u) = I;(au), we can without
loss of generality further reduce to the set fR,, x| ~PuPt(x)dx = 1.
So, assume that ¢ is a minimizing sequence of bell-shaped

functions, subject to the constraint fR" [x]~ b(i)p“( ax = 1.1t
follows that
lim (=)l + ez, = m(1). (4.4)

We will show that a subsequence of ¢, converges in the
strong H¥?(R") sense to a minimizer u, which we will show is
the desired solution to the minimization problem (4.2). By weak
compactness, we have that a subsequence of ¢, (which we will
assume without loss of generality is ¢y itself) tends weakly in
HS/2(R™) to a function ¢, which is also trivially bell-shaped.

Since, for bell-shaped functions u we have the point-wise
bound for each x : |x| =R,

W < Bal 'R /

lyI=R

u@)Pdy < [Bal ™" [xI " ullf, (4.5)

Based on this, we claim that (a subsequence of) ¢, converges to
¢ strongly in the topology of IP*1~b, This will follow from the
Kolmogorov-Relich-Riesz criteria for compactness in [P spaces
from supy [|gkllys2gny < oo (which is a corollary of (4.4)) and
once we establish

lim sup f X7 | (x) P ldx = 0. (4.6)
|x|>N

Nk
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Indeed, (4.6) follows from the pointwise bounds for bell-shaped
functions (4.5), since

sup / X dx
|x|>N

k

< Gysup lpillBy ! /

|X|>N

|x|*b*(P+1)%dX

—b—L +1
< GN""Z "supllgnll;
k

which clearly converges to zero as N — oo. Thus, up to a
subsequence ||, — || p+1.-» — 0, whence fRn x| P@Pt1(x)dx = 1.

In particular, [1(¢) = [(=4)"2¢1I%, + llgll;, = m(1).
Now, we have by the lower sem1cont1nu1ty of the weak con-
vergence in H*? and (4.4) that

m(1) < [(=A)¢lI% + 1117
< liminf |[(— A7 xllf, + el = m(1).
It follows that limy [[(—4)?¢ellZ, + gl = (=4
||¢||Zz, whence by the uniform convexity of || - |2
lllgﬂ lr —

We conclude that I1[¢] = m(1) and ¢ is a solution to (4.2).
Next, we discuss the Euler-Lagrange equation (4.3). Take a test
function h € V§°(R" \ {0}), that is h is supported in {x : x| > &}
for some § > 0. Let also 0 < € <« 1 and consider u = ¢ + €h.
Recall [ |x|’¢P*+'dx = 1. Since ¢ is a minimizer we should have

I,[¢ + €h] = m(1) = N(¢).

Where N(¢) := [ [(—A)/2¢]*+ [ ¢* and D(¢)
Thus,

N(g + ch) = f| AY(p + eh) +/(¢+eh)2
- / (=476 + e(~AYh"
+ /(¢2+2€h¢+62h2)
fl 5/2¢>| +/¢
+ 2e({(—A)7? AY?hy +
=N(¢)+26(((— J

Y12 +

¢||HS/2(RH) =0.

P+1dx,

= [ IxI%(¢)

+ (h, ¢)) + 0(€?)
1)¢, h) + 0(?).

Similarly,

D(¢ + €h) = / x| 72(¢p 4 eh)Pdx

=1+ (p+ De(xI"°¢P, h) + 0(?).
It follows that
N(¢ + €h)
Li(¢ +€h) = ¢72
D[¢ + eh]ptT
N($) + 2¢{((=A) + )¢, h) + O(€?)
1+ 2¢(|x|™"¢P, h) + O(e?)
N[g] + 2¢((—AY + 1)p — Ix|°N(¢)p?, h)
+0(€?).
As this holds for arbitrary function h and for all small €, we have
established that ¢ solves (4.3) in a distributional sense.

Finally, fix h to be a real-valued function, h € Cg°(R" \ {0}).
Starting again with the inequality

N(¢ + €h)
D(g + eh)oiT

> N(¢),

but expanding to the second order? €2, we obtain
NI$]+€*[(Zih, h) +NI@l(p + 3)(I-1~°¢P, h)*1 + O(¢®) = N[g],

after taking into account {((—A) + 1)¢ — N(¢)|x|°¢?, h) = 0.
After taking limits as ¢ — 0, we derive

(Zyh, h) = =N[$1(p + 3)({|-| "¢, h))*. (47)
In particular, (Z;h, h) > 0, if [ |x| °¢P(x)h(x)dx = 0. O

We shall now need to prove some further properties of the
minimizers ¢ as well as some spectral results necessary for the
sequel.

4.3. Boundedness of ¢

In our next result, we use the already established (partial)
coercivity of %, on {|-| ¢P}+ N CS°(R™\ {0}) in order to derive
L* bounds on ¢. We believe that this is a new technique, which
might be useful in the spectral analysis of other situations with
singular potentials.

Once we show the boundedness of ¢, we will go back to the
claim about the coercivity of .#, on the full co-dimension one
subspace {|-|"?¢P}L.

Proposition 4. Let (n,s,p,b) € . Then, the minimizer ¢
constructed in Proposition 3 is a bounded function.

Proof. Again, we assume w = 1, the other cases follow by
rescaling.

We first show the boundedness of ¢. Recall that since ¢ is a
bell-shaped function, ¢ € L?>(R"), we have that for every x # 0,
lp(x)| < C,,|x|’% ¢l 2. This of course leaves the possibility that
limy_, ¢ ¢(x) = oo, which we shall rule out for the remainder of
the proof.

Our approach is by contradiction, that is assume that
limyy—0 ¢(x) = oo. We now create a specifically designed test
function h € C§°(R" \ {0}) N {Ix|"2$P}L. To this end, let x be a

1

radial positive Cg° test function, supported in 5 < |x| < 2 and

equal to Ton 2 < |x| < 4. Let 0 < € < 1and let
S IXI7PgP(x)x (x/€)dx
J X1 P (x)x (x)dx

Clearly, h € Cg°(R"\ {0}), where c, is designed so that h L |-|~bepP.
Note that the denominator of c. is bounded above and below by
a constant independent on ¢, so that

Ce ~/|X|7b¢p(X)X(X/€)dX. (4.8)

According to Proposition 3, we have that (¥,h,h) > 0. As a
consequence of this, after dropping some terms with favorable
signs, we arrive at

c{(—a

>pm

h(x) .= x(x/€) — cex(x), ¢ =

¥xs x) = 2c (=AY x, x(-/€)) + (=AY x(-/e)|?
_ (4.9)
/le PP (x)x*(x/€)dx

Let us estimate the terms on the left hand side of (4.9). Elemen-
tary estimates imply

(=AYx, x) < C, I(=AYx(-/e)?
< Ce"E e {(—AYx, x(-/€))] < Cece.

The integral expression on the right hand side of (4.9) is essen-
tially equivalent to c., but not quite. In order to get the desired

9 Note that in the calculation above, the expansion in powers of ¢ is valid,
since the fixed h that has its support away from zero.
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estimate, introduce the quantity d. := [ [x|7°@P(x)2(x/€)dx, so
that we now have proved the estimate

de < C(2 + €% +€'c). (4.10)

Furthermore, we have by Cauchy-Schwartz’s inequality

. <C f X P () (x/€

1/2 1/2
<C ( / |x|b¢p(x)x2(x/e)dx> ( f ‘ |x|*b¢"(x)dx> .
|x|~€

(4.11)
By our assumption, lim,_.¢ |¢(x)| = 0o, we have that for all small
enough €

/ x| PP (x)dx < / x| PP+ (x)dx
|x|~€

maxx:\x|~e ¢(X)
_ 1
- MaXy:xj~e P(X)

= o(e).

Hence, we obtain that ¢2 = o(e)d, and €"c. < o(e)d. + €.
Substituting these estimates in (4.10) yields d. < Co(e)d, 4 €"~%,
or after hiding Co(e)d, on the left-hand side, d. < 2¢"2, for
all small enough e. This actually yields a very good point-wise
estimate on ¢. Indeed, recalling that ¢ is bell-shaped we estimate

ce™ min $P(x) < f X (x) (/e Yx < Cem,

X:|x|~€
whence for all x # 0,
¢P(x) < Clx|"~%. (4.12)

This gives a contradiction and hence the required L* bound, if
b > 2s. Unfortunately, this covers only a small portion of the
parameters space 7.

So, assume for the rest of the argument that b < 2s. In order
to derive the L* bounds for ¢, in the case b < 2s, we shall need
an additional bootstrap argument, based on the fact that ¢ is a
(weak) solution of the Euler-Lagrange equation (4.3). To this end,
we need to find a way to introduce ¢ := (1 + (—A))"'[|-|#"].
As of now, this is a formal definition, but it is clear that if we
manage to define such an object in an appropriate way, this will
be weak solution of (4.3). Since ¢ solves (4.3) in the weak sense
described in Proposition 3, we will be eventually able to show
that ¢ = ¢ as L9 functions, for appropriate g € (2, 0o0). To this
end, we have the following claim.

Claim 1. Assume (n,s, p,b) € o and that a function f : R — R

is bell-shaped and it satisfies f € [P*1P(R") and |f(x)] < C|x|%.
Then,

Z=(1+AP) ) = o (11707 € N _ LIRY).
p
In particular Z € L*(R").

Proof (Claim 1). We consider the case n > 2s only, as the case
n < 2scanarise only forn=1,s > % in which case the function
Gs is bounded and the arguments are much simpler.

We split'® z =2, + 2,
2= Gk [P x0<), 2o = Gox [117°FP xp21]-

Let us analyze Zz; first. We claim that due to the properties
established in Lemma 1, we have that Z; € Ng<LY(R"). Indeed,
for |x| < 2, we can bound

Z1(%)] < CLI* g3 % 1175 x1<1

10 Here xi denotes the characteristic function of I.

1 < q» < & and then

Pick arbitrary q1,q2 : 1 < q1 < 5, 3
q € (1,00) : -+ L = 1+ J. By Hardy-Littlewood-Sobolev
inequality, we have

2s—n

1Z1 lagxi<2) < CI1Z7" 0 <3l ey 1YL X1 <1 1oz ey < G-

Clearly, in this way, we can generate any q € (1, oo), by varying
the choices g, g; in the specified intervals, 50 Z; € Njq<ooL9(R").
Regarding Z,, we split as follows

Za] < CIP g <r # 722 xpmt + 17 Xzt % 1722 21

Clearly,

25— b 25— b
=" X< # 2P Xz lle < CHE= "0 <allp 0P X2 e

<C

as long as % < g < oo, because

N e 1 < max [P0+ (x| / Iy < C.
RTl

x|>1

Similarly, as long as % < q < 0o, we can find § > 0, so that

1 1 _ 1 p+1
IT(S-|-a_l—i-aandq5>T.Then,

"1 % 1P X 21
< I xpim 1l s 722 =105 < C
All in all, we have established Z € Npu

5 <g<oo

LYR"), as
required. O

Now that we have established the claim and taking into ac-
count the properties of ¢, which are already established, we can
take f = ¢ in Claim 1, whence we conclude that

¢ =(1+(=Ay) '[17°¢"]
is well-defined and element of L?>(R"). Furthermore, for each

integer k and each test function f € % = {f € 7 : suppf C
{21 < |£] < 2¢+1}}, we have that

(@, (14 (A7) = (|12, ) = (¢, (1 + (=AF)f),

where in the first equality we have used the definition of 55 while
in the second, we have used that ¢ is a weak solution of (4.3).

Since (1 + (—A¥) lis an isomorphism on each .%, it follows
that (¢ — ¢, f) = 0 for each f € & : suppf C R"\ {0}. Since this
is a dense set in .~ and hence in each L9, g € [1, 00), it follows
that ¢ = ¢ in the sense of L>(R"), that is

¢ =1+ (=A¥)[I-I°¢P] = Gy + [|-|°¢P] € [A(R").

According to the claim, the L?>(R") function on the right-hand
side of (4.13) also belongs to ﬂ&qu(R"). But then, since ¢ is

bell-shaped and ¢ € Nps1 <qu(R"i we have the point-wise bound
p

(4.13)

MWM@WEC/

ylI~1xl

lpW)19dy < Cqnll®lfaggn-

Whence ¢(x) < quxl_g. Recall that this is true for all ¢ < oo.
That is, for each § > 0, there is Cs, so that

$(x) < Cslx|°. (4.14)

This is almost, but not quite, that ¢ € L>°(R"), which will yield the
contradiction. On the other hand, we will show that (4.14) can
be bootstrapped to ¢ € L*°(R"), which will then be the desired
contradiction.

By close inspection of the proof of Claim 1 (and under the
assumptions in Claim 1) , we see that we can in fact place all
but one piece in L*(R"). It thus remains to see why |-|* " -3 *
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|~|‘b¢1’x|_|<1 € L*°(R"). In view of the bound (4.14), we have for
Ik,

157" <3 % - 7P X1 <1 ()]

Xix—yl<3  Xlyl<1
|X _ y|n—25 |y|b+6
where in the last step, we have applied the Holder’s inequality
with 1= %—}—% q < 5, r(b+38) < n. This last two conditions are
possible to satisfy (i.e. such g, r exist), for small §, as long as b <
2s. This is another instance that this requirement is crucially used.

In this way, we have reached contradiction with our assumption
that ¢ is unbounded. Therefore, ¢ is L*°(R") function. O

dy < CIP= " X<y layi<a v 22 s

4.4. Further properties of ¢
We have the following proposition.

Proposition 5. Let (n,s,p,b) € «. Then, ¢ € L'(R"), so by the
bell-shapedness, in particular it satisfies the point-wise bound

lp(x)| < Clx|™", |x| > 1. (4.15)
If in addition, s € (3, 1), then

X7 x> 1
V900l < C{ i (4.16)

In particular, ¢ € C'(R™ \ {0}).

Remarks. As a corollary, we have

® ¢ € Nig<ool(RM).
e |x||V¢(x)| is a bounded function, since 2s > b. In fact,
|X||V¢| € m1<q§ooLq(Rn)-

Proof. Even though ¢ € L' implies (4.15), it will be actually
bootstrapped from it. So, we focus on the proof of (4.15). We
already know that |¢(x)| < C|x|™™2, |x| > 1. To obtain the higher
decay rate, introduce the optimal decay rate,

a = supfs : [p(x)| < Aslx|™*, [x| > 1}.

Clearly @ > 3. Assuming that @ < n leads to a contradiction.
Indeed, note the representation (4.13),

lp(x)| < |Gs| * [IxI P ()I1,

and the fact that G; is integrable near zero. Moreover, there is
the bound |Gy(x)| < Clx|™", |x| > 1 and |x|™" * |x|~®Pe—€) <
C|x|~ min(n.b+ple—e)) "for small enough e, so that b + p(a — €) > a.
But this implies a better decay rate than «. This contradicts our
assumption o < n, so it follows that @ > n. One can in fact see
that o = n, as this is the optimal decay rate for G;.

The bound for ||¢||;1 follows easily now. We simply estimate

—b —b
@l < NGsl X7 @l = N1xI "¢l

But the function |x|™°¢? ~ |x|7,|x| < 1, while |x|P¢? ~
x|~ x> 1, so |x| PpP € LY(R™).

The bounds for |V¢| for |x| > 1 follow as in the proof of (4.15),
once we make sure that VG; is integrable near zero, which since
|VG(x)] < CIx[*"', x| < 1, requires that s > 7. For the case
V@, |x| < 1, we again use the formula V¢ = VG,  [|-| °¢P].
One can see that for values |x| < 1,

Vo)l < c/ LI

1-2 b
w<z [X = y|"H y)
|

Integrating separately in the regions |y| < %‘ and |y| > ‘;—' yields
the bound |Ve¢(x)| < C|x|*>"1. O

dy + bounded function.

5. Preliminary spectral properties of .,
We start with the realization of Z. as a self-adjoint operator.
5.1. Self-adjointness of £+

The conclusion ¢ € L*°(R") is helpful in our study of .#;
and #_. However, we still face difficulties, for example with
regards to the self-adjointness, as the potential [x]~2¢P~1(x) is still
singular at zero. The following non-trivial lemma resolves these
issues.

Lemma 5. Let (n,s,p,b) € « and in addition 2b < n. Then
the Friedrich’s extensions of ., are self-adjoint operators with the
natural domain H*(R™).

Proof. Before we proceed with the construction of the
Friedriech’s extension, let us show that the condition n > 2b
ensures that %, (H%) C L?(R"). This reduces to the estimate

1/2
( f |x|—2b|h(x)|2dx) < Cllhllyasn.
Rn

which follows by (2.6), where a = 2b and since b < 2s.

Next, introduce the quadratic forms 2.[h, h] = (Zh, h),
with form domain H*(R") x H*(R"). Via the usual Friedrich’s
procedure, it will suffice to show boundedness from below for
2,.

We proceed to bound |{|x|""¢?, h)|. Clearly, the portion of the
integral over |x| > 1 is easy to control,

f X~ @P () h(0)ldx < Cllhlly2 6117, < Clihll2.
x|>1

For the piece over |x| < 1, we have by Cauchy-Schwartz and
Sobolev embedding, for any'' ¢ : 0 <o <5,2b < n+ 20

| x| "¢ (x)h(x)dx]|

|x|<1
< I(=2)Zhll (=AY Z [|xI°¢P xp<1lll 2 <
= Cl=M)2 Rl I ™=l 2

n+2o0

< CI=2)2hl2 < k(=A)2hll2 + Ceo 1Bl 2.

Next, for the integral f x|~ pPh2(x)dx, we control it by applying

Proposition 2, with ¢ = 2 and any o > %

/ X (dx < Cllh .

Choosing o < s as well, that is o € (g, s), we conclude that for
each «, there is C, so that

/ x| "P@PR*(X)dx < K [[hfis + Ce IR (5.1)
Combining the estimates for [ |x| °¢Phdx and [ |x|¢Ph?(x)dx,

with (4.7), yields that there exists a sufficiently large C, so that
for each h € H’(R"), we have

1= AR, — pm(e) / X @R ()dx

> —k[(=A)2h|% — Clh|)%.
Or

(1+©)l(=A)2h|% —pm(w)f X|"¢Ph*(x)dx > —C|hl|Z,. (5.2)

11 Clearly, one can select such o € (0,s), as b <n,b < 2s.
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So, again by (5.1) and (5.2),
(1 4+ O~ A)H I, — 2pm(w) / x| PGP (x)dx

> —k[(~A)2h|% — C|lh?

12
whence for small enough «,

2((—A)3 hi% — pm(w) / X2 P> (x)dx) = —CIh,

which is the desired boundedness from below for .#,, once we
divide by two and add w||h|?,. Since £_ > .#,, the boundedness
from below (and hence the self-adjointness of the Friedrich’s
extension) for .Z_ follows. O

Corollary 3. Under the assumption 2b < n, ¢ € H¥(R") = D(.%y).

Proof. Since ¢ € L'(R") N L®(R") is already clear, we just need
to observe that .
¢ =(1+(—A¥) "[Ix| ¢P] € H®. Indeed,

@1l 2smny = I(=AY(1+ (=AY) X" ¢"1ll 2 < CllIxI """l 2.

which is finite, if 2b < n since |x|?¢? ~ |x|7®, |x|] < 1 and for
IX| > 1, x| °¢P < ¢P € [X(R"). O

Remark. The assumption 2b < n is automatic for (n, p, s, b) € <,
if n > 4. In the case n = 3 however, this is not so and it amounts
to the extra restriction b < % In [2], the authors use the fact that
¢ € D(%Z+), which is not justified in the full range n = 3,b < 2,
but rather only in the range b < % Their statement has to be
modified accordingly in order to hold, at least based on the proof
presented therein. Clearly, the restriction is even more severe in
the lower dimensional cases n = 1, 2.

Now that we have properly realized .#; as self-adjoint oper-
ators, one can talk about their eigenvalues, coercivity properties
etc. Our next result are in this direction.

5.2. Some basic coercivity properties of .Zx

Proposition 6. Let (n,s, p,b) € & and in addition 2b < n. Then,
the self-adjoint operators £+ enjoy the following properties:

e The continuous spectrum of % is [w, c0).
e ., has exactly one negative eigenvalue.
e Z >0, with Z_[¢] = 0 and moreover Z_ |y = 0.

Proof. Continuous spectrum for both operators consists of [w, c0)
by Weyl's theorem. Clearly, since (Z;¢,¢) = —(p — 1)m(w)
[ 1x17¢P*1dx < 0, it follows that .#; has a negative eigenvalue.
Then, the property (Z.h,h) > 0,h L ||¢P, which was
previously established only for h € C*(R" \ {0}), can now be
extendedtoallh € .# : h L |-|™°¢P, since |-|P¢P? € [*(R"), due to
the assumption 2b < n and the properties of ¢. Thus, n(Z,) = 1.

Regarding the claims for #_, assume that the lowest eigen-
value, say —o? is a negative one. Then,

—o? = inf (£ u,u)
flull=1

= inf T3l + 0 = o) [ 1474 luin
ujj= R

Similar to our considerations in the proof of Proposition 3, this
variational problem has a bell-shaped solution, say ¢ : ||[¥] = 1,
which satisfies .Z_[¥] = —o?y. But on the other hand, by a
direct inspection, .Z_¢ = 0, ¢ is bell-shaped as well. But then,

0= (L ¢.¥)=(p, 2 Y)=—0%p,¥) <0,
a contradiction. Thus, Z |ypy= 0. O

Our next discussion will concern the Sturm-Liouville theory
for fractional Schrodinger operators such as .. We base our
approach to a result due to Frank-Lenzmann-Silvester, [39].

5.3. Sturm oscillation theorem for the second eigenfunction of .Z;

Theorem 4 (Frank-Lenzmann-Silvestre, Theorem 2.3, [39]).
Letn > 1,s € (0, 1] and W satisfies

o W = W(|x|) and W is non-decreasing in |x|,
o W e L®R"), W e C”,y > max(0, 1 — 2s). That is

W(x) —W(y)l < Clx—yl|”.

Then, assume that H = (— Ay +W has two lowest radial eigenvalues
Eo, Eq, so that Ey < E1 < infoeg(H).

Then, the eigenvalue E is simple and the corresponding eigen-
function is bell-shaped. Regarding Eq, the corresponding eigenfunc-
tion ¥ : ¥, = EqW, has exactly one change of sign. That is,
there exists ro € (0, 00), so that ¥1(r) < 0,r € (0,ry) and
¥i(r) > 0,1 € (rp, o0).

Remark. Note that the potentials involved in .y, while satisfying
most of the requirements in Theorem 4, fail in a dramatic way the
key boundedness requirement, as they are unbounded at zero. So,
we shall need to employ an approximation argument to achieve
the same result for ;.

Recall that according to Proposition 6, %, has exactly one
negative eigenvalue, Ey < 0. The next radial eigenvalue E; (if
there is one!) satisfies E; > 0.

Proposition 7 (Sturm Oscillation Theorem for the Second Eigenfunc-
tion of .#;). Let (n,s,p,b) € & and in addition 2b < n. Then, the
smallest eigenvalue Ey < 0 has a bell-shaped radial eigenfunction.
Suppose that the operator %, has a radial eigenvalue E; < w. Then,
Eq has a radial eigenfunction with exactly one change of sign.

Remark. The condition E; < w simply means that E; is not an
embedded eigenvalue, as o,.(.%Z;) = [w, 00).

Proof. Before we start with the proof, let us mention that as
we discuss radial eigenfunctions, we restrict our considerations
to the Hilbert space Lfad(R“) for the purposes of this proof.
Recall 2, = (—AY+w—pm(w)|x| PP~ 1(x) = (—AF +w—W.
The statements regarding Eq can be established directly, even for
the unbounded potential W. Indeed, by the self-adjointness of .#,

and the characterization of the lowest eigenvalue

Eo = min (Z,u,u) = 0+ min [||(—A)%u||fz—/ W(x)|u|?dx].
llull 2=1 llull2=1 R

By the Polya-Szeg6 inequality and since W = W*, fR" W(x)|u|?dx
< fRn W(x)|u*|?dx, we conclude that the minimization problem
minyy ,—1(-Z;u, u) has a bell-shaped solution

Y : Wl = 1and LW = E¢¥. In particular, ¥, €
H?(R"). Moreover, E, is a simple eigenvalue, as the minimizers
for minyy ,—1 (£} u, u) need to be bell-shaped and as such, cannot
be orthogonal to ¥.

Next, we define an approximation of W, namely for every
integer N, the bounded potentials,

W(r) r>

i) = { WINY) 1<

2| Z|m

and the operators .%; y = (—A)+w—Wy. Note that £, y > %4,
since Wy < W.

As Wy = W}, they have, by the same arguments as above
ground states ¥y : [[Wonll;2 = 1, corresponding to the smallest
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eigenvalues Egy > Eo, so Z nWo.n = EonWon. We will show
that limy Eg y = Eo. Indeed, we have that

E() < E()’N = : minl(,%_,Nu, u) < (.,g_thpo, lp())

lull 2=
<Eo+ / W) (x)dx
|x|<N—1

Since by (2.6), we have that

12 12
2 —b,r,2
( /‘ W (x)dx) <c ( /| PR (x)dx) 5

=< Cll¥ollusrny,

we conclude limy_, o foN 1 W(x)), ( )Jdx = 0, whence in
combination with (5.3), we finally amve at limy Eo v = Ep.

We now show that a subsequence of {¥ y} converges strongly
to ¥. To that end, we need to show that {¥; y} is pre-compact
in the strong topology of L*(R"). Indeed, by (2.6), we have that,
since 2 <'s, there is G, so that

Wi (|x)¥idx < cf X P Wgdx < CollWolfsgrny-
R" R"

Thus, by Gagliardo-Nirenberg’s inequality
Eon = (Zr nWon. Yon) = [(—A)2 %o n1I% + o — CollWoll s,

> (= 2)2%nll% — G

N | —

whence supy ||Won|lgs < o0o. Next, by the representation ¥y y =
(=AY 4+ © — Eon) ' [Wa%on], IWonllz = 1, and limy Egy =
Ey < 0, we derive similar to the proof of (4.15), that there exists a
constant C = Cp, but independent of N, so that |¥ y(x)| < Cy|x|™"
for |x| > 1. This guarantees that limy supy f‘X|>M |lI/0,N(x)|2dx =
0, which by Riesz-Relich-Kolmogorov criteria guarantees that
{Wo.n} is pre-compact in L?(R"). That means that there is a sub-
sequence ¥y y, — Y. For simplicity of notations, we can assume
without loss of generality that the sequence itself converges,
i.e. limy ”"IIO.N — ‘110”,_2 =0.

One can in fact show that (up to a further subsequence),
limy ||[¥o N —%ollps = 0. Indeed, {¥ n} being a bounded sequence
in H® has a weakly convergent subsequence (again assume that it
is the sequence itself), which by uniqueness must be ¥,. Then,
by lower semi-continuity of the L?> norm with respect to weak
convergence, liminfy [|(—A)Z Wy yl,2 > |[(—A)2 ol 2.

In addition, we claim that

llm WN(|x| lIIO N(X)dx _/ W(|x|) 11/0 (5.5)

Indeed, by (5.4), it suffices to show limy [ g Wn(Ix])
(W25 (x) — ¥g(x))dx] = 0. We have by Cauchy-Schwartz's that
for every € > 0, there is C. such that

Wi (IX])(Wg y(x) — W (x))dx

R"

IA

Ix| P |y (x) —
Rﬂ

( X 1) + Yo(x) ) ([ X2 19 () — Wo(x )|)zs
Rn

Cell¥nllns + 1%ollus)1¥ — Yol o,

Wo(x)| [N (x) + Po(x)|dx

IA

IA

where we have used (2.6
we have

). Note that by Gagliardo-Nirenberg’s,

b/2+e s—b/2—¢

l¥n — ‘1’0|ng+5 =ClI¥n — Yollys® 198 — Yol *

which clearly converges to zero, as N — oo, as long as we select
0<e<s—b/2

Thus, having established (5.5) and lim infy ||(_A)%W0,N”L2 >

||(—A)% Y|l ;2, we conclude

Eo ||(—A)%wo||§2+w—f W(x|) g (x)dx <

R

IA

liminflI(—4)} Yo, + o / W02 ()i
RH

= lim iﬂon,N = Eo.
N

It follows that liminfy [|(—A)?Wonllz = [(=A)2%2, which
implies that (up to a subsequence) limy ||[Wo n — Wollus = 0.

We now turn to the second radial eigenfunction of #,. Let
hi € D(&.) = H*R"), ||hi];2 = 1 is an eigenfunction corre-
sponding12 to Eq, so £ hy = Ejh;. Clearly hy L ¥y, whence
limy(hi, Y% n) = 0. By the Rayleigh characterization of the
second smallest eigenvalue and since .Z; y > .#;, we have that
Ein > E;. Denote the corresponding radial eigenfunctions by
YN [¥iNll2 = 1. Note that —W)y satisfy the requirements of
Theorem 4, with y = 1, as a bounded, piecewise defined function,
whose components are Lipschitz. Hence, due to Theorem 4, we
may take those eigenfunctions ¥, y to have exactly one change
of sign, say ry € (0, 00), say Yo nl(0,ry)> 0. Yonl(ry,00)< O.

Note

Ein = (L nu, u)

inf
llull 2=1ul¥g N
- (Zy n(hy — (hy, Yo n)WoN), hy — (h1, Yo n)PonN) _
- lhy — (hq, Yo.n) o I?
= (Zyh1, h) +o(N"')=E  +o(N7").

It follows that limyE;y = E;. In particular, the assumption
E; < o guarantees that'®> E;y < w for large enough N. Similar
to the proofs for ¥y, (in particular note the representation
Uiy = ((—A)Y + o — E;n)"'[Wy¥; n], which implies the bound
|¥y n(x)| < Clx|™" for |x| > 1), the system {¥; y} is pre-compact
in L?(R"), so it has a convergent subsequence. Again, assume that
it is the sequence itself. Denote its limit by ¥; : limy [|[¥;y —
Yillz =0.

Similar to the proof above for ¥, we conclude that (after even-
tually taking a subsequence), limy ||¥1 n—¥1|lgs = 0and ¥ L ¥
is an eigenfunction for ¢, corresponding to the eigenvalue E;. It
remains to show that ¥, has exactly one sign change. To this end,
consider the sequence ry € (0, co) of sign changes for ¥, y. There
are three alternatives:

e {ry} converges to zero
e {ry} converges to +oco
e {ry} has a subsequence, which converges to ry € (0, c0).

We will show that the first two alternatives cannot really occur.
Indeed, assume ry — 0. Then, pick a radial function ¢ € C5°(R") :
¢ > 0. We have

W,0) = lim(1,0) =f

X<y

P nE(x)dx + /

[X|=rn

Y nE(x)dx

<0.

Thus, we conclude that ¥; < 0 a.e., which is then a contradiction
with (¥, ¥) = 0, as ¥, is bell-shaped function. Similarly, the
case ry — oo leads to the conclusion ¥; > 0, which contradicts
again ¥y L Y.

Thus, the case ry, — ro > 0 remains. For this subsequence,
we clearly have that for each ¢ : ¢ € C§°(0,1r0),¢ > 0, we

12 Eyen though the ultimate claim is that there is an eigenfunction ¥, which
has exactly one change of sign, we do not know that yet.

13 And in fact, we may claim that w — E; y > %



A. Ramadan and A.G. Stefanov / Physica D 414 (2020) 132691 13

have (¥,¢) > 0, while for ¢ : ¢ € (C3°(rp,00),¢ = 0, we
have (¥, ¢) < 0. Equivalently, ¥, changes sign exactly once, at
o > 0.

6. The non-degeneracy of @

In this section, we establish the non-degeneracy of the solu-
tions of (1.2), obtained by means of rescaling of the constrained
minimizers of (4.2). Let us outline the details of this construction.
Start with a constrained minimizer ¢,, provided by Proposition 3.
In particular, it satisfies (4.3), where recall m(w) is in the form
(4.1). Then, it suffices to take

D,(x) 1= M) ().

Clearly, with such a choice @, satisfies (1.2), which is bell-shaped
and moreover enjoys all properties, as established for ¢, in the
Propositions 3, 4, 5. Note that .#; take the form

Zy = (—AF +o—p| PP £ =(—AY + 0 — x| PP

The following result is the main conclusion of this section.

Proposition 8. Assume (n, p,s,b) € <7, and in addition 2b < n
and s € (3, 1). Then,

Ker[#,+] = {0}.

We need to prepare the proof of Proposition 8 in several
auxiliary results.

6.1. Differentiation with respect to parameters

We start this section with two formal calculations, which
motivate our subsequent results.

6.1.1. Taking formal derivatives

Starting with the profile equation (1.2), we can formally take
a derivative in any of the spatial variables, ij,j =1,...,n. We
obtain

(6.1)

Z[0y®] = —b |X|’fj+2 DP(x).
Let us emphasize again that (6.1) is only a formal statement. Indeed,
such a formula is problematic at least in several ways — we need
to have V& e D(.#,) = H%, the right-hand side of (6.1) is not in
[*(R"), unless we assume 2(b + 1) < n etc.

Similarly, by a simple scaling argument, the solution &, of
(1.2) can be expressed through &1, the solution for @ = 1 as
follows

2s—b
By(xX) = WD P (w7 x) = 07 Dy (0FX). (62)

This highlights the dependence on the parameter w in (1.2),
which will be very useful in the sequel. More specifically, the
formal differentiation in w yields

Again, the formula (6.3) is only a formal statement. In particular,
note that since d,®, can be expressed as a linear combination
of @, and x - V&, we have the same issues with respect to the
domain of .#,. In both instances, that is (6.1) and (6.3), we heuris-
tically expect them to hold in some sense. The required technical
tools, which establish the corresponding rigorous statements, are
developed next.

6.1.2. A technical lemma

The following lemma shows that one can take weak deriva-
tives with respect to the spatial variables x as well as the param-
eter w.

Lemma 6. Let q, Vq € [*(R"). Then, for any ¥ € .%,

lim (q(x + dej) — q(x)

550 s aW)=(3qu,$),]=1,...,n,

(6.4)

Let now q, = f(w)q(g(w)x), where f,g € C'(R,),g > 0 and
q,x - Vxq € L>(R"). Then, for any ¥ € .#, we have

. qu+s — Qo
lim { ————,
im < 3 ¢>

§—0
= (f(@)a(g(®)) + f(@)g' (@)x - Vxq(g(®)-), V).

(6.5)

Remark. Note that formally at least 3,9 = f'(w)q(g(w)) +
f(w)g'(w)x-Vyq(g(w)-), so the formula (6.5) is expected to be true.

Proof. We have by a simple change of variables

q(x + dej) — q(x) . y(-—de) —v()
lim(————— =1 _

lim( 5 W) = lim({g. 5 )

=—(q, 9¥) = (9iq, V),
where in the last step, we have used the Lebesgue’s dominated
convergence theorem and integration by parts. This is justified
since M = —3y + 0y,(8) and Vg € [*R"). This
establishes (6.4).
Regarding the proof of (6.5), by a change of variables and the

Lebesgue’s dominated convergence theorem

lim <qw+58_ o ’ 1p>

§—0
= lim | 6
« (f(w + 8)1/}(g(ﬂ¥+6))g(w_];3)n _f(w)w(ﬁ)g(;)n ) dy _

= / q(¥)0e [f(w)nw (yﬂ dy

RN g(w) g(w)
_([)  flo)g'(w) Yy B
= (g"<w> " e (w) )f aww (g(w)) v

_f(w)g’(w)/ v <L>d
e72) Joo VY gy ) Y

Clearly, the first term in (6.5) is accounted for as follows
B [ avw (L> dy = F(@)a(g(@)), V).

g"(w) Jgn g(w)

Next,

LD [ (L) ar = - g, .
Rn

g (w) g(w) g(w)

Finally, another change of variables and integration by parts
(recall q, x - Vyq € L*(R") is assumed), yields

y
.V —\d
/Rq(y)y v (g(w)> ly

— ") / d(g(@x - Vp (x)dx =
RH

= —g"“(w)/ div(xq(g(w)X))y (x)dx
R"
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= —g"(n(g(g()), ¥) + gw)x - Vaq(g(e)-), ¥)).
Putting it all together yields the formula,

lim <qw+6 —qo , 1:[’>

5§—0 )
= f(w)(q(g(w)), ¥) + f(w)g' (w)(x - Vxq(g(@)-), ¥)
as required. O

Next, we have the following rigorous results which can be
viewed as weaker versions of the formulas (6.1) and (6.3).

6.1.3. Rigorous versions of the formal differentiation formulas

Proposition 9. Let(n,s,p,b) € «/,s € (%, 1),2b <nand ¢ € .7.
Then, any solution ®,, of (1.2), with the properties ® € L[> NL*® and
x- V& e [2(R") satisfies

X; .
(3 Po, L1) = —b( |X|,,’+2 PP Y), j=1.....n (6.6)

(00Pos Z1Y) = = (P, ¥r). (6.7)

Remarks.

e Note that the expression <|x);j+2 @P ) is well-defined, for

smooth functions ¥, whenever 2(b 4+ 1) < n. This is how-
ever not always satisfied under the assumptions in Proposi-
tion 9. The expression still makes sense, under the weaker
assumptions herein, provided we interpret it in the form

{ i:f+z¢"’llf>= f l’Zﬂz@"(x)(w(x)—w(O))ax.
R’

x n |x

e The notation 9,9, is used in (6.7) in the following sense

1 crp+%—1 1
3@, = 0P 1D (wHX) + — X Vi®i(w>x). (6.8)
This is of course nothing but the formal derivative with re-
spect to w in (6.2). Note however that the expression on the
right of (6.8) belongs to L>(R"), according to Proposition 5.

Proof. Our starting point is the formula (4.3). Applying it for x
and x + Je;, taking the divided difference and then dot product
with ¢ yields

(- + Se) — &(-
<(<—A)S+w)[%],w>
|-+ 81 @P(- + b)) — |- P P()
)

Assume for the moment that i is so that Q/ is supported in

{§ : [§] = o > 0}. In this way, ¥ = ((—A) + )y € .7, since its
Fourier transform, (o + (27 |-|)*)¥ is in Schwartz class.'*
So we have, by (6.4),

(- +8ej) —&(-)
)
Y) = (9P, V).

(6.9)
=

Y.

(=AY + o)
&(- 4 bej) — D(+)
It follows that

1.y)

D+ Se;) — df-
W], ) = (5. (—A + o)),

This clearly can be extended from the set of Schwartz functions,
which are Fourier supported away from zero to the whole set ..

lim (=) + )l

14 Note that |E1*Y/(€) is not smooth at zero, unless i vanishes in a
neighborhood of zero.

Indeed, it suffices to observe that the set of Schwartz functions,
which are Fourier supported away from zero is H* dense in ..

For the right-hand side of (6.9), we could perform an iden-
tical argument, except that we do not have in general that
8j|«|’b¢p(') € [*(R") (as we would need to require 2(b + 1) < n).
Instead, we proceed with the direct proof. We have

4 817P P + Se) — |- P pP(.
<|+ | (+Sej) [| ()’vf>
. —Se:) — (-
= (|.|*b@l7(.)’ w) — _(|.|*bq)p(.), ).

8

If y € #(R"\ {0}), we can take integration by parts (as we avoid
the singularity at zero), whence we arrive at

|8 TPoP(- + e) — || TP @P()
lim( . )
= (—b—J— @ 4+ plx P dP D', ).

|X|b+2

Again, one may extend such a formula from ¥ € (R" \ {0}) to
¥ € .. It follows that taking limits as § — 0 in (6.9) results in
(6.6).

For the proof of (6.7), we proceed in a similar fashion. More
specifically, taking (1.2) at w and then at w + § and subtracting
yields the relation

Dppis — Py o s —@F
(-Ay + w)[%} — W = =,

Taking dot product with ¢ € &#(R" \ {0}) yields

P _ P
Pt 2 (ay r o) - (0
— —(@uis. V).
Clearly,
Pots — Po

(Purts, V) = (Do, ¥) + 8¢ V) = (Do, V),

8

as the expression (w, Y¥) has a limit by (6.5), namely
(P20 ) > (3, B0, ). )

Under the assumption ¢ € . : suppy C {§ : |§] = o > 0},
we introduce again ¥ = ((—A) + w)¥ € .. According to (6.2)
and a simple change of variables

lim (2220 (—AF + o) = (a0 D)

§—0
= (aw¢wv ((_A)s + w)¢>

This is again extendable, as above to any ¢ € .~. Finally, by (6.5)
and the formula'® 0,PP = p(Df)‘]aw@w, we have

P PP
w :l w+48 ) .—b
21 ¥) = lm (=2 | y)
= p(3u P, || PP 1Y),

All in all, we obtain (6.7). O

. QP — ®F
]lm(|.|—b[L
§—0

6.2. Spherical harmonics and fractional Schrodinger operators

In this section, we give the final preparatory material before
we establish the non-degeneracy, in the case n > 2. The ap-
proach is to decompose the fractional Schrédinger operator .¢; =
(—AY 4+ w — p|x|~°®P~1, with a base space L>(R") onto simpler,
essentially one dimensional subspaces of the spherical harmonics

15 This formula is of course correct formally, but in order to provide a rigorous
justification, we need to took into account (6.2), and (6.8).

16 Noting that ||~y € I2(R") under the standing assumption 2b < n.
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(SH for short). This is convenient due to the radiality of the po-
tential W := p|x|"®P~1, which allows for such decompositions
to be invariant. In addition, the objects of interest are confined to
the radial subspace and at most to the next SH subspace, which
allows us to use Proposition 7. Similar approach was taken in the
recent paper [43]. We continue now with the specifics.
The Laplacian on R" is given in the spherical coordinates by
n— 1 ) + Asr;—l ’
r

T

where Agi-1 is the self-adjoint Laplace-Beltrami operator on the
sphere. Its action may be uniquely described as

Agi1P[X/1] = r? A[P[X/11],

for each polynomial of n variables P. There are many useful
properties of Ag:-1, we will just concentrate the discussion on
those that are directly relevant to our argument. In particular, its
spectrum is explicitly given by

o(—Ag1)={I(l+n—2),1=0,1,..}.

In fact, there are the finite dimensional eigenspaces 2; C
[?(S"1), corresponding to the eigenvalue I(I +n — 2), which give
rise to the orthogonal decomposition [*(S"™') = @ 2;. It is
worth noting that 2 = span[1], whereas 27 = span{ =

1,2,...,n}. Denote 2.1 == @, 2j, so that L>(R") = L2 /(r n- dr)
@ L[*(r"~'dr, 2-1). We henceforth use the notation Lfad as a

shorthand for L2 ,(r"~'dr). Note that if we restrict —A to L%, w
have
n—1
_AlLfﬂdZ — O — or,
while
n—1 n—1
—A|L2(r”*1dr,%21)z — 0 — - oy + )

For every Banach space X < I%(R"), we denote its radial sub-
space Xyqq := X NL%,.

Now consider a fractional Schrodinger operator # = (—A) +
W, where W is radial. ,# acts invariantly on L*(r"~'dr, 2;) for
each L Upon introducing # = 5|2n-14 g;, We have the
decomposition

H = B DL Ndr, 27) — @ LA(r"dr, 27).

We also make use of the notation 21 := @2,/ for ./ restricted
to d, Lz(r”‘ldr f[) Clearly D(4) = D(#) ﬁLz(r"‘ldr, 27) and
a(%’ Ueo(#4) and s < o4 < 5 < ---. We shall also
use the notation ao(jf’,) for the bottom e1genvalue, o1(4) for the
second smallest eigenvalue and so on.

6.3. Conclusion of the non-degeneracy proof

In this section, we follow the arguments in [43]. We also
assume that n > 2, as the one dimensional case n = 1 reduces to
an easy argument, contained in the proof below.

We have from Proposition 6 that .#, has one simple negative
eigenvalue and from the previous section there is the decompo-
sition of %, in spherical harmonics as

L =Ly ® Ly 21

The non-degeneracy of .#; follows from the following.

Proposition 10.
Ly>1=>6>0.

01(Z4+0) > 0 and there exists § > 0 so that

Remark. We know that o, (Z) =
remaining issue is the point spectrum.

[w, 00), whence the only

Proof. We know that the smallest eigenvalue of .#,, Ey < 0 has a
bell-shaped eigenfunction and hence, it is an eigenvalue of .#, .
The next radial eigenvalue E; cannot be negative since n(.#,) = 1,
thus E; > 0. If E; > 0, we will have shown o1(-%; o) > 0.

Assume, for a contradiction that E; = 0. Then by Proposition 7,
there is an eigenfunction v, such that £, oy = 0, so that v,
has exactly one change of sign. Without loss of generality, let
Y1(r) < 0,1 €(0,19) and (1) > 0 for r € (rg, 00).

Next, we show now that ¢, L Ker[#,]. Indeed, for every
Y e ker[£,], we have that ¥ € H?(R"). Thus, we can approx-
imate by Schwartz functions ¥y — ¥ in H*(R") norm, whence
limy_ oo |24 YN — Z+¥ |2 = 0. We have by (6.7) applied to ¥y,
that

0= (0,Pw, Z+¥)
—(Py, V).

It follows that @, | Ker[.#,]. By a direct calculation we see that

2y o® = —|x|"(p — 1)@,

whence [x|"°®P L ker[.#, o]. Note that since 2b < n, |x|?®P
L?(R™). Now consider

= lim (0,®P,, L ¥n) = — lim (D, ¥y)
N—o0 N—oo

_ PP~ (1)

b
To

@ =co® —1rPPP = d(cg — rPdP 1), ¢

Since @ is bell-shaped, ¢(r) < 0,1 € (0,19) and ¢(r) > 0,1 €
(ro, 00), but since ¢ L ker[#; 0] we have (¢, ) = 0. On
the other hand, ¢¥; > 0, and this is a contradiction. Hence
01(Zs0) > 0.

Finally we show that &, ~; > 0. Note however that since
n(%:) = 1and n( %) = 1, we have ¢, ~; > 0. Hence, we
just need to show that zero is not eigenvalue for .#, -;.

Suppose, for a contradiction, that zero is an eigenvalue for
“#, >1. This implies that zero is an eigenvalue for .¢, ;. Indeed,
otherwise zero is then eigenvalue for .2, >, say 2, >0 = 0.
Since .Z; >3 > %4 1, it will follow that

(L4180, 0) < (L4 20,0) =0.

Consequently, .#; 1 has a negative eigenvalue, which is a con-
tradiction, as we know .#; ~; > 0. Thus, we have reduced our
contradiction argument to the case that ., ; has an eigenvalue
at zero, which we will need to refute now.

Since zero is now assumed to be an eigenvalue for .#,; ;
and %, > 0, it must be at the bottom of the spectrum. Its
eigenfunctions are in the form v; = y¥(x )lx\ ,j=1,...,n, where

v e L 4+ 50, ¥ is an eigenfunction at the bottom of the spectrum
for the operator

. n—1 n—1
Zin = (=0y = ——0 + ——) + o —plr| ")

actmg on functions in Lmd According to Lemma C.4, [39], (—A,)%,
€ (0, 1) is positivity improving for each I > 0, i.e. for every
X, € 2jand every u € HS

rad’

||(—A1)7[UX1]||L2 > II(—Al)flullle ;

whence it is easy to see that (XHu u)de > (& e alul, |u|),_2 .

Thus, we conclude that ¢ > 0, since ¥ is a solutlon of tﬁe
constrained minimization problem

{ (Zeauw)p

u =1
Jullz

— min

or a sequence of Schwartz functions

We now apply formula (6.6) fo
) = ¥(X)i; € Ker[#:] in the H>(R")

Yy approximating vq(x
norm. We have

0 = (B @, L) = lim (3, @. Z,¥y)
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—b lim (

DF, Wy) =
N—o0 |x|

1
b+2

X1

2
X
bzt = b [ e
|X|b+2 R |X|b+3

which is a contradiction. Note that the last integral, the singu—
larity at zero is integrable, since b+ 1 < n,as b < 2, n >
2. This concludes the proof of the proposition as well as the
non-degeneracy of @. O

(x)¥(x)dx < 0.

7. Spectral and orbital stability of the waves

We start with some introductory material regarding the spec-
tral stability of a general class of eigenvalue problems, of which
ours will be a special case.

7.1. Index counting theories: general theory

We need a quick introduction of the instability index count
theory, as developed in [44,45], see also the book [46], as well
as [47-49]. We will only consider special cases, which serve our
purposes. To that end, we consider an eigenvalue problem in the
form

JLf = . (7.1)
We need to introduce a real Hilbert space, so that f € X, its dual
X*, so that ¥ : X — X*, so that the bilinear form (u, v) —
(Zu, v) is a bounded symmetric bilinear form on X x X. Next, #
is assumed to be a bounded operator, which is skew-symmetric,
ie. 7* = — 7. Furthermore, assume that there is an .# invariant
decomposition of the base space in the form

X =X_ @ Ker[.Z] + ®X,.,
where Z|x_< 0, n(.#) := dim(X_) < oo, dim(Ker[#]) < oo and
for some § > 0, %, > 6 > 0. That is, (£¥, ¥) > §|¥lx,.

Next, consider the finite dimensional generalized eigenspace
at the zero eigenvalue, defined as follows

Eo = gKer[ 7 %] = span[U2  [Ker[ 7 1]

Note that Ker[.#] C Ey and introduce EO  Eg =
Consider the integer kgo(f) = "($|EO ). Equivalently, taking
an arbitrary basis in Eo, {Y¥1,...,¥n} C D(¥), define kgo(f)

to be the number of negative eigenvalues of the N x N matrix

2 = ({L Vi, ¥j))ija<ij<N-
Under these general assumptions, it is proved in [44] (see
Theorem 1), that

k4 2k + 2k3° = n(.2) — n(2), (7.2)

Ker[.#] @ E,.

where k; is the number of real and positive solutions A in (7.1),
which account for the real unstable modes, 2k, is the number of
solutions A in (7.1) with positive real part, which account for the
modulational instabilities, and finally 2k§0 is the number of the
dimension of the marginally stable directions, corresponding to
purely imaginary eigenvalue with negative Krein index.

7.2. Index counting theory for (1.5)

For the eigenvalue problem in the form (1 5), we have that
7 is invertible and anti-symmetric, #~! J* = — 7 and
X = HR"),X* = HSR"),n > 1. Note that accordmg to
Proposition 6, we have that n(.#,) = 1, while n(.#_) = 0, whence
n(¥) =n(%) 4+ n(£-) = 1. In addition,

Ker[.£] =span[< ker[di,ﬂ] ) ( ker[(iZL] )]

= span[( qgw )].

Thus, we have that _# : Ker[.£] — (Ker[.£])*
.
we need to solve ¥ : 7.2¥ = ( q;) ) So, ¥ = ( j+0q>‘” )

. For the matrix 2,

and the matrix 2 is a scalar, with
9 = (LW, W) = (LD, D,). (7.3)
According to the formula (7.2), we conclude

ke + 2ke +2k3° = 1 —n(2).

Clearly, in our situation, it is always the case that k, = k§0 =0,
and k, = 1 exactly when (,,s,ﬂ;]@w, @,) > 0and k; = 0, when
(23:14%, ®,) < 0. We formulate our result in the following
corollary.

Corollary 4. For the eigenvalue problem (1.5), spectral stability
occurs exactly when (,Sff(bw, @,) < 0 and instability is when
($;1<I>w, @,) > 0. Moreover, the instability presents itself as a
single, real unstable mode.

Remarks.

e This is reminiscent of the standard Vakhitov-Kolokolov cri-
teria for stability of waves in situations with a simple Morse
index, i.e. Morse index equal to one.

e The case (f;léw, ®,) = 0 presents a transition from
stability to instability, so a pair of eigenvalues crosses from
being purely imaginary +1o0 symmetric with respect to the
origin to being a pair of real ones *A. In this case, the
algebraic multiplicity of the zero eigenvalue for 7. is four,
up from the algebraic multiplicity two in all other cases,
corresponding to the modulational invariance still present
in the system.

7.3. Coercivity of £,

In this section we show the coercivity property of .#, on the
space {®,}*.

Proposition 11. Let (n, s, p, b) € & and (,%:]cbw, ®,) < 0. Then,
the operator .#, is coercive on {®,,} NH". That is, there exists § > 0,
so that for all

(LW, W) > 8|2, Y& L&, (7.4)

Proof. This is a version of a well-known lemma in the theory,
see for example Lemmas 6.7 and 6.9 in [50]. Recall that we have
already showed Ker[.#,] = {0} and n(#,) = 1. According to a
result in [51] (see also Lemma 6.4, [50]), which state that under
these conditions for .#;

=infl(Zf.f) . f L @0, Ifll2 =1} = 0.

Consider the associated constrained minimization problem

(LS. f). (7.5)

IFl= 1fl¢m

Take a minimizing sequence f
o = im(Z.fi. fo)

fell = 1, fi L @, so that

= - )50 + @~ p [ e s20d,

By the properties
(=) F1 = (= A)35, / X2 BP0k
< f X PSP ()P (x)dx,
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we can assume, without loss of generality that fj are bell-shaped.
Note that by (2.6) and the Gagliardo-Nirenberg’s inequality

s—b/2—e

b/2+€
0< / X0 G (o < IRl < Cllfells™ filz * -

=

S

Note that for € = % by Young's inequality, we can derive the

estimate (recall ||fyll2 = 1)
1 s
($+fk7fk) = 5||(—A)7fk||2 - Cn,s,b-

It follows that sup, ||(—A)5fk||2 < o00. By bell-shapedness of
fi @ Ifill2 = 1, we have the pointwise bound |[f(x)] < C|x|™"/2.
This, along with sup, [|fxllns < oo, easily implies compactness in
any Li(|x| > 1),2 < q < oo. On the other hand, in the bounded
domain |x| < 1, there is compactness in [*(|x| < 1). So, assume
without loss of generality that f; itself converges to f strongly in
all L9(|x| > 1),2 < q < oo and in (x| < 1). In particular, f is
bell-shaped, as f; are bell-shaped. So, f # 0.

In addition to that, we can assume, without loss of generality
a weak convergence in H’(R"), fy — f. Note that by the weak
convergence,

f L@, timinf [(=A)2 > = (= 2)3f1,
Ifll2 < timinf [l = 1.

Finally, by splitting in |x| < 1 and |x| > 1 and applying the
different appropriate strong convergences in each (and uniform
bounds in H*), we obtain

lim / x| PP~ (x)f2(x)dx = lim / x| PP (x)f(x)dx.

All in all, we obtain

(Z4f . f) = liminf(Z, fi, fi) = a. (7.6)

We will now show that « > 0. Assume for a contradiction
that « = 0. Since f # 0 (recall f L &,), we see from (7.6)
that the function g = ”L is a minimizer for (7.5). Writing the

L
Euler-Lagrange equation Por it implies

(7.7)

Taking dot product with g and taking into account (%, g,g) =
0,g L &, implies that y = 0. This means that g = Cf/;l@w. But
then,

0= (28,8 =L Dy, D).

2.8 =Yg+,

Since (.z;‘q)w, @,) # 0 by assumption, it follows ¢ = 0. But
then, since Ker[.#,] = {0}, (7.7) implies that g = 0, which is a
contradiction.

So, we have shown that « > 0. In other words,

(20, W) = ||, VO LD, (7.8)

Note that (7.4) is however stronger than (7.8), as it involves || - ||ys
norms on the right-hand side. Nevertheless, we show that it is
relatively straightforward to deduce it from (7.8). Indeed, assume
for a contradiction in (7.4), that g : ||gkllys = 1, & L D, so that

limy (.2, g, &) = 0.
Taking into account (7.8), this is only possible if limy [|gk|l;2 =
0. So,

1= lim{)(~A)3 gl + lgillf] = lim [ (—A4)3 gl

But then, we achieve a contradiction

0= li,?](i@gm &)
= li’I{n[”(—A)%gk”fz + olgl? —p/ x| ®P~ (x)gF (x)dx]
=1,

since limy [ [x|?@P~1(x)g2(x)dx = 0, similar to some previous
steps, as supy ||(—A)%gk||,_2 < 09, |lgkll = 0. A contradiction is
reached, which completes the proof of Proposition 11. O

Knowing that ., |41 > 0 (and we have established some-
thing stronger in (7.4)), we can establish the coercivity of .Z_.

7.4. Coercivity of £_

In Proposition 6, we have already established that .#_ is non-
negative on the subspace {¢}*. We need a stronger coercivity
statement.

Proposition 12.
that

(2w, W) > 58| |2, V¥ L ®.

Let (n, p, s, b) € <. Then, there exists § > 0, so

(7.9)

Proof. Recall that in Proposition 7, we have already seen that
2 (gL = 0. We will show first that

inf (£ u,u) >0.
lul=1ul¢
Assuming not, it follows that .#_ has a second eigenfunction in its
kernel, @ L &. But then, since .#, < £, we have (£, @, ?) <
(Z_@,P) = 0.Hence, 2, |3 5,L< 0 and in particular, .#, has at
least two negative eigenvalues, a contradiction. Thus, there exists
8 > 0, so that

(Z_u,u) > 8|ul®,u L &. (7.10)

We would like to upgrade, as before, the right-hand side to
||u||,2{5. To that end, we assume for a contradiction, that there is
a sequence uy : Uy L @, ||ugllgs = 1, while limy(Z_uy, ug) = 0.
From (7.10), it follows that limy ||ug|| = O, so limy ||(—A)%uk|| =
1. Similar to the proof of Proposition 11 above this yields a
contradiction as well, since

0= li’m(z,uk, u)
K

= im(|(—4)7 uell} + o llul® - f X~ @P " (u(x)dx] = 1.
K

With this, (7.9) is established. O

With Propositions 11 and 12 at hand, we are ready for the
orbital stability result.

7.5. Orbital stability of @,

With the coercivity results in Proposition 11, one might argue
that we have all the necessary ingredients for orbital stability,
according to [52]. We are however missing one key piece of
information, namely the map w — @®,, does not have the required
C' smoothness. Therefore, we need a direct proof, which does not
use the smoothness of this map.

Proposition 13. Let ¢ is non-degenerate, i.e ker[.#;] = {0}, then
e~ t,, is orbitally stable solution of (1.1).

Proof. Recall that a global well-posedness, established in Corol-
lary 1, holds. So, there are unique global solutions, which con-
serve mass and Hamiltonian.

Our proof proceeds by contradictions. More specifically, there
is €o > 0 and a sequence of initial data uy : limy ||ux — @ ||usrny =
0, so that

sup inf [lu(t, -) — €7 ®|lus > €.
0<t<oo V€R
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Recall that E[u] = s7[u] + %ﬂ[u]. Introduce
€x = |E[u(t)] — E[@u]| + [2[uk(t)] — 2[DPy]].

Since we have assumed the conservation laws, we have that ¢ is
conserved and limy ¢, = 0 For all € > 0, define

ty = sup{t : sup [[ug(t) — @|lusn) < €}.

O<t<rt

Note that t, > 0, by the well-posedness. If we let uy = v, +
iwg, then for t e (0, ), we have [|wi(t)llpswny < lluk(t) —

@ ||ysrny < €. Define the modulations parameter 6;(t) so that
[wy(t) — sin(G(t))®] L @, which is
sin(G(t)II@ |l = (wi(t), @). (7.11)

Since |[(wi(t), )| < €]|® |2, there is a unique small solution 6y(t)
of (7.11), with |6,(t)| < €. In addition, we have

lue(t, -)— e Op|lps < flur(t, -)— @ [lus + €4 — 1[[|@ [l < Coe,
where Cy = Co(||@||ps) only. Let
Ty = sup{t : sup [lug(t) — e* () ||ysan) < 2Coe).

O<t<t

Clearly T, > t, > 0 and to complete the proof it is enough to
show that for all € > 0 and large k T, = oo, since we can choose
€ - € K €q.

For t € (0, Ty), write

Vilt, ) = w(t, -) — e O
and decompose into real and imaginary parts of vy and then

project on the vector @ ) This yields

0

vi(t, ) — cos(Ok(t))D
(Ok(£)P

wy(t, -) — sin(Bg(t
) ni(t, -) @
) ) ( adt, ) )L( 0 )

o )+ (e
(7.12)

Note that this decomposition implies n,(t) L &, while g (t) =
wy(t, -) — sin(Gk(t))® L @ by the choice of 6, see (7.11). Taking
[? norms in (7.12) yields

L O NP 1Z + IO % + 1215 = It)]?, < 4G5>, (7.13)

We now exploit the properties of the conserved quantities. We
have

Plut)] = [ 160D 4y (6) dx

R"
= 2[@] + ylt, I +2 / DN y(e, x)1dx.
Rn
But
/ @ (x)R[ Oy (t, x)]dx
- / D (x)[cos(Bi)(vn — cOS(Bk)P) — sin(6i)(w — sin(B)P)ldx =

= pi(t) cos(B(0))l P12

due to i, L @ and wy — sin(6)® L @.
It follows that,

Z[u(t)] = 2[D] + [Yalt, )% + 2uu(t) cos(Br(0)) | @ 1%,

whence by recalling that || (¢, -)ll;2 < 2Cpe,int:0 <t < Ty

|2[u(0)] — 2] + 1¥lt, )II%
2 cos(6i(t)l|® 12

< Clex + IPnlt, %) < Clex + €2).

()] < 71

In the last estimate, recall that |6(t)] < Coe <« 1, whence
cos(6x(t)) > % and the denominator is harmless.
Next, we take advantage of an expansion for E[u(t)] — E[®].

Indeed, for all sufficiently small €, we have
Elu(t)] — E[@] = E[e%® + yy] — E[®]
= E[@ + e Dy ] — E[@].
Generally, for small perturbations of the wave g1 + ig, € H*(R")

and by taking into account the specific form of the energy func-
tional E, we have

E[® + (01 +i02)] — E[P]
1 (7.15)
= 5[<f+91, 01) + (Z-02, 02)] + Err[eq, 021,

where

|Err[o1, 2]

SC/ x|~
Rn

pp+1) , p+1,
2 _

5 L dx.

|® + 01 + 02"t — P — (p + 1)@y

Observe that by elementary second order Taylor expansions of
the function z — |z|P*!, there is the pointwise estimate

pp+1) , p+1,
5 01 . 9

'Iq) + 01+ it — @PH — (p+ 1)dPo; —

< CUl® NI )le1] + lg2)™mP+13),
whence, according to (2.5), we obtain the estimate
|Errlo1. 021l < C / X723 | gp | I3y iy

RH
< Cllor " + oall™® ).
Apply this expansion (7.15) to
01 + iz = e My = [cos(O)(k® + k) + sin(Ok)ek]
+ i[cos(6k)¢k — sin(O ) ® + k)] -
From (7.13), we see that ||o1]|gs + |le2]lus < Ce, so we can bound

the contribution of |Err[o1, 02]| as follows

|Err[o1, 0211 < Ce™™ P~ D10 125 + llo2lls)- (7.16)

Furthermore,

(2101, 01) = (L m) — C(€> + e + (| mills
+ 1 &kllms) + €Cllmillms + 1 2xllns)?)
(£-02,02) = (Z-Ck, &) — C(€ + e+ €(Imellus + 1Cellus)
+e(llmellus + 1gellus)?)-
Due to the coercivity of #_ (see Proposition 12 and more specif-
ically (7.9)) and .#,, which was established in Proposition 11, we
have that for some « > 0 and since ny, ¢ L @, we have
[Elug(t)] — E[@]| >
i(lmilizis + 1 Gellfs) — € + e+ €(Imillas + 12kllus)
+ ™I s+ 1 gwllus ),

or in other words, after some algebraic manipulations and for
sufficiently small € (depending only on absolute constant),

Il + 16Ol < C(€> + er),

where C is a constant that depends on the parameters, but not on
€ and k. We claim that this implies that T; = oo for sufficiently
small € (depending on the parameters only) and then sufficiently

€k

IV 1V

(7.17)
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large k, so that €; < €. Indeed, assume that T; < co. Then

2Coe = lim sup [[Y()llns < CClua(O] 4 (s + 1)l ns)

*
=T —

< Cle? + Jer).

This last inequality is a contradiction, if € : Coe > Ce2 and then
C./ex < GCoe. Both of this can be arranged, so we obtain the
required contradiction, which establishes Proposition 13. O
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