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Abstract. We consider the asymptotic behavior of the surface quasi-geostrophic equation, subject to a small external force.
Under suitable assumptions on the forcing, we first construct the steady states and we provide a number of useful a posteriori
estimates for them. Importantly, to do so, we only impose minimal cancellation conditions on the forcing function. Our main
result is that all L' N L localized initial data produces global solutions of the forced SQG, which converge to the steady
states in LP(R?),1 < p < 2 as time goes to infinity. This establishes that the steady states serve as one point attracting
set. Moreover, by employing the method of scaling variables, we compute the sharp relaxation rates, by requiring slightly
more localized initial data.
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1. Introduction

In this paper, the main object of investigation is the forced two dimensional surface quasi-geostrophic
equation

O, +ug-VO+A0=Ff 2z€R>*t>0 (1.1)
0(x,0) = Og(x) ’

where 0, f : R? — R, A = v—A is the Zygmund’s operator and
Up = R0 = (—Re0, R10) = A~ (—840,0,0).

Note that div(ug) = 0. In fact, we adopt the notation uy for any scalar field f to mean the divergence-free
vector field u f::RJ- f. The model (1.1) is of fundamental importance in the modeling of large scale fluid
motion, especially in oceanographic context. The critical case, namely o = 1, which is also the most
challenging from a mathematical standpoint, was put forward in [8] (see also [9]), as a model of surface
temperature of a rapidly rotating fluid. In fact, this and related models frequently arise in fluid dynamics
and as such, they have been widely studied in the last twenty years. We refer the reader to the works
[1,2,4-6,13,14,16,17,25,27] and references therein.

We consider the parameter « in the sub-critical regime « € (1,2), although the case o« = 2 is certainly
interesting as well, both from physical and mathematical point of view.
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1.1. Global Regularity for (1.1): Some Recent Results and Historical Perspectives

The well-posedness theory for the homogeneous version of (1.1), i.e. with f = 0 is well-understood in the
sub-critical case « > 1. Informally, reasonably localized (including large) initial data 6y produces global
solutions, which preserve the functional-analytic properties of the initial data. That is, the so-called
global regularity of the initial value problem has been established in various scenarios. These results have
appeared in literally hundreds of publications, which is why we do not attempt to follow through with
precise statements and references. Similarly, in the case a = 1, the criticality of the problem allows one
to reproduce the global regularity problem for small data. More recently, a substantial progress has been
made in the regularity problem for large data, see [3,12,22,23]. It has been established, that under fairly
mild assumptions on initial data, the solution persists globally and preserve the smoothness of 6. It is
worth noting that the long time dynamics for the sub-critical and critical cases of (1.1) (both in the
regime f = 0 and f # 0) were studied intensively in [10,11,18,21,24]. In particular, estimates for the
decay rates for regular and weak solutions were obtained in [24,26]. In [11], the authors have established
the existence of a global attractor for the problem posed on periodic domain.

The well-posedness in the supercritical case oo < 1 remains an open elusive problem. The expectation
is that at least for some initial data, one should observe a finite time blow up. That has not been settled
as of this writing.

1.2. Motivation and Main Results

Our main object of investigation is the forced problem. Of particular interest will be the properties of
the steady states 8, which satisfies the following profile equation

A9 +u;-VO=f, xecR2 (1.2)

More precisely, we would like to draw conclusions about the global dynamics of (1.1) from the properties
of #. This is indeed the main objective of this work. We should mention here that the problem that we
aim at considering has already been addressed, at least partially, in several recent works. Regarding the
un-forced SQG (i.e. with f = 0), in [26], the authors have obtained some estimates for the decay rates of
the solutions as well as estimates from below. More recently, in our work [27], we have considered a wide
variety of un-forced SQG like problem, of which SQG is an example. We have shown the optimal decay
rates for the solutions, once the initial data 6y has some stronger localization properties.

We now describe the work of Dai, [15], which was the starting point and the main motivation of our
investigation. In it, she considers the case 1 < a < 2. She starts by constructing solutions of (1.2), under
appropriate conditions of the small forcing term f. More importantly, she has established a non-linear
stability property for the evolution, namely that the solution of the dynamic problem (only under the
assumption that 6y — 0 € L?(R?)), converges to the steady state 6 in L? sense. Note that no estimates on
the speed of the decay to zero are provided in [15]. However, it is worth noting that even in the case of
zero forcing, the convergence to zero of ||0(Z, )| 2(r2) may happen with arbitrarily slow decay, see [24],
unless one assumes more integrability of 6.

In order to describe our results, it is convenient to track the deviation from the steady state 9~, SO we

introduce v:=60 — 8. This new variable satisfies the following equation

{vt—i—Aav—i—ué-Vv—i—uv-Vg—&—uU-Vv:O, (1.3)

v(z,0) = vo(x).

Based on the physical interpretation of our model, we are only interested in localized functions 9,0,
and consequently f to work with. In addition, and for mostly the same reasons, we only consider the
sub-critical case 1 < a < 2. This allows us to consider strong solutions and our results will not depend
on additional assumptions on the properties of weak and viscosity solutions, which is necessary in the
cases o < 1. Indeed, the asymptotic behavior of the strong solutions (whose existence and uniqueness
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was established only recently in [3,22,23]) is a hard problem in general. Coincidentally, our method of
constructing the steady state (and the necessary a posteriori estimates) fails for « = 1, see Sect. 3 below.
The method of the scaled variables fails dramatically as well at o = 1, see Sect. 4. Last, but not least - we
do not believe that there is any reasonable explicit decay rate that can be established for ||0(¢,-) —0(-)||x
for any Banach space, for the case of the critical SQG a = 1, under any localization assumptions for the
initial data. Rather, we believe that the results in [15], which only establish lim; .« |[|6(t, ) — 6(-)|| > = 0,
may be the best that can be said about it.

Next, we shall need to assume a sufficiently smooth and decaying initial forcing function f. Note that
due to the form of (1.2), some cancellation of f is necessary, see Theorem 1 for the precise requirements
on f.

We now aim at discussing the main results of this work. Before we present the specifics, let us give
a general overview of the goals and the general flavor of the problems that we would like to address.
Our first issue, as in [15], is to study the solvability of the elliptic problem (1.2). This turns out to be
non-trivial and we do not have a complete answer to the following natural question.

Problem 1. Given smooth and decaying f, with appropriate cancellation conditions, construct steady state
solution 0 of (1.2).

We note that this is in general (i.e. for large forcing f) an essentially open question, which merits
further, independent investigation. It should be stated though that in the work of Dai, [15], the issue was
partially resolved in the case of small forcing f. Even though some cancellation assumptions on the (small)
forcing term f are necessary, as discussed above, the conditions imposed in [15] requires f(£) = 0 : |¢| < 4.
This in practice reduces the applicability of such result, as f is forced, among other things, to have zero
moments of all orders. We have succeeded in reducing the cancellation conditions by simply requiring
that f is small in some negative order Sobolev spaces, see Theorem 1 below.

Next, we are interested in the stability property of the dynamics, that is the property established in
[15] that the solutions of (1.1), with any size initial data 6y (not necessarily small!) eventually converges
to the steady state 0. We refer to it as relaxation of the global solutions to the steady state. That is, we
are asking whether or not any solution of (1.1) should converge/relax to 6, in the appropriate norms as
t — oo. More precisely,

Problem 2. Assuming existence of a solution 6 of (1.2), with appropriate properties, show that any solu-
tion of (1.1) converges to 0. Provide sharp estimates for the relazation rates.

Clearly, any result in the direction of Problem 2 provides, as a corollary, an uniqueness statement for
the solvability of (1.2). Thus, a result of this type complements nicely an eventual existence result for
(1.2). We have the following results, under the standing assumption 1 < « < 2.

Theorem 1. (Existence of the steady state in unweighted spaces)
There exists g > 0, so that whenever the forcing term f € W_a’ﬁ(RQ) : ||fHW—o,¢ < €p, the

a—1

steady state equation (1.2) has a solution 6 € L%(RQ), with ||9~||L%(R2) < 2||fHW—a,%- If in addition,

for any p > ﬁ, f € W=P(R?), then the steady state 0 € LP and it satisfies the bound
161l Lo g2y < 201f Il
2

Assuming f € W™ a1 (R N W2 ”fHW‘“’% < €, there is the a posteriori estimate
1900, 2 < Cllfllrz (1.4

Remarks.

e The smallness assumptions are in scale invariant spaces, as is customary.
e It is possible to formulate an uniqueness statement for the small solutions # obtained in Theorem 1,
but we have stronger dynamics statement, see Theorem 2 below, which imply global uniqueness.
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e By far, the strongest cancellation condition is the requirement f E W (R?) N W1=*% which
is a fairly mild one for values of a close to 1. In fact, for 1 < a < 2 5, there is the Sobolev embeddlng

11l gy + I ez < I

which allows one to require only || f ||L2 2 << 1 in this case and Theorem 1 applies. Even when

L2a T’

2>a> %, our assumptions will be satisfied, at small frequencies, by requiring the mild cancellation
condition |f(¢)| < Cl¢[**, J¢] < 1.

Theorem 2. (Relaxation in LP spaces) Let 1 < o < 2 and f € W'=®=ia . Then, there exists ¢g > 0, 50
that whenever the steady state 0 satisfies HV&HLg < €0, and the initial data vy = 0p—0 € L'NL>(R?), the

problem (1.3) has an unique, global solution in L>NL>. Moreover, there is a constant C = Cl,
so that,

7507I|UOHL2ﬁL°C

Q

V=0 M rpmey < —— <9 )
0t ) =00 (R)_(1+t) =T 1<p<?2 (1.5)

The bound (1.5) can be ~e:mfended to any 2 < p < o0, as follows. For any q : 2 < q < 00, there exists
€o(q), so that whenever ||V0||L% < eo(q), and vg € L* N L (R?), then

SV

10(t,) = ()| o (r2) < , 2<p<uq.

(1+t)a1=%)
Remarks.

o

e The smallness condition ||V§||L% << 1is guaranteed by Theorem 1 so long as we assume Hf”Wl—
<< 1.

e It is important to emphasize that vy is not assumed to be small. That is, Theorem 2 is a true
relaxation statement. That is, f serves as one point attractor for the evolution of (1.1).

e There are much more precise results, particularly if one assumes vg € LPNL? instead of vg € L*NL>.
In this sense, Theorem 2 is a representative corollary of these estimates. The interested reader is
invited to consult Sect. 4.

e Related to the previous point, we have a result for initial data vy € L? (but not in any other L?
space), which does not guarantee any decay. See Corollary 5.2 or more precisely (5.7). This is in
line with the results in [24], which establish that there might be arbitrarily slow decaying to zero
solutions, when f = 0.

As we have explained above, the estimate (1.5) provides a stronger uniqueness result for the stationary
problem (1.2) as discussed earlier. Indeed, we have the following proposition.

Proposition 1. Assume that Hf|| 2 << 1, so that 0 is guaranteed by Theorem 1. Also, assume

—a

fewh *3ta . Assume that there is another solution of the stationary problem (1.2), 01 : 6, —0 € L*NL>
(and here 6 is not necessarily small). Then, 6, = 0.

Proof. As observed already, a small solution 6 of (1.2) is guaranteed by Theorem 1. It remains to apply
(1.5) (say for p = 2) to the stationary solution 61, which implies that ||§; — 6|2 = 0. O

In order to state the sharp decay results, we will need to argue in the weighted spaces. For any m > 0,
we define the Hilbert space L?(m) as follow

2m) = {1 € 22 Wl = ([ 0+ laPymis@an) < oof. (1)

One can show by means of Holder’s, L?(m)(R?) — LP(R?), whenever 1 < p < 2. We have the following
a posteriori estimate in L%(m) spaces for the solution 6.



JMFM On the Forced Surface Quasi-Geostrophic Equation Page 5 of 27 24

Proposition 2. (a posteriori estimates for the steady state in weighted spaces)
Assume as in Theorem 1, f € Wfo"%(RQ) : Hf”w"* 2 < €. Let 1 <m <3 —a and assume in

addition f € Wi=*2OW=2 Al=af e [2(m). Then, VO € L*(m).

Remark. In fact, there is an explicit a posteriori estimate, see (3.5) below, for 6 which details the particular
dependence of ||V0||12(,,) on various norms involving f as stated above.

Theorem 3. (Sharpness of the decay estimates)

Let the assumptions in Proposition 2 stand. Assume in addition, vy = 6y — 6 € L> N L?*(m)(R?).
Then, for each € > 0, there exists a constant C = C., so that (1.3) has an unique global solution
v € C[(0,00), L?(m)], which satisfies the decay estimate

u(t, ) — 0‘026( '1> < mcfg _1<p<2, (1.7)
(1+1t)a A+l (14t e

where () = [Ra[0o(z) — 0(z)]dz. In particular, for ag #0, 0 < e << m — 1, and large t,

)

e The estimate (1.8) shows that (1.5) is sharp, whenever [5,[0o(z) — 0(z)]dz # 0.

e The extra localization vy € L?(m), m > 1 guarantees vy € L!'(R?).

e It is possible to state estimates similar to (1.7), which shows the sharpness of the decay estimates
for ||6(t,-) — B(:)||z» for at least some p > 2, but we will not do so here.

||

o Mer > == ~1+t)T20D) 1< p <2 (1.8)

Lp

‘(1+t)‘§G ((1+t)

Q=

Remarks.

The plan for the paper is as follows. In Sect. 2, we first introduce some basics - function spaces, Fourier
multipliers and fractional derivatives and fractional integral operators. Next, we state and prove some
properties of the Green’s function of the fractional Laplacian, as well as some commutator estimates,
which may be of independent interest. Lastly, we present a version of the Gronwall’s lemma. In Sect. 3,
we present the details of the construction of the steady state, together with the necessary a posteriori
estimates. In particular, one may find there the proofs of Theorem 1 and Proposition 2, which are mere
corollaries of the more general results of this section. In Sect. 4.1, we introduce the scaled variables for
the problem. The main advantage is that in these variables, the governing partial differential equation
is a parabolic PDE, driven by a (non-self adjoint) differential operator with purely negative spectrum,
which enjoys the spectral gap property. We present a complete spectral analysis of the involved operators
and the corresponding semi-group estimates, by partially relying on our previous work [27]. In Sect. 5,
we analyze the dynamics of (1.3) in the LP setting, provided the conditions on f guarantee the existence
of an appropriate steady state 6. In particular, the proof of Theorem 2 is presented. This is done by
establishing appropriate L?, LP,2 < p < oo and then L* bounds for v, based on energy estimates in the
unweighted spaces. These turn out to be sharp, based on the results of the next section. Importantly, it
turns out that the scaled variables turn out to be an efficient medium for obtaining sharp estimates in
unweighted LP spaces, even though their properties somehow suggest that they might be best used in
the weighted context. Finally in Sect. 6, we present an argument, based on energy estimates in weighted
spaces L?(m),1 < m < 3 — «, which guarantees that the upper bounds for the decay rates are in fact
optimal. This is justified by explicitly isolating the leading order term (decay wise) for the scaled variable
V.
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2. Preliminaries

2.1. Function Spaces, Fourier Transform, and Multipliers

=

The Lebesgue LP spaces are defined by the norm ||f||» = (f |f(z)|P dm) , while the weak L spaces

are
1
poe = {1 Wler =sup { Al 170 > AHE | < oo
>
The Fourier transform and its inverse are taken in the form

f© = [ f@e=tar, fz)=@n) / fe)e<e.
R» R

Consequently, since —/A\f (€):=|€|2f(€), and as pointed out already, the fractional differentiation operators
are introduced via A%:=(—A)%?2 a > 0. Equivalently, its action on the Fourier side is Aef(&) = |¢|f(€).
In this context, recall the Hausdorff-Young inequality which reads as follows: For p,q,r € (1,00) and
1_ 1,1
I+y=5++
1f *gller < Cpgurllfllzaellglor
For an integer n and p € (1,000), the Sobolev spaces are the closure of the Schwartz functions in the
norm || fllwrr = [[fllze + 324 <k 10% fll e, while for a non-integer s

£ llwer =111 = A)2fllLo ~ || fllze + A fl| -
We also need the homogeneous versions of it, with semi-norms || f||yi;.., = [[A®f||z». The Sobolev embed-
ding theorem states || f||z»®n) < C||f[lyire.a(mn), Where 1 <p < ¢ < oo and n(% - é) = s, with the usual
modification for p = oo, namely || |z ®n) < Csl|f|w=a@mn), s > §. More generally, for smooth symbols

m, with the property |m(&)| ~ |£|®, we have
T2 fllzeny < Cllf | La (2.1)

where n(% - %) = s and T;?f(f) =m~ (&) f(&).

Finally, due to the failure of the Sobolev space H*(R?) to embed in L>(R?), we record the following
modification of it: H'79(R?) N H'*°(R?) — L>(R?),§ > 0. In terms of estimates, for all § > 0, there
exists Cs, so that

I fll o r2) < CUIf -5 mey + | fll s (m2))- (2.2)

2.2. The Fractional Derivatives and Anti-Derivatives

We start by recording the following kernel representation formula for negative powers of Laplacian. This
is nothing, but a fractional integral, for « € (0, 2),

A f(x) = ca / S
r2 [T —yl*
Next, for positive powers, we have similar formula. More specifically, for « € (0, 2),
() — f(y)

Rz [T —y[*te

see Proposition 2.1, [14]. Next, we have the following result, due to Chamorro and Lemarié-Rieusset, see
Theorem 3.2, [7], although for earlier version, one may consult Lemmas 2.4, 2.5 in [14].

| 1f@P 2 @) s o = Gl L (2.4

dy. (2.3)

A f(2) = Cap. ay,
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Lemma 2.1. Forp:1<p<oo, a€10,2],n>1,

| @2 @A s = o (25)
If in addition, p > 2, there is the stronger coercivity estimate
/ @2 @) f)(@)de > %IIA%[IfI%’lf]H%aRn)- (2:6)
In particular, for n = 2, by combining (2.6) with Sobolev embedding, one gets
/ |f(@)[P72 f(@)[A* f)(2)dx > CIA 2o (2.7)
R? % (R2)

for some constant C' depending on p, «. We also need the following commutator estimate.
Lemma 2.2. Let 0 < s <1< 0. Then, there is C = Cs,, so that
1A, [0l f Iz ge) < CllInl" " fllzeme)- (2.8)

We provide the slightly technical proof of Lemma 2.2 in the Appendix. We should also mention that
it is roughly based on the approach for Lemma 11, [27].

2.3. The Function G and a Variant of the Gronwall’s Inequality

The function G defined by G (€) = e 1€ /¢ € R? will be used frequently in the sequel. Its straightforward
proof can be found in [27].

Lemma 2.3. For any p € [2,00] and o € (1,2),
(L+ ) GO, (1 + n|*)VG(n) € L. (2.9)
In particular, G,VG € L'(R?) N L>°(R?).
Note that ug € L, since
gz < Cllug|lwa < oc.

We have that for ¢ # d and 0 < a < 1, there exists C' = C(c, d, a), so that the following estimate holds
T —c(t—s) ,—ds
e e

———ds < Qe min(edr, 2.10
o min(L 7 —s))2 "= (2.10)

Moreover, we need a version of the Gronwall’s inequality as follows.

Lemma 2.4. Let 0 > > 0,k > 0 and a € [0,1). Let Ay, Ay, A3 be three positive constants so that a
function I : [0,00) — Ry satisfies I(17) < A1e= 77, for some real v and

e—U(’T—S)

I(1) < Age™ 4+ Ag e " I(s)ds. (2.11)

o min(l,|r — s|)e
Then, there exists C = C(a, o, u, k,7, A1, Aa, A3), so that
I(1) < Ce .

Proof. We present the short proof here for completeness. Let «y,, be so that there exists C,,, so that I(7) <
Cre 7 for all 7 > 0. We will show that there exists a constant C,, 11, so that |I(7)] < Cyp1e” 17 for
Yn+1:=min(g, % + Tn)-

Indeed, taking absolute values in (2.11) and plugging in the assumed estimate I(7) < Che~ ™", we
obtain

—o‘(T s) e~ FSe—Tns

[I(T)] < Ase™ M 4+ A3C, / ds.

min(1, |7 — s|)@
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This is of course nothing but the setup in (2.10), if 0 # & + 7,,. We get the estimate
|I(T)| < Age M 4+ D, e min(o,k+vn)T < Cn+1€7 min(u7m+'yn)‘r.

Even in the case 0 = k + 7,, via an obvious modification of the argument above, we can give up slightly
in the exponents and still obtain a bound of C),1e™ min (s, 5 +vn)7

Thus, we have shown the bound |I(7)] < Cp41€~"+17. The rest is just an iteration argument, starting
with vg:=7, which will certainly conclude, after a finitely many steps, since x > 0, with vy = p. O

3. Construction of the Steady State

In this section, we provide a construction of the steady state 6. In particular, and as a corollary of the
results presented herein, we show Theorem 1 and Proposition 2. The properties of 6 will depend on the
properties of the forcing term f. Before we continue with the specifics, let us recast the profile problem
(1.2) in the more convenient form

0 + divA=®(0 - uz) = A= F, (3.1)

which was obtained using the fact that div(u;) = 0. Note that (3.1) (and (1.2)) enjoy scaling invariance.
That is, if 6 is a solution, with right-hand side f, then so is 0 (2):=A*"'0(\z), with the corresponding
right-hand side fy(x) = A ~2¢f(Az). This forces certain critical spaces in the argument, such as 6 e
L%(RQ), V0 € La(R2) and also f € W57 among others. As we shall need to impose smallness
assumptions for our existence results, it is well-known that these are naturally introduced in a critical
space, as these norms are intrinsic (i.e. remain unchanged) under a scaling transformation.

3.1. Existence and LP Properties of ]

Proposition 3. Let f € Wooatt, Then, there exists eg > 0, so that whenever ||f||W < €, then the

2
T a1

Eq. (3.1) has solution 0 € L%(RQ). Moreover, for some absolute constant C

2
a—1

161, 2, < IS, .

a—1

If for some p > 32—, we assume in addition f € W~*P(R?), then 0 € L?(R?) and
16120 < ClLfllyir—cn-

Remark. We can state uniqueness results for small solutions 6 as stated above. Our dynamic results later
on however, provide much stronger uniqueness statements.

Proof. Introduce the operators J#, [z]:=divA~%(z-uy,). We will show that they map L=t (R?) into itself,
with a norm bounded by a multiple of ||uHL%(R2). Indeed, by (2.1), we have

1AL, 2 gy < Cllunzl, o, < Clunll, 2, N2l 2, < ClAl 2,121,

. (3.2)

2 .
a—1
Thus, if Hh||L%1 << 1, the operator Id + J#, is invertible, via von Neumann series, with a norm

-1 2 <1

I+ ) e <4
With these preliminary considerations in mind, note that (3.1) is nothing but the functional equation
(Id + #5)0 = A= f. Thus, we set up the iteration scheme p:=A~*f and for each n > 1, 0,,:=(Id +

A5 )JAT@f. Clearly, this is possible, if we manage to maintain the smallness of ”é”HL 2

a—1

. This is clearly
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the case for fy by assumption, since ||9~0HL% = ”fHW"*’ail < €p. For each n > 2, we subtract two

consecutive equations to obtain!
én - 9~n71 = (Hp—2 — %71)57171 + %71(57171 - én)
Estimating as in (3. 2) we obtain
16, — 61 1H 2 < of (7Y —(Hgn 1= O 2|| =2+ 16, — én—lhﬁ)-
For small enough €y, by using an induction arguments, we establish that |6, | < 2¢ and

||9~n - énflnLﬁ S CGOHénfl - én72HL%~

This implies that {én} is a Cauchy sequence in the critical space L%, which means that § = lim,, 6, €
LT exists and it is small. Finally, taking a limit in the LT norm in the equation (Id—i—%,l)én =A"f

implies that (Id + ;)0 = A=* f, which was the claim.
Now, if we assume in addition that f € W=*P p > ﬂ, we obtain
165l 2o (r2y < Cllugzlize < Cllugll 2 llzllze < ClAI, 2 |22,
where 2 (7 — %) = a— 1. The constraint p > ﬁ is needed to ensure that in the above arguments ¢ > 1.

O

Our next proposition concerns Sobolev space estimates for the steady state solution 6 produced in
Proposition 3.

3.2. Estimates in Sobolev Spaces for 0

< €, as in Proposition 3. Then, there exists an absolute

Proposition 4. Let f € W~ ®a"1 Hf||
constant C', so that for each p > 1, the solutzon 6 satisfies,
HvéHLP(m) < C”f”Wl*cup(R?)a (33)
provided f € W1=*P(R?).
Proof. We set up the equation for V6 in the form (Id + %%)V@ = VA~°f, where the operator J,[z]:=
VA~%(z-up). The operator ¢ satisfies the same bound as
|5 Lr— Lo < Cllé\\L%-
for all p > z2—. Hence, the bound (3.3).
Obtaining further bounds, such as HV@ |zrm2y for 1 <p < ﬁ requires bootstrapping the estimates

obtained for 8, V. To this end, we can write the equation for V6, in the form

VO + VZA™(0 - uz) = VA~ (3.4)
Take LP,1 < p < % norms in (3.4). Note that since a < 2, we have that i > % and hence
this covers larger region that the needed one 1 < p < 3=-. Applying the Kato- Ponce bounds (note that

V2A~ is a pseudo-differential operator of order 2 — a) and the Sobolev’s inequality, with 11) = ; + & T’
1A0 ol ~ VO] Lo < ClIfllypri-ar + CIIAZ*0] - [10] < Ollf lyirr-cn + ClAG Lo 6] 2,

(x a—1
Again, the smallness obtained in Proposition 3, H9||L% << 1, will allow us to hide ||Af]|z» on the
left-hand side and we can obtain the bound [|A0]| s < C||f|lyir1—a.p- O

1Here, we denote for conciseness %, = K .
n
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3.3. Weighted Estimates for 6

Proposition 5. Let f € Wt . ”fHW‘”* 2 < €, as in Proposition 3. Let 0 < 6 < 2 — « and

a—1

m=3—a—4. Assume in addition f € WI=*2NW~*2(R?) and A'=*f € L*(m). Then,
VO L2(my < Cs(IA FllL2my + [ fllwi-az + 1 Fl[f—a2)- (3.5)

Proof. Since we need to control || V| £2(m), We invoke Proposition 4 that yields control of V0 2. Tt

remains to control |||m|mV9~||L2(‘z|>1). To that end, introduce a partition of unity > o x(27%z) =1,

based on a function y € C§°, so that suppx C {x : L < |z| < 2}. For any function g, introduce the

2
notation g, (z):=g(x)x(27*z).
For the rest of the argument, our goal is to control

o0
2™ VO 151y ~ Z 2287V 6|72 -
k=0

Multiplying (3.1) with x(27*z) and taking V yields
VO + [VA™(u; - VO)]), = Fy,

where Fiy = V(A= f)p = (VA= )y — 2KV (25 )A=a
Taking L? norms yields the relation

IVOkl|zz < [1Epllz2 + VA~ (ug - VO]l 2. (3.6)

We now estimate the non-linear term. We have that for each function G, there is the point-wise bound
|[IVA=2[G]| < CA'~%|G|. Thus, with the notation g = gx—2 + ... + grr2,

IIVA™*(uz - VO)kllzz < A (uz - VO L2 + I[VA™(ug - VO<k o)kl 2
FIVAT (ug - VO o) k[ 2
For the first term, by Sobolev embedding

1A= (ug - VOui) | z2 < Cllug - VOukll, 2 < ClIVO ] z2llfll, 2, < Ceol|Vorl 22

a—1
For the second term and the third term, we have the point-wise estimates (recall |z| ~ 2¥)
—a N —a ] 1 0
VA= (a5 - VOcp—2)(z)| = |VA™ (a5 O<p2) ()| < C/Wmé(y)l\@dfz(y)\dy
< C27 M )|6) 7.
IVA™(u - VOsi_2)(2)] < C27FE)19)3,.
Thus,
AT (ug - VOcr—2)]llze + VAT (ug - Vicr—2)]ill 2 < C27FC=2)4)12..
Putting everything together in (3.6) that
IV0kllc2 < [1Fx]lz2 + C27* 18] + Ceol VO] 2. (3.7)
for all k& > 1. Squaring (3.7), multiplying by 2%™ = 22¢(=2=9) and summing in k > 1 yields the a

posteriori estimate

Ji=Y 2267k g7, <Y 2O B 13, 43 " 272K)|0)1 1, + Ceo(T + VO] 32).

This yields the bound, for sufficiently small €,
T < Cs(IA 122 gmy + 1 1p1-ae + 1F [Fya-a2 + 10]1Z2).
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Thus, for m =3 — a — § and any ¢ > 0, by using the bounds (3.3) for p = 2,
V0]l 2(m) < Cs(IA = FllL2my + 1 Flwi—e2 + 1 F 13 —a.2)-

4. The Scaled Variables and the Associated Operator .

Now that we have constructed the steady state 6 we turn our attention to the analysis of the dynamic
equations. As a first step, we shall need to introduce a major technical tool of our analysis, the scaled
variables. As we have alluded to above, the scaled variable approach is very beneficial in this context. It
was pioneered in [19,20] for the vorticity formulation of the 2D Navier—Stokes problem and later, it was
extended in our previous work [27] to the fractional case, to establish the exact relaxation rates for very
general SQG type problems.

4.1. Scaled Variables

Following [27], we introduce the scaled variables
x

(1+t)=
In the context of these new variables, we introduce new independent functions,

(1+1)1—iv<(1ft) ’ln(1+t)>, 5($)=(1+1)1_3¥@<< - ) (4.1)

T=In(l+1t), n=

o(t,z) =

Q-

or equivalently

V(rn) = e 0 u(edn,em — 1), O(r,) = " 1-)g(eFn). (4.2)
We compute
1-1 1 1 T 1
bt = *724‘/*5 o 1 T VyV + —— Vo,
(L+2)* = (I+t)* "= (1+1)= (I+2)* =
A% = %AO‘V, AYG = %Aa@,
(I+t)* = (1+t)* =
1 1
u, Vo= ———uy-VV, u;-Vo=—ue- VV,
(1487 (1+1)*=
1 1
u, Vo= ——uy - VV, u(;-sziluQ-VV.
(1+1t)%-= (1+t)* =

In the new variables, the Eq. (1.3) transfers to

1 1
Vr = (—A"‘—&—an~V7,+(1—a))V—uV-VnV—u@-VnV—uV-Vn®.

Equivalently,
{VT =2V —-uy -V,V —ue-VyV—uy-V,;0, (4.3)
V(0,m) = Vo(n),
where
g:—AaJrannJr(l*l) (4.4)
o Q@

As we shall see later, the formulation (4.3) is useful, when studying the long-time behavior of V' (and v
respectively) in the Lebesgue spaces LP(R?). Due to its special spectral properties of % on the weighted
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spaces L?(2), the real advantage comes, when one considers .# and the associated semi-group e™ on

the weighted space L?(2).

4.2. Spectral Analysis of the Operator .# on L2(2)

Unlike the Laplacian (and the fractional Laplace operators over the appropriate domains), which have
o(—A%) = (=00, 0], the operator £, with domain

D(Z) ={gc H*R*) NL*2): Lg € L*(2)}

pushes this spectral picture to the left side of the imaginary axis with a gap. We take advantage of this
fact, as it puts us in a better situation that we can analysis the solutions. The following proposition, which
is proved in [20] for the case @ = 2 and extended in [27] lists some important aspects of the spectral
theory for Z. In the statements below, we quote the relevant results, as developed in our previous work
[27].

Proposition 4.1. (Proposition 2, [27]) Let £ be, as defined in (4.4). Then, its spectrum on the space
L?(2)(R?), is described as follows

(1) G = (1-2)G and G € L*(2)(R?), whence G is an eigenfunction, corresponding to an eigenvalue
M(Z)=1-3.
2) The essential spectrum: Let 1 € C be such that Ry < —+ and define, 1), € L? such that
[eY K

Du(€) = Jg]ome 8", (4.5)

3

o

Then v, is an eigenfunction of the operator £ with the corresponding eigenvalue* X\ = 1+ p —
In fact,

Oess. (L) = {)\ cC:RA<1— i}
In particular,
(f)—{l—E}U >\e<(:-8’73)\<1—é
o = 5 : < o

where \o(£) =1— % is a simple eigenvalue, with an eigenfunction G.
(3) The operator £ defines a Cy semi-group, ™% on L?(2). In fact, we have the following formulas for

its action
(7)) = e DI femie), (4.6)
(1-L)r _
¥ _& - n—p z
= [0 (25E) s (4.7

where a(t) =1—¢e7.
(4) There is the commutation formula
eIV =e"avVe L. (4.8)
The next lemma presents an estimate for the bounds of the semi-group e¢™? on L?(2). Note the
requirement f(0) = 0, which is necessary for the bounds to hold.

2Note however that not all this eigenvalues are isolated, hence they are in the essential spectrum.
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Lemma 4.2. (Proposition 3, [27])
Let f € L%(2), f(0) = 0 and v = (y1,72) € N2,|y| = 0,1 and 0 < € << 1. Then there eists
C =C. >0, such that for any T > 0,

. e(lfé+e)‘r

IV (€™ Pllzz(z) < Cwllfllwz)? (4.9)
a(T) =
or
L T<1
V(e <C. e B 4.10
1997 Pl < Cll e {Q(IMT’ L (4.10)
Due to the formula (4.8), we have the bound

. e(l—%-{-e)T
1™ VH)llLz(2) € Ce———= I fll2(2)- (4.11)

min(1,7)a

By taking advantage of the representation formula (4.7), Lemma 2.3 and again the commutation formula
(4.8), one derives the action of €™ as an element of B(LP, L9).

Lemma 4.3. Let o >0 and 1 <p < q < oo. Then for any 7 >0
1 2
T el maap)T
€™ fllze < Oz fllr, (4.12)
T))a'\p a

(a(7))
€™V f|lLe < C

75 [/l (4.13)

Next, we discuss the spectral projection along the first eigenvalue and related operators. This is
discussed in great detail in Section 3.4, [27], so we just state the main results.

Proposition 4.4. The Riesz projection onto the eigenvalue \o(£) =1 — % is given by the formula

2t = ([ s00n) 6 = g6

The operator 2y:=Id — Py is a projection over the rest of the spectrum oess (L) = {A: RA <1 — 4},
Moreover, for all e > 0, there are the estimate

(1—%—&-6)7’
T( e
V7 (e jQOf)HLZ(z) < C—— 1 fllz22), (4.14)
a(T) =
i e(lngre)T
(€™ 2oV )llz22) £ C———|fll2(2)- (4.15)
a(t)=

4.3. Spectral Analysis on L?(m),1 < m < 2

Corollary 1. Let £ be as defined in (4.4). Then, its spectrum on the space L*(m)(R?), 1 < m < 2 is
described as follows

(1) M(Z)=1- % is simple eigenvalue, with an eigenfunction G.

(2)

a(z)\g_z}g{Aec:mg_m;?}.
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In addition, there are the bounds, for |y| = 0,1, f € L2(m), f(0) = 0, we have

1— m;rQ +6)T

(&

IV (€™ FllL2(m) < C—————IfllL2(m)» (4.16)
a(T) =
and
o e l—m;r‘g-i-e)‘r
1™ VDl z0my < Ce |20 (4.17)
11(137—)CY

Proof. First, observe that since L?(m)(R?) C L'(R?), the operators %y, 2, are well-defined. The eigen-
value 1 — % is valid by inspection. The formula for the spectrum follows in an identical way as in Proposi-
tion 4.1, once we establish the estimates (4.16) and (4.17). Their proofs are obtained by interpolation of
the corresponding L? — L? bounds, found in (4.12) and (4.13) and the L?(2) — L?(2) bounds, in (4.9),
(4.11). O

5. A Priori Estimates in LP Spaces

Let us first record for future reference some expressions for [|©(7, )|, [VO(7,-)||r and [|O(7, )| 12(2)

2

18]lzr = =2 =3)7|18)| 1o, VO 1o = €707V 10, (5.1)
_2 A
18]l L2(2) < Ce=2)7(16]| 122y (5.2)

Clearly, these formulas follow from the relation ©(r,n) = eT(l_é)é(ef 7n). We start our a priori estimates
with V', more precisely for ||V (7,-)||zr®z2),2 < p < 0.

5.1. L?,2 < p < oo Bounds

Lemma 5.1. There exists e > 0, so that whenever | V|| < €, then the solution V of (4.3) satisfies

L& (R2)
IV (7, )lz2rey < IVo()llnz@eye (). (5.3)

Moreover, for every 2 < p < oo, there exists €9 = €y(p), so that whenever ||V9~||L; < eo(p), then for all
q:2<q<p, we have

V(T e < Coll VoI panpze™ 1= 2). (5.4)

Remarks.

e Note that since HV@HL% = HV@HL%, Proposition 4 ensures that the assumptions are satisfied,
whenever Hf||W1,a,; << 1.

e While we do require the smallness of HV@HL% = ||V@||L%, it is important to point out that we do
not require |Vo(+)||La to be small.

e From our proof, we can only show (5.4), under the assumption lim,_,, €o(p) = 0. In other words,
for each p > 2, we need to impose that ||V|| , 2 is progressively smaller and smaller, before we

o

can claim (5.4). This may or may not be optimal, but this is why we cannot claim that there is an
universal ¢y, which would guarantee (5.4) for all 1 < ¢ < co.

Proof. As pointed out, ||V@HL% = ||V§||L% << 1. Let p > 1 and take the dot product of the equation
(4.3) with |V[P=2V. Using (2.7), we have

AV IVI2Y) 2 GV
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Supplementing this estimate with integration by parts implies
1 2 1
;&I\V\I’L’p T DIVIZ + CollVIP 2 ‘ / uy - VO)|VIP?Vdny| < VO, - VI 2o
where we have used the Holder’s inequality and ||uv|| 2 <C HV||
Specializing first to p = 2 and taking into account the smallness ||V®H << 1, we obtain

2
OrIVIEs + 22— DIVIZ + VIR o < SIVIE (55)

in particular 8, ||V||2. +2(2 — 1)[|[V||2. < 0. Resolving this differential inequality implies (5.3).

For the general case, and by taking into account (5.3), we can perform similar arguments. A point of
notable difference is that since for sufficiently large p (and we do need (5.4) for arbitrarily large p!), one
may have that (alp + 1 —1) <0, which is problematic. In order to fix this issue, we add C|V|},,C >> 1
to the energy estimate. We obtain

1 2 1
=0- VLo +(C+ — + = =DV, + CGlVII” 2 < CIVOI, 2 |VI® o +CIIVIT,
p ap « L2« L2—a
C C
< SIVIP 2 + FIVIP 2 + DplVIIE,
2 L2—a 2 L2—a

where in the last inequality we have used the smallness of HV@HL 2 and the Gagliardo - Nirenberg’s
estimate ||V}, < %HVH’;% +D,||V|% . As a consequence, since ||[V||2 < Ce('=2)7  for some constant
Ry,

2 1 (1—2
0,IVIEs +0(C+ — + = = DIVIE, < pD VL. < Byerm(72), (56)

Resolving the differential inequality (5.6) leads us to

.
IVl < Wl 40 4 g, [T n Ok (-2,
0
Applying (2.10), with comfortably large C' yields the bound (5.4) for ¢ = p.
Let us finish with a few words regarding an extension of this to all 2 < ¢ < p, as announced in (5.4),
which also elucidates the reason one cannot possibly extend this to all p < oo. If one traces the argument
above, we see that since Cj, ~ p~!, one needs smallness assumption in the form HV@HL; < COp~!, which

clearly cannot hold for all p < co. On the other hand, for each fixed p < oo, we can find €, ~ p~', so
that ||V@HL% < Cq! for all 2 < ¢ < p, which in turn implies (5.4) by the above arguments. O

Using the formulas (4.2), we arrive at the following corollary of Lemma 5.1.

Corollary 5.2. Let 2 < p < 0o, and 0 : ||V§||L% < €o(p). Then, for every initial data vo € LP N L? of the
IVP (1.3), we have the decay bound

2_y

lo(t, )| are) < Clivollza(1+1) "+, 2 < g < p. (5.7)

Note that in the estimate (5.7), one does not get any decay for the case ¢ = 2. This is slightly worse
than the corresponding results in [15], where it is shown that lim; . [[v(t,-)||z2(r2) = 0. On the other
hand, even in the case of zero forcing, f = 0, Niche and Schonbek, [24] have established that the rate of
decay for ||v(t, )| r2(r2) could be arbitrarily slow, in particular one should not be able to get any power
rate for the case ¢ = 2.

Next, we present some a posteriori estimates for ||V (7,-)||L» in the cases 1 < p < 2.
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5.2. L?,1 < p < 2 Bounds

In this section, we show that the estimates obtained in Lemma 5.1 could be improved substantially, if
one assumes that Vo € L'(R?), or even Vj € LP(R?),1 < p < 2. We have the following

Lemma 5.3. Assume that the smallness condition ||Vt§||L%(R2) < eo(5%) and vl e Lﬂ%(RQ), Let
Vo € LY(R?) N L>=(R?). Then,
IV(r Yz < Ce=2). 58)

Moreover, for every 2 < p < oo, there exists eg = €o(p), so that whenever 6 satisfies the smallness
condition ||V0||L%(R2) < eo(p)
IV (7, )lpa < Cpe™@2) 2 < g < p. (5.9)

Remarks.

e According to Proposition 4, the conditions on 6 are ensured by f € W'=*7ts and ||fHW7a1%l <<
1.
e We point out again, that we do not require smallness of |[Vo||z1(r2)nz~ (R?)-

Proof. The proof is a bootstrap of the bounds (5.3) and (5.4). In order to proceed with the steps, assume

that we have the bound [|V(7,-)|[z2 < Ce*7, with s, < 1 — 2. Clearly, we start with (5.3), which is

so =1 — 2. We apply the energy estimate (5.6) to it, so we obtain ||V (7,-)[|z» < Ce*™ as well.

For p > 1, take dot product of (4.3) with |V [P=2V. Applying the same estimates as in the beginning
of the proof of Lemma 5.1, we obtain

1 2 1

-0- VIl —+——1] V][], < -VO)|VIP2Vdn|. 5.10
SOV + (24 2 =1) VI <| [ vO)VP-2Vay (5.10)
We estimate the right hand-side, for some large ¢ (to be determined momentarily), by C||[V(7,-)||7 ..
VOl o < Cersnme™ = 75)  since VOl .o = eT(lfq’%)HVéHLq/. Plugging this estimate back in (5.10)

yields

2 1 2
a-|V|P, Z 1) | VIR, < Gt 5.11
Wi+ (245 1) VI, < Ce (5.11)
_2
Choosing p=1 and ¢ = 2;%, so that 1 — q,2a =1 5>, and resolving the differential inequality (5.11), we
obtain the bound
IV (7, )1 < Cemmax(=gosnt(G=2)), (5.12)

In order to establish (5.8), it remains to obtain the better estimate for |V (7, )|/ 2. We proceed starting
with (5.5), by adding 2C||V'||2, for large C. We have by the Gagliardo-Nirenberg’s

2 C % 2703
OVIE: +2(2 =14 C) IVIE: + SIVIP o, <20IVIE: < DIVIZS_IVIE]
C
< §||V”2Lﬁ +CalVILr
Simplifying and using the bound (5.12), leads to
2 g _ 2 27 max(1—2 s, +(2—1))
OVIE: +2 (2~ 140) VI < Ce Bont (-3 (5.13)

Resolving this last differential inequality, by making sure that C' > é, leads to

1

||V(T7')||L2 < CGTmax(l_%vsn'i‘(%_g)). (514)
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If s, + (1 — -2) <1— 2, then we are done, as we have proved (5.8). Otherwise, we have shown

q' o
[V (7,)lL2 < CesntT, (5.15)
where sp11 = sp + (% — é), by the choice of ¢. Iterating the bounds |V (7,-)||2 < Ce® ", whenever
s, <1— %, with $p,41 = s, + (% — é) will lead to the bound (5.8) in finitely many steps.

Regarding the extension to (5.9), we use the bound leading to (5.6), which reads®
2 1
OV (5 L+ (C+ 2 = 1) IVl < DIV (I (5.16)

for all 2 < ¢ < p. Now, we just insert the bound (5.8) on the right hand side of (5.16) and we solve the
resulting differential inequality

2 1
O |V (7, )7 +4 <C+ e 1> IV (r, )9, < Dyet=2)7,
aqg  «
For a comfortably large C', which we can select at our will, this results in (5.9). O

As an obvious corollary, we have

Corollary 5.4. Let p > 2 and vo € L*(R?*)NL>*(R?), f € Wi-®sts, Then, there exists eg = €o(a, p), s0
that whenever 6 : ||V9||L% < €, we have the bounds

ot Y ler < COL+1)72075), (5.17)
for some constant C' = C(p, a, by, f).

5.3. L°° Bounds

Our next task is to establish an exponential decay for |[uy (7, )| e, as our subsequent arguments demand
it. This is not so straightforward for at least two reasons - first, by the failure of the Riesz transform to
act boundedly on L°, we may not directly pass from ||uy |~ to ||V] L, and secondly - one does not
have ready-to-use estimate for ||V||p~, see Lemma 5.1 above. Instead, we use the Sobolev embedding,
along with the boundedness of the Riesz transforms on W?*? spaces as follows

luv|lze < Cpslluy |lwermz) < CpsllV lwer®2), (5.18)

as soon as s > %. Incidentally, (5.18)also provides bounds for ||V L, as the same chain of inequalities
applies for it as well. Thus, our goal is to find bounds for ||V (7,-)||ws»®z2). Unfortunately, such bounds,
especially one with exponential decay in 7 are not easy to come by. On the other hand, it suffice to
find inefficient ones, which then can be used in a Gagliardo-Nirenberg’s fashion, together with (5.4), to
produce the required exponential decay for appropriate ||V |y<.»®2),s > %. To that end, it suffices to

estimate ||VO(¢, )| Lr-

Lemma 5.5. Let 0y, V0, € L'(R?) N L= (R?), with ||V9~||L% < €o(2%). Let also 2 < p < o0 and Vf €
Lrer=a Then, there exists Ap o, so that
IVO(t, )| e < Cp(Bo) (L + 1) re. (5.19)

Note: Here, the constant Ay, , is fairly large, which makes (5.19) pretty ineffective. We remind ourselves
however that this estimate is only very preliminary and it will be bootstrapped later on.

3Note that its derivation relies on the fact that ||V@HL3 = ||V§\|Lg < eo(p).
[e3 (o3
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Proof. We differentiate the original equation (1.1), we use 0 to denote any of 0;,j =1, 2.
0:00 + A“00 + Jugy - VO +uy - VOO = 0f. (5.20)

Our first step is to control || V0| 2. To this end, take dot product with 96. After adding in j = 1,2
provides the bound

OIVOIIZ: + ClIATFE0) 7. < BIA™Z0) L2 AT fllr2 + C VO 25 (5.21)

Nirenberg’s and Young’s inequalities imply

Clearly, B|A*%0|2||AY"% fl|2 < %HAH%@H%Z + D,p||[A*~% f||2,. Furthermore, the Gagliardo-

(xl

Vol < Ol < AT 20157 10175, < S2IAI* S0l + Bylol?

Putting it all together implies

Ba_
Ou[VOlIE> < Bll] " (5.22)

~ Ba
Keeping in mind that § = 6 4+ v and the decay bound* (5.7) for v, we conclude ||§(¢,-)||* . < C and so,
L a—1

(5.22) implies, after integration in time, ||VO(t,-)||z2 < C(1+¢)'/2. This estimate serves as a preliminary
step towards controlling ||[VO(¢, )| L»-

We now proceed to estimate ||VO(t, )| r». Taking dot product of (5.20) with [90|P~290 and adding in
j = 1,2, we obtain, in a manner similar to the energy estimate above

OlIVOILe + ColIVOI 2 < BpHV@Hp_z;p s+ C|IVO|IT, (5.23)

5 ||V9||p 2 +D ||Vf||p , so that the

apa

By the Young’s inequality B,||Vé|” 5,
L=

term &HV(‘)HP 5, 1s subsumed on the left-hand side. Furthermore, by a Gaghardo Nirenberg’s, with
L2—«

p(p— 1)

7= prD(p—21a)’

(ptHp(l—0)

||V9||I;;1_1 < ||V0||(Lp:‘2%}:0||v9||(£’2+1)(1—0) < PHVQHP JrE ”VQHLP (T

All in all, taking into account that p > o(p + 1), we obtain

(p+Hp(A—0) (p+)p(l—0)

Or|VOIL, < Dy HVfllp sz T BV v <D ||Vf||p seze T Gp(l+1)2070F02).

Integrating the last inequality in time yields the bound ||V6(t,-)||» < Cp(1 + t)Are, with
)

1 (p+hH(A-0
Ap,a = - YT TR
p o 2p—(p+1)o)
which is (5.19). Note that for large p >> 1, we have that 1 — o = O(p~!), while (p — (p+ 1)) = O(1).
Allin all, for p >> 1, A, o = Ay + O(p~?) for some A4, > 0. O

Note that since § = 6 + v, we have from (5.19) (and under the assumptions of Lemma 5.5) that
IVu(t, e < VO )e + VO] ze < O+ )4

Translating via (4.2), we obtain, ||[AV (7, )|lze ~ [|VV(7,)||zr < Ce™(IHAra—5-25), Using the
Gagliardo-Nirenberg’s inequality and the estimate (5.9), we obtain

s S s 73 s a—=——
1AV (7, e < AV 50 IV (7, ) l5r® < CpeT G-+t ana=g],

4Which applies since 6 is small enough as in the Corollary 5.2.
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The point here is that choosing s > %, say s = % (so that ||A*V(7,-)||L» controls ||V L), and for

sufficiently large p > p, (recall A,, = A, + O(p™!)), we can ensure that the exponent above may be
made as close as possible to e(1=2)7. We collect these findings in the following corollary.

Corollary 5.6. Let the assumptions in Lemma 5.3 and Lemma 5.5 be satisfied. Then, for arbitrary § > 0,
there exists C' depending on «,0,vg, 6, f, so that

V(7 Mz + [y (7, )l < Cell=a=0, (5.24)

6. A Posteriori Estimates in L?(m) Spaces

In this section, we establish an asymptotic decomposition for V', which shows that its main term of V' in
L?(m),1 < m < 3 — « consists of a simple function of the form e(l’%)TG, while the rest of it has faster
decay. This is our general plan. However, we follow the scheme outlined in the modified Gronwal’s result,
Lemma 2.4, which will be applied to estimate of the remainder term. As one can see from there, we need
an a priori estimate to jump start the process.

6.1. A Priori Estimate in L?(2)

We have already seen in Lemma 5.3 and Corollary 5.2, that Eq. (4.3), has global solutions in LP,1 < p <
00. Since our arguments in this section necessarily take place in the smaller space L?(2), we first need to
know well-posedness as well as some a priori estimates in this space. In fact, even if the initial data is
well-localized, say V (0,-) € L?(2), it is not a priori clear why the solution V() should stay in L?(2) for
(any) later time 7 > 0.

Proposition 6.1. In addition to the standing assumptions about f in Proposition 2, suppose that 1 < m <
3—a and Vo € L N L?(m)(R?). Assume that 6 obeys the smallness assumption in Lemma 5.3 and
6 € L?(m). Then (4.3) has an unique global strong solution V € C°([0, 00]; L?(m)), with V(0) = Vy. In
addition, there is the a priori estimate for each § > 0,

IV ()| 12(my < Cpemaxtmal==G= =012, (6.1)
where C' depends on 8, Vy, o, 6.

Remark. The estimate in (6.1), while not very inefficient serves only as a preliminary bound, which we
feed into the generalized Gronwall’s lemma, Lemma 2.11. This eventually helps us establish the sharp
bounds, see Proposition 6.2 below.

Proof. We need control the quantity J(7):= [g.(M + |n|*™)|V (7, n)[*dn, where M will be selected suffi-
cently large, for technical reasons. For the L? portion of the quantity, we use the energy inequality (5.13)
established in Lemma 5.3, where we note that we can add ||[A2 V|2, on the left-hand side. We record it
as follows - for any C' > 0, there is a ¢y > 0 and C; = C(C), so that
2 o
Or|VIIZ2 +2(5 = 1+ O)[VIIZ + A3 V7. < Cre? 1=, (6.2)

To this end, we find the inner product of equation (4.3) with |n|?™V. Thus
50 [ InPrvzans Guprarvivy = (1= 2) [lemvians o [ w,vPmy g

—/MwwmmeM—/myWWWmVM—/MwW@WMVM
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We first analyze the terms on the right hand-side. For the term [(uy -V, 0)[n[*™V dn, we use Hélder’s,

(5.24) and |||n|"V,0] L2 = e<1*’"$1>7\||x|mvmé||m, to conclude that for every € > 0, there is C¢,

_m+d_ 5\,
I/(uv VO™V dnl < [lay || [0 VOl 1]V [ 22 < Ce®= 75707/ J(7)

2m+48 _5)7_

<eJ(r)+ 0%
Next, integration by parts yields
1 m m+1 m m+1
o [ vy = -T2 vy = <),

For the remaining two terms on the right-hand side of the energy estimate, we use the divergence free
property of Uy and Ug, as well as integration by parts, and get

/ (ay - V V)™V dn = —m / 0[P 2(n - uy ) V2dn,

/ (e - VV)al'V dy = —m / 02 2(n - ue)V2dn.

In the last two expressions, we need to control quantities in the form [ |5|*" ! |ug|V?(n)dn, where Q is
either V' or ©. We estimate by Hoélder’s and Young’s inequalities, for each x > 0,

2m—1
2m
[ Pl vy < Clugllsa- ( / |n|2mV2d77> %

< Ol@Ql g (8 (7) + Cu= V[V [ 7).

1
m

1o

Applying this to @ = V and then to Q = © leads to an estimate of the right hand side of the energy
estimate as follows
C(rJ (1) + k=D V(2 ) IV 2m + |O(T)[| 2m ). (6.3)

3

On the other hand, by Lemma 5.3, ||[V||,2n < Ce@=2)7 and by (5.24), ||V ||p~ < Csel=a =97 while the
estimate for © is much less favorable, ||O(7)| p2m < Ce(lfé(H%))T, according to (5.1). Note that the
exponent e(l_%(l+#))7 grows, unless o < 1 4 %

Adding the estimates for 0, [ |n|>"V?2dn and the estimate® (6.2) yields

1 2 o
370+ ("2 2 1) T+ MIASVIE: + AV )

1
3—7+m—6

< Ce(l_é(l-"_#))TKJ(T) + Cg/@'_@m_l)e< “ )T + Me2(1=3)7

which is valid for all § > 0,k > 0.
Now, we are free to select k. We do it so that we can allow ourselves to hide the term containing J(7),

that is for an arbitrary €, choose pimee~ (1= (1F )7 Thig brings about the following estimate for J,

21na+8 _6)

1 3
57/(7) + ( —1- e> J(1) + (02" ACV, V) < O ce(2mt2- T+ M0 (6.4)

It remains to estimate the term (|n|? AV, V) = (In|™A*V, |n|™V). Note that this introduces commuta-
tors in our estimates as follows

(0™ AV, n|™V) = (A% [ AZ V. |n|™V) — (A%, [ ™" JAZ V. [n|"V).

5(which we multiply by a large constant M and we take C' large so that % —-14+C > mTH — 1.
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But
(AZ [ AV, ™ V) = (" AZV,AZ [ V) = (In|"AZV, [g|" A% V)
H(nMAZV AR, [V = [[nmAZV (2. + (0l mAZV, AR, [p]]V).
Since, by Lemma 2.2 and Gagliardo-Nirenberg’s
(A, In™IAZV, 0™ V) < N[AZ, [n™]AZ V]2 |[1n]™ V]| 2
< Cllnl™ = FAEV | allz2llnl™ V| 2
< CVIMNImARVIZF NS VIFE < ed(r) + el " AS V|3 + Cc A% V2
(™ AV, AR [n™V) < 0" AZV |2 [A%, g™V [|z2 < [0 AZ V| e |l =2 V]| 2

< ellnlmAEVZ + e (7) + CelV 72

Collecting all the estimates for (|n|*"A*V, V) and using the bound (5.8), yields

(PP AV, V) > (1= 26) [0 A3 V|22 — 2] (7) — CeASV |32 — Ce2(=2)7,

This means that for all € > 0, we can derive the energy inequality from (6.4),
1
§J () + (

At this point, we make the selection M = M, = max(C, 1). So, we obtain

m 4+ 2
«

271;+8 —6)

T + M€2(1_g)‘r.

~1=3¢) ) + (O = COIAFVI < Caeemi2-

%J’(T) + (m;—2 —-1- 36) J(1) < Cg,ee(2m+27 R e)T Meez(lfg)T. (6.5)

Using integrating factors, we get the bound

J(T) < J(O)eQ(l_ mE2 4 3¢)r +C. 66max[2m+2—%—6,2(1—%)]7.

Thus, fixing sufficiently small €, we have that (1 — 22 4 3¢) <1 — 3, we arrive at the bound

Nl

(/(1 + ‘,,7|2m)v2(7_’ U)d77> < Céemax[melfmTHf&lf%]fr'

as announced in (6.1). O

6.2. Estimate of the Remainder

We first introduce the remainder term. More precisely, we decompose the function V (1, 7) on the spectrum
of the operator .Z,

V=a(r)G+V, (6.6)
where a(7) = (V,1) and V = 2,V. Then,

o (1) =(V;,1) =(ZLV,1) = (Uy - VV,1) = (Ue - VV,1) — (Uy - VO, 1) = (1 — —)a(7),

since £*[1] = (1 — 2). This ordinary differential equation for a(7) has the solution a(7) = a(0)et=a)T,
where

a(0) = [ Vinydn = /R (60(a) — 0(2))d. (6.7)

R?2

We also project the equation (4.3) on the essential spectrum of the operator .Z, i.e

‘7-,— = .,%IN/ - Qo(uv . VV) - Qo(U.@ . VV) - Qo(uv . V@) (68)
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Then, V has the following integral representation

‘7(77’7-) = 672"}0 _ / e(T—s)f/QOV |:UV V4ue -V4uy- @:| ds
0

=™V, — /OT 7792 9,V [(a(s)uc +up) - (a(s)G + V)} ds

_/ e(T—s)ﬁQ@OV [ue (afs)G + V)} ds — / e(T—s)fQO [(a(s)ug + uV) -VO]ds
0 0

where we have used the divergence free property of uy and ug. We are now ready for the main technical
result of this section.

Proposition 6.2. Assume Vo € L N L*(m), 1 < m < 3 — «a. Then, for any ¢ > 0, there exists a C,
depending on m, «, 0, vg,s0 that for ag is introduced in (6.7) and for any T > 0, there is the bound

IV (-, 7) = ape™ TG ()| 2 (my < Ce@™ o2 +97, (6.9)

Let us comment right away that (6.9), properly interpreted, is nothing but the main claim in Theo-
rem 3.

Proof. (Proposition 6.2) The main object of investigation here is the quantity I(T)::|\V(T)\|Lz(m). We
will estimate it in a way that fits the framework of the modified Gronwall’s tool, Lemma 2.4. We start
with the free term, which is easy to estimate by (4.16),

m+2

TN N2 m.

according to (4.9). Next, by means of (4.17) (with |y| = 1), and Holder’s inequality

||6T$%||L2(m) < Cell™

[ 16797 25 [(a(s)ua + ug) - (@(6)G + V)] iz ds

6(1 m:‘rd +€)(T—s) 5
<0 [ (@l ug) ()G + )] s
0 a(t — s)=

T (1—mtS +€)(T—s)
2 e “« 2(1—3)s
§ Ca (O)HUGHLoo ||GHL2(m) T (& a/%ds
0 a(t — s)a
— ) (r—s)

T 6(1
+Ca(0)[ugo~ / <
0 a(t — §)a

— m:g +€)(T—s)
a(t — s)é

™ (1= o) (r—s) )
g R P L e
a(t — s)a

Due to the estimates (5.24) and « € (1,2), we have that the previous expression is bounded by

<1_m+3+e>(7 ) Y
C/ (1-g>s{e[(1—%)—513+||V(s)IIL2<m>}d5-

T*S

e(lfg)SHf/(s)HLa(m)ds

T 6(1 sy,
+Ca(0)||GHL2(m)/0 1309 [ (s)|| o ds

The first term is estimated, due to (2.10), m < 3 — a and sufficiently small § > 0,

T (1-mE3 1) (r—s
/ T O™ 1 8)sgl-2) -3 g < o127
0 a(t — s)a
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All in all,

/T 7% 9,V {(a(s)ug +uy) - (afs)G + V)] ds
0

< Cee(l_ m;r3 +e)T

(1_m+3+€)(7_ ) -
4 c/ ¢ 057 (5)| 2 om .
(r—13)
Next, we control the other term in the expression for V. We have, again by (4.17),

|17 296 - (@G + T2y

e(1—73
<c/

Note that

(1 er3—‘,—6)(‘1’ s)

mw1>%mwpmm+c/)ww«mmmm

Jr3+e) (t—s)
(t—s5) (tr—s
a6 ()Gl L2m) < Cllue(s)]2]|(1+] - ™G> < C[O]|p2 < Ce =27,
while by the Sobolev embedding (2.2)
lueV (s)ll2gny < CIV($)llz2mllue(s)llze < CsllV ()]l z2(m) (1A~ Vuel|zz + [|A°Vue | £2)
~ _5 ~
< G|V (5) 2 (m) (A0 12 + [A%O)| 2) < Coe = 5%V (5) | 2o

All in all, choosing § < 2 — «, say § = 2_7“7 applying (2.10) and 1 < m < 3 — «a and € << 1, we obtain
the bound

6(1_ mi3 L e)(r—s)

||/ =% 2,V [ue - (a(s)G + V)|ds |2y <c/ o 2= 2)s g
a(t — 8)
e(l—m-*-e)(f R
+C [ V()i
T*S
(1= 4 0)(r—s)
< Celz2m Jrc/e—i 5205 7(5) | 2 (o .
(t1—9)a

Next, we estimate the contribution of the last two terms in the equation for V. We have

T T—S m+3 e)(T—s
|| / {97 2,7 (a(s)ug - O(s))dsl| 2 m) < Cla(0) / 1=+ =9) (1= 2 |40 (5)] L2

< Cla(0)|[lug|| L= / =249 0=2)5|| O (s) | L2 (gmy ds < C/ (1= +e)(T=9) o (2-2)s 4
0 0

< Celi- B4,

Finally, we estimate the contribution of fOT e"=9Z 9yluy - VOIds, it turns out that we need to split it
as follows

[ e ity vl = [T ayfug xvel + [ Bufug - (1- xim)vel
0 0 0
where x € C§° is supported in |n| < 1. In the region |n| < 1, we have the bound

< / 16792 20V [ug - (1)l 2 (myds
0

/ e(Tfs)ggo[u(, -x(n)VO]ds
0

L2(m)

+/ =) 9y - OVX(M)]llL2(m)ds
0
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We apply either (4.16) or (4.17) to obtain

’ T—S8 i —m+3 4L Y (r—s
I [ e g xmVOslzaim < € [ g (1)) s
0 0

T _m+2 eV(r—s
+C/0 1= 27 =) lug || L [ VX (1) O 12 (my ds

<C / 4T (=505 9 (5) | Lads
0

: C/T eI+ (1=9) (2= 3 =0)s g5 < O~ "7 0T,
0

where we have used (5.1) and (5.24).
Finally, in the region |n| > 1, we apply (4.17). We obtain

/0 1672 Dol - (1 — x (1)) VO L2y ds

S/O AT g, e (1= X (1) VO L2 () ds

“c /-r e m2 +e)(r—s)e(1—%+6)3|| ‘77|mV@HL2d5
0

< C/T (=2 40) (7=9) (2= L 48)s g (2= 48
0

m+1

where we have used ||| VO(s)||p2 = "53| |n|"" V0|2 and a < 2.
Putting all the estimates together implies the a posteriori bound

IV ()| 2 my < e~ 52407 4 c/ 1240 =9) =203 (5)| 12 () ds-
0

Applying the Gronwall’s inequality, Lemma 2.4, we obtain the bound

||‘7(T) ||L2 (m) < 06(27 m:4 +5)T'
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Appendix A. Proof of Lemma 2.2

The proof of this lemma is based by some modifications in the proof of relation (4.8), [27]. Recall, that
for s € (0,2)

V1, 611(0) = IV1°(05) g 1917 = e, [ LD L0 4y g

. fW)(g(z) —g(y))
_S/ |z — y[>+s dy

fl@)— 1),

WA
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Introduce a smooth partition of unity, that is a function ¢ € C§°(R), supp ¥ C (%7 2), so that
Z Y27 Fnl) =1,n e R n #0.
k=—oc0

Introduce another C§° function ¥(z) = |z|74(z), so that we can decompose

oo oo

" = > mlre@ Fm) = Y 2k w@Fp).
k=—o0 k=—o0
We can then write
S o o s _ . f \I} 27ky
F(n) = (A% [nl7)f = Y 27K A W@ )l f(n) = D2 / )~ VG g,
" \77 Yl
Introducing
U(2- T(2-k
/If IR 77)2+ ( y)ldy’
n —y|>*+s
we need to control
2
P =32 [ IFePn =3 / ) o
In|~2 ~
l+10 2
1~ s i40 [n]~2t |2 l 10
2
+Z/ > 2%Fi(n)| dn=: K1+ Ky + K.
n|~2! k<l 10

We first consider the cases k > [ + 10. One can estimate easily Fj point-wise. More specifically, since
in the denominator of the expression for Fy,, we have |n —y| > $|n| > 273,

| ()| < 27KC+) / FWIN R y)ldy < C27FFD| £l L2y o),

whence

Kr <y 2 30 >0 290 fll ey ez 2207 Lzt

k1>1+10 k2 >1410

< Z Z 92 min(kl,k2)2k1(sflfa) ||fHL2(|y\~2k1)2k2(57176)||f||L2(|y|~2k2)
k1 ko

<CY 2R 12y mary < ClllnlT7 £
k

where we have used thkmm(kl ka)—10 22l < (¢92min(kykz)

For the case k < [ — 10, we perform similar argument, since

|Fe(n)| < C27HCFD25| £ 12y -
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So,
Ks<CZ2”2 AR NS 2R F oy 20T fl gy ke

k1<l—10 ka<l—10

< CZ Z 20 DRL| £l 2 1y mzen) 25 TR £l 12 (e y 27200 max(rha)
k1 ko

< CZ22k(s_0)||f”2L2(|y\~2k) < Yl £)12.
%

Finally, for the case |l — k| < 10, we use
(W27 n) = w2 )| <278 n —ylIVO R - y) < C27Fn -yl
so that

|F ()] scrk/ £ ()]

k
gzt |1 — y[tTe Ty ¥ = O Wi * g |- |1+"

Thus, by Holder’s

weex

< CZZQk(S |||f|X|y\~2k *Tige | |1+U ||

2
~2k *

1 E sk 1 2
| . |1_;'_(7 dn < c 2 |||f|X|y\~2k * | ] |1+¢7 ||L2(\77\~2k)
k

022%(5 DNz gy < Clllnl*= 1%

L7 (Inl~2%) =
where we have used the Hausdorf-Young’s inequality

oo I lz2(ni~2ry < Clfll L2 (pnj~aky-

1 1
1 Xy ~2r * HT%HL% < CHW”LH%
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