SHARP NONUNIQUENESS FOR THE NAVIER-STOKES EQUATIONS
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ABSTRACT. In this paper, we prove a sharp nonuniqueness result for the incompressible Navier-Stokes equations in the
periodic setting. In any dimension d > 2 and given any p < 2, we show the nonuniqueness of weak solutions in the class
Lf L°°, which is sharp in view of the classical Ladyzhenskaya-Prodi-Serrin criteria. The proof is based on the construction
of a class of non-Leray-Hopf weak solutions. More specifically, for any p < 2, ¢ < oo, and € > 0, we construct non-
Leray-Hopf weak solutions u € Lf LN Lt1 W14 that are smooth outside a set of singular times with Hausdorff dimension

less than €. As a byproduct, examples of anomalous dissipation in the class Li’/ 27EC1/3 are given in both the viscous and
inviscid case.

1. INTRODUCTION

1.1. The incompressible Navier-Stokes equations. The Navier-Stokes equations are a fundamental mathematical
model of incompressible viscous fluid flow, written as

Ou — Au~+diviu®@u) + Vp=0

1.1
divu = 0, 4.1

posed on a spatial domain 2 C R? with suitable boundary conditions. In (1.1), u : [0, 7] x  — R? is the unknown
velocity, and p : [0,7] x @ — R is a scalar pressure. We consider the Cauchy problem of (1.1) on a time interval
[0, T'] for some initial data ug and T" > 0.

We confine ourselves to the periodic case 2 = T = R4 / 7% in dimension d > 2 and consider solutions with zero

spacial mean
/ u(t,z)dx =0,
Td

which is propagated under the evolution of the equation (1.1).

In this paper, we study the question of uniqueness/nonuniqueness for weak solutions of (1.1). The notion of weak
solutions refers to that of distributional solutions which solve (1.1) in the sense of space-time distribution with minimal
regularity, cf. [FJR72, Chel1].

Definition 1.1. Denote by Dy the space of divergence-free test function ¢ € C°(R x T%) such that ¢ = 0 ift > T.
Let ug € L*(T?) be weakly divergence-free'. A vector field u € L*([0,T] x T%) is a weak solution of (1.1) with
initial data ug if the followings hold:

(1) Fora.e.t € [0,T), uis weakly divergence-free;
(2) Forany ¢ € Dr,

T
/ ug(x) - (0, z) de = —/ / u- (O + Ap +u- Vo) dadt. (1.2)
Td o Jrd

In the literature, such solutions are sometimes called “very weak solutions” [Ama00, Gal00O] due to the minimal
regularity assumptions of only being square integrable in space-time. Remarkably, by [FIR72, Theorem 2.1], up to
possibly redefining u on a set of measure zero in space-time, the above weak formulation is equivalent to the integral
equation

t
u = ePug + / AP div(u @ u)(s) ds, (1.3)
0
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It is possible to consider more general initial data, such as L? for some 1 < p < oo as in [FJR72].
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where e?® is the heat semigroup and PP is the Leray projection onto the divergence-free vector fields. Note that the
formulation (1.3) was also used in a variety of works [FK64, Kat84, KT01] to construct unique solutions (called mild
solutions) of (1.1) when the initial data w is critical or subcritical, starting from the work of Fujita and Kato [FK64].

A more physical class of weak solutions, introduced by Leray [Ler34] and constructed by Leray [Ler34] in R? and
Hopf [Hop51] in general domains in d > 2, is also considered in the literature.

Definition 1.2. A weak solution v of (1.1) is called Leray-Hopf weak solution ifu € C., ([0, T); L>(T?))NL2(0,T; H'(T%))
and

1 K 1
Sl + [ 19u(s) s < SO, (14
forallt €10,T]

The Leray-Hopf weak solutions encode the natural conservation law of (1.1) regarding the two important phys-
ical quantities, the kinetic energy and the dissipation of the energy, and satisfy much better properties than general
weak solutions, especially in the most relevant case of 3D, such as Leray’s structure theorem [Ler34], weak-strong
uniqueness [Ser62, Ger06, Chell], partial regularity [Str88, CKN82], integrability of higher Sobolev norms [CV 14],
estimates of potential blowup rates [ESS03, GKP16, CZ16]. In fact, it is well-known that Leray-Hopf solutions are
smooth and unique in 2D. These nice properties, much desirable from a regularity stand point, make it significantly
harder to construct nonunique Leray-Hopf solutions in d > 3, though partial results [Lad69, JS15] and numerical
evidence [G§17] are available.

The purpose of this paper is to produce sharp counterexamples to the classical Ladyzhenskaya-Prodi-Serrin unique-
ness of the Navier-Stokes equations using the convex integration technique. On one hand, while the solutions con-
structed in this paper live on a borderline of a class of Leray-Hopf solutions, they have unbounded energy globally on
[0, 7] and do not satisfy (1.4). On the other hand, both the energy ||u(t)||3 and energy dissipation rate ||Vu(t)||3 of
these solutions are finite not only locally but also in certain time-averaged senses as well. The latter concept of taking
time ensemble of physical quantities is especially essential in Kolmogorov’s theory of turbulence and is measurable
experimentally. Nevertheless, we consider a wider class of weak solutions which is very natural from the mathemat-
ical point of view, and prove that the classical L? L> uniqueness of Ladyzhenskaya-Prodi-Serrin (see Theorem 1.3)
in this class is sharp. To our knowledge, this is the first sharp counterexample to the classical uniqueness results for
the Navier-Stokes equations. It is obviously an open problem whether such a sharp nonuniqueness can be extended to
weak solutions with bounded energy or even Leray-Hopf weak solutions.

Since the submition of this paper, in remarkable work [ABC22] Albritton, Brué, and Colombo proved that Leray-
Hopf solutions are not unique for a forced Navier-Stokes equations, that is (1.1) with a forcing term on the right-hand
side. Their method is completely different from us and is relatd to Vishik’s unstable vortex [Vis18a, Vis18b]. The
nonuniqueness of Leray-Hopf solutions of the unforced Navier-Stokes equations remains open.

1.2. The Ladyzhenskaya-Prodi-Serrin threshold. We first discuss the uniqueness results in our context. Since the
existence of weak solutions was known, there has been a vast body of literature on the uniqueness of weak solutions.
For brevity, we do not distinguish the underlying spatial domain, assumptions on the external forces, and smoothness
of the initial data for the results that we are going to mention. Instead, our discussion would focus on the core ideas
and the scaling threshold. The functional setup is the mixed Lebesgue space LY L? = L?(0,T; L1(S2)), where €2 is the
spatial domain, such as the whole space R? or a bounded domain.

For Leray-Hopf weak solutions, Prodi [Pro59], Serrin [Ser62], and Ladyzhenskaya [Lad67] proved that if a Leray-
Hopf solution w satisfies

2 d
w e LPLY  for some p < oo and g > d such that — + — < 1,
P q

then all Leray-Hopf solutions with the same initial data must coincide. The the endpoint case (p,q) = (o0, d) was
treated much later in [KS96] after the attempts [Mas84, SvW84]. This type of results is often referred to as weak-
strong uniqueness meaning that if there exists a strong solution, then any weak solution with the same initial data
coincides with it. In fact, a membership in such functional classes implies the regularity of Leray-Hopf solutions as
well, though we will not go into details in this direction and simply refer interested readers to [Ser62, ESS03, GKP16]
and references therein. In what follows, we will refer to all the above Lf L4 conditions with scaling % + g =1 as the
Ladyzhenskaya-Prodi-Serrin criteria/threshold for both the uniqueness and regularity.
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For general weak solutions, one loses the property of weak-strong uniqueness due to the lack of the energy inequal-
ity (1.2). For such weak solutions, one can instead study the uniqueness issue within certain functional classes. Due
to technical reasons, we have to work with a smaller class of functional space C, L% rather than the standard LtOOLd
space at the endpoint (p, ¢) = (oo, d). To simplify notations, given p, ¢ € [1, oo] let us denote the Banach space

LP(0,T5 LI(TY) i p £ ox,
C([0,T); L4(T%)) if p = oc.

The general scheme of proving uniqueness for general weak solutions is to recast (1.3) into the following abstract
integral formulation

X790, ) 1) = {

u = e®ug + B(u, u), (1.5)
and study the continuity of the bilinear operator B in the various underlying functional spaces, see for instance [LR16]
and references therein. The first result in this direction dates back to Fabes, Jones, and Riviere [FJR72] who proved that
weak solutions in the class XP:? are unique if % + g < land and d < ¢ < oo. In other words, the Ladyzhenskaya-
Prodi-Serrin criteria hold for just L7 , weak solutions. The limit case (p,q) = (oo, d) was later covered first by
[FLRTOO0] for d = 3, and then in [Mey97, Mon99, LMO1] via different methods and for different spatial domains.
Interestingly, in dimensions d > 4, the endpoint case (p, ¢) = (0o, d) can be strengthened to L$° L [LMO1].

Based on a scaling analysis, when % + % = 1, the spaces XP? are invariant under the parabolic scaling of the
equation u — uy = )\u(A2t, Az). In the literature, the space XP7 is called sub-critical when % + g < 1, critical
when % + g = 1, and super-critical when % + g > 1. The uniqueness holds in all the critical and sub-critical spaces
XP4, Moreover, thanks to [FIR72, Kat84, FLRT00, LM01] when % + % < 1, all weak solutions (in the sense of
Definition 1.1) belonging to the class X?+¢ are automatically Leray-Hopf” and hence, by the Ladyzhenskaya-Prodi-
Serrin criteria, regular. In other words, within the scale of XP:9 spaces, sub-critical or critical weak solutions are
classical solutions.

We can summarize these uniqueness results as follows. Since these results were originally stated for R%, we also
include a unified proof applicable to our specific setup in the appendix for readers’ convenience.

Theorem 1.3 (Ladyzhenskaya-Prodi-Serrin criteria). Let d > 2 and u be a weak solution of (1.1) such that u € XP-4
for some p, q € [1,00] such that % + g < 1. Then

(1) w is unique in the class of XP°? weak solutions,
(2) w is a Leray-Hopf solution, and regular on (0,T.

So far, the positive results suggest the Ladyzhenskaya-Prodi-Serrin threshold % + % = 1 as the critical regularity
threshold for uniqueness/nonuniqueness of the weak solutions. One would naturally ask what would happen in the
super-critical regime % + g > 1, or more specifically, whether the following conjecture is valid.

Conjecture 1.4. Let d > 2 and p, q € [1,00] such that % + % > 1. Then
(1) There exist two weak solutions u,v € XP9 of (1.1) such that

u(0) = v(0) but v # u.
(2) There exists a weak solution uw € X9 of (1.1) such that v is not Leray-Hopf.

In stark contrast to the positive result of Theorem 1.3, which has been known for quite some time, Conjecture
1.4 was completely open until a very recent groundbreaking work [BV19] of Buckmaster and Vicol. Following
the breakthrough [BV19], the nonuniqueness has been shown in dimension d > 3 under various settings: C,L*t
[BV19, BCV18] in dimension d = 3 and H'/2°9~[Luo19] in dimension d > 4. These works used a unified approach
to tackle both parts of Conjecture 1.4 at the same time: one perturbs a given smooth solution of (1.1) to obtain a “wild”
solution with certain regularity X9, and then the existence of such a wild solution implies both the nonuniqueness of
weak solutions and the existence of non-Leray-Hopf solutions in the said class. Even though these works reveal that
the nonuniqueness of weak solutions can emerge in the “low” regularity regime, we have to stress that the regularity
of current nonunique weak solutions is far very from the critical threshold 2 + g =1.

Besides the gap of the regularity between the critical threshold and the current nonuniqueness constructions, another
important question left open since [BV19] is whether weak solutions in 2D are unique. Unfortunately, the strategy

20ur setting is on the d-dimensional torus and the initial data is always L?2.
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of [BV19], which was in turn developed from a series of works [BDLIS15, BDLS16, Isel18, BLIV18], breaks down
in 2D. The reason is that roughly speaking, the framework of [BV19] is L? critical, in the sense that the mechanism
can produce finite energy wild solutions if the system is L? super-critical. This heuristic has been confirmed in
[BCV18, LT20, LQ20] for the generalized Navier-Stokes equations with fractional dissipation.

Since the 2D Navier-Stokes equations is L2-critical, there are no nonuniqueness results for the 2D case to date, and
all known solutions are Leray-Hopf ones. In fact, a direct corollary of [BV19] is false in 2D: any C;L? weak solution
of the 2D Navier-Stokes equations is Leray-Hopf, and hence smooth and unique. One of the main results in this paper
is to show that the nonuniqueness of weak solutions holds even in 2D.

Theorem 1.5 (Strong nonuniqueness in 2D). Let d = 2 be the dimension. For any divergence-free ug € L?(T?),
there exists a weak solution u (in the sense of Definition 1.1), different from the Leray-Hopf solution, and such that
lim; 04+ ||u(t) — UOHLZ(TZ) =0.

It is worth noting that the nonuniqueness is proved here in a stronger sense than [BV 19, Luo19], namely that every
solution is nonunique in the class of weak solutions. We can classify different types of nonuniqueness results as
follows. Here, X denotes different functional classes of weak solutions.

e “Weak nonuniqueness’: there exists a nonunique weak solution in the class X.

e “Strong nonuniqueness”: any weak solution in the class X is nonunique.

Under this classification, currently the only strong nonuniqueness available is [BCV 18] for 3D, where X can be taken
as CyH® weak solutions with intervals of regularity for a small € > 0. In fact, the main results of [BCV18] can be
adapted to show the strong nonuniqueness of weak solutions on T¢ for dimension d = 4 as well, since Leray-Hopf
solutions in d < 4 have intervals of regularity.

The next result is our headline theorem, where we prove the strong nonuniqueness of weak solutions in a class
of LY L, for any p < 2 and in any dimension d > 2, which is sharp in view of the Ladyzhenskaya-Prodi-Serrin
criteria. This theorem is a direct consequence of our main theorem, Theorem 1.8 below, where a detailed list of the
properties of constructed solutions can be found. In particular, we settle Conjecture 1.4 regarding the sharpness of
Ladyzhenskaya-Prodi-Serrin criteria in the case (p, q¢) = (2, 00).

Theorem 1.6 (Sharp nonuniqueness in d > 2). Let d > 2 be the dimension and 1 < p < 2.
(1) A weak solution v € LP(0,T; L>=(T%)) of (1.1) is not unique in the class LP(0,T; L°°(T%)) if u has at least
one interval of regularity.

(2) There exist non-Leray-Hopf weak solutions u € LP(0,T; L>=(T%)).

Remark 1.7. A few remarks are in order:

(1) In particular, one can apply the theorem to a smooth solution to obtain a nonunique weak solution in the
class LY L°°. In fact, we can alternatively present the result as follows: for any smooth initial data, there are
infinitely many weak solutions with regularity LY L*° that coincide with the unique local smooth solution for
a short time, see the proof of Theorem 1.11 at the end of Section 2.

(2) Eventhough general Li . weak solutions only attain their initial data in the distributional sense, our nonunique
solutions can attain their initial data strongly in L? or even in the classical sense. In other words, the mech-
anism of nonuniqueness does not stem from the roughness of the initial data, but rather the persistence of
space-time oscillations.

(3) The nonunique weak solutions are obtained by modifying a given solution on an interval of regularity. As a
result, these solutions can be arranged to only differ from a given Leray-Hopf weak solution on a fixed time
interval, and hence they attain the initial data strongly in L? as the Leray-Hopf ones. This together with the
Leray structure theorem implies that in dimensions 2 < d < 4, the Cauchy problem of (1.1) has infinite many
weak solutions for any divergence-free initial data vy € L.

(4) One clearly sees that Theorem 1.6 only implies the sharpness of the Ladyzhenskaya-Prodi-Serrin criteria
% + g < 1 at the endpoint (p,q) = (2,00) and the rest of the borderline regime remains open. In fact, these
nonunique weak solutions also live on the borderline of the Beale-Kato-Majda criterion, as we shall see in
Theorem 1.8 below.

(5) Inview of Theorem 1.3, nonunique solutions cannot live in the class L? L>° where weak solutions are Leray-
Hopf, however, Theorem 1.6 shows the existence of nonunique solutions on the borderline of this Leray-Hopf
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class and raises the question of whether such constructions can be extended to Leray-Hopf solutions of lower
regularity.

1.3. The main theorem and intervals of regularity. We now present the main theorem of the paper, which implies
immediately Theorems 1.5 and 1.6 above as we show in Section 2. One of the most interesting features of the
constructed weak solutions is that they possess intervals of regularity, i.e. they are classical solutions on many sub-
intervals whose union occupies a majority of the time axis, cf. the classical Leray-Hopf solutions [Ler34] and recent
works [BCV18, CRS21, RH21] on wild solutions with such a property, which we will discuss in detail towards the
end of the introduction.

Theorem 1.8 (Main theorem). Let d > 2 be the dimension and 1 < p < 2, ¢ < o0, and € > 0. For any smooth,
divergence-free vector field v € C*([0,T] x T%) with zero spatial mean for each t € [0,T), there exists a weak
solution u of (1.1) and a set

1= D(aiabz’) c [0, 77,

such that the following holds.

(1)

(2)

3)

(4)

The solution u satisfies
u € LP(0,T; L°°(T%) N L* (0, T; Wh9(T?)).
w is a smooth solution on (a;, b;) for every i, namely
u|zyma € C®(T x TY).

In addition, u agrees with the unique smooth solution with the initial data v(0) near t = 0 and is also regular
neatt =1T.

The Hausdorff dimension of the residue set S = [0, T \ Z satisfies
dy (S) <e.
The solution u and the given vector field v are e-close in LY L>° N LW14;

Ju— UHLP(O,T;LOC(’]I‘d))ﬁLl(O,T;leQ(’]I‘d)) <e.

Remark 1.9. We list a few remarks here concerning the main theorem.

(1)

(2)

(3)

(4)

In terms of the scaling, u also lies on the borderline of the Beale-Kato-Majda criterion [ BKMS84] which scales
as LYW, Even though it is not known whether the Beale-Kato-Majda criterion implies the uniqueness in
the setting of Lf, o weak solutions, this in a sense suggests that one can not beat the scaling.

The residue set S = [0,T] \ T is a singular set in the sense that for any t & S, there is & > 0 such that
u € C®((t — d,t + 6) x T?). In addition, we do not prove d+(S) > 0, but it follows that the set S is at least
nonempty from our current construction. It seems possible that a more refined bookkeeping would allow to
show a similar lower bound on the Hausdorff dimension of S as well.

Since the solution u(t) is smooth on (a;, b;), the energy equality is satisfied

1 & 1
5\\U(t1)||§+/ [Vu(s)[|3 ds = gHU(to)llg forall to,ty € (a;,b;).
to

However, the energy equality on [0,T)] is not valid, which can be seen by taking a vector field v with an
increasing energy profile.

The driving mechanism of nonuniqueness is a result of large chunks of mass emerging from/escaping to finer
time scales. There is no blowup on each interval of regularity (a;,b;) but norms do blow up as i — oo, at
least for higher order norms.

1.4. Applications to the Euler equations. Our results also apply to the inviscid case with no changes in contrast to
a recent work [BCV 18], which relies heavily on the parabolic regularization.

Theorem 1.10. Theorem 1.8 also holds for the Euler equations. Namely, under the same assumptions, there exists a
weak solution u of the Euler equations satisfying the same properties.
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As a byproduct of the construction, we provide improvements and extensions to the Onsager conjecture in the
negative direction, where the best result in 2D currently stands at L$°C1/5~¢ [BDLIS15], see also [BSV19, pp. 1817]
and [Nov20].

Theorem 1.11. Let d > 2 be the dimension and £ > 0. For the Euler equations or the Navier-Stokes equations on T¢,

3
there exist infinitely many non-conserving weak solutions u € L} “C3n L} C*=¢ with the same initial data.

3_ 1
Theorem 1.11 directly follows from Theorem 1.8 via the interpolation L7~ C'3 C LYL®° N L}C'~ and the embed-
ding L} W14 c L}C'~ in both the viscous case and inviscid case.

Remark 1.12. We list a few remarks for Theorem 1.11.

(1) A simple argument shows that such non-conservative Euler solutions can arise in the vanishing viscosity
limit of the Navier-Stokes equations (using the same constructions). In particular, these solutions belongs to

LIH' ¢ L}WY4, and hence the energy dissipation rate is finite in L%/z.

(2) This result appears to establish the first non-conserving solutions with an exact “%-H{)lder regularity” in

space, albeit with a non-optimal L?/ > exponent in time. The optimal exponent should be LKf*C’ 1/3 based on

the positive results [CET94, CCFS08].

(3) One of the reason for this non-optimal L*/>~ exponent is that the scaling of our solutions is not designed
to produce sharp anomalous dissipation rates, It is also the first nonuniqueness result for the Euler equa-
tions with “nonuniqueness scaling” (i.e. L1C'~¢) deviating significantly from its “Onsager scaling” (i.e.

LZ7°C%) ¢f, [Danl4, DS17, DRS21, BMNV21].

(4) Our solutions are highly oscillatory in space-time and hence not continuous on [0, T| x T, which is in stark
contrast to previous constructions [BDLIS15, Bucl5, BDLS16, Isel8, BLIV18, DRS21, BMNV21]. In fact,
the kinetic energy of our solutions becomes unbounded in a piece-wise constant fashion: on each interval of
regularity (a;,b;) C U;(a;, b;), the energy ||u(t)||3 is a constant, but SUPye (ay,b;) lu(t)]|3 — oo asi — oc.

1.5. Main ideas of the construction. The construction in Theorem 1.8 is based on an iterative scheme to obtain
suitable approximate solutions to (1.1) that consists of two main steps. The first step is a concentration procedure for
producing intervals of regularity while the second step uses the convex integration to finish the iteration. These two
steps are completely independent of each other: one can skip the first step and only iterate with the convex integration
scheme to obtain nonunique LY L weak solutions without any intervals of regularity.

The first step is to concentrate the stress error of the approximate solutions to many smaller sub-intervals, allowing
us to achieve a small Hausdorff dimension of the singular times. One can consider this step as a temporally intermittent
variant of the “gluing technique”, a key ingredient in [Ise18] for the resolution of the Onsager conjecture which was
temporally homogeneous. In particular, this ensures the final approximate solution is an exact smooth solution on
many small intervals. This is done by adding a very small corrector to the existing approximate solution. More
specifically, to obtain such a corrector, we first find the correctors on each small interval where it is designed to
balance the stress error. Due to the local solvability of the Navier-Stokes or Euler equations, these correctors exist and
are smooth provided the interval is sufficiently small. Then we use a partition of unity in time to glue these correctors
on each small interval to obtain the corrector on [0, 7] which remains small, say in L° H?. The partition that we use
has a very sharp transition near the ends of each interval, which effectively concentrates all the stress error to those
regions. Crucially, adding such a small corrector to the existing solution keeps the size of the stress error unchanged
L' in time up to a constant multiple. After this concentration procedure, the stress error is zero on a large subset of the
time interval and thus the size of the concentrated stress error is much larger on its support set.

The second step uses a convex integration scheme to add another perturbation to the concentrated solution, reducing
the size of the stress error. This convex integration technique has been developed over the last decades, see for
instance [DLS09, DLS13, BDLIS15, Bucl5, BLJV18, Ise18, BV19, Luo19] and references therein, since its inception
to fluid dynamics in [DLS09]. For the Navier-Stokes equations, this typically consists of adding carefully designed
velocity perturbation so that the nonlinear interaction balance the stress error in a suitable sense. In particular, its latest
iteration for the transport equation in [CL21] allows us to achieve a very high level of temporal concentration of the
perturbation in the sense that higher Sobolev norms blow up while their time averages remain bounded. This is done
by adding in temporal oscillations that are also highly intermittent in the velocity perturbation. The introduction of
temporal concentration in the convex integration scheme allows us to trade temporal integrability for spatial regularity,
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answering a question raised in [BV21, Problem 4.4]. In fact, the velocity perturbation oscillates much faster in time
than in space, which is vital to obtain the sharp bounds LY L> N L{ W 4. To avoid a dimensional loss, the “building
blocks” used in the scheme are almost spatially homogeneous, in stark contrast to [BV19, Luo19, BCV18].

The most difficult and important part of the iterative scheme is ensuring that the perturbation w satisfies the reg-
ularity w € LYL> N L}W14, while at the same time successfully reducing the size of the stress error. This boils
down to balancing four different aspects of the perturbation: temporal and spatial oscillation/concentration. Intuitively,
it is known that concentration may be used to trade integrability for derivative, while oscillation allows for gaining
derivative with differential operators with negative order. In the present work, the leading order effects are temporal
concentration and spatial oscillation which contribute most to getting the sharp regularity LY L>° N L} W9, whereas
temporal oscillation and spatial concentration effectively play minor roles. Among other small technical improve-
ments, the temporal oscillation is a necessary part of the space-time convex integration scheme in [CL21] and the
spatial oscillation is used to get negligible interference between the building blocks especially in 2D. We refer to the
discussion in Section 2.4 for more details.

1.6. Comparison with previous works. In the last part of the introduction, we compare our main results to the
previous works and list a few open questions. We divide the discussion into three topics as follows.

Regularity threshold for uniqueness/nonuniqueness. The first nonuniqueness result for the Navier-Stokes system was
established in [BV19] by Buckmaster and Vicol, where finite energy nonunique weak solutions were constructed in
3D. Even though the nonuniqueness is only proved in C,L?2, the iteration scheme in [BV19] allows for a very small
regularity H* for ¢ < 1, which was then used in [BCV18] to show nonuniqueness at such a regularity. The work
[Luo19] built upon the observation that in higher dimensions, weak solutions can be less intermittent, and thus the
regularity of nonuniqueness was improved to H /290~ for d > 4. In fact, as noted in [Ta019], in very high dimension
one can show nonuniqueness in C; H/2~ or H'/?~ in the stationary case, although the regularity H'/2~ is still very
far from the critical scale H 5~ or L.
Below we compare different results using the scales of space-time Lebesgue spaces XP9.

Results Category Scaling Range
Leray-Hopf solutions | Existence 2+e=¢ q>2

[BV19] Nonuniqueness | 2 + % =4 g=2andd=3
[BCV18] Nonuniqueness % + % =2 ¢ q=2+andd =3
[Luo19] Nonuniqueness % + % % — ﬁ q=2+andd >4
Theorem 1.8 Nonuniqueness % + % =1+c¢ q = o0

Theorem 1.3 Uniqueness % + % =1 q < o0

In light of the current state, we expect the nonuniqueness of weak solutions continue to hold in the full range of the
super-critical regime 1% + g > 1. Unfortunately, the method developed in this paper heavily relies on the constraint
p < 2 (g = o0) and is not able to achieve the nonuniqueness of weak solutions in X?9 for p > 2 and ¢ > 2.

Size of the potential singular set. Here we discuss our result in the context of partial regularity, more specifically, the
size of the singular set in time or space-time. By singular times we mean the union of times at which the solution is
not locally smooth, while singular points in space-time refer to points (¢, ) where the solution is not locally bounded
(in the sense of ess sup).

By the classical results of Leray, in 3D the Hausdorff dimension of possible singular times of a Leray-Hopf solution
is bounded by 1/2°. A key step in understanding the (possible) singular set of weak solutions was made by Scheffer
[Sch76a, Sch77, Sch80] where the notion of suitable weak solutions was introduced. It was proved in [Sch80] that
the singular sets of these suitable weak solutions have finite %-dimensional Hausdorff measure in space-time. The
theory of partial regularity culminated with the work [CKN82] by Caffarelli, Kohn, and Nirenberg where they show
that P1(S) = 0, i.e., the 1-dimensional parabolic Hausdorff measure of the singular set in space-time is zero. Note
that these partial regularity results only provide upper bounds on the potential singular sets.

While convincing evidence [Sch85, Sch87, Oza20] suggests that the upper bound of 1-dimensional parabolic singu-
larities in 3D is likely to be sharp for suitable weak solutions, it was unknown whether there exists a weak solution with

3This interpretation was made explicit in [Sch76b].
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a nontrivial® singular set until the work [BCV 18] where the authors constructed wild solutions with a nonempty set of
singular times with a dimension strictly less than 1. As in [BCV 18], solutions constructed here are not Leray-Hopf;
however, they constitute the first example of 3D weak solutions that surpass the 1/2 upper bound (with a nonempty
singular set). We remark that the recent work [CRS21] proved that finite energy weak solutions with intervals of
regularity are not typical.

In dimension d > 4, the existence of partially regular (in space-time or in time) weak solutions becomes highly
nontrivial. In fact, Leray’s structure theorem only holds up to d = 4 and the local energy inequality, a key ingre-
dient in the partial regularity theory, remains absent in d > 4 [DD07, Remark 1.1]. Despite such a difficulty, the
existence of partially regular weak solutions in space-time was established in 4D [Sch77] by Scheffer and also a re-
cent result [Wu21] by Wu. In dimension d > 5 the existence of partially regular weak solutions( in space-time or in
time) was unknown to our knowledge and Theorem 1.8 appears to be the first example of weak solutions with partial
regularity in time in dimension d > 5.

Concerning the partial regularity in space-time, the singular set of our solutions is the whole spatial domain at
each singular time, as with all the other constructions exploiting a convex integration scheme. It might be possible to
construct wild solutions that enjoy a certain space-time partial regularity by a space-time variant of the concentration
procedure used here.

Anomalous dissipation of the Euler equations. A recent milestone in incompressible fluid dynamics is the resolution
of the Onsager conjecture [Ons49] which states that %-Ht’)lder is the critical threshold for energy conservation for the
3D Euler equations. While the positive direction was settled in the 90s in [CET94] following the first attempt by
[Eyi94] and then later refined in [DR0O0, CCFS08], the negative part was significantly harder and the regularity of
counterexamples [Sch93, Shn97] was far below the threshold. Advances in the negative direction really took off with
the modern convex integration approach starting with the seminal paper of De Lellis and Székelyhidi Jr. [DLS09].
The approach of using convex integration was refined and improved in a series of works [DLS13, DLS14, BDLIS15,
BDLS16]. Building upon these works, the threshold C;,C' 1/3~ was finally reached by Isett [Ise18], see also [BLIV18].
We remark that in the scale of L? Sobolev space, recently the authors in [BMNV21] were able to show anomalous
dissipation in C; H'/?~.

So far, constructed anomalous weak solutions have a limited regularity on the whole time axis, namely, the Holder
regularity in space is always below % The works [CET94, CCFS08] suggest that insisting on the exact “%—Hblder
regularity” in space leads to L? being the right critical scale in time for the energy conservation. This exact “s-Holder
regularity” of anomalous dissipation seems to be out of reach for the previous Euler schemes, an issue that has been
investigated recently by Isett [Ise17].

Even though our inviscid solutions have a worse global-in-time regularity, they are smooth solutions on a “large”
portion of the time axis, and hence the kinetic energy is conserved locally in time. The mechanisms of the failure of the
energy conservation are completely different: fast spatial oscillations play a key role in the previous Euler examples,
whereas a strong temporal concentration here causes the breakdown at small time scales. It would be very interesting
to combine the previous Euler results with the current paper to show that there exist “wild solutions” in C;C' 3T or
Lf_ C'3 that are locally smooth in time away from a small singular set, cf. [RH21].

1.7. Notations. For reader’s convenience, we collect the notations used throughout the manuscript.

e T? = R?/Z4 is the d-dimensional torus and is identified with [0, 1]%. For any function f : T? — R we denote
by f(o-) the 0~ T9-periodic function f(oz). The space C§°(T?) is the set of periodic smooth functions with
zero mean and C§°(T?, R?) is the set of periodic smooth vector fields with zero mean.

e The Lebesgue space is denoted by LP. For any f € L'(T?), its spacial average is
fdx = fdx.
Td Td

For any function f : [0,7] x T¢ — R, denote by || f(¢)||,, the Lebesgue norm on T¢ (in space only) at a fixed
time ¢. If the norm is taken in space-time, we use || f||.» .

“Here by nontrivial we mean that the singular set is not empty or full since smooth solutions have no singularity while the singular set of the
solutions in [BV19] is the whole space-time domain.
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e For any Banach space X, the Bochner space LP(0,T'; X) is equipped with the norm

([ 1 ma)”,

and we often use the short notations Ly X and || - || ,» x. In particular, when X = L4(T9), we write LY L9 =
LP(0,T; LY(T4)) for simplicity.

e The tensor divergence div A = 9; A;; for any matrix-valued function A : T¢ — R%*< and the tensor product
f ®g = fig; for any two vectors f,g € R?. The notion V indicates full differentiation in space only, and
space-time gradient is denoted by V; ;.

o We write X <Y if there exists a constant C' > 0 independent of X and Y such that X < C'Y. If the constant
C depends on quantities a1, ag, . .., a, we will write X Sq, o or X < Cy, . Y.

~

1.8. Organization of the paper. The organization of the rest of the paper is as follows.
(1) The outline of construction is given in Section 2, where main theorems will be proved assuming the main
proposition of the paper, proposition 2.2.

(2) The proof of the main proposition is the content of the rest of the paper:
(a) We concentrate the stress error to many small sub-intervals in Section 3;

(b) We design a velocity perturbation using convex integration to obtain a new solution pair (u1, R1) in
Section 4;

(c) Finally we estimate the perturbation along with the new stress error to conclude the proof in Section 5.

(3) Appendix A includes a proof of Theorem 1.3. Appendix B contains some technical tools used in the paper,
namely an improved Holder’s inequality and antidivergence operators on T¢.

2. OUTLINE OF THE PROOF

The proof of Theorem 1.8 consists of an iterative scheme, which is achieved by repeatedly applying the main
proposition of this paper, Proposition 2.2 to obtain a sequence of solutions (u,, R,) to (2.1). The proof mainly
consists of three goals:

(1) The convergence of u,, — u in Lf’x and R, = 0in Ltlw so that u is a weak solution of (1.1).
(2) Ensuring the final solution verifies u € LY L>° N L}W14 for p < 2 and ¢ < oo.
(3) Achieving a small dimension of the singular set of u in time.
To this end, we employ a two-step approach:
o Step 1: (un, Ry)

= space-time convex integration

e Step 2: (Un, Ry) (Un+1, Rny1)

where the first step is mainly for achieving a small singular set in time and the second step is to ensure the convergence
of R,,.

concentrating the stress error

(T, Rn)

2.1. The Navier-Stokes-Reynolds system. Let us first introduce the approximate equations of (1.1) for our approxi-
mate solutions. These approximate solutions solve the so-called Navier-Stokes-Reynolds systems
Ou — Au+diviu®@u) + Vp =divR
. 2.1
divu =0
where R : [0,T] x T¢ — Sg *d is a traceless symmetric matrix called Reynolds stress.
Since the associated pressure p can be uniquely determined by the elliptic equation:

Ap =divdiv R — divdiv(u @ u) = 9;0;(R;j — u;u;)
together with the usual zero spatial mean condition fw pdx = 0, throughout the paper, we denote the solution of (2.1)
by (u, R).
This system (2.1) arises naturally when studying weak solutions of the Navier-Stokes equations. The Reynolds
stress I? emerges as the noncommutativity between average ensembles and the quadratic nonlinearity.
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In the inviscid case, we can just drop the Laplacian term in (2.1) and the system becomes the so-called Euler-
Reynolds equations, which was widely used in constructing non-conserving weak solutions of the Euler equations in
the context of Onsager’s conjecture [DLS13, DLS14, BDLIS15, BDLS16, Ise18, BLIV18].

Since the Laplacian plays no role in our construction and is treated as a source of errors, in what follows we simply
use (2.1) to prove all the main theorems for the viscous case, and the results for the inviscid case can be obtained by
dropping the Laplacian in (2.1).

2.2. Concentrating the stress error. As stated in the introduction, we proceed with two steps to prove this main
proposition. The first step is a procedure that concentrates the stress error into many smaller sub-intervals.

Given (u,—1, R,—1), we divide the time interval [0, T'] into smaller sub-intervals J; of length 7¢ > 0, where 7 > 0
will be chosen to be very small depending on (u,,—1, R,—1). So the total number of sub-intervals is ~ 77¢.

On each sub-interval J;, we solve a generalized Navier-Stokes equations linearized around (u,,_1, R,—_1) to obtain
a corrector v; on J;. More precisely, v; : J; X T — R? solves

Opv; — Av; + div(v; @ v;) + div(v; @ u) + div(u @ v;) + Vg; = —div R
dive; =0 2.2)
’Ui(ti) =0

where (u, R) = (up—1, Rn—1), so that u,,_1 + v; is an exact solution (of the Navier-Stokes equations) on J;. The
solvability of (2.2) and smoothness of v; on J; are guaranteed by taking 7 > 0 sufficiently small.

To concentrate the error and obtain a solution on [0, T, we apply a sharp cutoff y; to the corrector v; and obtain
the glued solution u,,—; defined by

Up—1 1= Up—1 + Z XiVi-
K3
Specifically, each y; equals 1 on a majority of the sub-interval J;, but x; = 0 near endpoints of each J; of scale ~ 7.
Since € < 1, the cutoff x; is very sharp when comparing to the length of the sub-interval .J;. These sharp cutoffs x;
ensure that T, is well-defined and smooth on [0, T'].

On one hand, due to the sharp cutoff y;, the stress error R,,_1 associated with @,,_; will only be supported near
the endpoints of J; of time scale 7. In other words, the temporal support of R,,_; can be covered by ~ 7% many
intervals of size ~ 7, from which one can already see a small dimension of the singular set of the final solution.

On the other hand, the corrector v; is very small, say in L° H%, since it starts with initial data 0 and we can choose
time scale 7° = |J;| to be sufficiently small. More importantly, we can show that the new stress error R,,_; associated
with w,,_1 satisfies the estimate

HﬁnflnL%Lr 55’7‘ ||R’ﬂ*1||L%LT foralll <r < o,

with an implicit constant independent of the time scale 7 > 0. In other words, concentrating the stress error R,,_1 to
R,,_1 cost a loss of a constant multiple when measuring in L* norm in time.

2.3. Space-time convex integration. The next step is to use a convex integration technique to reduce the size of
R, by adding further a perturbation w,, to U, _1 to obtain a new solution (u,,, R,) of (2.1). The perturbation w,,
and the new stress R,, satisfies the equation

div R, = div R,,_1 + div(w, @ wy,) + Oyw, — Aw, + div(U,_1 @ wy,) + div(w, @ Up_1) + VP,

for a suitable pressure P,,. The heuristic is that the high-high to low cascade in space-time of w,, ® w,, can balance
the old stress error R,,_1 in the sense that

div(R,,—1 + w, ® w,) = High Spacial Freq. Term + High Temporal Freq. Term + Lower Order Terms,  (2.3)

where the “High Temporal Freq. Term” above will further be balanced by a part of d,w,,, as in [BV19, BCV18]
and [CL21]. However, one of the fundamental differences to [BV 19, BCV 18] is that this additional “convex integration
in time” requires no additional constraint of oscillation and concentration and is basically free, which is crucial to
obtain the sharp regularity LY L% N L; W4,
In particular, executing the scheme of [CL21] requires two crucial ingredients:
(1) Suitable stationary flows as the spatial building blocks that can achieve some level of spatial concentration.

(2) The use of intermittent temporal functions to oscillate the spatial building blocks in time.
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Once (1) is available, it is relatively straightforward to implement (2). On the technical side, we use the stationary
Mikado flows introduced in [DS17] as the spatial building blocks. These are periodic pipe flows that can be arranged to
be supported on periodic cylinders with a small radius. In other words, Mikado flows can achieve a d — 1-dimensional
concentration on T¢, which is more than enough in view of (1). It is worth noting that in the framework of [BV19],
stationary Mikado flows are not sufficiently intermittent to be used for the Navier-Stokes equations in dimension
d < 3, cf. [Luol9].

The space-time cascade (2.3) imposed a relation between the perturbation w,, and the stress error R,,_; as

lwnllzz, ~ [Rn-1llry,- 24

The relation (2.4) will imply the convergence in Lf’w of the approximate solutions w,, as long as one can successfully
reduce the size of the stress error

IRallss . < [Rucallss - 25)
In particular, special attention will be paid to estimating the temporal derivative part of the new stress error
div Riem = Oswy,, (2.6)

and achieving the regularity of the perturbation
Hwn”L‘t"LoC + HwnHLiwl’q < 1L 2.7

These two constraints (2.6) and (2.7) require a very delicate choice of parameters when designing the perturbation
wy,. On one hand, (2.6) implies the temporal frequency can not be too large, relative to the spatial frequency, otherwise
the time derivative will dominate. On the other hand, (2.7) requires a large temporal frequency so that temporal
concentration can offset the loss caused by going from L2 to L> or W14 in space in relation to (2.4).

Nevertheless, it turns out that the scheme in [CL21] is flexible enough to accommodate (2.6) and (2.7). We could
somehow explain why this is possible. Roughly speaking, the method in [CL21] is L?,I—critical. While it is difficult
for wy, to go above the L7, regularity, we trade L* for L? (resp. L') in time to obtain an improvement of L? to L>
(resp. W1:9) in space. We provide a scaling analysis below.

2.4. Oscillation and concentration. We do this computation in general dimension d > 2 and D € [0, d] denotes the
spatial intermittency, cf. [Man76, Fri95].
We start with a velocity perturbation in Lf,x with a certain decay given by the previous stress error,

|wnllzz, =0 asn — oo.
Denote the spatial frequency by A and the temporal frequency by x, namely
107V wall | S KA
The intermittency parameter D € [0, d] in space dictates the concentration level of w,, and the scaling law
wn ()l 2o < wn(®)|2A )G forall 1 < g < co. (2.8)
As for the temporal scaling, we assume for simplicity a full dimensional concentration in time:

lwall 2o S 6277 lwallp2 e ~ k27FAUTDETD forall 1 < p,g < co. (2.9)

~

With such scaling laws, we effectively assume a negligible amount of temporal oscillation and the goal then boils
down to finding a working choice of D in terms of the given parameters d, p,q. In other words, we need to find a
balance between spatial oscillation and spatial concentration.

By the scaling relations (2.8) and (2.9), the stress error contributed by the time derivative (2.6) satisfies

d—D
2

Idiv™" (@rwn) |y, S HIATIATT, (2.10)

where we assume formally an inverse divergence div! gains one full derivative in space. The regularity condition
(2.7) becomes

e <« 1, (2.11)
and

wnllLrwia ~ RTEATST T 1L (2.12)
In particular, (2.10) and (2.12) imply that

d—D _ d—

AT T g« NI (2.13)
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which always has some room since ¢ < oo. Then all we need to is to choose D to ensure (2.11) and (2.13). One
can already see that D should be very close to d, which means we need much more spatial oscillation than spatial
concentration. Indeed, solutions to (2.11) and (2.13) do exist and we refers to Section 5.1 for the exact choice used.

2.5. The main iteration proposition. We are ready to introduce the main iteration proposition of the paper that
materializes the above discussion. To simplify the presentation, let us introduce the notion of well-preparedness of
solutions to (2.1), which encodes the small Hausdorff dimension of the singular set in time. Throughout the paper, we
take 7' = 1 and assume 0 < € < 1 without loss of generality.

Definition 2.1. We say a smooth solution (u, R) of (2.1) on [0, 1] is well-prepared if there exist a set I and a length
scale T > 0 such that I is a union of at most 7—° many closed intervals of length 5T and

R(t,x) =0 if dist(¢t,I°) <.

With this definition, to ensure the solution w has intervals of regularity with a small residue set of Hausdorff
dimension < ¢, it suffices to construct approximate solutions (u,, R,,) that are well-prepared for some I, and 7,, such
that

I,cl,y and 7, —0.

The main proposition of this paper states as follows.

Proposition 2.2 (Main iteration). For any ¢ > 0 and p < 2, there exists a universal constant M = M (e, p) > 0 and
r > 1 depending only on p and q such that the following holds.

Let 6 > 0 and (u, R) be a well-prepared smooth solution of (2.1) for some set I and a length scale ¥ > 0. Then

there exists another well-prepared smooth solution (u1, Ry) of (2.1) for some set I C I with 0,1¢ Tandt < 7/2
such that

[ R1llz 0,150 (Tay) < 0

Moreover, the velocity perturbation w := w1 — u satisfies

(1) The temporal support of w is contained in I, i.e.

suppw C I x TY;
(2) The L}, estimate,
lwll z2(0,17xTey < MR L1 (j0,1)xT4)5
(3) The LYL> N LW Y4 estimate,
1wl Lr0,1;L5 (ay) + Wl L1 (0,0;w 10 (Tay) < 6.

Remark 2.3. We list a few comments concerning the main proposition.

(1) Itwill be clear that the construction adapts no change for the Euler equations, except dropping the Laplacian.

(2) The parameter r > 1 is used to ensure the L™ boundedness of the Calderon-Zygmund singular integral and is
very close to 1.

(3) Due to the local well-preparedness, on large portions of the time axis, the solutions are exact solutions of the
Navier-Stokes equations (or the Euler equations) and we do not touch them in the future.

We will break down Proposition 2.2 into two separate propositions, whose proof will be the context of Section 3
and respectively Section 4 and Section 5.

2.6. Proof of main theorems. We first deduce Theorem 1.5 and Theorem 1.6 from Theorem 1.8.

Proof of Theorem 1.5. Given initial data ug € L?(T?), we let v be the Leray-Hopf weak solution on [0, 1] with initial
data v(0) = up.

Since v is Leray-Hopf on [0, 1], v is in fact smooth on (0, 1]. Let @ : [1/2,1] x T? — R? be a smooth divergence-free
vector field that coincide with v on [1/2, 3/4] but

||E— U||Lp(1/271;Loo(’H‘d) Z 1. (214)
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Then we can apply Theorem 1.8 for the vector field o and some 0 < € < 1 to obtain a weak solution @ on [1/2, 1] x T?.
The conclusion follows once we define the weak solution u : [0, 1] x T? — R? by

{v ift €[0,1/2]

u ifte(1/2,1].

Indeed, the new glued solution w is still a weak solution of (1.1) due to the fact that & and v coincide on [1/2,1/24-6]
for some 6 > 0. Moreover, by (2.14)

lu — vl ray2,15000 = 10 = 0llLe1/2,1;000 = |8 =D Lp(1/2,;000 > 1 —€ >0,

which implies u # v. The L? continuity at t = 0 follows from the fact that uo,1/2] = V[0,1/2] and v is the Leray-Hopf
solution.
O

Proof of Theorem 1.6. To prove both points, it suffices to show that given a weak solution v € LP(0, 1; L>°(T?) of
(1.1) with at least one interval of regularity, there exists a non-Leray-Hopf weak solution u € L?(0, 1; L>(T%) having
intervals of regularity and with the same initial data.
Let [a, b] be an interval of regularity of the weak solution v. We first choose a smooth, divergence-free vector field
v : [a,1] x T¢ — R? such that
U{a,b]xTa = Vl{a,b]xTds
but
10 = vllzeazee(ray) 21 and [Vl poa,1;02(m0)) = 1+ [[0(0)[| L2 (Ta), (2.15)
As in the proof of Theorem 1.5, we apply Theorem 1.8 to ¥ and £ < 1 to obtain a weak solution % € LP(a, 1; L°°(T%))
such that
@ = 0| r(a,1;00 (T4)) < €- (2.16)
We then define a new solution u : [0, 1] x T¢ — R% by

{v ift € [0,qa]

u ift € [a,1].
The glued solution u € LY L is still a weak solution due the smoothness of both v and  near ¢ = a. Next, u and v
are different since
= vll ez = 1T = vl zo(a i) > 15 = vllzoa i) = 7= Tlzorz~y = 1 -6,
where we have used (2.15) and (2.16). Finally, « can not be a Leray-Hopf solution since
lullzre = 1@lr(oree) 2 1Bl zr@nes) — 17 = Flisgeizey > [0(0)ll2
and Leray-Hopf solutions must have a non-increasing L? norm. (|

Next, we prove Theorem 1.11 in the case of the Euler equations. The proof is identical for the Navier-Stokes
equations since Proposition 2.2 holds for both equations.

Proof of Theorem 1.11. We first choose an infinite sequence of smooth divergence-free vector fields v,, € C§°([0, 1] x
T%) such that:

(1) On [0, %] every vy, coincides and is equal to an exact solution of the Euler equations;

(2) Each v, satisfies
[vnllLe(o,1;0) = 2"

We now apply Theorem 1.10 for the Euler equations with the vector fields v,, and some € < % to obtain infinite
many weak solution u,, € LY L? N L} W4 of the Euler equations.

On one hand, since each v,, we used agrees and solves the Euler equations on [0, 1/2], by Theorem 1.8, for any
n > 1, there exists 7,, > 0 such that u,, coincides with v,, on [0, Tn]s . So every weak solution u,, has the same initial
data.

On the other hand, these weak solutions w,, are different since for any n > m,

llun — Um”LfLOC > [lun — UnHLfL“«‘ — JJum — UWL”L‘{’LOC >2" -1,

5tn fact, 7, can be taken to be 1/2 if we use Proposition 2.2 instead of Theorem 1.8.
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where we have used that e < 1.

It remains to show the regularity u,, € L>/>~*C'/3 0 L1C~=. This can be done by standard interpolations. Since
for any € > 0 there exists ¢ < oo such that the embedding

whe(Td) — Cc'=¢(T?)

holds, we get L1C~<. The bound u € L¥/*75C/3 can then be obtained by interpolating L L> with LLC1~¢ (with
different ¢). U

Finally, we prove Theorem 1.8 and Theorem 1.10 assuming Proposition 2.2.
Proof of Theorem 1.8 and Theorem 1.10. Let uy = v and
RO = R(aﬂlo - A’U,o + div(uo X uo))

where R is an inverse divergence operator on T¢ defined in Appendix B.

Since the given vector field v has zero spatial mean for each ¢ € [0, 1], (ug, Ro) solves (2.1) trivially and is well-
prepared for I = [0, 1] and 7 = 1. We construct a sequence of solution (uy,, R,,) for n € N as follows.

Given (u,,—1, Rn—1), we apply Proposition 2.2 with the parameter

8p :=2""min {||Rp_1|p10-. ¢}

to obtain (u,,, R,). Denote the perturbations by w,, := u,, — u,—1 forn > 1.
As a result, we have
[Bnlley, < I BnllLirr < 6n,
and
lwnllrLoe + lwallLiwa < 0n,

for any n > 1. Also,
lwallzs . < M{[Rucillny, < Méos,

for any n > 2.
Since uy, is Cauchy in L7 , N LY L N Ly W4, there exists u € L7 , N LYL> N L{ W4 such that

Up —u in L], NLYL™® N Liwha.

To show that u is a weak solution of (1.1), we need to verify the a.e. in time divergence-free condition and the weak
formulation. As we will show below, the Lebesgue measure of the singular set in time is zero, so u is a.e. in time
divergence-free by construction.

Now we show that the weak formulation holds. Indeed, take any ¢ € Dy, then using the weak formulation of (2.1)
or integrating by parts we have

/ un (0, 2)p(0, z) de = —/ (Un - Ao + up @ Uy : Vo + up - Orp) dedt — / R, : Vo dxdt.
Td [0,1]xTd [0,1]xTd

Since u, — w in Liw, R, — 0in L,},w, and u,, (0,2) = v(0, z) for all n > 1, it follows that all terms above converge
to their natural limits and hence w is a weak solution of (1.1).

Moreover,

= vl zpzmnzpwre < 3 [lwnllzpze + lwnllpwd] < 327 <.
n>1 n>1

Finally, we show the structure of the intervals of regularity of u. Recall that each solution (u,,, R,,) is well-prepared,
so let us denote by BB,, C [0,1] and 7,, > 0 the set and length scale of the well-preparedness of (uy, R,).

Let

7= JB;\{0,1},
n>0

where the complement is taken in [0, 1]. Note that B¢ C (supp wy, ) forall n > 1, and B¢ \ {0, 1} are monotonically
increasing open sets. Therefore wy(t) = 0 on BE for all k& > n, and hence u(t) = w,(t) on B for each n. Since
uy, is smooth, this proves that u|z,ra € C(Z x T?). By construction, each u,, also agrees with each other for
0 <t < 71/2, and hence u agree with the unique smooth solution with initial data v(0) near ¢t = 0.
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Finally, since each B,, is a finite union of closed intervals, we can write Z as a union of countably many open
intervals:

I = U(ai,bi).

i>0
For the Hausdorff dimension bound of [0, 1] \ Z, we notice that

0,)\Z = ﬂ B,, = limsup B,.

n>0
Since each B,, is covered by at most 7,, € many balls of radius 57,,, we have

dy(limsup B,,) < e.

3. CONCENTRATING THE STRESS ERROR

The goal of this section is to prove Proposition 3.1 below. The idea is that given a solution (u, R) of (2.1), we can
add a small correction term to the existing solution (u, R) so that all of the stress error /2 concentrates to a set I, the
union of small intervals of length 7, and thus obtain a new solution (u, R). The key is that the procedure

(u, R) — (u, R)
leaves the size of the stress error R invariant L' in time, up to a cost of a constant multiple, namely
IR - < ClR||pi- forany 1 <r < oo, 3.1
where C' = C(r, e, d) is a universal constant that only depends on d and r, ¢ in the well-preparedness.

Proposition 3.1. Let 0 < ¢ < 1 and (u, R) be a well-prepared smooth solution of (2.1) for some set and a length
scale I and 7 > 0. For any 1 < r < oo, there exists a universal constant C = C(r,e,d) > 0 such that the following
holds.

For any 6 > 0, there exists another well-prepared smooth solution (i, R) of (2.1) some set I C I with 0,1 ¢ I and
T < T/2 satisfying the following.

(1) The new stress error R satisfies

w

R(t,z) =0 if dist(t,I°) < 77,
and
IR 120,10 (ray)y < ClIRI 110,107 (Ta))3
(2) The velocity perturbation W := u — u satisfies
suppw C I x ¢,
and
1@l Lo (0,151 (7)) < 9
Note the slightly stricter bound dist (¢, [¢) < 377 versus the definition of well-preparedness is to leave room for the
future convex integration scheme in the next section.

3.1. Subdividing the time interval. We first introduce a subdivision of the time interval [0, 1]. Then on each sub-
interval [¢;,t; 1], we solve a generalized Navier-Stokes (or Euler in the inviscid case) equations and obtain a solution
v; so that u + v; is a exact solution of the Navier-Stokes equations on [t;, t;41].

Let 7 > 0 be a small length scale to be fixed in the end of this section and define for 0 < i < |77¢]

ti = ’iTE.

Without loss of generality, we assume 7~ ¢ is always an integer so that the time interval [0, 1] is perfectly divided.
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For0<i<77°—1,letw : [t;;ti1] x T — R%and ¢; : [t;, t;11] X T¢ — R be the solution of the following

generalized Navier-Stokes system
Opv; — Av; + div(v; @ v;) + div(v; @ u) + div(u ® v;) + Vg, = —div R
dive; =0 3.2)
vi(ti) = 0.

Since the initial data for v; is zero and v and R are smooth on [0, 1] x T<, thanks to the general local wellposedness
theory of the Navier-Stoke equations (or the Euler equations in the inviscid case), for all sufficiently small 7 > 0, we
may solve equation (3.2) on intervals ¢ € [t;,t,11] to obtain a unique smooth solution v;.

We shall focus on estimating each v; on the associated interval [t;, t;11]. The solution v; serves as an “accumulator”
of the stress error on [t;, t;+1], and it will provide the major contribution to the new stress error R once we use a gluing
procedure.

Recall that R : C°(T?, R?) — C>(T¢, S§*?) is an inverse divergence operator on T¢ defined in Appendix B.
The below result quantifies the size of the corrector v; in relation to the time scale 7 and the forcing — div R.

Proposition 3.2. Let d > 2 and (u, R) be a smooth solution of (2.1). There exists a universal constant C, > 0
depending on 1 < r < oo and d so that the following holds.
Forany ¢ > 0, if 7 > 0 is sufficiently small, then the unique smooth solutions v; to (3.2) on [t;, t;11] satisfies

”viHL“(ti,tHl;Hd(Td)) = 6’

and
tit1
HRvi||L°°(ti,ti+1;Lr(Td)) < CT/ R dt + CuoTe,
ti
where C., is a sufficiently large constant depending on u but not on § or .

Proof. The first estimate follows directly from the fact that ||u|| g« is uniformly bounded on [0, 1] and standard energy
bounds for v; by a continuity argument. Assuming ¢ > 0 is sufficiently small, we prove the second one as follows.
To reduce notations, we simply write v for v; and denote z := Rv. Note that (3.2) preserves the zero-mean
condition.
Denote by P the Leray projection onto the divergence-free vector fields on T¢. Once the pressure is eliminated by
projecting (3.2), the evolution of z is governed by

Opz — Az =F,
where
F=-RPdiviv®v+u®v+v®u)— RPdivR.
Since 1 < r < 0o and RIPdiv is a Calderén-Zygmund operator on L"(T%), a standard energy method yields

t
12| Lr(ray < Cr/ (IR()r + lv@vlly + lu@ vl + lv @ ully) ds forallt € [ti, tia],
t;

where the constant C,. depends only on > 1 and dimension d. Using the obtained estimate on v and the embedding
HY(T?) C L>=(T?), we get

tit1
el tnizown < Cr [ (RO + Nl viraceoy + Nl Bl s ircroy )
ti

Since t;41 — t; = 7%, it follows that

tit1
20 oo (b1t 230 )y < Cr/t [ R(E)|lr dt + Cr776(6 + ||ullLgs, )-
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3.2. Temporal concentration by sharp gluing. Since v + v; is an exact solution of the Navier-Stokes equations on
each interval [t;,t;,11], 0 < ¢ < 77¢ — 1, the next step is to suitably glue each v; together so that the glued solution
w4 > x;v; is still an exact solution on a majority of the time interval [0, 1], with an error supported on many small
disjoint sub-intervals.

We first choose cutoff functions that will be used to glue together v;. We define x; € CS°(R) be a smooth cutoff
such that when1 < ¢ < 77¢ — 2,

1 ift <t <tjqg—
Xi = Hlt7 SOt =7 (3.3)
0 lfti—l—T/QZtOI'tZtH_l—T/Q,
and when ¢ = 0,
1 ifo<t<t; g —
Xi=4 oo =iEmeT (3.4)
0 lftth_l*T/Q,
and when¢ =77 -1,
1 ift;+7<t<1
Xi=4. . (3.5)
0 1ft§ti+7/2.

In other words, we do not cut near the endpoints ¢ = 0 and ¢ = 1, and the glued solution % is an exact solution for a
short time near £ = 0 and ¢ = 1. It is worth noting that in the iteration scheme v; for i = 0 or i = 7—° — 1 will be zero
after the first step (since it is already an exact solution of (1.1) there), so (3.4) and (3.5) are only used once.

Furthermore, we require that the bounds

|v7nXi| ,Sm 7_—'I')’L7

hold uniformly in 7 and i.

Note that for sub-intervals [t;,t;11], 1 <@ < 77¢ — 2, we cut near both the left and the right point of [¢;, t;11]. The
left cutoff is to ensure smoothness near ¢; since each v; only has a limited amount of time regularity at ¢ = ¢; whereas
the right cutoff is where the intended gluing takes place. With x; in hand, we can simply define the glued solution as

E::u—l—ZXivi =u+w.
i
It is clear that @ : [0,1] x T? — R? has zero spatial mean and is also divergence-free. It remains to show that %
satisfies the properties listed in Proposition 3.1.

Heuristically, u should be an exact solution with a stress error supported on smaller intervals of size 7. To confirm
this claim, we must compute the stress error R associated with @. Since supports of x; are disjoint, we can compute

8y — At + div(z ®7) + Vp = div R + (9, — Z Xivi

+indiV (u®v;) —i—ZXidiV(vi@u)

4 %

+ Z X2 div(v; @ v;).
Thus, using the fact that v; solves (3.2) on [t;, t;11] and u solves (2.1) on [0, 1], we have
Ou— Au+diviu®u) + Vp=divR + Z Oy Vs + Z(XZQ — x:) div(v; ® v;)
i i

+ Z Xi (Orv; — Av; + div(v; ® v;) + div(u @ v;) + div(v; ® u))

1—2){1 leR‘i’Zanz'Uz‘i’Z —xq) div(v; ® v;) Z)Oqu

Now let
]- - Z Xz R + RZ athUz + Z - Xi Uz®vza (36)

where @ denotes a traceless tensor product, i.e. f®g = fig; — E 0i; frgr. Since each v; has zero spacial mean,
div Rv; = v;, and we can conclude that

ou — Au+ div(z ® 1) + Vp = div R,
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where the pressure p : [0,1] x T¢ — R is defined by

2
"
p=p+Zi:Xiqz'—Z(Xf—Xi)| (;' :

%

The last step is then to show that the new Reynolds stress R is comparable to the original one when measured in
L;. Tt is clear that R is much more “turbulent” than the original R as its value changes much more drastically due to
the sharp cutoff y near the endpoints of each interval [¢;,¢;11].

The heuristic is that if 7 is small enough, then v; behaves linearly with a rate ~ div R, and thus gluing together v;
only counts the input from the stress forcing div R. More precisely, the leading order term in (3.6) is the second term,
where Ruv; is proportional to R thanks to Proposition 3.2.

Proposition 3.3. For any 1 < r < oo, there exists a universal constant C,. depending on r,e and d such that for all
sufficiently small 7 > 0, the glued solution (T, R) satisfies

IRl i < CrllRl L1z
Proof. By the triangle inequality, we need to estimate
H‘R”LlL7 < H ]- - ZXl R’ LlL + Z ||athRUzHL1LT + H Z Xz U1®Uz
The idea is to treat the first and the last terms as small errors. By Holder’s 1nequa11ty, we get

IRl < 1= > IRl e+ 10exills o.ap IRl e o+ 3 106 =Xl to.p loivil 2o

L

L'([0,1])

By the definition of the cutoff x;, we have the following trivial bounds (with implicit constants depending on ¢) in

time:
i

<7
L([o,1]) ™
and forany 0 <¢ < 77¢ — 1,
19exill o,y S 15

Ixi = Xillzr oy S 7
In addition, it follows from the bounds for v; in Proposition 3.2 that

lvidvillpgerr S Noill e g < 6%

Combining these together and using the bound on Rv; from Proposition 3.2, we get

tiy1
IRz S 7 ClRlorr + </t [R()||L- dt + Cu575> +0% Y T

ST Rl e + Rl i e + Cud,

where we have used the fact that ), 1 < 77¢ < 77!
The conclusion follows once we choose 7 > 0 sufficiently small such that

Cud < ||Rllpyre and 7' 7F||Rl|zorr < || Rllzy Lo

O

3.3. Proof of Proposition 3.1. We conclude this section with the last step in the proof of Proposition 3.1. Since all
the estimates have been obtained, we only need to verify that the temporal support of W = ). x;v; is contained in I
and show the well-preparedness of (u, R).
Note that (u, R) is well-prepared for I and 7, and it follows from (3.2) that
v; =0 for0<4i<77°—1suchthat R=0on [t;,t;11].
Hence, if 7¢ = |[t;, t;+1]| is sufficiently smaller than 7, the definition of well-preparedness of (u, R) implies that
Usuppt XiV; C f

i
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Thus we have proved that supp, w C I. o
Let us now show the well-preparedness of (@, R). Define an index set

E={ieZ:1<i<77°—1andv; #0}
satisfying a trivial estimate
|E| < 77°.
The idea is that the concentrated stress R is supported around each ¢;, for i € E. Therefore, we can define a set on the
time axis
5T 5T
I:= U [tl_?atz+? )
i€l

where as before ¢; = ¢7°. Note that each interval in [ has length 57 and the total number of intervals is at most 7%,
consistent with the well-preparedness, and 0, 1 ¢ I due to (3.4)
Now take any ¢ € [0, 1] such that dist(¢, [€) < 377 Then by (3.3) and (3.4),

> xilt)=1.
Moreover, 0;x;(t) = 0 and x;(t) € {0, 1} for any i. Consequently,
R(t) = (1- Z xi) R+ RZ Oexivi + Z(X;Q — Xi)vi®v; = 0,
i i i
for every t such that dist (¢, 1) < 377 In particular, (7, R) is also well-prepared, which concludes the proof.

4. CONVEX INTEGRATION IN SPACE-TIME

In this section, we will use a convex integration scheme to reduce the size of the Reynolds stress. The goal is to
design a suitable velocity perturbation w to the glued solution (u, R) so that

UL :=u+w

solves the equation (2.1) with a much smaller Reynolds stress R;.
The main goal of the current and the following section is summarized in the following proposition.

Proposition 4.1. There exists a universal constant M > 0 such that for any p < 2 and q < oo, there exists v > 1
depending only on p, q and d such that the following holds.

Let § > 0 and (, R) be a well-prepared smooth solution of (2.1) given by Proposition 3.1 for the set I and time
scale T. Then there exists another well-prepared smooth solution (u1, R1) of (2.1) for the same set I and time scale T
such that

[ R1llL 0,150 (1ay) < 0
Moreover, the velocity perturbation w := w1 — u satisfies
(1) The temporal support of w is contained in I, i.e.
suppw C I X Td;
(2) The Lim estimate,
w22 jo,11xT4y < MIIR| L1 (j0,1)xT4);
(3) The LYL>° N L}WY4 estimate,

1wl Lr0,1;L50 (ray) + Wl L1 (0,0;w 10 (Tay) < 6.

It is clear that Proposition 2.2 follows from Proposition 3.1 and Proposition 4.1. In the remainder of this section,
we will construct the velocity perturbation w and define its associated Reynolds stress R; and pressure p;. The well-
preparedness of (u1, R1) will be an easy consequence of the definition of w, whereas all the estimates will be proven
in the next section.
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4.1. Stationary Mikado flows for the convex integration. The main building blocks of the convex integration
scheme is the Mikado flows W}, : T¢ — R? introduced in [DS17]. In other contexts [MS18, Luo19], they are
called concentrated Mikado flows, or Mikado flows with concentration since they are supported on periodic cylinders
with a small radius. Here for brevity, we simply refer to them as the Mikado flows.

We start with a geometric lemma that dates back to the work of Nash [Nas54]. A proof of the following ver-
sion, which is essentially due to De Lellis and Székelyhidi Jr., can be found in [Szel3, Lemma 3.3] and [DLS13,
Lemma 3.2]. This lemma is the key reason to use Mikado flows in the convex integration.

Recall that SiXd is the set of positive definite symmetric d X d matrices and e, = TZI for any k € Z.

Lemma 4.2. For any compact subset N' C SiXd, there exists a finite set A C Z% and smooth functions T, €
C>™(N;R) for any k € A such that

R:ZFi(R)ek@)ek, forall Re N.
keA

We apply the lemma for ' = B.,(Id) where Bi/,(Id) denotes the metric ball of radius 1/2 around the identity Id
in the space SiXd to obtain smooth functions I'y, for any & € A C Z?. Throughout the paper, the direction set A is
fixed, and we construct the Mikado flows as follows.

We choose points p;, € (0,1)% such that pj, # p_, if both k, —k € A. For each k € A, we denote by [, C T¢ the
periodic line passing through py, in direction k, namely

Iy = {tk +pr € T? : t € R}.

Since A is a finite lattice set and we identify T¢ with a periodic box [0, 1]%, there exists a geometric constant Cy € N
depending on the set A such that
[lx Nlg| < Cp  forany k, k' € A,

where we note that [, N 1_j;, = () due to py # p_p.

Here we do not even require nonparallel periodic lines to be disjoint in d > 3 in contrast to [Luo19]. Since
nonparallel periodic lines have to intersect in the 2D case, we would rather present a unified approach based on the
fact that the intersection parts are very small due to the concentration parameter ;1 > 0, see Theorem 4.3 below.

Let 4+ > 0 be the spatial concentration parameter whose value will be fixed in the end of the proof. Let ¢, €
C2°([1/2,1]) and constants c;, > 0 be such that for any sufficiently large y if we define vy, ¢, : T¢ — R by

Yy = cku%w(udist(lk, x)) 4.1)
and
oK = ckﬂ%_2¢(,udist(lk,x)) 4.2)
then
A¢r =1, onT¢ and , Y2 dr = 1. 4.3)
Note that '
supp ¢, Nsupp Yy C {x € T - dist(z, I N lp) < Mpap™b) 4.4)

for a sufficiently large constant M, depending on A.
Finally, the stationary Mikado flows W, : T¢ — R? are defined by

Wi = ey, 4.5
where the constant vector e, = % Using the gradient field V¢, we may write W}, as a divergence of a skew-
symmetric tensor ), € C5°(T9, R4*d),

Qp :=e, ®Vor — Vo Q eg. 4.6)

Indeed, €2, is skew-symmetric by definition, and by a direct computation
div Qk = div(V(;Sk)ek - (ek . V)V¢k = Ad)kek —-0= Wk
We summarize the main properties of the Mikado flows W, in the following theorem.

Theorem 4.3. Let d > 2 be the dimension. The stationary Mikado flows W, : T¢ — R satisfy the following.
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(1) Each Wy, € C§°(T?) is divergence-free, satisfies
W, = div Q,
and solves the pressureless Euler equations
div(Wi @ W) = 0.
(2) Forany 1 < p < oo, the estimates

d—1

d-1_d-1
w IV W[ pogray Smop = TP

_1+%_ﬂ

NimHVkaHLP(’H‘d) Sm 1 L
hold uniformly in p.
(3) Forany k € A, there holds

W, @ Wi = e, ® e,
Td
and forany 1 <p < 0

[Wi e Wi

—1)-2 .
oy SHOTVTE ik # K

Proof. We only prove the last claim as the rest of them are standard and can easily be deduced from (4.1)-(4.3). It
suffices to assume k # —k’. Using the L bound in (2), we obtain
da:) v,

< pld-1 ( /
Lp(’H‘d) ~
supp Y, MNsupp ¥,/
Note that due to (4.4) supp 1, N supp ¥ is contained in a union of finitely many balls of radius ~ y~!. Thus
HWk ® Wy

Wi e Wi

(d-1)-4

Lp(jrd) 5 /’l’
]

4.2. Implementation of temporal concentration. Since Mikado flows are stationary, the velocity perturbation will
be homogeneous in time if we simply use Lemma 4.2 to define the coefficients. To obtain LYL> and L; W4
estimates, it is necessary to introduce temporal concentration in the perturbation.

To this end, we choose temporal functions g, and h, to oscillate the building blocks W, intermittently in time.
Specifically, g,, will be used to oscillate W, so that the space-time cascade balances the low temporal frequency part
of the old stress error R, whereas h, is used to define a temporal corrector whose time derivative will further balance
the high temporal frequency part of the old stress error R .

Let nonnegative g € C°((0,1)) be such that

1
/ g*(t)dt = 1.
0

To add in temporal concentration, let £ > 0 be a large constant whose value will be specified later and define g, :
[0,1] — R as the 1-periodic extension of x'/2g(kt) so that

N9l e (o1 < k"% forall 1 <p< oo

The value of x will be specified later and the function g,; will be used in the definition of the velocity perturbation.
As we will see in Lemma 4.5, the nonlinear term can only balance a portion of the stress error R and there is a leftover
term which is of high temporal frequency. This motivates us to consider the following temporal corrector.

Let h,; : [0,1] — R be defined by

¢
(1) = / 2(s) — 1ds.
0
In view of the zero-mean condition for g2(¢) — 1, the function h,; : [0,1] — R is well-defined and periodic, and we
have

1l Loe 0,1y < 1, 4.7
uniformly in .
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We remark that for any v € N, the periodically rescaled function g, (v-) : [0, 1] — R also verifies the bound
19x () Lo oy S K277 forall 1 < p < oo (4.8)
Moreover, we have the identity
O (v he(vt)) = g2(vt) — 1, 4.9)
which will imply the smallness of the corrector, cf (4.17).

4.3. Space-time cutoffs. Before introducing the velocity perturbation, we need to define two important cutoff func-
tions, one to ensure Lemma 4.2 applies and the other to ensure the well-preparedness of the new solution (u1, Ry).

Since Lemma 4.2 is stated for a fix compact set in SiXd, we need to introduce a cutoff for the stress R. Let
x : R4X4 — R be a positive smooth function such that y is monotonically increasing with respect to || and

(z) = {4||R|L1([071]><Td) if 0 < |z| < [[Rl1(0,1x14)

! = (4.10)
4|z| if [z] > 2[|R| £ (j0,1) xT4)-

With this cutoff y, we may define a divisor for the stress R so that Lemma 4.2 applies. Indeed, define p €
C>=([0,1] x T9) by
p=x(R). (4.11)
Then immediately by (4.10),

R
Id—— € Bi(Id) forany (t,z) € [0,1] x T?,
p

which means we can use Id —% as the argument in the smooth functions I'y, given by Lemma 4.2.

Next, we need another cutoff to take care of the well-preparedness of the new solution (u1, R1) as the perturbation
has to be supported within I. Let € C2°(R) be a smooth temporal cutoff function such that

1 ifdist(¢,I¢) > 32
o0(t) = Len (% ,) -2 (4.12)
0 ifdist(¢,I°) <7,

where I C [0,1] and 7 > 0 are given by Proposition 3.1. Note that this cutoff ensures that the new solution will still
be well-prepared.

4.4. The velocity perturbation. We recall that we have defined four parameters for the perturbation so far:
(1) Temporal oscillation v € N and temporal concentration x > 0;

(2) Spatial oscillation o € N and spatial concentration ;. € N.
These four parameters are assumed to be sufficiently large for the moment and will be taken to be explicit fixed
powers of a frequency parameter A > 0 in the next section, where we also fix the value of > 1 appearing in the main
proposition.
With all the ingredients in hand, we are ready to define the velocity perturbation. In summary, the velocity pertur-
bation w : [0, 1] x T¢ — R? consists of three parts,
w = w(l’) + w(C) + U}(t).

The principle part of the perturbation w(?) consists of super-positions of the building blocks W, oscillating with
period o~ on T¢ and period v~! on [0, 1]:
wP) (t,x) = Z a(t, r)Wy(ox), (4.13)
keA

where the amplitude function ay, : [0,1] x T¢ — R is given by

. R
ay, = 0g,, (vt)p"*T}, ( 1d _7)_ (4.14)
p
Note that (4.13) is not divergence-free. To fix this, we introduce a divergence-free corrector using the tensor potential
Q

w(© (t,z) =0 ! Z Vag(t,z) : Q(ox). (4.15)
keA
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Indeed, we can rewrite w® + w(©) as

w® +w =073 " ap(t,x) divQi(oz) + 01 Y  Va(t,x) : Qo)
keA keA

= o tdiv Z a(t, ) (ox),
keA

(4.16)

where each a3 €2, is skew-symmetric and hence div(w® + w(®)) = 0.
Finally, we define a temporal corrector to balance the high temporal frequency part of the interaction. This ansatz
was first introduced in [BV19] and also used in [BCV18]. The heart of the argument is to ensure that

ow® + div(w(” ) @ w )) = Pressure gradient + Terms with high spacial frequencies + Lower order terms.

However, the key difference between [BV 19, BCV 18] and the current scheme is that here the smallness of the corrector
is free and it does not require much temporal oscillation, which is the reason we must use stationary spatial building
blocks.

Specifically, the temporal corrector w*) is defined as

w® = v, (vt) (div(R) — VA~ divdiv(R)), (4.17)

where we note that A~! is well-defined on T since div div(R) = 9;0; R;; has zero spatial mean.
It is easy to check supp, w® ¢ supp, R and w® is divergence-free. Indeed,

divw® = v h, (vt) (0:0;Ri; — 0,0k AT10;0,R;;)) = 0.

In the lemma below, we show that the leading order interaction of the principle part w®) is able to balance the low
temporal frequency part of the stress error R, which motivates the choice of the corrector w®), cf. (4.23).

Lemma 4.4. The coefficients ay, satisfy
ar, =0 if dist(t, I°) <,
and

Z az][ W @ Wy dr = 62g%(vt)pld —g2 (vt)R.
ken 7T

Proof. The first property follows from (4.12).
Now since f Wi ® Wi, = e ® ey, a direct computation and Lemma 4.2 give

R —
Z azer ® ey = Z 0292 (vt)plrer, @ ey = 92gi(yt)pz F%(Id——)ek ® e, = 0%g2(vt)pld —6% g2 (vt)R.
keA keA keA P

The identity follows from the fact that
supp R C {t: 0(t) = 1}.
]

4.5. The new Reynolds stress. In this subsection, our goal is to design a suitable stress tensor Ry : [0,1] x T¢ —
Sg %@ such that the pair (uy, Ry) is a smooth solution of (2.1) for a suitable smooth pressure p;.
We first compute the nonlinear term and isolate nonlocal interactions:

div(w(p) @ w® + R) = div [ Z aiWy(ox) @ Wy(ox) + E} + div Rgar, (4.18)
keA

where Ry, denotes the nonlocal interactions between Mikado flows of different directions

Rgayr = Z arar Wi(oz) @ Wy (ox). (4.19)
k!
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And then we proceed to examine the first term in (4.18), for which by Lemma 4.4 we have

div [%aiwk(ox) ® Wi (ox) + E}
— div [Z a2 (Wy(ox) ® Wi(oz) — ][Wk ® Wy + ][W,c ® W) + E}
keA
= div {Z aﬁ (Wk(dl’) ® Wi (ox) — ][Wk ® Wk)} + V(92gzp) +(1- gz(l/t)) div R.
keA

Finally, using the product rule, we compute the divergence term as
div Zak Wi (ox) @ Wi (ox) ][Wk ® W)

keA

=Y V(a}) (Wi(oz) @ W(ox) ][Wk@)Wk)
keA

(4.20)

421

Typical in the convex integration, we can gain a factor of ¢~ ! in (4.21) by inverting the divergence. To this end, let us
use the bilinear anti-divergence operator 3 defined in Appendix B. Since (4.21) has zero spatial mean, by (B.4) it is

equal to div Rogc », Where

Rosc Tz = Z B( ak) Wk(O'l‘) ® Wk 0'1: fwk @ Wk)
kEA

Combining (4.18), (4.20), (4.21), and (4.22) we have
div(w® @ w® + R) = div Rose o + div Rear + V(0292 (vt)p) + (1 — g2(vt)) div R.
In view of the above computations, we define a temporal oscillation error
Rosc,t = l/_lhk(l/t)atﬁ,
so that the following decomposition holds.
Lemma 4.5. Let the space-time oscillation error Rosc be
Rose = Rosc,e + Rose,t + Rrar-

Then
Opw® + div(w(p) @w® + R) 4+ VP = div Roe.

where the pressure term P is defined by
= —02gi(vt)p — v ' A1 divdiv 9y (R (vt)).
Proof. By the definition of w®, we have
dw't =9, (u_lhﬁ(yt) div E) — O (V_lh,i(ut)VA_l div div R)
= (g2(vt) = 1)div R+ v~ 'hy(vt) div O, R — v ' VA~ div div 9, (Rh, (vt))
= (g2(vt) — 1) div R + Roger — v~ 'VAT divdiv 9, (Rhy (1)),

where we used identity (4.9) for the time derivative of h,,. The conclusion follows immediately from (4.23).

Finally, we can define the correction error and the linear error as usual:
Reor = R(div ((w(c) +w®)® w) + div (w(p) ® (w'® + w(t))))

and
RhnfR(at( +wc)) Aw+dlv(u®w+w®u))

where R is an inverse divergence operator defined in (B.2).
To conclude, we summarize the main results in this section below.

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

4.27)
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Lemma 4.6. Define the new Reynolds stress by
R1 = Rjin + Reor + Rosc;

and the new pressure by

p=p+P
Then (uy, Ry) is a well-prepared solution to (2.1),
Oruy — Aug + div(ug ® uq) + Vpp = div Ry,
and the velocity perturbation w = u; — U satisfies
suppw C I x T¢,

where I is as in the well-preparedness of (u1, R1).
Proof. A direct computation of the left-hand side gives

Opuy; — Aug + div(u; @ uy) + Vpr =0t — Au+div(u®@w) + Vp

+ 0w — Aw 4+ div(z ®@ w) + div(w @ @) + div(w @ w) + VP
=div R+ 0yw — Aw + div(u ® w) + div(w @ 1) + div(w ® w) + VP,

where we have use the fact that (%, R) solves (2.1) with pressure p.

From the definitions (4.26), (4.27) and Lemma 4.5 we can conclude that (u1, R;) solves (2.1).

The claim that (uy, Ry) is well-prepared and supp, w C I follows from the fact that (@, R) is given by Proposition
3.1 and the perturbations w®), w(®) and w® satisfy

w® = w© =0 ifdist(t, I°) < 7

and
Supp; w® ¢ Supp; R.

5. PROOF OF PROPOSITION 4.1

In this section we will show that the velocity perturbation w and the new Reynolds stress R; derived in Section 4
satisfy the claimed properties in Proposition 4.1.

As a general note, we use a constant C,, for dependency on the previous solution (%, R) throughout this section.
Unless otherwise indicated, in the statement of below lemmas and propositions the exponents p, g and r refer to the
ones given by Proposition 2.2, cf. (5.1) and (5.2).

5.1. Choice of parameters. We fix two parameters 0 < v < 1 and 1 < r < 2 as follows.
(1) First, we choose v > 0 small enough such that

1 11
10d’y§min{777,f}. (5.1)
p 24q
(2) Once 7 is fixed, choose r > 1 such that
d
d— - <#. 5.2)

It is clear that » > 1 only depends on p, ¢, and d as claimed in Proposition 4.1. Without loss of generality, we assume
q>2.

Let A be a sufficiently large number whose value will be fixed in the end. We choose the parameters o, x along with
v, p in the building blocks as explicit powers of A as follows.

(1) Temporal oscillation v € N and spatial oscillation o € N:
v=[A"],

1

o= [A7].
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(2) Temporal concentration > 0 and spatial concentration yp > 0:
o — )\%+d+1767
w=A.
For convenience, we insist that 1 € YN so that if v = A7, then 0 = )\%.
Note that we have the hierarchy of parameters
v p o< R
More precisely, we have the following useful lemma that will be used throughout the next section.

Lemma 5.1. For any A > 0 such that \? € N, there hold

wf%o*l/flu%fdzl <A77 (5.3)
K2R < ATV (5.4)

1 d-1_d-1
K 20uu 2 o <\, (5.5)

Proof. The first inequality (5.3) is equivalent to

It can be simplified to

which holds due to (5.2).
For the second one (5.4), thanks to (5.1) it suffices to show that

fi_d"’u% <\
It is equivalent to
d—1

—2d+’yd(d+1—6’y)+T§—7

which holds trivially since 10dy < 1.
The third one (5.5), looking again at the exponents, reads as

Simplifying, we obtain

which also holds due to (5.1).
O

In what follows, we can assume without loss of generality that o = A% and v = \7 as we will only require A to be
sufficiently large.

5.2. Estimates on velocity perturbation. We first estimate the coefficient ay, of the perturbation w. Recall the cutoff
threshold p is defined by (4.11) and function g,; is nonnegative.

Lemma 5.2. The coefficients aj, are smooth on [0,1] x T and
|‘a?vmak”Lp(071;Loo(Td)) S Cuﬂnﬂl(l//{,)nﬁji_; fOr any p € [1, OO},

where Cy ., , are constants independent of v and k (but depending on w and hence 7). In addition, the bound

lon(®)ll2ee) < 00 [ pit.o)de)”

holds uniformly for all time t € [0, 1].
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Proof. Tt follows from definition (4.14) that ay, is smooth. Since the implicit constant is allowed to depend on (%, R),
it suffices to consider only the time differentiation.
We have that

Hatn [9(')9;4(7/')] ||Lp([071}) <10

11
< (wK)"k2T R,

cn (0. 107 9k (V)| e (f0,1))

which implies the first bound. The second bound follows immediately from the definition of ay:

R, \* :
lax(®)llcre) S 09 (/ prk(m—p)dx) < b, (/ pd:c) |
Td ']I‘d,

With the estimates of ay, in hand, we start estimating the velocity perturbation. As expected, the principle part w(®)
is the largest among all parts in w.

O

Proposition 5.3. The principle part w'?) satisfies
||w(p)||L2([O 1xT4) S HR”Ll ([0,1]xT4) + Cuo'_av
and
1w P 1o 0,152 (ray) + 1w £a o, 1;w1.a(7ayy < Cud ™7,
In particular, for sufficiently large A,
Hw(p)||L2([0 1]xTd) ~ ||RHL1 [0,1]xT4)>
)
Hw(p)||LP(O,1;L°°('J1‘d)) < T
Proof. We first show the estimate for L?,m and then for LP L.
L} , estimate:
Taking L? norm in space and appealing to Lemma B.1, we have
[w® (@)l r2ray £ D lar®)l|2[Well2 + 072 C,.
keA

Recall that || W ||z < 1. Then using Lemma 5.2 and taking L? norm in time gives

1
®) wt) [ plt,2)dedt)’ + o 3C,. 56
122 o1 W)Nz(/ 20 [ ptoydear)’ +o7tc, 56

keA
Notice that

t— p(t,z) dx
Td
is a smooth map on [0, 1]. Thus, we may apply Lemma B.1 once again (with p = 1) to obtain that

1
/ gn(vt) /d p(t,x) dzdt < || Rl g1 o, xme) + Cuv ™ 5.7
0 T

where we have used the fact that f gz = 1 and thanks to (4.11) the bound

[, ptt)do S IR oscen + IRl o erey.

Hence, combining (5.6) and (5.7) gives

_1
||w(P)||L2([0 1xTd) S HRHLI([O 1]xT4) +Cuo2.

LPL> estimate:
Taking L°° norm in space and using Holder’s inequality give

Il Ol L ry S D Nlaw(®) oo [Wiklloo-
keA
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We can now take LP in time and apply the estimates in Lemma 5.2 and Theorem 4.3 to obtain

d—1
[w® | oo,z (ray S 17 Y lakllpe(o,1;00 (ray)
keA

1 1 d—1
S Cyr2 Pp =,
which by Lemma 5.1 implies that
lw® | 20,1505 (pay) < Cud™7

L; W4 estimate:
This part is similar to the LP L>°. We first take W9 norm in space to obtain

[0 O)llwracray S D llaw®) e IWi(o) [wia
keA

Integrating in time, by Theorem 4.3, Lemma 5.2 we have that

[w P 10 swracray S larlnior W) [wra
keA

d—1 d—1
Sopp T T Z llak (@) 1o
kEA
1 d—1_d—1

which implies the desired bound thanks to Lemma 5.1.
O

Next, we estimate the corrector w(®), which is expected to be much smaller than w®) due to the derivative gains
from both the fast oscillation o and the tensor potential €2y defined in (4.6).

Proposition 5.4. The divergence-free corrector w'®) satisfies
||w(c)||L2(0,1;L°°(11‘d)) <O,
and
”w(C)HLl(O,l;leq(’ﬂ‘d)) < Cu A7
In particular, for sufficiently large A,
1
”w(C)HLZ([O,l]de) < ||R||]2Jl([0’1]><11‘d)7
and
(& (& 5
||w(')||Lv(0,1;Loo(1rd)) + ||w(‘)\|L1(0,1;W1vq(1rd)) < 1

Proof. L?L> estimate:
From the definition, we have

[0 (1) roy < o[ 32 Var(t) : o)

keA Leo(T4)
<o IVar(®)l| o vy 192 () | o< (.-
keA

Now, thanks to Theorem 4.3, Lemma 5.2, and (5.2), we take L2 in time to obtain
1 _q4d=1
Hw(c) ||L2(U,1;L°°(’J1‘d)) So 1M +5 Z Hvak||L2(O,1;L°°(’J1‘d))

keA

which by the definition of  implies that

||w(c)||L2(0,1;Loo(1rd)) <O A7
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L}Wh4 estimate: This part is very similar to the estimation of w (). We first take W7 in space to obtain that

© -1 : :
[0 ()| wa(ray < & H ;;xvak(t) c Qo )le,q(w)

So! Z ||ak(t)||02(1rd)||9k(0')||vv1=q(1rd)-
keA
Integrating in space and using Lemma 5.2 and Theorem 4.3 we have
[ a0, wraemay S oY Nakllz 0,102 |1 (o) lwsacray

keA
d—1 d—1

SwEptE
which differs the estimate of ||w(®)|| riw.q by a factor of o1 and hence
”w(C)HLl(O,l;Wl«fl(’ﬂ‘d)) S G
(|

Finally, we estimate the temporal corrector w(*). From its definition (4.17), one can see that the spatial frequency
of w® is independent from the parameters o, 7 and x. As a result, this term poses no constraints to the choice
of temporal and spatial oscillation/concentration at all and is small for basically any choice of parameters (as long
as temporal oscillation v is present). This is one of the main technical differences from [BV19, BCV18] where the
leading order effect is temporal oscillation.

Proposition 5.5. The temporal corrector w™® satisfies
”w(t)”LOO(O,l;Wl‘OO(Td)) <Cuw
In particular, for sufficiently large A,
1
Hw(t)HLz([O,l]de) < ||R‘|Zl([071]de)7
and

||w(t)||Lp(o,1;L°°(Td)) + ||w(t)||L1(071;W1"’(W)) =

= >

Proof. Tt follows directly from the definition of w® that

[0l o 0,191 2y S ¥ Iz (0.0 IR e 0,1:002. () < v Co,

where in the last step we have used (4.7). O

5.3. Estimates on the new Reynolds stress. The last step of the proof is to estimate R;. We proceed with the
decomposition in Lemma 4.6. More specifically, we will prove that for all sufficiently large A, each part of the stress
R; is less than %.

5.3.1. Linear error.

Lemma 5.6. For sufficiently large ),

IR

[ Riinl| £ (0,1;7 (Tay) <
Proof. We split the linear error into three parts:
[ Riinll L1 (0,157 (ray) < (| R (Aw) [|p1pr + \\R(&t(w(l’) + w(c))) i + R (div(w @) + div(z @ w)) [ L1 - -

=1 :=Lo :=Lg

Estimate of L:
By (B.3) or boundedness of Riesz transform we have

Ly S |wllzro,1wrr (ray)-
Note that we have estimated w in L} W14 and r < 2 < q. Thus by Proposition 5.3-5.5 we can conclude that
Ly <Cu A7 (5.8)
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Estimate of Lo:
By (4.16), we have

Or(w® + wl?) = o713 " div(DparQs(0)),
k

and hence
Ly < RO (w® + )| 110,157 (re))
So™! Z IR div(Orar k(o)) 1 (0,1;L7 (Ta))-
k

Since R div is a Calderén-Zygmund operator on T¢, we have
Ly S0 ) l10anll iy poe 19l
k
Appealing to Lemma 5.2 and estimates of €2, listed in Theorem 4.3 we have

1 d—1 d—1
Ly < Cyo Ywr)w 2p 2 — %

SO, (5.9)

where we used (5.3) for the second inequality.
Estimate of L3: For the last term we simply use L” boundedness of R div to obtain

L3 Sllw@allpyz- + @ wlpp-
Here we use a crude bound
lweulpipr + @@ wlpir S wllerpel@l g,
and apply the obtained estimates in Proposition 5.3, 5.4 and 5.5 to conclude
L3 <C A7 (5.10)
From (5.8), (5.9), and (5.10), we can conclude that for all sufficiently large A, there holds

)
||R1in||L1(071;L7‘(Td)) < 1

5.3.2. Correction error.
Lemma 5.7. For sufficiently large ),

ST

[ Reorll L1 (0,127 (1)) <
Proof. By the boundedness of R divin L", 1 < r < 2, and Holder’s inequality,
| Reorll L1 (0,107 (Tay) S [(w® +w®) & wllpipr + [w® @ (w'® + w(t))HLgLT
< (0@ gz + IOl gz ) lllzz, + No® gz, (@l + l0®@llzx)) -
By Propositions 5.3, 5.4, and 5.5,
lwllez, < lw® gz +w@ g+ @]
1
and

”w(c)HLfLOO + ||w(t)||L‘;‘L°o S CuAT

So for all A sufficiently large, we can conclude that

ST

||Rcor||L1(0,1;LT(Td)) <
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5.3.3. Oscillation error.
Lemma 5.8. For sufficiently large ),

||Rosc||L1(0 1;L7(T4)) S

)-l;\oq

Proof. We will use the decomposition from Lemma 4.5
Rosc = Rosc@ + Rosc,t + Rfar-
Estimate of Ry ;¢
Denote T}, : [0,1] x T¢ — R4*4 by

Tk:Wk(X)Wk_][Wk@ka

oscx ZB ))

keA
Using Theorem B.4 and the fact that T, has zero spatial mean, we can estimate the L" norm of R ., as follows.

HROSC :r( )HL? (Td) = H ZB ak Tk H

so that

<ZIIV e [R(Te(e)) e

keA

<o S IV@)ller | Trllzr,
keA

where the last inequality used the fact that T (o) has zero spatial mean. Thanks to Theorem 4.3, for any k € A
ITkllzr < Wi @ Willzr < [[Will72r < p'™

Therefore, by Lemma 5.2,

| Rose.a |2 0,1:0(ray) < Cuo™ 15

Estimate of R +:
Using the bound on hy, (4.7), we infer

| Rose,tll 110,152 (ray) = IV~ e (vt) div Oy R]| 1 -
S v ()| Cu
< Curt

Estimate of Ry,,:
We can use Theorem 4.3 and Lemma 5.2 to obtain

| Rarll L1 0,1, (Tay) = H > arapy Wi(o) ®Wk'(0')’
e

S llakllzz oz vy lars 20,1525 (ray) Wi @ Wi |-
k!

d
< Cupt=tr

L1(0,1;L7 (T%))

Now we can combine all the estimates and conclude
_ _ _1_d
[ Rosell 21 (0,1;7 (1)) < Cu (0 e ) :

Thanks to (5.2), we have
| RoscllLt(0,1:0m(Tay) < CuA™7.

And thus for A large enough, the desired bound holds:

Ak\oq

[ Roscll1(0,1;7 (1)) <
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APPENDIX A. XP9 WEAK SOLUTIONS ON THE TORUS

In this section, we show that sub-critical and critical weak solutions in X?4([0, 7]; T?) are in fact Leray-Hopf. In
particular, by the weak-strong uniqueness of Ladyzhenskaya-Prodi-Serrin, this implies the uniqueness part of Theorem
1.3. The content of Theorem A.1 is classical [FJR72, Kat84, FLRT00, LMO01] and we include a proof in the regime
q > 2 for the convenience of the readers. Note that the proof applies to the case ¢ = oo which is most relevant to the
results of this paper, but was omitted in [FJR72].

Theorem A.1. Let d > 2 be the dimension and u € XP9([0,T); T¢) be a weak solution of (1.1) with % + g =1,
d < q < 00. Then w is a Leray-Hopf solution.

We prove Theorem A.1 for ¢ > 2 only. The case d = ¢ = 2, as discussed in [GP02], can be handled by the
argument of [FLRTOO] in 2D. The method we present here follows the duality approach in [LMO1] and use only
classical ingredients.

The first ingredient is an existence result for a linearized Navier-Stokes equation.

Theorem A.2. Let u € XP9([0,T); T?) be a weak solution of (1.1) with ]% + % = 1. For any divergence-free

vy € L2(T?), there exists a weak solution v € Cy,L> N L2H* to the linearized Navier-Stokes equation:
G?U—Av—&—wVv—kVp:O (A1)
dive =0,

satisfying the energy inequality
1 K 1
Sl + [ IVos)1ds < Sl
to

forallt € [to,T), a.e. tg € [0,T) (including to = 0).

Proof. This follows by a standard Galerkin method and can be found in many textbooks. See [RRS16, Chapter 4] or
[Gal94] for details. O

Let v be the weak solution given by Theorem A.2 with initial data «(0). The goal is to show © = v. Setting
w = u — v, the equation for w reads
Ow — Aw +u - Vw + Vg =0,
and its weak formulation

T
/ / w- (Opp + Ap+u-V)dedt =0 forany ¢ € Dr, (A.2)
o Jrd
where we recall that the test function class Dy consists of smooth divergence-free functions vanishing for ¢ > 7.
Fix F € C([0,T] x T?). Let ® : [0, 7] x T? — R%and x : [0,T] x T? — R satisfy the system of equations

-0 —-—A®—u-VO+Vx=F
dive =0 (A.3)
o(T) =0.

Note that the equation of ® is “backwards in time” and by a change of variable one can convert (A.3) into a more
conventional form.
If we can use ¢ = @ as the test function in the weak formulation (A.2), then immediately

/ w - Fdxdt = 0.
[0,T]x T

Since F' € C°([0,T] x T4) is arbitrary, we have
w=0 fora.e. (t,x)ec[0,T]x T
So the question of whether © = v reduces to showing a certain regularity of ®. More specifically, we can prove the
following theorem.
Theorem A.3. Let d > 2 be the dimension and u € XP9([0,T]; T?) be a weak solution of (1.1) with % + g = 1 with

q > 2. Forany F € C°([0,T) x T%), the system (A.3) has a weak solution ® € L L?> N L?H* such that ® can be
used as a test function in (A.2).
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Proof. We will prove the weak solution ® satisfies the regularity
@, AP, u-V®,Vy € L7, (A.4)

which implies ® can be used in (A.2) since w € Lf’z.
The solution ® will be constructed by the Galerkin method of the following finite-dimensional approximation

-0, — Ad, — P, [un . V(I)n] +Vxn=F,
divd,, =0 (A.5)
(I)n(T) =0,
where ®,,, u,,, X, F,, are restricted to the first n Fourier modes, and P, is the projection operator on those modes.
It suffices to verify the following a priori estimates as they are preserved in the limit as n — co. We also only need
to show the estimates for 0;®, A®, and v - VP since the pressure y satisfies the equation
Ax =div(u - V®) + div F.
Step 1: Energy bounds L¥°L? N L?H!.
The solutions to the Galerkin approximation (A.5) enjoy the energy estimate
1d
S 2dt
which implies the desired energy bounds.
Step 2: Higher bounds L H' N L? H?.
We now take the L? inner product of (A.5) with A® to obtain

1d
—f—||V<I>H§+HA(I>||§§/ |F-A<I>\da:+/ lu-V® - AdD|da.
Td Td

%1+ V23 < [ 17 -®ld.

2dt

e Casel: p < ccandd < q < 0.
Thanks to Proposition A .4,

q-d a+d
/Td [u-VO-A®dr < [lullo[ Ve[, |AD]," . (A.6)

Then Holder’s, Poincaré’s, and Young’s inequalities yield

1d 1 24
—5 7 VeI + SIA®IE S [lulli IVOIZ + 173
29
Thanks to the integrability of ||u|l¢ " (||u||%, when ¢ = c0), Gronwall’s inequality immediately implies that
® e L°H N LIH?.
e Case2: p=occandqg=d > 2.

Since u € C, L, for any € > 0 there exists a decomposition u = u; + us such that

lluillc,pa <e and  wug € Ly,

and then the u; portion of the nonlinear term in (A.6) can be absorbed by ||A®||2, so we arrive at the same
conclusion.

Step 3: Conclusion from maximal regularity of the heat equation.
Taking Leary’s projection [P onto the divergence-free vector fields, the equation for ® can be rewritten as

—0,® — A® = P(u - V®) + PF
o(T) = 0.

Therefore, by the maximal LY L7 regularity of the heat equation (see for instance [RRS16, Theorem 5.4]), we only
need to show the estimates (A.4) for u - V® to conclude the proof. By Sobolev interpolations we have V& € L"L®
1

for any % + % = g suchthat 2 < s < d%dQ. We can find r, s in this regime that satisfy the Holder relations % + % =3

and % + 1 = 3, where recall % + g = 1. Since u € LY LY with some % + g = 1, this choice of r, s implies that

u-V® e L*([0,T] x TY).
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The last result is a classical estimate of the nonlinear term, cf. [RRS16, pp. 172]. Notice that one of the embedding
fails when ¢ = 2 which is the reason we can only prove Theorem A.3 for ¢ > 2.
Proposition A4. Let d > 2 be the dimension and d < q < oo such that ¢ > 2. For any smooth vector fields
u,v € C°(T?),

g—d gt+d
[t vo- Avlde < Jull V0l 1407

Proof. We apply Holder’s inequality with exponents % +i4di=1r= % € [2,-2),

/Td u- Vo - Avlde S |ullg[[Voll[| Av]2.
Since 2 < r < oo, by the Sobolev embedding H*(T%) < L"(T%), s = d(5 — 1),
IVollr S IVollas.
Finally, by a standard Sobolev interpolation and the L?-boundedness of Riesz transform, we have
a—d d
IVollas S Vol [[Av]g,
which concludes the proof. ]
APPENDIX B. SOME TECHNICAL TOOLS

B.1. Improved Holder’s inequality on T¢. We recall the following result due to Modena and Székelyhidi [MS18],
which was inspired by [BV19, Lemma 3.7]. This lemma allows us to quantify the decorrelation in the usual Holder’s
inequality when we increase the oscillation of one function.

Lemma B.1. Letp € [1,00] and a, f : T¢ — R be smooth functions. Then for any o € N,
_1
laf(e )y — HaHp”pr‘ So v aller | flp- (B.1)

The proof is based on the interplay between the Poincare’s inequality and the fast oscillation of f(o-) and can be
found in [MS18, Lemma 2.1].

B.2. Tensor-valued antidivergence R. For any f € C°°(T4), there exists a v € C§°(T?) such that
Av=f— I
’]I‘d
And we denote v by A~ f. Note that if f € C$°(T?), then by rescaling we have
A7 (f(or) =0 Pv(0) foro €N.
We recall the following antidivergence operator R introduced in [DLS13].

Definition B.2. R : C>(T¢,RY) — C®(T%, S§*?) is defined by

(Rv)ij = Rijrvr (B.2)
where 5 _ g )
Rijk- = ﬁA’Zaﬁj@k — mA’lﬁk&j + Ailaj,(sjk + Ailajé.j,k.
It is clear that R is well-defined since R ;;; is symmetric in ¢, j and taking the trace gives
2—d —d
TrRv = HA_lakvk + ﬁﬁ_lakvk + A_lakvk + A_lakvk
2—d d

=(—+ — +2)A7! =0.

(d—1+d—1+) Okvr =0

By a direct computation, one can also show that

div(Rv) =v — ][ v forany v € C*°(T? R?)
’]I‘d
and
RAv = Vv + Vol for any divergence-free v € C*°(T%, R?). (B.3)
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We can show that R is bounded on L?(T?) for any 1 < p < cc.
Theorem B.3. Let 1 < p < oo. For any vector field f € C> (T4, R?), there holds
RSl Lerey S N fllor(ray-
In particular, if f € C5° (T4, RY), then
IRf(o) | oeray S o | fllzocray forany o € N.

Proof. Once the first bound is established, the second bound follows from the definition of R. It suffices to only
consider f with zero mean since R(C') = 0 for any constant C'. Then we only need to show that the operator

A‘lA_l&»@j(’)k

is bounded on LP(T%) for 1 < p < oo since the argument applies also to A~19;.
When 1 < p < oo, this follows from the boundedness of the Riesz transforms and the Poincare inequality.
When p = oo, the Sobolev embedding W14+ (T9) < L°°(T9) implies that

1A AT0:0;0k fl L= (ray S AT AT10:0;0kf wr.aaray S 1F | o ray < [1F | poe ray

where we have used the boundedness of the Riesz transforms once again.
When p = 1, one can use a duality approach and use the boundedness in L°° since integrating by parts yields

(ATTAT 00,0k f,0) = —(F,ATTATI0,0,000)  if @ € CGO(TY).
(]

B.3. Bilinear antidivergence 5. We can also introduce the bilinear version B : C*°(T¢,R%) x C>(T%, R?*4) —
C> (T4, Sg Xd) of R. This bilinear antidivergence B allows us to gain derivative when the later argument has zero

mean and a small period.
Let

(B(v, A))ij = viRijr A — R(OiviRijnAik)
or by a slight abuse of notations
B(v,A) = vRA — R(VvRA).

Theorem B.4. Let 1 < p < oco. Forany v € C°°(T4, R?) and A € C§° (T4, R4*%),

div(B(v, A)) = vA 7][ vA, (B.4)

’]I‘d
and

1B(v, A Lr(ray S Ivller(ray IRAl Lo ray.-
Proof. A direct compuation gives
div(B(v,A)) = 6leRijkAlk + Ulaj'RijkAlk —div R(aileijkAlk)
= Ay + ][aiUlRijkAlk

where we have used the fact that A has zero mean and R is symmetric.
Integrating by parts, we have

faileijkAlk = _][UlaiRijkAlk =- ][UZAZJ',
which implies that
div(B(v, A)) = vA f VA,

The second estimate follows immediately from the definition of B and Theorem B.3.
O
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