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Abstract

For initial data in Sobolev spaces Hs(T ), 1
2 < s � 1, the solution to the Cauchy problem for 

the Benjamin-Ono equation on the circle is shown to grow at most polynomially in time at a rate 
(1 + t)3(s− 1

2 )+ε , 0 < ε � 1. The key to establishing this result is the discovery of a nonlinear smoothing 
effect for the Benjamin-Ono equation, according to which the solution to the equation satisfied by a cer-
tain gauge transform, which is widely used in the well-posedness theory of the Cauchy problem, becomes 
smoother once its free solution is removed.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction and results

We consider the Cauchy problem for the Benjamin-Ono (BO) equation on the circle

ut +Huxx = 1
2∂x(u

2), (x, t) ∈ T ×R, (1.1a)
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u(x,0) = u0(x) ∈ Hs(T ). (1.1b)

In the above initial value problem, u(x, t) is a real-valued function and Hs(T ) denotes the stan-
dard L2-based Sobolev space on the circle. Furthermore, H denotes the Hilbert transform defined 
by

Ĥf (ξ) = −i sgn(ξ) f̂ (ξ), ξ ∈Z, (1.2)

where f̂ (ξ) = Ff (ξ) := ∫
x∈T e−iξxf (x)dx is the usual Fourier transform over T and where we 

use the convention sgn(0) = 0.
The BO equation was derived in [6,41] as a model for the propagation of one-dimensional 

long internal gravity waves in deep stratified fluids. The equation is a completely integrable 
system; in particular, it admits N -soliton solutions [12,13], it can be expressed in the form of a 
Lax pair [7,38], and it possesses an infinite number of commuting symmetries and conservation 
laws [7,21], including ∫

x∈T
udx,

∫
x∈T

u2dx,

∫
x∈T

(
uHux − 1

3u3
)

dx. (1.3)

Without loss of generality, throughout this work we restrict our attention to solutions of the 
BO equation with zero mean, i.e. we assume that∫

x∈T
u(x, t)dx =: û(0, t) = 0 ∀t ∈ R. (1.4)

This is possible thanks to the observation that the function v(x, t) := u(x, t) − c with c =
û0(0)/2π satisfies vt +Hvxx = ∂x(v

2) + 2cvx , and hence the function V (x, t) := v(x − 2ct, t)
satisfies the BO equation and has mean-zero initial value V (x, 0) = u0(x) − c. Therefore, noting 
that the mean û(0, t)/2π of any smooth solution to the BO equation is conserved, we deduce 
that V (x, t) has zero mean at all times.

The Cauchy problem for the BO equation has been studied extensively in the literature. In the 
case of the line, Fokas and Ablowitz [20] analyzed this problem via the inverse scattering trans-
form method under the assumption of sufficiently smooth and decaying initial data. Iorio [27]
established local and global existence of solution for initial data in Hs(R) with s > 3

2 and s � 2, 
respectively, using energy methods (see also [1], where the continuity of the data-to-solution map 
is specifically addressed). Furthermore, Ponce [42] proved global well-posedness for s = 3

2 . This 
result was improved by Koch and Tzvetkov [31] and Kenig and Koenig [28] to s > 5

4 and s > 9
8 , 

respectively. Importantly, for initial data in Hs(R) with s > 0, Koch and Tzvetkov [32] proved 
that the data-to-solution map of the BO initial value problem is not uniformly continuous (previ-
ously, Molinet, Saut and Tzvetkov [37] had shown that the data-to-solution map fails to be C2 in 
Hs(R) for all s ∈ R). This fact is due to the presence of a derivative in the nonlinear part of the 
BO equation in combination with the weak smoothing effects of the linear part of the equation, 
and prevents one from solving the BO Cauchy problem via a direct application of the contraction 
mapping principle (see also the relevant discussion in [43]). In [50], Tao bypassed this difficulty 
by introducing a gauge transform of Cole-Hopf type, thereby establishing global well-posedness 
in H 1(R). This breakthrough idea was further employed by Burq and Planchon [11] and by 
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Ionescu and Kenig [26], who extended Tao’s result to initial data in Hs(R) with s > 1
4 and s � 0, 

respectively.
In the periodic setting, using Tao’s gauge transform, Molinet proved well-posedness of the 

Cauchy problem (1.1) in Hs(T ) for s � 1
2 [33] and s � 0 [34]. Furthermore, adapting the tech-

nique of [32] for the line, in [33] Molinet showed that the data-to-solution map for problem (1.1)
is not uniformly continuous in Hs(T ) for any s > 0 (the corresponding result for s < − 1

2 was 
proved by Biagioni and Linares [5]). Nevertheless, Lipschitz continuity is retained in the case 
of mean-zero initial data (see also [43]). Simpler proofs of the results of [33,34] along with 
stronger uniqueness results were provided by Molinet and Pilod in [35], where an alternative 
proof of the result of [26] was also presented. Finally, in the recent preprint [22] Gérard, Kap-
peler and Topalov obtain global well-posedness results for initial data in Hs(T ) with − 1

2 < s < 0
(the discontinuity of the solution map for s < − 1

2 had already been observed by Angulo Pava 
and Hakkaev [3]).

In order to summarize the main results of [33–35], we first introduce some useful notation.

• For a, b > 0, we write a � b if there exists C > 0 such that a � Cb. If a � b and b � a then 
we write a � b.

• We define the Bessel potential J s
x via Fourier transform as

Ĵ s
x f (ξ) := 〈ξ 〉s f̂ (ξ), 〈·〉 :=

(
1 + | · |2

) 1
2
. (1.5a)

Then, for any s � 0 and p � 1, we define the Bessel potential space

Ws,p(T ) :=
{
f ∈ Lp(T ) : ‖f ‖Ws,p(T ) := ∥∥J s

x f
∥∥

Lp(T )
< ∞

}
, (1.5b)

which becomes the Sobolev space Hs(T ) in the special case p = 2.
• For any s, b ∈R, we define the Bourgain space Xs,b

τ=−ω(ξ) by

X
s,b
τ=−ω(ξ) :=

{
f ∈D′(T ×R) : ‖f ‖Xs,b :=

∥∥∥〈ξ 〉s 〈τ + ω(ξ)〉b f̃ (ξ, τ )

∥∥∥
L2(Zξ ×Rτ )

< ∞
}

,

(1.6)
where f̃ (ξ, τ) denotes the Fourier transform of f (x, t) with respect to both x and t . We de-
note by Xs,b

τ=−ω(ξ),T the restriction of Xs,b
τ=−ω(ξ) on T ×[0, T ]. Furthermore, for convenience 

of notation, hereafter we shall write Xs,b

τ=−ξ2 =: Xs,b and Xs,b

τ=ξ2 =: X̄s,b and, analogously, 

X
s,b
T and X̄s,b

T for the respective restrictions of these spaces on T × [0, T ].
• The operators �0, �+ and �− denote the projections onto the zero, positive and negative 

Fourier modes, respectively:

̂�0(f ) := 1

2π
f̂ (0), ̂�±(f )(ξ) := χ±(ξ)f̂ (ξ), (1.7)

where χ±(ξ) are the characteristic functions for ξ ≷ 0. It is straightforward to see that 
�±(u) = �∓(u).
27
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• For k � 1, we define the Littlewood-Paley-type projection operator Pk by

̂Pk(f )(ξ) := χ{
2k−1�|ξ |<2k

}f̂ (ξ), (1.8)

where χA is the characteristic function of the set A. We will often denote Pk(f ) simply by 
fk . By this definition, it follows that

2π ̂�0(f )(ξ) +
∞∑

k=1

f̂k(ξ) = f̂ (ξ), ξ ∈ Z. (1.9)

• Following [35], we introduce the gauge transform for the periodic BO equation as

w := ∂x�
+(e−iF/2), (1.10)

where F = ∂−1
x u is the primitive of the solution u of problem (1.1) such that

F̂ (ξ, t) :=
⎧⎨
⎩

0, ξ = 0,

1

iξ
û(ξ, t), ξ ∈Z \ {0}. (1.11)

Noting that F has zero mean and is 2π -periodic, it is straightforward to see that it satisfies 
the equation

Ft +HFxx − 1

2
F 2

x = −1

2
̂�0(F 2

x )(t). (1.12)

In turn, noting also that for any mean-zero function f we have Hf = −if + 2i�−(f ), we 
infer that w satisfies the initial value problem

wt − iwxx = −∂x�
+(

(∂−1
x w)�−(ux)

) + i
4
̂�0(u2)w, (x, t) ∈T ×R, (1.13a)

w(x,0) = ∂x�
+(e−i∂−1

x u0(x)/2) =: w0(x), x ∈ T . (1.13b)

With the above definitions at hand, the main well-posedness results of [33–35] can be sum-
marized as follows (see, in particular, Theorem 7.1 in [35]).

Theorem 1.1 (Well-posedness on the circle [33–35]). Suppose u0 ∈ Hs(T ) with 0 � s � 1. Then, 
the initial value problem (1.1) for the BO equation on the circle admits a solution

u ∈ C
([0, T ];Hs(T )

) ∩ L4([0, T ];Ws,4(T )
) ∩ X

s−1,1
τ=−|ξ |ξ,T

where T = T
(‖u0‖L2(T )

) � min
{‖u0‖−4

L2(T )
, 1

}
> 0. Moreover, the initial value problem (1.13)

for the function w, which is defined in terms of u via the gauge transform (1.10), admits a solution

w ∈ C([0, T ];Hs(T )) ∩ X
s, 1

2

T
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in the distributional as well as in the Duhamel sense. In particular, we have the estimates

max
{

‖u‖C([0,T ];Hs(T )) ,‖u‖L4([0,T ];Ws,4(T )) ,‖w‖
X

s, 1
2

T

}
� max

{
‖u0‖2s

L2(T )
,1

}
‖u0‖Hs(T ) ,

‖u‖
X

s−1,1
τ=−|ξ |ξ,T

�
(
‖u0‖Hs(T ) + ‖u0‖2

Hs(T )

)
.

Remark 1.1 (Global well-posedness). Thanks to the conservation of the L2-norm, the solution 
of Theorem 1.1 is in fact a global solution [33,34] which is unique within the class of limits of 
smooth solutions of problem (1.1).

The scope of the present work extends beyond the fundamental question of well-posedness 
that was addressed in [33–35]. In particular, we revisit the Cauchy problem (1.1) for the BO 
equation on the circle and obtain an explicit growth bound of polynomial type for the solution 
guaranteed by Theorem 1.1. Crucial for proving this bound is a nonlinear smoothing effect that 
we establish for the BO equation, according to which the nonlinear component of the solution of 
the equation emanating from the gauge transform is smoother than the component corresponding 
to the initial datum. More precisely, we shall show the following.

Theorem 1.2 (Nonlinear smoothing). Suppose 1
6 < s � 1, 0 < a < min

{
s − 1

6 , 1
3

}
and K :=

1
8π

‖u0‖2
L2(T )

, and let u and w be the solutions of the Cauchy problems (1.1) and (1.13) estab-

lished by Theorem 1.1. Then, e−iKtw(x, t) −eit∂2
x w0(x) ∈ C([0, T ]; Hs+a(T )) with the estimate∥∥∥e−iKtw − eit∂2

x w0

∥∥∥
C([0,T ];Hs+a(T ))

� C
(‖u0‖

H
min{s, 1

2 }
(T )

)‖u0‖Hs(T ) ,

where eit∂2
x is the semigroup associated with the linear Schrödinger equation.

The nonlinear smoothing effect of Theorem 1.2 provides the basis for proving the following 
polynomial growth bound for the solution of the BO initial value problem (1.1).

Theorem 1.3 (Polynomial bound). Suppose 1
2 < s � 1. Then, for any 0 < ε � 1, the solution u

of the BO Cauchy problem (1.1) established by Theorem 1.1 satisfies

‖u(t)‖Hs(T ) � C
(
ε, s,‖u0‖Hs(T )

) 〈t〉3(s− 1
2 )+ε , t ∈ R. (1.14)

The connection between nonlinear smoothing and polynomial bounds for Hamiltonian equa-
tions was first established by Bourgain [9,10], who employed Fourier truncation operators in 
conjunction with smoothing estimates to obtain the following local-in-time inequality for solu-
tions of various dispersive PDEs:

‖u(t + δ)‖Hs � ‖u(t)‖Hs + C‖u(t)‖1−δ
Hs (1.15)

for some δ ∈ (0, 1). Local time iterations using the above inequality resulted in the polynomial 
growth bound ‖u(t)‖Hs � 〈t〉1/δ . Staffilani [47,48] used further multilinear smoothing estimates 
to obtain (1.15) which led to polynomial bounds of high-Sobolev norms s > 1 for Korteweg-de 
Vries (KdV) and nonlinear Schrödinger (NLS) equations. Colliander, Keel, Staffilani, Takaoka 
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and Tao [14] developed a new method using modified energy called the “upside-down I -method” 
to produce polynomial bounds in low-Sobolev norms s ∈ (0, 1) for the NLS equation. So-
hinger [45,46] further developed the upside-down I-method to obtain polynomial bounds for 
high Sobolev norms for NLS. We also refer the reader to [15] and the references therein for 
further developments.

More recently, uniform-in-time bounds have been established for a number of completely in-
tegrable dispersive equations using inverse scattering techniques. In particular, Killip, Visan and 
Zhang [29] showed that the Hs -norm of solutions to the KdV and NLS equations is uniformly 
bounded in time for −1 � s < 1 and − 1

2 < s < 1, respectively, both on the line and on the circle. 
For the BO equation, Talbut [49] proved an analogous bound in Hs for − 1

2 < s < 0. However, no 
bound is available for s > 0 since the technique used in [49], which is similar to that of [29], be-
comes rather convoluted for higher values of s. On the other hand, Koch and Tataru [30] showed 
that there exists a conserved energy equivalent to the Hs-norm for s > − 1

2 in the case of the NLS 
and mKdV equations and for s � −1 in the case of the KdV equation.

Nonlinear smoothing properties analogous to the one of Theorem 1.2 have been previously 
established for several important dispersive equations. Indicatively, we mention the work of 
Erdŏgan and Tzirakis [18] on the periodic Korteweg-de Vries (KdV) equation, as well as 
their works on the derivative nonlinear Schrödinger equation on the line [16], the fractional 
Schrödinger equation on T and R [17], and the Zakharov system on the torus [19]. The main 
technique used in the proof of these results is known as the normal form method and was 
first introduced by Shatah [44] in the context of the Klein-Gordon equation with a quadratic 
nonlinearity. This method was further developed recently by Germain, Masmoudi and Shatah 
for two-dimensional quadratic Schrödinger equations [23] and the gravity water waves equa-
tion [24], as well as by Babin, Ilyin and Titi for the periodic KdV equation [4]. The technique 
used in the latter work is known as differentiation by parts. An alternative formulation of the 
normal form method which involves a multilinear pseudo-differential operator in place of dif-
ferentiation by parts was provided in [39,40]. In our work, thanks to the properties of the gauge 
transform, the normal form machinery is not required for proving the nonlinear smoothing result 
of Theorem 1.2.

Structure of the paper. In Section 2 we establish a bilinear estimate which is crucial for showing 
the nonlinear smoothing effect of Theorem 1.2. The proof of this theorem is then provided in 
Section 3. Finally, the polynomial growth bound of Theorem 1.3 is established in Section 4.

2. Bilinear estimate

The following bilinear estimate plays a key role in the proof of the nonlinear smoothing effect 
of Theorem 1.2.

Proposition 2.1 (Bilinear estimate). Let V ∈ X0, 1
2 and U ∈ L∞(R; L2(T )) ∩ X̄0,1 with U com-

pactly supported in [−T , T ] for some T > 0. Then, for all δ > 0, m ∈ N , k ∈ N and 0 < j � k, 
we have

∥∥Pj�
+(Vk �−(Um))

∥∥
X

0,− 1
2 −δ

� 2

(
1
6 +δ

)
k− m+j

2 ‖Vk‖
X

0, 1
2

( ∥∥�−(Um)
∥∥

L∞(R;L2(T ))
+ 2− m+j

2
∥∥�−(Um)

∥∥
X̄0,1

)
, (2.1)
30
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where Vk , Um denote the Littlewood-Paley-type projections defined by (1.8) and the implicit 
constant depends on T .

Indeed, via complex interpolation it can be shown that 
(
X0,− 1

2 −δ, X0,0
)
θ

= X0,− 1
2 +δ with 

θ := 1/2−δ
1/2+δ

. Therefore, interpolating between estimate (2.1) and the estimate

∥∥Pj�
+(Vk�

−(Um))
∥∥

L2(T×R)
� ‖Vk‖

X
0, 1

2

∥∥�−(Um)
∥∥

X̄0,1 ,

which follows from the generalized Hölder inequality and the embedding [8] X
0, 3

8 +δ

τ=±ξ2 ↪→
L4(T × R), δ > 0, (see also [51], page 104, Proposition 2.13) we obtain

∥∥Pj�
+(Vk�

−(Um))
∥∥

X
0,− 1

2 +δ
�

[
2− m+j

2 +k( 1
6 +δ)

(∥∥�−(Um)
∥∥

L∞(R;L2(T ))

+2− m+j
2

∥∥�−(Um)
∥∥

X̄0,1

)]θ · ∥∥�−(Um)
∥∥1−θ

X̄0,1 ‖Vk‖
X

0, 1
2
. (2.2)

This estimate is the main ingredient in the proof of Theorem 1.2 which is provided in Section 3. 
In the remaining of the current section, we prove Proposition 2.1.

Proof of Proposition 2.1. Observe that ϕ ∈ Xs,b implies ϕ̄ ∈ X̄s,b. By the dual formulation of 
the Bourgain norm along with Plancherel’s theorem, we have

∥∥Pj�
+(Vk �−(Um))

∥∥
X

0,− 1
2 −δ

= sup
‖ϕ‖

X
0, 1

2 +δ
=1

∣∣∣∣∣∣
∫

x∈T

∫
t∈R

Pj�
+(Vk �−(Um)) · ϕ(x, t)dtdx

∣∣∣∣∣∣
� sup

‖ϕ‖
X

0, 1
2 +δ

=1

∣∣∣∣∣
∑
ξ1∈Z

∑
ξ2∈Z

∫
τ1∈R

∫
τ2∈R

Ṽk(ξ1, τ1) ˜�−(Um)(ξ2, τ2)

· ˜�−(ϕj )(−(ξ1 + ξ2),−(τ1 + τ2))dτ2dτ1

∣∣∣∣∣. (2.3)

Next, we let L1 = ∣∣τ1 + ξ2
1

∣∣, L2 = ∣∣τ2 − ξ2
2

∣∣, L3 = ∣∣ − (τ1 + τ2) − (− (ξ1 + ξ2))
2

∣∣ and observe 
that, since − (τ1 + τ2) − (ξ1 + ξ2)

2 = −(τ1 + ξ2
1 ) − (τ2 − ξ2

2 ) − 2ξ2(ξ1 + ξ2) and 2m−1 � |ξ2| <
2m, 2j−1 � |ξ1 + ξ2| < 2j , we have

max {L1,L2,L3}� 1
6 2m+j . (2.4)

Then, writing 1 = χA1 + χAc
1
χA3 + χAc

1
χA2χAc

3
with Ai := {

Li � 1
6 2m+j

}
, i = 1, 2, 3, we have

∣∣∣∣ ∑
ξ1∈Z

∑
ξ2∈Z

∫
τ1∈R

∫
τ2∈R

Ṽk(ξ1, τ1) ˜�−(Um)(ξ2, τ2) ˜�−(ϕj )(−(ξ1 + ξ2),−(τ1 + τ2))dτ2dτ1

∣∣∣∣
� I1 + I2 + I3 (2.5)
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where

I1 =
∣∣∣∣ ∑
ξ1∈Z

∑
ξ2∈Z

∫
τ1∈R

∫
τ2∈R

χA1 Ṽk(ξ1, τ1) ˜�−(Um)(ξ2, τ2)

· ˜�−(ϕj )(−(ξ1 + ξ2),−(τ1 + τ2))dτ2dτ1

∣∣∣∣
I2 =

∣∣∣∣ ∑
ξ1∈Z

∑
ξ2∈Z

∫
τ1∈R

∫
τ2∈R

χAc
1
Ṽk(ξ1, τ1) ˜�−(Um)(ξ2, τ2)χA3

· ˜�−(ϕj )(−(ξ1 + ξ2),−(τ1 + τ2))dτ2dτ1

∣∣∣∣
I3 =

∣∣∣∣ ∑
ξ1∈Z

∑
ξ2∈Z

∫
τ1∈R

∫
τ2∈R

χAc
1
Ṽk(ξ1, τ1)χA2

˜�−(Um)(ξ2, τ2)χAc
3

· ˜�−(ϕj )(−(ξ1 + ξ2),−(τ1 + τ2))dτ2dτ1

∣∣∣∣.
We begin with the estimation of I1. Define f Ai via its Fourier transform as f̃ Ai := χAi

f̃ . 
Then, Plancherel’s theorem followed by the Cauchy-Schwarz inequality yield

I1 �
∣∣∣∣∣∣

∫
x∈T

∫
t∈R

V
A1
k (x, t) · �−(Um)(x, t) · �−(ϕj )(x, t)dtdx

∣∣∣∣∣∣
�

∥∥V
A1
k

∥∥
L2(T×R)

∥∥�−(Um) · �−(ϕj )
∥∥

L2(T×R)
. (2.6)

For the first factor in (2.6), recalling the definition of A1 we proceed as follows:

∥∥V
A1
k

∥∥
L2(T×R)

�
( ∑

ξ∈Z

∫
τ∈R

|τ + ξ2|∣∣τ + ξ2
∣∣ ∣∣Ṽ A1

k (ξ, τ )
∣∣2

dτ

) 1
2

�
( ∑

ξ∈Z

∫
τ∈R

(
1 + |τ + ξ2|2) 1

2

1
6 2m+j

∣∣Ṽ A1
k (ξ, τ )

∣∣2
dτ

) 1
2 � 2− m+j

2 ‖Vk‖
X

0, 1
2
. (2.7)

For the second factor in (2.6), recalling that U is supported inside [−T , T ] and applying the 
generalized Hölder inequality, we have

∥∥�−(Um) · �−(ϕj )
∥∥

L2(T×R)
�

∥∥�−(Um)
∥∥

L∞([−T ,T ];L2(T ))

∥∥�−(ϕj )
∥∥

L2([−T ,T ];L∞(T ))

� T
1
3

∥∥�−(Um)
∥∥

L∞([−T ,T ];L2(T ))

∥∥�−(ϕj )
∥∥

L6([−T ,T ];L∞(T ))
.

Moreover, the Sobolev embedding Wσ,p(T ) ↪→ L∞(T ), 1 � p � ∞, σ > 1 , for p = 6 yields

p
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∥∥�−(ϕj )
∥∥

L6([−T ,T ];L∞(T ))
�

∥∥J σ
x �−(ϕj )

∥∥
L6([−T ,T ];L6(T ))

, σ > 1
6 ,

while the embedding X
ε, 1

2 +δ

τ=±ξ2 ↪→ L6(T × R), ε, δ > 0 [8] (see also [51], page 107, Exercise 
2.78) further implies

∥∥�−(ϕj )
∥∥

L6([−T ,T ];L∞(T ))
�

∥∥J σ
x �−(ϕj )

∥∥
X̄

ε, 1
2 +δ

� 2j (σ+ε) ‖ϕ‖
X̄

0, 1
2 +δ

.

In turn, we find

∥∥�−(Um) · �−(ϕj )
∥∥

L2(T×R)
� T

1
3

∥∥�−(Um)
∥∥

L∞([−T ,T ];L2(T ))
2j (σ+ε) ‖ϕ‖

X̄
0, 1

2 +δ
. (2.8)

Hence, setting σ +ε = 1
6 +δ with δ > ε and then combining (2.8) with (2.6) and (2.7), we deduce

I1 � 2
− m+j

2 +j
(

1
6 +δ

)
‖Vk‖

X
0, 1

2

∥∥�−(Um)
∥∥

L∞([−T ,T ];L2(T ))
‖ϕ‖

X̄
0, 1

2 +δ
. (2.9)

We continue with the estimation of I2. As with I1, we employ Plancherel’s theorem and the 
Cauchy-Schwarz inequality to infer

I2 �
∥∥∥(�−(ϕj ))

A3

∥∥∥
L2(T×R)

∥∥V
Ac

1
k �−(Um)

∥∥
L2(T×R)

. (2.10)

Then, similarly to (2.7) we have∥∥∥(�−(ϕj ))
A3

∥∥∥
L2(T×R)

� 2−(m+j)( 1
2 +δ) ‖ϕ‖

X̄
0, 1

2 +δ
.

Moreover, treating the second factor in (2.10) similarly to the corresponding term in I1, we find

∥∥V
Ac

1
k �−(Um)

∥∥
L2(T×R)

� 2k( 1
6 +δ)

∥∥�−(Um)
∥∥

L∞([−T ,T ];L2(T ))

∥∥V
Ac

1
k

∥∥
X

0, 1
2 +δ

.

Hence, observing that ‖V Ac
1

k ‖
X

0, 1
2 +δ

� 2δ(m+j) ‖Vk‖
X

0, 1
2

by the definition of A1, we conclude 
that

I2 � 2− m+j
2 +k( 1

6 +δ) ‖Vk‖
X

0, 1
2

∥∥�−(Um)
∥∥

L∞([−T ,T ];L2(T ))
‖ϕ‖

X̄
0, 1

2 +δ
. (2.11)

Finally, similarly to I1 and I2, for I3 we have

I3 �
∥∥∥(�−(Um))A2

∥∥∥
L2(T×R)

∥∥V
Ac

1
k

(
�−(ϕj )

)Ac
3
∥∥

L2(T×R)
. (2.12)

For the first factor in (2.12), we proceed as with (2.7) to obtain∥∥∥(�−(Um))A2

∥∥∥
2

� 2−(m+j)
∥∥�−(Um)

∥∥
X̄0,1 . (2.13)
L (T×R)
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Moreover, for the second factor in (2.12), we use the generalized Hölder inequality as well as the 

embedding X
0, 3

8 +δ

τ=±ξ2 ↪→ L4(T ×R) to find

∥∥V
Ac

1
k

(
�−(ϕj )

)Ac
3
∥∥

L2(T×R)
�

∥∥V
Ac

1
k

∥∥
L4(T×R)

∥∥∥(�−(ϕj ))
Ac

3

∥∥∥
L4(T×R)

� ‖Vk‖
X

0, 1
2
‖ϕ‖

X̄
0, 1

2 +δ
.

(2.14)
Therefore, combining (2.14) and (2.13) into (2.12), we deduce

I3 � 2−(m+j) ‖Vk‖
X

0, 1
2
‖ϕ‖

X̄
0, 1

2 +δ

∥∥�−(Um)
∥∥

X̄0,1 . (2.15)

Overall, the three estimates (2.9), (2.11) and (2.15) together with the decomposition (2.5) and 
the dual formulation (2.3) imply the desired estimate (2.1). �

3. Nonlinear smoothing: proof of Theorem 1.2

We begin by noting that the existence of the solution u of Theorem 1.1 for the BO Cauchy 
problem (1.1) on T ×[0, T ] is proved by first taking initial data u0 ∈ Hs(T ) with small L2-norm 
and constructing u as the strong limit of a sequence of smooth solutions un ∈ C([0, 1]; Hs(T )) ∩
L4([0, 1]; Ws,4(T )) ∩X

s−1,1
τ=−|ξ |ξ,1. Also, in [35] it is shown that the sequence of gauge transforms 

wn := ∂x�
+(e−iFn/2) corresponding to un = ∂xFn converges to some w in C([0, 1]; Hs(T )) ∩

X
s,1/2
1 . Furthermore, due to the strong convergence of un in C([0, 1]; Hs(T )) it follows from 

the mean value theorem that wn converges to ∂x�
+(e−iF/2) in C([0, 1]; L2(T )), and hence 

w = ∂x�
+(e−iF/2). In turn, it follows that vn := e−iKtwn converges to

v(x, t) := e−iKtw(x, t) (3.1)

in C([0, 1]; Hs(T )) ∩X
s,1/2
1 . Then, using the smoothness of vn together with standard estimates 

(e.g. estimate (3.10)) and Proposition 2.1, it follows that v satisfies the Duhamel equation

v(x, t) = η(t)eit∂2
x v0(x) − η(t)

t∫
t ′=0

ei(t−t ′)∂2
x ∂x�

+(∂−1
x v · ∂x�

−(u))(x, t ′)dt ′, t ∈ [0,1],

(3.2)
where η ∈ C∞

0 (R) is supported inside [−2, 2] with η ≡ 1 on [−1, 1] and 0 � η � 1 for all t ∈ R. 
In addition, observe that if u solves (1.1) then so does λu(λx, λ2t). Exploiting this scaling with 
λ = 1/T 2 and the fact that all previous convergences hold in spaces where the spatial period is 
assumed to be λ � 1 [35], the small L2-norm assumption on u0 can be dropped and the lifespan of 
the solution can be extended to the lifespan T � min

{‖u0‖−4
L2(T )

, 1
}

of Theorem 1.1. Therefore, 
v satisfies the Duhamel equation (3.2) on [0, T ], i.e.

v(x, t) = ηT (t)eit∂2
x v0(x) − ηT (t)

t∫
t ′=0

ei(t−t ′)∂2
x ∂x�

+(∂−1
x v · �−(ux))(x, t ′)dt ′, t ∈ [0, T ],

(3.3)
where ηT (t) := η(t/T ).
34



B. Isom, D. Mantzavinos, S. Oh et al. Journal of Differential Equations 297 (2021) 25–46
Combining the representation (3.3) with the embedding Xs,b
T ↪→ C([0, T ]; Hs(T )), s ∈ R, 

b > 1
2 , (see, for example, Corollary 2.10 in [51]) we obtain

∥∥∥e−iKtw − eit∂2
x w0

∥∥∥
C([0,T ];Hs+a(T ))

�

∥∥∥∥∥∥ηT

t∫
t ′=0

ei(t−t ′)∂2
x ∂x�

+(∂−1
x v · �−(ux))dt ′

∥∥∥∥∥∥
X

s+a, 1
2 +δ

T

.

(3.4)
In order to estimate the right-hand side of the above inequality, we first need to define appropriate 
extensions of the functions v and u with respect to t outside the interval [0, T ]. For v, we choose 
an extension v∗ ∈ Xs, 1

2 such that

∥∥v∗∥∥
X

s, 1
2
� 2‖v‖

X
s, 1

2
T

, (3.5)

which exists for all s ∈ R by the definition of Xs,b
T as a restriction of Xs,b. For u, we use a less 

trivial extension which is similar to the one in [36] and is defined as follows.

Lemma 3.1 (Extension of u outside [0, T ]). Given u ∈ C([0, T ]; Hs(T )) ∩ X
s−1,1
τ=−|ξ |ξ,T , let

u∗(t) := S(t)ηT (t)S(−μT (t))u(μT (t)), (3.6)

where S(·) is the free group associated with the linear component of the BO equation, whose 
action is defined by ̂S(t)f (ξ) := e−i|ξ |ξ t f̂ (ξ), and

μT (t) =
⎧⎨
⎩

t, t ∈ [0, T ],
2T − t, t ∈ [T ,2T ],
0, t /∈ [0,2T ].

If there exists a smooth approximating sequence un for u in C([0, T ]; Hs(T )) ∩X
s−1,1
τ=−|ξ |ξ,T , then

∥∥u∗∥∥
L∞(R;Hs(T ))

� ‖u‖C([0,T ];Hs(T )) , (3.7)∥∥u∗∥∥
X

s−1,1
τ=−|ξ |ξ

� ‖u‖
X

s−1,1
τ=−|ξ |ξ,T

+ ‖u‖C([0,T ];Hs(T )) , (3.8)

where the implicit constants depend on T .

Proof of Lemma 3.1. For inequality (3.7), we simply note that

∥∥u∗∥∥
L∞(R;Hs(T ))

� ‖u(μT )‖C([−2T ,2T ];Hs(T )) = ‖u‖C([0,T ];Hs(T )) .

For inequality (3.8), we let un be an approximating sequence for u in C([0, T ]; Hs(T )) ∩
X

s−1,1
τ=−|ξ |ξ,T and denote by u∗

n its extension defined analogously to (3.6). By the definition of the 
Bourgain norm and the properties of ηT and μT , we find
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∥∥u∗
n

∥∥
X

s−1,1
τ=−|ξ |ξ

� ‖S(−μT )un(μT )‖L2([−2T ,2T ];Hs−1(T ))

+ ‖∂t (S(−μT )un(μT ))‖L2([−2T ,2T ];Hs−1(T ))

� ‖un(0)‖Hs−1(T ) + ‖un‖L2([0,T ];Hs−1(T ))

+ ‖∂t (S(−μT )un(μT ))‖L2([−2T ,0];Hs−1(T ))

+ ‖∂t (S(−μT )un(μT ))‖L2([0,T ];Hs−1(T ))

+ ‖∂t (S(−μT )un(μT ))‖L2([T ,2T ];Hs−1(T )) ,

where the implicit constant in the second inequality depends on T . Since un is smooth, we 
directly compute

∂t (S(−μT )un(μT )) = μ′
T (t)S(−μT )(∂t + |∂x |∂x)un

∣∣
μT

.

Thus, ∂t (S(−μT )un(μT )) = 0 on [−2T , 0) since μ′
T (t) = 0 there. In addition, on [0, T ] we have 

∂t (S(−μT )un(μT )) = S(−t)(∂t +|∂x |∂x)un(t) while on (T , 2T ] we have ∂t (S(−μT )un(μT )) =
−S(t − 2T )(∂t + |∂x |∂x)un(2T − t). Therefore,

∥∥u∗
n

∥∥
X

s−1,1
τ=−|ξ |ξ

� ‖un‖C([0,T ];Hs(T )) + ‖un‖X
s−1,1
τ=−|ξ |ξ,T

+ ‖(∂t + |∂x |∂x)un‖L2([0,T ];Hs−1(T )) .

To handle the third term, let u∗∗
n ∈ X

s−1,1
τ=−|ξ |ξ be any extension of un ∈ X

s−1,1
τ=−|ξ |ξ,T . Then,

‖(∂t + |∂x |∂x)un‖L2([0,T ];Hs−1(T )) = ∥∥(∂t + |∂x |∂x)u
∗∗
n

∥∥
L2([0,T ];Hs−1(T ))

=
∥∥∥F−1((τ + |ξ |ξ )̃u)

∥∥∥
L2([0,T ];Hs−1(T ))

�
∥∥∥〈ξ〉s−1〈τ + |ξ |ξ 〉ũ∗∗

n

∥∥∥
L2(Z×R)

= ∥∥u∗∗
n

∥∥
X

s−1,1
τ=−|ξ |ξ

.

Hence, taking the infimum of this inequality over all extensions, we infer

∥∥u∗
n

∥∥
X

s−1,1
τ=−|ξ |ξ

� ‖un‖C([0,T ];Hs(T )) + ‖un‖X
s−1,1
τ=−|ξ |ξ,T

.

In order to deduce inequality (3.8) from the above inequality, it suffices to show that the left-
hand side converges to ‖u∗‖

X
s−1,1
τ=−|ξ |ξ

. We have

∥∥u∗
n − u∗

m

∥∥
X

s−1,1
τ=−|ξ |ξ

= ∥∥(un − um)∗
∥∥

X
s−1,1
τ=−|ξ |ξ

� ‖un − um‖C([0,T ];Hs(T )) + ‖un − um‖
X

s−1,1
τ=−|ξ |ξ,T

and, in addition, 
∥∥u∗

n − u∗
m

∥∥
L∞(R;Hs(T ))

� ‖un − um‖C([0,T ];Hs(T )). Therefore, u∗
n is Cauchy in 

X
s−1,1
τ=−|ξ |ξ and L∞(R; Hs(T )) and has limits v1 and v2, respectively. Moreover, since

∥∥u∗
n − v1

∥∥
L∞(R;Hs−1(T ))

�
∥∥u∗

n − v1
∥∥

X
s−1,1
τ=−|ξ |ξ

,∥∥u∗
n − v2

∥∥
L∞(R;Hs−1(T ))

�
∥∥u∗

n − v2
∥∥

L∞(R;Hs(T ))
,
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we infer that u∗
n converges to both v1 and v2 in L∞(R; Hs−1(T )) and hence v1 = v2. Fi-

nally, since for any u ∈ C([0, T ]; Hs(T )) we have ‖u∗‖L∞(R;Hs(T )) � ‖u‖C([0,T ];Hs(T )), 
it follows that 

∥∥u∗
n − u∗∥∥

L∞(R;Hs(T ))
� ‖un − u‖C([0,T ];Hs(T )) and, therefore, u∗

n → u∗ in 

C([0, T ]; Hs(T )) and in Xs−1,1
τ=−|ξ |ξ,T , proving inequality (3.8). �

Back to (3.4), using the extensions v∗ and u∗ defined by (3.5) and (3.6) we have

∥∥∥∥∥∥ηT

t∫
t ′=0

ei(t−t ′)∂2
x ∂x�

+(∂−1
x v · �−(ux)) dt ′

∥∥∥∥∥∥
X

s+a, 1
2 +δ

T

(3.9)

�

∥∥∥∥∥∥ηT

t∫
t ′=0

ei(t−t ′)∂2
x ∂x�

+(∂−1
x v∗ · �−(u∗

x)) dt ′
∥∥∥∥∥∥

X
s+a, 1

2 +δ

�
∥∥∥∂x�

+(∂−1
x v∗ · �−(u∗

x))

∥∥∥
X

s+a,− 1
2 +δ

with the second inequality due to the following well-known result (see, for example, Proposi-
tion 2.12 in [51]):

∥∥∥∥∥∥η(t)

t∫
t ′=0

ei(t−t ′)∂2
x F (x, t ′)dt ′

∥∥∥∥∥∥
Xs,b

� ‖F‖Xs,b−1 , s ∈R, b > 1
2 . (3.10)

We shall now estimate the right-hand side of (3.9). Applying projections, we have∥∥∥∂x�
+(∂−1

x v∗ · �−(u∗
x))

∥∥∥
X

s+a,− 1
2 +δ

(3.11)

�
∞∑

k=1

k∑
j=1

k∑
m=1

∥∥∥∂xPj�
+(

(∂−1
x v∗)k�−(u∗

x)m
)∥∥∥

X
s+a,− 1

2 +δ

�
∞∑

k=1

k∑
j=1

k∑
m=1

2j (s+a+1)
∥∥∥Pj�

+(
(∂−1

x v∗)k�−(u∗
x)m

)∥∥∥
X

0,− 1
2 +δ

with the restrictions on the summation ranges due to the support properties of �±. Furthermore, 
employing the bilinear estimate (2.2) we find∥∥∥Pj�

+((∂−1
x v∗)k�−(u∗

x)m)

∥∥∥
X

0,− 1
2 +δ

�
[

2
− m+j

2 +k
(

1
6 +δ

) (∥∥�−(u∗
x)m

∥∥
L∞(Rt ;L2(T ))

+ 2− m+j
2

∥∥�−(u∗
x)m

∥∥
X̄0,1

)]θ

· ∥∥�−(u∗
x)m

∥∥1−θ

X̄0,1

∥∥∥(∂−1
x v∗)k

∥∥∥
X

0, 1
2
.

Moreover, noting that ξ2 = −|ξ |ξ for ξ < 0, we have

∥∥�−(u∗
x)m

∥∥
X̄0,1 � 2m(1−(σ−1))

∥∥�−(u∗)m
∥∥

X̄σ−1,1 � 2m(2−σ)
∥∥�−(u∗)m

∥∥
X

σ−1,1

τ=−|ξ |ξ
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where σ := min
{
s, 1

2

}
. We denote ZT := C([0, T ]; Hσ (T )) ∩ X

σ−1,1
τ=−|ξ |ξ,T . Then, employing 

Lemma 3.1, we obtain∥∥∥Pj�
+((∂−1

x v∗)k�−(u∗
x)m)

∥∥∥
X

0,− 1
2 +δ

�
[

2
− m+j

2 +k
(

1
6 +δ

) (
2m(1−σ) + 2m( 3

2 −σ)− j
2

)]θ

2m(2−σ)(1−θ)−k(1+s) ‖u‖ZT
‖v‖

X
s, 1

2
T

.

In turn, (3.11) becomes∥∥∥∂x�
+(∂−1

x v∗ · �−(u∗
x))

∥∥∥
X

s+a,− 1
2 +δ

(3.12)

� ‖u‖ZT
‖v‖

X
s, 1

2
T

∞∑
k=1

k∑
j=1

k∑
m=1

2j (s+a+1)+m(2−σ)(1−θ)−k(1+s)

·
[

2
− m+j

2 +k
(

1
6 +δ

) (
2m(1−σ) + 2m( 3

2 −σ)− j
2

)]θ

and, therefore, it suffices to control the multiplier

M := 2j (s+a+1)+m(2−σ)(1−θ)−k(1+s)

[
2
− m+j

2 +k
(

1
6 +δ

) (
2m(1−σ) + 2m( 3

2 −σ)− j
2

)]θ

for k, j, m as in (3.12). Recalling that θ = 1/2−δ
1/2+δ

and 0 < δ � 1, we may write θ = 1 − ε for 

0 < ε := 2δ
1/2+δ

� 1. Then,

M = 2j (s+a+1) 2−k(1+s) 2m(2−σ)ε
(

2m( 1
2 −σ) 2k( 1

6 +δ) 2− j
2 + 2m(1−σ) 2k( 1

6 +δ) 2−j
)1−ε

=
2j (s+a) 2k(− 5

6 −s+δ) 2m(2−σ)ε 2m( 1
2 −σ)

(
2

j
2 + 2

m
2

)
(

2m( 1
2 −σ) 2k( 1

6 +δ) 2− j
2 + 2m(1−σ) 2k( 1

6 +δ) 2−j
)ε .

Hence, since ε > 0 and 2k( 1
6 +δ) > 1, we have

M � 2j (s+a+ ε
2 ) 2k(− 5

6 −s+δ) 2m( 1
2 −σ+ 3ε

2 )
(
2

j
2 + 2

m
2

)
.

Moreover, since j, m � k, if s � 1
2 then σ = s, so we obtain

M � 2k(s+a+ ε
2 ) 2k(− 5

6 −s+δ) 2k( 1
2 −s+ 3ε

2 ) 2
k
2 = 2

k
(
a+2ε+ 1

6 +δ−s
)
� 2

k
(
a+ 1

6 +9δ−s
)

while if s > 1
2 then σ = 1

2 , so we have

M � 2j (s+a+ ε
2 ) 2k(− 5

6 −s+δ) 2m 3ε
2

(
2

j
2 + 2

m
2

)
� 2

k
(
a+2ε− 1

3 +δ
)
� 2

k
(
a− 1

3 +9δ
)
.
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Therefore, returning to (3.12), for 0 � s � 1
2 we deduce

∥∥∥∂x�
+(∂−1

x v∗ · �−(u∗
x))

∥∥∥
X

s+a,− 1
2 +δ

� ‖u‖ZT
‖v‖

X
s, 1

2
T

∞∑
k=1

k∑
j=1

k∑
m=1

2k(a+ 1
6 +9δ−s),

where the sum converges for a < s − 1
6 − 9δ, while for 1

2 � s � 1 we deduce

∥∥∥∂x�
+(∂−1

x v∗ · �−(u∗
x))

∥∥∥
X

s+a,− 1
2 +δ

� ‖u‖ZT
‖v‖

X
s, 1

2
T

∞∑
k=1

k∑
j=1

k∑
m=1

2k(a− 1
3 +9δ),

where the sum converges for a < 1
3 − 9δ. The last two inequalities combined with inequality 

(3.9) and definition (3.1) yield the following bound for the right-hand side of (3.4):∥∥∥e−iKtw − eit∂2
x w0

∥∥∥
C([0,T ];Hs+a(T ))

� ‖u‖ZT
‖w‖

X
s, 1

2
T

(3.13)

with 0 < a < min
{
s − 1

6 − 9δ, 1
3 − 9δ

}
, where we have used the fact that ‖v‖

X
s, 1

2
T

� ‖w‖
X

s, 1
2

T

since 
〈
τ − K + ξ2

〉
�

(
1 + ∣∣τ + ξ2

∣∣) (1 + K). Combining (3.13) with the estimates for u and w
provided by Theorem 1.1, we conclude that∥∥∥e−iKtw − eit∂2

x w0

∥∥∥
C([0,T ];Hs+a(T ))

�max
{
‖u0‖2s

L2(T )
,1

} (
‖u0‖Hσ (T ) + ‖u0‖2

Hσ (T )

)
‖u0‖Hs(T ) (3.14)

completing the proof of Theorem 1.2.

4. Polynomial bound: proof of Theorem 1.3

We will now employ the nonlinear smoothing effect of Theorem 1.2 in order to establish the 
polynomial bound of Theorem 1.3. We begin by noting that estimate (3.14) (which is the concrete 
expression of the nonlinear smoothing effect) for s = 1

2 and 0 < a < 1
3 implies

∥∥∥w(t) − eit (∂2
x+K)w0

∥∥∥
H

5
6 −ε

(T )
� C

(‖u0‖
H

1
2 (T )

)
, ε := 1

3 − a > 0, t ∈ [0, T ], (4.1)

where C
(‖u0‖

H
1
2 (T )

)
is a constant that depends only on ‖u0‖

H
1
2 (T )

.

We also note that

‖w(t)‖Hs(T ) � C
(
s,‖u0‖L2(T )

)‖u(t)‖Hs(T ), 0 � s � 1, t ∈R. (4.2)

Indeed, for 1
2 < s � 1 inequality (4.2) follows from the algebra property after recalling that 

w � �+(ue−iF/2) and observing that 
∥∥e−iF/2

∥∥
Hs(T )

�
∥∥e−iF/2

∥∥
H 1(T )

� 1 + ‖u0‖L2(T ) from 

the physical definition of the H 1-norm and the conservation of the L2-norm. Moreover, for 
0 � s � 1 inequality (4.2) follows directly from inequality (2.13) of [35].
2
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In addition, the H
1
2 -norm of u can be controlled via the following result.

Lemma 4.1. Let u satisfy the BO initial value problem (1.1). Then,

‖u(t)‖
H

1
2 (T )

� C
(‖u0‖

H
1
2 (T )

)
, t ∈R, (4.3)

where C
(‖u0‖

H
1
2 (T )

)
is a constant that depends only on ‖u0‖

H
1
2 (T )

.

Proof of Lemma 4.1. Multiplying the BO equation (1.1a) by |∂x |u, which is defined via Fourier 

transform by ̂|∂x |j u(ξ) = |ξ |j û(ξ), and integrating over T , we have

∫
x∈T

ut · |∂x |udx +
∫

x∈T
Huxx · |∂x |udx = 1

2

∫
x∈T

∂x(u
2) · |∂x |udx. (4.4)

For the first integral, recalling that u is real-valued, and hence that û(ξ) = û(−ξ) and in turn 
|∂xu| = |∂x |u, and using Parseval’s identity twice, we find that

∫
x∈T

ut · |∂x |udx = 1

2
· 1

2π

∑
ξ∈Z

(
ût
̂|∂x |u + ût

̂|∂x |u
)

= 1

2
∂t ‖u‖2

Ḣ
1
2 (T )

, (4.5)

where Ḣ
1
2 denotes the homogeneous counterpart of H

1
2 . Also, recalling in addition that H∂2

x =
|∂x |∂x and using Parseval’s identity, we find that the second integral vanishes:

∫
x∈T

Huxx · |∂x |udx = 1

2π

∑
ξ∈Z

̂|∂x |∂xu · ̂|∂x |u = 1

2π

∑
ξ∈Z

ξ3û(ξ )̂u(−ξ) = 0. (4.6)

Finally, integrating by parts and substituting from the BO equation, we write the third integral as

1

2

∫
x∈T

∂x(u
2) · |∂x |udx = −1

2

∫
x∈T

u2 ·Huxx dx = 1

6
∂t

∫
x∈T

u3 dx. (4.7)

Combining (4.4)-(4.7), we deduce that the quantity ‖u‖2

Ḣ
1
2 (T )

− 1
3

∫
x∈T u3 dx is conserved, i.e.

‖u(t)‖2

Ḣ
1
2 (T )

− 1

3

∫
x∈T

u3(t) dx = ‖u0‖2

Ḣ
1
2 (T )

− 1

3

∫
x∈T

u3
0 dx. (4.8)

Moreover, by Sobolev’s inequality (e.g. see Theorem 4.31 in [2]), the fractional Sobolev-
Gagliardo-Nirenberg inequality (see Corollary 1.5 in [25]) and the conservation of the L2-norm, 
we have ∫

u3(t) dx � ‖u(t)‖3
L3(T )

� ‖u(t)‖3

H
1
6 (T )

= ‖u0‖2
L2(T )

‖u(t)‖
H

1
2 (T )

. (4.9)
x∈T
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Combining (4.8) and (4.9), we find

1

3

(
‖u(t)‖2

Ḣ
1
2 (T )

− ‖u0‖2
L2(T )

‖u(t)‖
H

1
2 (T )

)

� ‖u0‖2

Ḣ
1
2 (T )

− 1

3

∫
x∈T

u3
0 dx � ‖u0‖2

Ḣ
1
2 (T )

+ ‖u0‖3
L3(T )

� ‖u0‖2

Ḣ
1
2 (T )

+ ‖u0‖2
L2(T )

‖u0‖
H

1
2 (T )

,

i.e.

‖u(t)‖2

Ḣ
1
2 (T )

− ‖u0‖2
L2(T )

‖u(t)‖
H

1
2 (T )

� C
(‖u0‖

H
1
2 (T )

)
. (4.10)

But note that for ξ ∈ Z \ {0} we have |ξ | � 〈ξ 〉. Using this fact together with our assumption of 
mean-zero data, we infer from (4.10) the inequality

‖u(t)‖2

H
1
2 (T )

− ‖u0‖2
L2(T )

‖u(t)‖
H

1
2 (T )

� C
(‖u0‖

H
1
2 (T )

)
.

Completing the square on the left-hand side yields the desired inequality (4.3). �

Before proceeding to the proof of Theorem 1.3, we establish the following inequality.

Proposition 4.1. Suppose that 1
2 < s � 1. Then, for all t ∈ R we have

‖u(t)‖Hs(T ) �
(
1 + ‖u0‖L2(T )

) (
‖w(t)‖Hs(T ) + (

1 + ‖u0‖L2(T )

)[
1 + C

(‖u0‖
H

1
2 (T )

)])
.

(4.11)

Proof of Proposition 4.1. We suppress the t -dependence for brevity. Note that u = u+ + u+ so 
‖u‖Hs(T ) � 2 

∥∥u+∥∥
Hs(T )

. Also, u = 2ieiF/2w + 2ieiF/2∂x�
−(e−iF/2) and hence

∥∥u+∥∥
Hs(T )

�
∥∥�+(eiF/2w)

∥∥
Hs(T )

+ ∥∥�+(
eiF/2∂x�

−(e−iF/2)
)∥∥

Hs(T )
.

By Lemmas 3.1 and 3.2 of [33] we have

∥∥�+(eiF/2w)
∥∥

Hs(T )
� ‖w‖Hs(T )

(
1 + ‖u0‖L2(T )

)
,

and, for s1 + s2 = s + 1, s1 � s and s2 � 0,

∥∥�+(eiF/2∂x�
−(e−iF/2))

∥∥
Hs(T )

�
∥∥J s1

x eiF/2
∥∥

L4(T )

∥∥J s2
x e−iF/2

∥∥
L4(T )

.

Since

∥∥J s1
x eiF/2

∥∥
4 �

∥∥J
s1+ 1

4
x eiF

∥∥
2 ,

∥∥J s2
x e−iF/2

∥∥
4 �

∥∥J
s2+ 1

4
x e−iF/2

∥∥
2
L (T ) L (T ) L (T ) L (T )
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by the Sobolev embedding, taking s2 = 3
4 we have

∥∥J
s2+ 1

4
x e−iF/2

∥∥
L2(T )

�
∥∥e−iF/2

∥∥
H 1(T )

�
(
1 + ‖u0‖L2(T )

)
.

Then, s1 = s + 1
4 and for s = 1

2 + δ, 0 < δ � 1
2 , we find

∥∥J
s1+ 1

4
x eiF/2

∥∥
L2(T )

= ∥∥J 1+δ
x eiF/2

∥∥
L2(T )

�
∥∥J δ

x eiF/2
∥∥

L2(T )
+ ∥∥J δ

x (ueiF/2)
∥∥

L2(T )

� (1 + ‖u0‖L2(T )) + ∥∥J δ
x u

∥∥
L2(T )

(
1 + ‖u0‖L2(T )

)
with the second inequality due to Lemma 3.1 of [33]. Noting further that Lemma 4.1 implies ∥∥J δ

x u
∥∥

L2(T )
� C(‖u0‖

H
1
2 (T )

), we obtain the desired inequality (4.11). �

Proof of Theorem 1.3. In the remaining of the article, we combine inequalities (4.1)-(4.3) with 
inequality (4.11) to obtain the polynomial bound of Theorem 1.3. First, consider 1

2 < s < 5
6 . 

Given u0 ∈ Hs , let T = T (‖u0‖L2) be as in Theorem 1.1. Suppose t ∈ [nT , (n + 1)T ) for some 
n ∈N ∪ {0}. Then, write

w(t) = Q�n3w(t) + Q>n3w(t), (4.12)

where Q�n3 and Q>n3 are the projections onto Fourier modes1 whose absolute value is less than 
or equal to n3 and greater than n3, respectively. For the first component, we have

∥∥Q�n3w(t)
∥∥

Hs(T )
� n3(s− 1

2 )‖w(t)‖
H

1
2 (T )

� 〈n〉3(s− 1
2 ) ‖u(t)‖

H
1
2 (T )

� 〈t〉3(s− 1
2 ) C

(‖u0‖
H

1
2 (T )

)
, (4.13)

where the final implicit constant depends on T = T (‖u0‖L2). Hence, it remains to control the 
second component, which we rewrite as

Q>n3

(
w(t) − ei(t−nT )(∂2

x+K)w(nT )
)

+ Q>n3e
i(t−nT )(∂2

x+K)w(nT ).

Since s < 5
6 , employing estimate (4.1) after shifting the time interval from [0, T ] to [nT , (n +1)T ]

together with estimate (4.3), we can control the first part above as follows:∥∥∥Q>n3

(
w(t) − ei(t−nT )(∂2

x+K)w(nT )
)∥∥∥

Hs(T )

=
∥∥∥J

s− 5
6 +ε

x Q>n3J
5
6 −ε

x

(
w(t) − ei(t−nT )(∂2

x+K)w(nT )
) ∥∥∥

L2(T )

� n3s− 5
2 +3ε

∥∥∥w(t) − ei(t−nT )(∂2
x+K)w(nT )

∥∥∥
H

5
6 −ε

(T )

1 Here, we use different notations for the projections, as Pk = Q k .
2
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� n3s− 5
2 +3εC

(‖u(T n)‖
H

1
2 (T )

)
� n3s− 5

2 +3εC
(‖u0‖

H
1
2 (T )

)
.

For the second part, writing

Q>(n−1)3w(nT ) = Q>(n−1)3

(
w(nT ) − eiT (∂2

x+K)w((n − 1)T )
)

+ Q>(n−1)3e
iT (∂2

x+K)w((n − 1)T )

and the inequality∥∥∥Q>n3e
i(t−nT )(∂2

x+K)w(nT )

∥∥∥
Hs(T )

�
∥∥Q>(n−1)3w(nT )

∥∥
Hs(T )

allow us to repeat our earlier computation for the first part to obtain∥∥∥Q>n3e
i(t−nT )(∂2

x+K)w(nT )

∥∥∥
Hs(T )

� C̃ (n − 1)3s− 5
2 +3ε C

(‖u0‖
H

1
2 (T )

)
+ ∥∥Q>(n−2)3w((n − 1)T )

∥∥
Hs(T )

.

As before, it is important that the second term on the right-hand side does not pick up any 
constant. Thus, we can iterate this process n times to obtain

∥∥Q>n3w(t)
∥∥

Hs(T )
�

n∑
k=1

k3s− 5
2 +3εC

(‖u0‖
H

1
2 (T )

) + ‖w0‖Hs(T )

� n3(s− 1
2 +ε)C

(‖u0‖
H

1
2 (T )

) + ‖u0‖Hs(T ), (4.14)

where the implicit constant in the second inequality depends on s and ε and where we have used 
the following lemma.

Lemma 4.2. For α > −1 and N � 1,

N∑
k=1

kα = 1

α + 1
Nα+1 + O

(
Nmax{0,α}).

In particular, 
∑N

k=1 kα � CαNα+1.

Proof of Lemma 4.2. For α � 0, we have

∣∣∣∣∣
N∑

k=1

kα − 1

α + 1
Nα+1

∣∣∣∣∣ =
N∑

k=1

k∫
x=k−1

(
kα − xα

)
dx �

N∑
k=1

k∫
x=k−1

[
kα − (k − 1)α

]
dx = Nα.

If −1 < α < 0, then 1 � Nα+1 and so it suffices to establish the bound for 
∑N

kα . We have
k=2

43



B. Isom, D. Mantzavinos, S. Oh et al. Journal of Differential Equations 297 (2021) 25–46
N∑
k=2

kα − 1

α + 1
Nα+1 =

N∑
k=2

k∫
x=k−1

kαdx −
N∫

x=1

xαdx − 1

α + 1

=
N∑

k=2

k∫
x=k−1

(
kα − xα

)
dx − 1

α + 1
.

By the Mean Value Theorem on [x, k] we can write kα −xα = α cα−1 for some c ∈ (x, k). Hence, 
for x ∈ [k − 1, k] we have |kα − xα|� (k − 1)α−1 and so

∣∣∣∣∣
N∑

k=2

kα − 1

α + 1
Nα+1

∣∣∣∣∣ �
N∑

k=2

(k − 1)α−1 + 1

α + 1
�

∞∑
k=2

(k − 1)α−1 + 1

α + 1
� 1,

where the infinite series converges since α < 0. The proof of the lemma is complete. �

Note that 3s− 5
2 > −1 ⇔ s > 1

2 and so Lemma 4.2 can be employed to yield the last inequality 
in (4.14). Overall, combining (4.13) and (4.14) with the decomposition (4.12), for any n ∈N∪{0}
and t ∈ [nT , (n + 1)T ) we obtain

‖w(t)‖Hs(T ) �
∥∥Q�n3w(t)

∥∥
Hs(T )

+ ∥∥Q>n3w(t)
∥∥

Hs(T )

� 〈t〉3(s− 1
2 +ε) C(‖u0‖

H
1
2 (T )

) + ‖u0‖Hs(T ) � 〈t〉3(s− 1
2 +ε) C(‖u0‖Hs(T )),

where the implicit constants depend on s, T and ε. Therefore, using inequality (4.11) we obtain 
the desired bound, concluding the proof of Theorem 1.3 for 1

2 < s < 5
6 .

For 5
6 � s � 1, we can follow a similar computation to establish the same polynomial-in-time 

bound. Indeed, as before, we write w(t) = Q�n3w(t) + Q>n3w(t) and note that the first com-
ponent can be estimated once again as in (4.13). Furthermore, we rewrite the second component 
as

Q>n3

(
w(t) − ei(t−nT )(∂2

x+K)w(nT )
)

+ Q>n3e
i(t−nT )(∂2

x+K)w(nT )

and note that estimate (3.14) with s = 5
6 − ε and a = 1

3 − ε after shifting [0, T ] to [nT , (n + 1)T ]
implies ∥∥∥Q>n3

(
w(t) − ei(t−nT )(∂2

x+K)w(nT )
)∥∥∥

Hs(T )

=
∥∥∥J

s− 7
6 +2ε

x Q>n3J
7
6 −2ε

x

(
w(t) − ei(t−nT )(∂2

x+K)w(nT )
) ∥∥∥

L2(T )

� n3s− 7
2 +6ε

∥∥∥w(t) − ei(t−nT )(∂2
x+K)w(nT )

∥∥∥
H

7
6 −2ε

(T )

� n3s− 7
2 +6εC

(‖u(T n)‖
H

1
2 (T )

)‖u(nT )‖
H

5
6 −ε

(T )

� n3s− 7
2 +6εC

(‖u0‖
H

1
2 (T )

) 〈nT 〉1−2ε � n3s− 5
2 +4εC

(
T ,‖u0‖

H
1
2 (T )

)
,
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where we have also employed the previously established polynomial bound for ‖u(nT )‖
H

5
6 −ε

(T )

to obtain the penultimate inequality. Hence, repeating the iterative procedure used in the case 
1
2 � s � 5

6 , we obtain the desired bound. This concludes proof of Theorem 1.3.
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