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Ground states for the nonlinear Schrodinger equation under a gen-
eral trapping potential

MILENA STANISLAVOVA AND ATANAS G. STEFANOV

Abstract. The classical Schrodinger equation with a harmonic trap potential V (x) = |x\2, describing the
quantum harmonic oscillator, has been studied quite extensively in the last 20 years. Its ground states are
bell-shaped and unique, among localized positive solutions. In addition, they have been shown to be non-
degenerate and (strongly) orbitally stable. All of these results, produced over the course of many publications
and multiple authors, rely on ODE methods specifically designed for the Laplacian and the power function
potential. In this article, we provide a wide generalization of these results. More specifically, we assume
sub-Laplacian fractional dispersion and a very general form of the trapping potential V, with the driving
linear operator in the form J# = (—=A)* + V,0 < s < 1. We show that the normalized waves of such
semilinear fractional Schrodinger equation exist, and they are bell-shaped, provided that the nonlinearity is
of the form |u|P —ly, p<l1l+ 475 In addition, we show that such waves are non-degenerate and strongly
orbitally stable. Most of these results are new even in the classical case ## = —A+ V, where V is a general
trapping potential considered herein.

1. Introduction

The Schrodinger equation is an ubiquitous model in quantum mechanical applica-
tions. In this work, we consider a model, in which the system is subjected to so-called
magnetic traps, which keeps the action very tightly to the trap. Mathematically, the
probability density functions that arise as squares of the solutions have unusually
high space localization, compared to the standard model without trapping. Next, we
formally introduce the model.

1.1. The model

We consider the fractional Schrédinger equation subject to a trapping harmonic
potential

iy + (=AY u+V@u—ulPlu=0,@,x) e Ry xR" (1.1)

where n > 1, p > 1 and we assume that the potential is trapping. That is
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Definition 1. We say that a potential V : Ry — R is trapping, if!
o V(x)=V(lx]),
e V isincreasing and in fact, assume V € C' (R, V'(r) > 0.
e lim,_,o V(r) = +o00, but it has at most polynomial growth. That is, for some
N>1V@F <cl+rN.

The natural energy space associated with this problem is the space
X, = H' R NL*(V(@)dy) = {u: R" — R [ (—=A)%ul?, +f V(@) |u(x)?dx < oo}
R

In typical quantum mechanical applications, u is the probability density function
of a particle trapped inside a trapping potential well, traditionally modeled by V (x).
Note that the linear operator driving this particular evolution is 7 := (—A)* + V.

Quite a bit is known about .7, and we will just mention a few relevant properties.
To that end, 57 is a self-adjoint operator, when considered on the domain

D) = H¥(R") N L*(V?(x)dx) = {u (R > R:[(—A)ul7,

+f V2 u(x)Pdx < oo}
Rn

In addition, we will show in a rather standard manner, that its spectrum, which is of
course all real, consists entirely of discrete eigenvalues of finite multiplicity, which
converge to +00. Recall the conservation laws for (1.1), the Hamiltonian energy

Elu] := % </R IVISu(t, x)|* + /R V(x)lu(t,x)|2dx) — ﬁ/R lu(t, x)|PTldx,

and the L? norm ( or particle number or power)
Plu] = / lu(t, x)|>dx
Rn

Standing waves of this equation are solutions of (1.1)inthe formu(z, x) = ™' ¢, (x).
Clearly, they satisfy the elliptic equation

(=A)'p+ Vo +wp —|p|” "¢ =0,x e R" (1.2)

for some w. We shall be particularly interested in positive solutions of (1.2). In addition,
we shall be interested in their dynamical stability properties.

In the classical case of harmonic Schrodinger equation, thatis s = 1, V (x) = |x|?,
the problem is well-studied. This is of course the standard model® of the quantum
harmonic oscillator. Most of the findings of this paper confirm these and present a
natural extension to the more general case of potentials introduced in Definition 1 and
the sub-Laplacian dispersion. Thus, we take the opportunity to review the relevant
recent results, which will also help us outline the areas of interest in this study.

IThe requirement for at most polynomial growth of V is likely just a technicality, but we prefer to enforce
it, due to the difficulties with the space of test functions, should V has faster growth.
2In non-dimensionalized variables.
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1.2. The quantum harmonic oscillator

The linear quantum oscillator operator is given by —A + |x|%. It has been studied
in great detail over the last 30 years. In particular, it has been established that it is
self-adjoint, with spectrum entirely consisting of eigenvalues of finite multiplicity. In
fact, the eigenvalues are explicitly known and even the corresponding eigenvectors

can be written in terms of the classical Hermite polynomials—for example, the lowest
2

eigenvalue oo(—A + |x|?) = n, with corresponding eigenfunction e~ 2.
Regarding the issues of interest in this work, for the corresponding Schrodinger
problem

iuy — Au+ |xPu — ul”'u=0, @, x) e Ry xR", (1.3)

standing wave solutions, namely solutions, as above u = e—iot ¢ can be constructed.
More precisely, one is (initially) looking for distributional solutions, thatis ¢ € X| =
H'(R™) N L%(|x|>dx), so that

—Ap+ |xPp+wp— 9P ' =0,x e R", (1.4)

in a distributional sense. For example, it is well known that for any w € (—n, co) and
1<p<p;f:={ +oo4 n=12
the energy space X1, see [2,10,12]. Here, the significance of the restriction w > —n
isin that 7 + @ > (w +n)Id > 0. In addition, very strong uniqueness theorems for
(1.4) are known, if we restrict our attention to ground states—that is, positive solutions
of (1.4). Let us state the uniqueness and non-degeneracy results, already available in
the literature.

there exists solutions of (1.4), which belong to

Proposition 1. Letn > 2 and 1 < p < pj. For every > —n, there is an unique
positive solution ¢, : limy|— o0 o, (x) =0, of

—Ad+ |x)?P+ wp — pP =0, x € R".

Moreover, such solution is non-degenerate, that is the linearized operator £y :=
—A + x> + w — poP~! has a trivial kernel, K er[.Z,] = {O}.

For the proof of the uniqueness, we refer to [10-12]. The non-degeneracy was
established in [12] and in a more general form, [1]. We now review the known stability
results for the ground states of (1.3). In the L? subcritical range, l < p <1+ %, the
ground states have been constructed in [17], together with the weak stability properties.
This, together with the uniqueness, yields the strong orbital stability for these waves>.
In addition, the stability is known for the waves with any p € (1, p,’:), - < w <
—n—+e¢€,0 < € << 1, [8]. On the other hand, there exists N >> 1, so that forw > N,

the ground states ¢,, are unstable for 1 + % < p < p;, [79].

3Although it looks as if this result has not been stated explicitly in the literature.
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We should mention that there are various results on blow up for (1.3), for generic
initial data (not necessarily related to solitary waves), for example in the papers [2,17].
Instability by blow up was unknown till the work of Ohta, [14], who has shown that
if p>1+ %, there exists @) ,, so that all solitons in the regime @ > @), exhibit
instability by blow up.

We should on the other hand point out that even for the classical case of the quantum
harmonic oscillator, (1.3), the (linear and nonlinear) stability of the (unique) waves
satisfying (1.4) is not fully understood. That is, the following question is open, to the
best of our knowledge: for solutions of (1.4), with 1+ % < p < pj»determine the set
of w, for which ¢,, is dynamically stable. Due to the results of Ohta and collaborators,
[7-9,14], it seems natural to conjecture the following.

s . 4 * :
Conjecture 1. Let n > 1. Show that for every p : 1+ 5 < p < py, there exists
® = wp u S0 that the unique solution of (1.4) is stable whenever —n < w < w, , and
unstable in the regime w > wp p.

Such a result would be immensely interesting, especially if it turns out that Conjec-
ture 1 does not hold, and hence, there is more than one turning point in the stability
behavior of the waves.

1.3. Main results

Regarding the construction of the waves, we study the constrained minimization
problem

inf Elu]. (1.5)
Jrn Ju(x))2dx=n

for every A > 0. In other words, we will be seeking to minimize the energy for a fixed
L? norm. The constrained minimizers to these problems, if they exists, are usually
referred to as normalized waves. The following is the main existence result of the

paper.

Theorem 1. Letn > 1,s € (0,1, 2 >0, 1 < p < 1+ t—s and V is a trapping
potential, as defined above. Then, the constrained minimization problem (1.5) has
a solution ¢, a normalized ground state. Moreover, ¢ € X° is bell-shaped function,
which satisfies the Euler—Lagrange equation (1.2), in a distributional sense, with some
w = w).

Note: We establish better a posteriori smoothness and decay results for ¢, see
Proposition 4.

Next, we state our results on the stability of the waves. Before we move on with the
actual statement, we shall need to discuss the related issue of global well-posedness
and energy conservation, which is crucial in the orbital stability considerations. Note
that such results are available in the literature, especially in the classical case s = 1,
but definitely not in the generality of potentials that we would like to consider herein.
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Then, there is the more delicate issue of (formally) conserved quantities, e.g., E, P, in
particular the level of regularity needed for the data that is required in order to ensure
the actual conservation of energy and L2 norm along the evolution. These subtle points
go beyond the scope of the paper, and more in depth research is required for their full
understanding. For the purposes of this paper, we assume the said well-posedness (and
conservation laws) for the time evolution of (1.1). More precisely,

Definition 2. We say that the fractional semilinear Schrodinger equation (1.1) is glob-
ally well-posed and conserves energy, if every initial data ug € H®[R"] produces
unique global solution u(z, -) € C([0, T'], H*(R")) for each T > 0 and

(1) the solution map ug — u(t, -) is continuous in the norm of C([0, T'], H*(R"))
for small enough times 7.

(2) The energy E[u] and the P[u] are conserved globally in time, that is for each
t >0, E[u(t)] = Eluol, Plu()] = Pluol.

Note: For our purposes, it suffices to assume these properties only close to solitons.
Note that these assumptions are only needed for the statement of orbital stability of
the waves.

We have the following result regarding the stability of the waves.

Theorem 2. Forn > 1,5s € (0,1, A >0, 1 < p <1+ %, the normalized ground
states ¢ of the Schrodinger equation (1.1), with ||¢||> = A, are non-degenerate, in the
sense that

Ly =(=A) + V@) +wy — P¢>f_l

has a trivial kernel, i.e., Ker[£] = {0}.

Finally, assuming global well-posedness and energy conservation, in the sense of
Definition 2, the waves e~ ¢ are strongly orbitally stable in the H* norm. More
precisely, for all € > 0, there is 6 > 0, so that whenever |lug — ¢yl Hs®ry < 8, one
has

sup inf [l u(r, x) — e*"“”¢w||Hx(Rn) < €.
>0 0€R

Remarks:

e The results of Theorem 2 directly generalize the classical results for the quantum
harmonic oscillator model, s = 1, V (x) = |x|2.

e The uniqueness of the wave ¢, both as a solution of the profile equation to (1.1)
and as a constrained minimizer of (1.5), is left as an open problem. Clearly,
uniqueness in the PDE context is harder than uniqueness of minimizers.

e We feel comfortable conjecturing a result similar to Conjecture 1. Indeed, at
this point the question is wide open, even for values of w close to the threshold
1 —op () as well as large values of w.
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The paper is organized as follows. In Sect. 2, we present some background material,
such as rearrangement inequalities, Szegd’s inequality (for fractional Laplacians),
subspaces of spherical harmonics and relations to spectral theory, among others. Most
of which is well known, although we present somewhat concise versions/corollaries of
the actual results in the literature, which better suit our purposes. In Sect. 3, we give the
details of the variational construction. In Sect. 4, we first provide a generalization of
the Sturm oscillation theorem for the second eigenfunction, recently established in [6],
which is then used to establish the non-degeneracy of the wave. We finish Sect. 4 with
a proof of orbital stability of the waves. Finally, in Appendix, we provide a detailed
proof of Proposition 4, which yields additional a posteriori smoothness properties of
the waves. These are needed in the arguments, but they may be of independent interest
as well.

2. Preliminaries

In this section, we collect some preliminary results (as well as some straightforward,
mostly well-known calculations), which will be helpful in the sequel. We introduce
some notions, definitions and notations.

2.1. Function spaces and the fractional Laplacian

We use the Fourier transform and its inverse in the form
f©&= /R fe ™ dx, f(x) = @m) ™" /ﬂé f&)e*dg

The operator (—A)* is defined via its transform as follows (—/A-F f&) =g f &).
In particular, we use the notation |V| = +/—A. The Sobolev spaces are defined
as the closure of the Schwartz functions in || f||ws» := |(Id — A)*/? f||L», where
s € R, 1 < p < oo. The Green’s function of ((—A)% + A) was constructed, for
example, in [6], see Lemma C1 in Appendix C. More precisely, with the notation
CA}A(S) = |§|2++A’ A > 0, there is the representation

(=AY + 1) f(x) = /H; Grlx =0 FO, @1

where the function G, satisfies the following
e G, is bell-shaped on R, G € C*°(R" \ {0})
e GLeL'RY:1-1 <2

2.2. Rearrangement inequalities

Recall the rearrangement inequalities

/ f(x)g(X)dXSf FH(0)g* (x)dx (2.2)
R R
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and in addition, for a non-decreasing function W,

/W(X)f(X)dXZ/ W (x) f*(x)dx (2.3)
R” R"

The following result is sometimes referred to as fractional Polya-Szeg6 inequality, for
which one can consult the recent work [5] or the direct and easy proof, which can be
found in Proposition 3, in [4].

Proposition 2. Lets € (0, 1], n > 1. Then, for all functions u € H*®(R"), we have
that its decreasing rearrangement u* € H*(R™) and moreover

VI ull 2ey = NIVEw*ll L2gn)- 2.4
In addition, equality is achieved if and only if there exists xo € R" and a decreasing
Sfunction p : Ry — Ry, so that u(x) = p(|x — xol).

Next, we need to discuss the operator .72 = (—A)*+ V, where V trapping potential,
as assumed above. To that end, we start with a brief introduction of the spaces of
spherical harmonics.

2.3. Spherical harmonics and representations of fractional Schrédinger operators

It is well known that the Laplacian on R” in spherical coordinates is given by

n—1 Asn—l
A=0y+—0+—5—.
r r
The spherical Laplacian Ag.—1 has only point spectrum, in fact o (—Agu-1) = {{(I +
n—2),1 =0,1,...}, where each eigenvalue has a subspace of eigenvectors corre-
sponding to [(I +n —2), 2;  L*>(S"1), which gives rise to the orthogonal decom-
position L>(S"~ 1) = @2 Zi. Moreover, 2 = span[1], while 2] = span[%, j=
1,...,n]. Denote 2> := @?ilf%l’ which induces the representation

L*(R") = L*("~'dr, 20) ® L* (" dr, 221)

Thus, we introduce the radial subspace Lfa 4= L2(r”’1dr, 20). Note that

n—1
_A|L3ad =0 — O,
while
n—1 n—1
_Ale(r"*ldr,ﬁlle) > =0 — or +

72

For every Banach space X < L?*(R"), we denote X,qq := X N L2, .
For the operators under consideration, .77 = (—A)* 4+ V, since V is radial, we
see that .7 acts invariantly on L>(+"~'dr, 2;) for each [. A moment thought reveals
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the action of % on each such subspace is 77 : L2 Ydr, 27) — L2 Ydr, 2)),
given by the formula

n—1 Id+n—-2)\°
%i[ng]=<<—arr— - 5+ 2 r2 )) 8+V8>Y1,

where Y, € 25, ¢ € Lfad. So,
H =LA S LA N dr, 2) — @ L2 dr, 20).

We shall use the notation, 7% := @;°, .7 for the operator .7 restricted to @j’ile
" Ydr, 27). Clearly, the operator .77 is unitarily equivalent to the following operator,
denoted again by .77,

n—1 [(d+n-2)\°
jﬁz(_arr_ 8r+ ( )> +V,

r }"2

acting on L2 . with domain D(74) = D(¢) N L>(r"~'dr, 2). It is clear that

rad’
o (J) = U2 o ().

and ) < 4 < I < ...
Sometimes, e.g., [5,6], the spectrum (and more specifically the eigenvalues) of .7
is referred to as radial spectrum/eigenvalues. We adopt this notation.

2.4. Some spectral theory for .77
Assume for this section, that V is a real-valued, bounded from below, but otherwise

it is unbounded, with at most polynomial growth. We consider the skew-symmetric
quadratic form associated with 77, namely

O.pr(u,v) = (|V|iu, VI*v) + / V(x)u(x)v(x)dx.

with form domain* H*(R") N LZ(V (x)dx). Clearly, this can be extended to a self-
adjoint operator, with domain H 25 (R™y N L2(V2(x)dx).

Clearly, for large enough M, say inf V(x) > —M, we have (—A)* +V +2M >
(=AY + M > 0,500 < (A +V +2M)"" < ((=A)* + M)~" and also
0< (=AY +V +2M)7% < ((—A)* + M)~2. In particular,

[(=A) +V +2M)  fll 2 < (=AY + M) fll2 < Clfl -2 (2.5)

From (2.5), we have that ((—A)* +V +2M)~! : H=>[R") — L?(R"). By duality,
we also have ((—A)* + V +2M)~' : L2(R") — H*(R") or

I(=A) +V +2M) " gl o < llgllp2. (2.6)

Let us formulate the results in a lemma, which may be useful in other situations.

4Due to the polynomial growth assumption for V, Schwartz functions are a reliable dense set in all the
spaces that we introduce.
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Lemma 1. Assume thatn > 2, s € (0, 1] and V is a continuous function, bounded
from below. Then, for each a € [0, 1] and for all large enough N, we have the bounds

I((=A) +V + N)""glly2a < Cliglg-20-0- 2.7

Note: The estimate (2.7) follows by interpolation between the estimates (2.5) and
(2.6). Since in addition ((—A)* 4+ V +2M)~! : L? — D(s), by Kolmogorov—
Relich’s compactness criteria, D(27) = H> (R")N L?(V?(x)dx) compactly embeds
into L>(R"), it follows that all o (/) are eigenvalues of finite multiplicity. In addition,
these are sequence of reals

oo(J) < ...0n () < ...

with limy oy () = oco. By the Riesz characterization of eigenvalues, we have

o) = inf IIVFul’ + / V(ou? (0)dx].
By the rearrangement inequalities, more specifically the fractional Polya-Szegd inequal-
ity (2.4) and (2.3), we conclude the Perron—Frobenius type result, namely that there
any eigenfunction corresponding to the bottom of the spectrum o (#’) must be bell-
shaped. This implies that o (77) is a simple eigenvalue (assuming that there are two
different such eigenfunctions, they cannot be orthogonal), and its eigenfunction is
positive.

There is much richer theory concerning the spectrum (and the related eigenfunc-
tions) for 7. Indeed, in the classical case of the Laplacian, i.e., s = 1 and bounded
potentials and one spatial dimension, the Sturm—Liouville theory applies and one has
pretty satisfactory theory—every eigenvalue o () is simple and each eigenfunction
has exactly j sign changes. In the recent work, [5], the authors have extended this to
the case s € (0, 1), still in the one dimensional case. In a subsequent development,
[6] have extended this to higher dimensions—such a result is now valid for the radial
eigenvalues only and then only for j = 0, 1. They have shown the following theorem,
see Theorem 2.3, [6].

Theorem 3. (Frank-Lenzmann-Silvestre, Theorem 2.3, [6]) Letn > 1,5 € (0, 1]
and W satisfies

o W = W(|x|) and W is non-decreasing in |x|,
o We L®MR"), WecCC,y >max(0, 1 — 2s). That is

[W(x) —W(y)| <Clx —y|”.

Then, assume that H = (—A)S + W has at least two radial eigenvalues Eg < E| <
inf 0,55 (H).

Then, the corresponding eigenfunction V| : V| = E| W] has exactly one change
of sign. That is, there exists ro € (0, 00), so that V1 (r) < 0,7 € (0, rp) and V1 (r) >
0,r € (rg, 00).
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2.5. The linearized problem for the solitary waves ¢,,

We now formally state the stability problem for the ground states of (1.3). Namely,
we take ansatz in the form

u(t, x) = e (g, (x) + v(t, X)),

and plug in equation (1.1). After ignoring all terms in the form O (v?) and taking a
real and imaginary parts ( namely, v = vy 4 ivp), we arrive at the following linearized
problem

—9v2 + (—A)* + V(x) + w)v; — ppP~lv; =0

qv1 + (A + V(x) + o) —¢pP vy =0 (2.8)

Introducing the linearized self-adjoint operators
Ly = (D +V+o-—pp? !,
L= (A +V+o—¢!

and the assignments v(f,x) = (:1> — Mi(x), & = (92(?62(2 >, J =
2 —

-1
(? 0 ) allow us to rewrite the eigenvalue problem (2.8) in the standard form

J LY =)0 (2.9)

3. Existence of the ground states

We give the variational construction of the ground states.

3.1. Variational construction

Proposition 3. Lets € (0,1, n > land1 < p < 1+ %. Then, the constrained
minimization problem (1.5) has a solution ¢, which belongs to the energy space
HS(R™) N L2(V (x)dx) N LPTL(RM). All solutions ¢ are necessarily (a translates of)
bell-shaped functions, that is there exists xg € R", a € R and p : [0, 00) — [0, 00),
with p decreasing, so that ¢ (x) = ap(|x — xg).

In addition, there exists w = w), > —o0 (), so that ¢ satisfies the Euler—Lagrange
equation

(=AY P+ V(x)p — ¢? + wp9p = 0. 3.1)

Proof. First, we show that the minimization problem (1.5) is bounded from below,
that is

inf Elu] > Cy, > —o0.
Jen lux)Pdx=1
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Indeed, by Sobolev embedding, we have

(P D

p+1 p+1
Lp+1 R") p— C ”u”

el =< CpIIIV"'MI

< L= CpullVul
73 P,

n(p D

Noting that <2(since p <1+ %), we conclude that

n(p 1)

&lu]

v

1 K 2 2
ST +/V<x)u (r)dx] —

1
Z[IIIVI‘YMII2 + / V(@)u?(x)dx] — B, > —oc.

v

In particular, for the elements of the constrained set, that is ||u ||i2 = A, there exists a
constant Cj, so that

1V ull® + / V(x)u*(x)dx < M,. (3.2)

We now apply the theory of decreasing rearrangements for functions on R”. Indeed,
by the fractional Polya—Szego inequality, (2.4), we have |||V|*u 12> | |V|Su*||i2 In
addition, by (2.3),

/V<x>|u<x)|2dxzf V (o)l () Pdx,
Rn R’l

while [lu| 2 = llu*|l 2, lullpp+1 = l[u*|| p+1. Allinall, it follows that &[u] > &[u*],
while the constraint f lu*(x)|2dx = A still holds. Moreover, in the Polya—Szego
inequality, equality is only achieved, if u(x) = p(|x — x¢|) for some decreasing func-
tion p : Ry — R,. Thus, we draw the conclusion that the minimization problem (1.5)
has only bell-shaped solutions (if any!), modulo translations. So, we can concentrate
from now on, on the bell-shaped functions only.

Take a minimizing sequence (of bell-shaped functions) uy € H*(R") NL2(V (x)dx).
Denoting

m(h) = inf  &lul, (3.3)
S 140)2dx=

we have that limg &[ux] = m(i), with [ |ug(x)|>dx = A. From (3.2), we have that
supy 1 VI uk |l < Mj. We claim that {1} is a compact sequence in LP*! Indeed, it is
bounded in LP*!, from the Sobolev embedding H® < LP*+!. By the Kolmogorov—
Riesz compactness criterium, compactness in LP*! follows from the estimate

/ V(x)uj(x)dx < M;,
since limy_, o, V (x) = 0o. But since uy is bell-shaped and V is non-decreasing,

M;, > sup /R V (x)|ug (x)|*dx > V(R) lug () 2dx > e V(R)R" |uy (z0) |
k n |x|<R
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for every integer k, every R > 0 and z9 : |z0| = R. It follows that |ui(x)| <
Mov(R)72|R[7"2. Thus,

p+1 a(p—
/ e ()P dx < <L> / el D dy < ¢ RS
x|> R v/ V(R) Ix|>R

It follows that {uy} is compact in LPT1(R"). Similarly, {uz} is compact in L2(R™),
since in addition to being bounded in H*(R")

f e @Pdx < —— [ Vol Pdx < -2
lx|>R ~ V(R) Jix)>r ~ V(R

Thus, we select a subsequence uyx; — ¢ in LP+1' N L2, while simultaneously converg-
ing weakly in H*(R") N L2(V (x)dx). By the lower semi-continuity of norms with
respect to weak convergence

m(2) = liminf &[ug;] > &[],
J

while [ ¢?(x)dx = lim; [ uij (x)dx = A. We now see that it must be that

lim inf &uy,; ] = lim &'luy; 1 = &[],
j j

otherwise one gets a contradiction with the definition of m(X). Thus, ¢ is a solution
to (1.5) and m(1) = &[¢]. It now remains to derive the Euler-Lagrange equation for
¢. Set for any € € R and a test function £,

o+
0) = &(P). 3.4
gle) = <f||¢ hH)zg() (@) (3.4)

We now need to expand g(¢€) in powers of €, for small €. To this end, observe that for
any g, we have

h
g+ €hll? = (. +2€(p, h) + €2 [|A|}HP/? = 2972 (1 Te <¢A e 2>>
=292 4+ €qr 1> Yp, h) + O (D).

Thus,’

m/ VI (@ +em® + V()¢ + eh|*1dx

=3 [<|||V|S¢>||2 + / V(x)$*(x)dx) + 2€((—A)*p + V(x)p, h) + 0(&}

5For the purposes of the derivation of the Euler—Lagrange equation, the operator (—A)* applied on ¢ should
be understood in a distributional sense, since a priori, we only know that ¢ € H* (R"). Eventually, we have
that ¢ € H 25 (R™), so this will not be an issue.
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[1 - 2§<¢,h> + 0(62)]

1
= 5(|||V|S¢||2+fV(x)¢2<x)dx>

VI 4 [V (x)p?(x)
A

+e((=A)'p + V(x)p — b, h) + O(€?).

In addition,
P
(p + D¢ + eh||P+!

- ﬁ[/ PP x4 €(p+ PP )+ O — (p+ D6, 1)+ 0]

/ ¢ (x) + €h(x)|P dx
Rn

= #[W’“dx Tt m - &0 /¢P+‘dx] +0(e).
p+1 A
Putting the last two formulas together
+€h
& <ﬁh) = E(P) + (=AY ¢+ V(X)p — ¢” + wp, )] + O(e?),

where

_ IVEQIP + [ V@)$* (x)dx — [ ¢PH (x)dx

B )
But ¢ is a minimizer, implying that g’(0) = 0, which amounts to the fact that ¢ is a
distributional solution of the following PDE,

(=AY ¢+ V()p— " +wp =0

Finally, let us show that w > —oo(5¢). To do this, just test the Euler-Lagrange
equation with the bell-shaped eigenfunction W : S Vo = 0((I)Wo. We obtain

(Wo, p7) = (Yo, (H + 0)¢) = ((H + 0) ¥y, ) = (0 + 00(H)) (Y0, B).

It follows that

_ (Yo, 9")
W+ oog(F) = —(‘1’0, ) > 0.

With that, the proof of Proposition 3 is complete.
O

Next, we shall need to establish an additional a posteriori smoothness result for ¢.

Proposition 4. The normalized waves constructed in Proposition 3 are elements of
H? N L*(V*(x)dx). In particular, ¢ € D(IH), so the Euler-Lagrange equation is
satisfied in the sense of L* functions. In addition, ¢ € C'(R™).

Note: One can establish stronger regularity results, by imposing stronger regularity
onV.

The somewhat technical proof of Proposition 4 is presented in Appendix. We now
establish some additional spectral properties of the operators % .
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3.2. Spectral properties of .Z

Proposition 5. The operator £, has exactly one negative eigenvalue and in fact
Ziligyr = 0. In addition, ¢ L Ker[-Z,].
On the other hand, £ > 0, while Z_[¢] = 0. Finally, Ker[Z_] = span[¢].

Proof. For the proof of $+|{¢}L > 0, take a test function i L ¢, ||h]|;2 = 1. Similar
to the arguments in the derivation of the Euler-Lagrange equation, we will use the
fact that the function g, defined in (3.4), satisfies g”(0) > 0, due to the fact that ¢ is
a constrained minimum. We have the expansions

¢+ €hll?, = A+ €2 =292 + Z2—e* + 0(eh),

and

A
2|lp +€h|?

1 2
=3 [(IIIVI‘VMI2 + / V()¢ (x)dx) + 2€((—=A)’ ¢ + V(x)¢, h)] [1 - %}

/ IV @ + b + V)l + ehPldx
R'l

2
< [|||V|Sh||2+/V<x>h2(x)dx] + 0

1 )
=3 (|||V|é<z>||2 + / V<x)¢2(x)dx) + €@, h)

2

S 4112 2
+% [nwrhn%/v<x>h2(x)dx_ IVEGI* + [ V()¢ (x)dx

A

} + 0(e%),

where we have used (—A)*¢ + V(x)¢p = ¢” — w¢ and ¢ L h. Similarly,

ptl

o / |6 (x) + €h(x)|P*dx
(P + D¢+ ehl|P+! Jg
_ (p+Dp, +1
= T UIBIL + e+ Di. )+ & LR 60 il = £+ 0()
! ’ 1y,
= IS +elen o+ |:p(¢”1h,h) - o).

Putting it together, we obtain,

2
g(e) = g(0) + %@@h, h) + 0(e%),

where we have used the representation

IIVESIE + [ V@eRwdr — 9l
‘ .

w =
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Thus, (£, h, h) = g"”(0) > 0, so Lt i+ = 0. It follows that Z; has at most one
negative eigenvalue. On the other hand, %y [¢] = —(p — )¢, which allows us to
compute

(Z1 ¢, ¢)=—(p— 1)/¢>”+1(x)dx <0.

From this, %} has indeed a negative eigenvalue and since we have established that it
was at most one, it is exactly one, n(%;) = 1.

Let us now show that ¢ 1 Ker[.Z,]. Note that, under certain conditions on V, we
will in fact show the non-degeneracy statement, i.e., K er[-Z;] = {0}, which of course
would imply that ¢ L Ker[Z;]. On the other hand, this is easy to see without any
additional assumptions.

Indeed, take ¥ € Ker[.Z,]. We have that ¥ — [|¢|| =2 (y, ¢)é L ¢, whence

0< (LY — 19172 (W. )01 ¥ — 191> (¥, 9)) = 1617 (¥, ) Z14. ¢).
Since (Z; ¢, ¢) < 0, it follows that (¥, ¢) = 0, otherwise we reach a contradiction.
Regarding the statement for .Z_, it is clear, by inspection that L_[¢] = 0. Taking
arbitrary i : h L ¢, we have
(=2 )+ = 1) [ @ @Rz (1) [ o7 .
(3.5)

From this last inequality, it is clear that Ker[L_] = span[¢]. Indeed, if there is
another element 2y € Ker[.Z_], we can take it hg L ¢, hg # 0 : Z_[ho] = O.
By (3.5), this would imply that [ ¢”~!(x)h3(x)dx = 0, which is impossible. So,
Ker[Z_] = span[¢]. O

Proposition 6. There exists § > 0, so that for every W L ¢,V 1 Ker[ %],

(LpW, W) = 5[V (3.6)
Similarly, there exists § > 0, so that for every ¥ L ¢,

(LW, W) > 8| W)3. (3.7)

Remark: It follows that if we establish Ker[-Z}] = {0}, then (3.6) holds for all
v 1 ¢.

Proof. Introduce
a:=inf{(Zf, ) Nfll2=1F Lo, fLKer[Z]}

Since according to Proposition 5, $+|{S pan[g)t = 0, we have that « > 0. We will
show now that & > 0. To this end, take a minimizing sequence || fx|[;2 = 1, so that
fx L span[¢, Ker[Z,]]. Since

=22 flle = I=8)3 £l 2 A V@) fAdx > /R V@ 0d
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we can without loss of generality assume that fj are bell-shaped. Since the problem is
L2 sub-critical, i.e., p < 1 + i—‘v, we may, as before bound from below (%} fi, fx) >
HI=2)2 fil25 + fru V() f2(x)dx — C. This implies that supy [|(—=A)2 fil| 2 < o0
and for |x| > N,

Jioon V) f2(x)dx C
2 [x|>N k
fmw Jedy = V) =V

This means that { f¢} is a compact sequence in L?, whence there is f : Nfll2 =1,
(and after taking a subsequence) limy || fx — fl;2 = O and fr — f (i.e., fx converges

to f weakly in H*). Then, we can see that forall 2 < g < nz"zs,

n>2sand2 < g <
oo, n < 2s, we have that limg || fx — fllze = 0. In particular, limg fRn fkadx =
Jpo fPdx, 1< p <1+ %. Thus (%, f, f) < a, whence by the definition of c,
(&1 f, f) = a. We conclude that f is a minimizer for the constrained minimization
problem

inf (LS 1)
If1,2=1.f L¢.f LKer[Z4]

Writing the Euler—Lagrange equation for it, we obtain

Lif=wnf+ro+z (3.8)

where y1, y» are scalars, z € Ker[-%;]. Assume for a contradiction that « = 0. Taking
dot product with z in (3.8) implies that z = O recall that ¢ L Ker[.Z,;] and since
e = f. f L Ker[Z4], f L ¢). Next, take a dot product with ¢. We obtain that
y2 = 0. Finally, take a dot product with f. It follows that 0 = o = (£, f, f) = y1,
whence 2y f = 0. So, f € Ker[.Z,], but we also have f 1L Ker[Z;],s0 f =0, a
contradiction. Thus & > 0. This implies the inequality

(LyW, W) > §|W|%,, W L ¢, W L Ker[Zy]. (3.9)

‘We now wish to upgrade (3.9) to (3.6). To this end, assume that (3.6) fails. That s, there
exists Wy @ ||Wkllgs = 1, so that limg (Z} Wy, W) = 0. According to (3.9), it must be
that limg || W]l .2 = 0. So, it must be that 1 = limy ||‘~Ilk||%+Y = limg[[[(—A) W |12 +
Wi [2,] = limg | (—A)2 Wi ||, But then, since [ ¢7~' W2 (x)dx < Cllg||]' Wil
— 0,

0 = 1im (L} ., ) = lim[]}(—A)2 W +/ Vg — p/w‘%?]
Rll
> lim [|(=8) 3 * = 1.

a contradiction. Thus, (3.6) is established.
The estimate (3.7) follows in a similar manner, by considering the constrained
minimization problem

inf Z_f,
IIfIILzlzl-,fJ-tib< £
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and by taking into account that Ker[.Z_] = span[¢]. We omit the details.

4. Non-degeneracy and orbital stability of the normalized waves

We now aim at establishing the non-degeneracy of the waves ¢, thatis the Schrodinger
operator

Lr = (=AY +V +o—ppP,

has trivial kernel, Ker[Z;] = {0}. The main tool, as in the recent works [5,6] is the
Sturm oscillation theorem for the second eigenfunction, Theorem 3. There are some
technical problems associated with that—in our case the potential W := V + » —
p¢pP~! is not a bounded function, though it is still non-decreasing and of sufficient
smoothness®. Thus, we need to rely on an approximation argument, and the result that
we obtain is somewhat weaker, compared to Theorem 3. Nevertheless, it will serve
our purposes well.

4.1. Sturm oscillation estimate for the second eigenfunction of a fractional Schrodinger
operator with increasing unbounded potential

Proposition 7. Let W : lim,_, o W(r) = oo be a radial potential, which is non-
decreasing and in the class C;;C_((O, 0)), ¥ > max(0, 1 — 2s). That is, for each N,
there is Cy, so that forall0 <r < p < N,

IW(p) = W(r)| < Cnlp—rl”.

Then, the smallest eigenvalue of Hy := (—A)* + W, Eq is simple, with a bell-shaped
eigenfunction. Denote the next radial eigenvalues of Hw as Eg < E1. Then, E| has
an eigenfunction with exactly one change of sign.

Proof. Define

W) O<r <N

Wy ::{W(N) r>N.

Thus, Wy € L*°NC 0.7 5o it satisfies the assumptions of Theorem 3. Since lim,_, o
W(r) = W(N), we have by Weyl’s theorem that o, . (Hy) = [W(N), 00). Note that
since limy W(N) = oo, by the variational characterization of the eigenvalues, there
will be plenty of finite multiplicity eigenvalues below W (N). We assume henceforth
that N is large enough, so that there are at least two eigenvalues below W (N).

In addition, by the Perron-Frobenius arguments presented earlier, each Hy has a
simple eigenvalue at the bottom of its spectrum E_y, with bell-shaped eigenfunctions,

6Here, recall that due to Proposition 4, ¢ € C I(R”), andso ¢ € C 1(0, o0) as a function of the radial
variable.



688 M. STANISLAVOVA ET AL. J. Evol. Equ.

which we denote by Wy y : [|Wo ;2 = 1, thatis HyWo y = Eo ny Vo, n. Note that
since Wy < W, we have that Ej y is an increasing sequence and Eg y < Ej.
Moreover, we have

VI Wo v 11> + f Wy () ¥g v (x)dx = Eg y < Eo.
It follows that foreach M > N, |[Wo, m|l 75 < Egand W(N) flr\>N \L’&M(x)dx < Ep.
This implies that {Wo x}37_; is a compact sequence in L%(R™), so it has a limit point
Yo 1= limg W, y, , which we can in addition take to be a weak limit in H* of the same
sequence. Thus, [[Yoll;2 = 1, IV ol < liminfy [[V|*Wo, N, ||. Finally, for each
R > 0, we have

f W (x) 3 (x)dx = lim Wiy, ()05 y, (x)dx < lim sup / Wy ()W y (x)dx.
|x|<R ' N

lx|<R

By Fatou’s, [ W (x)y3 (x)dx < limsupy [ Wy (x)\Ilg,  (X)dx, whence it follows that

IV woll® + / W ()9 (x)dx sthsup[|||V|wo,N||2+ / Wy (0¥ y (x)dx] < Eq.

It follows that v is an eigenfunction for H, corresponding to the eigenvalue Ey, and
we have equalities above, which means that limy ||Wo y, — Yollgs = 0. In fact, by
running a simple contradiction argument similar to the one above, we see that in fact
limy ||Wo n — Yollas = 0. Clearly, ¥ is a bell-shaped function as well.

Regarding the eigenvalue E1, we run a similar argument to establish that the eigen-
functions of Hy corresponding to £ n, say Wi y, converge to an eigenfunction cor-
responding to the eigenvalue E. Since Theorem 3 is applicable to Hy, we will be able
to conclude that there is an eigenfunction Y1 of Hw, which has exactly one change of
sign. Here are the details.

We start again with the observation that E1 y < Ej, since Wy < W. Further,
\I’I,N : ”“I’I,N”LZ = 1 is so that ‘Ifl’N 1 lI/()J\/ and

IF RN + [ Watowd y(ods = By < B
By the same reasoning, Wi y is a compact sequence in L2, let us denote an accu-
mulation point by ¥y : |y ]| = 1, limgoee Y1 — Wi N |l 2 = 0. Again, we can

without loss of generality assume that v is a weak limit of {W y,}72, in H®, whence
VIl < liminfy [[V[*Wy n, ||. Similar to the argument above,

NV 11 + / W (x)yi (x)dx < limsup[[||V[*Wy n | + f Wy ()7 y(x)dx] < Ej.
N

Note that this implies limy || W1,y — Wil gs®e) = 0. Finally,

(Y1, Yo) = lil{]n(‘l’l,zv, Wo.n) = 0.
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Thus, ¥ is an eigenfunction for Hy, corresponding to the eigenvalue E;.

Now, by Theorem 3, W  are radial functions, which have exactly one sign change,
sayry € (0, oo). Withoutloss of generality (by replacing W n to —W; y if necessary),
assume that W1 y,ry) > 0, while W ny|(y.00) < 0. We will show that vy also has
exactly one sign change’.

Indeed, it will suffice to show that {ry}%_, has a bounded subsequence, converging
torg € (0, 00). If that is the case, pick ry, — ro and without loss of generality, assume
ry, = ro (otherwise pick a further subsequence of this property, the case ry, < ro is
symmetric). In such a case, we clearly have that for any x € C(‘)’O((O, r0)), X > 0, we

have (Y, x) = limg (W1, n,, x) = 0. For x € C3°((ro, 00)), x > 0, we have

Wy x () dx + f Wy, x ()] <0,

ro<lx|<ry,

(Y1, x) = lim(¥q ., x) = lim[
k lx|zryy
since the second term converges to zero, while the first one is non-positive.
Thus, it remains to show that »y has a bounded subsequence, converging to ry €
(0, 00). Indeed, otherwise, we have to refute two alternatives—one is that ry — 0,
while the other is ry — 0. Assuming limy ry = 0o, we have for any y € Cf)’o,

(Y1, x) = 1i1{/11(\P1,N, x) =0.

It follows that ¥r; > 0, which is a contradiction, since (Y1, ¥o) = 0 (as eigenfunctions
of Hy ), while {1 > 0 and v is bell-shaped. Similarly, if ry — 0, we conclude

(Y1, x) = lij{/n("pl,N, x) <0.

whence | < 0, again in contradiction with (1, Y¥o) = 0 and v - bell-shaped. [

4.2. Non-degeneracy of the wave ¢

With the results of Proposition 7 in hand, we are ready to show the non-degeneracy of
Z+. Weknow that .7, has one simple negative eigenvalue, which is simple, according
to Proposition 5.

Next, recall that for fractional Schrodinger operators like .Z, there is the decom-
position in spherical harmonics

Ly =ZLLo0® L 51

The claim about the non-degeneracy would thus follow from the two propositions
below.

First, we show that .7, o, the restriction of .Z; to the radial subspace has exactly
one negative eigenvalue and no eigenvalues at zero.

"Note that here, the a priori information is only ¥1, ¥ , € H*(R™), so our functions are not even known
to be continuous, unless s > % On the other hand, the property v is positive on an interval (r(, 00) is easily
tested against a positive test function. That is ¥/ > 0 on an interval /, if for every non-negative Cgo(l )

function, we have (¢, x) > 0.
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Proposition 8. o1(.Z1 o) > 0. That is, the second smallest eigenvalue is strictly
positive.

For .Z, restricted to higher harmonics, we show strict positivity.

Proposition 9. There exists § > 0, so that the operator £y =1 > & > 0. That is, the
operator Ly > is strictly positive.

4.2.1. Proof of Proposition 8

This is just an application of Proposition 7. Indeed, we already know that there is
a negative eigenvalue Eg of .Z; and hence of .Z ¢, which is supported by a bell-
shaped eigenfunction. The next eigenvalue E| cannot be negative, as this will imply
that n(Zy) > 2, while we know, that n(.Z}) = 1. So, we have to only refute the
possibility E1 = 0.

Assume for a contradiction £ = 0. By Proposition 7, there must be an eigenfunc-
tion, ¥ : .Z4 oW = 0, so that ¥ has exactly one change of sign. Say Wo(r) <
0,r € (0, rg), while ¥o(r) > 0, r € (rg, 00).

On the other hand, we have already checked that ¢ L Ker[.Z,;]. In addition, a direct
calculation yields .2y o¢p = —(p — 1)¢?, s0 ¢pP L Ker[.Z, o]. We can construct a
linear combination of the two functions, namely

® = cop — ¢P = Pp(co — PN, co := ¢P (1),

which has the property ®(r) < 0,r € (0, rg), ®(r) > 0, r € (rg, 00), due to the fact
that ¢ is bell-shaped. On the otherhand, ® | Ker[.Z} o], soinparticular (®, W) = 0.
But finally, ®W; > 0 and & > 0. This provides a contradiction, which finishes the
proof of Proposition 8.

4.2.2. Proof of Proposition 9

For Proposition 9, we start with the observation that Z; ~1 > 0, due to the fact that
2 n(Zy) = 1 and the negative eigenvalue has been already accounted for in the
radial subspace. Thus, we need to show that zero is not an eigenvalue for .7} ~;.

Suppose for a contradiction that zero is an eigenvalue for .Z; ~1. We claim that zero
then must be an eigenvalue for .Z; ;. Assume that this is not the case, then zero is an
eigenvalue for £} >2, say Z} >o® = 0, where & = ¢¥>o, Y=o € 25, Recalling
that £} > > 24 1, it follows that

(Z-i-,l(pv ¢> < <$+,22¢7 ¢> = Oa

whence % 1 will have a negative eigenvalue. In particular, n(Z}y) > n(Zy0) +
n(Z4 1) > 2, which is a contradiction.

Thus, Z4 .1 has an eigenvalue at zero, so this must be clearly the bottom of the
spectrum, otherwise again n(.%;) > 2. In addition, its eigenfunctions are in the form
vy =YY, Y € Z1,s0 ¥y € {lﬁ](}’)xr—/,j =1,...,n}, so take V| = wl(r)’%
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According to Lemma C.4, [6], (—A;)*,s € (0, 1) is positivity improving (see also
formulas (C.19) and (C.20)) and as a consequence

(=AD" ull 2 > (=AD" ulll 2,

whence we can conclude that the radial component | of W is a positive function®,
wl > 0.

We will show that this leads to a contradiction as well. Namely, take dy, in the
Euler—Lagrange equation. We obtain the relation

v
L (3,0) = (A8, + V¢ + 0dy ¢ — pp? 0y ¢ = _Ed) = —V’(r))%cb-

Taking dot product with W yields
* 3
0= (B¢, LoW1) = (L1 (35,9). ¥1) = —[S""| / V()¢ () (e dr <0,
0

since V’ > 0 and all the other integrands are nonnegative. This is a contradiction, so
Proposition 9 is established as well.

4.3. Orbital stability

Before we set up the problem, let us mention that for this part of it, we assume
global well-posedness and conservation of energy per Definition 2.
We would also like to change variables in a way that reduces matters a bit. Namely,

using the ansatz u — e¢~'“'u, we reduce equation (1.1) to

iy + (=AY u+V@u+ou—ulPlu=0,@x) e Ry x R, 4.1)

which in its current form has the time-independent solution u (¢, x) = ¢ (x). So, orbital
stability for the solution e~/ ¢ for (1.1) is equivalent to orbital stability for the static
solution ¢ for (4.1).

That is, we are trying to show that for every € > 0, there exists § = &, so that
whenever [|ug — @ || gs®r) < &, then the solution of (4.1) with initial data u( satisfies

sup inf [lu(t, ) — PPl s @ < €.
0<r<oo O€R
We argue by contradiction, in a way similar to the approach in [18].
Specifically, assume that there is € > 0 and a sequence of initial data, uy :
limy [|ug — @ gswny = 0, while

sup inf [lug(r, ) — @l s ey = €. 4.2)
0<r<ooBER

8In fact, we can conclude that v/ is both positive and decreasing in (0, 00).
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Note the conservation of fotal energy for solutions of (4.1), namely

Slu) =+ (/ IV P u, x)dx +/ V@) +w)|u(z,x>|2dx) - #/ (e, )17+ dx,
2 R? R p+ 1 R

and in addition Plu] = fRn lu(z, x)|*dx is conserved as well. These are our assump-
tions in Definition 2.

Clearly, the Euler-Lagrange equation, satisfied by ¢ is equivalent to &'[¢] = 0,
where & is the Gateaux derivative of the functional &. Introduce

ek == |Elur ()] — E[P1] + | Plu ()] — Pl]I.

Note that by the conservation laws, €; is conserved, and hence, limy €, = 0, since
€k < Cllux — @llus. Next, for all € > 0, define #x = sup{t > 0 : supg, ., lux(?) —
Pllgs < €}. Wehavethatall #; > 0, by the continuity of the solution maps ug — u(z, -)
as mappings from H* into itself. Introduce u (¢, -) = vk (¢, -) + iwi (2, -).

We are now ready to introduce the modulation parameter 6, (¢) as long as ||uy () —
¢llgs << 1.Indeed, taking initially € (0, #;) guarantees that |w(?) | s < |lux(t) —
dllgs < €. As a consequence, 6 (t) is defined so that wy (¢, -) — sin(6x (1)) L ¢ or
equivalently

sin(@ (1)) 1P11> = (wi (1), ). (4.3)

This last equation explicitly defines an unique small solution 0 (¢) of (4.3), since
wi(t), ¢)| < €ll@ll;2. With this assignment, and as long as it holds that |Jus(¢) —
¢llgs < €, we have the estimate

luk(t, ) — €% D@llys < Nug(t, ) — ¢llus + 1'% — 1][|llys < Coe, (4.4)
where Cy = Co(]|¢]]). Define

Ty = sup{z : sup Jug(t, ) — e *DP()l| e < 2Coe).
O<t<t
Due to (4.4), we have that T}, > f; > 0. Note that the construction above holds for all
small enough values of € > 0. We will show that for all small enough values of € and
for all large enough n, Ty = oo. This would be in contradiction with (4.2), provided
one chooses € << ¢p and large enough n and the orbital stability will be established
accordingly.
Write for ¢t € (0, Ty)

Yr(t, ) = ug(t, ) — %D = v (t, ) — cos@ (1) + i (W (t, -) — sin(B (1)) ).

Note that while 0 < ¢t < Tx, |[Yx(®)|lgs < 2€, according to the definition of 7.
Decompose the real and the imaginary part of wy as follows

ot ) — cos@ (N | _ O\ () (m@)\ (¢
(wk(r, ) - Sin(ek(f))¢) = e(® <0> + (g(r, ) ) : (g(z, -)) L <0) - 4
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Note that the condition <Zkg’ ; ) 1 (‘g) simply means nx (¢, -) L ¢, while the
k\L, -

defining equation (4.3) came from wy (¢, -) —sin(6x (t))¢ L ¢ orequivalently ¢ (¢, -) L
¢. On the other hand,

Plug(n)] = fR 1O 4y () Pdx = PIO1+ 1Yt )72 +2 fR @RI Oy, )l
But
f ¢ (N KDy (1, x)1dx = / ¢ ()[cos(O)) (v — cos(r)$) — sin(6p) (wy — sin(F)p)]dx
= 1y (1) cos(O (1)) |11
due to n; L ¢ and wy — sin(Ox)¢p L ¢. It follows that
Plup(t)] = Plp] + [Yx(t. )72 + 2ux(t) cos(@r (1)) 6],
whence by recalling that ||y (¢, -)||;2 < 2€,int:0 <t < T}

[Plug ()] — Plo]l + Yy (2, ‘)lliz
2cos(O (1) 1912

|k ()] < < Clex + I (t, )17 ) < Cleg + €2,

4.6)
since |6k (1)| < Coe << 1 and hence cos(x(¢)) =1 + O(€?). Next,

Elur ()] — Elp] = EL(cos@r ()P + pr ()P + ni) + i (sin(@ (D + &)1 — ElP]
1
= S UL, ne) + (L8, ¢01 + Oter + el + Ikl + €,

where we took into account &”'[¢] = 0, as well as (4.6).

We now need the important estimates from Proposition 6, namely (3.6) and (3.7).
According to those (and by taking into account that Ker[.Z}+] = {0}), we have that
there exists k > 0, so that foreveryn L ¢, ¢ L ¢

(L, n) = wlnligys (L2, 0) =kl s @.7)
The non-coercivity property (4.7) allows us to estimate
Elur()] = E1p] = wlmclizys + 151 Fe) — Cex + lnelizgs + Ikl +€).
Taking into account that €, > |&[ur(t)] — &[¢p]], we finally arrive at

Ik (2, W25 + 1 s < Cler 4+ €+ I, ) 3ys + 1@, ) 13ys), (4.8)

for every ¢ € (0, Ty). Since for each ¢ € (0, Ty), lInx (¢, )l ms + 1Sk, ) lgs < 2Coe,
we have that from (4.8) and for small enough €,

1
Clmet, M3gs + 18k t, I 3s) < 5 U, Ms + 1kt s,
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whence again by (4.8), we can bootstrap it to
(2, I g + 16, g < Clex + €7, 1€ (0, Tp). 4.9)

This last estimate shows that for small enough € and then large enough n (recall
limy €, = 0), it must be that T, = oo, by its definition, since 32 4+ J€k << €. This
concludes the proof of the orbital stability.
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Appendix A: A posteriori smoothness and decay: Proof of Proposition 4

We start with the a priori information from Proposition 3, that is ¢ is bell-shaped
and inthe class¢ € H*N L? (V (x)dx), together with the fact that ¢ is a weak solution
of (3.1).

In order to obtain bootstrap this information, we need a representation of ¢ from
the Euler—Lagrange PDE. Unfortunately, ¢ is still only a weak solution of (3.1), as
we have pointed out. Instead, define for large enough N,

¢ = (=D +V +w, + N)"'[¢” + N¢].

Heuristically, this is the solution of the (3.1), if ¢ were a solution in a stronger sense.
In fact, it is not even immediately clear in what sense is ¢ even defined. Clearly, while

(=AY +V +w + N) [l 2 < Cligll2

is under control, it is not as easy to control ((—A)* + V + wy + N)~! [¢?], since the
a priori information on ¢? is very weak. Instead, for n < 4s, we can bound by (2.5)
and Sobolev embedding

I(=A) + V +w, + N) [Pl 2y < CllP [l -2 < CII¢”|IL% = ClIBl} -
while forn > 4s, webound by (2.5) and by repeated application of Sobolev embedding
I(=A) +V + o+ N) ¢l 2@ < Cll@P g2 < CllpP Iz < ClPN s -

So, ¢3 is well-defined as an LZ(R") function. Consider a test function # € H N
L2(V?(x)dx),

(@, (=AY +V + i+ N)h) = (" + N$, h) = (¢, (=A)* + V +w + N)h).
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It follows that (¢ — ¢, (—A)* + V + w, + N)h) = 0. Since the set {(—A)* + V +
wy+ N)h:he H> N L2(V2(x)dx)} is dense in L2, we have that ¢ = 43 or

¢ =((—A) +V +w+N)[¢F + Ngl (A1)

We now run a bootstrapping procedure, which will ultimately establish that ¢ €
H* (Rd). Starting with o9 = s, we define o1, as long as o < 2s. We have for
oo < a <2s,by Sobolev embedding, (2.7) and Kato-Ponce estimates

¢llae < CUI@lL2 + 97| go—21 = ClISN L2 + 1Pl s $7 1||L2Hak 1
= Cllol 2 + Il 91 sy 1
L 2s+ap—a

n(pfl)
2s+oag—

right-hand side. Given the restriction p < 1 + 2 this would be satisfied, if

In the last term, if we make sure that

< p + 1, we will have control of the

452
n+2s

a—ap <

So, we define o4 := min(2s, o + ), whence we conclude that ¢ € H* for

n+2v
each k. Clearly, in finitely many iterations, we will reach ¢ € H*(R%).

Furthermore, ¢ € L?, since
197112 = 18172, < Clgll}a,,
since p < 1 —|— . It follows from (2.7) that ¢ € H? N L*(V2(x)dx) since

o1l 22 (v2dn < CUIGI L2 + 19711121 < oo.

Once we have that V¢ € L?, it is easy to bootstrap even further. Indeed, we will have
that the expression ((—A)* + @ + N)“![(V + N)¢] makes sense as L> function,
which is positive everywhere, for N large enough, as convolution of G4y > 0 and
(V + N)¢ > 0. Hence, we have

0<¢p=-A)+wo+N)"p? +2N¢p — (V + N)p] < (=A)* + o + N) " [¢? +2N¢]

This last inequality can be now iterated to ¢ € L°°(R"), see p. 1723, [6].

We now aim at extending this further to Lipschitz continuity. To this end, introduce
a smooth and even cutoff function x : suppyx C (—2,2),sothat x(x) =1, |x| < 1.
Let N >> 1 and xy(x) := x(x/N). Multiplying equation (1.2) by the cutoff x and
¢N = ¢(x)xn, We can rewrite it in the form

(=8 + o+ M)py = —Vén + ¢ xn + Moy +[(—A)", xnlgp.  (A2)

for any M. The operator on the left-hand side is invertible for large enough M, and
we can write

¢n = ((—=A) + o+ M) [=Vey + ¢ xn + My + [(—A)’, xn1p]. (A3)
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According to the Mikhlin multplier’s theorem, ((—A)* 4+ w 4+ M)~! smooths out by
2s derivatives in any Sobolev space WP, 1 < p < oo. It follows that for any o < 2s,

¢nlwer < CaplllVénlie + 1167 xnllLr + Mlgnlr + II(=A), xn1$llLr < Co,p,

due to the a priori bounds on ||¢||z», and the fact that V is bounded on the support
of xn. Note that we also have used a corollary of the commutator estimates to derive
I[(=A)%, xn1pllLr < Cn pll@ll s, P > p. It follows that ¢ € W2r p < oo for
each N.If 2s > 1, there is nothing to do, as ¢ € wltr, p < oo, which by Sobolev
embedding will imply that ¢ € C! as required.

Otherwise, apply (—A)* to (A.2) and then use the inversion formulas as in (A.3).
Since ¢ € WP we see that (recall that V € C'(R"))

(=AY [=Vén + ¢ xn + Moy +[(=A)°, xn1¢] € L?,

whence ¢ € W*P and so on. This can be bootstrapped, in finitely many steps to
the desired outcome ¢y € W7 p < 00,50 ¢ € C'. We omit further details.
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