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Abstract

For initial data in Sobolev spaces H¥(T), % < s < 1, the solution to the Cauchy problem for

the Benjamin-Ono equation on the circle is shown to grow at most polynomially in time at a rate

a1+ t)3(s_%)+e, 0 < € <« 1. The key to establishing this result is the discovery of a nonlinear smoothing
effect for the Benjamin-Ono equation, according to which the solution to the equation satisfied by a cer-
tain gauge transform, which is widely used in the well-posedness theory of the Cauchy problem, becomes
smoother once its free solution is removed.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction and results

We consider the Cauchy problem for the Benjamin-Ono (BO) equation on the circle

ur + Hugy = 59, (w?), (x,0)eT xR, (1.1a)
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u(x, 0) = ug(x) € H*(T). (1.1b)

In the above initial value problem, u(x, ) is a real-valued function and H*(T) denotes the stan-
dard L%-based Sobolev space on the circle. Furthermore, ‘H denotes the Hilbert transform defined
by

HfE) =—isgn(§) (&), E€, (1.2)

where f(é Y=Ff(¢&):= f eT €15 f (x)dx is the usual Fourier transform over T and where we
use the convention sgn(0) = 0.

The BO equation was derived in [6,41] as a model for the propagation of one-dimensional
long internal gravity waves in deep stratified fluids. The equation is a completely integrable
system; in particular, it admits N-soliton solutions [12,13], it can be expressed in the form of a
Lax pair [7,38], and it possesses an infinite number of commuting symmetries and conservation

laws [7,21], including
/ udx, / u2dx, / (u’Hux — %u3) dx. (1.3)

xeT xeT xeT

Without loss of generality, throughout this work we restrict our attention to solutions of the
BO equation with zero mean, i.e. we assume that

/u(x,t)dx::i[(O,t):O vt e R. (1.4)
xeT

This is possible thanks to the observation that the function v(x,t) := u(x,t) — ¢ with ¢ =
1u0(0) /27 satisfies v; + Hvyy = O (v?) 4 2cv,, and hence the function V (x, 1) := v(x — 2ct, 1)
satisfies the BO equation and has mean-zero initial value V (x, 0) = up(x) — c¢. Therefore, noting
that the mean (0, r)/27 of any smooth solution to the BO equation is conserved, we deduce
that V (x, t) has zero mean at all times.

The Cauchy problem for the BO equation has been studied extensively in the literature. In the
case of the line, Fokas and Ablowitz [20] analyzed this problem via the inverse scattering trans-
form method under the assumption of sufficiently smooth and decaying initial data. Iorio [27]
established local and global existence of solution for initial data in H*(R) with s > % and s > 2,
respectively, using energy methods (see also [1], where the continuity of the data-to-solution map

is specifically addressed). Furthermore, Ponce [42] proved global well-posedness for s = % This

result was improved by Koch and Tzvetkov [31] and Kenig and Koenig [28] to s > % and s > %,

respectively. Importantly, for initial data in H*(R) with s > 0, Koch and Tzvetkov [32] proved
that the data-to-solution map of the BO initial value problem is not uniformly continuous (previ-
ously, Molinet, Saut and Tzvetkov [37] had shown that the data-to-solution map fails to be C 2in
H*(R) for all s € R). This fact is due to the presence of a derivative in the nonlinear part of the
BO equation in combination with the weak smoothing effects of the linear part of the equation,
and prevents one from solving the BO Cauchy problem via a direct application of the contraction
mapping principle (see also the relevant discussion in [43]). In [50], Tao bypassed this difficulty
by introducing a gauge transform of Cole-Hopf type, thereby establishing global well-posedness
in H'(R). This breakthrough idea was further employed by Burq and Planchon [11] and by
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Ionescu and Kenig [26], who extended Tao’s result to initial data in H*(R) with s > }—‘ ands >0,
respectively.

In the periodic setting, using Tao’s gauge transform, Molinet proved well-posedness of the
Cauchy problem (1.1) in H*(T) for s > % [33] and s > 0 [34]. Furthermore, adapting the tech-
nique of [32] for the line, in [33] Molinet showed that the data-to-solution map for problem (1.1)
is not uniformly continuous in H¥(T) for any s > O (the corresponding result for s < —% was
proved by Biagioni and Linares [5]). Nevertheless, Lipschitz continuity is retained in the case
of mean-zero initial data (see also [43]). Simpler proofs of the results of [33,34] along with
stronger uniqueness results were provided by Molinet and Pilod in [35], where an alternative
proof of the result of [26] was also presented. Finally, in the recent preprint [22] Gérard, Kap-
peler and Topalov obtain global well-posedness results for initial data in H*(T) with —% <s<0
(the discontinuity of the solution map for s < —% had already been observed by Angulo Pava
and Hakkaev [3]).

In order to summarize the main results of [33-35], we first introduce some useful notation.

e Fora,b >0, we write a < b if there exists C > 0 such that a < Cb.If a < b and b < a then
we write a ~ b.
e We define the Bessel potential J; via Fourier transform as

1
T1©="Fe. (=(1+1-P)". (1.5)
Then, for any s > 0 and p > 1, we define the Bessel potential space
WP (T = [f e LP(T) : | fllwsrery = |1 f | poery < oo} , (1.5b)

which becomes the Sobolev space H*(T) in the special case p = 2.
e For any s, b € R, we define the Bourgain space Xi;b—w(g) by

XL o= {f DT XR): | fllxer = [ €) (T + 0@ T 0], o< oo} ,

(1.6)
where f (£, ) denotes the Fourier transform of f(x, t) with respect to both x and ¢. We de-
note by X i’:bfw €).T the restriction of X ii —w(E) ON T x [0, T]. Furthermore, for convenience

of notation, hereafter we shall write Xi’:b_sz —- X5b and Xiﬁéz —: X*? and, analogously,

X ST’b and X ST’b for the respective restrictions of these spaces on T x [0, T'].
e The operators I1°, TT* and IT~ denote the projections onto the zero, positive and negative
Fourier modes, respectively:

— 1 —~ o — —~
o) 1=§f(0)» E(f)(E) = x =€) f ). (1.7)

where xT(£) are the characteristic functions for & 2 0. It is straightforward to see that
M=) = 0T @).
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e For k > 1, we define the Littlewood-Paley-type projection operator P by

Pe(N)(E) = x -1 < g <o) 6, (1.8)

where x4 is the characteristic function of the set A. We will often denote Pi(f) simply by
fr. By this definition, it follows that

20 ONE + Y 7 =), £eL. (19)

k=1

e Following [35], we introduce the gauge transform for the periodic BO equation as
w =3, 11 (e 1F/?), (1.10)

where F =09 14 is the primitive of the solution u of problem (1.1) such that

. 0, §=0,
FE. =41 _ (1.11)
Eu(é,t), § € Z\{0}.
Noting that F' has zero mean and is 2w -periodic, it is straightforward to see that it satisfies
the equation

I, 1 e
F,—i—HFxx—EFx :_EH (F2)(@). 1.12)
In turn, noting also that for any mean-zero function f we have H f = —if + 2i[17 (f), we

infer that w satisfies the initial value problem
wt—iwxx=—BXH+((8;1w)H_(ux))—I—%Ho(uz)w, (x,)eT xR, (1.13a)
w(x, 0) = a, I+ (e~ “0/2) —: 4 (x), xeT. (1.13b)

With the above definitions at hand, the main well-posedness results of [33-35] can be sum-
marized as follows (see, in particular, Theorem 7.1 in [35]).

Theorem 1.1 (Well-posedness on the circle [33-35]). Suppose ug € H(T) with0 < s < 1. Then,
the initial value problem (1.1) for the BO equation on the circle admits a solution

we C([0, TT: H(T)) N LA([0, T WHH(T)) N X3l . 7

where T = T( ||”0||L2(T)) ~ min{ HMOHZS‘(T) , 1} > 0. Moreover, the initial value problem (1.13)
for the function w, which is defined in terms of u via the gauge transform (1.10), admits a solution

we C(0,T]; H (T) N XST’%
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in the distributional as well as in the Duhamel sense. In particular, we have the estimates

max { lll o7y » Nl Lo, pigwsscry i,y b max {1 25, 1 ol
T

ull -1, §< uoll s Ty + lluoll s )
I ”Xr;\]au luoll grs (1) + lluollzs )
Remark 1.1 (Global well-posedness). Thanks to the conservation of the L2-norm, the solution
of Theorem 1.1 is in fact a global solution [33,34] which is unique within the class of limits of
smooth solutions of problem (1.1).

The scope of the present work extends beyond the fundamental question of well-posedness
that was addressed in [33-35]. In particular, we revisit the Cauchy problem (1.1) for the BO
equation on the circle and obtain an explicit growth bound of polynomial type for the solution
guaranteed by Theorem 1.1. Crucial for proving this bound is a nonlinear smoothing effect that
we establish for the BO equation, according to which the nonlinear component of the solution of
the equation emanating from the gauge transform is smoother than the component corresponding
to the initial datum. More precisely, we shall show the following.

Theorem 1.2 (Nonlinear smoothing). Suppose % <s<1,0<ax< min{s - %, %} and K =

é ||u0||i2(T), and let u and w be the solutions of the Cauchy problems (1.1) and (1.13) estab-

lished by Theorem 1.1. Then, e~ "Ktw(x, ) — e/ wy(x) € C([0, T]; H*T(T)) with the estimate
”e—isz _ i1y, H

<C(|lu - u S(T) »
C([O,T],HH"’(T)) X (” O”Hmm(é,%)(T)) ” OHH (T)

where €''% is the semigroup associated with the linear Schridinger equation.

The nonlinear smoothing effect of Theorem 1.2 provides the basis for proving the following
polynomial growth bound for the solution of the BO initial value problem (1.1).

Theorem 1.3 (Polynomial bound). Suppose % < s < 1. Then, for any 0 < € K 1, the solution u
of the BO Cauchy problem (1.1) established by Theorem 1.1 satisfies

_1
lu()ll sy < C (e s, lluoll sy (1)>¢~2F€, 1 eR. (1.14)

The connection between nonlinear smoothing and polynomial bounds for Hamiltonian equa-
tions was first established by Bourgain [9,10], who employed Fourier truncation operators in
conjunction with smoothing estimates to obtain the following local-in-time inequality for solu-
tions of various dispersive PDEs:

et + &) s < M)l s + Cllue) 1 (1.15)

for some § € (0, 1). Local time iterations using the above inequality resulted in the polynomial
growth bound |lu(t)| gs < () 173 Staffilani [47,48] used further multilinear smoothing estimates
to obtain (1.15) which led to polynomial bounds of high-Sobolev norms s > 1 for Korteweg-de
Vries (KdV) and nonlinear Schrodinger (NLS) equations. Colliander, Keel, Staffilani, Takaoka
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and Tao [14] developed a new method using modified energy called the “upside-down I-method”
to produce polynomial bounds in low-Sobolev norms s € (0, 1) for the NLS equation. So-
hinger [45,46] further developed the upside-down I-method to obtain polynomial bounds for
high Sobolev norms for NLS. We also refer the reader to [15] and the references therein for
further developments.

More recently, uniform-in-time bounds have been established for a number of completely in-
tegrable dispersive equations using inverse scattering techniques. In particular, Killip, Visan and
Zhang [29] showed that the H®-norm of solutions to the KdV and NLS equations is uniformly
bounded in time for —1 <s < 1 and —% < s < 1, respectively, both on the line and on the circle.
For the BO equation, Talbut [49] proved an analogous bound in H* for —% < s < 0. However, no
bound is available for s > 0 since the technique used in [49], which is similar to that of [29], be-
comes rather convoluted for higher values of s. On the other hand, Koch and Tataru [30] showed
that there exists a conserved energy equivalent to the H¥-norm for s > —% in the case of the NLS
and mKdV equations and for s > —1 in the case of the KdV equation.

Nonlinear smoothing properties analogous to the one of Theorem 1.2 have been previously
established for several important dispersive equations. Indicatively, we mention the work of
Erddgan and Tzirakis [18] on the periodic Korteweg-de Vries (KdV) equation, as well as
their works on the derivative nonlinear Schrodinger equation on the line [16], the fractional
Schrodinger equation on T and R [17], and the Zakharov system on the torus [19]. The main
technique used in the proof of these results is known as the normal form method and was
first introduced by Shatah [44] in the context of the Klein-Gordon equation with a quadratic
nonlinearity. This method was further developed recently by Germain, Masmoudi and Shatah
for two-dimensional quadratic Schrodinger equations [23] and the gravity water waves equa-
tion [24], as well as by Babin, Ilyin and Titi for the periodic KdV equation [4]. The technique
used in the latter work is known as differentiation by parts. An alternative formulation of the
normal form method which involves a multilinear pseudo-differential operator in place of dif-
ferentiation by parts was provided in [39,40]. In our work, thanks to the properties of the gauge
transform, the normal form machinery is not required for proving the nonlinear smoothing result
of Theorem 1.2.

Structure of the paper. In Section 2 we establish a bilinear estimate which is crucial for showing
the nonlinear smoothing effect of Theorem 1.2. The proof of this theorem is then provided in
Section 3. Finally, the polynomial growth bound of Theorem 1.3 is established in Section 4.

2. Bilinear estimate

The following bilinear estimate plays a key role in the proof of the nonlinear smoothing effect
of Theorem 1.2.

Proposition 2.1 (Bilinear estimate). Let V € XO'% and U € L®(R; L2(T)) N X%! with U com-
pactly supported in [—T, T] for some T > 0. Then, forall 6§ >0, m e N, ke N and 0 < j <k,
we have

|2y (VeI W) oy

m+j

1o\ mti
<alero)ir Vel oy (1MW | ooz 277 107 W 500). @D
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where Vi, Uy, denote the Littlewood-Paley-type projections defined by (1.8) and the implicit
constant depends on T .

. ) . 1 1 .
Indeed, via complex interpolation it can be shown that (X 0.—3-% x 0.0) g =X 0.—3+8 with

0:= }Z—;g Therefore, interpolating between estimate (2.1) and the estimate

[Py V™ W) | 2 p ey S IV o3 [T (W) 50

3
which follows from the generalized Holder inequality and the embedding [8] XS:‘;F;Z —

LYT x R), 8 >0, (see also [51], page 104, Proposition 2.13) we obtain

m+j

[P (I W o0 S (2756 (I Wl sy
iy O - 1-6
+277 [0 W) 500) | - 107 W [ Vel oy 22)

This estimate is the main ingredient in the proof of Theorem 1.2 which is provided in Section 3.
In the remaining of the current section, we prove Proposition 2.1.

Proof of Proposition 2.1. Observe that ¢ € X*? implies ¢ € X*”. By the dual formulation of
the Bourgain norm along with Plancherel’s theorem, we have

| P (Vi ™ Un))|| y5 = sup f / PiIIY (Vi IT™ (Up)) - 9(x, dtdx
X el o 1,5=1
X2 xeT reR

=~ s (Y Y[ eamGoe

1

”(p”XO’%Jra: SIEZ EzeZ‘L’]GR T2€R
M= (@) (=1 +82), — (11 + »))dnadT | (2.3)
Next, we let L = |r1 —|—$12 , Ly = |12 — 522 , L= | — (114 1) — (— (& +&))? | and observe

that, since — (71 + 72) — (&1 +6) = (11 +E) — (1 — &) — 26 + &) and 2" < & <
2m 27~V g 4+ & < 27, we have

max (L1, L, L3} > £ 2", (2.4)

Then, writing 1 = XA, + Xa¢ X45 + Xa¢ X4, Xag With A; 1= {Li > %2’””}, i=1,2,3, we have

‘ZZ [ [ e o e, M@~ + 2.~ + mdmadr
EIGZSZEZIIGR‘QER

<hL+h+15h (2.5
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where

L= ‘Z 3 /XA.Wsl,n)n—A(tf/n»(sz,rz)

1€z &EZU cReR

7@ ) (= (61 + 62), — (11 + ©2))dr2dTy

12—’2 > / /xAnvk(sl T (Un) (2. 12) X,

El ez §2€Z‘r1 eR sz]R

(@) (=61 +8), (11 + ©2))dradr

Iy = ‘Z > / / ¢ Vet 1) s T (U B2 T2)

]EZ&EZU ceR neR

(@) (=61 + &), — (11 + 2))dradT1|.

We begin with the estimation of I;. Define f4i via its Fourier transform as f4i A = XA, f
Then, Plancherel’s theorem followed by the Cauchy-Schwarz inequality yield

= / /v,j‘l(x,t)-n—(Um)(x,r).n—(aj)(x,t)dtdx

eT teR

IV porry 1T W) - @2 - 2.6)

For the first factor in (2.6), recalling the definition of A; we proceed as follows:

1
+ -~ 2
1V | 2er xmy = (Z/ 'T+§2'||vk/‘l<s,r>|2dt)

EEZ
1
(I+It+&%7)7 = e
<Z/ Tomti Tomt] | kl(‘f )| df) ~2 ||Vk|| . @27
§eZ TeR

For the second factor in (2.6), recalling that U is supported inside [—7, T'] and applying the
generalized Holder inequality, we have

“H (Up) - T ((p])”LZ(']I‘x]R) HH (Um)HLOO( _T,T1;L2(T)) ”H (‘/’J)HL2([ T,T1;L>°(T))
N T§ ” H_(Um)”L“([—T,T];LZ(T)) ” H_(af) ” LO([—=T,T];L>(T)) ©
Moreover, the Sobolev embedding WP (T) — L>®(T), 1 < p< 00,0 > — for p = 6yields

32



B. Isom, D. Mantzavinos, S. Oh et al. Journal of Differential Equations 297 (2021) 25-46
— (7 1= (7 1
I @Dl o rirery S 1T @D s r iy o>

1
while the embedding Xizz;i — L6(T x R), &,6 > 0 [8] (see also [51], page 107, Exercise
2.78) further implies

“H (¢J)||L6([ T,T];L®(T)) ~ ”JUH (‘PJ)” ze b+ S22/ g 0445
In turn, we find
10U @D 2y ST U o2y 2018 0 28)

Hence, setting o +¢ = % + & with § > ¢ and then combining (2.8) with (2.6) and (2.7), we deduce

_L'H+j l+5 _ —
g )nvknxo,% IO e s z2emy 10 0345 2.9)

We continue with the estimation of I;. As with /1, we employ Plancherel’s theorem and the
Cauchy-Schwarz inequality to infer

A W) | 200 0w (2.10)

e
<@ @] L

Then, similarly to (2.7) we have

2 (M+J)( +4) el w0 Los -

@] | -

Moreover, treating the second factor in (2.10) similarly to the corresponding term in /1, we find
A - kGG +9) | 11— Ay
” V' (Um)||L2(T><R) 5206 “H (Um)”LOO([—T,T];LZ(T)) ” Vi 1” X0 548"

< 280+ Vk|| 1 by the definition of Aj, we conclude

~ kS

AS
H 1
Hence, observing that 1V ”XO‘ Lis 0l

that
I S 27 Gy 03 7O | oo 1 22my) 191 0405 (2.11)

Finally, similarly to /1 and I, for I3 we have

1< | @

LT xR) “V (H (_1)) ||L2(T><R)' (2.12)

For the first factor in (2.12), we proceed as with (2.7) to obtain

| @

TR <27 (m+j) HH (Um)”XO1 . (2.13)
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Moreover, for the second factor in (2.12), we use the generalized Holder inequality as well as the

3
embedding X?:I;Z < L*(T x R) to find

A(? o A(' AL' o c _
Ve (@) [ 2erwry < Vi sy Hm @ ey S Vil 191 oy
(2.14)

Therefore, combining (2.14) and (2.13) into (2.12), we deduce
—(m+) > -
g2 IIVkIIXO,% I|¢I|Xo.%+a 717 (U | 0.1 - (2.15)

Overall, the three estimates (2.9), (2.11) and (2.15) together with the decomposition (2.5) and
the dual formulation (2.3) imply the desired estimate (2.1). W

3. Nonlinear smoothing: proof of Theorem 1.2

We begin by noting that the existence of the solution u# of Theorem 1.1 for the BO Cauchy
problem (1.1) on T x [0, T'] is proved by first taking initial data ug € H*(T) with small L%-norm
and constructing u as the strong limit of a sequence of smooth solutions u,, € C([0, 1]; H*(T))N
LA([0, 1]; WSH(T) N x:_bl Also, in [35] it is shown that the sequence of gauge transforms

, T=—|glé.1°
wy, := 3, I+ (e~"F/2) corresponding to u, = 9, F,, converges to some w in C ([0, 1]; H*(T)) N
X i’l/ 2. Furthermore, due to the strong convergence of u, in C([0, 1]; H*(T)) it follows from

the mean Valu¢ theorem that w;,, converges to BXH+(e_iF/2) in C([0, 1]; L*(T)), and hence
w= Bxl'[+(e_’F/2). In turn, it follows that v, := e~ Kfw, converges to

v(x, 1) :=e Klw(x, 1) (3.1
inC([0,1]; HS(T))NnX ‘IY’]/ 2, Then, using the smoothness of v, together with standard estimates
(e.g. estimate (3.10)) and Proposition 2.1, it follows that v satisfies the Duhamel equation

t
v(x. 1) = (e % vo(x) — n(t) / R IO - 9, T ) (x. £)dt . £ €0, 1],
t'=0
(3.2)
where n € C°(R) is supported inside [—2,2] with n=1on [~1,1]and 0 < n < 1forall # € R.
In addition, observe that if u solves (1.1) then so does Au(Ax, A%t). Exploiting this scaling with
A =1/T? and the fact that all previous convergences hold in spaces where the spatial period is
assumed to be A > 1 [35], the small L2-norm assumption on u( can be dropped and the lifespan of
the solution can be extended to the lifespan 7' ~ min { lluoll Z;‘ (T 1} of Theorem 1.1. Therefore,
v satisfies the Duhamel equation (3.2) on [0, T], i.e.

t
v(x, 1) = n7 (e vo(x) — 7 (1) f R o IO - T () (x, e, 1 €10, T],

t'=0
3.3)
where nr(t) :=n(/T).
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Combining the representation (3.3) with the embedding XST’b — C([0,T]; H5(T)), s € R,
b > %, (see, for example, Corollary 2.10 in [51]) we obtain

t

e—"K’w—e”f’xzwo” <oz / d% 5 T (9 v - T (u))di!

C([0,T]; Hs+a(T)) ™~

1
=0 X;+a,7+5

(3.4
In order to estimate the right-hand side of the above inequality, we first need to define appropriate
extensions of the functions v and u# with respect to ¢ outside the interval [0, T]. For v, we choose

. 1
an extension v* € X*'2 such that

o] (3.5)

L <20l
X XT
which exists for all s € R by the definition of X ST’b as a restriction of X*?. For u, we use a less
trivial extension which is similar to the one in [36] and is defined as follows.

Lemma 3.1 (Extension of u outside [0, T1). Given u € C([0, T]; H*(T)) N X3_1 . 1, let

u(t) := SO0 (O)S(—pr O)u(ur ), (3.6)

where S(-) is the free group associated with the linear component of the BO equation, whose
action is defined by S(t) f (€) := e~ 115151 £(£&), and

t, 1€[0, 7],
0, 1 ¢10,2T].

If there exists a smooth approximating sequence uy for u in C([0, T1; H*(T))N Xi;]—’lléké,T’ then

*
l* | oo s 115 ) S Nl o,y sy (3.7
w [ oot S lullys—t + lu]| s , (3.8)
I ||xr=_m§ X, C(0.T: H (T))

where the implicit constants depend on T .

Proof of Lemma 3.1. For inequality (3.7), we simply note that

||M*HLOC(R;HS(T)) Sllulur)lleq—ar2ry; vy = lullcqo, ;55 (T)) -

For inequality (3.8), we let u, be an approximating sequence for u in C([0, T]; H*(T)) N
X i;l_ |1§| £T and denote by ' its extension defined analogously to (3.6). By the definition of the
Bourgain norm and the properties of nr and pr, we find
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”M ||Xj ]|I\ < ”S( /'LT)un(//LT)”LZ —2T,2T); H5~ ](T))

+ 110: (S(=pr)un (W) L2217 277 -1 (T))
S Mn O prs=1¢my + lnll 220, 71 1151 (T)

+110: (S(=pr)un (W) L2 —27.01: -1 (T))

+ 10 (S(=pr)un (e Dl 20, 71; H5-1 (T))

+10: (S(=pr)un (LT L2 277 51 (T)) »

where the implicit constant in the second inequality depends on T. Since u, is smooth, we
directly compute

A (S(—prun(pur)) = wr(OS(—1r) @ + 19519:)un]

Thus, 0; (S(—u7)u,(r)) =0on [—2T,0) since ,u’T (t) = 0 there. In addition, on [0, T'] we have
0 (S(—pr)un(ur)) = S(—1)(0; + |0x |0y )un () while on (T, 2T ] we have 9, (S(—pr)un(ur)) =
—S(@ —2T)(0; + |0x|0x)ut, QT — t). Therefore,

XL S lMunlicqo, 1150y + ”“"”XXZIJE‘; o H 1@ +10x19)unll 220,71 1151 (T) -

To handle the third term, let u;;* € X _ 5 ISIS be any extension of u, € X IEIE 7~ Then,
[1(0; + 0x[0x)ttn ||L2([0,T];Hsf1(11‘)) = H 9 + |8x|8x)u:* ”LZ([O,T];HS—‘(’]I‘))

= |7 (@ + g9

L2([0, T H~1(T))

< | + g = Juy|

Xsfll

L%2(ZxR) Sl

Hence, taking the infimum of this inequality over all extensions, we infer

il x

In order to deduce inequality (3.8) from the above inequality, it suffices to show that the left-

hand side converges to |ju*|| xs!] . We have
G

it S lnlloqo.rymsay + Nanllysor

||M;lk m”Xs 1,1 —||(Mn_”m) ||X‘ 11

ke v S e = umlle oy my + ltn = ttmll o1

—&1&.T

wh—uk HLOC(R;HS(T)) S lun — wmlleqo, 71 s (1) - Therefore, uy; is Cauchy in

X, _ 5 1 IIEIS and L*°(R; H*(T)) and has limits v; and v;, respectively. Moreover, since

|uy — w1 ||L°°(R;H~‘—‘(T)) S Jluz = w1 X7

” v2||L°°(R Hs—1(T)) S “” UZHLOO(]R;HS(T))’
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we infer that u converges to both vy and vy in L*(R; H s=1(T)) and hence vy = v,. Fi-
nally, since for any u € C([0,T]; HS(T)) we have [lu*||poo®: 5Ty S ||u||c([0T H*(T))’
it follows that ||u —u ||L°°(]R HS (T ~ S llun — ullco.ry: s (T)) and, therefore, uj; — u* in

C([0,T]; H*(T)) and in X |§|§ 7> proving inequality (3.8). W

Back to (3.4), using the extensions v* and u* defined by (3.5) and (3.6) we have

t

nr / ¢ %R G T O v - T (uy)) di (3.9)

. 1
=0 XAT+a.7+6

t
or [ Rt @ ) dr

1
t'=0 Xs+u.7+6

N

<o, @ tvr - (u*))‘

s+a, 77+8

with the second inequality due to the following well-known result (see, for example, Proposi-
tion 2.12 in [51]):

t
(1) f R E(x Ydr! SHFlgso-1, seR, b>1 (3.10)

t'=0 Xxs.b

We shall now estimate the right-hand side of (3.9). Applying projections, we have

@ 1v* - n*(u;))’ o 3.11)
00 k
1 _

gZZZ ((ax vl (u;)m))xwaﬁ%ﬁs

k=1 j=1m=1

ook k

j (s 1 —1 _

5;2 2:121(A+a+ ) Hpj.l'ﬁ((ax v ) IT (uj)m)‘ O b

=1 j=1m=

with the restrictions on the summation ranges due to the support properties of IT*. Furthermore,
employing the bilinear estimate (2.2) we find

[y o v |,

7'"—+-"+k(l+a) s _mt ’
[ ) (Il gy + 275 1T @00 |

1.
0,7

P @m ot | @ v |

Moreover, noting that £2 = —|&|& for £ < 0, we have

1T | 501 S 270D T @) gomr S 272 |1 e e .
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where o = min{ } We denote Z7 := C([0,T]; H°(T)) N X‘7 1\1.§|§ r- Then, employing
Lemma 3.1, we obtam

H PITH (07 ) T (u*

m+j . 0
< [2— If+k(%+6) (zm(l—o)+2m(%—a)—§)] 2m@=)A==k(1+5) |1, ull
~ T S,
X2

T

In turn, (3.11) becomes

Ha e v It ))H (3.12)

s+a, 7§+8

< ”u”ZT ”U” Y ! ZZ Zz](&+a+1)+m(2 U)(l 9) k(l+s)

T k=1 j=1m=1
m+j . 0
. [2—%+k(g+a) (zm(l—a) n zrn(%—a)—é):|
and, therefore, it suffices to control the multiplier

+Jj

m L
M = 2J (s+a+D)+mQ2—0)(1-6)—k(1+s) |:2—T+k(%+3) <2m(1—a) +2m(%—o)—%>:|

for k, j,m as in (3.12). Recalling that 6 = iﬁ;g and 0 < § < 1, we may write 8 =1 — € for
0<e:= 1/2+5 <« 1. Then,

M = 2J +at1) o—k(l+s) Hym(2—0)e <2m(%—0) 2k(E+8) p=5 | pm(1=0) ok(5+8) 2_j>1—E

0j (s+a) 2k(—%—s+5) m(2—0)e 2m(%—0) (2% + 2%)

(2,"(%,(,) 2kE+8) p=4 | om(1-0) pk(§+9) 27,‘)6
1
Hence, since € > 0 and 2kt o 1, we have
M < 9J(s+a+3) 2k(—%—s+8) 2m(%—a+37€) (2% 4 2%)
Moreover, since j,m <k, if s < % then o = s, so we obtain
€ 3e Lys_ 1 _
M 5 Zk(‘v+a+7) Zk(_%_‘H_S) 2k(%—s+%) 2% _ 2k<a+26+6+8 S) < 2k<a+6+95 s)
while if s > % then o = %, so we have
: € € j m 1 _1
M < 2J/6tat3) 2k(—%—s+5) Zm% (2% + 27) < 2]‘(“"‘25 +3) < 2]‘(“ 3"'98)'
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Therefore, returning to (3.12), for 0 < s < % we deduce

BRIttt O

cra—tas S lullzy ||v|| ZZZWH §+93-5).

Tkl/lml

where the sum converges for a < s — z — 94, while for 1 5<s<1we deduce

8, T+ (97 v* - n—(uj;))‘

s+a, 77+5 ~ ”u”ZT ||U|| s ] ZZ sz(a—§+95)

Tkl]lml

where the sum converges for a < § — 98. The last two inequalities combined with inequality
(3.9) and definition (3.1) yield the following bound for the right-hand side of (3.4):

oKt — el Shallz el (3.13)

C([0,T]; H5+a(T)) .

with 0 < a < min{s — % — 96, % — 98} where we have used the fact that ||v|| 1 < ||w||

T
since (r — K+ 52) ( |1,' + & |) (1 4+ K). Combining (3.13) with the estlmates for u and w
provided by Theorem 1.1, we conclude that

s a2
e thw_ellawaH

C([0,T]; Hs+4(T))
smax {luol2sp,) 1} (Iole () + oMo, ) o llscry (3.14)
completing the proof of Theorem 1.2.

4. Polynomial bound: proof of Theorem 1.3

We will now employ the nonlinear smoothing effect of Theorem 1.2 in order to establish the
polynomial bound of Theorem 1.3. We begin by noting that estimate (3.14) (which is the concrete
expression of the nonlinear smoothing effect) for s = % and 0 <a < % implies

Hw(t) — ei’(a~3+K)wo“ 5
H

=1_
S-em) S ), e:=3—a>0,1€l0,T], 4.1)

C (ol 3 o,

where C(|lu is a constant that depends only on ||u .
(I 0||H%(T)) p yon | 0||H%(T)
We also note that

lw @l gs Ty < C(s, lluoll 20y Mu@llgsery, 0<s <1, 1R, (4.2)

Indeed, for 4 5 < s < 1 inequality (4.2) follows from the algebra property after recalling that

w ~ I+ (ue~'F/2) and observing that ||e_’F/2 ”HX(T) < ||e_’F 2”H1(T) < 1+ lluoll g2y from
the physical definition of the H'-norm and the conservation of the L2-norm. Moreover, for

0 <s < % inequality (4.2) follows directly from inequality (2.13) of [35].
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In addition, the H > -norm of u can be controlled via the following result.

Lemma 4.1. Let u satisfy the BO initial value problem (1.1). Then,

< .
@l g g <ClImoll g ). tER, (43)

where C(||lu is a constant that depends only on ||u .
(I olIH%(T)) P yon || 0||H%(T)

Proof of Lemma 4.1. Multiplying the BO equation (1.1a) by |9, |«, which is defined via Fourier

transform by |3, |/u(£) = |&|/7(£), and integrating over T, we have

1
/ Uy - |0xludx + / ’Huxx~|8x|udx=§ / Bx(uz)-|8x|udx. “4.4)
xeT xeT xeT

For the first integral, recalling that u is real-valued, and hence that u(§) = #(—£) and in turn
|0xu| = |95 |u, and using Parseval’s identity twice, we find that

1

1 T = 1 5
g [oludx = 5 - 5= 3 (ol + 7o) = S el o (4.5)
xeT ez

o1 1
where H 2 denotes the homogeneous counterpart of H 2. Also, recalling in addition that 7—[8)% =
|0y |0y and using Parseval’s identity, we find that the second integral vanishes:

I, oo | SO
/Huxx~|ax|udx=ZZwaxu-|ax|u=EZs3u<s>u(—f>=0. (4.6)
xeT §eZ teZ

Finally, integrating by parts and substituting from the BO equation, we write the third integral as

1 1 1
= / 3x(u2)'|8x|udx=—§ / Mz'Huxxdngat / udx. 4.7

2
xeT xeT xeT

Combining (4.4)-(4.7), we deduce that the quantity ||u||2. . - % <eT u dx is conserved, i.e.
H2(T)

1 1
lul®>, -~ / w(eydx =lluol®, —= / uddx. (4.8)
H2(T) 3 H2(T) 3

xeT xeT

Moreover, by Sobolev’s inequality (e.g. see Theorem 4.31 in [2]), the fractional Sobolev-
Gagliardo-Nirenberg inequality (see Corollary 1.5 in [25]) and the conservation of the L2-norm,
we have

/ W (@) dx < Ju@dls g, S ”“(””Z%m = lluollZ2p, lu®1l 3 . (4.9)
xeT
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Combining (4.8) and (4.9), we find

LOwOR o Il )
3 H%(T) LX(T) (T)

1

< luol? ——/u3dx<u2 + lluoll®

S OHH%(T) 3 odx < || OHH%(T) luollzs
xeT

< lluoll? + ol o, luoll
A3 (T) LX(T) HE(T)’

i.e.

< C(lluoll (4.10)

2 _ 2
IR,y = ol el

2(T) HZ(T))

But note that for £ € Z \ {0} we have |£| >~ (£). Using this fact together with our assumption of
mean-zero data, we infer from (4.10) the inequality

< C(lluo

2 _ 2
IRy = ol el

2(T) HZ(T))

Completing the square on the left-hand side yields the desired inequality (4.3). W
Before proceeding to the proof of Theorem 1.3, we establish the following inequality.

Proposition 4.1. Suppose that % <5 < 1. Then, for all t € R we have

la @l s cry S (14 ol 2cx) ) <||w(l‘)||HS(T) + (14 luoll 2er) ) [+ C (llwol m)])
“4.11)

Proof of Proposition 4.1. We suppress the 7-dependence for brevity. Note that u = ut +ut so
llull gs Ty < 2 ”u+”HS(T)' Also, u =2ie'F?w +2ie'F/23, 11~ (e~'F/2) and hence

””+||Hs(1r) S ||n+(elF/2w) ”HA(T) + ”H+(eiF/2axn_(e_iF/2))HHS(T)'

By Lemmas 3.1 and 3.2 of [33] we have

T8 F2w) | o oy S Iwllsery (14 luoll 2y ),
and, fors; +so=s+1,s5; >sandsy >0,

JS20—iF/2

[T @ 20,11 (e ) e %5

Sre 2]

(T) ~ ||L4(T)'

Since

S|,

. o4l i
||J)flelF/2HL4(1r)5 HJ;I+461F||L2(T)’ ||J;2e lF/zHL‘*(T)N

(T)
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by the Sobolev embedding, taking s, = % we have

ol i
ey S B2 gy, S 1+ Nl )

Then,s1=s—|—£andfors:%+6,0<8<%,weﬁnd

I PRSP | 2ery = 12722 oy SN2 T2 oopy + 12 e ™) 2

S (A lluoll p2ery) + [ F2u] ooy (14 luoll 2Ty

with the second inequality due to Lemma 3.1 of [33]. Noting further that Lemma 4.1 implies
5 . . . .
H Jou ”LZ(T) < C(||u0||H% (T))’ we obtain the desired inequality (4.11). W

Proof of Theorem 1.3. In the remaining of the article, we combine inequalities (4.1)-(4.3) with

inequality (4.11) to obtain the polynomial bound of Theorem 1.3. First, consider % <5< %.

Given ug € H®,let T = T (|lugll;2) be as in Theorem 1.1. Suppose ¢ € [nT, (n + 1)T') for some
n € N U {0}. Then, write

wt)=0¢pw)+ Q. 3w, (4.12)

where Q3 and Q. 5 are the projections onto Fourier modes' whose absolute value is less than
or equal to n> and greater than n?, respectively. For the first component, we have

-1 —
[0 w®) ] oy S P NwN g 0 <2 )l g

<3 C(luoll (4.13)

H2 (T))

where the final implicit constant depends on 7 = T (|luoll;2). Hence, it remains to control the
second component, which we rewrite as

0., (w(t) _ ei(z—nT)(a§+K)w(nT)> + Q>n3ei(z—nT)(a§+K)w(nT).

Since s < %, employing estimate (4.1) after shifting the time interval from [0,7] to [nT,(n+1)T]
together with estimate (4.3), we can control the first part above as follows:

-, (i) - e8|

<n 35— 2+38

H(T)

5
S‘—6+€

5_ )
7 03T & (w(t) _ e,(t—nT)(aerK)w(nT))

LX(T)

w(t) — e (=D +K)w(nT)H
S T

! Here, we use different notations for the projections, as Py = Q.
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)-

5 5
S Tl y ) SnP T C (ol

2(T) HZ(T)

For the second part, writing

0. (urpwT) = O uyyp (W T) = T EFu((n = 1T))
+ 0. e TE O w(n — DT

and the inequality

L 2
H 0 il nT)(dx—&-K)w(nT)” <[ Qe oy w@ D o,

H5(T)

allow us to repeat our earlier computation for the first part to obtain

[0 e DRy | o, SC =D (ol

)

Qs uapw(@ = DD s -

Hz(T)

As before, it is important that the second term on the right-hand side does not pick up any
constant. Thus, we can iterate this process n times to obtain

| Qe w® | sy, < Zk“*z”gc(nuou o))+ lwollsr)
k=1
S THC (ol y )+ leolscr). (4.14)

where the implicit constant in the second inequality depends on s and ¢ and where we have used
the following lemma.

Lemma 4.2. Fora > —1 and N > 1,
N

Z NoH—l + O(Nmax{O Ol})
k=

In particular, Zf{v:l k* < CyNotH,

Proof of Lemma 4.2. For o > 0, we have

ﬁ: /k (ke — x® ﬁ;/k k¢ — (k — )?]dx = N

k=Lt x=k—1
If =1 <& <0, then 1 < N**! and so it suffices to establish the bound for Y p_, k*. We have
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N
k%dx — /
+1

N

Z a+1 0{+1

I
M=
F\»

k=2, %1
N Kk 1
-y / (k= x)dx = ——.
(07
k=2, 1

By the Mean Value Theorem on [x, k] we can write kX —x% = « 1 for some ¢ € (x, k). Hence,
for x € [k — 1, k] we have [k* — x| < (k — 1)*~! and so

N N 1 o0 1
kOl _ NO[+1 -1 a—1 + < k—1 O[*l < 1
é a+1 g( ) a+1 g( ) at+1”~

where the infinite series converges since o < 0. The proof of the lemma is complete. W

Note that 3s — % >—-1&s5> % and so Lemma 4.2 can be employed to yield the last inequality
in (4.14). Overall, combining (4.13) and (4.14) with the decomposition (4.12), for any n € N U{0}
andt € [nT, (n+ 1)T) we obtain

lwOlaser) < [ Qe w®] yoepy + [ Comsw® ] o

—1 -1
SO Cluoll g A Beollzecry S 407 Clluollaery),

where the implicit constants depend on s, T and ¢. Therefore, using inequality (4.11) we obtain
the desired bound, concluding the proof of Theorem 1.3 for % <s<z.

For % < s < 1, we can follow a similar computation to establish the same polynomial-in-time
bound. Indeed, as before, we write w(7) = Q¢,3w(t) + Q- ,3w(r) and note that the first com-
ponent can be estimated once again as in (4.13). Furthermore, we rewrite the second component
as

0., (w(t) _ ei(x—nT)(af,Jrk)w(nT)) + Q>n}ei(t—nT)(3_f+K)w(nT)

and note that estimate (3.14) with s = % —ecanda = % — ¢ after shifting [0, T] to [nT, (n + 1)T]
implies
o 2
H Q>n3 <U)(t) _ el(l nT)(ax"rK)w(nT)) ”HS(T)
s— 6+2£

-2 .
Q»ﬁjs e (w(t) _ e,(t—nr)(aerK)w(nT)) ’

LX(T)
g n3s—%+6e

w(t) — o = D@HK) ) H
(3] (nT) H%,QS(T)

< 3s—%+6£
<n Tl @Dl
I TIEC(Jugll 1 )T T2 ST IHEC(T, Jlug

1 1 )7
2(T) 2(T)
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where we have also employed the previously established polynomial bound for ||u(nT)|| i —m

to obtain the penultimate inequality. Hence, repeating the iterative procedure used in the case
% <s < %, we obtain the desired bound. This concludes proof of Theorem 1.3.
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