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Motivated by the search for sharp bounds on
turbulent heat transfer as well as the design of optimal
heat exchangers, we consider incompressible flows
that most efficiently cool an internally heated disc.
Heat enters via a distributed source, is passively
advected and diffused, and exits through the
boundary at a fixed temperature. We seek an
advecting flow to optimize this exchange. Previous
work on energy-constrained cooling with a constant
source has conjectured that global optimizers should
resemble convection rolls; we prove one-sided
bounds on energy-constrained cooling corresponding
to, but not resolving, this conjecture. In the case
of an enstrophy constraint, our results are more
complete: we construct a family of self-similar,
tree-like ‘branching flows’ whose cooling we prove
is within a logarithm of globally optimal. These
results hold for general space- and time-dependent
source–sink distributions that add more heat than
they remove. Our main technical tool is a non-local
Dirichlet-like variational principle for bounding
solutions of the inhomogeneous advection–diffusion
equation with a divergence-free velocity.

This article is part of the theme issue ‘Mathematical
problems in physical fluid dynamics (part 1)’.

1. Introduction
Imagine a fluid in a container that is heated from
within, and whose temperature is fixed at its boundary.
How should the fluid flow so that the container
cools as quickly as possible? This question arises, for
instance, in the design of optimal heat exchangers,
whose complicated shapes and flows facilitate heat
transfer at rates far beyond diffusion [1–10]. More
generally, the problem is related to the ongoing search
for sharp bounds on turbulent heat transfer in a variety

2022 The Author(s) Published by the Royal Society. All rights reserved.
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of settings, including internally heated [11–16] as well as buoyancy-driven convection [17–21],
among others. While any bound must explain why the rate of heat transfer associated with a
given flow cannot exceed a certain amount, sharp bounds are distinguished in that their values
are attained by particular flows—flows that, as a result, are extremal. Finding sharp bounds on
convective heat transfer, or at least bounds that are asymptotically sharp in their scaling with
respect to physical parameters, has remained a widely open problem in our understanding of
turbulence since the pioneering works of Howard & Busse [22,23] and Doering & Constantin [24]
on Rayleigh–Bénard convection (for a recent summary of the state of the art, see [25]).

A widely used technique for proving bounds on fluid dynamical quantities is the ‘background
method’ introduced by Doering & Constantin [24,26,27], which takes the form of a convex
variational problem whose optimal value is the bound. Whether or not this method and its
descendants (see e.g. [28,29] or [30] for a recent review) produce sharp bounds on convection
remains largely unclear. This has led some to ask whether information beyond the background
method might be used, e.g. via the non-quadratic auxiliary functionals of [31–34], the conjecture
that global optimizers of certain chaotic evolutions are steady [35], or the maximum principle
which is known to improve some bounds [36,37]. Recently, progress with internally heated
convection has led to asymptotically sharp bounds on heat transfer between a pair of steady
and perfectly balanced sources and sinks [38]. Due to the balanced nature of the source–sink
distribution, which puts in just as much heat as it takes away, the overall rate of heat transfer
in the bound turns out to be much larger than the usual ‘ultimate scaling’ law; it is nonetheless
asymptotically sharp and is saturated by a bulk, convection roll-like flow.

Motivated by these questions, we consider the design of incompressible flows to optimally cool
an internally heated disc. We treat a general space- and time-dependent source–sink distribution,
under an assumption that more heat is added than is removed. This ensures that some heat must
make its way from the bulk to the boundary, and turns out to drive the formation of fine flow
microstructure upon optimization (as shown in the upcoming figure 1). Although temperature
will be governed in our setup by the usual advection–diffusion equation, we will not impose a
momentum equation directly on the velocity, but will instead replace it with a constraint on the
mean enstrophy it implies. Optimizing with respect to this constraint leads to a self-similar, tree-
like ‘branching flow’ whose cooling we prove is within a logarithm of globally optimal. While the
a priori bound part of this result can be shown using the background method, we prefer a different
approach that highlights the variational structure of the advection–diffusion equation. We also
comment on the related energy-constrained problem, for which considerably less is known.

Setting up these problems in detail, we let D ⊂R
2 be a disc with radius R > 0 and consider

a temperature field T(x, t) that is passively advected and diffused according to a divergence-
free velocity field u(x, t) we take to be under our control. At the disc’s boundary ∂D we set
the temperature to be a constant, say T = 0, and let f (x, t) be a given source–sink distribution.
Altogether, T solves the inhomogeneous advection–diffusion equation{

∂tT + u · ∇T = κ�T + f in D

T = 0 at ∂D
(1.1)

where κ > 0 is the thermal diffusivity. We leave the value of T at the initial time t = 0 unspecified,
as in the long run it is lost to diffusion. To measure cooling efficiency, we use the mean-square
temperature gradient1 〈

|∇T|2
〉
= lim

τ→∞
1

τ |D|
ˆ τ

0

ˆ
D

|∇T(x, t)|2 dxdt,

whose value depends on u. The notation |D| stands for the area of the disc. Besides the divergence-
free constraint

∇ · u= 0 in D,

1All limits are understood in the limit superior sense to ensure they are well-defined.
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we enforce the no-penetration boundary conditions

u · n̂= 0 at ∂D

where n̂ is the outwards pointing unit normal.
Given this setup, we minimize 〈|∇T|2〉 among all velocities u with a given value of mean

enstrophy 〈|∇u|2〉, or mean kinetic energy 〈|u|2〉. These ‘enstrophy-’ and ‘energy-constrained
optimal cooling problems’ were originally posed in [39] and analysed further in [40]. Actually,
those papers focussed on the special case of a constant heat source, e.g. f = 1, and were also mostly
concerned with the energy-constrained problem. Here, we treat a general source function f (x, t)
which may vary both in space and in time, and may even be negative in some places and at
some times allowing for temporary sinks. Before coming to our results, we pause to discuss other
possible objective functionals as well as the practical meaning of ‘optimizing over u’.

Various minimization problems have been proposed to optimize cooling. In [39], the authors
minimize the mean temperature 〈T〉 subject to an energy-constraint and for a constant positive
source. In [40], the same steady minimization is studied alongside a variety of others involving
Lp-based quantities, namely, 〈Tp〉 for 1 ≤ p < ∞ and max T for p = ∞. Multiplying the advection–
diffusion equation (1.1) by T and integrating by parts shows that

κ
〈
|∇T|2

〉
= 〈 fT〉

in general. If f is constant and positive, minimizing 〈T〉 can be regarded as minimizing 〈|∇T|2〉. If
f is bounded and uniformly positive, meaning that C ≥ f ≥ c for some fixed c, C ∈ (0, ∞), then

c 〈T〉 ≤ κ
〈
|∇T|2

〉
≤ C 〈T〉 ,

so that the minimizations give comparable results. For a general and possibly sign-indefinite
f , such a simple relationship need not hold. Our choice to minimize 〈|∇T|2〉 as opposed to,
say, 〈|T|p〉 is partially out of mathematical convenience, but also because the former provides
a more direct assessment of long-term diffusive transport—the rate-limiting step in any heat
exchange.

Turning to our choice to treat the velocity directly as a control, perhaps it is more reasonable
from the viewpoint of applications to think of controlling an applied body force f(x, t). One may
then seek to optimize cooling subject to a constraint on the power used. Or, one might limit the
complexity of the force, e.g. by constraining 〈|∇f|2〉. In any case, the velocity u will solve the
forced, incompressible Navier–Stokes equations

∂tu + u · ∇u + 1
ρ

∇p = ν�u + 1
ρ
f in D, (1.2)

where p(x, t) and ν > 0 are the pressure and kinematic viscosity and ρ > 0 is the density. Dotting
(1.2) by u, integrating by parts, and remembering that ∇ · u= 0 yields the fundamental ‘balance
law’

ν
〈
|∇u|2

〉
= 1

ρ
〈f · u〉 .

Thus, a constraint on the mean power 〈f · u〉 can be regarded as a constraint on the mean
enstrophy 〈|∇u|2〉. Having found an optimal u, we can then simply read off from (1.2) the
corresponding optimal f. This is not to say that every optimal velocity is dynamically stable—
in fact, in related problems involving extremal orbits the opposite situation holds [41,42].
Nevertheless, to get started, we set aside the momentum equation henceforth and focus solely
on optimizing advection–diffusion.

Switching to non-dimensional variables, let κ = R = 1. The value of the mean enstrophy
〈|∇u|2〉, or the mean energy 〈|u|2〉 when we discuss it, will be called the Peclét number Pe as either
quantity sets the relative strength of advection to diffusion. (In dimensional variables, Pe = UR/κ

with U being the imposed velocity scale.) In the advective limit Pe → ∞, one expects to be able to
drive 〈|∇T|2〉 → 0 along a well-chosen sequence of velocities. The question is: at what optimal rate
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can this convergence occur? Our main result is a set of upper and lower bounds on min〈|∇T|2〉
subject to the enstrophy constraint 〈|∇u|2〉 = Pe2 that identify the optimal cooling rate up to a
possible logarithm in Pe. Let λ1 be the first Dirichlet eigenvalue of −� on D, and let t ∧ s denote
the minimum of t, s ∈R.

Theorem 1.1. Let f (x, t) satisfy

lim
τ→∞

1√
τ

ˆ τ

0
e−λ1((τ−t)∧t)|| f (·, t)||L2(D) dt = 0 and

〈
| f |2 + |∇f |2 + |∇∇f |2

〉
< ∞

and assume 〈 f 〉 > 0. There exist positive constants C( f ), C′( f ) and c( f ) depending only on f such that

C
1

Pe2/3 ≤ min
u(x,t)

〈|∇u|2〉=Pe2

u·n̂=0 at ∂D

〈
|∇T|2

〉
≤ C′ log4/3 Pe

Pe2/3

whenever Pe ≥ c( f ).

Remark 1.2. The first assumption concerns the possibility that f grows as t → ∞, and limits that
growth such that 〈|∇T|2〉 remains finite. Without it, one can make 〈|∇T|2〉 = ∞ for all u, e.g. with
f = a(t)ϕ1(x) and where ϕ1 ∈ H1

0(D) has −�ϕ1 = λ1ϕ1. The remaining assumptions on f enter into
our bounds on C and C′: we achieve C � 〈 f 〉2 and C′ � 〈| f |2 + |∇f |2 + |∇∇f |2〉. For the dependence
of c, see §2 where we prove the lower bound.

Remark 1.3. The same result holds if the no-penetration boundary conditions u · n̂= 0 are
replaced by the more restrictive no-slip conditions u= 0 at ∂D. This is because we use no-slip
velocities for the upper bound. That the lower bound goes through to the no-slip case is clear.

Let us briefly discuss the strategy of our proof. On the one hand, we must explain why
no enstrophy-constrained velocity having 〈|∇u|2〉 = Pe2 can lower 〈|∇T|2〉 significantly beyond
Pe−2/3. At the same time, we must construct a sequence of admissible velocities to cool within
a logarithm of this bound. The challenge is to find a way of computing heat transfer that at the
same time shows how it can be optimized. We follow the approach of our previous articles on
maximizing transport across an externally heated fluid layer [43–45], the key difference being
the presence of the internal source f (x, t). We show it is possible to bound 〈|∇T|2〉, and in fact to
compute it exactly in the steady case, by a pair of variational problems. These problems recall
Dirichlet’s principle for Poisson’s equation, but are non-local due to the mixed character of the
operator u · ∇ − �. That there exists a non-local Dirichlet-like principle for the effective diffusivity
of a periodic or random fluid flow is well-known in homogenization [46,47]. Our idea is that
〈|∇T|2〉 should behave like an effective diffusivity upon optimization. This is very much in the
spirit of the general connection between homogenization and optimal design (see, e.g. [48–50]).

The bulk of our work goes into constructing the ‘branching flows’ behind the upper bound in
theorem 1.1. In general, we envision an unsteady, tree-like, multi-scale flow whose features refine
from the bulk to the boundary as in the bottom of figure 1. To achieve it, we piece together a family
of convection roll-like flows, with the number of rolls in the azimuthal direction θ depending
on the radial coordinate r. A similar, albeit steady, branching flow was used in [43,45] to prove
nearly sharp bounds on optimal transport through a fluid layer. Later on, a beautiful and fully
three-dimensional branching flow was found numerically via gradient ascent [51]. Each of these
may be regarded as a more refined version of Busse’s ‘multi-α’ flows [22], the latter of which do
not enforce the full advection–diffusion equation but instead hinge upon various balance laws it
implies.

Branching may be anticipated as a mechanism for optimizing heat transfer by asking what it
takes to guide Brownian particles from the bulk to the boundary of the disc. Imagine a cloud of
particles is released at a radius r and is to be transported outwards across a distance ∼ 1 − r, say
with (non-dimensional) speed ∼ U. In time τ , the particles diffuse in the θ -direction by a typical
distance ∼ √

τ . In the same time, they advect in the r-direction by a distance ∼ U · τ . With the
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Figure 1. Divergence-free flow designs for cooling an internally heated unit disc. The top row shows contours of the source
functions f = 1, e−4r2 , e−4(1−r)2 and sin2(2θ ) from left to right. Themiddle rowshows streamlines of convection roll-like designs
adapted to these sources. The bottom row shows their branching flow counterparts. Counterclockwise/clockwise circulations are
coloured purple/blue. (Online version in colour.)

goal of not losing too many particles to poorly directed advection, we suggest using streamlines
whose azimuthal scale �(r) matches that of the Brownian cloud:

�(r) ∼
√

1 − r
U

. (1.3)

Two parameters emerge, namely the speed U and the boundary layer width δbl where the
streamlines finally turn around. By the enstrophy constraint,

Pe2 =
〈
|∇u|2

〉
∼
ˆ 1−δbl

(
U

�(r)

)2
r dr ∼ U3 log

1
δbl

.

Thinking of an isotropic roll-based boundary layer, we take
√

δbl/U ∼ δbl giving U ∼ 1/δbl. This
determines all parameters via the scalings

U ∼ Pe2/3

log1/3 Pe
and δbl ∼ log1/3 Pe

Pe2/3 . (1.4)

Even if our thought experiment on how advection can effectively ‘hug’ diffusion suggests a
particular way of branching, it is far from a proof of theorem 1.1, or even of its upper bound. To
achieve it, we apply our variational bounds to estimate 〈|∇T|2〉 on a general roll-based branching
flow design. By optimizing over all admissible ‘scale functions’ �(r), we discover the very same
scalings as in (1.3) and (1.4). In fact, we see no way out of these and the logarithmically corrected
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bound they imply: we conjecture that

min
u(x,t)

〈|∇u|2〉=Pe2

u·n̂=0 at ∂D

〈
|∇T|2

〉
= C( f ) · log4/3 Pe

Pe2/3 + · · · as Pe → ∞,

with the dots representing asymptotically negligible terms. This is for two-dimensional cooling;
the data in [51] suggest a pure power law scaling for optimal transport across a three-dimensional
layer. Maybe there is more room for chaperoning particles in three dimensions versus two? In any
case, proving the analogue of our conjecture for a fluid layer would establish a new bound on the
longstanding problem of Rayleigh–Bénard convection, as noted in [43]. This bound would state
that Nu � Ra1/2/ log2 Ra with Nu and Ra being the Nusselt and Rayleigh numbers (the relevant
measures of transport and driving there).

Stochastic analysis of optimal cooling is the focus of [40] where the authors estimate, among
other things, the mean temperature of steady convection roll-like flows in an internally heated
layer with a constant source. Using large deviations-based bounds, they prove that min〈T〉 ≤
c(δ)(log Pe/Pe1−δ) for any δ > 0, where 〈|u|2〉 = Pe2. Showing the conjectured optimal scaling

min
u(x,t)

〈|u|2〉=Pe2

u·n̂=0 at ∂D

〈
|∇T|2

〉
= C( f ) · 1

Pe
+ · · · as Pe → ∞

put forth for f = 1 in [39] remains an open challenge. While the arguments behind theorem 1.1 lead
without major modifications to the supposedly sub-optimal lower bound min〈|∇T|2〉 ≥ C( f )/Pe2,
they are strong enough to show the conjectured upper bound min〈|∇T|2〉 ≤ C′( f )/Pe and to
likewise improve the estimate from [40]. The Pe−1 scaling was found in [39] through a matched
asymptotic analysis of convection roll-like flows, but without a bound on the error terms. See
propositions 2.6 and 5.1 for our lower and upper bounds on energy-constrained cooling.

This paper is organized as follows. We begin in §2 with our variational bounds on cooling.
At the end of that section, we choose a background-like test function to prove our lower bounds
on the enstrophy- and energy-constrained problems, including the lower bound part of theorem
1.1. The rest of the paper is devoted to upper bounds. First, we discuss the steady enstrophy-
constrained problem in §3 to explain our strategy for finding designs. Then, in §4 we construct
our branching flows to prove the upper bound part of theorem 1.1. We end in §5 with our upper
bound on energy-constrained cooling.

(a) Notation
We write X � Y if X ≤ cY for a fixed numerical constant c > 0, i.e. one that is independent of all
parameters. We write X �a Y if X ≤ cY where c = c(a), and X � Y if (X/Y) → 0 in a relevant limit.
We abbreviate X ∧ Y = min{X, Y} and X ∨ Y = max{X, Y}.

We often conflate a point x with its polar coordinates (r, θ ). The unit vectors êr = x/|x| and
êθ = ê⊥

r , where (·)⊥ is a counterclockwise rotation by π/2. Given a function ϕ(x), its average on
the disc D is  

D
ϕ = 1

|D|
ˆ

D
ϕ(x) dx,

where |D| is the disc’s area. By Dr we mean the concentric disc of radius r. Restricting ϕ to ∂Dr

gives a function of θ , whose average and L1-norm are

ϕ(r) = 1
2π

ˆ 2π

0
ϕ(r, θ ) dθ and ||ϕ||L1

θ
(r) =

ˆ 2π

0
|ϕ(r, θ )| dθ .

Given a function ϕ(x, t), we write

〈ϕ〉 = lim sup
τ→∞

 τ

0

 
D

ϕ = lim sup
τ→∞

1
τ

1
|D|

ˆ τ

0

ˆ
D

ϕ(x, t) dxdt
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for its (limit superior) space and long-time average.
The Sobolev spaces L2(D) and H1(D) are defined as usual, using the norms

||ϕ||L2(D) =
√ˆ

D
|ϕ|2 dx and ||ϕ||H1(D) =

√ˆ
D

|ϕ|2 + |∇ϕ|2 dx.

We write H−1(D) for the dual of H1
0(D), the latter indicating H1-functions on D with zero trace at

∂D. It will be convenient to normalize their duality bracket (·, ·) by |D|, and in particular we take

(∇ · m, ϕ) = −
 

D
m · ∇ϕ

for m ∈ L2(D;R2) and ϕ ∈ H1
0(D). We use various mixed spaces such as L2((0, ∞); H1

0(D)) and its
local-in-time version L2

loc((0, ∞); H1
0(D)). For definitions, see a text on partial differential equations

(PDEs) such as [52].

2. Variational bounds on cooling
We begin with a general method for bounding 〈|∇T|2〉 from above and below. While it is easy to
show using integration by parts that 〈

|∇T|2
〉
�
〈
| f |2

〉
, (2.1)

improving this upper bound and finding a corresponding lower bound is not so simple.
Incidentally, it follows from (2.1) and the linearity of the PDE in T that 〈|∇T|2〉 does not depend
on the exact choice of its initial data, so long as it belongs to L2(D). To obtain better bounds, we
invoke a certain symmetrizing change of variables that couples T to a second ‘temperature’ field
arising from its adjoint PDE. The resulting bounds are sharp in the steady case where u and f do
not depend on time.

Define the admissible set

A=
{
θ ∈ L2

loc((0, ∞); H1
0(D)) : ∂tθ ∈ L2

loc((0, ∞); H−1(D)), lim sup
τ→∞

1√
τ

||θ(·, τ )||L2(D) < ∞
}

and let �−1 : H−1(D) → H1
0(D) denote the inverse Laplacian with zero Dirichlet boundary

conditions. Recall

λ1 = min
ϕ∈H1

0(D)

´
D |∇ϕ|2´
D |ϕ|2 .

Proposition 2.1. Let u(x, t) be weakly divergence-free and have〈
|u|2

〉
< ∞

and let f (x, t) satisfy

lim
τ→∞

1√
τ

ˆ τ

0
e−λ1((τ−t)∧t)|| f (·, t)||L2(D) dt = 0.

Any weak solution T(x, t) of {
∂tT + u · ∇T = �T + f in D

T = 0 at ∂D

with initial data T(·, 0) ∈ L2(D) must obey the bounds〈
2ξ f − |∇ξ |2 − |∇�−1(∂t + u · ∇)ξ |2

〉
≤
〈
|∇T|2

〉
≤
〈
|∇η|2 + |∇�−1[(∂t + u · ∇)η − f ]|2

〉
for all ξ , η ∈A.
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Remark 2.2. The statement that T is a weak solution deserves to be clarified, especially as
u · ∇T is at first glance only in L1(D) a.e. in time, and so would appear not to belong to H−1(D) =
(H1

0(D))′. (Two dimensions is critical for the relevant Sobolev embedding.) However, u and ∇T
are divergence- and curl-free, and this is enough to compensate for their lack of regularity.

To see why, introduce a stream function ψ ∈ H1(D) with u= ∇⊥ψ , and note that u · ∇T is the
Jacobian determinant of the mapping x �→ (ψ , T). Therefore, by the estimate of Coifman, Lions,
Meyer and Semmes on Jacobian determinants [53] (see also [54]),∣∣∣∣

ˆ
D
u · ∇Tϕ dx

∣∣∣∣� ||u||L2(D)||∇T||L2(D)||∇ϕ||L2(D) ∀ ϕ ∈ C∞
c (D).

Letting (·, ·) denote the (normalized) duality bracket between H−1(D) and H1
0(D), the previous

inequality extends to say that

|(u · ∇T, ϕ)| � ||u||L2(D)||∇T||L2(D)||∇ϕ||L2(D) ∀ ϕ ∈ H1
0(D). (2.2)

Thus, u · ∇T ∈ H−1(D) at a.e. time. Clearly, the same holds for �T and f .
At this point, the definition of T as a weak solution can be carried out as usual, by requiring

that
T ∈ L2

loc((0, ∞); H1
0(D)) and ∂tT ∈ L2

loc((0, ∞); H−1(D)),

and enforcing the PDE as an equality on H−1(D). Existence and uniqueness of weak solutions
with initial data in L2(D) follows (see, e.g. [52]).

Remark 2.3. A particular consequence of the previous remark that will be used throughout the
proof of proposition 2.1 is that

(u · ∇T, T) = 0 for a.e. t,

if u and T are as in the proposition. This follows from a smooth approximation argument and the
fact that T(·, t) ∈ H1

0(D) a.e. in t. Indeed, if T(·, t) is smooth and compactly supported in D then

(u · ∇T, T) = 1
2

 
D
u · ∇|T|2 dx= 0

by the divergence theorem. The bilinear form T �→ (u · ∇T, T) is continuous on H1
0(D), per (2.2).

The claimed identity follows from the density of smooth and compactly supported functions in
H1

0(D).

Remark 2.4. In the case that u and f are steady, the bounds from the proposition become sharp
and are achieved by steady test functions η(x) and ξ (x). That is,〈

|∇T|2
〉
= min

η∈H1
0(D)

 
D

|∇η|2 + |∇�−1[u · ∇η − f ]|2 dx

= max
ξ∈H1

0(D)

 
D

2ξ f − |∇ξ |2 − |∇�−1u · ∇ξ |2 dx.

The crucial point is that, when u and f are steady, the above optimizations in η and ξ not only
provide bounds on 〈|∇T|2〉, but also turn out to be ‘strongly’ dual in that their optimal values are
the same (an easy consequence of their Euler–Lagrange equations). See [43] for the full proof of a
similar duality arising for steady heat transport through a fluid layer.

Remark 2.5. On the other hand, if f is allowed to depend on time, equality need not hold
between our bounds on 〈|∇T|2〉. This is because one cannot rule out the possibility that

lim inf
τ→∞

 τ

0

 
D

|∇T|2 < lim sup
τ→∞

 τ

0

 
D

|∇T|2

in general while, as will become clear in the proof below, our bounds actually hold on these limit
inferior and limit superior long-time averages (see (2.6) and (2.7)). We do not know if our bounds
are sharp when f (x) is steady and u(x, t) is unsteady, though we guess the answer is ‘no’.
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Proof. Consider the formally adjoint pair of problems{
(±∂t ± u · ∇)T± = �T± + f in D

T± = 0 at ∂D
,

the + version of which is solved by the given temperature T. As the value of 〈|∇T|2〉 does not
depend on its initial data, we let T(·, 0) = 0 and refer to this version of the temperature as T+ in
the rest of this proof. Fixing an arbitrary time τ > 0 which we will eventually take to ∞, let T− be
the unique weak solution of the − problem with T−(·, τ ) = 0. (The definition of a ‘weak solution’ is
standard; see remark 2.2.) A quick argument using integration by parts and Gronwall’s inequality
shows that

||T+(·, τ )||L2(D) ∨ ||T−(·, 0)||L2(D)

≤
ˆ τ

0
e−λ1((τ−t)∧t)|| f (·, t)|L2(D) dt � √

τ as τ → ∞

by our hypothesis on f . Briefly, one notes for Z =
√

ε + ||T+||2L2(D) that

d
dt

Z + λ1Z ≤ λ1ε
1/2 + || f ||L2(D)

for all ε > 0. Using the integrating factor e−λ1(τ−t) and taking ε → 0 yields the + version of the
inequality. The − version follows by reversing time.

Having defined T±, we now change variables to the pair

η = 1
2

(T+ − T−) and ξ = 1
2

(T+ + T−)

and note they satisfy ⎧⎪⎪⎨
⎪⎪⎩

(∂t + u · ∇)η = �ξ + f in D

(∂t + u · ∇)ξ = �η in D

η = ξ = 0 at ∂D

(2.3)

weakly for t ∈ (0, τ ). It follows from our previous bounds on T± that

||ξ (·, 0)||L2(D) + ||ξ (·, τ )||L2(D) + ||η(·, 0)||L2(D) + ||η(·, τ )||L2(D) � √
τ as τ → ∞. (2.4)

Introduce the notation 〈·〉τ = ffl τ
0
ffl

D · dxdt for the truncated space- and time average. Testing the
second PDE in (2.3) against ξ , we get that

〈∇η · ∇ξ〉τ =
 τ

0
(−�η, ξ ) dt =

 τ

0
(−(∂t + u · ∇)ξ , ξ ) dt

=
 τ

0

[
− d

dt
1
2

 
D

|ξ |2 dx + (u · ∇ξ , ξ )
]

dt

= 1
2τ

 
D

|ξ (x, 0)|2 − |ξ (x, τ )|2 dx

where again (·, ·) is the duality bracket normalized by |D|. That u · ∇ξ ∈ H−1(D) at a.e. time follows
from the assumed mean-square integrability of u and the statement that it is weakly divergence-
free; see remarks 2.2 and 2.3 for the proof that (u · ∇ξ , ξ ) = 0. Combined with (2.4), the conclusion
is that

〈∇η · ∇ξ〉τ → 0 as τ → ∞.

Hence, T = T+ = (η + ξ )/2 obeys〈
|∇T+|2

〉
τ

=
〈
|∇η|2 + |∇ξ |2

〉
τ

+ oτ (1)

=
〈
|∇η|2 + |∇�−1[(∂t + u · ∇)η − f ]|2

〉
τ

+ oτ (1) (2.5)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 A

pr
il 

20
22

 



10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210040

...............................................................

with oτ (1) denoting a quantity that vanishes as τ → ∞. This way of writing the mean-square
temperature gradient leads to the upper bound from the claim.

To see why, let η̃ ∈A and consider the difference

Aτ :=
〈
|∇η̃|2 + |∇�−1[(∂t + u · ∇)η̃ − f ]|2

〉
τ

−
〈
|∇η|2 + |∇�−1[(∂t + u · ∇)η − f ]|2

〉
τ

.

We claim it is non-negative up to a term that vanishes as τ → ∞. Since | · |2 is convex,

1
2

Aτ ≥
〈
∇η · ∇(η̃ − η) + ∇ξ · ∇�−1(∂t + u · ∇)(η̃ − η)

〉
τ

=
 τ

0
[
 

D
∇η · ∇(η̃ − η) dx − ((∂t + u · ∇)(η̃ − η), ξ )] dt

=
 τ

0
(−�η + (∂t + u · ∇)ξ , η̃ − η) dt − 1

τ

( 
D

(η̃ − η)ξ
)

|t=τ
t=0 ≥ −oτ (1)

again by (2.4) and the growth condition in our definition of A. Hence,〈
|∇T+|2

〉
τ

≤
〈
|∇η̃|2 + |∇�−1[(∂t + u · ∇)η̃ − f ]|2

〉
τ

+ oτ (1) (2.6)

for all η̃ ∈A. This bound is a bit better than the one from the claim (however, see remark 2.5).
Returning to the PDEs in (2.3), we now test the second one against η and integrate by parts,

again using the abbreviation oτ (1) for terms that limit to zero as τ → ∞. The result is that〈
|∇η|2

〉
τ

=
 τ

0
(−�η, η) dt =

 τ

0
(−(∂t + u · ∇)ξ , η) dt

=
 τ

0
((∂t + u · ∇)η, ξ ) dt + oτ (1) =

 τ

0
(�ξ + f , ξ ) dt + oτ (1)

=
〈
−|∇ξ |2 + f ξ

〉
τ

+ oτ (1)

where in the second line we applied the first PDE in (2.3). Combined with (2.5), this proves that〈
|∇T+|2

〉
τ

= 〈 f ξ 〉
τ

+ oτ (1)

and that 〈
|∇T+|2

〉
τ

=
〈
2f ξ − |∇η|2 − |∇ξ |2

〉
τ

+ oτ (1)

=
〈
2f ξ − |∇ξ |2 − |∇�−1(∂t + u · ∇)ξ |2

〉
τ

+ oτ (1).

We are ready to deduce the lower bound from the claim.
Let ξ̃ ∈A and call

Bτ :=
〈
2f ξ − |∇ξ |2 − |∇�−1(∂t + u · ∇)ξ |2

〉
τ

−
〈
2f ξ̃ − |∇ ξ̃ |2 − |∇�−1(∂t + u · ∇)ξ̃ |2

〉
τ

.

As before, we use the convexity of | · |2 to write that

1
2

Bτ ≥
〈
−f (ξ̃ − ξ ) + ∇ξ · ∇(ξ̃ − ξ ) + ∇η · ∇�−1(∂t + u · ∇)(ξ̃ − ξ )

〉
τ

=
 τ

0

[ 
D

−f (ξ̃ − ξ ) + ∇ξ · ∇(ξ̃ − ξ ) dx − ((∂t + u · ∇)(ξ̃ − ξ ), η)
]

dt

=
 τ

0
(−f − �ξ + (∂t + u · ∇)η, ξ̃ − ξ ) dt − 1

τ

( 
D

(ξ̃ − ξ )η
)

|t=τ
t=0 ≥ −oτ (1).

In the last step, we applied (2.4) to handle the terms at t = 0 and t = τ . Thus,〈
|∇T+|2

〉
τ

≥
〈
2f ξ̃ − |∇ ξ̃ |2 − |∇�−1(∂t + u · ∇)ξ̃ |2

〉
τ

− oτ (1) (2.7)

for all ξ̃ ∈A. Again, the result is a bit better than the bound from the claim. �
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As a first application of our variational bounds on cooling, we obtain the lower bound from
theorem 1.1 which applies to all velocities with a specified mean enstrophy.

Proof of the lower bound from theorem 1.1. The lower bound half of proposition 2.1 applied with a
steady test function ξ ∈ H1

0(D) shows that

2
〈
f ξ
〉≤ 〈|∇T|2

〉
+
〈
|∇ξ |2 + |∇�−1∇ · (uξ )|2

〉
.

Scaling ξ → λξ and optimizing over λ ∈R, we now write that
〈
f ξ
〉2 ≤

〈
|∇T|2

〉 〈
|∇ξ |2 + |∇�−1∇ · (uξ )|2

〉
. (2.8)

This bound holds for all ξ ∈ H1
0(D), and we proceed to make a choice.

Given any δ ∈ (0, 1), define
ξδ = χδ(r),

where χδ(r) is a smooth, radial ‘cutoff function’ that goes from zero to one across a small boundary
layer. Precisely, χδ ∈ C∞

c ([0, 1)) satisfies

0 ≤ χδ(r) ≤ 1 ∀ r ∈ [0, 1) and χδ(r) = 1 ∀ r ≤ 1 − δ

and has

||χ ′
δ ||L∞([0,1)) � 1

δ
,

with a constant independent of δ. Note that

∣∣〈 f 〉∣∣≤ ∣∣〈 f ξδ

〉∣∣+ ∣∣〈 f (ξδ − 1)
〉∣∣≤ ∣∣〈 f ξδ

〉∣∣+√〈| f |2〉√〈1r>1−δ

〉
≤ ∣∣〈 f ξδ

〉∣∣+ C′( f )
√

δ.

Hence, there exists δ0( f ) > 0 such that

1
2

∣∣〈 f 〉∣∣≤ ∣∣〈 f ξδ

〉∣∣ ∀ δ ∈ (0, δ0]. (2.9)

Similarly, 〈
|∇ξδ |2

〉
=
 

D
|χ ′

δ(r)|2 �
 

D

1
δ2 1r>1−δ � 1

δ
(2.10)

for all δ.
At this point, we have dealt with each of the terms in the bound (2.8) except for the non-local

one involving the L2-orthogonal projection ∇�−1∇. For this, observe that
ˆ

D
|∇�−1∇ · v|2 dx= max

θ∈H1
0(D)

ˆ
D

2∇θ · v − |∇θ |2 dx

for all v ∈ L2(D). So, the estimate 〈
|∇�−1∇ · (uξδ)|2

〉
� δ2

〈
|∇u|2

〉
(2.11)

follows from its steady version
ˆ

D
∇θ · uξδ �

ˆ
D

|∇θ |2 + δ2|∇u|2 ∀ θ ∈ H1
0(D),

which we now establish at a.e. time. Since u is divergence-free and ξδ = χδ(r) depends only on r,∣∣∣∣
ˆ

D
∇θ · uξδ

∣∣∣∣=
∣∣∣∣
ˆ

D
θu · ∇ξδ

∣∣∣∣�
ˆ 1

1−δ

|θu · êr||χ ′
δ |r dr

�
 1

1−δ

|θu · êr| dr.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 A

pr
il 

20
22

 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210040

...............................................................

Note · = ffl 2π
0 · dθ gives the θ -average, as defined in §1a. Continuing, we claim that

|θu · êr| � (1 − r)||∇θ ||L2(D)||∇u||L2(D) for a.e. r ∈ (0, 1). (2.12)

In fact, (2.12) follows a more or less standard argument involving the Cauchy–Schwarz inequality
applied to (d/dr)θ2 and (d/dr)(u · êr)2, and then again to (d/dr)θu · êr, all of which are derivatives
of quantities vanishing at r = 1. (For the complete details in an analogous fluid layer setting, see
[43, lemma 2.6].) Applying (2.12), we get that

 1

1−δ

|θu · êr| dr �
 1

1−δ

(1 − r) dr · ||∇θ ||L2(D)||∇u||L2(D) � δ||∇θ ||L2(D)||∇u||L2(D)

�
ˆ

D
|∇θ |2 + δ2|∇u|2.

As θ ∈ H1
0(D) was arbitrary, the estimate (2.11) is proved.

Summing up, we have shown via (2.8)–(2.11) with the test function ξδ = χδ(r) that

〈
f
〉2 �

〈
|∇T|2

〉 (1
δ

+ δ2
〈
|∇u|2

〉)
∀ δ ∈ (0, δ0( f )].

The bound 〈
f
〉2 �

〈
|∇T|2

〉 ( 1
δ0

∨
〈
|∇u|2

〉1/3
)

follows. Indeed, if δ−1
0 ≤ 〈|∇u|2〉1/3 we can choose δ = 〈|∇u|2〉−1/3, otherwise we take δ = δ0. This

proves the lower bound in theorem 1.1 with C � 〈 f 〉2 and c = δ−3
0 . �

A minor modification of the previous proof leads to the (supposedly sub-optimal) lower bound
on energy-constrained cooling from the introduction. To achieve it, replace the inequality in (2.11)
with the simpler inequality 〈

|∇�−1∇ · (uξδ)|2
〉
≤
〈
|u|2

〉
(2.13)

which holds because ∇�−1∇· is an L2-orthogonal projection and |ξδ | ≤ 1. The rest of the proof
goes through to yield the following result:

Proposition 2.6. Let f (x, t) satisfy

lim
τ→∞

1√
τ

ˆ τ

0
e−λ1((τ−t)∧t)|| f (·, t)||L2(D) dt = 0 and

〈
| f |2

〉
< ∞.

There exist positive constants C and c( f ), the former numerical and the latter depending only on f , such
that

C
Pe2 · 〈 f 〉2 ≤ min

u(x,t)
〈|u|2〉=Pe2

〈
|∇T|2

〉

whenever Pe ≥ c( f ).

The reader familiar with the background method may wonder whether it also leads to
these lower bounds. Indeed it does, the key point being that either (2.11) or (2.13) verifies
the relevant spectral constraint, depending on whether one considers enstrophy- or energy-
constrained cooling. For more on the connection between our symmetrization-based bounds and
those of the background method, see [43,44].

3. Optimal steady flows for enstrophy-constrained cooling
The rest of this paper is about upper bounds. In this section and the next, we prove the one from
theorem 1.1 on enstrophy-constrained cooling. First, to warm up, we study the steady version of
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the problem

min
u(x)ffl

D |∇u|2=Pe2

u=0 at ∂D

〈
|∇T|2

〉
(3.1)

for a given source f (x). We return to the unsteady problem in §4. Note we use no-slip boundary
conditions from now on. This is compatible with our goal of proving an upper bound on optimal
no-penetration flows, as minimizing over no-slip flows can only increase the result.

When u and f are steady, the upper bound from proposition 2.1 leads with a little effort to the
double minimization

min
u(x),η(x)

u=0,η=0 at ∂D

 
D

|∇�−1(u · ∇η − f )|2 + 1
Pe2

 
D

|∇η|2
 

D
|∇u|2, (3.2)

whose optimal value is the same as that of the original problem (3.1), and whose optimizers (u, η)
yield solutions to it under the rescaling u→ λPeu with λPe = Pe/

√
〈|∇u|2〉. After explaining this in

§3a, we go on in §3b to show how it is possible to achieve

u · ∇η ≈ f in H−1(D)

using convection roll-based flows. The estimates given there on the non-local part of (3.2) will
come in handy later on when we discuss branching flows.

(a) A change of variables
First, we show that the problems in (3.1) and (3.2) are the same. Applying the upper bound from
proposition 2.1—here we use remark 2.4 as it gives the better result in the steady case—we see
that 〈

|∇T|2
〉
= min

η(x)
η=0 at ∂D

F(u, η), where F(u, η) =
 

D
|∇�−1(u · ∇η − f )|2 +

 
D

|∇η|2.

Evidently, minimizing 〈|∇T|2〉 is the same as minimizing F. A simple change of variables removes
the enstrophy constraint. Consider the substitutions

u= Pe√ffl
D |∇ũ|2

ũ and η =
√ffl

D |∇ũ|2
Pe

η̃, (3.3)

where ũ is not allowed to be identically zero. Evidently,
 

D
|∇u|2 = Pe2 ∀ ũ,

while

F(u, η) =
 

D
|∇�−1(ũ · ∇η̃ − f )|2 + 1

Pe2

 
D

|∇ũ|2 ·
 

D
|∇η̃|2.

Thus, the two minimization problems

min
u(x)ffl

D |∇u|2=Pe2

u=0 at ∂D

〈
|∇T|2

〉

and

min
ũ(x),η̃(x)

ũ=0,η̃=0 at ∂D

 
D

|∇�−1(ũ · ∇η̃ − f )|2 + 1
Pe2

 
D

|∇ũ|2 ·
 

D
|∇η̃|2

are the same. Their optimal values agree, and their optimizers are related via (3.3).
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A similar change of variables can be done for the unsteady problem, with the result being a
bound rather than an equivalence. Setting

u= Pe√〈|∇ũ|2〉 ũ and η =
√〈|∇ũ|2〉

Pe
η̃

into the upper bound from proposition 2.1 shows that

〈
|∇T|2

〉
≤ min

η̃(x,t)
η̃=0 at ∂D

〈
|∇�−1[(∂t + ũ · ∇)η̃ − f ]|2 +

〈|∇ũ|2〉
Pe2 |∇η̃|2

〉

where T(x, t) is a temperature field associated with the unsteady velocity u(x, t). This is the starting
point of §4.

(b) Steady advection
The next step is to see what it takes to drive the non-local terms in these optimizations to zero.
Focusing again on a steady source f (x), we ask what it takes for a velocity–test function pair
(u(x), η(x)) to achieve

u · ∇η ≈ f in H−1(D),

where the notation means that
ffl

D |∇�−1(u · ∇η − f )|2 is small. Guided by the divergence theorem
and our usual assumption that ∇ · u= 0, we see that any successful pair must achieve

ˆ
∂V

uη · n̂ds ≈
ˆ

V
f dx

for V ⊂ D. The following result makes this intuition precise.
Introduce the notation Dr for the disc of radius r > 0 centred at the origin of D, and again let

ϕ(r) = 1
2π

ˆ 2π

0
ϕ(r, θ ) dθ

denote the average over its boundary ∂Dr. As noted in §1a, we allow ourselves to conflate a point
x with its polar coordinates (r, θ ). Any integral over ρ is done with respect to the radial coordinate.

Lemma 3.1. Let f ∈ L2(D) and suppose that (u, η) ∈ H1(D;R2) × H1(D) where u is divergence-free.
Then  

D
|∇�−1(u · ∇η − f )|2 dx= 1

2π

ˆ 1

0
|uη · êr − F|2r dr + Q(uη − gêr),

where

F(r) = 1
2πr

ˆ
Dr

f (x) dx and g(r, θ ) = 1
r

ˆ r

0
ρf (ρ, θ ) dρ

and

Q(v) = min
ϕ∈H1(D)

 
D

| − 1
r
∂θϕ + v · êr − v · êr|2 + |∂rϕ + v · êθ |2 dx.

Remark 3.2. A particular choice of test function we use often below is

ϕ = r∂−1
θ (v · êr) = r

ˆ θ

0
v · êr(r, θ ′) − v · êr(r) dθ ′.

It sets the first integral in Q to zero, giving the bound

Q(v) ≤
 

D
|∂r(r∂−1

θ (v · êr)) + v · êθ |2 dx.
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Proof. We need the fact thatˆ
D

|∇�−1∇ · v|2 = min
m∈L2(D)
∇·m=0

ˆ
D

|m + v|2 = min
ϕ∈H1(D)

ˆ
D

|∇⊥ϕ + v|2 (3.4)

for any v ∈ L2(D). A quick proof of it goes as follows: let ζ ∈ H1
0(D) satisfy �ζ = ∇ · v in D, and

note that ∇ζ is L2-orthogonal to divergence-free m, including ∇ζ − v. Hence,ˆ
D

|m + v|2 =
ˆ

D
|m + v − ∇ζ |2 +

ˆ
D

|∇ζ |2 ≥
ˆ

D
|∇ζ |2 =

ˆ
D

|∇�−1∇ · v|2

and equality holds for m= ∇ζ − v. This proves the first part of (3.4), and the rest of it follows
from the usual representation of a divergence-free vector field m as the perpendicular gradient of
a streamfunction ϕ.

Now using (3.4) and the definition of g, which satisfies ∂r(rg) = rf , write thatˆ
D

|∇�−1(u · ∇η − f )|2 =
ˆ

D
|∇�−1∇ · (uη − gêr)|2 = min

∇·m=0

ˆ
D

|m + v|2

where
v= uη − gêr.

In the first step, we used that ∇ · (gêr) = f , which is clear from its expression in polar coordinates.
Observe that a vector field a(r)êr is L2-orthogonal to any divergence-free m. Indeed, writing

m= ∇⊥ϕ = −1
r
∂θϕêr + ∂rϕêθ

where ϕ is 2π -periodic in θ shows that
ˆ

D
m · a(r)êr =

ˆ 1

0

[ˆ 2π

0
−1

r
∂θϕ dθ

]
a(r)r dr = 0.

This prompts the L2-orthogonal decomposition

v= v · êrêr + w,

where w is the remainder. By orthogonality,

min
∇·m=0

 
D

|m + v|2 = min
∇·m=0

 
D

|m + w|2 +
 

D
|v · êrêr|2

= Q(uη − gêr) +
ˆ 1

0
|uη · êr − g|2r dr,

as · yields functions of r alone. Since

g(r) = 1
2π

ˆ 2π

0

[
1
r

ˆ r

0
ρf dρ

]
dθ = 1

2πr

ˆ
Dr

f = F(r),

the result is proved. �

We proceed to construct pairs (u, η) which are not necessarily admissible for the minimization
in (3.2), but nevertheless do a good job at achieving u · ∇η ≈ f in H−1(D) for a given f ∈ L2(D). We
continue to use the functions F = (1/2πr)

´
Dr

f and g = (1/r)
´ r

0 ρf from lemma 3.1. Given n ∈N,
define the streamfunction

ψ(x) = rg(r, θ )Ψ (θ ) where Ψ (θ ) =
√

2
n

cos(nθ), (3.5)

whose velocity is
u= ∇⊥ψ = −(∂θ gΨ + gΨ ′)êr + rfΨ êθ . (3.6)

Likewise, define the test function
η(x) = −Ψ ′(θ ). (3.7)
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Lemma 3.3. Let f ∈ L2(D). The velocity–test function pair (u, η) in (3.5)–(3.7) satisfiesˆ
D

|∇�−1(u · ∇η − f )|2 dx� 1
n2

ˆ
D

| f |2 + |∇f |2 dx. (3.8)

In particular, we have the estimates

|uη · êr − F| � 1
n

ˆ
Dr

|∇f | dx, (3.9)

||∂r(r∂−1
θ (uη · êr − g))||L1

θ
� 1

n

(ˆ
Dr

| f |
r

+ |∇f | dx + r|| f ||L1
θ
+ r2||∇f ||L1

θ

)
(3.10)

and ||uη · êθ ||L1
θ
� r

n
|| f ||L1

θ
(3.11)

for a.e. r > 0. Furthermore, the streamfunction ψ and velocity u obey

|ψ | � 1
n

ˆ r

0
ρ| f | dρ, |u · êr| �

ˆ r

0

ρ| f |
r

+ ρ|∇f |
n

dρ and |u · êθ | � r
n

| f |, (3.12)

and

|∇u| �
ˆ r

0

nρ| f |
r2 + nρ|∇f |

r
+ ρ|∇∇f |

n
dρ + | f | + r|∇f |, (3.13)

and the test function η obeys

|η| � 1 and |∇η| � n
r

(3.14)

for a.e. θ ∈ [0, 2π ] and r > 0. The constants implicit in these estimates are independent of all parameters.

Proof. We start at the bottom of the claim and work backwards. The estimates in (3.14) are clear
given the formula for η. To prove (3.12) and (3.13), we require the following inequalities involving
g = (1/r)

´ r
0 ρf :

|g| ≤ 1
r

ˆ r

0
ρ| f | dρ, |∂rg| ≤ 1

r2

ˆ r

0
ρ| f | dρ + | f | and |∂θ g| ≤

ˆ r

0
ρ|∇f | dρ (3.15)

and

|∂rθ g| ≤ 1
r

ˆ r

0
ρ|∇f | dρ + r|∇f | and |∂θθ g| ≤ r

ˆ r

0
ρ|∇∇f | dρ +

ˆ r

0
ρ|∇f | dρ. (3.16)

Now by the definitions of ψ and u,

|ψ | � r
n

|g|, |u · êr| � 1
n

|∂θ g| + |g| and |u · êθ | � r
n

| f |,

and (3.12) is proved. Next, compute the gradient

∇u= −∇êr(∂θ gΨ + gΨ ′) − êr ⊗ ∇(∂θ gΨ + gΨ ′) + ∇êθ (rfΨ ) + êθ ⊗ ∇(rfΨ )

= −êθ ⊗ êθ
1
r

(∂θ gΨ + gΨ ′) − êr ⊗ ∇(∂θ gΨ + gΨ ′) − êr ⊗ êθ fΨ + êθ ⊗ ∇(rfΨ ),

where

∇(∂θ gΨ + gΨ ′) = êr(∂rθ gΨ + ∂rgΨ ′) + êθ
1
r

(∂θθ gΨ + 2∂θ gΨ ′ + gΨ ′′)

and
∇(rfΨ ) = êr( f + r∂rf )Ψ + êθ (∂θ fΨ + fΨ ′).

Hence,

|∇u| ≤ 1
r
|∂θ gΨ + gΨ ′)| + |∂rθ gΨ + ∂rgΨ ′| + 1

r
|∂θθ gΨ + 2∂θ gΨ ′ + gΨ ′′|

+ | fΨ | + |( f + r∂rf )Ψ | + |∂θ fΨ + fΨ ′|

� (|g| + |∂θ g|) n
r

+ | f | + |∂rg| +
(

|∂rf | + 1
r
|∂θ f | + 1

r
|∂rθ g| + 1

r2 |∂θθ g|
)

r
n

.

Combined with (3.15) and (3.16), this yields the desired estimates in (3.13).
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It remains to show the first half of the claim. We require the inequalities

||g||L1
θ
≤ 1

r

ˆ
Dr

| f | dx and ||∂rg||L1
θ
≤ 1

r2

ˆ
Dr

| f | dx + || f ||L1
θ

(3.17)

and
||∂θ g||L1

θ
≤
ˆ

Dr

|∇f | dx and ||∂rθ g||L1
θ
≤ 1

r

ˆ
Dr

|∇f | dx + r||∇f ||L1
θ

(3.18)

which follow from (3.15) and (3.16) by integration. Going back to the definitions,

uη − gêr = (∂θ gΨ + gΨ ′)Ψ ′êr − rfΨ Ψ ′êθ − gêr

= (∂θ gΨ Ψ ′ + g((Ψ ′)2 − 1)) êr − rfΨ Ψ ′êθ .

Averaging the êr-component in θ and using that F = g, there follows

|uη · êr − F| = |uη · êr − g| ≤
∣∣∣∣∣
 2π

0
∂θ gΨ Ψ ′

∣∣∣∣∣+
∣∣∣∣∣
 2π

0
g((Ψ ′)2 − 1)

∣∣∣∣∣
� ||∂θ g||L1

θ

1
n

+
∣∣∣∣∣
 2π

0
g((Ψ ′)2 − 1)

∣∣∣∣∣
since |Ψ | � 1/n and |Ψ ′| � 1. Introduce the operator ∂−1

θ defined by

∂−1
θ ϕ(r, θ ) =

ˆ θ

0
ϕ(r, θ ′) − ϕ(r) dθ ′,

and observe that (Ψ ′)2 = 1. Hence,∣∣∣∣∣
 2π

0
g((Ψ ′)2 − 1)

∣∣∣∣∣=
∣∣∣∣∣
 2π

0
∂θ g∂−1

θ (Ψ ′)2

∣∣∣∣∣
� ||∂θ g||L1

θ
||∂−1

θ (Ψ ′)2||L∞
θ

� ||∂θ g||L1
θ

1
n

(3.19)

and (3.9) is proved.
Continuing with (3.10), write that

|∂r(r∂−1
θ (uη · êr − g))| ≤ |∂−1

θ (uη · êr − g)| + |r∂r∂
−1
θ (uη · êr − g)|

= |∂−1
θ [∂θ gΨ Ψ ′ + g((Ψ ′)2 − 1)]| + r|∂r∂

−1
θ [∂θ gΨ Ψ ′ + g((Ψ ′)2 − 1)]|.

Of course,

|∂−1
θ [∂θ gΨ Ψ ′]| � ||∂θ g||L1

θ

1
n

and |∂r∂
−1
θ [gΨ Ψ ′]| � ||∂rθ g||L1

θ

1
n

.

Using the operator ∂−1
θ again, we see that

|∂−1
θ [g((Ψ ′)2 − 1)]| ≤

∣∣∣∣
ˆ θ

0
g((Ψ ′)2 − 1)

∣∣∣∣+
∣∣∣∣∣
ˆ 2π

0
g((Ψ ′)2 − 1)

∣∣∣∣∣
and

|∂r∂
−1
θ [g((Ψ ′)2 − 1)]| ≤

∣∣∣∣
ˆ θ

0
∂rg((Ψ ′)2 − 1)

∣∣∣∣+
∣∣∣∣∣
ˆ 2π

0
∂rg((Ψ ′)2 − 1)

∣∣∣∣∣ .
The last two terms on the right-hand sides above are controlled by the inequality (3.19) and one
just like it with ∂rg in place of g. To deal with the first two terms, we require the inequalities∥∥∥∥

ˆ θ

0
g ((Ψ ′)2 − 1)

∥∥∥∥
L1

θ

� (||g||L1
θ
+ ||∂θ g||L1

θ
)
1
n

(3.20)

and ∥∥∥∥
ˆ θ

0
∂rg ((Ψ ′)2 − 1)

∥∥∥∥
L1

θ

� (||∂rg||L1
θ
+ ||∂rθ g||L1

θ
)
1
n

. (3.21)
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To prove them, divide [0, 2π ) into the disjoint intervals Ij = [2π j/n, 2π (j + 1)/n) indexed by j =
0, . . . , n − 1, and note that (Ψ ′)2 − 1 is 2π/n-periodic and averages to zero over each Ij. Choosing
k such that θ ∈ Ik, write that

∣∣∣∣
ˆ θ

0
g((Ψ ′)2 − 1)

∣∣∣∣≤
k−1∑
j=0

∣∣∣∣∣
ˆ

Ij

(
g −

 
Ij

g

)
((Ψ ′)2 − 1)

∣∣∣∣∣+
∣∣∣∣
ˆ θ

2πk/n
g((Ψ ′)2 − 1)

∣∣∣∣

�
k−1∑
j=0

ˆ
Ij

∣∣∣∣∣g −
 

Ij

g

∣∣∣∣∣+
ˆ θ

2πk/n
|g| � ||∂θ g||L1

θ

1
n

+ ||g||L1
θ (Ik).

Remembering that k = k(θ ) and integrating this bound over θ ∈ [0, 2π ) yields (3.20). The proof of
the inequality from (3.21) is much the same. Altogether, we have shown that

||∂−1
θ [∂θ gΨ Ψ ′ + g((Ψ ′)2 − 1)]||L1

θ
� (||g||L1

θ
+ ||∂θ g||L1

θ
)
1
n

(3.22)

and

||∂r∂
−1
θ [∂θ gΨ Ψ ′ + g((Ψ ′)2 − 1)]||L1

θ
� (||∂rg||L1

θ
+ ||∂rθ g||L1

θ
)
1
n

(3.23)

which when combined with the inequalities in (3.17) and (3.18) lead to the estimate (3.10) in the
claim. The estimate (3.11) follows from what we have already proved (namely, (3.12) and (3.14)).

Finally, we prove (3.8). By lemma 3.1 and the remark appearing immediately after,

ˆ
D

|∇�−1(u · ∇η − f )|2 �
ˆ 1

0
|uη · êr − F|2r dr +

ˆ
D

|∂r (r∂−1
θ (uη · êr − g))|2 +

ˆ
D

|uη · êθ |2.

Applying (3.9)–(3.11) along with Jensen’s inequality gives the bound

ˆ 1

0
|uη · êr − F|2r dr �

ˆ 1

0

(
r2

n2

ˆ
Dr

|∇f |2
)

r dr � 1
n2

ˆ
D

|∇f |2,

as well as the bounds
ˆ

D
|∂r(r∂−1

θ (uη · êr − g))|2

�
ˆ 1

0

1
n2

(ˆ
Dr

| f |2 + r2
ˆ

Dr

|∇f |2 + r2|| f ||2L2
θ

+ r4||∇f ||2L2
θ

)
r dr

� 1
n2

ˆ
D

| f |2 + |∇f |2

and
ˆ

D
|uη · êθ |2 �

ˆ 1

0

(
r2

n2 || f ||2L2
θ

)
r dr � 1

n2

ˆ
D

| f |2.

The proof is complete. �

As a quick application of this last result, we show that the velocities in (3.6) have finite
enstrophy if f is sufficiently regular. By the pointwise estimate from (3.13) and Jensen’s inequality,

|∇u|2 �
ˆ r

0

[
n2ρ2

r3 | f |2 + n2ρ2

r
|∇f |2 + ρ2r

n2 |∇∇f |2
]

dρ + | f |2 + r2|∇f |2.
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Hence, ˆ
D

|∇u|2 dx

�
ˆ 2π

0

ˆ
0≤ρ≤r≤1

[
n2ρ2

r2 | f (ρ, θ )|2 + n2ρ2|∇f (ρ, θ )|2 + ρ2r2

n2 |∇∇f (ρ, θ )|2
]

dr dρ dθ

+
ˆ

D
| f |2 + r2|∇f |2 dx

�
ˆ

D
n2| f |2 + n2r|∇f |2 + r

n2 |∇∇f |2 dx.

4. Unsteady branching flows for enstrophy-constrained cooling
Section 3 considered the steady optimal cooling problem and explained how to find ‘approximate
H−1-solutions’ to the corresponding advection equation u · ∇η = f . We now return to the original
unsteady setting of theorem 1.1 to prove our upper bound on

min
u(x,t)

〈|∇u|2〉=Pe2

u=0 at ∂D

〈
|∇T|2

〉

for a general source f (x, t). We do so by constructing a family of well-chosen branching flows {uPe}
whose temperatures {TPe} satisfy

〈
|∇TPe|2

〉
�
〈
| f |2 + |∇f |2 + |∇∇f |2

〉 log4/3 Pe
Pe2/3 with

〈
|∇uPe|2

〉
= Pe2.

Section 4a starts by defining a general family of convection roll-based branching flows (see the
bottom row of figure 1). Section 4b estimates their cooling and §4c optimizes over their free
parameters. The upper bound from theorem 1.1 is finally proved at the end of this section.

Picking up where we left off in §3, recall the upper bound

min
u(x,t)

〈|∇u|2〉=Pe2

u=0 at ∂D

〈
|∇T|2

〉
≤ min

u(x,t),η(x,t)
u=0,η=0 at ∂D

〈
|∇�−1[(∂t + u · ∇)η − f ]|2 +

〈|∇u|2〉
Pe2 |∇η|2

〉
,

where on the right-hand side the magnitude of u is unconstrained. This bound follows from
proposition 2.1 and the change of variables (u, η) → (λPeu, λ−1

Pe η) with λPe = Pe/
√

〈|∇u|2〉, as
explained in §3a. A special case occurs for a steady test function η(x): the temperature field T
associated with λPeu obeys〈

|∇T|2
〉
≤
〈
|∇�−1[u · ∇η − f ]|2

〉
+ 1

Pe2

〈
|∇u|2

〉  
D

|∇η|2

for all η ∈ H1
0(D). We proceed to define our branching flows.

(a) Branching flows
By a branching flow u(x, t) and a corresponding (steady) test function η(x), we mean a divergence-
free velocity field

u= ∇⊥ψ with ψ(x, t) =
n∑

k=1

χk(r)ψk(x, t),

and the scalar function

η(x) =
n∑

k=1

χk(r)ηk(x),
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where {χk}, {ψk} and {ηk} are as follows. Let

F(r, t) = 1
2πr

ˆ
Dr

f (x, t) dx and g(r, θ , t) =
 r

0
ρf (ρ, θ , t) dρ, (4.1)

and set

ψk = rgΨk(θ ), ηk = −Ψ ′
k(θ ) and Ψk(θ ) =

√
2lk cos

(
θ

lk

)
for k = 1, . . . , n.

The parameters {l−1
k } ⊂N and n ∈N are free, and will eventually be optimized when it comes time

to prove theorem 1.1. The functions {χk} are described in the paragraph after the next.
To help organize the discussion, we always assume that

l1 > l2 > · · · > ln. (4.2)

We label the largest and smallest scales as

lbulk = l1 and lbl = ln,

noting that they occur in the bulk of the disc and in a boundary layer near r = 1, respectively. The
individual velocities

uk = ∇⊥ψk = −(∂θ gΨk + gΨ ′
k) êr + rfΨkêθ

are simply unsteady versions of the ones occurring in our prior discussion of roll-like flows, and
so are governed by the estimates in lemma 3.3. The individual test functions

ηk = −Ψ ′
k

are also like those in the lemma.
The new ingredients are the functions {χk} which we use to interpolate between the individual

building blocks listed above. We use a family of smooth and compactly supported ‘cutoff
functions’ defined via a choice of points {rk}, satisfying

1
2

< r1 < r2 < · · · < rn < 1 (4.3)

with

r1 = rbulk and rn = rbl.

These functions can be quite general, but to fix ideas we let

supp χ1 ⊂ (0, r2), supp χn ⊂ (rn−1, 1)

and supp χk ⊂ (rk−1, rk+1) for k = 2, . . . , n − 1.
(4.4)

We also let
n∑

k=1

(χk(r))2 = 1 ∀ r ∈ (0, rbl), (4.5)

and take

χkχk′ �= 0 ⇐⇒ |k − k′| ≤ 1. (4.6)

This last condition simplifies the calculation of products such as uη.
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To specify our cutoff functions further, introduce the lengths

δbulk = 1 − rbulk, δbl = 1 − rbl and δk = rk+1 − rk for k = 1, . . . , n − 1

and, following the pattern, call

δn = δbl.

Let

|χk| ∨ |χk+1| � 1, |χ ′
k| ∨ |χ ′

k+1| �
1
δk

and |χ ′′
k | ∨ |χ ′′

k+1| �
1

δ2
k

∀ r ∈ (rk, rk+1), (4.7)

for k = 1, . . . , n − 1, and let

|χn| � 1, |χ ′
n| � 1

δbl
and |χ ′′

n | � 1

δ2
bl

∀ r ∈ (rbl, 1). (4.8)

The constants implicit in these hypotheses are independent of all parameters.
The reader looking for specific cutoff functions should consult [43, §5.1]. There, we describe

a similar branching flow in a fluid layer, the z-coordinate of which is analogous to r. The exact
choice of these functions does not affect the scaling of our bounds in Pe, but does affect their
prefactors.

(b) Upper bounds on branching flows
Having defined our branching flows, we proceed to estimate their cooling using the results of §2.
We write the estimate in terms of a continuously varying version of the parameters {lk} and {rk},
given by

�(r) = lk
rk+1 − r
rk+1 − rk

+ lk+1
r − rk

rk+1 − rk
for r ∈ [rk, rk+1] (4.9)

and k = 1, . . . , n − 1. By construction, �(rk) = lk for each k. Recall δk = rk+1 − rk.

Proposition 4.1. Let {u} be a family of branching flows as defined in §4a, whose parameters {lk}n
k=1

and {rk}n
k=1 obey

|lk+1 − lk| ∼ lk+1 ∼ lk and δk+1 ∼ δk for k = 1, . . . , n − 1 (4.10)

and

lk � δk for k = 1, . . . , n (4.11)

with fixed numerical prefactors. Define the rescaled velocities

λPeu with λPe = Pe√〈|∇u|2〉 ,
and let their temperature fields TPe solve{

∂tTPe + λPeu · ∇TPe = �TPe + f in D

TPe = 0 at ∂D

weakly with arbitrary L2-initial data. The estimate

〈
|∇TPe|2

〉
� C0( f )

⎡
⎣l2bulk +

ˆ rbl

rbulk

(�′(r))2 dr + δbl + 1
Pe2

(
1

l2bulk

+
ˆ rbl

rbulk

1
(�(r))2 dr + δbl

l2bl

)2
⎤
⎦

holds with

C0( f ) =
〈
| f |2 + |∇f |2 + |∇∇f |2

〉
and a numerical prefactor depending only on the ones from (4.10) to (4.11).
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By proposition 2.1, we already know that the rescaled velocities λPeu achieve〈
|∇TPe|2

〉
≤
〈
|∇�−1[u · ∇η − f ]|2

〉
+ 1

Pe2

〈
|∇u|2

〉  
D

|∇η|2 ∀ η ∈ H1
0(D).

To prove proposition 4.1, we shall plug in the test functions η from §4a, and estimate the ensuing
mess of terms. We handle the ‘advection term’ involving u · ∇η − f in §4bi and the ‘enstrophy
term’ involving 〈|∇u|2〉 in §4bii.

(i ) The advection term

Averaging the result of lemma 3.1 shows that〈
|∇�−1(u · ∇η − f )|2

〉
≤
〈
|u · êrη − F|2

〉
+ 〈

Q(uη − gêr)
〉
,

where for the reader’s convenience we repeat the definition of the quadratic form:

Q(v) = min
ϕ∈H1(D)

 
D

| − 1
r
∂θϕ + v · êr − v · êr|2 + |∂rϕ + v · êθ |2 dx. (4.12)

We bound the first average in lemma 4.2 and the second one in lemma 4.3.

Lemma 4.2. Every branching flow–test function pair (u, η) defined in §4a satisfies〈
|u · êrη − F|2

〉
� l2bulk

〈
|∇f |2

〉
+ δbl

〈
| f |2

〉
.

Proof. It suffices to prove the steady analogue of the result at a.e. time, i.e.
 

D
|u · êrη − F|2 � l2bulk

 
D

|∇f |2 + δbl

 
D

| f |2.

From the definitions of u and η and our assumption (4.6),

uη · êr =
∑

|k−k′|≤1

χkχk′ukηk′ · êr

so that ∣∣∣∣∣uη · êr −
n∑

k=1

χ2
k F

∣∣∣∣∣≤
n∑

k=1

χ2
k |ukηk · êr − F| +

∑
|k−k′|≤1

k �=k′

|χkχk′ ||ukηk′ · êr|.

The first term is handled by (3.9), which shows that

|ukηk · êr − F| � lk

ˆ
Dr

|∇f |.

To control the second term, write using the L2-orthogonality of Ψ ′
k(θ ) and Ψ ′

k′ (θ ) that

|ukηk′ · êr| =
∣∣∣∣∣
 2π

0
∂θ gΨkΨ

′
k′ + gΨ ′

kΨ
′
k′

∣∣∣∣∣
≤
∣∣∣∣∣
 2π

0
∂θ gΨkΨ

′
k′

∣∣∣∣∣+
∣∣∣∣∣
 2π

0
∂θ g∂−1

θ (Ψ ′
kΨ

′
k′ )

∣∣∣∣∣
� ||∂θ g||L1

θ
(lk ∨ lk′ ) � (lk ∨ lk′ )

ˆ
Dr

|∇f |

where in the last step we used (3.18). Adding up,∣∣∣∣∣uη · êr −
n∑

k=1

χ2
k F

∣∣∣∣∣�
∑

|k−k′|≤1

|χkχk′ |(lk ∨ lk′ )
ˆ

Dr

|∇f |

for r > 0.
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Continuing, we have by the triangle and Jensen’s inequality that

ˆ
D

|uη · êr − F|2 dx�
ˆ 1

0
|uη · êr −

n∑
k=1

χ2
k F|2r dr +

ˆ 1

0

∣∣∣∣∣1 −
n∑

k=1

χ2
k

∣∣∣∣∣
2

|F|2r dr

�
∑

|k−k′|≤1

ˆ 1

0
|χkχk′ |2(lk ∨ lk′ )2r3

ˆ
Dr

|∇f |2 +
ˆ 1

0

∣∣∣∣∣1 −
n∑

k=1

χ2
k

∣∣∣∣∣
2

|F|2r

� l2bulk

ˆ
D

|∇f |2 + δbl

 1

rbl

|F|2r.

Recalling the definition of F = (1/2πr)
´

Dr
f from (4.1), we use Jensen’s inequality once more to get

that
 1

rbl

|F|2r �
 1

rbl

[ˆ
Dr

| f |2
]

r �
ˆ

D
| f |2.

The result follows. �

Lemma 4.3. Under the assumptions in (4.10), the branching flow—test function pairs (u, η) from §4a
satisfy

〈
Q(uη − gêr)

〉
�
(

l2bulk +
ˆ rbl

rbulk

(�′(r))2 dr + l2bl
δbl

) 〈
| f |2 + |∇f |2

〉
+ δbl

〈
| f |2

〉

with a constant depending only on those in (4.10).

Proof. Again we argue a.e. in time. Begin with the bound

Q(uη − gêr) � Q(uη −
n∑

k=1

χ2
k gêr) +

ˆ
D

∣∣∣∣∣
( n∑

k=1

χ2
k − 1

)
g

∣∣∣∣∣
2

� Q(uη −
n∑

k=1

χ2
k gêr) + δbl

ˆ
D

| f |2,

where in the first step we applied the definition (4.12) of the quadratic form Q, and in the second
step we used the formula g = ffl r

0 ρf from (4.1) along with Jensen’s inequality and (4.5). Calling

v= uη −
n∑

k=1

χ2
k gêr

and using

ϕ = r∂−1
θ (v · êr) = r

ˆ θ

0
v · êr(r, θ ′) − v · êr(r) dθ ′

as in remark 3.2, we deduce that

Q(v) ≤
 

D
|∂r(r∂−1

θ (v · êr)) + v · êθ |2

�
 

D
|∂−1

θ (v · êr)|2 +
 

D
r2|∂r∂

−1
θ (v · êr)|2 +

 
D

|v · êθ |2.

We estimate these integrals one-by-one.
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For the first, note using the definitions from §4a and in particular (4.6) that

∂−1
θ (v · êr) = ∂−1

θ (uη · êr −
n∑

k=1

χ2
k g) =

∑
|k−k′|≤1

χkχk′∂−1
θ [ukηk′ · êr − δkk′ g]

=
∑

|k−k′|≤1

χkχk′∂−1
θ [∂θ gΨkΨ

′
k′ + g(Ψ ′

kΨ
′
k′ − δkk′ )]

where δkk′ is the Kronecker delta function (one if k = k′, zero otherwise). Arguing as in the proof
of lemma 3.3—see the paragraph leading up to (3.22)—we write that

||∂−1
θ [∂θ gΨkΨ

′
k′ + g(Ψ ′

kΨ
′
k′ − δkk′ )]||L1

θ
� (lk ∨ lk′ )(||g||L1

θ
+ ||∂θ g||L1

θ
)

� (lk ∨ lk′ )
(

1
r

ˆ
Dr

| f | +
ˆ

Dr

|∇f |
)

(4.13)

where in the last step we used (3.17) and (3.18). Squaring and integrating, there follows

ˆ
D

|∂−1
θ (v · êr)|2 �

∑
|k−k′|≤1

ˆ 1

0
|χkχk′ |2(lk ∨ lk′ )2

(ˆ
Dr

| f |2 + r2
ˆ

Dr

|∇f |2
)

r dr

� l2bulk

ˆ
D

| f |2 + |∇f |2.

Continuing with the second integral, write using the product rule that

∂r∂
−1
θ (v · êr) =

∑
|k−k′|≤1

(χkχk′ )′∂−1
θ [∂θ gΨkΨ

′
k′ + g(Ψ ′

kΨ
′
k′ − δkk′ )]

+
∑

|k−k′|≤1

χkχk′∂r∂
−1
θ [∂θ gΨkΨ

′
k′ + g(Ψ ′

kΨ
′
k′ − δkk′ )]

and note the estimate

||∂r∂
−1
θ [∂θ gΨkΨ

′
k′ + g(Ψ ′

kΨ
′
k′ − δkk′ )]||L1

θ

� (lk ∨ lk′ )(||∂rg||L1
θ
+ ||∂rθ g||L1

θ
)

� (lk ∨ lk′ )
(

1
r2

ˆ
Dr

| f | + || f ||L1
θ
+ 1

r

ˆ
Dr

|∇f | + r||∇f ||L1
θ

)
(4.14)

holds in addition to (4.13). Its proof is essentially the same, and again we point the reader to the
paragraph leading up to (3.23) for the details. Using both (4.13) and (4.14), we get that

ˆ
D

r2|∂r∂
−1
θ (v · êr)|2

�
∑

|k−k′|≤1

ˆ 1

0
|(χkχk′ )′|2(lk ∨ lk′ )2

(
r2
ˆ

Dr

| f |2 + r4
ˆ

Dr

|∇f |2
)

r dr

+
∑

|k−k′|≤1

ˆ 1

0
|χkχk′ |2(lk ∨ lk′ )2

(ˆ
Dr

| f |2 + r2
ˆ

Dr

|∇f |2 + r2|| f ||2L2
θ

+ r4||∇f ||2L2
θ

)
r dr

�
(ˆ rbl

rbulk

(�′(r))2 dr + l2bl
δbl

+ l2bulk

) ˆ
D

| f |2 + |∇f |2.

Note we used the definition of � and our hypotheses that |lk+1 − lk| ∼ lk+1 ∼ lk and δk+1 ∼ δk to
bring in �′.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 A

pr
il 

20
22

 



25

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210040

...............................................................

Finally, since

v · êθ = uη · êθ =
∑

|k−k′|≤1

(χ ′
kψk + χkuk · êθ )χk′ηk′

= −
∑

|k−k′|≤1

χ ′
kχk′ rgΨkΨ

′
k′ + χkχk′ rfΨkΨ

′
k′ ,

we get by a completely analogous argument that
ˆ

D
|v · êθ |2 �

∑
|k−k′|≤1

ˆ 1

0
(|χ ′

kχk′ |2l2kr2||g||2L2
θ

+ |χkχk′ |2l2kr2|| f ||2L2
θ

)r dr

�
(ˆ rbl

rbulk

(�′(r))2 dr + l2bl
δbl

+ l2bulk

)ˆ
D

| f |2.

In the last step, we applied Jensen’s inequality with g = ffl r
0 ρf . Adding up the estimates and

averaging in time proves the result. �

Combining lemmas 4.2 and 4.3 with our hypothesis that lbl � δbl from (4.11) proves the first
part of the estimate in proposition 4.1.

(ii ) The enstrophy term

We now estimate the gradients of u and η.

Lemma 4.4. Under the assumptions in (4.10) and (4.11), the branching flow—test function pairs (u, η)
from §4a satisfy

〈
|∇u|2

〉
�
(

1

l2bulk

+
ˆ rbl

rbulk

1
(�(r))2 dr + δbl

l2bl

) 〈
| f |2 + |∇f |2 + |∇∇f |2

〉

and 〈
|∇η|2

〉
� 1

l2bulk

+
ˆ rbl

rbulk

1
(�(r))2 dr + δbl

l2bl

.

The constants implicit in these estimates depend only on those in (4.10) and (4.11).

Proof. We start with the formulas

u=
n∑

k=1

χkuk + χ ′
kψkêθ

and

∇u=
n∑

k=1

χk∇uk + χ ′
k(uk ⊗ êr − êθ ⊗ u⊥

k ) + χ ′′
k ψkêθ ⊗ êr,

which follow from the definitions in §4a and the fact that u⊥
k = −∇ψk as (·)⊥ is a counterclockwise

rotation by π/2. Looking back at the estimates in (3.12) and (3.13), we see that

|∇u| �
n∑

k=1

|χk||∇uk| + |χ ′
k||uk| + |χ ′′

k ||ψk|

�
n∑

k=1

|χk|
(

A1

rlk
+ A2

lk
+ rlkA3 + | f | + r|∇f |

)

+ |χ ′
k|(A1 + rlkA2 + rlk| f |) + |χ ′′

k |rlkA1

where

A1 = 1
r

ˆ r

0
ρ| f | dρ, A2 = 1

r

ˆ r

0
ρ|∇f | dρ and A3 = 1

r

ˆ r

0
ρ|∇∇f | dρ.
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Squaring and integrating, there follows

ˆ
D

|∇u|2 �
n∑

k=1

ˆ 1

0
|χk|2

(
1

r2l2k
||A1||2L2

θ

+ 1

l2k
||A2||2L2

θ

+ r2l2k ||A3||2L2
θ

+ || f ||2L2
θ

+ r2||∇f ||2L2
θ

)
r dr

+
n∑

k=1

ˆ 1

0
|χ ′

k|2(||A1||2L2
θ

+ r2l2k ||A2||2L2
θ

+ r2l2k || f ||2L2
θ

)r dr

+
n∑

k=1

ˆ 1

0
|χ ′′

k |2r2l2k ||A1||2L2
θ

r dr

:= I1 + I2 + I3.

We bound these three sums in turn, using the estimates

||A1||2L2
θ

≤
 r

0
ρ2|| f ||2L2

θ

dρ �
ˆ

Dr

| f |2 dx, (4.15)

||A2||2L2
θ

≤
 r

0
ρ2||∇f ||2L2

θ

dρ �
ˆ

Dr

|∇f |2 dx (4.16)

and ||A3||2L2
θ

≤
 r

0
ρ2||∇∇f ||2L2

θ

dρ �
ˆ

Dr

|∇∇f |2 dx. (4.17)

Note these follow from the definitions via Jensen’s inequality.
The first sum I1 involves the cutoff functions {χk} directly. Focusing on r ∈ (rbulk, rbl) for now,

which are always larger than 1/2 and no larger than 1, we estimate

n∑
k=1

ˆ rbl

rbulk

|χk|2
(

1

r2l2k
||A1||2L2

θ

+ 1

l2k
||A2||2L2

θ

+ r2l2k ||A3||2L2
θ

)
r dr

�
n∑

k=1

ˆ rbl

rbulk

|χk|2
l2k

(||A1||2L2
θ

+ ||A2||2L2
θ

+ ||A3||2L2
θ

)

�
ˆ rbl

rbulk

1
(�(r))2 dr ·

ˆ
D

| f |2 + |∇f |2 + |∇∇f |2

by our definition of � and the hypothesis that lk+1 ∼ lk. For r ∈ (0, rbulk), which belong only to the
support of χ1, we use Fubini’s theorem and the first parts of (4.15)–(4.17) to write that

ˆ rbulk

0
|χ1|2

(
1

r2l21
||A1||2L2

θ

+ 1

l21
||A2||2L2

θ

+ r2l21||A3||2L2
θ

)
r dr

�
ˆ

0≤ρ≤r≤rbulk

[
ρ2

r2l2bulk

|| f (ρ, ·)||2L2
θ

+ ρ2

l2bulk

||∇f (ρ, ·)||2L2
θ

+ l2bulkρ2

r2 ||∇∇f (ρ, ·)||2L2
θ

]
dρ dr

� 1

l2bulk

ˆ
D

| f |2 + |∇f |2 + |∇∇f |2,

similarly to what we did at the very end of §3. Finally,
ˆ 1

rbl

|χn|2
(

1

r2l2n
||A1||2L2

θ

+ 1

l2n
||A2||2L2

θ

+ r2l2n||A3||2L2
θ

)
r dr

� δbl

l2bl

ˆ
D

| f |2 + |∇f |2 + |∇∇f |2.

The bound
n∑

k=1

ˆ 1

0
|χk|2(|| f ||2L2

θ

+ r2||∇f ||2L2
θ

)r dr �
ˆ

D
| f |2 + |∇f |2
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is clear. Altogether,

I1 �
(

1

l2bulk

+
ˆ rbl

rbulk

1
(�(r))2 dr + δbl

l2bl

)
·
ˆ

D
| f |2 + |∇f |2 + |∇∇f |2.

The second sum I2 involves the derivatives {χ ′
k}. This time, we only need to handle r > rbulk. Using

the second parts of (4.15) and (4.16), we get that

I2 =
n∑

k=1

ˆ 1

rbulk

|χ ′
k|2(||A1||2L2

θ

+ r2l2k ||A2||2L2
θ

+ r2l2k || f ||2L2
θ

)r dr

�
(n−1∑

k=1

ˆ rk+1

rk

1
(δk ∧ δk+1)2 +

ˆ 1

rbl

1

δ2
bl

)
·
ˆ

D
| f |2 + |∇f |2

�
(ˆ rbl

rbulk

1
(�(r))2 dr + δbl

l2bl

)
·
ˆ

D
| f |2 + |∇f |2.

The bounds

1
δk ∧ δk+1

� 1
δk+1

� 1
lk+1

� 1
�(r)

∀ r ∈ (rk, rk+1)

were used to pass between the second and third lines in the estimate above. They hold by our
assumptions that δk ∼ δk+1, lk � δk and lk ∼ lk+1 along with the definition of �.

Finally, we estimate I3 which involves the second derivatives {χ ′′
k }. Again we use (4.15) to write

that

I3 =
n∑

k=1

ˆ 1

rbulk

|χ ′′
k |2r2l2k ||A1||2L2

θ

r dr

�
(n−1∑

k=1

ˆ rk+1

rk

(lk ∨ lk+1)2

(δk ∧ δk+1)4 +
ˆ 1

rbl

l2bl

δ4
bl

)
·
ˆ

D
| f |2

�
(ˆ rbl

rbulk

1
(�(r))2 dr + δbl

l2bl

)
·
ˆ

D
| f |2.

Adding up the estimates on I1, I2 and I3 and averaging in time gives the first part of the claim.
A similar, and much simpler, argument proves the desired bound on ∇η. In particular, by the

definition of η in §4a and the estimates from (3.14), there holds

|∇η| ≤
n∑

k=1

|χk||∇ηk| + |χ ′
k||ηk| �

n∑
k=1

|χk|
1

rlk
+ |χ ′

k|.

Hence,

ˆ
D

|∇η|2 �
n∑

k=1

ˆ 1

0

(
|χk|2

1

r2l2k
+ |χ ′

k|2
)

r dr.

We recognize terms like those from the bound on ∇u, with the difference being that the terms
involving f are now replaced by the number one. The same manipulations apply as before. �

Combining lemma 4.4 with what we proved in §4bi yields the rest of proposition 4.1.
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(c) Optimal branching flows
Finally, we optimize over our branching flows to prove the upper bound in theorem 1.1. Recall
from proposition 4.1 that the (rescaled) velocities λPeu and temperature fields TPe achieve〈

|∇TPe|2
〉
� C0( f ) · M({lk}n

k=1, {rk}n
k=1, n; Pe) and

〈
|∇(λPeu)|2

〉
= Pe2, (4.18)

where
C0 =

〈
| f |2 + |∇f |2 + |∇∇f |2

〉
and

M = l2bulk +
ˆ rbl

rbulk

(�′(r))2 dr + δbl + 1
Pe2

[
1

l2bulk

+
ˆ rbl

rbulk

1
(�(r))2 dr + δbl

l2bl

]2

.

We find it useful to work directly with the continuous ‘scale function’ �(r) introduced in (4.9), and
to wait to enforce the interpolation rule

lk = �(rk) for k = 1, . . . , n (4.19)

until it comes time to select the parameters {lk}n
k=1 and {rk}n

k=1.
Recall l1 = lbulk, ln = lbl, r1 = rbulk and rn = rbl, and consider the one-dimensional variational

problem

min
�(r)

�(rbulk)=lbulk
�(rbl)=lbl

ˆ rbl

rbulk

(�′)2 dr + 1
Pe2

(ˆ rbl

rbulk

1
�2 dr

)2

suggested by minimizing M. Its solution obeys

(�′)2 ∼ 1
Pe2

(ˆ rbl

rbulk

1
�2 dr

)
1
�2 .

Setting �(1) = 0 and integrating yields

�(r) ∼ 1
Pe1/2

(ˆ rbl

rbulk

1
�2 dr

)1/4 √
1 − r. (4.20)

Put another way,
�(r) = c(Pe)

√
1 − r.

The constant c(Pe) and the parameters rbulk, rbl, lbulk and lbl must be determined. For c, note that
ˆ rbl

rbulk

1
�2 dr = 1

c2

ˆ rbl

rbulk

dr
1 − r

= 1
c2 log

(
δbulk

δbl

)

where δbulk = 1 − rbulk and δbl = 1 − rbl. Setting this into (4.20) and rearranging, we get that

c(Pe) ∼ 1
Pe1/3 log1/6

(
δbulk

δbl

)
.

By (4.19),

lbulk = �(rbulk) ∼ δ
1/2
bulk

Pe1/3 log1/6
(

δbulk

δbl

)
and lbl = �(rbl) ∼ δ

1/2
bl

Pe1/3 log1/6
(

δbulk

δbl

)
.

All that remains is to choose δbulk and δbl. Note the quantity M from (4.18) satisfies

M � l2bulk + 1
Pe2

1

l4bulk

+ δbl + 1
Pe2

δ2
bl

l4bl

+ 1
Pe2/3 log4/3

(
δbulk

δbl

)

� δbl + 1
Pe2/3

⎡
⎣ 1

δ2
bulk log2/3

(
δbulk
δbl

) + log4/3
(

δbulk

δbl

)⎤⎦ .
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Minimizing with

δbulk ∼ 1 and δbl ∼ log1/3 Pe
Pe2/3

yields the desired bound 〈
|∇TPe|2

〉
≤ C′( f ) · log4/3 Pe

Pe2/3 , (4.21)

where C′ � 〈| f |2 + |∇f |2 + |∇∇f |2〉. Regarding its scaling in Pe, this is the best upper bound
achievable by a roll-based branching flow.

To complete the proof of theorem 1.1, we only need verify that our choices for {lk}n
k=1, {rk}n

k=1
and n are actually admissible in our analysis of branching flows. We do this now.

Proof of the upper bound from theorem 1.1. To be absolutely clear, we fix

�(r) = log1/6 Pe
Pe1/3

√
1 − r, r ∈

(
1
2

, 1
)

(4.22)

for the remainder of the proof, and let n ∈N satisfy

n ≤ log2
Pe1/3

log1/6 Pe
≤ n + 1.

Implicit in this is the requirement that 2 ≤ Pe1/3/ log1/6 Pe. Define the scales {lk}n
k=1 by taking

lk = lbulk

2k−1
for k = 1, . . . , n

where l−1
bulk ∈N obeys

2
Pe1/3

log1/6 Pe
≤ 1

lbulk
≤ 4

Pe1/3

log1/6 Pe
.

For the points {rk}n
k=1, enforce the interpolation rule

lk = �(rk),

which says here that

lbulk

2k−1
= log1/6 Pe

Pe1/3

√
1 − rk for k = 1, . . . , n. (4.23)

At this point, all available choices have been made and we can go ahead with our proof of the
desired bound (4.21). Actually, we already did most of the heavy lifting in the paragraphs above,
where we explained how these choices follow from optimizing the result of proposition 4.1. All
that remains is to verify the hypotheses from §4a and proposition 4.1.

First, we check the assumptions of §4a. Clearly, lk decreases with increasing k per (4.2). And as
r �→ �(r) is strictly decreasing, the points rk increase with increasing k. Taking k = 1 in (4.23), we
get that

1 = 1
lbulk

log1/6 Pe
Pe1/3

√
1 − r1 ≥ 2

√
1 − r1

by our choice of lbulk. So, r1 ≥ 3/4 > 1/2 as per (4.3). We have shown that our choices for {lk}, {rk}
and n constitute a viable branching flow.

Next, we check the hypotheses of proposition 4.1. Its first one (4.10) requires that |lk+1 − lk| ∼
lk+1 ∼ lk and δk+1 ∼ δk with fixed numerical constants. The former holds by the dyadic nature
of lk. For the latter, introduce the inverse � �→ r(�), which is strictly decreasing, and note that
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δk = rk+1 − rk obeys

δk =
ˆ lk

lk+1

|r′(�)| d�.

It suffices to check that |r′(�k)| ∼ |r′(�k+1)|. Differentiating (4.22) implicitly and rearranging gives

r′(�) = −2
Pe1/3

log1/6 Pe

√
1 − r. (4.24)

One sees from (4.23) that 1 − rk ∼ 1 − rk+1. Hence, (4.10) is proved.
Finally, we verify the second hypothesis (4.11) of proposition 4.1, which is that lk � δk for each

k. Since δk = rk+1 − rk and lk ∼ |lk+1 − lk|, we must show that

1 �
∣∣∣∣ rk+1 − rk

lk+1 − lk

∣∣∣∣ .
Referring again to r(�), it suffices to check that 1 � |r′(�)| for � ∈ (l1, ln). Evidently by (4.24),

|r′(�)| � Pe1/3

log1/6 Pe

√
1 − r ≥ Pe1/3

log1/6 Pe

√
1 − rn ∼ 1.

In the last step we used (4.23) with k = n. That lbl ∼ δbl is clear. Theorem 1.1 is proved. �

5. Unsteady roll-like flows for energy-constrained cooling
We close by proving the upper bound on energy-constrained cooling from the introduction, by
estimating the mean-square temperature gradient of a well-chosen family of convection roll-like
flows (see the middle row of figure 1). It is an open challenge to decide whether this bound is
sharp in its scaling with respect to Pe, in the advective limit Pe → ∞. In particular, we note the
significant gap between the lower bound in proposition 2.6 and the upper bound achieved below.

Proposition 5.1. Let f (x, t) satisfy

lim
τ→∞

1√
τ

ˆ τ

0
e−λ1((τ−t)∧t)|| f (·, t)||L2(D) dt = 0 and

〈
| f |2 + |∇f |2

〉
< ∞.

There exists a fixed, numerical constant C′ > 0 such that

min
u(x,t)

〈|u|2〉=Pe2

u=0 at ∂D

〈
|∇T|2

〉
≤ C′

Pe
·
〈
| f |2 + |∇f |2

〉

whenever Pe ≥ 1. The same bound holds using no-penetration conditions u · n̂= 0 in place of the no-slip
ones u= 0 at ∂D.

Proof. Pure convection roll-like flows occur as the simplest case of our branching flows from
§4a, with n = 1 and using only l1 = lbulk and δ1 = δbl. The rescaled velocities

λPeu with λPe = Pe√〈|u|2〉
generate temperature fields TPe satisfying

〈
|∇TPe|2

〉
� C0( f ) ·

[
l2bulk + δbl + 1

Pe2

(
1

l2bulk

+ δbl

l2bulk

)]

so long as lbulk � δbl, where now

C0 =
〈
| f |2 + |∇f |2

〉
.

The proof of this is contained in that of proposition 4.1, once one notes that the un-scaled velocities
from §4a obey 〈

|u|2
〉
� 1.
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To see this write
u= χ1u1 + χ ′

1ψ1êθ

in the case n = 1, and use the definitions to get that

|u| � 1 + lbulk

δbl
� 1.

(The proof for n > 1 is the same, but we leave it to the reader as it is not needed here.) The
dependence of C0 on f comes from lemmas 4.2 and 4.3 and not, in this case, from lemma 4.4.
Optimizing gives

δbl ∼ lbulk ∼ 1
Pe1/2 ,

and this proves the result. �
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