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a b s t r a c t

In this paper, we identify necessary and sufficient conditions for the existence of appropriately localized
waves for the inhomogeneous semi-linear Schrödinger equation driven by the subLaplacian dispersion
operators (−∆)s, 0 < s ≤ 1. We construct these waves and we establish sharp asymptotics, both at the
singularity 0 and for large values. We show the non-degeneracy of these waves. Finally, we provide
spectral and orbital stability classification, under slightly more restrictive assumptions.
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1. Introduction

The main object of consideration in this article will be the
ynamics of the solutions to the Cauchy problem for the fractional
nhomogenous nonlinear Schrödinger equation.2 More precisely,
we consider{

iut + (−∆)su− |x|−b
|u|p−1u = 0, (t, x) ∈ R× Rn, n ≥ 1,

u(0, x) = u0(x)

(1.1)

where we henceforth restrict ourselves to parameters (b, p, s),
satisfying the following natural assumptions b > 0, p > 1, s ∈

(0, 1). Our goal in this article is the construction and the stability
of solitary waves for (1.1). More specifically, the solitons are in
the form of standing waves, that is special solutions in the form
u(x, t) = e−iωtΦω(x),Φ > 0. These satisfy the profile equation3

(−∆)sΦ + ωΦ − |x|−bΦp
= 0, x ∈ Rn. (1.2)

The nonlinear Schrödinger equation arises in various physical
contexts such as nonlinear optics and plasma physics [1]. The
Cauchy problem for the NLS with the inhomogenous nonlinearity
model the beam propagation in an inhomogenous medium [2].

✩ Ramadan is partially supported by a graduate research assistantship under
NSF-DMS # 1614734. Stefanov is partially supported by NSF-DMS # 1908626.
∗ Corresponding author.

E-mail addresses: aramadan@ku.edu (A. Ramadan), stefanov@ku.edu
A.G. Stefanov).
1 All authors contributed equally in all aspects of the work.
2 See Section 2.1 for precise definitions of the fractional derivative operator.
3 The sense in which (1.2) holds is to be made precise later on, see Section 4.
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Fractional NLS also appears in many physical models like water
models, quantum mechanics, Lévy stable process and the frac-
tional Brownian motion [3]. Finally, the model (1.1), with b > 0
appears as an example, with a broken translational invariance,
where special treatment is needed for the analysis of the as-
sociated eigenvalue problems. We now turn to a review of the
literature regarding the well-posedness results for (1.1).

1.1. The model — well-posedness results for the classical case s = 1

The classical model, s = 1, b = 0, p > 1 has been extensively
studied in the literature, in terms of well-posedness of the Cauchy
problem, long time behavior etc. As these results are by now
classical and well-known, we will not review them here, but we
will rather refer the interested reader to the following sources
[4–15].

Recently the well-posedness of (1.1) appeared in the literature
for the Laplacian case, i.e. s = 1. In fact, Farah [16] proved a
Gagliardo–Nirenberg type estimate and use it to establish suffi-
cient conditions for global existence and blow-up in H1(Rn) for
4−2b

n < p < 4−2b
n−2 and 0 < b < min (2, n), which was later

xtended by Dinh [17]. Moreover, Guzmán [18] showed that (1.1)
s globally well-posed for the initial data in Hs(Rn) with 0 ≤ s ≤ 1
sing the contraction mapping principle based on the Strichartz
stimates. In [19], the author showed the global well-posedness
n H1(Rn) of (1.1) with s = 1, using the assumption that if the
initial data u0 satisfies ∥u0∥L2 < ∥ψ∥L2 , where ψ is the unique
positive radial soliton of (1.2). Moreover they also showed strong
instability of the standing waves.

In the paper [20], the author showed the global existence and
blow up of solutions in R2, under various assumptions on the
initial data. In addition, the paper [21] showed that if the initial
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datum u0 ∈ H1(R3) satisfies that the momentum as well as
the Hamiltonian of (1.1) with s = 1, n = 3 is dominated by

same conserved quantities of (1.2) similarly, ∥∇u0∥
1+b
2

L2
∥u0∥

1−b
2

L2
<

∥∇Q∥

1+b
2

L2
∥Q∥

1−b
2

L2
where Q satisfies (1.2), then the solution u to

the Cauchy problem is global in H1(R3) for 0 < b < 1, and
symptotically linear both forward and backward in time for
0 radial and 0 < b < 1/2. In [22], the author studied the
ecay properties of global solutions for the equation(s = 1)
hen 1 < p < 4−2b

n−2 for n ≥ 3 and using this they showed
the energy scattering for the equation in the case 1 +

4−2b
n <

p < 1 +
4−2b
n−2 . In [23], the authors have studied the global well-

osedness for the defocusing inhomogeneous NLS, whose scaling
ritical index sc < 0. In [24], the authors showed the L2−norm
oncentration for the finite time blow-up solution for the focusing
NLS. The same authors later in [25] investigated the blow-up
nd scattering criteria above the threshold for the same equation.
hen, [26] has considered the model (1.1), with non-linearity
x|b|u|p−1u, b > 0. He has identified essentially sharp conditions
nder which the solutions exist globally and others, under which
he solutions blow up in finite time.

We now turn our attention to the issue of the existence of the
olitary waves and their stability.

.2. Solitary waves and stability in the classical case s = 1

The question for existence of solitary waves (1.2) and their
tability was investigated in some specific instances of nonlin-
arity g(x, |u|2)u in the late 90’s in [27]. Specifying to the case
(x)|u|p−1u, and in particular to the case, V = V (ϵ|x|), 0 < ϵ ≪ 1
as considered in [28,29], see also the more recent work [30].
A general problem modeled by (1.1), was studied systemati-

ally for first time in the work of De Bouard–Fukuizumi, [2]. More
recisely, they consider classical NLS (i.e. s = 1) with focusing
onlinearity V (x)|u|p−1u, where V ≥ 0,

∈ L
2n

n+2−(n−2)p
loc. (Rn), lim

x→∞
V (x)|x|b = 1, (1.3)

which of course contains the important case V (x) = |x|−b, under
the constraints 0 < b < 2, n ≥ 3, 1 < p < 1 +

4−2b
n−2 .

In this work, they show the existence of non-negative solitary
wave solutions under the same assumptions. Furthermore, they
showed that there exists ω∗ > 0, so that the stability of the said
olitary waves holds in the range 0 < b < 2, n ≥ 3, 1 < p <
1+

4−2b
n , when the spectral parameter ω ∈ (0, ω∗). The key step

n the stability proof is to show that the linear operator associated
ith the second variation of a Lyapunov functional,4 which is
on-degenerate, for this they adapt a method of [31]. The work
n a way supplements the earlier work [32], where the instability
f the waves was shown in the range p > 1 +

4−2b
n , n ≥ 3, for

mall enough ω > 0. Further, more general instability results
ave appeared in [33].
The authors in [34,35] proved similar results (both for the

table and unstable waves, with frequency ω close to zero), but
in the case of non-degeneracy of the linearized operator they
employ the spherical of harmonics of the Laplacian.

1.3. The fractional case 0 < s < 1

The case of the fractional Schrödinger operator, that is s ∈

(0, 1), has also received considerable attention in recent years. Re-
garding the well-posedness for the standard power non-linearity,

4 Although a key assumption, namely b < 2 has to be revised to b < 3
2 in

the case n = 3, more on this below.
 s
we mention the work of Dinh, [3] and the references therein. The
paper [36] studied the well-posedness of (1.1) with b < 0. Unfor-
tunately, we are not aware of any local and global well-posedness
results for (1.1). It looks however that the work [37] seems to
contain all necessary ingredients in terms of estimates and one
has to proceed as in [16]. We leave this line of investigation open
to other researchers.

Regarding solitary waves for the fractional NLS, the real break-
through came in the article [38], which deals with the case b =

0, n = 1, s < 1 about the existence of positive solution of
(1.2) has been studied by the authors in [38]. Moreover, the non-
degeneracy of the ground state is shown, which plays a very
important role in orbital stability of such solutions. In a later
work, [39] generalizes the above results in any dimension. More
precisely, the uniqueness and non-degeneracy of the ground state
solution for (−∆)sQ + Q − |Q |

p−1Q = 0, with Q ∈ Hs(Rn) was
established in Rn, n ≥ 1, s ∈ (0, 1) where 1 < p < 1 +

4s
n−2s for

0 < 2s < n and 1 < p <∞, 2s ≥ n.
The fractional case 0 < s < 1 and b > 0 was studied in detail

in [40] in great detail. The authors considered both the Cauchy
theory for (1.1) (and in fact for more general models), as well
as provided a construction scheme for small solitary waves. In
addition, they establish the set stability for these waves.5 These
were done under conditions close to ours, as is to be expected. We
discuss their global existence results below, see Proposition 1 as
this will be important for the orbital stability arguments.

Our goal is to investigate the existence of the waves Φ , given
by (1.2), as well as their stability properties. Let us introduce the
formally conserved quantities of (1.1):

• the L2 norm

P[u] =
∫
Rn

|u(x)|2dx

• the Hamiltonian

H [u] =
1
2

∫
Rn

|(−∆)
s
2 u(x)|

2
dx−

1
p+ 1

∫
Rn

|x|−b
|u(x)|p+1dx.

We will also make use of the total energy functional, defined as
follows

E[u] := H [u] +
ω

2
P[u].

In fact, a variant of the local well-posedness theory, presented in
Theorem 4.6.6 in [10] for the case s = 1, guarantees that for a data
u0 ∈ Hs(Rn), 1 < p < 1+ 4s−2b

n−2s , there exists time T0 = T0(∥u0∥Hs ),
o that a strong solution u(t, ·) ∈ Hs(Rn) to (1.1) exists in 0 < t <
0 and moreover P(u(t)) = P(u0),H (u(t)) = H (u0).
Next, we discuss the linearization of (1.1) around the standing

waves e−iωtΦω . We perform a standard linearization procedure,
namely we take u = e−iωt

[Φω + v], plug it in (1.1) and ignoring
the higher order terms O(v2), we arrive at the linearized system,
which after v = (ℜv,ℑv) =: (v1, v2) can be written as(

ℜv

ℑv

)
t
=

(
0 −1
1 0

)(
L+ 0
0 L−

)(
ℜv

ℑv

)
, (1.4)

where the following fractional Schrödinger operators are intro-
duced

L+ = (−∆)s + ω − p|x|−bΦp−1,

L− = (−∆)s + ω − |x|−bΦp−1.

Note that at this point, the properties of the potential |x|−bΦp−1

are not yet understood, but one has to definitely address the issue

5 This is however weaker than the orbital stability established herein, as it
hows that starting close to a soliton, once stays close to the shape of the same
oliton, rather than a member of some, potentially large, set of minimizers.
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of its singularity at zero. This shall be a major concern going
forward. We just mention that for the purposes of the stability
considerations, it is convenient on using the standard domain
D(L±) = H2s(Rn), which will lead to some mild additional,
perhaps unnecessary, restrictions on the parameters.

Upon the introduction of the operators

J :=

(
0 −1
1 0

)
,L :=

(
L+ 0
0 L−

)
,

and the assignment
(

ℜv

ℑv

)
→ eλt

(
v1
v2

)
=: eλt v⃗, we obtain

the following time-independent linearized eigenvalue problem

J L v⃗ = λv⃗. (1.5)

1.4. Stability and well-posedness

Before we formally state our results, we need a few rigorous
definitions about the objects that we study. We employ the
following standard definition of stability.

Definition 1. We say that the wave e−iωtΦ is spectrally stable,
if the eigenvalue problem (1.5) has no non-trivial solutions (λ, v⃗),
with ℜλ > 0. Otherwise, in the cases where there is λ : ℜλ > 0
and v⃗ ̸= 0, so that (1.5) is satisfied, we say that the wave e−iωtΦ

is spectrally unstable and λ is referred to as an unstable mode for
(1.5).

We say that e−iωtΦ is orbitally stable in Hs(Rn), if the Cauchy
problem is globally well-posed in Hs(Rn). In addition, for every
ϵ > 0, there exists δ = δ(ϵ), so that whenever ∥u0−Φ∥Hs(Rn) < δ,
then the following statements hold.

• The solution u of (1.1), in appropriate sense, with initial data
u0 ∈ Hs is globally in Hs(Rn), i.e. u(t, ·) ∈ Hs(Rn).

•

sup
t>0

inf
θ∈R

∥u(t, ·)− ei(ωt+θ )Φ(·)∥Hs(Rn) < ϵ.

As we see, the local and global well-posedness property of the
dynamics is a necessary component of an unconditional orbital
stability statement. Fortunately, the results in [40] provide just
the right statement. We restate a simplified, yet representa-
tive, version of their result, which fits our purposes. This is the
substance of Proposition 3, [40], but see also Section 4.2

Proposition 1. Let n ≥ 1, 0 < s < 1, and

p < p∗ =
{

1+ 4s−2b
n−2s 2s < n

∞ n = 1 & s ∈ ( 12 , 1)

onsider the model

ut + (−∆)su− a(x)|u|p−1u = 0, x ∈ Rn, (1.6)

where a ∈ Lq1loc + Lq2 (|x| > 1), with q0 < q1, q2 ≤ ∞,

q0 =
{ 2n

2n−(p+1)(n−2s) 2s < n
1 n = 1 & s ∈ ( 12 , 1).

hen, the problem (1.6) is locally well-posed in Hs(Rn). That is, there
exists Tmax = Tmax(∥u0∥Hs ), so that there is unique solution u ∈

L∞t Hs(Rn) ∩ W 1,∞(H−s) of (1.6), so that conservation of mass and
amiltonian hold.
Finally, regarding global well-posedness, if p < 1 +

4s
n and

(x) ∈ Lq1 (|x| < 1), where q1 > 2n
4s−(p−1)n , then the solutions are

lobal — that is Tmax = ∞ and the conservation laws are globally
onserved.

As an immediate consequence of this result, for the case a(x) =
x|−b, we have the following Corollary.
orollary 1. Let n ≥ 1, 0 < s < 1 and b < 2s. Assuming in
addition that 1 < p < 1 +

4s−2b
n , then the Cauchy problem (1.1) is

globally well-posed in Hs, with the conservation laws conserved for
all t : 0 < t <∞

P[u[t]] = P[u0], H [u[t]] = H [u0].

Proof. For the proof, it suffice to note that the condition for global
well-posedness

|x|−b
∈ Lq1 (|x| < 1), q1 > 2n

4s−(p−1)n is met exactly for 1 < p <
+

4s−2b
n . The other conditions are weaker than that, whence the

result follows. □

1.5. Main results

We now introduce a subset in the parameters space (n, p, s, b),
which will be helpful in the sequel.

Definition 2. We say that (n, p, s, b) ∈ A , if the parameters are
in the range below

A :=

⎧⎪⎨⎪⎩
n = 1, 1

2 ≤ s < 1, 0 < b < 1, 1 < p <∞

n = 1, s ∈ (0, 1
2 ), 0 < b < 2s, 1 < p < 1+ 4s−2b

1−2s

n ≥ 2, s ∈ (0, 1), 0 < b < 2s, 1 < p < 1+ 4s−2b
n−2s

.

This set will turn out to describe the necessary and sufficient
conditions under which Φω exists.

Our first theorem is a sufficiency result for the existence of the
solitary waves Φω .

Theorem 1 (Existence Results). Let (n, p, s, b) ∈ A , ω > 0. Then,
there exists a bell-shaped function6 Φω ∈ Hs(Rn)∩ L1(Rn)∩ L∞(Rn),
o that Eq. (1.2) is satisfied in a distributional sense. If (1.2) is also
atisfied in the strong sense then

ω = ((−∆)s + ω)−1
[|x|−bΦp

ω]. (1.7)

inally, under the assumption s ∈ ( 12 , 1], we have that φ ∈ C1(Rn
\

{0}).

Remark. We have in fact much more precise description about
the behavior of φ,∇φ in Proposition 5.

Interestingly, we have the appropriate converse statement,
which makes A the necessary and sufficient set of requirements
for the solvability of (1.2).

Theorem 2. Assume that a positive function ψ ∈ Hs(Rn)∩L1(Rn)∩
L∞(Rn) satisfies

−∆)sψ + ωψ = |x|−bψp

n a distributional sense. Then (n, p, s, b) ∈ A and ω > 0.

Next, we are concerned with the stability of the waves con-
tructed in Theorem 1.

heorem 3. Let (n, p, s, b) ∈ A and ω > 0. In addition, assume
hat 2b < n and s ∈ ( 12 , 1]. Let Φω be the solution constructed in
Theorem 1. Then,

(1) the linearized operators L±,D(L±) = H2s(Rn) are self-
adjoint and Φω ∈ D(L+).

(2) Φω non-degenerate, in the sense that Ker[L+] = {0}.

6 That is, a non-negative radial function, which is non-increasing in the radial
variable.
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For 1 < p < 1+ 4s−2b
n the soliton e−iωtΦω is spectrally and orbitally

stable. In the complementary range,

1+
4s− 2b

n
< p <

{
∞ n = 1

1+ 4s−2b
n−2s n ≥ 2,

the soliton is spectrally unstable.

Remarks.

(1) According to the necessity statements in Theorem 2, the
results in Theorem 3 provide a full classification of the
bell-shaped solutions that exists, in the cases s ∈ ( 12 , 1)
and 2b < n. Note that the constraint 2b < n is already
contained in the necessity assumption for n ≥ 4.

(2) In the case n = 3, the constraint b < 3
2 is slightly worse

than the necessity assumptions, b < 2. This was the claim
in [2], but one certainly faces some difficulties (specifically
with D(L+)) in the range b ∈ ( 32 , 2). See the remarks after
Corollary 3.

(3) Our results seem to be new even in the case s = 1, in
low dimensions, n = 1, 2. The restrictions b < 1

2 for
n = 1 and b < 1 for n = 2 are more restrictive than
the necessary assumptions (n, p, s, b) ∈ A . It is interesting
whether one can establish rigorously the stability situation
for these parameters. As we discuss at length, the main
issue is to make sense of the functional analytic framework,
in particular the domains of the linearized operators L±.

(4) The case p =
4s−2b

n is a bifurcation case, where one gets a
crossing through zero of a pair of purely imaginary eigen-
values to a pair of stable/unstable real eigenvalues. This
is also where Eq. (1.1) enjoys an extra, so called pseudo-
conformal symmetry, hence the extra pair of eigenvalues
at zero. Even though one has spectral stability for this
case, one generally expects the corresponding waves to be
spectrally unstable, as in the classical NLS, see the seminal
paper [41] for details.

he paper is planned as follows. In Section 2, we give some
necessary preliminaries such as function spaces, asymptotics of
the Green’s functions for the fractional Laplacian, the basics of
rearrangements and a weighted Sobolev inequality. In Section 3,
we introduce the Pohozaev’s identities, which in turn imply the
necessary conditions for the existence of the waves, which is the
content of Theorem 2. In Section 4, we present the variational
construction of the waves along with some further properties of
the profiles, such as boundedness, sharp asymptotics at zero and
smoothness. In Section 5, we provide a self-adjoint realization of
the linearized operators L±, followed by some preliminary coer-
civity properties. We also introduce the Frank–Lenzman–Silvestre
Sturm oscillation theory for fractional Schrödinger operators as
well as an adaptation of their method to our situation, which has
to address singular potentials in the next section. In Section 6,
we establish the non-degeneracy of the waves. This requires
decomposition in spherical harmonics and careful analysis on
the radial subspace by using the Frank–Lenzman–Silvestre theory
developed in the previous section as well as an argument to
rule out non-trivial elements in the first harmonic subspace. In
Section 7, we provide a short introduction to the index counting
theory, which provide an useful criteria for spectral stability. In
Propositions 11 and 12, we show the coercivity of L± on {Φ}

⊥,
which is an important ingredient of the orbital stability scheme.
Finally, we show the orbital stability (whenever spectral stability
holds) in Proposition 13.
2. Preliminaries

2.1. Function spaces, Fourier transform and basic operators

In order to fix the notations, we shall use the standard expres-
sions for ∥·∥Lp(Rn), 1 ≤ p ≤ ∞ as well as the following expression
for the Fourier transform and its inverse

f̂ (ξ ) =
∫
Rn

f (x)e−2π ix·ξdx, f (x) =
∫
Rn

f̂ (ξ )e2π ix·ξdξ .

The operators (−∆)s, 0 < s < 1 are defined in a classical
way on the Schwartz class7 S via ˆ(−∆)sf (ξ ) = (2π |ξ |)2s f̂ (ξ ).
Accordingly, the Sobolev spaces are taken ∥f ∥Ḣs := ∥(−∆)s/2f ∥L2 ,
∥f ∥Hs = ∥f ∥Ḣs + ∥f ∥L2 . More generally, the Sobolev spaces
Wα,p, α > 0, 1 < p < ∞ are introduced as completions of the
Schwartz family in the norms ∥f ∥Wα,p := ∥(−∆)s/2f ∥Lp + ∥f ∥Lp .
The use of weighted spaces is necessitated by the context, so we
introduce

∥f ∥L̇q,−b =

(∫
Rn
|x|−b

|f (x)|qdx
)1/q

.

The following commutator identity, see [p. 1703, 39], will be
of special interest

[(−∆)s, x · ∇x] = 2s(−∆)s. (2.1)

e will also need properties of the kernel of the operator (I +
−∆)s)−1, s > 0. We state a precise result next.

emma 1. Let 0 < s < 1. Then, the function Gs(x) : Ĝs(ξ ) =

1+ (4π2
|ξ |2)s)−1 satisfies.

• There is C = Cs,n, so that

Gs(x) ≤ Cs,n|x|−n

when |x| > 1.
• For |x| ≤ 1, there is

Gs(x) ∼

⎧⎨⎩ |x|2s−n
+ O(1) 2s < n

ln(2/|x|)+ o(x) 2s = n
1+ o(x) 2s > n

.

• Gs > 0, Gs ∈ L1(Rn).

egarding ∇Gs, we have the following bounds, in the regime 2s < n

∇Gs(x)| ≤ C
{

|x|−n−1
|x| > 1

|x|2s−n−1
|x| ≤ 1

(2.2)

roof. First, take a partition of unity, so that there is a function
, supported in {ξ : |ξ | < 1} and ζ (ξ ) := ϕ(ξ ) − ϕ(2ξ ), whence
(ξ )+

∑
∞

k=1 ζ (2
−kξ ) = 1. Let |x| > 1, say |x| ∼ 2l, l ≥ 0. We have

he partition of unity

= ϕ(2lξ )+ (1− ϕ(2lξ )) = ϕ(2lξ )+
∞∑

k=1−l

ζ (2−kξ )

hence

s(x) =
∫

1
1+ (4π2|ξ |2)s

e−2π ix·ξdξ

=

∫
1

1+ (4π2|ξ |2)s
e−2π ix·ξϕ(2lξ )dξ +

+

∞∑
k=1−l

∫
1

1+ (4π2|ξ |2)s
e−2π ix·ξ ζ (2−kξ )dξ .

7 And then by extension in any Banach space for which S is a dense
subspace.
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In the first integral, we estimate the integrand by absolute value,
whence we obtain the bound C2−ln

∼ |x|−n. For a given x, we
identify j ∈ [1, n], so that |xj| ≥ 2l

n . Integrating by parts N times
in the variable xj (and N > n + 1) and taking absolute values
implies a bound
∞∑

k=1−l

1
(2k|xj|)N

2kn ≲ 2−ln
∼ |x|−n.

For |x| < 1, let us consider the case 2s < n, as the others are
similar and somewhat simpler. Say |x| ∼ 2−l, l ≥ 0. We now use
the partition of unity

1 = ϕ(2−lξ )+
∞∑

k=l+1

ζ (2−kξ )

Again, for the integral with ϕ(2−lξ ) we estimate by the absolute
values⏐⏐⏐⏐∫ 1

1+ (4π2|ξ |2)s
e−2π ix·ξϕ(2−lξ )dξ

⏐⏐⏐⏐ ≤ C2l(n−2s)
∼ |x|2s−n,

while for the other integrals, we again integrate by parts N times
in |xj| ≥ 2−l

n . The estimates are again
∞∑
=l+1

1
(2k|xj|)N

2k(n−2s)
≤ C2l(n−2s)

∼ |x|2s−n.

For ∇Gs, the bounds (2.2) follow in an identical manner, once
we recognize that taking derivatives results in an extra power of
|x|−1.

The statement Gs > 0 (and in fact Gs is bell-shaped), can be
proved via the representation

1
1+ (4π2|ξ |2)s

=

∫
∞

0
e−t(1+(4π2

|ξ |2)s)dt =
∫

∞

0
e−te−t(4π2

|ξ |2)sdt

nd the well-known fact that ê−|ξ |2s is a bell-shaped function, as
long as 0 < s ≤ 1. Thus,

∥Gs∥L1 =

∫
Gs(x)dx = Ĝs(0) = 1. □

2.2. Rearrangements

In this subsection, we discuss the techniques of rearrange-
ments. Let A be a measurable set of finite volume in Rn. Its
symmetric rearrangement A∗ is the open centered ball whose
volume agrees with A, i.e. A∗ = {x ∈ Rn

: |ωn||x|n < Vol(A)}. For
haracteristic functions of measurable sets, define (χA)∗ := χA∗

Definition 3. Let f : Rn
→ R be a measurable function

that vanishes at infinity, i.e. for all t > 0 we have df (t) :=

|{x : |f (x)|> t}| <∞.
We define the symmetric decreasing rearrangement f ∗ of f

by symmetrizing its level set, namely f ∗(x) :=
∫
∞

0 χ{|f (x)|>t}∗dt
and df ∗ (t) = df (t). A function is called bell-shaped, if f = f ∗.
In particular, f = f ∗ ≥ 0.

Recall the rearrangement inequality∫
Rn

f (x)g(x)dx ≤
∫
Rn

f ∗(x)g∗(x)dx, (2.3)

alid for all functions vanishing at infinity. In addition, if one of
he functions, say f , is strictly decreasing, the equality is possible
nly if g is bell-shaped, i.e. g = g∗.
Next, we state the Polya–Szegö inequalities, which will be

nstrumental in our approach.
Lemma 2. For β ∈ (0, 1) and f ∈ Hβ (Rn), its decreasing
earrangement f ∗ ∈ Hβ (Rn) and

(−∆)
β
2 f ∥L2 ≥ ∥(−∆)

β
2 f ∗∥L2 . (2.4)

The full proof of this result is standard. It can be found, for
example, in [Appendix A, 42].

Our next proposition deals with a control of the weighted
norms appearing in (3.2) in terms of a Sobolev embedding.

2.3. Weighted Sobolev inequality

Proposition 2. For either one of the cases,

• n = 1, σ ∈ [
1
2 , 1), 0 < a < 1, 2 ≤ q <∞,

• n = 1, 0 < σ < 1
2 , 0 < a < 2σ , 2 ≤ q < 2+ 4σ−2a

1−2σ ,
• n ≥ 2, 0 < σ < 1, 0 < a < 2σ , 2 ≤ q < 2+ 4σ−2a

n−2σ ,

there exists C, depending on all parameters, so that(∫
Rn
|x|−a

|φ|qdx
) 1

q

≤ C∥φ∥Hσ (Rn). (2.5)

Remark. Note that the assumptions in Proposition 2 ensure that
a < n. Also, for q = 2, there is the estimate(∫

Rn
|x|−a

|φ|2dx
) 1

q

≤ Cϵ∥φ∥H
a
2+ϵ (Rn)

, (2.6)

or every ϵ > 0.

roof. For the case n ≥ 2, σ > 0, 0 < a < 2σ , and 2 ≤ q <
+

4σ−2a
n−2σ , we proceed as follows. By Sobolev embedding, we have,

since n
(

1
2 −

1
q

)
< σ ,(∫

|x|>1
|x|−a

|φ|qdx
) 1

q

≤

(∫
|x|>1

|φ|qdx
) 1

q

≤ C∥φ∥Lq ≤ C∥φ∥Hσ .

Next, for |x| < 1(∫
|x|<1

|x|−a
|φ|qdx

) 1
q

≤ C

⎛⎝ ∞∑
j=0

2ja
∫
|x|∼2−j

|φ|qdx

⎞⎠ 1
q

And by Hölder inequality we have for every r ≥ q,∫
|x|∼2−j

|φ|q ≤

(∫
|φ|r

) q
r

(2−jn)(1−
q
r ).

Thus(∫
|x|<1

|x|−a
|φ|qdx

) 1
q

≤

⎛⎝ ∞∑
j=0

(2−jn)(1−
q
r )+ja

∥φ∥
q
Lr (|x|∼2−j)

⎞⎠ 1
q

.

elect any r ∈ (q,∞), so that

< n
(
1−

q
r

)
, n

(
1
2
−

1
r

)
< σ

That is,

1
2
−
σ

n
<

1
r
<

1− a
n

q
,

which is possible, due to the restriction 2 ≤ q < 2 +
4σ−2a
n−2σ . We

ave⎛⎝ ∞∑
(2−jn)(1−

q
r )+ja

∥φ∥
q
Lr (|x|∼2−j)

⎞⎠ 1
q

j=0
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0

=

⎛⎝ ∞∑
j=0

(2j(a−n(1− q
r )))∥φ∥q

Lr (|x|∼2−j)

⎞⎠ 1
q

≤ Cr sup
j
∥φ∥Lr (|x|∼2−j) ≤ Cr∥φ∥Lr ≤ Cr∥φ∥

H
n
(
1
2−

1
r
) ≤ Cr∥φ∥Hσ .

where in the last step we have used the Sobolev embedding and
n
( 1
2 −

1
r

)
< σ . The case n = 1, σ ∈ (0, 1

2 ), a < 2σ , 2 ≤ q <
+

4σ−2a
1−2σ is done in an identical manner.

For the case n = 1, σ ≥
1
2 , 2 ≤ q < ∞ is as follows. By

obolev embedding Hσ (R) ↪→ Lq(R), so∫
|x|>1

|x|−b
|φ|qdx

) 1
q

≤

(∫
|x|>1

|φ|qdx
) 1

q

≤ C∥φ∥Hσ .

he term
(∫

|x|<1 |x|
−b
|φ|qdx

) 1
q
is controlled in the same way as

bove, we omit the details. □

emark. An easy formulation of the requirements in Corollary 2
ould be to say that the parameters (n, q−1, σ , a) belong to the
et A .

. Necessary conditions for the waves: proof of Theorem 1

The approach for the proof of Theorem 1 is to exploit the
scaling and the associated Pohozaev’s identities, which in due
course will lead us to the set of constraints A .

3.1. Pohozaev identities and consequences

Before we make assumptions on the smoothness and decay
properties of the profiles φ, and in addition the sense in which
(1.2) is satisfied, (1.2) remains a formal object. In order to further
demystify the ranges in which one might expect reasonable solu-
tions of (1.2), we provide the following Pohozaev type identities.

Lemma 3 (Pohozaev Identities). Assume that 0 < b < n and
ψ ∈ Hs(Rn) ∩ L∞(Rn) ∩ L1(Rn), with ψ > 0 satisfies

−∆)sψ + ωψ − |x|−bψp
= 0 (3.1)

n a distributional sense. Then,∫
Rn
|x|−bψp+1dx =

2ws(p+ 1)
2(n− b)− (n− 2s)(p+ 1)

∫
Rn
ψ2dx. (3.2)∫

Rn
|(−∆)s/2ψ |

2
dx =

w(n(p+ 1)− 2(n− b))
2(n− b)− (n− 2s)(p+ 1)

∫
Rn
ψ2dx. (3.3)

ω

∫
Rn
ψ(x)dx =

∫
Rn
|x|−bψpdx. (3.4)

Proof. A formal proof (i.e. one where we assume that ψ has
nough smoothness and decay properties) is as follows. Take a
ot product with ψ in (3.1) and integrating by part we get

|(−∆)s/2ψ |
2
dx+ ω

∫
ψ2(x)dx =

∫
|x|−bψp+1(x)dx.

If we take a dot product with x · ∇xψ =
∑n

j=1 xj∂jψ , taking
into account the commutation formula (2.1) and various integra-
tion by parts calculations, we obtain another relation between∫
|(−∆)s/2ψ |2dx and

∫
|x|−bψp+1(x)dx, namely

(s−
n
2
)
∫

|(−∆)s/2ψ |
2
dx+

n− b
p+ 1

∫
|x|−bψp+1(x)dx

=
nω

∫
ψ2(x)dx.
2

Solving the last two relations for
∫
|(−∆)s/2ψ |2dx,

∫
|x|−bψp+1dx,

we obtain (3.2), (3.3). Integrating (3.1) yields (3.4).
For ψ , which is not necessarily smooth and decaying, one

follows similar scheme. To establish (3.2), test Eq. (3.1) by a se-
uence of Schwartz function ψN with limN ∥ψN−ψ∥Hs(Rn)∩L1(Rn) =

and then take limits. In order to show (3.3), test (3.1) by
· ∇ψN . Again taking into account the commutation relation

(−∆)s, x·∇] = 2s(−∆)s and taking limits as ψN → ψ establishes
3.3). The formula (3.4) is proved after testing (3.1) by a function
(x/N),N ≫ 1 (where χ is compactly supported and χ (x) =

, |x| < 1) and taking limits N → ∞. □

Implicit in the formulas (3.2), (3.3) displayed above is that the
arameters need to satisfy certain conditions, so that ψ exists.
e collect the necessary conditions in the following corollary.

orollary 2. Let p > 1, n ≥ 1, s ∈ (0, 1), b > 0. If ψ with
roperties listed in Lemma 3 exist, then ω > 0 and the parameters
ust satisfy one of the following relations:

• n = 1, s ∈ [
1
2 , 1), 0 < b < 1, 1 < p <∞.

• n = 1, 0 < s < 1
2 , b < 2s,

1 < p < 1+
4s− 2b
1− 2s

.

• n ≥ 2, b < 2s,

1 < p < 1+
4s− 2b
n− 2s

. (3.5)

emark. Corollary 2 simply states that if ψ solves (3.1), then
n, p, s, b) ∈ A .

Proof. The fact that ω > 0 follows from (3.4). If ψ(0) > 0 and
the integral on the left-hand side of (3.2) exists, it is non-singular
at zero and hence b < n.

From the positivity of the left-hand sides of (3.2), (3.3) and
n(p + 1) − 2(n − b) = n(p − 1) + 2b > 0, it follows that
2(n − b) − (n − 2s)(p + 1) > 0. In particular, for n = 1, the
conditions are satisfied if s ≥ 1

2 , 1 < p < ∞ or 0 < s < 1
2 , but

then 2s > b, 1 < p < 1+ 2 2s−b
1−2s .

For n ≥ 2, note that we always have n − 2s > 0, whence we
come up with b < 2s and (3.5). □

Clearly, Corollary 2 establishes Theorem 2.

4. The variational construction and properties of the minimiz-
ers

We start with some elementary observations, which will iden-
tify conditions under which an important variational problem is
well-posed.

4.1. Well-posedness of the variational problem

Consider the following functional

Iω[u] =

∫
Rn |(−∆)s/2u|2 + ω

∫
Rn u2(∫

Rn |x|−b
|u|p+1) 2

p+1
.

We shall henceforth assume8 that b < n, ω > 0 and 0 < s < 1.
o, for any function u ∈ Hs(Rn) ∩ L∞(Rn) : u ̸= 0, we have that
<
∫
Rn |x|−b

|u|p+1dx <∞, so that the ratio Iω[u] is well-defined.

8 And in fact, we shall pose some more restrictions later on.



A. Ramadan and A.G. Stefanov / Physica D 414 (2020) 132691 7

I
t

T

I

T

W
r
f
d
l

f
f

s
t
c
a
H

b

|

B
φ
K
f
o

Since for u ∈ S For every u ̸= 0, Iω[u] > 0, we will consider the
non-negative scalar function

m(ω) := inf
u∈S

Iω[u].

In the case when the parameters ensure that m(ω) > 0, will
be referred to well-posedness, versus the trivial case m(ω) = 0
(which is certainly possible for certain parameter ranges) will be
referred to as lack of well-posedness or ill-posedness. We have
the following elementary lemma.

Lemma 4. Assume that m(1) > 0. Then,

m(ω) = m(1)ω
(n−2s)
2s(p+1) [p−(1+ 4s−2b

n−2s )]
. (4.1)

n addition, if φ is a minimizer for I1[u] → min, i.e. m(1) = I1(φ),
hen φω(x) := φ(ω

1
2s x) is a minimizer for Iω[u] → min.

Proof. Take φ(x) = ψ(λx) then

Iω[φ] =
λ−n+2s

∥(−∆)s/2ψ∥2 + ωλ−n
∥ψ∥2

λ
2( n−b

p+1 )
(∫

Rn |x|−bψp+1
) 2

p+1
.

aking ω = λ2s implies the formula

ω[φ] = ω
−n+2s− 2(n−b)

p+1
2s I1(ψ),

whence the formula (4.1) follows by straightforward algebraic
manipulations. □

Remarks.

• As was have discussed above, the well-posedness is equiva-
lent to m(1) > 0. So far, we have not addressed this issue in
a satisfactory manner. Lemma 4 just establishes that m is a
specific power function, if the functional Iω is bounded from
a positive constant.

• Note however that under the standing assumptions s > 0,
p > 1, the power of ω appearing in (4.1) is negative exactly
when (n, p, s, b) ∈ A .

4.2. Existence of minimizers

Our next goal is to obtain an existence result, which holds
precisely when (n, p, s, b) ∈ A . As is clear from Proposition 2,
it suffices to consider the case ω = 1.

Proposition 3. Let (n, p, s, b) ∈ A . Then the unconstrained
minimization problem

Iω[u] → min (4.2)

has a bell-shaped solution φ ∈ Hs(Rn) ∩ Lp+1,−b, in particular
m(ω) > 0.

If φ is a minimizer of (4.2), with ∥φ∥Lp+1,−b = 1, then φ satisfies
the Euler–Lagrange equation

(−∆)sφ + ωφ −m(ω)|x|−bφp
= 0 (4.3)

in the following weak sense: for each h ∈ C∞

0 (Rn
\ {0}), there is

⟨(−∆)sφ + ωφ − m(ω)|x|−bφp, h⟩ = 0. Finally, for the linearized
operator,

L+ = (−∆)s + ω − pm(ω)|x|−bφp−1,

we have that for each real-valued h ∈ C∞

0 (Rn
\ {0}) :

∫
|x|−bφp(x)

h(x)dx = 0, ⟨L+h, h⟩ ≥ 0.
Remark.

• Proposition 3 does not claim the boundedness of the min-
imizer φ, i.e. the possibility that limx→0 φ(x) = ∞ is left
open.

• Related to the previous point, the Euler–Lagrange equation
may have a significant singularity at zero, due to the pres-
ence of |x|−b and the possible singularity of φ at zero. We
sidestep the issue for the moment, by testing (4.3) away
from zero as h ∈ C∞

0 (Rn
\ {0}).

• The non-negativity property of L+ over the set h ∈ C∞

0 (Rn
\

{0}), h ⊥ |x|−bφp, normally would indicate that L+ has at
most one negative eigenvalue. This would eventually turn
out to be the case, see Proposition 6. Here, we are forced
to restrict to a restricted set of test functions, namely h ∈

C∞

0 (Rn
\ {0}), as we have not yet resolved the issue with the

singularity of the potential x → |x|−bφp(x) at zero.

Proof. By the arguments in Lemma 4, it suffices to consider the
case ω = 1. By the assumption (n, p, s, b) ∈ A , it follows from
Proposition 2(∫

|x|−bφp+1
) 2

p+1

≤ C∥φ∥2Hs .

Whence

inf
u̸=0

I1[u] ≥ C−1.

hus, the variational problem (4.2) is well-posed or equivalently
m(1) > 0.

We now need to show that (4.2) actually has a solution.
To that end, observe that by the Polya–Szegö inequality (2.4),
∥(−∆)s/2u∥ ≥ ∥(−∆)s/2u∗∥. Also, ∥φ∗

∥L2 = ∥φ∥L2 and finally, by
(2.3) and the fact that |·|−b is bell-shaped and strictly decreasing,∫

Rn
|x|−b

|φ(x)|p+1dx ≤
∫
Rn
|x|−b(|φ(x)|p+1)∗dx

=

∫
Rn
|x|−b(φ∗(x))p+1dx.

e conclude that I1[u] ≥ I1[u∗], which implies that we can
educe the set of possible minimizers to the set of bell-shaped
unctions, i.e. {u ∈ Hs(Rn) ∩ Lp+1,b(Rn) : u = u∗}. Next, by the
ilation property of the functional I1(u) = I1(au), we can without
oss of generality further reduce to the set

∫
Rn |x|−bup+1(x)dx = 1.

So, assume that φk is a minimizing sequence of bell-shaped
unctions, subject to the constraint

∫
Rn |x|−bφ

p+1
k (x)dx = 1. It

ollows that

lim
k

∥(−∆)s/2φk∥
2
L2 + ∥φk∥

2
L2 = m(1). (4.4)

We will show that a subsequence of φk converges in the
trong Hs/2(Rn) sense to a minimizer u, which we will show is
he desired solution to the minimization problem (4.2). By weak
ompactness, we have that a subsequence of φk (which we will
ssume without loss of generality is φk itself) tends weakly in
s/2(Rn) to a function φ, which is also trivially bell-shaped.
Since, for bell-shaped functions u we have the point-wise

ound for each x : |x| = R,

u(x)|2 ≤ |Bn|
−1R−n

∫
|y|≤R

|u(y)|2dy ≤ |Bn|
−1
|x|−n

∥u∥2L2 . (4.5)

ased on this, we claim that (a subsequence of) φk converges to
strongly in the topology of Lp+1,−b. This will follow from the
olmogorov–Relich–Riesz criteria for compactness in Lp spaces
rom supk ∥φk∥Hs/2(Rn) < ∞ (which is a corollary of (4.4)) and
nce we establish

lim sup
∫

|x|−b
|φk(x)|p+1dx = 0. (4.6)
N k |x|>N
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Indeed, (4.6) follows from the pointwise bounds for bell-shaped
unctions (4.5), since

sup
k

∫
|x|>N

|x|−b
|φk(x)|p+1dx

≤ Cn sup
k

∥φk∥
p+1
L2

∫
|x|>N

|x|−b−(p+1) n2 dx

≤ CnN−b− p−1
2 n sup

k
∥φk∥

p+1
L2
,

which clearly converges to zero as N → ∞. Thus, up to a
subsequence ∥φk−φ∥Lp+1,−b → 0, whence

∫
Rn |x|−bφp+1(x)dx = 1.

In particular, I1(φ) = ∥(−∆)s/2φ∥2
L2
+ ∥φ∥2

L2
≥ m(1).

Now, we have by the lower semicontinuity of the weak con-
vergence in Hs/2 and (4.4) that

m(1) ≤ ∥(−∆)s/2φ∥2L2 + ∥φ∥2L2

≤ lim inf
k

∥(−∆)s/2φk∥
2
L2 + ∥φk∥

2
L2 = m(1).

It follows that limk ∥(−∆)s/2φk∥
2
L2

+ ∥φk∥
2
L2

= ∥(−∆)s/2φ∥2
L2

+

∥φ∥2
L2
, whence by the uniform convexity of ∥ · ∥L2

lim
k

∥φk − φ∥Hs/2(Rn) = 0.

We conclude that I1[φ] = m(1) and φ is a solution to (4.2).
Next, we discuss the Euler–Lagrange equation (4.3). Take a test

function h ∈ V∞

0 (Rn
\ {0}), that is h is supported in {x : |x| > δ}

for some δ > 0. Let also 0 < ϵ ≪ 1 and consider u = φ + ϵh.
Recall

∫
|x|−bφp+1dx = 1. Since φ is a minimizer we should have

Iω[φ + ϵh] ≥ m(1) = N(φ).

Where N(φ) :=
∫
|(−∆)s/2φ|2+

∫
φ2 and D(φ) :=

∫
|x|−b(φ)p+1dx.

Thus,

N(φ + ϵh) =
∫

|(−∆)s/2(φ + ϵh)|
2
+

∫
(φ + ϵh)2

=

∫
|(−∆)s/2φ + ϵ(−∆)s/2h|

2

+

∫
(φ2

+ 2ϵhφ + ϵ2h2)

=

∫
|(−∆)s/2φ|

2
+

∫
φ2

+ 2ϵ(⟨(−∆)s/2φ, (−∆)s/2h⟩ + ⟨h, φ⟩)+ O(ϵ2)

= N(φ)+ 2ϵ⟨((−∆)s + 1)φ, h⟩ + O(ϵ2).

imilarly,

D(φ + ϵh) =
∫

|x|−b(φ + ϵh)p+1dx

= 1+ (p+ 1)ϵ⟨|x|−bφp, h⟩ + O(ϵ2).

t follows that

1(φ + ϵh) =
N(φ + ϵh)

D[φ + ϵh]
2

p+1

=
N(φ)+ 2ϵ⟨((−∆)s + 1)φ, h⟩ + O(ϵ2)

1+ 2ϵ⟨|x|−bφp, h⟩ + O(ϵ2)
= N[φ] + 2ϵ⟨((−∆)s + 1)φ − |x|−bN(φ)φp, h⟩

+O(ϵ2).

s this holds for arbitrary function h and for all small ϵ, we have
stablished that φ solves (4.3) in a distributional sense.
Finally, fix h to be a real-valued function, h ∈ C∞

0 (Rn
\ {0}).

Starting again with the inequality
N(φ + ϵh)

2 ≥ N(φ),

D(φ + ϵh) p+1
but expanding to the second order9 ϵ2, we obtain

N[φ] + ϵ2[⟨L+h, h⟩ + N[φ](p+ 3)(⟨|·|−bφp, h⟩)2] + O(ϵ3) ≥ N[φ],

fter taking into account ⟨((−∆)s + 1)φ − N(φ)|x|−bφp, h⟩ = 0.
fter taking limits as ϵ → 0, we derive

L+h, h⟩ ≥ −N[φ](p+ 3)(⟨|·|−bφp, h⟩)2. (4.7)

n particular, ⟨L+h, h⟩ ≥ 0, if
∫
|x|−bφp(x)h(x)dx = 0. □

e shall now need to prove some further properties of the
inimizers φ as well as some spectral results necessary for the
equel.

.3. Boundedness of φ

In our next result, we use the already established (partial)
oercivity of L+ on {|·|

−bφp
}
⊥
∩ C∞

0 (Rn
\ {0}) in order to derive

∞ bounds on φ. We believe that this is a new technique, which
ight be useful in the spectral analysis of other situations with
ingular potentials.
Once we show the boundedness of φ, we will go back to the

laim about the coercivity of L+ on the full co-dimension one
ubspace {|·|

−bφp
}
⊥.

roposition 4. Let (n, s, p, b) ∈ A . Then, the minimizer φ
onstructed in Proposition 3 is a bounded function.

roof. Again, we assume ω = 1, the other cases follow by
escaling.

We first show the boundedness of φ. Recall that since φ is a
ell-shaped function, φ ∈ L2(Rn), we have that for every x ̸= 0,
φ(x)| ≤ Cn|x|−

n
2 ∥φ∥L2 . This of course leaves the possibility that

limx→0 φ(x) = ∞, which we shall rule out for the remainder of
he proof.

Our approach is by contradiction, that is assume that
im|x|→0 φ(x) = ∞. We now create a specifically designed test
unction h ∈ C∞

0 (Rn
\ {0}) ∩ {|x|−bφp

}
⊥. To this end, let χ be a

radial positive C∞

0 test function, supported in 1
2 < |x| < 2 and

equal to 1 on 3
4 < |x| < 4

3 . Let 0 < ϵ ≪ 1 and let

h(x) := χ (x/ϵ)− cϵχ (x), cϵ =

∫
|x|−bφp(x)χ (x/ϵ)dx∫
|x|−bφp(x)χ (x)dx

.

Clearly, h ∈ C∞

0 (Rn
\{0}), where cϵ is designed so that h ⊥ |·|

−bφp.
Note that the denominator of cϵ is bounded above and below by
a constant independent on ϵ, so that

cϵ ∼
∫

|x|−bφp(x)χ (x/ϵ)dx. (4.8)

According to Proposition 3, we have that ⟨L+h, h⟩ ≥ 0. As a
consequence of this, after dropping some terms with favorable
signs, we arrive at

c2ϵ ⟨(−∆)sχ, χ⟩ − 2cϵ⟨(−∆)sχ, χ (·/ϵ)⟩ + ∥(−∆)s/2χ (·/ϵ)∥2

≥ pm(1)
∫

|x|−bφp(x)χ2(x/ϵ)dx.
(4.9)

et us estimate the terms on the left hand side of (4.9). Elemen-
ary estimates imply

⟨(−∆)sχ, χ⟩ ≤ C, ∥(−∆)s/2χ (·/ϵ)∥2

≤ Cϵn−2s, cϵ |⟨(−∆)sχ, χ (·/ϵ)⟩| ≤ Cϵncϵ .

he integral expression on the right hand side of (4.9) is essen-
ially equivalent to cϵ , but not quite. In order to get the desired

9 Note that in the calculation above, the expansion in powers of ϵ is valid,
since the fixed h that has its support away from zero.
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estimate, introduce the quantity dϵ :=
∫
|x|−bφp(x)χ2(x/ϵ)dx, so

hat we now have proved the estimate

ϵ ≤ C(c2ϵ + ϵ
n−2s

+ ϵncϵ). (4.10)

Furthermore, we have by Cauchy–Schwartz’s inequality

cϵ ≤ C
∫

|x|−bφp(x)χ (x/ϵ)dx

≤ C
(∫

|x|−bφp(x)χ2(x/ϵ)dx
)1/2 (∫

|x|∼ϵ
|x|−bφp(x)dx

)1/2

.

(4.11)

y our assumption, limx→0 |φ(x)| = ∞, we have that for all small
nough ϵ∫
|x|∼ϵ

|x|−bφp(x)dx ≤
1

maxx:|x|∼ϵ φ(x)

∫
|x|−bφp+1(x)dx

=
1

maxx:|x|∼ϵ φ(x)
= o(ϵ).

Hence, we obtain that c2ϵ = o(ϵ)dϵ and ϵncϵ ≤ o(ϵ)dϵ + ϵ2n.
ubstituting these estimates in (4.10) yields dϵ ≤ Co(ϵ)dϵ+ ϵn−2s,
r after hiding Co(ϵ)dϵ on the left-hand side, dϵ ≤ 2ϵn−2s, for
ll small enough ϵ. This actually yields a very good point-wise
stimate on φ. Indeed, recalling that φ is bell-shaped we estimate

ϵn−b min
x:|x|∼ϵ

φp(x) ≤
∫

|x|−bφp(x)χ2(x/ϵ)dx ≤ Cen−2s,

hence for all x ̸= 0,
p(x) ≤ C |x|b−2s. (4.12)

his gives a contradiction and hence the required L∞ bound, if
≥ 2s. Unfortunately, this covers only a small portion of the

arameters space A .
So, assume for the rest of the argument that b < 2s. In order

o derive the L∞ bounds for φ, in the case b < 2s, we shall need
n additional bootstrap argument, based on the fact that φ is a
weak) solution of the Euler–Lagrange equation (4.3). To this end,
e need to find a way to introduce φ̃ := (1+ (−∆)s)−1

[|·|
−bφp

].
s of now, this is a formal definition, but it is clear that if we
anage to define such an object in an appropriate way, this will
e weak solution of (4.3). Since φ solves (4.3) in the weak sense
escribed in Proposition 3, we will be eventually able to show
hat φ̃ = φ as Lq functions, for appropriate q ∈ (2,∞). To this
nd, we have the following claim.

laim 1. Assume (n, s, p, b) ∈ A and that a function f : R → R
s bell-shaped and it satisfies f ∈ Lp+1,−b(Rn) and |f (x)| ≤ C |x|

b−2s
p .

Then,

z̃ = (1+ (−∆)s)−1
[|·|

−bf p] := Gs ∗ [|·|
−bf p] ∈ ∩ p+1

p <qL
q(Rn).

n particular z̃ ∈ L2(Rn).

roof (Claim 1). We consider the case n > 2s only, as the case
≤ 2s can arise only for n = 1, s > 1

2 , in which case the function
s is bounded and the arguments are much simpler.
We split10 z̃ = z̃1 + z̃2

z̃1 = Gs ∗ [|·|
−bf pχ|·|<1], z̃2 = Gs ∗ [|·|

−bf pχ|·|≥1].

et us analyze z̃1 first. We claim that due to the properties
stablished in Lemma 1, we have that z̃1 ∈ ∩q<∞Lq(Rn). Indeed,
or |x| < 2, we can bound

z̃1(x)| ≤ C |·|2s−nχ|·|<3 ∗ |·|
−2sχ|·|<1.

10 Here χ denotes the characteristic function of I .
I
Pick arbitrary q1, q2 : 1 < q1 < n
n−2s , 1 < q2 < n

2s and then
q ∈ (1,∞) :

1
q1

+
1
q2

= 1 +
1
q . By Hardy–Littlewood–Sobolev

inequality, we have

∥z̃1∥Lq(|x|<2) ≤ C∥|·|2s−nχ|·|<3∥Lq1 (Rn)∥|y|−2sχ|·|<1∥Lq2 (Rn) ≤ Cq.

Clearly, in this way, we can generate any q ∈ (1,∞), by varying
the choices q1, q2 in the specified intervals, so z̃1 ∈ ∩1<q<∞Lq(Rn).

Regarding z̃2, we split as follows

|z̃2| ≤ C[|·|2s−nχ|·|<1 ∗ |·|
−bf pχ|·|≥1 + |·|

−nχ|·|≥1 ∗ |·|
−bf pχ|·|≥1].

Clearly,

∥|·|
2s−nχ|·|<1 ∗ |·|

−bf pχ|·|≥1∥Lq ≤ C∥|·|2s−nχ|·|<1∥L1∥|·|
−bf pχ|·|≥1∥Lq

≤ C

as long as p+1
p ≤ q <∞, because

∥|·|
−bf pχ|·|≥1∥

q
Lq ≤ max

|x|>1
|f qp−(p+1)(x)|

∫
Rn
|y|−bf p+1(y)dy ≤ C .

Similarly, as long as p+1
p < q <∞, we can find δ > 0, so that

1
1+δ +

1
qδ

= 1+ 1
q and qδ > p+1

p . Then,

∥|·|
−nχ|·|≥1 ∗ |·|

−bf pχ|·|≥1∥Lq

≤ C∥∥|·|−nχ|·|≥1∥L1+δ∥|·|
−bf pχ|·|≥1∥Lqδ ≤ C .

All in all, we have established z̃ ∈ ∩ p+1
p <q<∞Lq(Rn), as

required. □

Now that we have established the claim and taking into ac-
count the properties of φ, which are already established, we can
take f = φ in Claim 1, whence we conclude that

φ̃ = (1+ (−∆)s)−1
[|·|

−bφp
]

is well-defined and element of L2(Rn). Furthermore, for each
integer k and each test function f ∈ Sk = {f ∈ S : suppf̂ ⊂

{2k−1
≤ |ξ | ≤ 2k+1

}}, we have that

⟨φ̃, (1+ (−∆)s)−1f ⟩ = ⟨|·|
−bφp, f ⟩ = ⟨φ, (1+ (−∆)s)−1f ⟩,

where in the first equality we have used the definition of φ̃, while
in the second, we have used that φ is a weak solution of (4.3).

Since (1+ (−∆)s)−1 is an isomorphism on each Sk, it follows
that ⟨φ̃ − φ, f ⟩ = 0 for each f ∈ S : suppf̂ ⊂ Rn

\ {0}. Since this
is a dense set in S and hence in each Lq, q ∈ [1,∞), it follows
that φ̃ = φ in the sense of L2(Rn), that is

= (1+ (−∆)s)−1
[|·|

−bφp
] = Gs ∗ [|·|

−bφp
] ∈ L2(Rn). (4.13)

ccording to the claim, the L2(Rn) function on the right-hand
ide of (4.13) also belongs to ∩ p+1

p <qL
q(Rn). But then, since φ is

bell-shaped and φ ∈ ∩ p+1
p <qL

q(Rn), we have the point-wise bound

x|n|φ(x)|q ≤ C
∫
|y|∼|x|

|φ(y)|qdy ≤ Cq,n∥φ∥
q
Lq(Rn).

hence φ(x) ≤ Cq|x|
−

n
q . Recall that this is true for all q < ∞.

That is, for each δ > 0, there is Cδ , so that

φ(x) ≤ Cδ|x|−δ. (4.14)

This is almost, but not quite, that φ ∈ L∞(Rn), which will yield the
contradiction. On the other hand, we will show that (4.14) can
be bootstrapped to φ ∈ L∞(Rn), which will then be the desired
contradiction.

By close inspection of the proof of Claim 1 (and under the
assumptions in Claim 1) , we see that we can in fact place all
but one piece in L∞(Rn). It thus remains to see why |·|

2s−nχ ∗
|·|<3
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|·|
−bφpχ|·|<1 ∈ L∞(Rn). In view of the bound (4.14), we have for

δ ≪ 1,

|·|
2s−nχ|·|<3 ∗ |·|

−bφpχ|·|<1(x)|

≤ C
∫

χ|x−y|<3

|x− y|n−2s

χ|y|<1

|y|b+δ
dy ≤ C∥|·|2s−nχ|·|<3∥Lq∥χ|y|<1|y|−b−δ

∥Lr ,

here in the last step, we have applied the Hölder’s inequality
ith 1 =

1
q+

1
r , q <

n
n−2s , r(b+δ) < n. This last two conditions are

ossible to satisfy (i.e. such q, r exist) , for small δ, as long as b <
s. This is another instance that this requirement is crucially used.
n this way, we have reached contradiction with our assumption
hat φ is unbounded. Therefore, φ is L∞(Rn) function. □

.4. Further properties of φ

We have the following proposition.

roposition 5. Let (n, s, p, b) ∈ A . Then, φ ∈ L1(Rn), so by the
ell-shapedness, in particular it satisfies the point-wise bound

φ(x)| ≤ C |x|−n, |x| > 1. (4.15)

f in addition, s ∈ ( 12 , 1), then

∇φ(x)| ≤ C
{

|x|−n−1
|x| > 1

|x|2s−b−1
|x| < 1

(4.16)

In particular, φ ∈ C1(Rn
\ {0}).

Remarks. As a corollary, we have

• φ ∈ ∩1<q≤∞Lq(Rn).
• |x||∇φ(x)| is a bounded function, since 2s > b. In fact,
|x||∇φ| ∈ ∩1<q≤∞Lq(Rn).

roof. Even though φ ∈ L1 implies (4.15), it will be actually
bootstrapped from it. So, we focus on the proof of (4.15). We
already know that |φ(x)| ≤ C |x|−n/2, |x| > 1. To obtain the higher
decay rate, introduce the optimal decay rate,

α := sup{s : |φ(x)| ≤ As|x|−s, |x| > 1}.

Clearly α ≥
n
2 . Assuming that α < n leads to a contradiction.

Indeed, note the representation (4.13),

φ(x)| ≤ |Gs| ∗ [|x|−bφp(x)|],

nd the fact that Gs is integrable near zero. Moreover, there is
the bound |Gs(x)| ≤ C |x|−n, |x| > 1 and |x|−n

∗ |x|−(b+p(α−ϵ))
≤

C |x|−min(n,b+p(α−ϵ)), for small enough ϵ, so that b+ p(α − ϵ) > α.
But this implies a better decay rate than α. This contradicts our
assumption α < n, so it follows that α ≥ n. One can in fact see
that α = n, as this is the optimal decay rate for Gs.

The bound for ∥φ∥L1 follows easily now. We simply estimate

∥φ∥L1 ≤ ∥Gs∥L1∥|x|
−bφp

∥L1 = ∥|x|−bφp
∥L1 .

But the function |x|−bφp
∼ |x|−b, |x| < 1, while |x|−bφp

∼

|x|−(b+np), |x| > 1, so |x|−bφp
∈ L1(Rn).

The bounds for |∇φ| for |x| > 1 follow as in the proof of (4.15),
once we make sure that ∇Gs is integrable near zero, which since
|∇Gs(x)| ≤ C |x|2s−n−1, |x| < 1, requires that s > 1

2 . For the case
|∇φ|, |x| < 1, we again use the formula ∇φ = ∇Gs ∗ [|·|

−bφp
].

ne can see that for values |x| < 1,

∇φ(x)| ≤ C
∫
|y|<2

1
|x− y|n+1−2s

1
|y|b

dy+ bounded function.

ntegrating separately in the regions |y| < |x|
2 and |y| ≥ |x|

2 yields
the bound |∇φ(x)| ≤ C |x|2s−b−1. □
5. Preliminary spectral properties of L±

We start with the realization of L± as a self-adjoint operator.

5.1. Self-adjointness of L±

The conclusion φ ∈ L∞(Rn) is helpful in our study of L+

and L−. However, we still face difficulties, for example with
regards to the self-adjointness, as the potential |x|−bφp−1(x) is still
singular at zero. The following non-trivial lemma resolves these
issues.

Lemma 5. Let (n, s, p, b) ∈ A and in addition 2b < n. Then
the Friedrich’s extensions of L± are self-adjoint operators with the
natural domain H2s(Rn).

Proof. Before we proceed with the construction of the
Friedriech’s extension, let us show that the condition n > 2b
ensures that L±(H2s) ⊂ L2(Rn). This reduces to the estimate(∫

Rn
|x|−2b

|h(x)|2dx
)1/2

≤ C∥h∥H2s(Rn),

which follows by (2.6), where a = 2b and since b < 2s.
Next, introduce the quadratic forms Q±[h, h] := ⟨L±h, h⟩,

with form domain Hs(Rn) × Hs(Rn). Via the usual Friedrich’s
procedure, it will suffice to show boundedness from below for
Q±.

We proceed to bound |⟨|x|−bφp, h⟩|. Clearly, the portion of the
integral over |x| > 1 is easy to control,∫
|x|>1

|x|−bφp(x)|h(x)|dx ≤ C∥h∥L2∥φ∥
p
L2p

≤ C∥h∥L2 .

For the piece over |x| ≤ 1, we have by Cauchy–Schwartz and
Sobolev embedding, for any11 σ : 0 < σ < s, 2b < n+ 2σ

|

∫
|x|≤1

|x|−bφp(x)h(x)dx|

≤ ∥(−∆)
σ
2 h∥L2∥(−∆)−

σ
2 [|x|−bφpχ|x|≤1]∥L2 ≤

≤ C∥(−∆)
σ
2 h∥L2∥|x|

−bχ|x|≤1∥
L

2n
n+2σ

≤ C∥(−∆)
σ
2 h∥L2 ≤ κ∥(−∆)

s
2 h∥L2 + Cκ,σ∥h∥L2 .

Next, for the integral
∫
|x|−bφph2(x)dx, we control it by applying

roposition 2, with q = 2 and any σ > b
2 ,

|x|−bφph2(x)dx ≤ C∥h∥2Hσ .

Choosing σ < s as well, that is σ ∈ ( b2 , s), we conclude that for
each κ , there is Cκ , so that∫

|x|−bφph2(x)dx ≤ κ∥h∥2Hs + Cκ∥h∥2L2 . (5.1)

ombining the estimates for
∫
|x|−bφphdx and

∫
|x|−bφph2(x)dx,

ith (4.7), yields that there exists a sufficiently large C , so that
or each h ∈ Hs(Rn), we have

∥(−∆)
s
2 h∥2L2 − pm(ω)

∫
|x|−bφph2(x)dx

≥ −κ∥(−∆)
s
2 h∥2L2 − C∥h∥2L2 .

r

1+ κ)∥(−∆)
s
2 h∥2L2 − pm(ω)

∫
|x|−bφph2(x)dx ≥ −C∥h∥2L2 . (5.2)

11 Clearly, one can select such σ ∈ (0, s), as b < n, b < 2s.
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So, again by (5.1) and (5.2),

(1+ κ)∥(−∆)
s
2 h∥2L2 − 2pm(ω)

∫
|x|−bφph2(x)dx

≥ −κ∥(−∆)
s
2 h∥2L2 − C∥h∥2L2 ,

hence for small enough κ ,

(∥(−∆)
s
2 h∥2L2 − pm(ω)

∫
|x|−bφph2(x)dx) ≥ −C∥h∥2L2 ,

which is the desired boundedness from below for L+, once we
divide by two and add ω∥h∥2

L2
. Since L− ≥ L+, the boundedness

from below (and hence the self-adjointness of the Friedrich’s
extension) for L− follows. □

orollary 3. Under the assumption 2b < n, φ ∈ H2s(Rn) = D(L±).

Proof. Since φ ∈ L1(Rn) ∩ L∞(Rn) is already clear, we just need
to observe that
φ = (1+ (−∆)s)−1

[|x|−bφp
] ∈ Ḣ2s. Indeed,

∥φ∥Ḣ2s(Rn) = ∥(−∆)s(1+ (−∆)s)−1
[|x|−bφp

]∥L2 ≤ C∥|x|−bφp
∥L2 ,

which is finite, if 2b < n since |x|−bφp
∼ |x|−b, |x| < 1 and for

|x| > 1, |x|−bφp
≤ φp

∈ L2(Rn). □

Remark. The assumption 2b < n is automatic for (n, p, s, b) ∈ A ,
if n ≥ 4. In the case n = 3 however, this is not so and it amounts
to the extra restriction b < 3

2 . In [2], the authors use the fact that
∈ D(L±), which is not justified in the full range n = 3, b < 2,

but rather only in the range b < 3
2 . Their statement has to be

odified accordingly in order to hold, at least based on the proof
resented therein. Clearly, the restriction is even more severe in
he lower dimensional cases n = 1, 2.

Now that we have properly realized L± as self-adjoint oper-
ators, one can talk about their eigenvalues, coercivity properties
etc. Our next result are in this direction.

5.2. Some basic coercivity properties of L±

Proposition 6. Let (n, s, p, b) ∈ A and in addition 2b < n. Then,
the self-adjoint operators L± enjoy the following properties:

• The continuous spectrum of L± is [ω,∞).
• L+ has exactly one negative eigenvalue.
• L− ≥ 0, with L−[φ] = 0 and moreover L−|{{φ}⊥}≥ 0.

roof. Continuous spectrum for both operators consists of [ω,∞)
by Weyl’s theorem. Clearly, since ⟨L+φ, φ⟩ = −(p − 1)m(ω)∫
|x|−bφp+1dx < 0, it follows that L+ has a negative eigenvalue.

Then, the property ⟨L+h, h⟩ ≥ 0, h ⊥ |·|
−bφp, which was

previously established only for h ∈ C∞(Rn
\ {0}), can now be

extended to all h ∈ S : h ⊥ |·|
−bφp, since |·|−bφp

∈ L2(Rn), due to
he assumption 2b < n and the properties of φ. Thus, n(L+) = 1.

Regarding the claims for L−, assume that the lowest eigen-
alue, say −σ 2 is a negative one. Then,

−σ 2
= inf

∥u∥=1
⟨L−u, u⟩

= inf
∥u∥=1

[∥(−∆)
s
2 u∥2L2 + ω −m(ω)

∫
Rn
|x|−bφp

|u|2dx]

Similar to our considerations in the proof of Proposition 3, this
variational problem has a bell-shaped solution, say ψ : ∥ψ∥ = 1,
which satisfies L−[ψ] = −σ 2ψ . But on the other hand, by a
direct inspection, L−φ = 0, φ is bell-shaped as well. But then,

0 = ⟨L−φ,ψ⟩ = ⟨φ,L−ψ⟩ = −σ 2
⟨φ,ψ⟩ < 0,

a contradiction. Thus, L | ≥ 0. □
− {{φ}⊥}
Our next discussion will concern the Sturm–Liouville theory
for fractional Schrödinger operators such as L±. We base our
approach to a result due to Frank–Lenzmann–Silvester, [39].

5.3. Sturm oscillation theorem for the second eigenfunction of L+

Theorem 4 (Frank–Lenzmann–Silvestre, Theorem 2.3, [39]).
Let n ≥ 1, s ∈ (0, 1] and W satisfies

• W = W (|x|) and W is non-decreasing in |x|,
• W ∈ L∞(Rn), W ∈ Cγ , γ > max(0, 1− 2s). That is

|W (x)−W (y)| ≤ C |x− y|γ .

hen, assume that H = (−∆)s+W has two lowest radial eigenvalues
0, E1, so that E0 < E1 < inf σess(H).
Then, the eigenvalue E0 is simple and the corresponding eigen-

unction is bell-shaped. Regarding E1, the corresponding eigenfunc-
ion Ψ1 : H Ψ1 = E1Ψ1 has exactly one change of sign. That is,
there exists r0 ∈ (0,∞), so that Ψ1(r) < 0, r ∈ (0, r0) and

1(r) > 0, r ∈ (r0,∞).

emark. Note that the potentials involved in L±, while satisfying
ost of the requirements in Theorem 4, fail in a dramatic way the
ey boundedness requirement, as they are unbounded at zero. So,
e shall need to employ an approximation argument to achieve
he same result for L+.

Recall that according to Proposition 6, L+ has exactly one
egative eigenvalue, E0 < 0. The next radial eigenvalue E1 (if
here is one!) satisfies E1 ≥ 0.

roposition 7 (Sturm Oscillation Theorem for the Second Eigenfunc-
ion of L+). Let (n, s, p, b) ∈ A and in addition 2b < n. Then, the
mallest eigenvalue E0 < 0 has a bell-shaped radial eigenfunction.
uppose that the operator L+ has a radial eigenvalue E1 < ω. Then,
1 has a radial eigenfunction with exactly one change of sign.

emark. The condition E1 < ω simply means that E1 is not an
mbedded eigenvalue, as σac(L+) = [ω,∞).

roof. Before we start with the proof, let us mention that as
e discuss radial eigenfunctions, we restrict our considerations
o the Hilbert space L2rad(R

n) for the purposes of this proof.
Recall L+ = (−∆)s+ω−pm(ω)|x|−bφp−1(x) =: (−∆)s+ω−W .

he statements regarding E0 can be established directly, even for
he unbounded potential W . Indeed, by the self-adjointness of L+

nd the characterization of the lowest eigenvalue

0 = min
∥u∥L2=1

⟨L+u, u⟩ = ω+ min
∥u∥L2=1

[∥(−∆)
s
2 u∥2L2−

∫
Rn

W (x)|u|2dx].

y the Polya–Szegö inequality and since W = W ∗,
∫
Rn W (x)|u|2dx∫

Rn W (x)|u∗|2dx, we conclude that the minimization problem
in∥u∥L2=1⟨L+u, u⟩ has a bell-shaped solution
Ψ0 : ∥Ψ0∥L2 = 1 and L+Ψ0 = E0Ψ0. In particular, Ψ0 ∈

2s(Rn). Moreover, E0 is a simple eigenvalue, as the minimizers
or min∥u∥L2=1⟨L+u, u⟩ need to be bell-shaped and as such, cannot
e orthogonal to Ψ0.
Next, we define an approximation of W , namely for every

nteger N , the bounded potentials,

N (r) =

{
W (r) r > 1

N

W (N−1) r ≤ 1
N

and the operators L+,N := (−∆)s+ω−WN . Note that L+,N ≥ L+,
since WN ≤ W .

As WN = W ∗

N , they have, by the same arguments as above
ground states Ψ : ∥Ψ ∥ = 1, corresponding to the smallest
0,N 0,N L2
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eigenvalues E0,N ≥ E0, so L+,NΨ0,N = E0,NΨ0,N . We will show
that limN E0,N = E0. Indeed, we have that

E0 ≤ E0,N = min
∥u∥L2=1

⟨L+,Nu, u⟩ ≤ ⟨L+,NΨ0,Ψ0⟩

≤ E0 +
∫
|x|<N−1

W (|x|)Ψ 2
0 (x)dx.

(5.3)

Since by (2.6), we have that(∫
|x|<1

|W (|x|)|Ψ 2
0 (x)dx

)1/2

≤ C
(∫

|x|<1
|x|−bΨ 2

0 (x)dx
)1/2

≤ C∥Ψ0∥Hs(Rn),

(5.4)

we conclude limN→∞

∫
|x|<N−1 W (|x|)Ψ 2

0 (x)dx = 0, whence in
combination with (5.3), we finally arrive at limN E0,N = E0.

We now show that a subsequence of {Ψ0,N} converges strongly
to Ψ0. To that end, we need to show that {Ψ0,N} is pre-compact
in the strong topology of L2(Rn). Indeed, by (2.6), we have that,
since b

2 < s, there is Cs, so that

Rn
WN (|x|)Ψ 2

0 dx ≤ C
∫
Rn
|x|−bΨ 2

0 dx ≤ Cs∥Ψ0∥
2
Hs(Rn).

hus, by Gagliardo–Nirenberg’s inequality

E0,N = ⟨L+,NΨ0,N ,Ψ0,N⟩ ≥ ∥(−∆)
s
2Ψ0,N∥

2
L2 + ω − Cs∥Ψ0∥

2
Hs(Rn)

≥
1
2
∥(−∆)

s
2Ψ0,N∥

2
L2 − Cs,ω,

whence supN ∥Ψ0,N∥Hs < ∞. Next, by the representation Ψ0,N =

((−∆)s + ω − E0,N )−1
[WNΨ0,N ], ∥Ψ0,N∥L2 = 1, and limN E0,N =

E0 < 0, we derive similar to the proof of (4.15), that there exists a
constant C = Cn, but independent of N , so that |Ψ0,N (x)| ≤ Cn|x|−n

for |x| > 1. This guarantees that limM supN
∫
|x|>M |Ψ0,N (x)|2dx =

0, which by Riesz–Relich–Kolmogorov criteria guarantees that
{Ψ0,N} is pre-compact in L2(Rn). That means that there is a sub-
sequence Ψ0,Nk → Ψ0. For simplicity of notations, we can assume
without loss of generality that the sequence itself converges,
i.e. limN ∥Ψ0,N − Ψ0∥L2 = 0.

One can in fact show that (up to a further subsequence),
limN ∥Ψ0,N−Ψ0∥Hs = 0. Indeed, {Ψ0,N} being a bounded sequence
in Hs has a weakly convergent subsequence (again assume that it
is the sequence itself), which by uniqueness must be Ψ0. Then,
by lower semi-continuity of the L2 norm with respect to weak
convergence, lim infN ∥(−∆)

s
2Ψ0,N∥L2 ≥ ∥(−∆)

s
2Ψ0∥L2 .

In addition, we claim that

lim
N

∫
Rn

WN (|x|)Ψ 2
0,N (x)dx =

∫
Rn

W (|x|)Ψ 2
0 (x)dx. (5.5)

Indeed, by (5.4), it suffices to show limN
[∫

Rn WN (|x|)
(Ψ 2

0,N (x)− Ψ 2
0 (x))dx

]
= 0. We have by Cauchy–Schwartz’s that

for every ϵ > 0, there is Cϵ such that⏐⏐⏐⏐∫
Rn

WN (|x|)(Ψ 2
0,N (x)− Ψ 2

0 (x))dx
⏐⏐⏐⏐

≤ C
∫
Rn
|x|−b

|ΨN (x)− Ψ0(x)||ΨN (x)+ Ψ0(x)|dx

≤

(∫
Rn
|x|−b

|ΨN (x)+ Ψ0(x)|2
) 1

2
(∫

Rn
|x|−b

|ΨN (x)− Ψ0(x)|2
) 1

2

≤

Cϵ(∥ΨN∥Hs + ∥Ψ0∥Hs )∥ΨN − Ψ0∥
H

b
2+ϵ
.

here we have used (2.6). Note that by Gagliardo–Nirenberg’s,
e have

ΨN − Ψ0∥
H

b
2+ϵ

≤ C∥ΨN − Ψ0∥
b/2+ϵ

s
Hs ∥ΨN − Ψ0∥

s−b/2−ϵ
s

L2
,

which clearly converges to zero, as N → ∞, as long as we select
0 < ϵ < s− b/2.
Thus, having established (5.5) and lim infN ∥(−∆)
s
2Ψ0,N∥L2 ≥

∥(−∆)
s
2Ψ0∥L2 , we conclude

E0 = ∥(−∆)
s
2Ψ0∥

2
L2 + ω −

∫
Rn

W (|x|)Ψ 2
0 (x)dx ≤

≤ lim inf
N

[∥(−∆)
s
2Ψ0,N∥

2
L2 + ω −

∫
Rn

W (|x|)Ψ 2
0,N (x)dx]

= lim inf
N

E0,N = E0.

It follows that lim infN ∥(−∆)
s
2Ψ0,N∥L2 = ∥(−∆)

s
2Ψ0∥L2 , which

implies that (up to a subsequence) limN ∥Ψ0,N − Ψ0∥Hs = 0.
We now turn to the second radial eigenfunction of L+. Let

1 ∈ D(L+) = H2s(Rn), ∥h1∥L2 = 1 is an eigenfunction corre-
ponding12 to E1, so L+h1 = E1h1. Clearly h1 ⊥ Ψ0, whence
imN⟨h1,Ψ0,N⟩ = 0. By the Rayleigh characterization of the
econd smallest eigenvalue and since L+,N ≥ L+, we have that
1,N ≥ E1. Denote the corresponding radial eigenfunctions by
1,N : ∥Ψ1,N∥L2 = 1. Note that −WN satisfy the requirements of
heorem 4, with γ = 1, as a bounded, piecewise defined function,
hose components are Lipschitz. Hence, due to Theorem 4, we
ay take those eigenfunctions Ψ0,N to have exactly one change
f sign, say rN ∈ (0,∞), say Ψ0,N |(0,rN )> 0,Ψ0,N |(rN ,∞)< 0.
Note

1,N = inf
∥u∥L2=1,u⊥Ψ0,N

⟨L+,Nu, u⟩

≤
⟨L+,N (h1 − ⟨h1,Ψ0,N⟩Ψ0,N ), h1 − ⟨h1,Ψ0,N⟩Ψ0,N⟩

∥h1 − ⟨h1,Ψ0,N⟩Ψ0,N∥
2 =

= ⟨L+h1, h1⟩ + o(N−1) = E1 + o(N−1).

t follows that limN E1,N = E1. In particular, the assumption
1 < ω guarantees that13 E1,N < ω for large enough N . Similar
o the proofs for Ψ0,N , (in particular note the representation
1,N = ((−∆)s + ω − E1,N )−1

[WNΨ1,N ], which implies the bound
Ψ1,N (x)| ≤ C |x|−n for |x| > 1), the system {Ψ1,N} is pre-compact
n L2(Rn), so it has a convergent subsequence. Again, assume that
t is the sequence itself. Denote its limit by Ψ1 : limN ∥Ψ1,N −

1∥L2 = 0.
Similar to the proof above for Ψ0, we conclude that (after even-

ually taking a subsequence), limN ∥Ψ1,N−Ψ1∥Hs = 0 and Ψ1 ⊥ Ψ0
is an eigenfunction for L+ corresponding to the eigenvalue E1. It
remains to show that Ψ1 has exactly one sign change. To this end,
onsider the sequence rN ∈ (0,∞) of sign changes for Ψ1,N . There
re three alternatives:

• {rN} converges to zero
• {rN} converges to +∞

• {rN} has a subsequence, which converges to r0 ∈ (0,∞).

e will show that the first two alternatives cannot really occur.
ndeed, assume rN → 0. Then, pick a radial function ζ ∈ C∞

0 (Rn) :
≥ 0. We have

⟨Ψ1, ζ ⟩ = lim
N
⟨Ψ1,N , ζ ⟩ =

∫
|x|<rN

Ψ1,Nζ (x)dx+
∫
|x|≥rN

Ψ1,Nζ (x)dx

≤ 0.

hus, we conclude that Ψ1 ≤ 0 a.e., which is then a contradiction
ith ⟨Ψ1,Ψ0⟩ = 0, as Ψ0 is bell-shaped function. Similarly, the
ase rN → ∞ leads to the conclusion Ψ1 ≥ 0, which contradicts
gain Ψ1 ⊥ Ψ0.
Thus, the case rNk → r0 > 0 remains. For this subsequence,

we clearly have that for each ζ : ζ ∈ C∞

0 (0, r0), ζ ≥ 0, we

12 Even though the ultimate claim is that there is an eigenfunction Ψ1 , which
as exactly one change of sign, we do not know that yet.
13 And in fact, we may claim that ω − E ≥

ω−E1 .
1,N 2
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have ⟨Ψ1, ζ ⟩ ≥ 0, while for ζ : ζ ∈ C∞

0 (r0,∞), ζ ≥ 0, we
have ⟨Ψ1, ζ ⟩ ≤ 0. Equivalently, Ψ0 changes sign exactly once, at
r0 > 0. □

6. The non-degeneracy of Φ

In this section, we establish the non-degeneracy of the solu-
tions of (1.2), obtained by means of rescaling of the constrained
minimizers of (4.2). Let us outline the details of this construction.
Start with a constrained minimizer φω provided by Proposition 3.
In particular, it satisfies (4.3), where recall m(ω) is in the form
(4.1). Then, it suffices to take

Φω(x) := m(ω)
1

p−1 φω(x).

learly, with such a choice Φω satisfies (1.2), which is bell-shaped
and moreover enjoys all properties, as established for φω in the
Propositions 3, 4, 5. Note that L± take the form

L+ = (−∆)s + ω − p|x|−bΦp−1
ω ,L− = (−∆)s + ω − |x|−bΦp−1

ω .

The following result is the main conclusion of this section.

Proposition 8. Assume (n, p, s, b) ∈ A , and in addition 2b < n
and s ∈ ( 12 , 1). Then,

Ker[L+] = {0}.

We need to prepare the proof of Proposition 8 in several
auxiliary results.

6.1. Differentiation with respect to parameters

We start this section with two formal calculations, which
motivate our subsequent results.

6.1.1. Taking formal derivatives
Starting with the profile equation (1.2), we can formally take

a derivative in any of the spatial variables, ∂xj , j = 1, . . . , n. We
obtain

L+[∂xjΦ] = −b
xj

|x|b+2Φ
p(x). (6.1)

et us emphasize again that (6.1) is only a formal statement. Indeed,
uch a formula is problematic at least in several ways — we need
o have ∇Φ ∈ D(L+) = H2s, the right-hand side of (6.1) is not in
L2(Rn), unless we assume 2(b+ 1) < n etc.

Similarly, by a simple scaling argument, the solution Φω of
(1.2) can be expressed through Φ1, the solution for ω = 1 as
follows

Φω(x) = w
2s−b

2s(p−1)Φ1(ω
1
2s x) =: ωσpΦ1(ω

1
2s x). (6.2)

his highlights the dependence on the parameter ω in (1.2),
which will be very useful in the sequel. More specifically, the
formal differentiation in ω yields

L+[∂ωΦω] = −Φω. (6.3)

gain, the formula (6.3) is only a formal statement. In particular,
note that since ∂ωΦω can be expressed as a linear combination
f Φω and x · ∇Φω , we have the same issues with respect to the
omain of L+. In both instances, that is (6.1) and (6.3), we heuris-
ically expect them to hold in some sense. The required technical
ools, which establish the corresponding rigorous statements, are
eveloped next.
6.1.2. A technical lemma
The following lemma shows that one can take weak deriva-

tives with respect to the spatial variables x as well as the param-
eter ω.

Lemma 6. Let q,∇q ∈ L2(Rn). Then, for any ψ ∈ S ,

lim
δ→0

⟨
q(x+ δej)− q(x)

δ
, ψ⟩ = ⟨∂xjq, ψ⟩, j = 1, . . . , n, (6.4)

Let now qω = f (ω)q(g(ω)x), where f , g ∈ C1(R+), g > 0 and
q, x · ∇xq ∈ L2(Rn). Then, for any ψ ∈ S , we have

lim
δ→0

⟨
qω+δ − qω

δ
, ψ

⟩
= ⟨f ′(ω)q(g(ω)·)+ f (ω)g ′(ω)x · ∇xq(g(ω)·), ψ⟩.

(6.5)

emark. Note that formally at least ∂ωq = f ′(ω)q(g(ω)·) +

(ω)g ′(ω)x·∇xq(g(ω)·), so the formula (6.5) is expected to be true.

Proof. We have by a simple change of variables

lim
δ→0

⟨
q(x+ δej)− q(x)

δ
, ψ⟩ = lim

δ→0
⟨q,

ψ(· − δej)− ψ(·)
δ

⟩

= −⟨q, ∂jψ⟩ = ⟨∂jq, ψ⟩,

where in the last step, we have used the Lebesgue’s dominated
convergence theorem and integration by parts. This is justified
since ψ(·−δej)−ψ(·)

δ
= −∂jψ + O∥·∥L2

(δ) and ∇q ∈ L2(Rn). This
stablishes (6.4).
Regarding the proof of (6.5), by a change of variables and the

ebesgue’s dominated convergence theorem

lim
δ→0

⟨
qω+δ − qω

δ
, ψ

⟩
= lim

δ→0

∫
Rn
φ(y)

×

(
f (ω + δ)ψ( y

g(ω+δ) )
1

g(ω+δ)n − f (ω)ψ( y
g(ω) )

1
g(w)n

δ

)
dy =

=

∫
Rn

q(y)∂ω

[
f (ω)
g(ω)n

ψ

(
y

g(ω)

)]
dy

=

(
f ′(ω)
gn(ω)

− n
f (ω)g ′(ω)
gn+1(ω)

)∫
Rn

q(y)ψ
(

y
g(ω)

)
dy−

−
f (ω)g ′(ω)
gn+2(ω)

∫
Rn

q(y)y · ∇yψ

(
y

g(ω)

)
dy.

Clearly, the first term in (6.5) is accounted for as follows

f ′(ω)
gn(ω)

∫
Rn

q(y)ψ
(

y
g(ω)

)
dy = f ′(ω)⟨q(g(ω)·), ψ⟩.

Next,

−n
f (ω)g ′(ω)
gn+1(ω)

∫
Rn

q(y)ψ
(

y
g(ω)

)
dy = −n

f (ω)g ′(ω)
g(ω)

⟨q(g(ω)·), ψ⟩.

Finally, another change of variables and integration by parts
(recall q, x · ∇xq ∈ L2(Rn) is assumed), yields∫

Rn
q(y)y · ∇yψ

(
y

g(ω)

)
dy

= gn+1(ω)
∫
Rn

q(g(ω)x)x · ∇xψ(x)dx =

= −gn+1(ω)
∫

div(xq(g(ω)x))ψ(x)dx

Rn
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= −gn+1(n⟨q(g(ω)·), ψ⟩ + g(ω)⟨x · ∇xq(g(ω)·), ψ⟩).

Putting it all together yields the formula,

lim
δ→0

⟨
qω+δ − qω

δ
, ψ

⟩
= f ′(ω)⟨q(g(ω)·), ψ⟩ + f (ω)g ′(ω)⟨x · ∇xq(g(ω)·), ψ⟩

as required. □

Next, we have the following rigorous results which can be
viewed as weaker versions of the formulas (6.1) and (6.3).

6.1.3. Rigorous versions of the formal differentiation formulas

Proposition 9. Let (n, s, p, b) ∈ A , s ∈ ( 12 , 1), 2b < n and ψ ∈ S .
hen, any solution Φω of (1.2), with the properties Φ ∈ L2∩ L∞ and
· ∇Φ ∈ L2(Rn) satisfies

∂jΦω,L+ψ⟩ = −b⟨
xj

|x|b+2Φ
p, ψ⟩, j = 1, . . . , n (6.6)

⟨∂ωΦω,L+ψ⟩ = −⟨Φω, ψ⟩. (6.7)

Remarks.

• Note that the expression ⟨
xj

|x|b+2Φ
p, ψ⟩ is well-defined, for

smooth functions ψ , whenever 2(b + 1) < n. This is how-
ever not always satisfied under the assumptions in Proposi-
tion 9. The expression still makes sense, under the weaker
assumptions herein, provided we interpret it in the form

⟨
xj

|x|b+2Φ
p, ψ⟩ =

∫
Rn

xj
|x|b+2Φ

p(x)(ψ(x)− ψ(0))dx.

• The notation ∂ωΦω is used in (6.7) in the following sense

∂ωΦω = σpω
σp−1Φ1(ω

1
2s x)+

ωσp+
1
2s−1

2s
x · ∇xΦ1(ω

1
2s x). (6.8)

This is of course nothing but the formal derivative with re-
spect to ω in (6.2). Note however that the expression on the
right of (6.8) belongs to L2(Rn), according to Proposition 5.

roof. Our starting point is the formula (4.3). Applying it for x
and x + δej, taking the divided difference and then dot product
with ψ yields

⟨((−∆)s + ω)[
Φ(· + δej)−Φ(·)

δ
], ψ⟩

= ⟨
|· + δ|−bΦp(· + δej)− |·|

−bΦp(·)
δ

, ψ⟩.

(6.9)

Assume for the moment that ψ is so that ψ̂ is supported in
ξ : |ξ | ≥ σ > 0}. In this way, ψ̃ = ((−∆)s + ω)ψ ∈ S , since its
ourier transform, (ω + (2π |·|)2s)ψ̂ is in Schwartz class.14
So we have, by (6.4),

⟨((−∆)s + ω)[
Φ(· + δej)−Φ(·)

δ
], ψ⟩

= ⟨
Φ(· + δej)−Φ(·)

δ
, ψ̃⟩ → ⟨∂jΦ, ψ̃⟩.

It follows that

lim
δ→0

⟨((−∆)s + ω)[
Φ(· + δej)−Φ(·)

δ
], ψ⟩ = ⟨∂jΦ, ((−∆)s + ω)ψ⟩.

This clearly can be extended from the set of Schwartz functions,
which are Fourier supported away from zero to the whole set S .

14 Note that |ξ |2sψ̂(ξ ) is not smooth at zero, unless ψ̂ vanishes in a
eighborhood of zero.
Indeed, it suffices to observe that the set of Schwartz functions,
which are Fourier supported away from zero is H2s dense in S .

For the right-hand side of (6.9), we could perform an iden-
tical argument, except that we do not have in general that
∂j|·|

−bΦp(·) ∈ L2(Rn) (as we would need to require 2(b+ 1) < n).
nstead, we proceed with the direct proof. We have

⟨
|· + δ|−bΦp(· + δej)− |·|

−bΦp(·)
δ

, ψ⟩

= ⟨|·|
−bΦp(·),

ψ(· − δej)− ψ(·)
δ

⟩ → −⟨|·|
−bΦp(·), ∂jψ⟩.

f ψ ∈ S (Rn
\ {0}), we can take integration by parts (as we avoid

he singularity at zero), whence we arrive at

lim
δ→0

⟨
|· + δ|−bΦp(· + δej)− |·|

−bΦp(·)
δ

, ψ⟩

= ⟨−b
xj

|x|b+2Φ
p
+ p|x|−bΦp−1Φ ′, ψ⟩.

gain, one may extend such a formula from ψ ∈ S (Rn
\ {0}) to

∈ S . It follows that taking limits as δ → 0 in (6.9) results in
6.6).

For the proof of (6.7), we proceed in a similar fashion. More
pecifically, taking (1.2) at ω and then at ω + δ and subtracting
ields the relation

(−∆)s + ω)[
Φω+δ −Φω

δ
] − |x|−b

[
Φ

p
ω+δ −Φp

ω

δ
] = −Φω+δ.

Taking dot product with ψ ∈ S (Rn
\ {0}) yields

⟨
Φω+δ −Φω

δ
, ((−∆)s + ω)ψ⟩ − ⟨|x|−b

[
Φ

p
ω+δ −Φp

ω

δ
], ψ⟩

= −⟨Φω+δ, ψ⟩.

(6.10)

Clearly,

⟨Φω+δ, ψ⟩ = ⟨Φω, ψ⟩ + δ⟨
Φω+δ −Φω

δ
, ψ⟩ → ⟨Φω, ψ⟩,

as the expression ⟨
Φω+δ−Φω

δ
, ψ⟩ has a limit by (6.5), namely

⟨
Φω+δ−Φω

δ
, ψ⟩ → ⟨∂ωΦω, ψ⟩.

Under the assumption ψ ∈ S : suppψ̂ ⊂ {ξ : |ξ | ≥ σ > 0},
we introduce again ψ̃ = ((−∆)s + ω)ψ ∈ S . According to (6.2)
and a simple change of variables

lim
δ→0

⟨
Φω+δ −Φω

δ
, ((−∆)s + ω)ψ⟩ = ⟨∂ωΦω, ψ̃⟩

= ⟨∂ωΦω, ((−∆)s + ω)ψ⟩.

This is again extendable, as above to any ψ ∈ S . Finally, by (6.5)
and the formula15 ∂ωΦp

ω = pΦp−1
ω ∂ωΦω , we have16

lim
δ→0

⟨|·|
−b
[
Φ

p
ω+δ −Φp

ω

δ
], ψ⟩ = lim

δ→0
⟨
Φ

p
ω+δ −Φp

ω

δ
, |·|−bψ⟩

= p⟨∂ωΦω, |·|−bΦp−1
ω ψ⟩.

All in all, we obtain (6.7). □

6.2. Spherical harmonics and fractional Schrödinger operators

In this section, we give the final preparatory material before
we establish the non-degeneracy, in the case n ≥ 2. The ap-
proach is to decompose the fractional Schrödinger operator L+ =

−∆)s + ω − p|x|−bΦp−1, with a base space L2(Rn) onto simpler,
ssentially one dimensional subspaces of the spherical harmonics

15 This formula is of course correct formally, but in order to provide a rigorous
justification, we need to took into account (6.2), and (6.8).
16 Noting that |·|−bψ ∈ L2(Rn) under the standing assumption 2b < n.
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(SH for short). This is convenient due to the radiality of the po-
tential W := p|x|−bΦp−1, which allows for such decompositions
to be invariant. In addition, the objects of interest are confined to
the radial subspace and at most to the next SH subspace, which
allows us to use Proposition 7. Similar approach was taken in the
recent paper [43]. We continue now with the specifics.

The Laplacian on Rn is given in the spherical coordinates by

∆ = ∂rr +
n− 1

r
∂r +

∆Sn−1

r2
,

where ∆Sn−1 is the self-adjoint Laplace–Beltrami operator on the
sphere. Its action may be uniquely described as

∆Sn−1P[x⃗/r] = r2∆[P[x⃗/r]],

for each polynomial of n variables P . There are many useful
properties of ∆Sn−1 , we will just concentrate the discussion on
those that are directly relevant to our argument. In particular, its
spectrum is explicitly given by

σ (−∆Sn−1 ) = {l(l+ n− 2), l = 0, 1, . . .}.

In fact, there are the finite dimensional eigenspaces Xl ⊂

L2(Sn−1), corresponding to the eigenvalue l(l+ n− 2), which give
rise to the orthogonal decomposition L2(Sn−1) = ⊕

∞

l=0Xl. It is
worth noting that X0 = span[1], whereas X1 = span{ xjr , j =

1, 2, . . . , n}. Denote X≥1 := ⊕
∞

l=1Xl, so that L2(Rn) = L2rad(r
n−1dr)

⊕ L2(rn−1dr,X≥1). We henceforth use the notation L2rad as a
shorthand for L2rad(r

n−1dr). Note that if we restrict −∆ to L2rad, we
have

−∆|L2rad
= −∂rr −

n− 1
r

∂r ,

while

−∆|L2(rn−1dr,X≥1)≥ −∂rr −
n− 1

r
∂r +

n− 1
r2

.

For every Banach space X ↪→ L2(Rn), we denote its radial sub-
space Xrad := X ∩ L2rad.

Now consider a fractional Schrödinger operator H = (−∆)s+
, where W is radial. H acts invariantly on L2(rn−1dr,Xl) for

each l. Upon introducing Hl = H |L2(rn−1dr,Xl), we have the
decomposition

H = ⊕
∞

l=0Hl : ⊕
∞

l=0L
2(rn−1dr,Xl) → ⊕

∞

l=0L
2(rn−1dr,Xl).

We also make use of the notation H≥1 := ⊕
∞

l=1Hl for H restricted
to ⊕

∞

l=1L
2(rn−1dr,Xl). Clearly D(Hl) = D(H )∩ L2(rn−1dr,Xl) and

σ (H ) =
⋃

∞

l=0 σ (Hl) and H0 < H1 < H2 < · · ·. We shall also
use the notation σ0(Hl) for the bottom eigenvalue, σ1(Hl) for the
second smallest eigenvalue and so on.

6.3. Conclusion of the non-degeneracy proof

In this section, we follow the arguments in [43]. We also
assume that n ≥ 2, as the one dimensional case n = 1 reduces to
an easy argument, contained in the proof below.

We have from Proposition 6 that L+ has one simple negative
eigenvalue and from the previous section there is the decompo-
sition of L+ in spherical harmonics as

L+ = L+,0 ⊕ L+,≥1.

The non-degeneracy of L+ follows from the following.

Proposition 10. σ1(L+,0) > 0 and there exists δ > 0 so that
L+,≥1 ≥ δ > 0.

emark. We know that σess.(L+) = [ω,∞), whence the only
remaining issue is the point spectrum.
Proof. We know that the smallest eigenvalue of L+, E0 < 0 has a
bell-shaped eigenfunction and hence, it is an eigenvalue of L+,0.
The next radial eigenvalue E1 cannot be negative since n(L+) = 1,
thus E1 ≥ 0. If E1 > 0, we will have shown σ1(L+,0) > 0.

Assume, for a contradiction that E1 = 0. Then by Proposition 7,
there is an eigenfunction ψ1 such that L+,0ψ1 = 0, so that ψ1
has exactly one change of sign. Without loss of generality, let
ψ1(r) < 0, r ∈ (0, r0) and ψ1(r) > 0 for r ∈ (r0,∞).

Next, we show now that Φω ⊥ Ker[L+]. Indeed, for every
ψ ∈ ker[L+], we have that ψ ∈ H2s(Rn). Thus, we can approx-
imate by Schwartz functions ψN → ψ in H2s(Rn) norm, whence
limN→∞ ∥L+ψN − L+ψ∥L2 = 0. We have by (6.7) applied to ψN ,
that
0 = ⟨∂ωΦω,L+ψ⟩ = lim

N→∞

⟨∂ωΦω,L+ψN⟩ = − lim
N→∞

⟨Φω, ψN⟩

= −⟨Φω, ψ⟩.

It follows that Φω ⊥ Ker[L+]. By a direct calculation we see that

L+,0Φ = −|x|−b(p− 1)Φp,

whence |x|−bΦp
⊥ ker[L+,0]. Note that since 2b < n, |x|−bΦp

∈

L2(Rn). Now consider

ϕ = c0Φ − r−bΦp
= Φ(c0 − r−bΦp−1), c0 :=

Φp−1(r0)
rb0

.

Since Φ is bell-shaped, ϕ(r) < 0, r ∈ (0, r0) and ϕ(r) > 0, r ∈

(r0,∞), but since ϕ ⊥ ker[L+,0] we have ⟨ϕ,ψ1⟩ = 0. On
the other hand, ϕψ1 ≥ 0, and this is a contradiction. Hence
σ1(L+,0) > 0.

Finally we show that L+,≥1 > 0. Note however that since
n(L+) = 1 and n(L+,0) = 1, we have L+,≥1 ≥ 0. Hence, we
just need to show that zero is not eigenvalue for L+,≥1.

Suppose, for a contradiction, that zero is an eigenvalue for
L+,≥1. This implies that zero is an eigenvalue for L+,1. Indeed,
otherwise zero is then eigenvalue for L+,≥2, say L+,≥2ϑ = 0.
Since L+,≥2 > L+,1, it will follow that

⟨L+,1ϑ, ϑ⟩ < ⟨L+,≥2ϑ, ϑ⟩ = 0.

Consequently, L+,1 has a negative eigenvalue, which is a con-
tradiction, as we know L+,≥1 ≥ 0. Thus, we have reduced our
contradiction argument to the case that L+,1 has an eigenvalue
at zero, which we will need to refute now.

Since zero is now assumed to be an eigenvalue for L+,1
and L+,1 ≥ 0, it must be at the bottom of the spectrum. Its
eigenfunctions are in the form ψj = ψ(x) xj

|x| , j = 1, . . . , n, where
ψ ∈ L2rad. So, ψ is an eigenfunction at the bottom of the spectrum
for the operator

L̃+,1 = (−∂rr −
n− 1

r
∂r +

n− 1
r2

)s + ω − p|r|−bΦp−1(r),

acting on functions in L2rad. According to Lemma C.4, [39], (−∆l)
s
2 ,

s ∈ (0, 1) is positivity improving for each l ≥ 0, i.e. for every
Xl ∈ Xl and every u ∈ Ḣs

rad,

∥(−∆l)
s
2 [uXl]∥L2rad

≥ ∥(−∆l)
s
2 |u|∥L2rad ,

whence it is easy to see that ⟨L̃+,1u, u⟩L2rad ≥ ⟨L̃+,1|u|, |u|⟩L2rad .
hus, we conclude that ψ ≥ 0, since ψ is a solution of the

constrained minimization problem{
⟨L̃+,1u, u⟩L2rad → min
∥u∥L2rad = 1

We now apply formula (6.6) for a sequence of Schwartz functions
ΨN approximating ψ1(x) = ψ(x) x1

|x| ∈ Ker[L+] in the H2s(Rn)
orm. We have

= ⟨∂x Φ,L+ψ1⟩ = lim ⟨∂x Φ,L+ΨN⟩
1 N→∞
1
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= −b lim
N→∞

⟨
x1

|x|b+2Φ
p,ΨN⟩ =

= −b⟨
x1

|x|b+2Φ
p, ψ1⟩ = −b

∫
Rn

x21
|x|b+3Φ

p(x)ψ(x)dx < 0.

which is a contradiction. Note that the last integral, the singu-
larity at zero is integrable, since b + 1 < n, as b < n

2 , n ≥

. This concludes the proof of the proposition as well as the
on-degeneracy of Φ . □

. Spectral and orbital stability of the waves

We start with some introductory material regarding the spec-
ral stability of a general class of eigenvalue problems, of which
urs will be a special case.

.1. Index counting theories: general theory

We need a quick introduction of the instability index count
heory, as developed in [44,45], see also the book [46], as well
s [47–49]. We will only consider special cases, which serve our
urposes. To that end, we consider an eigenvalue problem in the
orm

L f = λf . (7.1)

We need to introduce a real Hilbert space, so that f ∈ X , its dual
X∗, so that L : X → X∗, so that the bilinear form (u, v) →

⟨L u, v⟩ is a bounded symmetric bilinear form on X ×X . Next, J

is assumed to be a bounded operator, which is skew-symmetric,
i.e. J ∗

= −J . Furthermore, assume that there is an L invariant
decomposition of the base space in the form

X = X− ⊕ Ker[L ] + ⊕X+,

where L |X−< 0, n(L ) := dim(X−) < ∞, dim(Ker[L ]) < ∞ and
for some δ > 0, LX+ ≥ δ > 0. That is, ⟨LΨ ,Ψ ⟩ ≥ δ∥Ψ ∥X+ .

Next, consider the finite dimensional generalized eigenspace
t the zero eigenvalue, defined as follows

0 = gKer[J L ] = span[∪∞

k=1[Ker[J L ]
k
]].

Note that Ker[L ] ⊂ E0 and introduce Ẽ0 : E0 = Ker[L ] ⊕ Ẽ0.
Consider the integer k≤0

0 (L ) := n(L |Ẽ0
). Equivalently, taking

an arbitrary basis in Ẽ0, {ψ1, . . . , ψN} ⊂ D(L ), define k≤0
0 (L )

to be the number of negative eigenvalues of the N × N matrix
D = (⟨Lψi, ψj⟩)i,j,1≤i,j≤N .

Under these general assumptions, it is proved in [44] (see
Theorem 1), that

kr + 2kc + 2k≤0
0 = n(L )− n(D), (7.2)

where kr is the number of real and positive solutions λ in (7.1),
which account for the real unstable modes, 2kc is the number of
solutions λ in (7.1) with positive real part, which account for the
modulational instabilities, and finally 2k≤0

0 is the number of the
dimension of the marginally stable directions, corresponding to
purely imaginary eigenvalue with negative Krein index.

7.2. Index counting theory for (1.5)

For the eigenvalue problem in the form (1.5), we have that
J is invertible and anti-symmetric, J −1

= J ∗
= −J and

X = Hs(Rn), X∗
= H−s(Rn), n ≥ 1. Note that according to

Proposition 6, we have that n(L+) = 1, while n(L−) = 0, whence
n(L ) = n(L+)+ n(L−) = 1. In addition,

Ker[L ] = span[
(

ker[L+]

0

)
,

(
0

ker[L−]

)
]

= span[
(

0
)
].
Φω
Thus, we have that J : Ker[L ] → (Ker[L ])⊥. For the matrix D ,

e need to solve Ψ : J LΨ =

(
0
Φω

)
. So, Ψ =

(
L −1

+ Φω
0

)
nd the matrix D is a scalar, with

= ⟨LΨ ,Ψ ⟩ = ⟨L −1
+
Φω,Φω⟩. (7.3)

ccording to the formula (7.2), we conclude

r + 2kc + 2k≤0
0 = 1− n(D).

Clearly, in our situation, it is always the case that kc = k≤0
0 = 0,

and kr = 1 exactly when ⟨L −1
+ Φω,Φω⟩ > 0 and kr = 0, when

⟨L −1
+ Φω,Φω⟩ < 0. We formulate our result in the following

corollary.

Corollary 4. For the eigenvalue problem (1.5), spectral stability
occurs exactly when ⟨L −1

+ Φω,Φω⟩ < 0 and instability is when
L −1

+ Φω,Φω⟩ > 0. Moreover, the instability presents itself as a
ingle, real unstable mode.

emarks.

• This is reminiscent of the standard Vakhitov–Kolokolov cri-
teria for stability of waves in situations with a simple Morse
index, i.e. Morse index equal to one.

• The case ⟨L −1
+ Φω,Φω⟩ = 0 presents a transition from

stability to instability, so a pair of eigenvalues crosses from
being purely imaginary ±ıσ symmetric with respect to the
origin to being a pair of real ones ±λ. In this case, the
algebraic multiplicity of the zero eigenvalue for J L is four,
up from the algebraic multiplicity two in all other cases,
corresponding to the modulational invariance still present
in the system.

.3. Coercivity of L+

In this section we show the coercivity property of L+ on the
pace {Φω}

⊥.

roposition 11. Let (n, s, p, b) ∈ A and ⟨L −1
+ Φω,Φω⟩ < 0. Then,

he operator L+ is coercive on {Φω}⊥∩Hs. That is, there exists δ > 0,
o that for all

L+Ψ ,Ψ ⟩ ≥ δ∥Ψ ∥
2
Hs , ∀Ψ ⊥ Φω. (7.4)

roof. This is a version of a well-known lemma in the theory,
ee for example Lemmas 6.7 and 6.9 in [50]. Recall that we have
lready showed Ker[L+] = {0} and n(L+) = 1. According to a
esult in [51] (see also Lemma 6.4, [50]), which state that under
hese conditions for L+

:= inf{⟨L+f , f ⟩ : f ⊥ Φω, ∥f ∥L2 = 1} ≥ 0.

onsider the associated constrained minimization problem

inf
∥f ∥=1,f⊥Φω

⟨L+f , f ⟩. (7.5)

ake a minimizing sequence fk : ∥fk∥ = 1, fk ⊥ Φω , so that

α = lim
k
⟨L+fk, fk⟩

= lim
k
[∥(−∆)

s
2 fk∥2 + ω − p

∫
|x|−bΦp−1(x)f 2k (x)dx].

y the properties

∥(−∆)
s
2 f ∥ ≥ ∥(−∆)

s
2 f ∗∥,

∫
|x|−bΦp−1(x)f 2(x)dx

≤

∫
|x|−bΦp−1(x)(f ∗)2(x)dx,
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we can assume, without loss of generality that fk are bell-shaped.
Note that by (2.6) and the Gagliardo–Nirenberg’s inequality

0 <
∫

|x|−bΦp−1(x)f 2k (x)dx ≤ C∥fk∥2
H

b
2+ϵ

≤ C∥fk∥
b/2+ϵ

s
Hs ∥fk∥

s−b/2−ϵ
s

L2
.

ote that for ϵ =
s− b

2
2 , by Young’s inequality, we can derive the

estimate (recall ∥fk∥L2 = 1)

⟨L+fk, fk⟩ ≥
1
2
∥(−∆)

s
2 fk∥2 − Cn,s,b.

It follows that supk ∥(−∆)
s
2 fk∥2 < ∞. By bell-shapedness of

k : ∥fk∥L2 = 1, we have the pointwise bound |fk(x)| ≤ C |x|−n/2.
his, along with supk ∥fk∥Hs < ∞, easily implies compactness in
ny Lq(|x| > 1), 2 < q < ∞. On the other hand, in the bounded
omain |x| < 1, there is compactness in L2(|x| < 1). So, assume
ithout loss of generality that fk itself converges to f strongly in
ll Lq(|x| > 1), 2 < q < ∞ and in L2(|x| < 1). In particular, f is
ell-shaped, as fk are bell-shaped. So, f ̸= 0.
In addition to that, we can assume, without loss of generality
weak convergence in Hs(Rn), fk ⇀ f . Note that by the weak
onvergence,

f ⊥ Φω, lim inf
k

∥(−∆)
s
2 fk∥2 ≥ ∥(−∆)

s
2 f ∥2,

∥f ∥L2 ≤ lim inf ∥fk∥L2 = 1.

inally, by splitting in |x| < 1 and |x| > 1 and applying the
different appropriate strong convergences in each (and uniform
bounds in Hs), we obtain

lim
k

∫
|x|−bΦp−1(x)f 2k (x)dx = lim

k

∫
|x|−bΦp−1(x)f 2(x)dx.

All in all, we obtain

⟨L+f , f ⟩ ≤ lim inf⟨L+fk, fk⟩ = α. (7.6)

e will now show that α > 0. Assume for a contradiction
hat α = 0. Since f ̸= 0 (recall f ⊥ Φω), we see from (7.6)
hat the function g =

f
∥f ∥ is a minimizer for (7.5). Writing the

Euler–Lagrange equation for it implies

L+g = γ g + cΦω. (7.7)

aking dot product with g and taking into account ⟨L+g, g⟩ =

, g ⊥ Φω implies that γ = 0. This means that g = cL −1
+ Φω . But

hen,

= ⟨L+g, g⟩ = c2⟨L −1
+
Φω,Φω⟩.

ince ⟨L −1
+ Φω,Φω⟩ ̸= 0 by assumption, it follows c = 0. But

hen, since Ker[L+] = {0}, (7.7) implies that g = 0, which is a
ontradiction.
So, we have shown that α > 0. In other words,

L+Ψ ,Ψ ⟩ ≥ α∥Ψ ∥
2, ∀Ψ ⊥ Φω. (7.8)

Note that (7.4) is however stronger than (7.8), as it involves ∥·∥Hs

norms on the right-hand side. Nevertheless, we show that it is
relatively straightforward to deduce it from (7.8). Indeed, assume
for a contradiction in (7.4), that gk : ∥gk∥Hs = 1, gk ⊥ Φω , so that
limk⟨L+gk, gk⟩ = 0.

Taking into account (7.8), this is only possible if limk ∥gk∥L2 =

0. So,

1 = lim
k
[∥(−∆)

s
2 gk∥2L2 + ∥gk∥2L2 ] = lim

k
∥(−∆)

s
2 gk∥2L2 .

ut then, we achieve a contradiction
0 = lim

k
⟨L+gk, gk⟩

= lim
k
[∥(−∆)

s
2 gk∥2L2 + ω∥gk∥

2
− p

∫
|x|−bΦp−1(x)g2

k (x)dx]
= 1, 0
since limk
∫
|x|−bΦp−1(x)g2

k (x)dx = 0, similar to some previous
teps, as supk ∥(−∆)

s
2 gk∥L2 < ∞, ∥gk∥ → 0. A contradiction is

reached, which completes the proof of Proposition 11. □

Knowing that L+|{Φ}⊥≥ 0 (and we have established some-
thing stronger in (7.4)), we can establish the coercivity of L−.

7.4. Coercivity of L−

In Proposition 6, we have already established that L− is non-
negative on the subspace {φ}⊥. We need a stronger coercivity
statement.

Proposition 12. Let (n, p, s, b) ∈ A . Then, there exists δ > 0, so
that

⟨L−Ψ ,Ψ ⟩ ≥ δ∥Ψ ∥
2
Hs ,∀Ψ ⊥ Φ. (7.9)

Proof. Recall that in Proposition 7, we have already seen that
L−|{Φ}⊥≥ 0. We will show first that

inf
∥u∥=1,u⊥φ

⟨L−u, u⟩ > 0.

Assuming not, it follows that L− has a second eigenfunction in its
ernel, Φ̃ ⊥ Φ . But then, since L+ < L−, we have ⟨L+Φ̃, Φ̃⟩ <

⟨L−Φ̃, Φ̃⟩ = 0. Hence, L+|{Φ̃,Φ}⊥
< 0 and in particular, L+ has at

least two negative eigenvalues, a contradiction. Thus, there exists
δ > 0, so that

⟨L−u, u⟩ ≥ δ∥u∥2, u ⊥ Φ. (7.10)

We would like to upgrade, as before, the right-hand side to
∥u∥2Hs . To that end, we assume for a contradiction, that there is
a sequence uk : uk ⊥ Φ, ∥uk∥Hs = 1, while limk⟨L−uk, uk⟩ = 0.
From (7.10), it follows that limk ∥uk∥ = 0, so limk ∥(−∆)

s
2 uk∥ =

1. Similar to the proof of Proposition 11 above this yields a
contradiction as well, since

0 = lim
k
⟨L−uk, uk⟩

= lim
k
[∥(−∆)

s
2 uk∥

2
L2 + ω∥uk∥

2
−

∫
|x|−bΦp−1(x)u2

k(x)dx] = 1.

With this, (7.9) is established. □

With Propositions 11 and 12 at hand, we are ready for the
orbital stability result.

7.5. Orbital stability of Φω

With the coercivity results in Proposition 11, one might argue
that we have all the necessary ingredients for orbital stability,
according to [52]. We are however missing one key piece of
information, namely the map ω→ Φω does not have the required
C1 smoothness. Therefore, we need a direct proof, which does not
se the smoothness of this map.

roposition 13. Let ϕ is non-degenerate, i.e ker[L+] = {0}, then
−iωtΦω is orbitally stable solution of (1.1).

roof. Recall that a global well-posedness, established in Corol-
ary 1, holds. So, there are unique global solutions, which con-
erve mass and Hamiltonian.
Our proof proceeds by contradictions. More specifically, there

s ϵ0 > 0 and a sequence of initial data uk : limk ∥uk −Φ∥Hs(Rn) =

, so that

sup inf ∥uk(t, ·)− eiθΦ∥Hs ≥ ϵ0.

≤t<∞ θ∈R
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Recall that E[u] = H [u] + w
2 P[u]. Introduce

k := |E[uk(t)] − E[Φω]| + |P[uk(t)] − P[Φω]|.

ince we have assumed the conservation laws, we have that ϵk is
conserved and limk ϵk = 0 For all ϵ > 0, define

tk = sup{τ : sup
0<t<τ

∥uk(t)−Φ∥Hs(Rn) < ϵ}.

Note that tk > 0, by the well-posedness. If we let uk = vk +
iwk, then for t ∈ (0, tk), we have ∥wk(t)∥Hs(Rn) ≤ ∥uk(t) −

Φ∥Hs(Rn) < ϵ. Define the modulations parameter θk(t) so that
[wk(t)− sin(θk(t))Φ] ⊥ Φ , which is

sin(θk(t))∥Φ∥ = ⟨wk(t),Φ⟩. (7.11)

ince |⟨wk(t),Φ⟩| ≤ ϵ∥Φ∥L2 , there is a unique small solution θk(t)
of (7.11), with |θk(t)| ≤ ϵ. In addition, we have

∥uk(t, ·)−eiθk(t)ϕ∥Hs ≤ ∥uk(t, ·)−Φ∥Hs +|eiθk(t) − 1|∥Φ∥Hs ≤ C0ϵ,

here C0 = C0(∥Φ∥Hs ) only. Let

k = sup{τ : sup
0<t<τ

∥uk(t)− eiθk(t)ϕ(.)∥Hs(Rn) < 2C0ϵ}.

learly Tk > tk > 0 and to complete the proof it is enough to
how that for all ϵ > 0 and large k Tk = ∞, since we can choose
k : ϵk ≪ ϵ0.
For t ∈ (0, Tk), write

k(t, .) = uk(t, ·)− eiθk(t)Φ

nd decompose into real and imaginary parts of ψk and then

roject on the vector
(
Φ

0

)
. This yields

(
vk(t, ·)− cos(θk(t))Φ
wk(t, ·)− sin(θk(t))Φ

)
= µk(t)

(
Φ

0

)
+

(
ηk(t, ·)
ζk(t, ·)

)
,

(
ηk(t, ·)
ζk(t, ·)

)
⊥

(
Φ

0

)
.

(7.12)

ote that this decomposition implies ηk(t) ⊥ Φ , while ζk(t) =

wk(t, ·) − sin(θk(t))Φ ⊥ Φ by the choice of θk, see (7.11). Taking
2 norms in (7.12) yields

µk(t)|2∥Φ∥
2
L2 +∥ηk(t)∥2L2 +∥ζk(t)∥2L2 = ∥ψk(t)∥2L2 ≤ 4C2

0 ϵ
2. (7.13)

We now exploit the properties of the conserved quantities. We
ave

P[uk(t)] =
∫
Rn
|eiθk(t)Φ + ψk(t)|

2
dx

= P[Φ] + ∥ψk(t, ·)∥2L2 + 2
∫
Rn
Φ(x)ℜ[eiθk(t)ψk(t, x)]dx.

ut

Φ(x)ℜ[eiθk(t)ψk(t, x)]dx∫
Φ(x)[cos(θk)(vn − cos(θk)Φ)− sin(θk)(wk − sin(θk)Φ)]dx =

= µk(t) cos(θk(t))∥φ∥2,

due to ηk ⊥ Φ and wk − sin(θk)Φ ⊥ Φ .
It follows that,

P[uk(t)] = P[Φ] + ∥ψk(t, ·)∥2L2 + 2µk(t) cos(θk(t))∥Φ∥
2,

whence by recalling that ∥ψk(t, ·)∥L2 ≤ 2C0ϵ, in t : 0 < t < Tk

|µk(t)| ≤
|P[uk(t)] − P[φ]| + ∥ψk(t, ·)∥2L2

2 cos(θk(t))∥Φ∥2

2 2
(7.14)
≤ C(ϵk + ∥ψk(t, ·)∥L2 ) ≤ C(ϵk + ϵ ).
In the last estimate, recall that |θk(t)| ≤ C0ϵ ≪ 1, whence
os(θk(t)) ≥ 1

2 and the denominator is harmless.
Next, we take advantage of an expansion for E[uk(t)] − E[Φ].

Indeed, for all sufficiently small ϵ, we have

E[uk(t)] − E[Φ] = E[eiθk(t)Φ + ψk] − E[Φ]

= E[Φ + e−iθk(t)ψk] − E[Φ].

Generally, for small perturbations of the wave ϱ1 + iϱ2 ∈ Hs(Rn)
and by taking into account the specific form of the energy func-
tional E, we have

E[Φ + (ϱ1 + iϱ2)] − E[Φ]

=
1
2
[⟨L+ϱ1, ϱ1⟩ + ⟨L−ϱ2, ϱ2⟩] + Err[ϱ1, ϱ2],

(7.15)

here

|Err[ϱ1, ϱ2]|

≤ C
∫
Rn
|x|−b

⏐⏐⏐⏐|Φ + ϱ1 + iϱ2|p+1
−Φp+1

− (p+ 1)Φpϱ1

−
p(p+ 1)

2
ϱ2
1 −

p+ 1
2

ϱ2
2

⏐⏐⏐⏐dx.
Observe that by elementary second order Taylor expansions of
the function z → |z|p+1, there is the pointwise estimate⏐⏐⏐⏐|Φ + ϱ1 + iϱ2|p+1

−Φp+1
− (p+ 1)Φpϱ1 −

p(p+ 1)
2

ϱ2
1 −

p+ 1
2

ϱ2
2

⏐⏐⏐⏐
≤ C(∥Φ∥L∞ )(|ϱ1| + |ϱ2|)min(p+1,3),

whence, according to (2.5), we obtain the estimate

|Err[ϱ1, ϱ2]| ≤ C
∫
Rn
|x|−b(|ϱ1|min(p+1,3)

+ |ϱ2|
min(p+1,3))dx

≤ C(∥ϱ1∥
min(p+1,3)
Hs + ∥ϱ2∥

min(p+1,3)
Hs ).

pply this expansion (7.15) to

ϱ1 + iϱ2 = e−iθk(t)ψk = [cos(θk)(µkΦ + ηk)+ sin(θk)ζk]
+ i [cos(θk)ζk − sin(θk)(µkΦ + ηk)] .

rom (7.13), we see that ∥ϱ1∥Hs +∥ϱ2∥Hs ≤ Cϵ, so we can bound
he contribution of |Err[ϱ1, ϱ2]| as follows

Err[ϱ1, ϱ2]| ≤ Cϵmin(p−1),1(∥ϱ1∥2Hs + ∥ϱ2∥
2
Hs ). (7.16)

urthermore,

L+ϱ1, ϱ1⟩ ≥ ⟨L−ηk, ηk⟩ − C(ϵ3 + ϵk + ϵ2(∥ηk∥Hs

+∥ζk∥Hs )+ ϵ(∥ηk∥Hs + ∥ζk∥Hs )2)
L−ϱ2, ϱ2⟩ ≥ ⟨L−ζk, ζk⟩ − C(ϵ3 + ϵk + ϵ2(∥ηk∥Hs + ∥ζk∥Hs )

+ ϵ(∥ηk∥Hs + ∥ζk∥Hs )2).

ue to the coercivity of L− (see Proposition 12 and more specif-
cally (7.9)) and L+, which was established in Proposition 11, we
ave that for some κ > 0 and since ηk, ζk ⊥ Φ , we have

k ≥ |E[uk(t)] − E[Φ]| ≥

≥ κ(∥ηk∥2Hs + ∥ζk∥
2
Hs )− C(ϵ3 + ϵk + ϵ2(∥ηk∥Hs + ∥ζk∥Hs )

+ ϵmin(p−1),1(∥ηk∥Hs + ∥ζk∥Hs )2),

r in other words, after some algebraic manipulations and for
ufficiently small ϵ (depending only on absolute constant),

ηk(t)∥2Hs + ∥ζk(t)∥2Hs ≤ C(ϵ3 + ϵk), (7.17)

here C is a constant that depends on the parameters, but not on
and k. We claim that this implies that T ∗

k = ∞ for sufficiently
mall ϵ (depending on the parameters only) and then sufficiently
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C
r

large k, so that ϵk ≪ ϵ. Indeed, assume that T ∗

k <∞. Then

2C0ϵ = lim sup
t→T∗k −

∥ψk(t)∥Hs ≤ C(|µk(t)| + ∥ηk(t)∥Hs + ∥ζk(t)∥Hs )

≤ C(ϵ
3
2 +

√
ϵk).

This last inequality is a contradiction, if ϵ : C0ϵ ≥ Cϵ
3
2 and then

√
ϵk < C0ϵ. Both of this can be arranged, so we obtain the

equired contradiction, which establishes Proposition 13. □
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