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Abstract. The classical Schrödinger equation with a harmonic trap potential V (x) = |x |2, describing the
quantum harmonic oscillator, has been studied quite extensively in the last 20 years. Its ground states are
bell-shaped and unique, among localized positive solutions. In addition, they have been shown to be non-
degenerate and (strongly) orbitally stable. All of these results, produced over the course ofmany publications
and multiple authors, rely on ODE methods specifically designed for the Laplacian and the power function
potential. In this article, we provide a wide generalization of these results. More specifically, we assume
sub-Laplacian fractional dispersion and a very general form of the trapping potential V , with the driving
linear operator in the form H = (−�)s + V, 0 < s ≤ 1. We show that the normalized waves of such
semilinear fractional Schrödinger equation exist, and they are bell-shaped, provided that the nonlinearity is
of the form |u|p−1u, p < 1 + 4s

n . In addition, we show that such waves are non-degenerate and strongly
orbitally stable. Most of these results are new even in the classical caseH = −�+V , where V is a general
trapping potential considered herein.

1. Introduction

The Schrödinger equation is an ubiquitous model in quantum mechanical applica-
tions. In this work, we consider a model, in which the system is subjected to so-called
magnetic traps, which keeps the action very tightly to the trap. Mathematically, the
probability density functions that arise as squares of the solutions have unusually
high space localization, compared to the standard model without trapping. Next, we
formally introduce the model.

1.1. The model

We consider the fractional Schrödinger equation subject to a trapping harmonic
potential

iut + (−�)su + V (x)u − |u|p−1u = 0, (t, x) ∈ R+ × R
n (1.1)

where n ≥ 1, p > 1 and we assume that the potential is trapping. That is
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Definition 1. We say that a potential V : R+ → R+ is trapping, if1

• V (x) = V (|x |),
• V is increasing and in fact, assume V ∈ C1(R+), V ′(r) > 0.
• limr→∞ V (r) = +∞, but it has at most polynomial growth. That is, for some

N > 1, V (r) ≤ C(1 + r)N .

The natural energy space associated with this problem is the space

Xs := Ḣ s(Rn) ∩ L2(V (x)dx) = {u : Rn → R : ‖(−�)s/2u‖2L2 +
∫
Rn

V (x)|u(x)|2dx < ∞}

In typical quantum mechanical applications, u is the probability density function
of a particle trapped inside a trapping potential well, traditionally modeled by V (x).
Note that the linear operator driving this particular evolution is H := (−�)s + V .

Quite a bit is known about H , and we will just mention a few relevant properties.
To that end, H is a self-adjoint operator, when considered on the domain

D(H ) = Ḣ2s(Rn) ∩ L2(V 2(x)dx) =
{
u : R

n → R : ‖(−�)su‖2L2

+
∫
Rn

V 2(x)|u(x)|2dx < ∞
}

In addition, we will show in a rather standard manner, that its spectrum, which is of
course all real, consists entirely of discrete eigenvalues of finite multiplicity, which
converge to +∞. Recall the conservation laws for (1.1), the Hamiltonian energy

E[u] := 1

2

(∫
Rn

|∇|su(t, x)|2 +
∫
Rn

V (x)|u(t, x)|2dx
)

− 1

p + 1

∫
Rn

|u(t, x)|p+1dx,

and the L2 norm ( or particle number or power)

P[u] =
∫
Rn

|u(t, x)|2dx

Standingwaves of this equation are solutions of (1.1) in the formu(t, x) = e−iωtφω(x).
Clearly, they satisfy the elliptic equation

(−�)sφ + Vφ + ωφ − |φ|p−1φ = 0, x ∈ R
n (1.2)

for someω.We shall be particularly interested in positive solutions of (1.2). In addition,
we shall be interested in their dynamical stability properties.
In the classical case of harmonic Schrödinger equation, that is s = 1, V (x) = |x |2,

the problem is well-studied. This is of course the standard model2 of the quantum
harmonic oscillator. Most of the findings of this paper confirm these and present a
natural extension to the more general case of potentials introduced in Definition 1 and
the sub-Laplacian dispersion. Thus, we take the opportunity to review the relevant
recent results, which will also help us outline the areas of interest in this study.

1The requirement for at most polynomial growth of V is likely just a technicality, but we prefer to enforce
it, due to the difficulties with the space of test functions, should V has faster growth.
2In non-dimensionalized variables.
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1.2. The quantum harmonic oscillator

The linear quantum oscillator operator is given by −� + |x |2. It has been studied
in great detail over the last 30 years. In particular, it has been established that it is
self-adjoint, with spectrum entirely consisting of eigenvalues of finite multiplicity. In
fact, the eigenvalues are explicitly known and even the corresponding eigenvectors
can be written in terms of the classical Hermite polynomials—for example, the lowest

eigenvalue σ0(−� + |x |2) = n, with corresponding eigenfunction e− |x |2
2 .

Regarding the issues of interest in this work, for the corresponding Schrödinger
problem

iut − �u + |x |2u − |u|p−1u = 0, (t, x) ∈ R+ × R
n, (1.3)

standing wave solutions, namely solutions, as above u = e−iωtφ can be constructed.
More precisely, one is (initially) looking for distributional solutions, that is φ ∈ X1 =
H1(Rn) ∩ L2(|x |2dx), so that

− �φ + |x |2φ + ωφ − |φ|p−1φ = 0, x ∈ R
n, (1.4)

in a distributional sense. For example, it is well known that for any ω ∈ (−n,∞) and

1 < p < p∗
k :=

{ +∞ n = 1, 2
1 + 4

n−2 n ≥ 3
there exists solutions of (1.4), which belong to

the energy space X1, see [2,10,12]. Here, the significance of the restriction ω > −n
is in thatH + ω ≥ (ω + n)I d > 0. In addition, very strong uniqueness theorems for
(1.4) are known, if we restrict our attention to ground states—that is, positive solutions
of (1.4). Let us state the uniqueness and non-degeneracy results, already available in
the literature.

Proposition 1. Let n ≥ 2 and 1 < p < p∗
k . For every ω > −n, there is an unique

positive solution φω : lim|x |→∞ φω(x) = 0, of

−�φ + |x |2φ + ωφ − φ p = 0, x ∈ R
n .

Moreover, such solution is non-degenerate, that is the linearized operator L+ :=
−� + |x |2 + ω − pφ p−1 has a trivial kernel, Ker [L+] = {0}.

For the proof of the uniqueness, we refer to [10–12]. The non-degeneracy was
established in [12] and in a more general form, [1]. We now review the known stability
results for the ground states of (1.3). In the L2 subcritical range, 1 < p < 1 + 4

n , the
ground states have been constructed in [17], togetherwith theweak stability properties.
This, together with the uniqueness, yields the strong orbital stability for these waves3.
In addition, the stability is known for the waves with any p ∈ (1, p∗

k ), −n < ω <

−n+ ε, 0 < ε << 1, [8]. On the other hand, there exists N >> 1, so that for ω > N ,
the ground states φω are unstable for 1 + 4

n < p < p∗
k , [7–9].

3Although it looks as if this result has not been stated explicitly in the literature.
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We should mention that there are various results on blow up for (1.3), for generic
initial data (not necessarily related to solitary waves), for example in the papers [2,17].
Instability by blow up was unknown till the work of Ohta, [14], who has shown that
if p > 1 + 4

n , there exists ωp,n , so that all solitons in the regime ω > ωp,n exhibit
instability by blow up.
We should on the other hand point out that even for the classical case of the quantum

harmonic oscillator, (1.3), the (linear and nonlinear) stability of the (unique) waves
satisfying (1.4) is not fully understood. That is, the following question is open, to the
best of our knowledge: for solutions of (1.4), with 1+ 4

n < p < p∗
k , determine the set

of ω, for which φω is dynamically stable. Due to the results of Ohta and collaborators,
[7–9,14], it seems natural to conjecture the following.

Conjecture 1. Let n ≥ 1. Show that for every p : 1 + 4
n < p < p∗

k , there exists
ω = ωp,n so that the unique solution of (1.4) is stable whenever −n < ω ≤ ωp,n and
unstable in the regime ω > ωp,n.

Such a result would be immensely interesting, especially if it turns out that Conjec-
ture 1 does not hold, and hence, there is more than one turning point in the stability
behavior of the waves.

1.3. Main results

Regarding the construction of the waves, we study the constrained minimization
problem

inf∫
Rn |u(x)|2dx=λ

E[u]. (1.5)

for every λ > 0. In other words, we will be seeking to minimize the energy for a fixed
L2 norm. The constrained minimizers to these problems, if they exists, are usually
referred to as normalized waves. The following is the main existence result of the
paper.

Theorem 1. Let n ≥ 1, s ∈ (0, 1], λ > 0, 1 < p < 1 + 4s
n and V is a trapping

potential, as defined above. Then, the constrained minimization problem (1.5) has
a solution φ, a normalized ground state. Moreover, φ ∈ Xs is bell-shaped function,
which satisfies the Euler–Lagrange equation (1.2), in a distributional sense, with some
ω = ωλ.

Note: We establish better a posteriori smoothness and decay results for φ, see
Proposition 4.

Next, we state our results on the stability of the waves. Before we move on with the
actual statement, we shall need to discuss the related issue of global well-posedness
and energy conservation, which is crucial in the orbital stability considerations. Note
that such results are available in the literature, especially in the classical case s = 1,
but definitely not in the generality of potentials that we would like to consider herein.
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Then, there is the more delicate issue of (formally) conserved quantities, e.g., E, P , in
particular the level of regularity needed for the data that is required in order to ensure
the actual conservation of energy and L2 norm along the evolution. These subtle points
go beyond the scope of the paper, and more in depth research is required for their full
understanding. For the purposes of this paper, we assume the said well-posedness (and
conservation laws) for the time evolution of (1.1). More precisely,

Definition 2. We say that the fractional semilinear Schrödinger equation (1.1) is glob-
ally well-posed and conserves energy, if every initial data u0 ∈ Hs[Rn] produces
unique global solution u(t, ·) ∈ C([0, T ], Hs(Rn)) for each T > 0 and

(1) the solution map u0 → u(t, ·) is continuous in the norm of C([0, T ], Hs(Rn))

for small enough times T .
(2) The energy E[u] and the P[u] are conserved globally in time, that is for each

t > 0, E[u(t)] = E[u0], P[u(t)] = P[u0].
Note: For our purposes, it suffices to assume these properties only close to solitons.

Note that these assumptions are only needed for the statement of orbital stability of
the waves.
We have the following result regarding the stability of the waves.

Theorem 2. For n ≥ 1, s ∈ (0, 1], λ > 0, 1 < p < 1 + 4s
n , the normalized ground

states φ of the Schrödinger equation (1.1), with ‖φ‖2 = λ, are non-degenerate, in the
sense that

L+ := (−�)s + V (x) + ωλ − pφ p−1
λ

has a trivial kernel, i.e., Ker [L+] = {0}.
Finally, assuming global well-posedness and energy conservation, in the sense of

Definition 2, the waves e−iωtφ are strongly orbitally stable in the Hs norm. More
precisely, for all ε > 0, there is δ > 0, so that whenever ‖u0 − φω‖Hs (Rn) < δ, one
has

sup
t>0

inf
θ∈R ‖eiθu(t, x) − e−iωtφω‖Hs (Rn) < ε.

Remarks:

• The results of Theorem 2 directly generalize the classical results for the quantum
harmonic oscillator model, s = 1, V (x) = |x |2.

• The uniqueness of the wave φ, both as a solution of the profile equation to (1.1)
and as a constrained minimizer of (1.5), is left as an open problem. Clearly,
uniqueness in the PDE context is harder than uniqueness of minimizers.

• We feel comfortable conjecturing a result similar to Conjecture 1. Indeed, at
this point the question is wide open, even for values of ω close to the threshold
: −σ0(H ) as well as large values of ω.
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The paper is organized as follows. In Sect. 2, we present some background material,
such as rearrangement inequalities, Szegö’s inequality (for fractional Laplacians),
subspaces of spherical harmonics and relations to spectral theory, among others. Most
of which is well known, although we present somewhat concise versions/corollaries of
the actual results in the literature, which better suit our purposes. In Sect. 3, we give the
details of the variational construction. In Sect. 4, we first provide a generalization of
the Sturm oscillation theorem for the second eigenfunction, recently established in [6],
which is then used to establish the non-degeneracy of the wave. We finish Sect. 4 with
a proof of orbital stability of the waves. Finally, in Appendix, we provide a detailed
proof of Proposition 4, which yields additional a posteriori smoothness properties of
the waves. These are needed in the arguments, but they may be of independent interest
as well.

2. Preliminaries

In this section, we collect some preliminary results (as well as some straightforward,
mostly well-known calculations), which will be helpful in the sequel. We introduce
some notions, definitions and notations.

2.1. Function spaces and the fractional Laplacian

We use the Fourier transform and its inverse in the form

f̂ (ξ) =
∫
Rn

f (x)e−i xξdx, f (x) = (2π)−n
∫
Rn

f̂ (ξ)eixξdξ

The operator (−�)s is defined via its transform as follows ̂(−�)s f (ξ) = |ξ |2s f̂ (ξ).
In particular, we use the notation |∇| = √−�. The Sobolev spaces are defined
as the closure of the Schwartz functions in ‖ f ‖Ws,p := ‖(I d − �)s/2 f ‖L p , where
s ∈ R, 1 < p < ∞. The Green’s function of ((−�)s + λ) was constructed, for
example, in [6], see Lemma C1 in Appendix C. More precisely, with the notation
Ĝλ(ξ) = 1

|ξ |2s+λ
, λ > 0, there is the representation

((−�)s + λ)−1 f (x) =
∫
Rn

Gλ(x − y) f (y)dy, (2.1)

where the function Gλ satisfies the following

• Gλ is bell-shaped on R
n , G ∈ C∞(Rn \ {0})

• Gλ ∈ Lr (Rn) : 1 − 1
r < 2s

n .

2.2. Rearrangement inequalities

Recall the rearrangement inequalities
∫
Rn

f (x)g(x)dx ≤
∫
Rn

f ∗(x)g∗(x)dx (2.2)
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and in addition, for a non-decreasing function W ,
∫
Rn

W (x) f (x)dx ≥
∫
Rn

W (x) f ∗(x)dx (2.3)

The following result is sometimes referred to as fractional Polya-Szegö inequality, for
which one can consult the recent work [5] or the direct and easy proof, which can be
found in Proposition 3, in [4].

Proposition 2. Let s ∈ (0, 1], n ≥ 1. Then, for all functions u ∈ Hs(Rn), we have
that its decreasing rearrangement u∗ ∈ Hs(Rn) and moreover

‖|∇|su‖L2(Rn) ≥ ‖|∇|su∗‖L2(Rn). (2.4)

In addition, equality is achieved if and only if there exists x0 ∈ R
n and a decreasing

function ρ : R+ → R+, so that u(x) = ρ(|x − x0|).
Next, we need to discuss the operatorH = (−�)s+V , where V trapping potential,

as assumed above. To that end, we start with a brief introduction of the spaces of
spherical harmonics.

2.3. Spherical harmonics and representations of fractional Schrödinger operators

It is well known that the Laplacian on R
n in spherical coordinates is given by

� = ∂rr + n − 1

r
∂r + �Sn−1

r2
.

The spherical Laplacian �Sn−1 has only point spectrum, in fact σ(−�Sn−1) = {l(l +
n − 2), l = 0, 1, . . .}, where each eigenvalue has a subspace of eigenvectors corre-
sponding to l(l + n − 2),Xl ⊂ L2(Sn−1), which gives rise to the orthogonal decom-
position L2(Sn−1) = ⊕∞

l=0Xl . Moreover,X0 = span[1], whileX1 = span[ x jr , j =
1, . . . , n]. Denote X≥1 := ⊕∞

l=1Xl , which induces the representation

L2(Rn) = L2(rn−1dr,X0) ⊕ L2(rn−1dr,X≥1)

Thus, we introduce the radial subspace L2
rad := L2(rn−1dr,X0). Note that

−�|L2
rad

= −∂rr − n − 1

r
∂r ,

while

−�|L2(rn−1dr,X≥1)
≥ −∂rr − n − 1

r
∂r + n − 1

r2
.

For every Banach space X ↪→ L2(Rn), we denote Xrad := X ∩ L2
rad .

For the operators under consideration, H = (−�)s + V , since V is radial, we
see thatH acts invariantly on L2(rn−1dr,Xl) for each l. A moment thought reveals
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the action ofH on each such subspace isHl : L2(rn−1dr,Xl) → L2(rn−1dr,Xl),
given by the formula

Hl [gYl ] =
((

−∂rr − n − 1

r
∂r + l(l + n − 2)

r2

)s

g + Vg

)
Yl ,

where Yl ∈ Xl , g ∈ L2
rad . So,

H = ⊕∞
l=0Hl : ⊕∞

l=0L
2(rn−1dr,Xl) → ⊕∞

l=0L
2(rn−1dr,Xl).

We shall use the notation,H≥1 := ⊕∞
l=1Hl for the operatorH restricted to ⊕∞

l=1L
2

(rn−1dr,Xl). Clearly, the operatorHl is unitarily equivalent to the following operator,
denoted again by Hl ,

Hl =
(

−∂rr − n − 1

r
∂r + l(l + n − 2)

r2

)s

+ V,

acting on L2
rad , with domain D(Hl) = D(H ) ∩ L2(rn−1dr,Xl). It is clear that

σ(H ) = ∪∞
l=0σ(Hl).

and H0 < H1 < H2 < . . ..
Sometimes, e.g., [5,6], the spectrum (and more specifically the eigenvalues) ofH0

is referred to as radial spectrum/eigenvalues. We adopt this notation.

2.4. Some spectral theory for H

Assume for this section, that V is a real-valued, bounded from below, but otherwise
it is unbounded, with at most polynomial growth. We consider the skew-symmetric
quadratic form associated with H , namely

QH (u, v) = 〈|∇|su,∇|sv〉 +
∫

V (x)u(x)v̄(x)dx .

with form domain4 Hs(Rn) ∩ L2(V (x)dx). Clearly, this can be extended to a self-
adjoint operator, with domain H2s(Rn) ∩ L2(V 2(x)dx).
Clearly, for large enough M , say inf V (x) > −M , we have (−�)s + V + 2M ≥

(−�)s + M > 0, so 0 < ((−�)s + V + 2M)−1 < ((−�)s + M)−1 and also
0 < ((−�)s + V + 2M)−2 < ((−�)s + M)−2. In particular,

‖((−�)s + V + 2M)−1 f ‖L2 ≤ ‖((−�)s + M)−1 f ‖L2 ≤ C‖ f ‖H−2s . (2.5)

From (2.5), we have that ((−�)s + V + 2M)−1 : H−2s(Rn) → L2(Rn). By duality,
we also have ((−�)s + V + 2M)−1 : L2(Rn) → H2s(Rn) or

‖((−�)s + V + 2M)−1g‖H2s ≤ ‖g‖L2 . (2.6)

Let us formulate the results in a lemma, which may be useful in other situations.

4Due to the polynomial growth assumption for V , Schwartz functions are a reliable dense set in all the
spaces that we introduce.
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Lemma 1. Assume that n ≥ 2, s ∈ (0, 1] and V is a continuous function, bounded
from below. Then, for each a ∈ [0, 1] and for all large enough N, we have the bounds

‖((−�)s + V + N )−1g‖H2sa ≤ C‖g‖H−2s(1−a) . (2.7)

Note: The estimate (2.7) follows by interpolation between the estimates (2.5) and
(2.6). Since in addition ((−�)s + V + 2M)−1 : L2 → D(H ), by Kolmogorov–
Relich’s compactness criteria, D(H ) = H2s(Rn)∩ L2(V 2(x)dx) compactly embeds
into L2(Rn), it follows that all σ(H ) are eigenvalues of finite multiplicity. In addition,
these are sequence of reals

σ0(H ) ≤ . . . σk(H ) ≤ . . .

with limk σk(H ) = ∞. By the Riesz characterization of eigenvalues, we have

σ0(H ) = inf‖u‖=1
[‖|∇|su‖2 +

∫
V (x)u2(x)dx].

By the rearrangement inequalities,more specifically the fractional Polya-Szegö inequal-
ity (2.4) and (2.3), we conclude the Perron–Frobenius type result, namely that there
any eigenfunction corresponding to the bottom of the spectrum σ0(H ) must be bell-
shaped. This implies that σ0(H ) is a simple eigenvalue (assuming that there are two
different such eigenfunctions, they cannot be orthogonal), and its eigenfunction is
positive.
There is much richer theory concerning the spectrum (and the related eigenfunc-

tions) for H . Indeed, in the classical case of the Laplacian, i.e., s = 1 and bounded
potentials and one spatial dimension, the Sturm–Liouville theory applies and one has
pretty satisfactory theory—every eigenvalue σ j (H ) is simple and each eigenfunction
has exactly j sign changes. In the recent work, [5], the authors have extended this to
the case s ∈ (0, 1), still in the one dimensional case. In a subsequent development,
[6] have extended this to higher dimensions—such a result is now valid for the radial
eigenvalues only and then only for j = 0, 1. They have shown the following theorem,
see Theorem 2.3, [6].

Theorem 3. (Frank-Lenzmann-Silvestre, Theorem 2.3, [6]) Let n ≥ 1, s ∈ (0, 1]
and W satisfies

• W = W (|x |) and W is non-decreasing in |x |,
• W ∈ L∞(Rn), W ∈ Cγ , γ > max(0, 1 − 2s). That is

|W (x) − W (y)| ≤ C |x − y|γ .

Then, assume that H = (−�)s + W has at least two radial eigenvalues E0 < E1 <

inf σess(H).
Then, the corresponding eigenfunction�1 : H �1 = E1�1 has exactly one change

of sign. That is, there exists r0 ∈ (0,∞), so that �1(r) < 0, r ∈ (0, r0) and �1(r) >

0, r ∈ (r0,∞).
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2.5. The linearized problem for the solitary waves φω

We now formally state the stability problem for the ground states of (1.3). Namely,
we take ansatz in the form

u(t, x) = e−iωt (φω(x) + v(t, x)),

and plug in equation (1.1). After ignoring all terms in the form O(v2) and taking a
real and imaginary parts ( namely, v = v1 + iv2), we arrive at the following linearized
problem

∣∣∣∣−∂tv2 + ((−�)s + V (x) + ω)v1 − pφ p−1v1 = 0
∂tv1 + ((−�)s + V (x) + ω)v1 − φ p−1v2 = 0

(2.8)

Introducing the linearized self-adjoint operators

L+ = (−�)s + V + ω − pφ p−1,

L− = (−�)s + V + ω − φ p−1

and the assignments �v(t, x) =
(

v1

v2

)
→ eλt �v(x), L :=

(
L+ 0
0 L−

)
, J =

(
0 −1
1 0

)
allow us to rewrite the eigenvalue problem (2.8) in the standard form

JL �v = λ�v (2.9)

3. Existence of the ground states

We give the variational construction of the ground states.

3.1. Variational construction

Proposition 3. Let s ∈ (0, 1], n ≥ 1 and 1 < p < 1 + 4s
n . Then, the constrained

minimization problem (1.5) has a solution φ, which belongs to the energy space
Hs(Rn) ∩ L2(V (x)dx) ∩ L p+1(Rn). All solutions φ are necessarily (a translates of)
bell-shaped functions, that is there exists x0 ∈ R

n, a ∈ R and ρ : [0,∞) → [0,∞),
with ρ decreasing, so that φ(x) = aρ(|x − x0|).
In addition, there existsω = ωλ > −σ0(H ), so that φ satisfies the Euler–Lagrange

equation

(−�)sφ + V (x)φ − φ p + ωλφ = 0. (3.1)

Proof. First, we show that the minimization problem (1.5) is bounded from below,
that is

inf∫
Rn |u(x)|2dx=λ

E [u] ≥ Cλ > −∞.
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Indeed, by Sobolev embedding, we have

‖u‖p+1
L p+1(Rn)

≤ Cp‖u‖p+1

Ḣ
n( 12− 1

p+1 )
≤ Cp‖|∇su‖ n(p−1)

2s ‖u‖p+1− n(p−1)
2s = Cp,λ‖∇u‖ n(p−1)

2s .

Noting that n(p−1)
2s < 2 (since p < 1 + 4s

n ), we conclude that

E [u] ≥ 1

2
[‖|∇|su‖2 +

∫
V (x)u2(x)dx] − Cp,λ

p + 1
‖∇u‖ n(p−1)

2

≥ 1

4
[‖|∇|su‖2 +

∫
V (x)u2(x)dx] − Bp,λ > −∞.

In particular, for the elements of the constrained set, that is ‖u‖2
L2 = λ, there exists a

constant Cλ, so that

‖|∇|su‖2 +
∫

V (x)u2(x)dx ≤ Mλ. (3.2)

We now apply the theory of decreasing rearrangements for functions on R
n . Indeed,

by the fractional Polya–Szego inequality, (2.4), we have ‖|∇|su‖2 ≥ ‖|∇|su∗‖2
L2 . In

addition, by (2.3),
∫
Rn

V (x)|u(x)|2dx ≥
∫
Rn

V (x)|u∗(x)|2dx,

while ‖u‖L2 = ‖u∗‖L2 , ‖u‖L p+1 = ‖u∗‖L p+1 . All in all, it follows that E [u] ≥ E [u∗],
while the constraint

∫ |u∗(x)|2dx = λ still holds. Moreover, in the Polya–Szegö
inequality, equality is only achieved, if u(x) = ρ(|x − x0|) for some decreasing func-
tion ρ : R+ → R+. Thus, we draw the conclusion that theminimization problem (1.5)
has only bell-shaped solutions (if any!), modulo translations. So, we can concentrate
from now on, on the bell-shaped functions only.
Take aminimizing sequence (of bell-shaped functions)uk ∈ Hs(Rn)∩L2(V (x)dx).

Denoting

m(λ) := inf∫
Rn |u(x)|2dx=λ

E [u], (3.3)

we have that limk E [uk] = m(λ), with
∫ |uk(x)|2dx = λ. From (3.2), we have that

supk ‖|∇|suk‖ < Mλ. We claim that {uk} is a compact sequence in L p+1. Indeed, it is
bounded in L p+1, from the Sobolev embedding Hs ↪→ L p+1. By the Kolmogorov–
Riesz compactness criterium, compactness in L p+1 follows from the estimate

∫
V (x)u2k(x)dx ≤ Mλ,

since limx→∞ V (x) = ∞. But since uk is bell-shaped and V is non-decreasing,

Mλ ≥ sup
k

∫
Rn

V (x)|uk(x)|2dx ≥ V (R)

∫
|x |<R

|uk(x)|2dx ≥ ckV (R)Rn|uk(z0)|2



682 M. Stanislavova et al. J. Evol. Equ.

for every integer k, every R > 0 and z0 : |z0| = R. It follows that |uk(x)| ≤
Mλ

ck
V (R)−1/2|R|−n/2. Thus,

∫
|x |>R

|uk(x)|p+1dx ≤
(

Mλ

ck
√
V (R)

)p+1 ∫
|x |>R

|x |− n
2 (p+1)dx ≤ cλ,n,p R

− n(p−1)
2 .

It follows that {uk} is compact in L p+1(Rn). Similarly, {uk} is compact in L2(Rn),
since in addition to being bounded in Hs(Rn)

∫
|x |>R

|uk(x)|2dx ≤ 1

V (R)

∫
|x |>R

V (x)|uk(x)|2dx ≤ Mλ

V (R)
.

Thus, we select a subsequence uk j → φ in L p+1∩ L2, while simultaneously converg-
ing weakly in Hs(Rn) ∩ L2(V (x)dx). By the lower semi-continuity of norms with
respect to weak convergence

m(λ) = lim inf
j

E [uk j ] ≥ E [φ],

while
∫

φ2(x)dx = lim j
∫
u2k j (x)dx = λ. We now see that it must be that

lim inf
j

E [uk j ] = lim
j
E [uk j ] = E [φ],

otherwise one gets a contradiction with the definition of m(λ). Thus, φ is a solution
to (1.5) and m(λ) = E [φ]. It now remains to derive the Euler–Lagrange equation for
φ. Set for any ε ∈ R and a test function h,

g(ε) = E

(√
λ

φ + εh

‖φ + εh‖
)

≥ g(0) = E (φ). (3.4)

We now need to expand g(ε) in powers of ε, for small ε. To this end, observe that for
any q, we have

‖φ + εh‖q = (λ + 2ε〈φ, h〉 + ε2‖h‖2)q/2 = λq/2
(
1 + ε

q〈φ, h〉
λ

+ O(ε2)

)
=

= λq/2 + εqλq/2−1〈φ, h〉 + O(ε2).

Thus,5

λ

2‖φ + εh‖2
∫
Rn

[||∇|s(φ + εh)|2 + V (x)|φ + εh|2]dx

= 1

2

[
(‖|∇|sφ‖2 +

∫
V (x)φ2(x)dx) + 2ε〈(−�)sφ + V (x)φ, h〉 + O(ε2)

]

5For the purposes of the derivation of the Euler–Lagrange equation, the operator (−�)s applied on φ should
be understood in a distributional sense, since a priori, we only know that φ ∈ Hs (Rn). Eventually, we have
that φ ∈ H2s (Rn), so this will not be an issue.
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[
1 − 2

ε

λ
〈φ, h〉 + O(ε2)

]

= 1

2
(‖|∇|sφ‖2 +

∫
V (x)φ2(x)dx)

+ε〈(−�)sφ + V (x)φ − ‖|∇|sφ‖2 + ∫
V (x)φ2(x)

λ
φ, h〉 + O(ε2).

In addition,

λ
p+1
2

(p + 1)‖φ + εh‖p+1

∫
Rn

|φ(x) + εh(x)|p+1dx

= 1

p + 1
[
∫

φ p+1(x)dx + ε(p + 1)〈φ p, h〉 + O(ε2)][1 − (p + 1)
ε

λ
〈φ, h〉 + O(ε2)]

= 1

p + 1

∫
φ p+1dx + ε[〈φ p, h〉 − 〈φ, h〉

λ

∫
φ p+1dx] + O(ε2).

Putting the last two formulas together

E

(√
λ

φ + εh

‖φ + εh‖
)

= E (φ) + ε[〈(−�)sφ + V (x)φ − φ p + ωφ, h〉] + O(ε2),

where

ω = −‖|∇|sφ‖2 + ∫
V (x)φ2(x)dx − ∫

φ p+1(x)dx

λ

But φ is a minimizer, implying that g′(0) = 0, which amounts to the fact that φ is a
distributional solution of the following PDE,

(−�)sφ + V (x)φ − φ p + ωφ = 0

Finally, let us show that ω > −σ0(H ). To do this, just test the Euler–Lagrange
equation with the bell-shaped eigenfunction �0 : H �0 = σ0(H )�0. We obtain

〈�0, φ
p〉 = 〈�0, (H + ω)φ〉 = 〈(H + ω)�0, φ〉 = (ω + σ0(H ))〈ψ0, φ〉.

It follows that

ω + σ0(H ) = 〈�0, φ
p〉

〈�0, φ〉 > 0.

With that, the proof of Proposition 3 is complete.
�

Next, we shall need to establish an additional a posteriori smoothness result for φ.

Proposition 4. The normalized waves constructed in Proposition 3 are elements of
H2s ∩ L2(V 2(x)dx). In particular, φ ∈ D(H ), so the Euler–Lagrange equation is
satisfied in the sense of L2 functions. In addition, φ ∈ C1(Rn).

Note: One can establish stronger regularity results, by imposing stronger regularity
on V .

The somewhat technical proof of Proposition 4 is presented in Appendix. We now
establish some additional spectral properties of the operators L±.
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3.2. Spectral properties of L±

Proposition 5. The operator L+ has exactly one negative eigenvalue and in fact
L+|{φ}⊥ ≥ 0. In addition, φ ⊥ Ker [L+].

On the other hand, L− ≥ 0, whileL−[φ] = 0. Finally, Ker [L−] = span[φ].
Proof. For the proof ofL+|{φ}⊥ ≥ 0, take a test function h ⊥ φ, ‖h‖L2 = 1. Similar
to the arguments in the derivation of the Euler–Lagrange equation, we will use the
fact that the function g, defined in (3.4), satisfies g′′(0) ≥ 0, due to the fact that φ is
a constrained minimum. We have the expansions

‖φ + εh‖q
L2 = (λ + ε2)q/2 = λq/2 + qλq/2−1

2
ε2 + O(ε4),

and

λ

2‖φ + εh‖2
∫
Rn

[||∇|s(φ + εh)|2 + V (x)|φ + εh|2]dx

= 1

2

[
(‖|∇|sφ‖2 +

∫
V (x)φ2(x)dx) + 2ε〈(−�)sφ + V (x)φ, h〉

] [
1 − ε2

λ

]

+ε2

2

[
‖|∇|sh‖2 +

∫
V (x)h2(x)dx

]
+ O(ε3)

= 1

2

(
‖|∇|sφ‖2 +

∫
V (x)φ2(x)dx

)
+ ε〈φ p, h〉

+ε2

2

[
‖|∇|sh‖2 +

∫
V (x)h2(x)dx − ‖|∇|sφ‖2 + ∫

V (x)φ2(x)dx

λ

]
+ O(ε3),

where we have used (−�)sφ + V (x)φ = φ p − ωφ and φ ⊥ h. Similarly,

λ
p+1
2

(p + 1)‖φ + εh‖p+1

∫
Rn

|φ(x) + εh(x)|p+1dx

= 1

p + 1
[‖φ‖p+1

L p+1 + ε(p + 1)〈φ p, h〉 + ε2
(p + 1)p

2
〈φ p−1h, h〉][1 − p + 1

2λ
ε2] + O(ε3)

= 1

p + 1
‖φ‖p+1

L p+1 + ε〈φ p, h〉 + ε2

2

[
p〈φ p−1h, h〉 − ‖φ‖p+1

L p+1

λ

]
+ O(ε3).

Putting it together, we obtain,

g(ε) = g(0) + ε2

2
〈L+h, h〉 + O(ε3),

where we have used the representation

ω = −‖|∇|sφ‖2 + ∫
V (x)φ2(x)dx − ‖φ‖p+1

L p+1

λ
.
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Thus, 〈L+h, h〉 = g′′(0) ≥ 0, soL+|{φ}⊥ ≥ 0. It follows thatL+ has at most one
negative eigenvalue. On the other hand, L+[φ] = −(p − 1)φ p, which allows us to
compute

〈L+φ, φ〉 = −(p − 1)
∫

φ p+1(x)dx < 0.

From this,L+ has indeed a negative eigenvalue and since we have established that it
was at most one, it is exactly one, n(L+) = 1.

Let us now show that φ ⊥ Ker [L+]. Note that, under certain conditions on V , we
will in fact show the non-degeneracy statement, i.e., Ker [L+] = {0}, which of course
would imply that φ ⊥ Ker [L+]. On the other hand, this is easy to see without any
additional assumptions.
Indeed, take ψ ∈ Ker [L+]. We have that ψ − ‖φ‖−2〈ψ, φ〉φ ⊥ φ, whence

0 ≤ 〈L+[ψ − ‖φ‖−2〈ψ, φ〉φ], ψ − ‖φ‖−2〈ψ, φ〉φ〉 = ‖φ‖−4〈ψ, φ〉2〈L+φ, φ〉.
Since 〈L+φ, φ〉 < 0, it follows that 〈ψ, φ〉 = 0, otherwise we reach a contradiction.
Regarding the statement for L−, it is clear, by inspection that L−[φ] = 0. Taking

arbitrary h : h ⊥ φ, we have

〈L−h, h〉=〈L+h, h〉 + (p − 1)
∫

φ p−1(x)h2(x)dx≥(p−1)
∫

φ p−1(x)h2(x)dx .

(3.5)

From this last inequality, it is clear that Ker [L−] = span[φ]. Indeed, if there is
another element h0 ∈ Ker [L−], we can take it h0 ⊥ φ, h0 �= 0 : L−[h0] = 0.
By (3.5), this would imply that

∫
φ p−1(x)h20(x)dx = 0, which is impossible. So,

Ker [L−] = span[φ]. �
Proposition 6. There exists δ > 0, so that for every � ⊥ φ,� ⊥ Ker [L+],

〈L+�,�〉 ≥ δ‖�‖2Hs . (3.6)

Similarly, there exists δ > 0, so that for every � ⊥ φ,

〈L−�,�〉 ≥ δ‖�‖2Hs . (3.7)

Remark: It follows that if we establish Ker [L+] = {0}, then (3.6) holds for all
� ⊥ φ.

Proof. Introduce

α := inf{〈L+ f, f 〉 : ‖ f ‖L2 = 1, f ⊥ φ, f ⊥ Ker [L+]}.
Since according to Proposition 5, L+|{span[φ]}⊥ ≥ 0, we have that α ≥ 0. We will
show now that α > 0. To this end, take a minimizing sequence ‖ fk‖L2 = 1, so that
fk ⊥ span[φ, Ker [L+]]. Since

‖(−�)
s
2 f ‖L2 ≥ ‖(−�)

s
2 f ∗‖L2 ,

∫
Rn

V (x) f 2(x)dx ≥
∫
Rn

V (x)( f ∗)2(x)dx
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we can without loss of generality assume that fk are bell-shaped. Since the problem is
L2 sub-critical, i.e., p < 1+ 4s

n , we may, as before bound from below 〈L+ fk, fk〉 ≥
1
4‖(−�)

s
2 fk‖2L2 +∫

Rn V (x) f 2k (x)dx−C . This implies that supk ‖(−�)
s
2 fk‖L2 < ∞

and for |x | > N ,

∫
|x |≥N

f 2k (x)dx ≤
∫
|x |≥N V (x) f 2k (x)dx

V (N )
≤ C

V (N )

This means that { fk} is a compact sequence in L2, whence there is f : ‖ f ‖L2 = 1,
(and after taking a subsequence) limk ‖ fk − f ‖L2 = 0 and fk ⇀ f (i.e., fk converges
to f weakly in Hs). Then, we can see that for all 2 < q < 2n

n−2s , n > 2s and 2 < q <

∞, n ≤ 2s, we have that limk ‖ fk − f ‖Lq = 0. In particular, limk
∫
Rn f p+1

k dx =∫
Rn f p+1dx , 1 < p < 1 + 4s

n . Thus 〈L+ f, f 〉 ≤ α, whence by the definition of α,
〈L+ f, f 〉 = α. We conclude that f is a minimizer for the constrained minimization
problem

inf
‖ f ‖L2=1, f ⊥φ, f⊥Ker [L+]

〈L+ f, f 〉.

Writing the Euler–Lagrange equation for it, we obtain

L+ f = γ1 f + γ2φ + z, (3.8)

where γ1, γ2 are scalars, z ∈ Ker [L+]. Assume for a contradiction that α = 0. Taking
dot product with z in (3.8) implies that z = 0 recall that φ ⊥ Ker [L+] and since
fk ⇀ f , f ⊥ Ker [L+], f ⊥ φ). Next, take a dot product with φ. We obtain that
γ2 = 0. Finally, take a dot product with f . It follows that 0 = α = 〈L+ f, f 〉 = γ1,
whence L+ f = 0. So, f ∈ Ker [L+], but we also have f ⊥ Ker [L+], so f = 0, a
contradiction. Thus α > 0. This implies the inequality

〈L+�,�〉 ≥ δ‖�‖2L2 , � ⊥ φ,� ⊥ Ker [L+]. (3.9)

We nowwish to upgrade (3.9) to (3.6). To this end, assume that (3.6) fails. That is, there
exists �k : ‖�k‖Hs = 1, so that limk〈L+�k, �k〉 = 0. According to (3.9), it must be
that limk ‖�k‖L2 = 0. So, it must be that 1 = limk ‖�k‖2Hs = limk[‖(−�)

s
2 �k‖2 +

‖�k‖2L2 ] = limk ‖(−�)
s
2 �k‖2. But then, since

∫
φ p−1�2

k (x)dx ≤ C‖φ‖p−1
L∞ ‖�k‖2L2

→ 0,

0 = lim
k

〈L+�k, �k〉 = lim
k

[‖(−�)
s
2 �k‖2 +

∫
Rn

V�2
k − p

∫
φ p−1�2

k ]
≥ lim

k
‖(−�)

s
2 �k‖2 = 1,

a contradiction. Thus, (3.6) is established.
The estimate (3.7) follows in a similar manner, by considering the constrained

minimization problem

inf‖ f ‖L2=1, f⊥φ
〈L− f, f 〉
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and by taking into account that Ker [L−] = span[φ]. We omit the details.
�

4. Non-degeneracy and orbital stability of the normalized waves

Wenowaimat establishing thenon-degeneracyof thewavesφ, that is theSchrödinger
operator

L+ = (−�)s + V + ω − pφ p−1,

has trivial kernel, Ker [L+] = {0}. The main tool, as in the recent works [5,6] is the
Sturm oscillation theorem for the second eigenfunction, Theorem 3. There are some
technical problems associated with that—in our case the potential W := V + ω −
pφ p−1 is not a bounded function, though it is still non-decreasing and of sufficient
smoothness6. Thus, we need to rely on an approximation argument, and the result that
we obtain is somewhat weaker, compared to Theorem 3. Nevertheless, it will serve
our purposes well.

4.1. Sturmoscillation estimate for the secondeigenfunctionof a fractional Schrödinger
operator with increasing unbounded potential

Proposition 7. Let W : limr→∞ W (r) = ∞ be a radial potential, which is non-
decreasing and in the class Cγ

loc.((0,∞)), γ > max(0, 1 − 2s). That is, for each N,
there is CN , so that for all 0 < r < ρ < N,

|W (ρ) − W (r)| ≤ CN |ρ − r |γ .

Then, the smallest eigenvalue of HW := (−�)s +W, E0 is simple, with a bell-shaped
eigenfunction. Denote the next radial eigenvalues of HW as E0 < E1. Then, E1 has
an eigenfunction with exactly one change of sign.

Proof. Define

WN :=
{
W (r) 0 < r < N
W (N ) r ≥ N .

Thus, WN ∈ L∞ ∩C0,γ , so it satisfies the assumptions of Theorem 3. Since limr→∞
W (r) = W (N ), we have by Weyl’s theorem that σa.c.(HN ) = [W (N ),∞). Note that
since limN W (N ) = ∞, by the variational characterization of the eigenvalues, there
will be plenty of finite multiplicity eigenvalues below W (N ). We assume henceforth
that N is large enough, so that there are at least two eigenvalues below W (N ).
In addition, by the Perron–Frobenius arguments presented earlier, each HN has a

simple eigenvalue at the bottom of its spectrum E0,N , with bell-shaped eigenfunctions,

6Here, recall that due to Proposition 4, φ ∈ C1(Rn), and so φ ∈ C1(0, ∞) as a function of the radial
variable.
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which we denote by �0,N : ‖�0,N‖L2 = 1, that is HN�0,N = E0,N�0,N . Note that
since WN ≤ W , we have that E0,N is an increasing sequence and E0,N ≤ E0.
Moreover, we have

‖|∇|s�0,N‖2 +
∫

WN (x)�2
0,N (x)dx = E0,N ≤ E0.

It follows that for eachM ≥ N , ‖�0,M‖Ḣ s ≤ E0 andW (N )
∫
|r |>N �2

0,M (x)dx ≤ E0.

This implies that {�0,N }∞N=1 is a compact sequence in L2(Rn), so it has a limit point
ψ0 := limk �0,Nk , which we can in addition take to be a weak limit in Hs of the same
sequence. Thus, ‖ψ0‖L2 = 1, ‖|∇|sψ0‖ ≤ lim infk ‖|∇|s�0,Nk‖. Finally, for each
R > 0, we have

∫
|x |<R

W (x)ψ2
0 (x)dx = lim

k

∫
|x |<R

WNk (x)�
2
0,Nk

(x)dx ≤ lim sup
N

∫
WN (x)�2

0,N (x)dx .

By Fatou’s,
∫
W (x)ψ2

0 (x)dx ≤ lim supN
∫
WN (x)�2

0,N (x)dx , whence it follows that

‖|∇|sψ0‖2 +
∫

W (x)ψ2
0 (x)dx ≤ lim sup

N
[‖|∇|s�0,N‖2 +

∫
WN (x)�2

0,N (x)dx] ≤ E0.

It follows that ψ0 is an eigenfunction for H , corresponding to the eigenvalue E0, and
we have equalities above, which means that limk ‖�0,Nk − ψ0‖Hs = 0. In fact, by
running a simple contradiction argument similar to the one above, we see that in fact
limN ‖�0,N − ψ0‖Hs = 0. Clearly, ψ0 is a bell-shaped function as well.
Regarding the eigenvalue E1, we run a similar argument to establish that the eigen-

functions of HN corresponding to E1,N , say �1,N , converge to an eigenfunction cor-
responding to the eigenvalue E1. Since Theorem 3 is applicable to HN , we will be able
to conclude that there is an eigenfunction ψ1 of HW , which has exactly one change of
sign. Here are the details.
We start again with the observation that E1,N ≤ E1, since WN ≤ W . Further,

�1,N : ‖�1,N‖L2 = 1 is so that �1,N ⊥ �0,N and

‖|∇|s�1,N‖2 +
∫

WN (x)�2
1,N (x)dx = E1,N ≤ E1.

By the same reasoning, �1,N is a compact sequence in L2, let us denote an accu-
mulation point by ψ1 : ‖ψ1‖ = 1, limk→∞ ‖ψ1 − �1,Nk‖L2 = 0. Again, we can
without loss of generality assume thatψ1 is a weak limit of {�1,Nk }∞k=1 in Hs , whence
‖|∇|sψ1‖ ≤ lim infk ‖|∇|s�1,Nk‖. Similar to the argument above,

‖|∇|sψ1‖2 +
∫

W (x)ψ2
1 (x)dx ≤ lim sup

N
[‖|∇|s�1,N‖2 +

∫
WN (x)�2

1,N (x)dx] ≤ E1.

Note that this implies limN ‖�1,N − �1‖Hs (Rn) = 0. Finally,

〈ψ1, ψ0〉 = lim
N

〈�1,N , �0,N 〉 = 0.
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Thus, ψ1 is an eigenfunction for HW , corresponding to the eigenvalue E1.
Now, by Theorem 3,�1,N are radial functions, which have exactly one sign change,

say rN ∈ (0,∞).Without loss of generality (by replacing�1,N to−�1,N if necessary),
assume that �1,N |(0,rN ) > 0, while �1,N |(rN ,∞) < 0. We will show that ψ1 also has
exactly one sign change7.
Indeed, it will suffice to show that {rN }∞N=1 has a bounded subsequence, converging

to r0 ∈ (0,∞). If that is the case, pick rNk → r0 andwithout loss of generality, assume
rNk ≥ r0 (otherwise pick a further subsequence of this property, the case rNk ≤ r0 is
symmetric). In such a case, we clearly have that for any χ ∈ C∞

0 ((0, r0)), χ ≥ 0, we
have 〈ψ1, χ〉 = limk〈�1,Nk , χ〉 ≥ 0. For χ ∈ C∞

0 ((r0,∞)), χ ≥ 0, we have

〈ψ1, χ〉 = lim
k

〈�1,Nk , χ〉 = lim
k

[
∫
|x |≥rNk

�1,Nkχ(x)dx +
∫
r0<|x |≤rNk

�1,Nkχ(x)dx] ≤ 0,

since the second term converges to zero, while the first one is non-positive.
Thus, it remains to show that rN has a bounded subsequence, converging to r0 ∈

(0,∞). Indeed, otherwise, we have to refute two alternatives—one is that rN → ∞,
while the other is rN → 0. Assuming limN rN = ∞, we have for any χ ∈ C∞

0 ,

〈ψ1, χ〉 = lim
N

〈�1,N , χ〉 ≥ 0.

It follows thatψ1 ≥ 0, which is a contradiction, since 〈ψ1, ψ0〉 = 0 (as eigenfunctions
of HW ), while ψ1 ≥ 0 and ψ0 is bell-shaped. Similarly, if rN → 0, we conclude

〈ψ1, χ〉 = lim
N

〈�1,N , χ〉 ≤ 0.

whence ψ1 ≤ 0, again in contradiction with 〈ψ1, ψ0〉 = 0 and ψ0 - bell-shaped. �

4.2. Non-degeneracy of the wave φ

With the results of Proposition 7 in hand,we are ready to show the non-degeneracy of
L+.We know thatL+ has one simple negative eigenvalue, which is simple, according
to Proposition 5.

Next, recall that for fractional Schrödinger operators like L+, there is the decom-
position in spherical harmonics

L+ = L+,0 ⊕ L+,≥1.

The claim about the non-degeneracy would thus follow from the two propositions
below.
First, we show that L+,0, the restriction of L+ to the radial subspace has exactly

one negative eigenvalue and no eigenvalues at zero.

7Note that here, the a priori information is only ψ1, �1,n ∈ Hs (Rn), so our functions are not even known
to be continuous, unless s > n

2 . On the other hand, the propertyψ is positive on an interval (r0, ∞) is easily
tested against a positive test function. That is ψ > 0 on an interval I , if for every non-negative C∞

0 (I )

function, we have 〈ψ, χ〉 > 0.



690 M. Stanislavova et al. J. Evol. Equ.

Proposition 8. σ1(L+,0) > 0. That is, the second smallest eigenvalue is strictly
positive.

For L+ restricted to higher harmonics, we show strict positivity.

Proposition 9. There exists δ > 0, so that the operator L+,≥1 ≥ δ > 0. That is, the
operator L+,≥1 is strictly positive.

4.2.1. Proof of Proposition 8

This is just an application of Proposition 7. Indeed, we already know that there is
a negative eigenvalue E0 of L+ and hence of L+,0, which is supported by a bell-
shaped eigenfunction. The next eigenvalue E1 cannot be negative, as this will imply
that n(L+) ≥ 2, while we know, that n(L+) = 1. So, we have to only refute the
possibility E1 = 0.
Assume for a contradiction E1 = 0. By Proposition 7, there must be an eigenfunc-

tion, �1 : L+,0�1 = 0, so that �1 has exactly one change of sign. Say �0(r) <

0, r ∈ (0, r0), while �0(r) > 0, r ∈ (r0,∞).
On the other hand, we have already checked thatφ ⊥ Ker [L+]. In addition, a direct

calculation yields L+,0φ = −(p − 1)φ p, so φ p ⊥ Ker [L+,0]. We can construct a
linear combination of the two functions, namely

� := c0φ − φ p = φ(c0 − φ p−1), c0 := φ p−1(r0),

which has the property �(r) < 0, r ∈ (0, r0), �(r) > 0, r ∈ (r0,∞), due to the fact
thatφ is bell-shaped.On the other hand,� ⊥ Ker [L+,0], so in particular 〈�,�1〉 = 0.
But finally, ��1 ≥ 0 and � > 0. This provides a contradiction, which finishes the
proof of Proposition 8.

4.2.2. Proof of Proposition 9

For Proposition 9, we start with the observation thatL+,≥1 ≥ 0, due to the fact that
L+ : n(L+) = 1 and the negative eigenvalue has been already accounted for in the
radial subspace. Thus, we need to show that zero is not an eigenvalue forL+,≥1.

Suppose for a contradiction that zero is an eigenvalue forL+,≥1.We claim that zero
then must be an eigenvalue forL+,1. Assume that this is not the case, then zero is an
eigenvalue for L+,≥2, say L+,≥2� = 0, where � = φY≥2,Y≥2 ∈ X≥2. Recalling
that L+,≥2 > L+,1, it follows that

〈L+,1φ, φ〉 < 〈L+,≥2φ, φ〉 = 0,

whence L+,1 will have a negative eigenvalue. In particular, n(L+) ≥ n(L+,0) +
n(L+,1) ≥ 2, which is a contradiction.
Thus, L+,1 has an eigenvalue at zero, so this must be clearly the bottom of the

spectrum, otherwise again n(L+) ≥ 2. In addition, its eigenfunctions are in the form
�1 = ψ1Y1,Y1 ∈ X1, so �1 ∈ {ψ1(r)

x j
r , j = 1, . . . , n}, so take �1 = ψ1(r)

x1
r .
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According to Lemma C.4, [6], (−�l)
s, s ∈ (0, 1) is positivity improving (see also

formulas (C.19) and (C.20)) and as a consequence

‖(−�l)
s/2u‖L2 ≥ ‖(−�l)

s/2|u|‖L2 ,

whence we can conclude that the radial component ψ1 of �1 is a positive function8,
ψ1 > 0.
We will show that this leads to a contradiction as well. Namely, take ∂x1 in the

Euler–Lagrange equation. We obtain the relation

L+(∂x1φ) = (−�)s∂x1φ + V ∂x1φ + ω∂x1φ − pφ p−1∂x1φ = − ∂V

∂x1
φ = −V ′(r) x1

r
φ.

Taking dot product with �1 yields

0 = 〈∂x1φ,L+�1〉 = 〈L+(∂x1φ),�1〉 = −|Sn−1|
∫ ∞

0
V ′(r)φ(r)ψ1(r)x

2
1r

n−3dr < 0,

since V ′ > 0 and all the other integrands are nonnegative. This is a contradiction, so
Proposition 9 is established as well.

4.3. Orbital stability

Before we set up the problem, let us mention that for this part of it, we assume
global well-posedness and conservation of energy per Definition 2.

We would also like to change variables in a way that reduces matters a bit. Namely,
using the ansatz u → e−iωt u, we reduce equation (1.1) to

iut + (−�)su + V (x)u + ωu − |u|p−1u = 0, (t, x) ∈ R+ × R
n, (4.1)

which in its current form has the time-independent solution u(t, x) = φ(x). So, orbital
stability for the solution e−iωtφ for (1.1) is equivalent to orbital stability for the static
solution φ for (4.1).

That is, we are trying to show that for every ε > 0, there exists δ = δε , so that
whenever ‖u0 − φ‖Hs (Rn) < δ, then the solution of (4.1) with initial data u0 satisfies

sup
0<t<∞

inf
θ∈R ‖u(t, ·) − eiθφ‖Hs (Rn) < ε.

We argue by contradiction, in a way similar to the approach in [18].
Specifically, assume that there is ε0 > 0 and a sequence of initial data, uk :

limk ‖uk − φ‖Hs (Rn) = 0, while

sup
0<t<∞

inf
θ∈R ‖uk(t, ·) − eiθφ‖Hs (Rn) ≥ ε0. (4.2)

8In fact, we can conclude that ψ1 is both positive and decreasing in (0, ∞).
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Note the conservation of total energy for solutions of (4.1), namely

E [u] := 1

2

(∫
Rn

||∇|su(t, x)|2dx +
∫
Rn

(V (x) + ω)|u(t, x)|2dx
)

− 1

p + 1

∫
Rn

|u(t, x)|p+1dx,

and in addition P[u] = ∫
Rn |u(t, x)|2dx is conserved as well. These are our assump-

tions in Definition 2.
Clearly, the Euler–Lagrange equation, satisfied by φ is equivalent to E ′[φ] = 0,

where E ′ is the Gateaux derivative of the functional E . Introduce

εk := |E [uk(t)] − E [φ]| + |P[uk(t)] − P[φ]|.
Note that by the conservation laws, εk is conserved, and hence, limk εk = 0, since
εk ≤ C‖uk − φ‖Hs . Next, for all ε > 0, define tk = sup{τ > 0 : sup0<t<τ ‖uk(t) −
φ‖Hs < ε}.We have that all tk > 0, by the continuity of the solutionmaps u0 → u(t, ·)
as mappings from Hs into itself. Introduce uk(t, ·) = vk(t, ·) + iwk(t, ·).
We are now ready to introduce the modulation parameter θk(t) as long as ‖uk(t) −

φ‖Hs << 1. Indeed, taking initially t ∈ (0, tk) guarantees that ‖wk(t)‖Hs ≤ ‖uk(t)−
φ‖Hs < ε. As a consequence, θk(t) is defined so that wk(t, ·) − sin(θk(t))φ ⊥ φ or
equivalently

sin(θk(t))‖φ‖2 = 〈wk(t), φ〉. (4.3)

This last equation explicitly defines an unique small solution θk(t) of (4.3), since
|〈wk(t), φ〉| ≤ ε‖φ‖L2 . With this assignment, and as long as it holds that ‖uk(t) −
φ‖Hs < ε, we have the estimate

‖uk(t, ·) − eiθk (t)φ‖Hs ≤ ‖uk(t, ·) − φ‖Hs + |eiθk (t) − 1|‖φ‖Hs ≤ C0ε, (4.4)

where C0 = C0(‖φ‖). Define
Tk = sup{τ : sup

0<t<τ

‖uk(t, ·) − eiθk (t)φ(·)‖Hs < 2C0ε}.

Due to (4.4), we have that Tk > tk > 0. Note that the construction above holds for all
small enough values of ε > 0. We will show that for all small enough values of ε and
for all large enough n, Tk = ∞. This would be in contradiction with (4.2), provided
one chooses ε << ε0 and large enough n and the orbital stability will be established
accordingly.
Write for t ∈ (0, Tk)

ψk(t, ·) := uk(t, ·) − eiθk (t)φ = vk(t, ·) − cos(θk(t))φ + i(wk(t, ·) − sin(θk(t))φ).

Note that while 0 < t < Tk , ‖ψk(t)‖Hs < 2ε, according to the definition of Tk .
Decompose the real and the imaginary part of wk as follows

(
vk(t, ·) − cos(θk(t))φ
wk(t, ·) − sin(θk(t))φ

)
= μk(t)

(
φ

0

)
+

(
ηk(t, ·)
ζk(t, ·)

)
,

(
ηk(t, ·)
ζk(t, ·)

)
⊥

(
φ

0

)
. (4.5)
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Note that the condition

(
ηk(t, ·)
ζk(t, ·)

)
⊥

(
φ

0

)
simply means ηk(t, ·) ⊥ φ, while the

defining equation (4.3) came fromwk(t, ·)−sin(θk(t))φ ⊥ φ or equivalently ζk(t, ·) ⊥
φ. On the other hand,

P[uk (t)] =
∫
Rn

|eiθk (t)φ + ψk (t)|2dx = P[φ] + ‖ψk (t, ·)‖2L2 + 2
∫
Rn

φ(x)�[eiθk (t)ψk (t, x)]dx

But

∫
φ(x)�[eiθk (t)ψk (t, x)]dx =

∫
φ(x)[cos(θk )(vk − cos(θk )φ) − sin(θk )(wk − sin(θk )φ)]dx

= μk (t) cos(θk (t))‖φ‖2,

due to ηk ⊥ φ and wk − sin(θk)φ ⊥ φ. It follows that

P[uk(t)] = P[φ] + ‖ψk(t, ·)‖2L2 + 2μk(t) cos(θk(t))‖φ‖2,
whence by recalling that ‖ψk(t, ·)‖L2 ≤ 2ε, in t : 0 < t < Tk

|μk (t)| ≤
|P[uk (t)] − P[φ]| + ‖ψk (t, ·)‖2L2

2 cos(θk (t)‖φ‖2 ≤ C(εk + ‖ψk (t, ·)‖2L2 ) ≤ C(εk + ε2),

(4.6)

since |θk(t)| ≤ C0ε << 1 and hence cos(θk(t)) = 1 + O(ε2). Next,

E [uk(t)] − E [φ] = E [(cos(θk(t))φ + μk(t)φ + ηk) + i(sin(θk(t)φ + ζk)] − E [φ]
= 1

2
[〈L+ηk, ηk〉 + 〈L−ζk, ζk〉] + O(εk + ‖ηk‖3Hs + ‖ζk‖3Hs + ε3),

where we took into account E ′[φ] = 0, as well as (4.6).
We now need the important estimates from Proposition 6, namely (3.6) and (3.7).

According to those (and by taking into account that Ker [L+] = {0}), we have that
there exists κ > 0, so that for every η ⊥ φ, ζ ⊥ φ

〈L+η, η〉 ≥ κ‖η‖2Hs , 〈L−ζ, ζ 〉 ≥ κ‖ζ‖2Hs , (4.7)

The non-coercivity property (4.7) allows us to estimate

E [uk(t)] − E [φ] ≥ κ(‖ηk‖2Hs + ‖ζk‖2Hs ) − C(εk + ‖ηk‖3Hs + ‖ζk‖3Hs + ε3).

Taking into account that εk ≥ |E [uk(t)] − E [φ]|, we finally arrive at

‖ηk(t, ·)‖2Hs + ‖ζk(t, ·)‖2Hs ≤ C(εk + ε3 + ‖ηk(t, ·)‖3Hs + ‖ζk(t, ·)‖3Hs ), (4.8)

for every t ∈ (0, Tk). Since for each t ∈ (0, Tk), ‖ηk(t, ·)‖Hs + ‖ζk(t, ·)‖Hs < 2C0ε,
we have that from (4.8) and for small enough ε,

C(‖ηk(t, ·)‖3Hs + ‖ζk(t, ·)‖3Hs ) ≤ 1

2
(‖ηk(t, ·)‖2Hs + ‖ζk(t, ·)‖2Hs ),
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whence again by (4.8), we can bootstrap it to

‖ηk(t, ·)‖2Hs + ‖ζk(t, ·)‖2Hs ≤ C(εk + ε3), t ∈ (0, Tk). (4.9)

This last estimate shows that for small enough ε and then large enough n (recall
limk εk = 0), it must be that Tk = ∞, by its definition, since ε3/2 + √

εk << ε. This
concludes the proof of the orbital stability.
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Appendix A: A posteriori smoothness and decay: Proof of Proposition 4

We start with the a priori information from Proposition 3, that is φ is bell-shaped
and in the class φ ∈ Hs ∩ L2(V (x)dx), together with the fact that φ is a weak solution
of (3.1).

In order to obtain bootstrap this information, we need a representation of φ from
the Euler–Lagrange PDE. Unfortunately, φ is still only a weak solution of (3.1), as
we have pointed out. Instead, define for large enough N ,

φ̃ := ((−�)s + V + ωλ + N )−1[φ p + Nφ].
Heuristically, this is the solution of the (3.1), if φ were a solution in a stronger sense.
In fact, it is not even immediately clear in what sense is φ̃ even defined. Clearly, while

‖((−�)s + V + ωλ + N )−1[φ]‖L2 ≤ C‖φ‖L2

is under control, it is not as easy to control ((−�)s + V + ωλ + N )−1[φ p], since the
a priori information on φ p is very weak. Instead, for n ≤ 4s, we can bound by (2.5)
and Sobolev embedding

‖((−�)s + V + ωλ + N )−1[φ p]‖L2(Rn) ≤ C‖φ p‖H−2s ≤ C‖φ p‖
L

p+1
p

= C‖φ‖p
L p+1 .

while forn > 4s,weboundby (2.5) andby repeated applicationofSobolev embedding

‖((−�)s + V + ωλ + N )−1[φ p]‖L2(Rn) ≤ C‖φ p‖H−2s ≤ C‖φ p‖L2 ≤ C‖φ‖p
Hs (Rn)

.

So, φ̃ is well-defined as an L2(Rn) function. Consider a test function h ∈ H2s ∩
L2(V 2(x)dx),

〈φ̃, ((−�)s + V + ωλ + N )h〉 = 〈φ p + Nφ, h〉 = 〈φ, (−�)s + V + ωλ + N )h〉.
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It follows that 〈φ − φ̃, (−�)s + V + ωλ + N )h〉 = 0. Since the set {(−�)s + V +
ωλ + N )h : h ∈ H2s ∩ L2(V 2(x)dx)} is dense in L2, we have that φ = φ̃ or

φ = ((−�)s + V + ωλ + N )−1[φ p + Nφ]. (A.1)

We now run a bootstrapping procedure, which will ultimately establish that φ ∈
H2s(Rd). Starting with α0 = s, we define αk+1, as long as αk < 2s. We have for
α : αk < α ≤ 2s, by Sobolev embedding, (2.7) and Kato-Ponce estimates

‖φ‖Hα ≤ C[‖φ‖L2 + ‖φ p‖Hα−2s ] ≤ C[‖φ‖L2 + ‖φ‖Hαk ‖φ p−1‖
L

n
2s+αk−α

]
= C[‖φ‖L2 + ‖φ‖Hαk ‖φ‖p−1

L
n(p−1)

2s+αk−α

].

In the last term, if we make sure that n(p−1)
2s+αk−α

≤ p + 1, we will have control of the

right-hand side. Given the restriction p < 1 + 4s
n , this would be satisfied, if

α − αk ≤ 4s2

n + 2s
.

So, we define αk+1 := min(2s, αk + 4s2
n+2s ), whence we conclude that φ ∈ Hαk for

each k. Clearly, in finitely many iterations, we will reach φ ∈ H2s(Rd).
Furthermore, φ p ∈ L2, since

‖φ p‖L2 = ‖φ‖p
L2p ≤ C‖φ‖p

H2s ,

since p < 1 + 4s
n . It follows from (2.7) that φ ∈ H2s ∩ L2(V 2(x)dx) since

‖φ‖H2s∩L2(V 2(x)dx) ≤ C[‖φ‖L2 + ‖φ p‖L2 ] < ∞.

Once we have that Vφ ∈ L2, it is easy to bootstrap even further. Indeed, we will have
that the expression ((−�)s + ω + N )−1[(V + N )φ] makes sense as L2 function,
which is positive everywhere, for N large enough, as convolution of Gω+N > 0 and
(V + N )φ > 0. Hence, we have

0 < φ = ((−�)s + ω + N )−1[φ p + 2Nφ − (V + N )φ] ≤ ((−�)s + ω + N )−1[φ p + 2Nφ]

This last inequality can be now iterated to φ ∈ L∞(Rn), see p. 1723, [6].
We now aim at extending this further to Lipschitz continuity. To this end, introduce

a smooth and even cutoff function χ : suppχ ⊂ (−2, 2), so that χ(x) = 1, |x | < 1.
Let N >> 1 and χN (x) := χ(x/N ). Multiplying equation (1.2) by the cutoff χN and
φN := φ(x)χN , we can rewrite it in the form

((−�)s + ω + M)φN = −VφN + φ pχN + MφN + [(−�)s, χN ]φ. (A.2)

for any M . The operator on the left-hand side is invertible for large enough M , and
we can write

φN = ((−�)s + ω + M)−1[−VφN + φ pχN + MφN + [(−�)s, χN ]φ]. (A.3)
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According to the Mikhlin multplier’s theorem, ((−�)s + ω + M)−1 smooths out by
2s derivatives in any Sobolev spaceWα,p, 1 < p < ∞. It follows that for any α < 2s,

‖φN‖Wα,p ≤ Cα,p[‖VφN‖L p + ‖φ pχN‖L p + M‖φN‖L p + ‖[(−�)s , χN ]φ‖L p ≤ Cα,p,

due to the a priori bounds on ‖φ‖L p , and the fact that V is bounded on the support
of χN . Note that we also have used a corollary of the commutator estimates to derive
‖[(−�)s, χN ]φ‖L p ≤ CN ,p, p̃‖φ‖L p̃ , p̃ > p. It follows that φN ∈ W 2s,p, p < ∞ for
each N . If 2s > 1, there is nothing to do, as φN ∈ W 1+,p, p < ∞, which by Sobolev
embedding will imply that φ ∈ C1 as required.
Otherwise, apply (−�)s to (A.2) and then use the inversion formulas as in (A.3).

Since φN ∈ W 2s,p, we see that (recall that V ∈ C1(Rn))

(−�)s[−VφN + φ pχN + MφN + [(−�)s, χN ]φ] ∈ L p,

whence φN ∈ W 4s,p and so on. This can be bootstrapped, in finitely many steps to
the desired outcome φN ∈ W 1+,p, p < ∞, so φ ∈ C1. We omit further details.
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