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Abstract. We consider the asymptotic behavior of the surface quasi-geostrophic equation, subject to a small external force.
Under suitable assumptions on the forcing, we first construct the steady states and we provide a number of useful a posteriori
estimates for them. Importantly, to do so, we only impose minimal cancellation conditions on the forcing function. Our main
result is that all L1 ∩ L∞ localized initial data produces global solutions of the forced SQG, which converge to the steady
states in Lp(R2), 1 < p ≤ 2 as time goes to infinity. This establishes that the steady states serve as one point attracting
set. Moreover, by employing the method of scaling variables, we compute the sharp relaxation rates, by requiring slightly
more localized initial data.
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1. Introduction

In this paper, the main object of investigation is the forced two dimensional surface quasi-geostrophic
equation

{
θt + uθ · ∇θ + Λαθ = f, x ∈ R2, t > 0
θ(x, 0) = θ0(x) (1.1)

where θ, f : R2 → R, Λ =
√−Δ is the Zygmund’s operator and

uθ = R⊥θ = (−R2θ,R1θ) = Λ−1(−∂2θ, ∂1θ).

Note that div(uθ) = 0. In fact, we adopt the notation uf for any scalar field f to mean the divergence-free
vector field uf :=R⊥f . The model (1.1) is of fundamental importance in the modeling of large scale fluid
motion, especially in oceanographic context. The critical case, namely α = 1, which is also the most
challenging from a mathematical standpoint, was put forward in [8] (see also [9]), as a model of surface
temperature of a rapidly rotating fluid. In fact, this and related models frequently arise in fluid dynamics
and as such, they have been widely studied in the last twenty years. We refer the reader to the works
[1,2,4–6,13,14,16,17,25,27] and references therein.

We consider the parameter α in the sub-critical regime α ∈ (1, 2), although the case α = 2 is certainly
interesting as well, both from physical and mathematical point of view.
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1.1. Global Regularity for (1.1): Some Recent Results and Historical Perspectives

The well-posedness theory for the homogeneous version of (1.1), i.e. with f = 0 is well-understood in the
sub-critical case α > 1. Informally, reasonably localized (including large) initial data θ0 produces global
solutions, which preserve the functional-analytic properties of the initial data. That is, the so-called
global regularity of the initial value problem has been established in various scenarios. These results have
appeared in literally hundreds of publications, which is why we do not attempt to follow through with
precise statements and references. Similarly, in the case α = 1, the criticality of the problem allows one
to reproduce the global regularity problem for small data. More recently, a substantial progress has been
made in the regularity problem for large data, see [3,12,22,23]. It has been established, that under fairly
mild assumptions on initial data, the solution persists globally and preserve the smoothness of θ0. It is
worth noting that the long time dynamics for the sub-critical and critical cases of (1.1) (both in the
regime f = 0 and f �= 0) were studied intensively in [10,11,18,21,24]. In particular, estimates for the
decay rates for regular and weak solutions were obtained in [24,26]. In [11], the authors have established
the existence of a global attractor for the problem posed on periodic domain.

The well-posedness in the supercritical case α < 1 remains an open elusive problem. The expectation
is that at least for some initial data, one should observe a finite time blow up. That has not been settled
as of this writing.

1.2. Motivation and Main Results

Our main object of investigation is the forced problem. Of particular interest will be the properties of
the steady states θ̃, which satisfies the following profile equation

Λαθ̃ + uθ̃ · ∇θ̃ = f, x ∈ R2. (1.2)

More precisely, we would like to draw conclusions about the global dynamics of (1.1) from the properties
of θ̃. This is indeed the main objective of this work. We should mention here that the problem that we
aim at considering has already been addressed, at least partially, in several recent works. Regarding the
un-forced SQG (i.e. with f = 0), in [26], the authors have obtained some estimates for the decay rates of
the solutions as well as estimates from below. More recently, in our work [27], we have considered a wide
variety of un-forced SQG like problem, of which SQG is an example. We have shown the optimal decay
rates for the solutions, once the initial data θ0 has some stronger localization properties.

We now describe the work of Dai, [15], which was the starting point and the main motivation of our
investigation. In it, she considers the case 1 ≤ α < 2. She starts by constructing solutions of (1.2), under
appropriate conditions of the small forcing term f . More importantly, she has established a non-linear
stability property for the evolution, namely that the solution of the dynamic problem (only under the
assumption that θ0 − θ̃ ∈ L2(R2)), converges to the steady state θ̃ in L2 sense. Note that no estimates on
the speed of the decay to zero are provided in [15]. However, it is worth noting that even in the case of
zero forcing, the convergence to zero of ‖θ(t, ·)‖L2(R2) may happen with arbitrarily slow decay, see [24],
unless one assumes more integrability of θ0.

In order to describe our results, it is convenient to track the deviation from the steady state θ̃, so we
introduce v:=θ − θ̃. This new variable satisfies the following equation{

vt + Λαv + uθ̃ · ∇v + uv · ∇θ̃ + uv · ∇v = 0,
v(x, 0) = v0(x).

(1.3)

Based on the physical interpretation of our model, we are only interested in localized functions θ, θ̃,
and consequently f to work with. In addition, and for mostly the same reasons, we only consider the
sub-critical case 1 < α < 2. This allows us to consider strong solutions and our results will not depend
on additional assumptions on the properties of weak and viscosity solutions, which is necessary in the
cases α ≤ 1. Indeed, the asymptotic behavior of the strong solutions (whose existence and uniqueness
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was established only recently in [3,22,23]) is a hard problem in general. Coincidentally, our method of
constructing the steady state (and the necessary a posteriori estimates) fails for α = 1, see Sect. 3 below.
The method of the scaled variables fails dramatically as well at α = 1, see Sect. 4. Last, but not least - we
do not believe that there is any reasonable explicit decay rate that can be established for ‖θ(t, ·)− θ̃(·)‖X

for any Banach space, for the case of the critical SQG α = 1, under any localization assumptions for the
initial data. Rather, we believe that the results in [15], which only establish limt→∞ ‖θ(t, ·)− θ̃(·)‖L2 = 0,
may be the best that can be said about it.

Next, we shall need to assume a sufficiently smooth and decaying initial forcing function f . Note that
due to the form of (1.2), some cancellation of f is necessary, see Theorem 1 for the precise requirements
on f .

We now aim at discussing the main results of this work. Before we present the specifics, let us give
a general overview of the goals and the general flavor of the problems that we would like to address.
Our first issue, as in [15], is to study the solvability of the elliptic problem (1.2). This turns out to be
non-trivial and we do not have a complete answer to the following natural question.

Problem 1. Given smooth and decaying f , with appropriate cancellation conditions, construct steady state
solution θ̃ of (1.2).

We note that this is in general (i.e. for large forcing f) an essentially open question, which merits
further, independent investigation. It should be stated though that in the work of Dai, [15], the issue was
partially resolved in the case of small forcing f . Even though some cancellation assumptions on the (small)
forcing term f are necessary, as discussed above, the conditions imposed in [15] requires f̂(ξ) = 0 : |ξ| < δ.
This in practice reduces the applicability of such result, as f is forced, among other things, to have zero
moments of all orders. We have succeeded in reducing the cancellation conditions by simply requiring
that f is small in some negative order Sobolev spaces, see Theorem 1 below.

Next, we are interested in the stability property of the dynamics, that is the property established in
[15] that the solutions of (1.1), with any size initial data θ0 (not necessarily small!) eventually converges
to the steady state θ̃. We refer to it as relaxation of the global solutions to the steady state. That is, we
are asking whether or not any solution of (1.1) should converge/relax to θ̃, in the appropriate norms as
t → ∞. More precisely,

Problem 2. Assuming existence of a solution θ̃ of (1.2), with appropriate properties, show that any solu-
tion of (1.1) converges to θ̃. Provide sharp estimates for the relaxation rates.

Clearly, any result in the direction of Problem 2 provides, as a corollary, an uniqueness statement for
the solvability of (1.2). Thus, a result of this type complements nicely an eventual existence result for
(1.2). We have the following results, under the standing assumption 1 < α < 2.

Theorem 1. (Existence of the steady state in unweighted spaces)
There exists ε0 > 0, so that whenever the forcing term f ∈ Ẇ−α, 2

α−1 (R2) : ‖f‖
Ẇ

−α, 2
α−1

< ε0, the

steady state equation (1.2) has a solution θ̃ ∈ L
2

α−1 (R2), with ‖θ̃‖
L

2
α−1 (R2)

≤ 2‖f‖
Ẇ

−α, 2
α−1

. If in addition,

for any p > 2
3−α , f ∈ W−α,p(R2), then the steady state θ̃ ∈ Lp and it satisfies the bound

‖θ̃‖Lp(R2) ≤ 2‖f‖Ẇ −α,p .

Assuming f ∈ Ẇ−α, 2
α−1 (R2) ∩ W 1−α, 2

α : ‖f‖
Ẇ

−α, 2
α−1

< ε0, there is the a posteriori estimate

‖∇θ̃‖
L

2
α

≤ C‖f‖
Ẇ 1−α, 2

α
. (1.4)

Remarks.
• The smallness assumptions are in scale invariant spaces, as is customary.
• It is possible to formulate an uniqueness statement for the small solutions θ̃ obtained in Theorem 1,

but we have stronger dynamics statement, see Theorem 2 below, which imply global uniqueness.
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• By far, the strongest cancellation condition is the requirement f ∈ Ẇ−α, 2
α−1 (R2) ∩ W 1−α, 2

α , which
is a fairly mild one for values of α close to 1. In fact, for 1 < α < 3

2 , there is the Sobolev embedding

‖f‖
Ẇ

−α, 2
α−1 (R2)

+ ‖f‖
W 1−α, 2

α
≤ C‖f‖

L
2

2α−1
,

which allows one to require only ‖f‖
L

2
2α−1

<< 1 in this case and Theorem 1 applies. Even when

2 > α > 3
2 , our assumptions will be satisfied, at small frequencies, by requiring the mild cancellation

condition |f̂(ξ)| ≤ C|ξ|1+δ, |ξ| < 1.

Theorem 2. (Relaxation in Lp spaces) Let 1 < α < 2 and f ∈ W 1−α, 4
2+α . Then, there exists ε0 > 0, so

that whenever the steady state θ̃ satisfies ‖∇θ̃‖
L

2
α

< ε0, and the initial data v0 = θ0−θ̃ ∈ L1∩L∞(R2), the
problem (1.3) has an unique, global solution in L2∩L∞. Moreover, there is a constant C = Cα,ε0,‖v0‖L2∩L∞
so that,

‖θ(t, ·) − θ̃(·)‖Lp(R2) ≤ C

(1 + t)
2
α (1− 1

p )
, 1 < p ≤ 2. (1.5)

The bound (1.5) can be extended to any 2 < p < ∞, as follows. For any q : 2 < q < ∞, there exists
ε0(q), so that whenever ‖∇θ̃‖

L
2
α

< ε0(q), and v0 ∈ L1 ∩ L∞(R2), then

‖θ(t, ·) − θ̃(·)‖Lp(R2) ≤ C

(1 + t)
2
α (1− 1

p )
, 2 ≤ p < q.

Remarks.
• The smallness condition ‖∇θ̃‖

L
2
α

<< 1 is guaranteed by Theorem 1 so long as we assume ‖f‖
Ẇ 1−α, 2

α

<< 1.
• It is important to emphasize that v0 is not assumed to be small. That is, Theorem 2 is a true

relaxation statement. That is, θ̃ serves as one point attractor for the evolution of (1.1).
• There are much more precise results, particularly if one assumes v0 ∈ Lp∩L2 instead of v0 ∈ L1∩L∞.

In this sense, Theorem 2 is a representative corollary of these estimates. The interested reader is
invited to consult Sect. 4.

• Related to the previous point, we have a result for initial data v0 ∈ L2 (but not in any other Lp

space), which does not guarantee any decay. See Corollary 5.2 or more precisely (5.7). This is in
line with the results in [24], which establish that there might be arbitrarily slow decaying to zero
solutions, when f = 0.

As we have explained above, the estimate (1.5) provides a stronger uniqueness result for the stationary
problem (1.2) as discussed earlier. Indeed, we have the following proposition.

Proposition 1. Assume that ‖f‖
Ẇ 1−α, 2

α
<< 1, so that θ̃ is guaranteed by Theorem 1. Also, assume

f ∈ W 1−α, 4
2+α . Assume that there is another solution of the stationary problem (1.2), θ̃1 : θ̃1−θ̃ ∈ L1∩L∞

(and here θ̃ is not necessarily small). Then, θ̃1 = θ̃.

Proof. As observed already, a small solution θ̃ of (1.2) is guaranteed by Theorem 1. It remains to apply
(1.5) (say for p = 2) to the stationary solution θ̃1, which implies that ‖θ̃1 − θ̃‖L2 = 0. �

In order to state the sharp decay results, we will need to argue in the weighted spaces. For any m ≥ 0,
we define the Hilbert space L2(m) as follow

L2(m) =
{

f ∈ L2 : ‖f‖L2(m) =
( ∫

R2
(1 + |x|2)m|f(x)|2dx

) 1
2

< ∞
}

. (1.6)

One can show by means of Hölder’s, L2(m)(R2) ↪→ Lp(R2), whenever 1 ≤ p ≤ 2. We have the following
a posteriori estimate in L2(m) spaces for the solution θ̃.
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Proposition 2. (a posteriori estimates for the steady state in weighted spaces)

Assume as in Theorem 1, f ∈ Ẇ−α, 2
α−1 (R2) : ‖f‖

Ẇ
−α, 2

α−1
< ε0. Let 1 < m < 3 − α and assume in

addition f ∈ W 1−α,2 ∩ W−α,2, Λ1−αf ∈ L2(m). Then, ∇θ̃ ∈ L2(m).

Remark. In fact, there is an explicit a posteriori estimate, see (3.5) below, for θ̃ which details the particular
dependence of ‖∇θ̃‖L2(m) on various norms involving f as stated above.

Theorem 3. (Sharpness of the decay estimates)

Let the assumptions in Proposition 2 stand. Assume in addition, v0 = θ0 − θ̃ ∈ L∞ ∩ L2(m)(R2).
Then, for each ε > 0, there exists a constant C = Cε, so that (1.3) has an unique global solution
v ∈ C[(0,∞), L2(m)], which satisfies the decay estimate

∥∥∥∥v(t, ·) − α0

(1 + t)
2
α

G

( ·
(1 + t)

1
α

)∥∥∥∥
Lp

≤ Cε

(1 + t)
m+3

α −1− 2
αp

, 1 < p ≤ 2, (1.7)

where α0(x) =
∫
R2 [θ0(x) − θ̃(x)]dx. In particular, for α0 �= 0, 0 < ε << m − 1, and large t,

‖v(t, ·)‖Lp ≥ |α0|
2

∥∥∥∥(1 + t)− 2
α G

( ·
(1 + t)

1
α

)∥∥∥∥
Lp

∼ (1 + t)− 2
α (1− 1

p ), 1 < p ≤ 2. (1.8)

Remarks.

• The estimate (1.8) shows that (1.5) is sharp, whenever
∫
R2 [θ0(x) − θ̃(x)]dx �= 0.

• The extra localization v0 ∈ L2(m),m > 1 guarantees v0 ∈ L1(R2).
• It is possible to state estimates similar to (1.7), which shows the sharpness of the decay estimates

for ‖θ(t, ·) − θ̃(·)‖Lp for at least some p > 2, but we will not do so here.

The plan for the paper is as follows. In Sect. 2, we first introduce some basics - function spaces, Fourier
multipliers and fractional derivatives and fractional integral operators. Next, we state and prove some
properties of the Green’s function of the fractional Laplacian, as well as some commutator estimates,
which may be of independent interest. Lastly, we present a version of the Gronwall’s lemma. In Sect. 3,
we present the details of the construction of the steady state, together with the necessary a posteriori
estimates. In particular, one may find there the proofs of Theorem 1 and Proposition 2, which are mere
corollaries of the more general results of this section. In Sect. 4.1, we introduce the scaled variables for
the problem. The main advantage is that in these variables, the governing partial differential equation
is a parabolic PDE, driven by a (non-self adjoint) differential operator with purely negative spectrum,
which enjoys the spectral gap property. We present a complete spectral analysis of the involved operators
and the corresponding semi-group estimates, by partially relying on our previous work [27]. In Sect. 5,
we analyze the dynamics of (1.3) in the Lp setting, provided the conditions on f guarantee the existence
of an appropriate steady state θ̃. In particular, the proof of Theorem 2 is presented. This is done by
establishing appropriate L2, Lp, 2 < p < ∞ and then L∞ bounds for v, based on energy estimates in the
unweighted spaces. These turn out to be sharp, based on the results of the next section. Importantly, it
turns out that the scaled variables turn out to be an efficient medium for obtaining sharp estimates in
unweighted Lp spaces, even though their properties somehow suggest that they might be best used in
the weighted context. Finally in Sect. 6, we present an argument, based on energy estimates in weighted
spaces L2(m), 1 < m < 3 − α, which guarantees that the upper bounds for the decay rates are in fact
optimal. This is justified by explicitly isolating the leading order term (decay wise) for the scaled variable
V .
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2. Preliminaries

2.1. Function Spaces, Fourier Transform, and Multipliers

The Lebesgue Lp spaces are defined by the norm ‖f‖Lp =
(∫ |f(x)|p dx

) 1
p

, while the weak Lp spaces
are

Lp,∞ =
{

f : ‖f‖Lp,∞ = sup
λ>0

{
λ |{x : |f(x)| > λ}| 1

p

}
< ∞

}
.

The Fourier transform and its inverse are taken in the form

f̂(ξ) =
∫
Rn

f(x)e−ix·ξdx, f(x) = (2π)−n

∫
Rn

f̂(ξ)eix·ξdξ.

Consequently, since ̂−Δf(ξ):=|ξ|2f̂(ξ), and as pointed out already, the fractional differentiation operators
are introduced via Λa:=(−Δ)a/2, a > 0. Equivalently, its action on the Fourier side is Λ̂af(ξ) = |ξ|af̂(ξ).
In this context, recall the Hausdorff–Young inequality which reads as follows: For p, q, r ∈ (1,∞) and
1 + 1

p = 1
q + 1

r

‖f ∗ g‖Lp ≤ Cp,q,r‖f‖Lq,∞‖g‖Lr .

For an integer n and p ∈ (1,∞), the Sobolev spaces are the closure of the Schwartz functions in the
norm ‖f‖W k,p = ‖f‖Lp +

∑
|α|≤k ‖∂αf‖Lp , while for a non-integer s

‖f‖W s,p = ‖(1 − Δ)s/2f‖Lp ∼ ‖f‖Lp + ‖Λsf‖Lp .

We also need the homogeneous versions of it, with semi-norms ‖f‖Ẇ s,p = ‖Λsf‖Lp . The Sobolev embed-
ding theorem states ‖f‖Lp(Rn) ≤ C‖f‖Ẇ s,q(Rn), where 1 < p < q < ∞ and n( 1

p − 1
q ) = s, with the usual

modification for p = ∞, namely ‖f‖L∞(Rn) ≤ Cs‖f‖W s,q(Rn), s > n
p . More generally, for smooth symbols

m, with the property |m(ξ)| ∼ |ξ|s, we have

‖Tm−1f‖Lp(Rn) ≤ C‖f‖Lq (2.1)

where n( 1
p − 1

q ) = s and ̂Tm−1f(ξ) = m−1(ξ)f̂(ξ).
Finally, due to the failure of the Sobolev space H1(R2) to embed in L∞(R2), we record the following

modification of it: H1−δ(R2) ∩ H1+δ(R2) ↪→ L∞(R2), δ > 0. In terms of estimates, for all δ > 0, there
exists Cδ, so that

‖f‖L∞(R2) ≤ C(‖f‖H1−δ(R2) + ‖f‖H1+δ(R2)). (2.2)

2.2. The Fractional Derivatives and Anti-Derivatives

We start by recording the following kernel representation formula for negative powers of Laplacian. This
is nothing, but a fractional integral, for α ∈ (0, 2),

Λ−αf(x) = ca

∫
R2

f(y)
|x − y|2−α

dy. (2.3)

Next, for positive powers, we have similar formula. More specifically, for α ∈ (0, 2),

Λαf(x) = Cap.v.

∫
R2

f(x) − f(y)
|x − y|2+α

dy,

see Proposition 2.1, [14]. Next, we have the following result, due to Chamorro and Lemarié-Rieusset, see
Theorem 3.2, [7], although for earlier version, one may consult Lemmas 2.4, 2.5 in [14].∫

Rn

|f(x)|p−2f(x)[Λaf ](x)dx ≥ Cp‖f‖p

L
2p

2−α

. (2.4)
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Lemma 2.1. For p : 1 ≤ p < ∞, α ∈ [0, 2], n ≥ 1,∫
Rn

|f(x)|p−2f(x)[Λαf ](x)dx ≥ 0. (2.5)

If in addition, p ≥ 2, there is the stronger coercivity estimate∫
Rn

|f(x)|p−2f(x)[Λaf ](x)dx ≥ 1
p
‖Λ

α
2 [|f | p

2 −1f ]‖2
L2(Rn). (2.6)

In particular, for n = 2, by combining (2.6) with Sobolev embedding, one gets∫
R2

|f(x)|p−2f(x)[Λaf ](x)dx ≥ C‖f‖p

L
2p

2−α (R2)
, (2.7)

for some constant C depending on p, α. We also need the following commutator estimate.

Lemma 2.2. Let 0 < s < 1 < σ. Then, there is C = Cs,σ, so that

‖[Λs, |η|σ]f‖L2(R2) ≤ C‖|η|σ−sf‖L2(R2). (2.8)

We provide the slightly technical proof of Lemma 2.2 in the Appendix. We should also mention that
it is roughly based on the approach for Lemma 11, [27].

2.3. The Function G and a Variant of the Gronwall’s Inequality

The function G defined by Ĝ(ξ) = e−|ξ|α , ξ ∈ R2 will be used frequently in the sequel. Its straightforward
proof can be found in [27].

Lemma 2.3. For any p ∈ [2,∞] and α ∈ (1, 2),

(1 + |η|2) G(η), (1 + |η|2)∇G(η) ∈ Lp
η. (2.9)

In particular, G,∇G ∈ L1(R2) ∩ L∞(R2).

Note that uG ∈ L∞, since

‖uG‖L∞ ≤ C‖uG‖W 1,4 < ∞.

We have that for c �= d and 0 < a < 1, there exists C = C(c, d, a), so that the following estimate holds∫ τ

0

e−c(τ−s)e−ds

min(1, |τ − s|)a
ds ≤ Ce− min(c,d)τ . (2.10)

Moreover, we need a version of the Gronwall’s inequality as follows.

Lemma 2.4. Let σ ≥ μ > 0, κ > 0 and a ∈ [0, 1). Let A1, A2, A3 be three positive constants so that a
function I : [0,∞) → R+ satisfies I(τ) ≤ A1e

−γτ , for some real γ and

I(τ) ≤ A2e
−μτ + A3

∫ τ

0

e−σ(τ−s)

min(1, |τ − s|)a
e−κsI(s)ds. (2.11)

Then, there exists C = C(a, σ, μ, κ, γ,A1, A2, A3), so that

I(τ) ≤ Ce−μτ .

Proof. We present the short proof here for completeness. Let γn be so that there exists Cn, so that I(τ) ≤
Cne−γnτ for all τ > 0. We will show that there exists a constant Cn+1, so that |I(τ)| ≤ Cn+1e

−γn+1τ , for
γn+1:= min(μ, κ

2 + γn).
Indeed, taking absolute values in (2.11) and plugging in the assumed estimate I(τ) ≤ Cne−γnτ , we

obtain

|I(τ)| ≤ A2e
−μτ + A3Cn

∫ τ

0

e−σ(τ−s)e−κse−γns

min(1, |τ − s|)a
ds.
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This is of course nothing but the setup in (2.10), if σ �= κ + γn. We get the estimate

|I(τ)| ≤ A2e
−μτ + Dne− min(σ,κ+γn)τ ≤ Cn+1e

− min(μ,κ+γn)τ .

Even in the case σ = κ + γn, via an obvious modification of the argument above, we can give up slightly
in the exponents and still obtain a bound of Cn+1e

− min(μ, κ
2 +γn)τ .

Thus, we have shown the bound |I(τ)| ≤ Cn+1e
−γn+1τ . The rest is just an iteration argument, starting

with γ0:=γ, which will certainly conclude, after a finitely many steps, since κ > 0, with γN = μ. �

3. Construction of the Steady State

In this section, we provide a construction of the steady state θ̃. In particular, and as a corollary of the
results presented herein, we show Theorem 1 and Proposition 2. The properties of θ̃ will depend on the
properties of the forcing term f . Before we continue with the specifics, let us recast the profile problem
(1.2) in the more convenient form

θ̃ + divΛ−α(θ̃ · uθ̃) = Λ−αf, (3.1)

which was obtained using the fact that div(uθ̃) = 0. Note that (3.1) (and (1.2)) enjoy scaling invariance.
That is, if θ̃ is a solution, with right-hand side f , then so is θ̃λ(x):=λα−1θ̃(λx), with the corresponding
right-hand side fλ(x) = λ1−2αf(λx). This forces certain critical spaces in the argument, such as θ̃ ∈
L

2
α−1 (R2),∇θ̃ ∈ L

2
α (R2) and also f ∈ Ẇ−α, 2

α−1 among others. As we shall need to impose smallness
assumptions for our existence results, it is well-known that these are naturally introduced in a critical
space, as these norms are intrinsic (i.e. remain unchanged) under a scaling transformation.

3.1. Existence and Lp Properties of θ̃

Proposition 3. Let f ∈ Ẇ−α, 2
α−1 . Then, there exists ε0 > 0, so that whenever ‖f‖

Ẇ
−α, 2

α−1
< ε0, then the

Eq. (3.1) has solution θ̃ ∈ L
2

α−1 (R2). Moreover, for some absolute constant C

‖θ̃‖
L

2
α−1

≤ C‖f‖
Ẇ

−α, 2
α−1

.

If for some p > 2
3−α , we assume in addition f ∈ W−α,p(R2), then θ̃ ∈ Lp(R2) and

‖θ̃‖Lp ≤ C‖f‖Ẇ −α,p .

Remark. We can state uniqueness results for small solutions θ̃ as stated above. Our dynamic results later
on however, provide much stronger uniqueness statements.

Proof. Introduce the operators Kh[z]:=divΛ−α(z ·uh). We will show that they map L
2

α−1 (R2) into itself,
with a norm bounded by a multiple of ‖u‖

L
2

α−1 (R2)
. Indeed, by (2.1), we have

‖Kh[z]‖
L

2
α−1 (R2)

≤ C‖uhz‖
L

1
α−1

≤ C‖uh‖
L

2
α−1

‖z‖
L

2
α−1

≤ C‖h‖
L

2
α−1

‖z‖
L

2
α−1

. (3.2)

Thus, if ‖h‖
L

2
α−1

<< 1, the operator Id + Kh is invertible, via von Neumann series, with a norm

‖(Id + Kh)−1‖
B(L

2
α−1 )

≤ 1
2 .

With these preliminary considerations in mind, note that (3.1) is nothing but the functional equation
(Id + Kθ̃)θ = Λ−αf . Thus, we set up the iteration scheme θ̃0:=Λ−αf and for each n ≥ 1, θ̃n:=(Id +
Kθ̃n−1

)Λ−αf. Clearly, this is possible, if we manage to maintain the smallness of ‖θ̃n‖
L

2
α−1

. This is clearly
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the case for θ̃0 by assumption, since ‖θ̃0‖
L

2
α−1

= ‖f‖
Ẇ

−α, 2
α−1

< ε0. For each n ≥ 2, we subtract two
consecutive equations to obtain1

θ̃n − θ̃n−1 = (Kn−2 − Kn−1)θ̃n−1 + Kn−1(θ̃n−1 − θ̃n).

Estimating as in (3.2), we obtain

‖θ̃n − θ̃n−1‖
L

2
α−1

≤ C‖θ̃n−1‖
L

2
α−1

(‖θ̃n−1 − θ̃n−2‖
L

2
α−1

+ ‖θ̃n − θ̃n−1‖
L

2
α−1

).

For small enough ε0, by using an induction arguments, we establish that ‖θ̃n‖ < 2ε0 and

‖θ̃n − θ̃n−1‖
L

2
α−1

≤ Cε0‖θ̃n−1 − θ̃n−2‖
L

2
α−1

.

This implies that {θ̃n} is a Cauchy sequence in the critical space L
2

α−1 , which means that θ̃ = limn θ̃n ∈
L

2
α−1 exists and it is small. Finally, taking a limit in the L

2
α−1 norm in the equation (Id+Kn−1)θ̃n = Λ−αf

implies that (Id + Kθ̃)θ̃ = Λ−αf , which was the claim.
Now, if we assume in addition that f ∈ W−α,p, p > 2

3−α , we obtain

‖Kθ̃[z]‖Lp(R2) ≤ C‖uθ̃z‖Lq ≤ C‖uθ̃‖L
2

α−1
‖z‖Lp ≤ C‖θ̃‖

L
2

α−1
‖z‖Lp ,

where 2
(

1
q − 1

p

)
= α−1. The constraint p > 2

3−α is needed to ensure that in the above arguments q > 1.
�

Our next proposition concerns Sobolev space estimates for the steady state solution θ̃ produced in
Proposition 3.

3.2. Estimates in Sobolev Spaces for θ̃

Proposition 4. Let f ∈ Ẇ−α, 2
α−1 : ‖f‖

Ẇ
−α, 2

α−1
< ε0, as in Proposition 3. Then, there exists an absolute

constant C, so that for each p > 1, the solution θ̃ satisfies,

‖∇θ̃‖Lp(R2) ≤ C‖f‖Ẇ 1−α,p(R2), (3.3)

provided f ∈ W 1−α,p(R2).

Proof. We set up the equation for ∇θ̃ in the form (Id + K̃θ̃)∇θ = ∇Λ−αf , where the operator K̃h[z]:=
∇Λ−α(z · uh). The operator K̃ satisfies the same bound as Kθ̃

‖K̃θ̃‖Lp→Lp ≤ C‖θ̃‖
L

2
α−1

.

for all p > 2
3−α . Hence, the bound (3.3).

Obtaining further bounds, such as ‖∇θ̃‖Lp(R2) for 1 < p < 2
3−α requires bootstrapping the estimates

obtained for θ̃,∇θ̃. To this end, we can write the equation for ∇θ̃, in the form

∇θ̃ + ∇2Λ−α(θ̃ · uθ̃) = ∇Λ−αf. (3.4)

Take Lp, 1 < p < 2
α−1 norms in (3.4). Note that since α < 2, we have that 2

α−1 > 2
3−α and hence

this covers larger region that the needed one 1 < p < 2
3−α . Applying the Kato-Ponce bounds (note that

∇2Λ−α is a pseudo-differential operator of order 2−α), and the Sobolev’s inequality, with 1
p = 1

r + α−1
2 ,

‖Λθ̃‖Lp‖ ∼ ‖∇θ̃‖Lp ≤ C‖f‖Ẇ 1−α,p + C‖Λ2−αθ̃‖Lr‖θ̃‖
L

2
α−1

≤ C‖f‖Ẇ 1−α,p + C‖Λθ̃‖Lp‖θ̃‖
L

2
α−1

.

Again, the smallness obtained in Proposition 3, ‖θ̃‖
L

2
α−1

<< 1, will allow us to hide ‖Λθ̃‖Lp on the

left-hand side and we can obtain the bound ‖Λθ̃‖Lp ≤ C‖f‖Ẇ 1−α,p . �

1Here, we denote for conciseness Kn = Kθ̃n
.
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3.3. Weighted Estimates for θ̃

Proposition 5. Let f ∈ Ẇ−α, 2
α−1 : ‖f‖

Ẇ
−α, 2

α−1
< ε0, as in Proposition 3. Let 0 < δ < 2 − α and

m = 3 − α − δ. Assume in addition f ∈ W 1−α,2 ∩ W−α,2(R2) and Λ1−αf ∈ L2(m). Then,

‖∇θ‖L2(m) ≤ Cδ(‖Λ1−αf‖L2(m) + ‖f‖W 1−α,2 + ‖f‖2
W −α,2). (3.5)

Proof. Since we need to control ‖∇θ̃‖L2(m), we invoke Proposition 4 that yields control of ‖∇θ̃‖L2 . It
remains to control ‖|x|m∇θ̃‖L2(|x|>1). To that end, introduce a partition of unity

∑∞
k=−∞ χ(2−kx) = 1,

based on a function χ ∈ C∞
0 , so that suppχ ⊂ {x : 1

2 < |x| < 2}. For any function g, introduce the
notation gk(x):=g(x)χ(2−kx).

For the rest of the argument, our goal is to control

‖|x|m∇θ̃‖2
L2(|x|>1) ∼

∞∑
k=0

22km‖∇θ̃k‖2
L2 .

Multiplying (3.1) with χ(2−kx) and taking ∇ yields

∇θ̃k + [∇Λ−α(uθ̃ · ∇θ̃)]k = Fk,

where Fk = ∇(Λ−αf)k = (∇Λ−αf)k − 2−k∇χ(2−k·)Λ−αf .
Taking L2 norms yields the relation

‖∇θ̃k‖L2 ≤ ‖Fk‖L2 + ‖[∇Λ−α(uθ̃ · ∇θ̃)]k‖L2 . (3.6)

We now estimate the non-linear term. We have that for each function G, there is the point-wise bound
|∇Λ−α[G]| ≤ CΛ1−α|G|. Thus, with the notation g∼k = gk−2 + . . . + gk+2,

‖[∇Λ−α(uθ̃ · ∇θ̃)]k‖L2 ≤ ‖Λ1−α(uθ̃ · ∇θ̃∼k)‖L2 + ‖[∇Λ−α(uθ̃ · ∇θ̃<k−2)]k‖L2

+‖[∇Λ−α(uθ̃ · ∇θ̃>k−2)]k‖L2 .

For the first term, by Sobolev embedding

‖Λ1−α(uθ̃ · ∇θ̃∼k)‖L2 ≤ C‖uθ̃ · ∇θ̃∼k‖
L

2
α

≤ C‖∇θ̃∼k‖L2‖θ̃‖
L

2
α−1

≤ Cε0‖∇θ̃∼k‖L2

For the second term and the third term, we have the point-wise estimates (recall |x| ∼ 2k)

|∇Λ−α(uθ̃ · ∇θ̃<k−2)(x)| = |∇2Λ−α(uθ̃ · θ̃<k−2)(x)| ≤ C

∫
1

|x − y|4−α
|uθ̃(y)||θ̃<k−2(y)|dy

≤ C2−k(4−α)‖θ̃‖2
L2

|∇Λ−α(uθ̃ · ∇θ̃>k−2)(x)| ≤ C2−k(4−α)‖θ̃‖2
L2 .

Thus,

‖[Λ1−α(uθ̃ · ∇θ̃<k−2)]k‖L2 + ‖[∇Λ−α(uθ̃ · ∇θ̃<k−2)]k‖L2 ≤ C2−k(3−α)‖θ̃‖2
L2 .

Putting everything together in (3.6) that

‖∇θ̃k‖L2 ≤ ‖Fk‖L2 + C2−k(3−α)‖θ̃‖2
L2 + Cε0‖∇θ̃∼k‖L2 . (3.7)

for all k ≥ 1. Squaring (3.7), multiplying by 22km = 22k(3−α−δ) and summing in k ≥ 1 yields the a
posteriori estimate

J :=
∞∑

k=1

22(3−α−δ)k‖∇θ̃k‖2
L2 ≤

∞∑
k=1

22k(3−α−δ)‖Fk‖2
L2 +

∞∑
k=1

2−2δk‖θ̃‖4
L2 + Cε0(J + ‖∇θ̃‖2

L2).

This yields the bound, for sufficiently small ε0,

J ≤ Cδ(‖Λ1−αf‖2
L2(m) + ‖f‖2

W 1−α,2 + ‖f‖2
W 1−α,2 + ‖θ̃‖4

L2).
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Thus, for m = 3 − α − δ and any δ > 0, by using the bounds (3.3) for p = 2,

‖∇θ̃‖L2(m) ≤ Cδ(‖Λ1−αf‖L2(m) + ‖f‖W 1−α,2 + ‖f‖2
W −α,2).

�

4. The Scaled Variables and the Associated Operator L

Now that we have constructed the steady state θ̃ we turn our attention to the analysis of the dynamic
equations. As a first step, we shall need to introduce a major technical tool of our analysis, the scaled
variables. As we have alluded to above, the scaled variable approach is very beneficial in this context. It
was pioneered in [19,20] for the vorticity formulation of the 2D Navier–Stokes problem and later, it was
extended in our previous work [27] to the fractional case, to establish the exact relaxation rates for very
general SQG type problems.

4.1. Scaled Variables

Following [27], we introduce the scaled variables

τ = ln(1 + t), η =
x

(1 + t)
1
α

.

In the context of these new variables, we introduce new independent functions,

v(t, x) =
1

(1 + t)1− 1
α

V

(
x

(1 + t)
1
α

, ln(1 + t)
)

, θ̃(x) =
1

(1 + t)1− 1
α

Θ
(

x

(1 + t)
1
α

)
. (4.1)

or equivalently

V (τ, η) = eτ(1− 1
α )v(e

τ
α η, eτ − 1), Θ(τ, η) = eτ(1− 1

α )θ̃(e
τ
α η). (4.2)

We compute

vt = − 1 − 1
α

(1 + t)2− 1
α

V − 1
α

1
(1 + t)2− 1

α

x

(1 + t)
1
α

· ∇ηV +
1

(1 + t)2− 1
α

Vτ ,

Λαv =
1

(1 + t)2− 1
α

ΛαV, Λαθ̃ =
1

(1 + t)2− 1
α

ΛαΘ,

uv · ∇v =
1

(1 + t)2− 1
α

uV · ∇V, uθ̃ · ∇v =
1

(1 + t)2− 1
α

uΘ · ∇V,

uv · ∇v =
1

(1 + t)2− 1
α

uV · ∇V, uθ̃ · ∇v =
1

(1 + t)2− 1
α

uΘ · ∇V.

In the new variables, the Eq. (1.3) transfers to

Vτ =
(

− Λα +
1
α

η · ∇η + (1 − 1
α

)
)

V − uV · ∇ηV − uΘ · ∇ηV − uV · ∇ηΘ.

Equivalently, {
Vτ = L V − uV · ∇ηV − uΘ · ∇ηV − uV · ∇ηΘ,
V (0, η) = V0(η), (4.3)

where

L = −Λα +
1
α

η · ∇η + (1 − 1
α

). (4.4)

As we shall see later, the formulation (4.3) is useful, when studying the long-time behavior of V (and v
respectively) in the Lebesgue spaces Lp(R2). Due to its special spectral properties of L on the weighted
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spaces L2(2), the real advantage comes, when one considers L and the associated semi-group eτL on
the weighted space L2(2).

4.2. Spectral Analysis of the Operator L on L2(2)

Unlike the Laplacian (and the fractional Laplace operators over the appropriate domains), which have
σ(−Λα) = (−∞, 0], the operator L , with domain

D(L ) = {g ∈ Hα(R2) ∩ L2(2) : L g ∈ L2(2)}
pushes this spectral picture to the left side of the imaginary axis with a gap. We take advantage of this
fact, as it puts us in a better situation that we can analysis the solutions. The following proposition, which
is proved in [20] for the case α = 2 and extended in [27] lists some important aspects of the spectral
theory for L . In the statements below, we quote the relevant results, as developed in our previous work
[27].

Proposition 4.1. (Proposition 2, [27]) Let L be, as defined in (4.4). Then, its spectrum on the space
L2(2)(R2), is described as follows

(1) LG = (1− 3
α )G and G ∈ L2(2)(R2), whence G is an eigenfunction, corresponding to an eigenvalue

λ0(L ) = 1 − 3
α .

(2) The essential spectrum: Let μ ∈ C be such that �μ ≤ − 1
α and define, ψμ ∈ L2 such that

ψ̂μ(ξ) = |ξ|−αμe−|ξ|α . (4.5)

Then ψμ is an eigenfunction of the operator L with the corresponding eigenvalue2 λ = 1 + μ − 3
α .

In fact,

σess.(L ) =
{

λ ∈ C : �λ ≤ 1 − 4
α

}
.

In particular,

σ(L ) = {1 − 3
α

} ∪
{

λ ∈ C : �λ ≤ 1 − 4
α

}
,

where λ0(L ) = 1 − 3
α is a simple eigenvalue, with an eigenfunction G.

(3) The operator L defines a C0 semi-group, eτL on L2(2). In fact, we have the following formulas for
its action

̂(eτL f)(ξ) = e(1− 3
α )τe−a(τ)|ξ|α f̂(e− τ

α ξ), (4.6)

(eτL f)(η) =
e(1− 1

α )τ

a(τ)
2
α

∫
R2

G

(
η − p

a(τ)
1
α

)
f(e

τ
α p)dp, (4.7)

where a(τ) = 1 − e−τ .
(4) There is the commutation formula

eτL ∇ = e− τ
α ∇eτL . (4.8)

The next lemma presents an estimate for the bounds of the semi-group eτL on L2(2). Note the
requirement f̂(0) = 0, which is necessary for the bounds to hold.

2Note however that not all this eigenvalues are isolated, hence they are in the essential spectrum.
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Lemma 4.2. (Proposition 3, [27])
Let f ∈ L2(2), f̂(0) = 0 and γ = (γ1, γ2) ∈ N2, |γ| = 0, 1 and 0 < ε << 1. Then there exists

C = Cε > 0, such that for any τ > 0,

‖∇γ(eτL f)‖L2(2) ≤ C
e(1− 4

α +ε)τ

a(τ)
|γ|
α

‖f‖L2(2), (4.9)

or

‖∇γ(eτL f)‖L2(2) ≤ Cε‖f‖L2(2)

{
1

τ
|γ|
α

, τ ≤ 1

e(1− 4
α +ε)τ , τ > 1

· (4.10)

Due to the formula (4.8), we have the bound

‖(eτL ∇f)‖L2(2) ≤ Cε
e(1− 5

α +ε)τ

min(1, τ)
1
α

‖f‖L2(2). (4.11)

By taking advantage of the representation formula (4.7), Lemma 2.3 and again the commutation formula
(4.8), one derives the action of eτL as an element of B(Lp, Lq).

Lemma 4.3. Let α > 0 and 1 ≤ p ≤ q ≤ ∞. Then for any τ > 0

‖eτL f‖Lq ≤ C
e(1− 1

α − 2
αp )τ

(a(τ))
2
α ( 1

p − 1
q )

‖f‖Lp , (4.12)

‖eτL ∇f‖Lq ≤ C
e(1− 2

α − 2
αp )τ

(a(τ))
2
α ( 1

2+ 1
p − 1

q )
‖f‖Lp . (4.13)

Next, we discuss the spectral projection along the first eigenvalue and related operators. This is
discussed in great detail in Section 3.4, [27], so we just state the main results.

Proposition 4.4. The Riesz projection onto the eigenvalue λ0(L ) = 1 − 3
α is given by the formula

P0f =
(∫

R2
f(η)dη

)
G = 〈f, 1〉G.

The operator Q0:=Id − P0 is a projection over the rest of the spectrum σess.(L ) = {λ : �λ ≤ 1 − 4
α}.

Moreover, for all ε > 0, there are the estimate

‖∇γ(eτL Q0f)‖L2(2) ≤ C
e(1− 4

α +ε)τ

a(τ)
|γ|
α

‖f‖L2(2), (4.14)

‖(eτL Q0∇f)‖L2(2) ≤ C
e(1− 5

α +ε)τ

a(τ)
1
α

‖f‖L2(2). (4.15)

4.3. Spectral Analysis on L2(m), 1 < m < 2

Corollary 1. Let L be as defined in (4.4). Then, its spectrum on the space L2(m)(R2), 1 < m < 2 is
described as follows

(1) λ0(L ) = 1 − 3
α is simple eigenvalue, with an eigenfunction G.

(2)
σ(L ) \ {1 − 3

α
} ⊆

{
λ ∈ C : �λ ≤ 1 − m + 2

α

}
.
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In addition, there are the bounds, for |γ| = 0, 1, f ∈ L2(m), f̂(0) = 0, we have

‖∇γ(eτL f)‖L2(m) ≤ C
e(1− m+2

α +ε)τ

a(τ)
|γ|
α

‖f‖L2(m), (4.16)

and

‖(eτL ∇f)‖L2(m) ≤ Cε
e(1− m+3

α +ε)τ

min(1, τ)
1
α

‖f‖L2(m). (4.17)

Proof. First, observe that since L2(m)(R2) ⊂ L1(R2), the operators P0,Q0 are well-defined. The eigen-
value 1− 3

α is valid by inspection. The formula for the spectrum follows in an identical way as in Proposi-
tion 4.1, once we establish the estimates (4.16) and (4.17). Their proofs are obtained by interpolation of
the corresponding L2 → L2 bounds, found in (4.12) and (4.13) and the L2(2) → L2(2) bounds, in (4.9),
(4.11). �

5. A Priori Estimates in Lp Spaces

Let us first record for future reference some expressions for ‖Θ(τ, ·)‖Lp , ‖∇Θ(τ, ·)‖Lp and ‖Θ(τ, ·)‖L2(2)

‖Θ‖Lp = e(1− 1
α − 2

αp )τ‖θ̃‖Lp , ‖∇Θ‖Lp = e(1− 2
αp )τ‖∇θ̃‖Lp , (5.1)

‖Θ‖L2(2) ≤ Ce(1− 2
α )τ‖θ̃‖L2(2). (5.2)

Clearly, these formulas follow from the relation Θ(τ, η) = eτ(1− 1
α )θ̃(e

τ
α η). We start our a priori estimates

with V , more precisely for ‖V (τ, ·)‖Lp(R2), 2 ≤ p < ∞.

5.1. Lp, 2 ≤ p < ∞ Bounds

Lemma 5.1. There exists ε0 > 0, so that whenever ‖∇θ̃‖
L

2
α (R2)

< ε0, then the solution V of (4.3) satisfies

‖V (τ, ·)‖L2(R2) ≤ ‖V0(·)‖L2(R2)e
τ(1− 2

α ). (5.3)

Moreover, for every 2 ≤ p < ∞, there exists ε0 = ε0(p), so that whenever ‖∇θ̃‖
L

2
α

< ε0(p), then for all
q : 2 ≤ q ≤ p, we have

‖V (τ, ·)‖Lq ≤ Cq‖V0(·)‖Lq∩L2eτ(1− 2
α ). (5.4)

Remarks.
• Note that since ‖∇θ̃‖

L
2
α

= ‖∇Θ‖
L

2
α

, Proposition 4 ensures that the assumptions are satisfied,
whenever ‖f‖

Ẇ 1−α, 2
α

<< 1.

• While we do require the smallness of ‖∇θ̃‖
L

2
α

= ‖∇Θ‖
L

2
α

, it is important to point out that we do
not require ‖V0(·)‖Lq to be small.

• From our proof, we can only show (5.4), under the assumption limp→∞ ε0(p) = 0. In other words,
for each p > 2, we need to impose that ‖∇θ̃‖

L
2
α

is progressively smaller and smaller, before we
can claim (5.4). This may or may not be optimal, but this is why we cannot claim that there is an
universal ε0, which would guarantee (5.4) for all 1 < q < ∞.

Proof. As pointed out, ‖∇Θ‖
L

2
α

= ‖∇θ̃‖
L

2
α

<< 1. Let p > 1 and take the dot product of the equation
(4.3) with |V |p−2V . Using (2.7), we have

〈ΛαV, |V |p−2V 〉 ≥ Cp‖V ‖p

L
2p

2−α

.
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Supplementing this estimate with integration by parts implies

1
p
∂τ‖V ‖p

Lp + (
2
αp

+
1
α

− 1)‖V ‖p
Lp + Cp‖V ‖p

L
2p

2−α

≤
∣∣∣∣
∫

(uV · ∇Θ)|V |p−2V dη

∣∣∣∣ ≤ C‖∇Θ‖
L

2
α

‖V ‖p

L
2p

2−α

.

where we have used the Hölder’s inequality and ‖uV ‖
L

2p
2−α

≤ C‖V ‖
L

2p
2−α

.

Specializing first to p = 2 and taking into account the smallness ‖∇Θ‖
L

2
α

<< 1, we obtain

∂τ‖V ‖2
L2 + 2(

2
α

− 1)‖V ‖2
L2 + C‖V ‖2

L
4

2−α
≤ C

2
‖V ‖2

L
4

2−α
, (5.5)

in particular ∂τ‖V ‖2
L2 + 2( 2

α − 1)‖V ‖2
L2 ≤ 0. Resolving this differential inequality implies (5.3).

For the general case, and by taking into account (5.3), we can perform similar arguments. A point of
notable difference is that since for sufficiently large p (and we do need (5.4) for arbitrarily large p!), one
may have that ( 2

αp + 1
α −1) < 0, which is problematic. In order to fix this issue, we add C‖V ‖p

Lp , C >> 1
to the energy estimate. We obtain

1
p
∂τ‖V ‖p

Lp + (C +
2
αp

+
1
α

− 1)‖V ‖p
Lp + Cp‖V ‖p

L
2p

2−α

≤ C‖∇Θ‖
L

2
α

‖V ‖p

L
2p

2−α

+ C‖V ‖p
Lp

≤ Cp

2
‖V ‖p

L
2p

2−α

+
Cp

2
‖V ‖p

L
2p

2−α

+ Dp‖V ‖p
L2 ,

where in the last inequality we have used the smallness of ‖∇Θ‖
L

2
α

and the Gagliardo - Nirenberg’s

estimate ‖V ‖p
Lp ≤ Cp

2 ‖V ‖p

L
2p

2−α

+Dp‖V ‖p
L2 . As a consequence, since ‖V ‖L2 ≤ Ce(1− 2

α )τ , for some constant

Rp,

∂τ‖V ‖p
Lp + p(C +

2
αp

+
1
α

− 1)‖V ‖p
Lp ≤ pDp‖V ‖p

L2 ≤ Rpe
pτ(1− 2

α ). (5.6)

Resolving the differential inequality (5.6) leads us to

‖V (τ, ·)‖p
Lp ≤ ‖V0‖p

Lpe−pτ(C+ 2
αp + 1

α −1) + Rp

∫ τ

0

e−p(τ−s)(C+ 2
αp + 1

α −1)eps(1− 2
α )ds.

Applying (2.10), with comfortably large C yields the bound (5.4) for q = p.
Let us finish with a few words regarding an extension of this to all 2 ≤ q ≤ p, as announced in (5.4),

which also elucidates the reason one cannot possibly extend this to all p < ∞. If one traces the argument
above, we see that since Cp ∼ p−1, one needs smallness assumption in the form ‖∇Θ‖

L
2
α

≤ Cp−1, which
clearly cannot hold for all p < ∞. On the other hand, for each fixed p < ∞, we can find εp ∼ p−1, so
that ‖∇Θ‖

L
2
α

≤ Cq−1 for all 2 ≤ q ≤ p, which in turn implies (5.4) by the above arguments. �

Using the formulas (4.2), we arrive at the following corollary of Lemma 5.1.

Corollary 5.2. Let 2 ≤ p < ∞, and θ̃ : ‖∇θ̃‖
L

2
α

< ε0(p). Then, for every initial data v0 ∈ Lp ∩ L2 of the
IVP (1.3), we have the decay bound

‖v(t, ·)‖Lq(R2) ≤ C‖v0‖Lq (1 + t)
2
q

−1

α , 2 ≤ q ≤ p. (5.7)

Note that in the estimate (5.7), one does not get any decay for the case q = 2. This is slightly worse
than the corresponding results in [15], where it is shown that limt→∞ ‖v(t, ·)‖L2(R2) = 0. On the other
hand, even in the case of zero forcing, f = 0, Niche and Schonbek, [24] have established that the rate of
decay for ‖v(t, ·)‖L2(R2) could be arbitrarily slow, in particular one should not be able to get any power
rate for the case q = 2.

Next, we present some a posteriori estimates for ‖V (τ, ·)‖Lp in the cases 1 < p < 2.
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5.2. Lp, 1 < p < 2 Bounds

In this section, we show that the estimates obtained in Lemma 5.1 could be improved substantially, if
one assumes that V0 ∈ L1(R2), or even V0 ∈ Lp(R2), 1 < p < 2. We have the following

Lemma 5.3. Assume that the smallness condition ‖∇θ̃‖
L

2
α (R2)

< ε0( 2
α−1 ) and ∇θ̃ ∈ L

4
2+α (R2). Let

V0 ∈ L1(R2) ∩ L∞(R2). Then,

‖V (τ, ·)‖L1∩L2 ≤ Ceτ(1− 3
α ). (5.8)

Moreover, for every 2 < p < ∞, there exists ε0 = ε0(p), so that whenever θ̃ satisfies the smallness
condition ‖∇θ̃‖

L
2
α (R2)

< ε0(p)

‖V (τ, ·)‖Lq ≤ Cpe
τ(1− 3

α ), 2 < q < p. (5.9)

Remarks.
• According to Proposition 4, the conditions on θ̃ are ensured by f ∈ W 1−α, 4

2+α and ‖f‖
Ẇ

−α, 2
α−1

<<

1.
• We point out again, that we do not require smallness of ‖V0‖L1(R2)∩L∞(R2).

Proof. The proof is a bootstrap of the bounds (5.3) and (5.4). In order to proceed with the steps, assume
that we have the bound ‖V (τ, ·)‖L2 ≤ Cesnτ , with sn < 1 − 3

α . Clearly, we start with (5.3), which is
s0 = 1 − 2

α . We apply the energy estimate (5.6) to it, so we obtain ‖V (τ, ·)‖Lp ≤ Cesnτ as well.
For p > 1, take dot product of (4.3) with |V |p−2V . Applying the same estimates as in the beginning

of the proof of Lemma 5.1, we obtain

1
p
∂τ‖V ‖p

Lp +
(

2
αp

+
1
α

− 1
)

‖V ‖p
Lp ≤

∣∣∣∣
∫

(uV · ∇Θ)|V |p−2V dη

∣∣∣∣. (5.10)

We estimate the right hand-side, for some large q (to be determined momentarily), by C‖V (τ, ·)‖p
Lpq

‖∇Θ‖Lq′ ≤ Cepsnτeτ(1− 2
q′α

), since ‖∇Θ‖Lq′ = eτ(1− 2
q′α

)‖∇θ̃‖Lq′ . Plugging this estimate back in (5.10)
yields

∂τ‖V ‖p
Lp + p

(
2
αp

+
1
α

− 1
)

‖V ‖p
Lp ≤ Ceτ(psn+1− 2

q′α
). (5.11)

Choosing p = 1 and q = 4
2+α , so that 1 − 2

q′α = 1− 2
α

2 , and resolving the differential inequality (5.11), we
obtain the bound

‖V (τ, ·)‖L1 ≤ Ceτ max(1− 3
α ,sn+( 1

2− 1
α )). (5.12)

In order to establish (5.8), it remains to obtain the better estimate for ‖V (τ, ·)‖L2 . We proceed starting
with (5.5), by adding 2C‖V ‖2

L2 for large C. We have by the Gagliardo–Nirenberg’s

∂τ‖V ‖2
L2 + 2

(
2
α

− 1 + C

)
‖V ‖2

L2 +
C

2
‖V ‖2

L
4

2−α
≤ 2C‖V ‖2

L2 ≤ D‖V ‖
4

2+α

L
4

2−α
‖V ‖

2α
2+α

L1

≤ C

2
‖V ‖2

L
4

2−α
+ Cα‖V ‖2

L1 .

Simplifying and using the bound (5.12), leads to

∂τ‖V ‖2
L2 + 2

(
2
α

− 1 + C

)
‖V ‖2

L2 ≤ Ce2τ max(1− 3
α ,sn+( 1

2− 1
α )) (5.13)

Resolving this last differential inequality, by making sure that C > 1
α , leads to

‖V (τ, ·)‖L2 ≤ Ceτ max(1− 3
α ,sn+( 1

2− 1
α )). (5.14)
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If sn + (1 − 2
q′α ) ≤ 1 − 3

α , then we are done, as we have proved (5.8). Otherwise, we have shown

‖V (τ, ·)‖L2 ≤ Cesn+1τ , (5.15)

where sn+1 = sn +
(

1
2 − 1

α

)
, by the choice of q. Iterating the bounds ‖V (τ, ·)‖L2 ≤ Cesnτ , whenever

sn ≤ 1 − 3
α , with sn+1 = sn +

(
1
2 − 1

α

)
will lead to the bound (5.8) in finitely many steps.

Regarding the extension to (5.9), we use the bound leading to (5.6), which reads3

∂τ‖V (τ, ·)‖q
Lq + q

(
C +

2
αq

+
1
α

− 1
)

‖V (τ, ·)‖q
Lq ≤ Dp‖V (τ, ·)‖q

L2 . (5.16)

for all 2 < q < p. Now, we just insert the bound (5.8) on the right hand side of (5.16) and we solve the
resulting differential inequality

∂τ‖V (τ, ·)‖q
Lq + q

(
C +

2
αq

+
1
α

− 1
)

‖V (τ, ·)‖q
Lq ≤ Dpe

q(1− 3
α )τ .

For a comfortably large C, which we can select at our will, this results in (5.9). �

As an obvious corollary, we have

Corollary 5.4. Let p > 2 and v0 ∈ L1(R2) ∩ L∞(R2), f ∈ W 1−α, 4
2+α . Then, there exists ε0 = ε0(α, p), so

that whenever θ̃ : ‖∇θ̃‖
L

2
α

< ε0, we have the bounds

‖v(t, ·)‖Lp ≤ C(1 + t)− 2
α (1− 1

p ). (5.17)

for some constant C = C(p, α, θ0, f).

5.3. L∞ Bounds

Our next task is to establish an exponential decay for ‖uV (τ, ·)‖L∞ , as our subsequent arguments demand
it. This is not so straightforward for at least two reasons - first, by the failure of the Riesz transform to
act boundedly on L∞, we may not directly pass from ‖uV ‖L∞ to ‖V ‖L∞ , and secondly - one does not
have ready-to-use estimate for ‖V ‖L∞ , see Lemma 5.1 above. Instead, we use the Sobolev embedding,
along with the boundedness of the Riesz transforms on W s,p spaces as follows

‖uV ‖L∞ ≤ Cp,s‖uV ‖W s,p(R2) ≤ Cp,s‖V ‖W s,p(R2), (5.18)

as soon as s > 2
p . Incidentally, (5.18)also provides bounds for ‖V ‖L∞ , as the same chain of inequalities

applies for it as well. Thus, our goal is to find bounds for ‖V (τ, ·)‖W s,p(R2). Unfortunately, such bounds,
especially one with exponential decay in τ are not easy to come by. On the other hand, it suffice to
find inefficient ones, which then can be used in a Gagliardo-Nirenberg’s fashion, together with (5.4), to
produce the required exponential decay for appropriate ‖V ‖W s,p(R2), s > 2

p . To that end, it suffices to
estimate ‖∇θ(t, ·)‖Lp .

Lemma 5.5. Let θ0,∇θ0 ∈ L1(R2) ∩ L∞(R2), with ‖∇θ̃‖
L

2
α

< ε0( 3α
α−1 ). Let also 2 < p < ∞ and ∇f ∈

L
2p

2+αp−α . Then, there exists Ap,α, so that

‖∇θ(t, ·)‖Lp ≤ Cp(θ0)(1 + t)Ap,α . (5.19)

Note: Here, the constant Ap,α is fairly large, which makes (5.19) pretty ineffective. We remind ourselves
however that this estimate is only very preliminary and it will be bootstrapped later on.

3Note that its derivation relies on the fact that ‖∇Θ‖
L

2
α

= ‖∇θ̃‖
L

2
α

< ε0(p).
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Proof. We differentiate the original equation (1.1), we use ∂ to denote any of ∂j , j = 1, 2.

∂t∂θ + Λα∂θ + ∂uθ · ∇θ + uθ · ∇∂θ = ∂f. (5.20)

Our first step is to control ‖∇θ‖L2 . To this end, take dot product with ∂θ. After adding in j = 1, 2
provides the bound

∂t‖∇θ‖2
L2 + C‖Λ1+ α

2 θ‖2
L2 ≤ B‖Λ1+ α

2 θ‖L2‖Λ1− α
2 f‖L2 + C‖∇θ‖3

L3 . (5.21)

Clearly, B‖Λ1+ α
2 θ‖L2‖Λ1− α

2 f‖L2 ≤ Cp

2 ‖Λ1+ α
2 θ‖2

L2 + Dp‖Λ1− α
2 f‖2

L2 . Furthermore, the Gagliardo-
Nirenberg’s and Young’s inequalities imply

‖∇θ‖3
L3 ≤ C‖Λθ‖3

L3 ≤ C‖Λ1+ α
2 θ‖

6
2+α

L2 ‖θ‖
3α

2+α

L
3α

α−1
≤ Cp

2
‖Λ1+ α

2 θ‖2
L2 + Bp‖θ‖

3α
α−1

L
3α

α−1
.

Putting it all together implies

∂t‖∇θ‖2
L2 ≤ Bp‖θ‖

3α
α−1

L
3α

α−1
. (5.22)

Keeping in mind that θ = θ̃ + v and the decay bound4 (5.7) for v, we conclude ‖θ(t, ·)‖
3α

α−1

L
3α

α−1
≤ C and so,

(5.22) implies, after integration in time, ‖∇θ(t, ·)‖L2 ≤ C(1+ t)1/2. This estimate serves as a preliminary
step towards controlling ‖∇θ(t, ·)‖Lp .

We now proceed to estimate ‖∇θ(t, ·)‖Lp . Taking dot product of (5.20) with |∂θ|p−2∂θ and adding in
j = 1, 2, we obtain, in a manner similar to the energy estimate above

∂t‖∇θ‖p
Lp + Cp‖∇θ‖p

L
2p

2−α

≤ Bp‖∇θ‖p−1

L
2p

2−α

‖∇f‖
L

2p
2+αp−α

+ C‖∇θ‖p+1
Lp+1 (5.23)

By the Young’s inequality Bp‖∇θ‖p−1

L
2p

2−α

‖∇f‖
L

2p
2+αp−α

≤ Cp

2 ‖∇θ‖p

L
2p

2−α

+ Dp‖∇f‖p

L
2p

2+αp−α

, so that the

term Cp

2 ‖∇θ‖p

L
2p

2−α

is subsumed on the left-hand side. Furthermore, by a Gagliardo-Nirenberg’s, with

σ = p(p−1)
(p+1)(p−2+α) ,

‖∇θ‖p+1
Lp+1 ≤ ‖∇θ‖(p+1)σ

L
2p

2−α

‖∇θ‖(p+1)(1−σ)
L2 ≤ Cp

2
‖∇θ‖p

L
2p

2−α

+ Ep‖∇θ‖
(p+1)p(1−σ)

p−(p+1)σ

L2 .

All in all, taking into account that p > σ(p + 1), we obtain

∂t‖∇θ‖p
Lp ≤ Dp‖∇f‖p

L
2p

2+αp−α

+ Ep‖∇θ‖
(p+1)p(1−σ)

p−(p+1)σ

L2 ≤ Dp‖∇f‖p

L
2p

2+αp−α

+ Gp(1 + t)
(p+1)p(1−σ)
2(p−(p+1)σ) .

Integrating the last inequality in time yields the bound ‖∇θ(t, ·)‖Lp ≤ Cp(1 + t)Ap,α , with

Ap,α =
1
p

+
(p + 1)(1 − σ)
2(p − (p + 1)σ)

,

which is (5.19). Note that for large p >> 1, we have that 1 − σ = O(p−1), while (p − (p + 1)σ) = O(1).
All in all, for p >> 1, Ap,α = Aα + O(p−1) for some Aα > 0. �

Note that since θ = θ̃ + v, we have from (5.19) (and under the assumptions of Lemma 5.5) that

‖∇v(t, ·)‖Lp ≤ ‖∇θ(t, ·)‖Lp + ‖∇θ̃‖Lp ≤ C(1 + t)Ap,α .

Translating via (4.2), we obtain, ‖ΛV (τ, ·)‖Lp ∼ ‖∇V (τ, ·)‖Lp ≤ Ceτ(1+Ap,α− 1
α − 2

αp ). Using the
Gagliardo-Nirenberg’s inequality and the estimate (5.9), we obtain

‖ΛsV (τ, ·)‖Lp ≤ ‖ΛV (τ, ·)‖s
Lp‖V (τ, ·)‖1−s

Lp ≤ Cpe
τ[(1− 3

α )+s( 2
α +Ap,α− 2

αp )].

4Which applies since θ̃ is small enough as in the Corollary 5.2.
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The point here is that choosing s > 2
p , say s = 3

p (so that ‖ΛsV (τ, ·)‖Lp controls ‖V ‖L∞), and for
sufficiently large p > pα (recall Ap,α = Aα + O(p−1)), we can ensure that the exponent above may be
made as close as possible to e(1− 3

α )τ . We collect these findings in the following corollary.

Corollary 5.6. Let the assumptions in Lemma 5.3 and Lemma 5.5 be satisfied. Then, for arbitrary δ > 0,
there exists C depending on α, θ̃, v0, δ, f , so that

‖V (τ, ·)‖L∞ + ‖uV (τ, ·)‖L∞ ≤ Ce(1− 3
α −δ)τ . (5.24)

6. A Posteriori Estimates in L2(m) Spaces

In this section, we establish an asymptotic decomposition for V , which shows that its main term of V in
L2(m), 1 < m < 3 − α consists of a simple function of the form e(1− 3

α )τG, while the rest of it has faster
decay. This is our general plan. However, we follow the scheme outlined in the modified Gronwal’s result,
Lemma 2.4, which will be applied to estimate of the remainder term. As one can see from there, we need
an a priori estimate to jump start the process.

6.1. A Priori Estimate in L2(2)

We have already seen in Lemma 5.3 and Corollary 5.2, that Eq. (4.3), has global solutions in Lp, 1 < p <
∞. Since our arguments in this section necessarily take place in the smaller space L2(2), we first need to
know well-posedness as well as some a priori estimates in this space. In fact, even if the initial data is
well-localized, say V (0, ·) ∈ L2(2), it is not a priori clear why the solution V (τ) should stay in L2(2) for
(any) later time τ > 0.

Proposition 6.1. In addition to the standing assumptions about f in Proposition 2, suppose that 1 < m <
3 − α and V0 ∈ L∞ ∩ L2(m)(R2). Assume that θ̃ obeys the smallness assumption in Lemma 5.3 and
θ̃ ∈ L2(m). Then (4.3) has an unique global strong solution V ∈ C0([0,∞];L2(m)), with V (0) = V0. In
addition, there is the a priori estimate for each δ > 0,

‖V (τ)‖L2(m) ≤ Cδe
max[m+1− m+4

α −δ,1− 3
α ]τ . (6.1)

where C depends on δ, V0, α, θ̃.

Remark. The estimate in (6.1), while not very inefficient serves only as a preliminary bound, which we
feed into the generalized Gronwall’s lemma, Lemma 2.11. This eventually helps us establish the sharp
bounds, see Proposition 6.2 below.

Proof. We need control the quantity J(τ):=
∫
R2(M + |η|2m)|V (τ, η)|2dη, where M will be selected suffi-

cently large, for technical reasons. For the L2 portion of the quantity, we use the energy inequality (5.13)
established in Lemma 5.3, where we note that we can add ‖Λ

α
2 V ‖2

L2 on the left-hand side. We record it
as follows - for any C > 0, there is a c0 > 0 and C1 = C1(C), so that

∂τ‖V ‖2
L2 + 2(

2
α

− 1 + C)‖V ‖2
L2 + ‖Λ

α
2 V ‖2

L2 ≤ C1e
2τ(1− 3

α ). (6.2)

To this end, we find the inner product of equation (4.3) with |η|2mV . Thus

1
2
∂τ

∫
|η|2mV 2dη + 〈|η|2mΛαV, V 〉 =

(
1 − 1

α

)∫
|η|2mV 2dη +

1
α

∫
(η · ∇ηV )|η|2mV dη

−
∫

(uV · ∇ηV )|η|2mV dη −
∫

(uΘ · ∇ηV )|η|2mV dη −
∫

(uV · ∇ηΘ)|η|2mV dη.
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We first analyze the terms on the right hand-side. For the term
∫

(uV · ∇ηΘ)|η|2mV dη, we use Hölder’s,
(5.24) and ‖|η|m∇ηΘ‖L2 = e(1− m+1

α )τ‖|x|m∇xθ̃‖L2 , to conclude that for every ε > 0, there is Cε,

|
∫

(uV · ∇ηΘ)|η|2mV dη| ≤ ‖uV ‖L∞‖|η|m∇ηΘ‖L2‖|η|mV ‖L2 ≤ Ce(2− m+4
α −δ)τ

√
J(τ)

≤ εJ(τ) + Cεe
(4− 2m+8

α −δ)τ .

Next, integration by parts yields

1
α

∫
(η · ∇ηV )|η|2mV dη = −m + 1

α

∫
|η|2mV 2dη = −m + 1

α
J(τ).

For the remaining two terms on the right-hand side of the energy estimate, we use the divergence free
property of UV and UΘ, as well as integration by parts, and get∫

(uV · ∇ηV )|η|2mV dη = −m

∫
|η|2m−2(η · uV )V 2dη,

∫
(uΘ · ∇ηV )|η|4V dη = −m

∫
|η|2m−2(η · uΘ)V 2dη.

In the last two expressions, we need to control quantities in the form
∫ |η|2m−1|uQ|V 2(η)dη, where Q is

either V or Θ. We estimate by Hölder’s and Young’s inequalities, for each κ > 0,
∫

|η|2m−1|uQ|V 2(η)dη ≤ C‖uQ‖L2m

(∫
|η|2mV 2dη

) 2m−1
2m

‖V ‖ 1
m

L∞

≤ C‖Q‖L2m(κJ(τ) + Cκ−(2m−1)‖V ‖2
L∞).

Applying this to Q = V and then to Q = Θ leads to an estimate of the right hand side of the energy
estimate as follows

C(κJ(τ) + κ−(2m−1)‖V ‖2
L∞)(‖V ‖L2m + ‖Θ(τ)‖L2m). (6.3)

On the other hand, by Lemma 5.3, ‖V ‖L2m ≤ Ce(1− 3
α )τ and by (5.24), ‖V ‖L∞ ≤ Cδe

(1− 3
α −δ)τ , while the

estimate for Θ is much less favorable, ‖Θ(τ)‖L2m ≤ Ce(1− 1
α (1+ 1

m ))τ , according to (5.1). Note that the
exponent e(1− 1

α (1+ 1
m ))τ grows, unless α < 1 + 1

m .
Adding the estimates for ∂τ

∫ |η|2mV 2dη and the estimate5 (6.2) yields

1
2
J ′(τ) +

(
m + 2

α
− 1

)
J(τ) + M‖Λ

α
2 V ‖2

L2 + 〈|η|2mΛαV, V 〉

≤ Ce(1− 1
α (1+ 1

m ))τκJ(τ) + Cδκ
−(2m−1)e

(
3− 7+ 1

m
α −δ

)
τ

+ Me2(1− 3
α )τ

which is valid for all δ > 0, κ > 0.
Now, we are free to select κ. We do it so that we can allow ourselves to hide the term containing J(τ),

that is for an arbitrary ε, choose κ:=εe−(1− 1
α (1+ 1

m ))τ . This brings about the following estimate for J ,

1
2
J ′(τ) +

(
m + 2

α
− 1 − ε

)
J(τ) + 〈|η|2mΛαV, V 〉 ≤ Cδ,εe

(2m+2− 2m+8
α −δ)τ + Me2(1− 3

α )τ . (6.4)

It remains to estimate the term 〈|η|2mΛαV, V 〉 = 〈|η|mΛαV, |η|mV 〉. Note that this introduces commuta-
tors in our estimates as follows

〈|η|mΛαV, |η|mV 〉 = 〈Λα
2 |η|mΛ

α
2 V, |η|mV 〉 − 〈[Λα

2 , |η|m]Λ
α
2 V, |η|mV 〉.

5(which we multiply by a large constant M and we take C large so that 2
α

− 1 + C > m+2
α

− 1.
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But

〈Λα
2 |η|mΛ

α
2 V, |η|mV 〉 = 〈|η|mΛ

α
2 V,Λ

α
2 |η|mV 〉 = 〈|η|mΛ

α
2 V, |η|mΛ

α
2 V 〉

+〈|η|mΛ
α
2 V, [Λ

α
2 , |η|m]V 〉 = ‖|η|mΛ

α
2 V ‖2

L2 + 〈|η|mΛ
α
2 V, [Λ

α
2 , |η|m]V 〉.

Since, by Lemma 2.2 and Gagliardo-Nirenberg’s

|〈[Λα
2 , |η|m]Λ

α
2 V, |η|mV 〉| ≤ ‖[Λ

α
2 , |η|m]Λ

α
2 V ‖L2‖|η|mV ‖L2

≤ C‖|η|m− α
2 Λ

α
2 V ‖L2‖L2‖|η|mV ‖L2

≤ C
√

J(τ)‖|η|mΛ
α
2 V ‖1− α

2m

L2 ‖Λ
α
2 V ‖ α

2m

L2 ≤ εJ(τ) + ε‖|η|mΛ
α
2 V ‖2

L2 + Cε‖Λ
α
2 V ‖2

L2

〈|η|mΛ
α
2 V, [Λ

α
2 , |η|m]V 〉 ≤ ‖|η|mΛ

α
2 V ‖L2‖[Λ

α
2 , |η|m]V ‖L2 ≤ ‖|η|mΛ

α
2 V ‖L2‖|η|m− α

2 V ‖L2

≤ ε‖|η|mΛ
α
2 V ‖2

L2 + εJ(τ) + Cε‖V ‖2
L2 .

Collecting all the estimates for 〈|η|2mΛαV, V 〉 and using the bound (5.8), yields

〈|η|2mΛαV, V 〉 ≥ (1 − 2ε)‖|η|mΛ
α
2 V ‖2

L2 − 2εJ(τ) − Cε‖Λ
α
2 V ‖2

L2 − Ce2(1− 3
α )τ .

This means that for all ε > 0, we can derive the energy inequality from (6.4),

1
2
J ′(τ) +

(
m + 2

α
− 1 − 3ε

)
J(τ) + (M − Cε)‖Λ

α
2 V ‖2

L2 ≤ Cδ,εe
(2m+2− 2m+8

α −δ)τ + Me2(1− 3
α )τ .

At this point, we make the selection M = Mε = max(Cε, 1). So, we obtain

1
2
J ′(τ) +

(
m + 2

α
− 1 − 3ε

)
J(τ) ≤ Cδ,εe

(2m+2− 2m+8
α −δ)τ + Mεe

2(1− 3
α )τ . (6.5)

Using integrating factors, we get the bound

J(τ) ≤ J(0)e2(1− m+2
α +3ε)τ + Cε,δe

max[2m+2− 2m+8
α −δ,2(1− 3

α )]τ .

Thus, fixing sufficiently small ε, we have that (1 − m+2
α + 3ε) < 1 − 3

α , we arrive at the bound
(∫

(1 + |η|2m)V 2(τ, η)dη

) 1
2

≤ Cδe
max[m+1− m+4

α −δ,1− 3
α ]τ .

as announced in (6.1). �

6.2. Estimate of the Remainder

We first introduce the remainder term. More precisely, we decompose the function V (η, τ) on the spectrum
of the operator L ,

V = α(τ)G + Ṽ , (6.6)

where α(τ) = 〈V, 1〉 and Ṽ = Q0V . Then,

ατ (τ) = 〈Vτ , 1〉 = 〈L V, 1〉 − 〈UV · ∇V, 1〉 − 〈UΘ · ∇V, 1〉 − 〈UV · ∇Θ, 1〉 = (1 − 3
α

)α(τ),

since L ∗[1] = (1 − 3
α ). This ordinary differential equation for α(τ) has the solution α(τ) = α(0)e(1− 3

α )τ ,
where

α(0) =
∫
R2

V (η)dη =
∫
R2

(θ0(x) − θ̃(x))dx. (6.7)

We also project the equation (4.3) on the essential spectrum of the operator L , i.e

Ṽτ = L Ṽ − Q0(uV · ∇V ) − Q0(uΘ · ∇V ) − Q0(uV · ∇Θ). (6.8)
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Then, Ṽ has the following integral representation

Ṽ (η, τ) = eτL Ṽ0 −
∫ τ

0

e(τ−s)L Q0∇
[
uV · V + uΘ · V + uV · Θ

]
ds

= eτL Ṽ0 −
∫ τ

0

e(τ−s)L Q0∇
[
(α(s)uG + uṼ ) · (α(s)G + Ṽ )

]
ds

−
∫ τ

0

e(τ−s)L Q0∇
[
uΘ · (α(s)G + Ṽ )

]
ds −

∫ τ

0

e(τ−s)L Q0 [(α(s)uG + uṼ ) · ∇Θ] ds

where we have used the divergence free property of uV and uΘ. We are now ready for the main technical
result of this section.

Proposition 6.2. Assume V0 ∈ L∞ ∩ L2(m), 1 < m < 3 − α. Then, for any ε > 0, there exists a C,
depending on m,α, θ̃, v0,so that for α0 is introduced in (6.7) and for any τ > 0, there is the bound

‖V (·, τ) − α0e
(1− 3

α )τG(·)‖L2(m) ≤ Ce(2− m+4
α +ε)τ . (6.9)

Let us comment right away that (6.9), properly interpreted, is nothing but the main claim in Theo-
rem 3.

Proof. (Proposition 6.2) The main object of investigation here is the quantity I(τ):=‖Ṽ (τ)‖L2(m). We
will estimate it in a way that fits the framework of the modified Gronwall’s tool, Lemma 2.4. We start
with the free term, which is easy to estimate by (4.16),

‖eτL Ṽ0‖L2(m) ≤ Ce(1− m+2
α +ε)τ‖f‖L2(m),

according to (4.9). Next, by means of (4.17) (with |γ| = 1), and Hölder’s inequality
∫ τ

0

‖e(τ−s)L Q0∇
[
(α(s)uG + uṼ ) · (α(s)G + Ṽ )

]
‖L2(m)ds

≤ C

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

‖
[
(α(s)uG + uṼ ) · (α(s)G + Ṽ )

]
‖L2(m)ds

≤ Cα2(0)‖uG‖L∞‖G‖L2(m)

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

e2(1− 3
α )sds

+Cα(0)‖uG‖L∞

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

e(1− 3
α )s‖Ṽ (s)‖L2(m)ds

+Cα(0)‖G‖L2(m)

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

e(1− 3
α )s‖uṼ (s)‖L∞ds

+C

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

‖uṼ (s)‖L∞‖Ṽ (s)‖L2(m)ds.

Due to the estimates (5.24) and α ∈ (1, 2), we have that the previous expression is bounded by

C

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

e(1− 3
α )s

{
e[(1− 3

α )−δ]s + ‖Ṽ (s)‖L2(m)

}
ds.

The first term is estimated, due to (2.10), m < 3 − α and sufficiently small δ > 0,
∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

e(1− 3
α )se[(1− 3

α )−δ]sds ≤ Cεe
(1− m+3

α +ε)τ .
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All in all, ∥∥∥∥
∫ τ

0

e(τ−s)L Q0∇
[
(α(s)uG + uṼ ) · (α(s)G + Ṽ )

]
ds

∥∥∥∥
L2(m)

≤ Cεe
(1− m+3

α +ε)τ

+C

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

e(1− 3
α )s‖Ṽ (s)‖L2(m)ds.

Next, we control the other term in the expression for Ṽ . We have, again by (4.17),∫ τ

0

‖e(τ−s)L Q0∇[uΘ · (α(s)G + Ṽ )]‖L2(m)ds

≤ C

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

|α(0)|e(1− 3
α )s‖uΘG‖L2(m)ds + C

∫ τ

0

e(1− m+3
α +ε)(τ−s)

a(τ − s)
1
α

‖uΘṼ (s)‖L2(m)ds.

Note that

‖uΘ(s)G‖L2(m) ≤ C‖uΘ(s)‖L2‖(1 + | · |m)G‖L∞ ≤ C‖Θ‖L2 ≤ Ce(1− 2
α )s,

while by the Sobolev embedding (2.2)

‖uΘṼ (s)‖L2(m) ≤ C‖Ṽ (s)‖L2(m)‖uΘ(s)‖L∞ ≤ Cδ‖Ṽ (s)‖L2(m)(‖Λ−δ∇uΘ‖L2 + ‖Λδ∇uΘ‖L2)

≤ Cδ‖Ṽ (s)‖L2(m)(‖Λ−δΘ‖L2 + ‖ΛδΘ‖L2) ≤ Cδe
(1− 2−δ

α )s‖Ṽ (s)‖L2(m).

All in all, choosing δ < 2 − α, say δ = 2−α
2 , applying (2.10) and 1 < m < 3 − α and ε << 1, we obtain

the bound

‖
∫ τ

0

e(τ−s)L Q0∇[uΘ · (α(s)G + Ṽ )]ds‖L2(m) ≤ C

∫
e(1− m+3

α +ε)(τ−s)

a(τ − s)
1
α

e(2− 5
α )sds

+C

∫
e(1− m+3

α +ε)(τ−s)

a(τ − s)
1
α

e( 1
2− 1

α )s‖Ṽ (s)‖L2(m)ds

≤ Ce(2− 5
α )τ + C

∫
e(1− m+3

α +ε)(τ−s)

a(τ − s)
1
α

e( 1
2− 1

α )s‖Ṽ (s)‖L2(m)ds.

Next, we estimate the contribution of the last two terms in the equation for Ṽ . We have

‖
∫ τ

0

e(τ−s)L Q0∇(α(s)uG · Θ(s))ds‖L2(m) ≤ C|α(0)|
∫ τ

0

e(1− m+3
α +ε)(τ−s)e(1− 3

α )s‖uGΘ(s)‖L2(m)

≤ C|α(0)|‖uG‖L∞

∫ τ

0

e(1− m+3
α +ε)(τ−s)e(1− 3

α )s‖Θ(s)‖L2(m)ds ≤ C

∫ τ

0

e(1− m+3
α +ε)(τ−s)e(2− 5

α )sds

≤ Ce(1− m+3
α +ε)τ .

Finally, we estimate the contribution of
∫ τ

0
e(τ−s)L Q0[uṼ · ∇Θ]ds, it turns out that we need to split it

as follows∫ τ

0

e(τ−s)L Q0[uṼ · ∇Θ] =
∫ τ

0

e(τ−s)L Q0[uṼ · χ(η)∇Θ] +
∫ τ

0

e(τ−s)L Q0[uṼ · (1 − χ(η))∇Θ],

where χ ∈ C∞
0 is supported in |η| < 1. In the region |η| < 1, we have the bound∥∥∥∥
∫ τ

0

e(τ−s)L Q0[uṼ · χ(η)∇Θ]ds

∥∥∥∥
L2(m)

≤
∫ τ

0

‖e(τ−s)L Q0∇[uṼ · χ(η)Θ]‖L2(m)ds

+
∫ τ

0

‖e(τ−s)L Q0[uṼ · Θ∇χ(η)]‖L2(m)ds.
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We apply either (4.16) or (4.17) to obtain

‖
∫ τ

0

e(τ−s)L Q0[uṼ · χ(η)∇Θ]ds‖L2(m) ≤ C

∫ τ

0

e(1− m+3
α +ε)(τ−s)‖uṼ ‖L∞‖χ(η)Θ‖L2(m)ds

+C

∫ τ

0

e(1− m+2
α +ε)(τ−s)‖uṼ ‖L∞‖∇χ(η)Θ‖L2(m)ds

≤ C

∫ τ

0

e(1− m+2
α +ε)(τ−s)e(1− 3

α −δ)s‖Θ(s)‖L2ds

≤ C

∫ τ

0

e(1− m+2
α +ε)(τ−s)e(2− 5

α −δ)sds ≤ Ce(1− m+2
α +ε)τ .

where we have used (5.1) and (5.24).
Finally, in the region |η| > 1, we apply (4.17). We obtain∫ τ

0

‖e(τ−s)L Q0[uṼ · (1 − χ(η))∇Θ]‖L2(m)ds

≤
∫ τ

0

e(1− m+2
α +ε)(τ−s)‖uṼ (s)‖L∞‖(1 − χ(η))∇Θ‖L2(m)ds

≤ C

∫ τ

0

e(1− m+2
α +ε)(τ−s)e(1− 3

α +δ)s‖|η|m∇Θ‖L2ds

≤ C

∫ τ

0

e(1− m+2
α +ε)(τ−s)e(2− m+4

α +δ)sds ≤ Ce(2− m+4
α +δ)τ .

where we have used ‖|η|m∇Θ(s)‖L2 = e(1− m+1
α )s‖|η|m∇θ̃‖L2 and α < 2.

Putting all the estimates together implies the a posteriori bound

‖Ṽ (τ)‖L2(m) ≤ Ce(2− m+4
α +δ)τ + C

∫ τ

0

e(1− m+3
α +ε)(τ−s)e( 1

2− 1
α )s‖Ṽ (s)‖L2(m)ds.

Applying the Gronwall’s inequality, Lemma 2.4, we obtain the bound

‖Ṽ (τ)‖L2(m) ≤ Ce(2− m+4
α +δ)τ .
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Appendix A. Proof of Lemma 2.2

The proof of this lemma is based by some modifications in the proof of relation (4.8), [27]. Recall, that
for s ∈ (0, 2)

[|∇|s, g]f(x) = |∇|s(gf) − g |∇|sf = cs

∫
f(x)g(x) − f(y)g(y)

|x − y|2+s
dy − g(x)cs

∫
f(x) − f(y)
|x − y|2+s

dy

= cs

∫
f(y)(g(x) − g(y))

|x − y|2+s
dy.
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Introduce a smooth partition of unity, that is a function ψ ∈ C∞
0 (R), supp ψ ⊂ ( 1

2 , 2), so that

∞∑
k=−∞

ψ(2−k|η|) = 1, η ∈ R2, η �= 0.

Introduce another C∞
0 function Ψ(z) = |z|σψ(z), so that we can decompose

|η|σ =
∞∑

k=−∞
|η|σψ(2−k|η|) =

∞∑
k=−∞

2kσΨ(2−k|η|).

We can then write

F (η) := [Λs, |η|σ]f =
∑

k

2σk[Λs,Ψ(2−k·)]f(η) =
∑

k

2σk

∫
f(y)(Ψ(2−kη) − Ψ(2−ky))

|η − y|2+s
dy.

Introducing

Fk:=
∫ |f(y)||Ψ(2−kη) − Ψ(2−ky)|

|η − y|2+s
dy,

we need to control

‖F‖2
L2 =

∑
l

∫
|η|∼2l

|F (η)|2dη =
∑

l

∫
|η|∼2l

∣∣∣∣∣
∑

k

2skFk(η)

∣∣∣∣∣
2

dη

=
∑

l

∫
|η|∼2l

∣∣∣∣∣
∑

k>l+10

2skFk(η)

∣∣∣∣∣
2

dη +
∑

l

∫
|η|∼2l

∣∣∣∣∣
l+10∑

k=l−10

2skFk(η)

∣∣∣∣∣
2

dη

+
∑

l

∫
|η|∼2l

∣∣∣∣∣
∑

k<l−10

2skFk(η)

∣∣∣∣∣
2

dη =: K1 + K2 + K3.

We first consider the cases k > l + 10. One can estimate easily Fk point-wise. More specifically, since
in the denominator of the expression for Fk, we have |η − y| ≥ 1

2 |η| ≥ 2k−3,

|Fk(η)| ≤ 2−k(2+σ)

∫
|f(y)||Ψ(2−ky)|dy ≤ C2−k(1+σ)‖f‖L2(|y|∼2k),

whence

K1 ≤
∑

l

22l
∑

k1>l+10

∑
k2>l+10

2k1(s−1−σ)‖f‖L2(|y|∼2k1 )2
k2(s−1−σ)‖f‖L2(|y|∼2k2 )

≤
∑
k1

∑
k2

22 min(k1,k2)2k1(s−1−σ)‖f‖L2(|y|∼2k1 )2
k2(s−1−σ)‖f‖L2(|y|∼2k2 )

≤ C
∑

k

22k(s−σ)‖f‖2
L2(|y|∼2k) ≤ C‖|η|s−σf‖2.

where we have used
∑

l:l<min(k1,k2)−10 22l ≤ C22 min(k1,k2).
For the case k < l − 10, we perform similar argument, since

|Fk(η)| ≤ C2−l(2+σ)2k‖f‖L2(|y|∼2k).
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So,

K3 ≤ C
∑

l

22l2−2l(2+σ)
∑

k1<l−10

∑
k2<l−10

2(s+1)k1‖f‖L2(|y|∼2k1 )2
(s+1)k2‖f‖L2(|y|∼2k2 )

≤ C
∑
k1

∑
k2

2(s+1)k1‖f‖L2(|y|∼2k1 )2
(s+1)k2‖f‖L2(|y|∼2k2 )2

−2(1+σ) max(k1,k2)

≤ C
∑

k

22k(s−σ)‖f‖2
L2(|y|∼2k) ≤ C‖|η|(s−σ)f‖2.

Finally, for the case |l − k| ≤ 10, we use

|Ψ(2−kη) − Ψ(2−ky)| ≤ 2−k|η − y||∇Ψ(2−k(η − y))| ≤ C2−k|η − y|,
so that

|Fk(η)| ≤ C2−k

∫
|y|∼2k

|f(y)|
|η − y|1+σ

dy = C2−k|f |χ|y|∼2k ∗ 1
| · |1+σ

.

Thus, by Hölder’s

K2 ≤ C
∑

k

∫
|η|∼2k

2sk

∣∣∣∣|f |χ|y|∼2k ∗ 1
| · |1+σ

∣∣∣∣
2

dη ≤ C
∑

k

2sk‖|f |χ|y|∼2k ∗ 1
| · |1+σ

‖2
L2(|η|∼2k)

≤ C
∑

k

22k(s−σ)‖|f |χ|y|∼2k ∗ 1
| · |1+σ

‖2

L
2
σ (|η|∼2k)

≤ C
∑

k

22k(s−σ)‖f‖2
L2(|η|∼2k) ≤ C‖|η|s−σf‖2.

where we have used the Hausdorf–Young’s inequality

‖fχ|y|∼2k ∗ 1
| · |1+ α

2
‖

L
2
σ

≤ C‖ 1
| · |1+σ

‖
L

2
1+σ

,∞ ‖f‖L2(|η|∼2k) ≤ C‖f‖L2(|η|∼2k).
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