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Abstract

We study the concentrated NLS on R”, with power non-linearities, driven by the
fractional Laplacian, (—A)*, s > 7. We construct the solitary waves explicitly, in
an optimal range of the parameters, so that they belong to the natural energy space
H*(R™). Next, we provide a complete classification of their spectral stability. Finally,
we show that the waves are non-degenerate and consequently orbitally stable, when-
ever they are spectrally stable. Incidentally, our construction shows that the soliton
profiles for the concentrated NLS are in fact exact minimizers of the Sobolev embed-
ding H*(R") — L°°(R"), which provides an alternative calculation and justification
of the sharp constants in these inequalities.
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1 Introduction

The (focusing) nonlinear Schrédinger equation, with generalized power nonlinearity

iuy + Au+ |u*u=0,(x)c RxR" (1.1
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is a basic model in theoretical physics and applied mathematics. Examples of such
physical applications can be found in fractional quantum mechanics and Lévy path
integrals [19]. Other applications arise in water waves theory and other engineering
models.

Equation (1.1) has been studied extensively in the last fifty years, in particular with
regards to the well-posedness of the Cauchy problem and the stability of its solitary
waves. The well-posedness theory is classical by now, [11] states that local well-
posedness holds for any o > 0, whenever the data ug € H*(R"), s > 0. The global
well-posedness results rely upon the conservation law, which state that the following
quantities, namely the mass M (u) and the energy E(u), are conserved

M(u) = / |u(t,x)|2dx = const
Rn

1
E(u) = 5/ [Vu(t, x)|>dx — / lu(t, x)|>°t2dx = const.
Rn n

204+ 2

As such, initial data ug € H'(R") yields global solutions whenever the problem is
L? sub-critical, i.e. for o < %, while for o > %, some initial data gives rise to finite
time blow-ups. Interestingly, the ground states for (1.1) are stable exactly in the L?
sub-critical range 0 < %, while they are unstable in the supercritical regime o > %
In the L2 critical case, 0 = %, the Eq. (1.1) exhibits an additional symmetry, the so-
called quasi-conformal invariance, which allows one to find special self-similar type
solutions. Thus blow-up also occurs in the critical case.

In this work, we analyze a related model, the focusing non-linear Schrédinger
equation with concentrated non-linearity. As our dispersive models will be driven
by fractional Laplacians, let us introduce the proper framework. We set the Fourier

transform and its inverse by the formulas

fe&) = /R" F)e ¥ Edyx; f(x) = /l;" FfE)e* ixd ge.

In that case, the Laplacian is given as a Fourier multiplier (on the space of Schwartz
functions S) via (—A) f = 4n?|&|? f (¢). More generally, forall s > 0

(=) f = @rlED™ [ (©).
Now, the focusing NLS with concentrated non-linearity is the following

{mnﬂeﬂf—mW%w,mweRxR". (1.2)

u(0, x) = ug(x)

Our definition of a solution is as follows: a continuous in x function u is a weak
solution of (1.2), if it satisfies

1
i ((u(t, ), Y (2, ) = (uo, ¥ (0, ) —/0 (u(z, ), Ye(z, -))dT>
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t t
= f (=) 2u(r, ), (=AY (x, )dT — f Ju(z, 0)[*7 u(x, 00y (z, 0)d=
0 0
for all test functions . For the case of the standard Laplacian, i.e. s = 1, the Eq.
(1.2) has been used to model resonant tunneling, [14], the dynamics of mixed states,
[20], quantum turbulence, [9] and the generation of weakly bounded states close to
the instability, [23].

The fractional Laplacian, perturbed by a delta potential, together with its self-adjoint
extensions and various applications, has recently been considered in [10]. In the case
of one spatial dimension, » = 1 and s > % , the local well-posedness as well as the
conservation of mass and energy

M () =/ lu(t, x)|?dx = const. (1.3)
Rn

lu(t, 0)>°*? = const. (1.4)

Ew) = 5=l — —

T2 L2 26 42
was recently established in [10]. Even though the results in [10] are stated for the one
dimensional case only, it seems plausible that they can be extended in any dimension
nand s > 5 using similar techniques. It is important to note that, since our interest is
in continuous in x functions, the natural spaces for well-posedness, in the scale of the
Sobolev spaces, should be H* (R"), s > % Another reason why this is, in our opinion,
a more natural class of problems to consider, is that we would like the waves to belong
to the energy space H*(R") as dictated by the conservation of E (u). As we shall see
below, the solitary waves are in this space only for s > 7.

It has to be noted, however, that it is certainly possible (and it is in fact considerably
more challenging, the further one is from the threshold s = %) to consider (1.2) in
case s < % This has been addressed, at least in low dimensional situations, in the
recent papers, [3—7]. Regarding analysis of blow-up solutions for the concentrated
NLS (although not necessarily in the case of interest s > %), this was carried out
recently in [5].

Our main interest in the model (1.2) is to investigate its solitary waves and their
stability. More specifically, we consider solutions in the form u = ¢/® ¢, where ¢ is
real-valued. Such solutions satisfy the profile equation

(—=A)’¢ + wp — [$(0)*7 $(0)8) = 0. (1.5)

This is understood in the weak sense described above. We take the opportunity to note
that in the cases considered herein, one cannot expect the positivity of ¢, as in the
classical case. This is why we keep the absolute value in (1.5).

Regarding the physical modeling which necessitates the fractional differential oper-
ators and the delta function in the non-linearity, we encourage interested reader to
consult the appendix of [12] and also [13]. Note that both works deal with the case
s € (0,1). We believe that our results can motivate further investigation of such
structure for s > 1.
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The question for the stability of these waves, when s = 1, has been considered in
several contexts recently, see [2], [6], [7] for the three dimensional case n = 3 and [1],
for n = 2. Again, some of these works deal with cases mostly outside of the range of
consideration herein, which is s > %

Before we address the construction of the solitons (that is, of (1.5)), and since our
situation is a bit non-standard, we would like to outline the framework for the stability

of the waves.

1.1 Linearized problem for the concentrated NLS

Asis customary, the spectral/linearized stability of the standing waves, i.e. the solutions
of (1.5), guides us in the study of the actual non-linear dynamics, when one starts
close to these solutions'. More specifically, if we linearize around the solitary waves
and ignore quadratic and higher order contributions, we obtain a linear system, whose
spectral picture plays a crucial part in the dynamics. To that end, we take u = €/“ (¢ +
v) and plug it in (1.2). Ignoring any O (v?) term and utilizing (1.5), after setting
v := (Nv, Jv), we obtain

R 0-1 L_ 0 NRv
()= G5 2) () us
where the following fractional Schrodinger operators are introduced

L= (=A) 4w — (20 + D]¢p0)[* 0,
L= (=A) +o—|p0)]* 6.

This formulas are heuristic in the sense that the operators £ are not yet properly
defined, in terms of domains, etc. This is generally not an easy task,> and will be
properly carried in Sect. 2.2. Introducing the operators

S P
7=(1%)e=(5 )

. NRv v . . .
and the assignment N e e (vl ) =: ¢*v, we obtain the following time-
2

independent linearized eigenvalue problem

S

JLV = Av. (1.7)

Since we are interested in stability of waves, it will be appropriate to give a standard
definition of stability as follows.

I And indeed in the understanding of the ranges of o that give global existence viz. a viz blow up, as
discussed above.

2 Although, as it turns out, we shall need to restrict to the case s > %, which will make such definitions in

a sense canonical.
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Definition 1 The wave ¢/ ¢ is said to be spectrally unstable if the eigenvalue prob-
lem (1.7) has a solution (X, v) with iX > O and v £ 0, v € D(L). Otherwise, if (1.7)
has no non-trivial solutions with RA > 0, we say that the wave is spectrally stable.

We say that e/® ¢ is orbitally stable solution of (1.2), if for every € > 0, there
exists § = 8(e), so that whenever |[ug — ¢l gsrr) < 3, then the following statements
hold.

e The solution u of (1.2), in appropriate sense, with initial data ug € H*(R") is
global in H*(R"), i.e. u(t,-) € H*(R").
o sup,.qinfoer [u(t, ) — e TDP0) || ey < €.

The connection between the two main notions of stability, namely spectral and orbital
stability, has been explored extensively in the literature—see for example the excellent
book [15]. Generally speaking, spectral stability is a prerequisite for orbital stability,
and in many cases of interest and under some natural, but not necessarily easy to
check conditions (see Section 5.2.2 in [15]), spectral stability implies orbital stability.
In the case under consideration, the Assumption 5.2.5 a) on p. 136, [15] does not
apply. We provide a direct proof of orbital stability in the cases of spectral stability,
via contradiction argument, by following the original idea of T.E. Benjamin.

We should also point out the reverse connection, namely spectral instability implies
orbital instability. Basic heuristics (or even some more formal arguments) may suggest
that this must be indeed the case. However, in terms of rigorous results, see for example
[18], which states that if there is a positive instability mode present, via a direct ODE
Lyapunov method spectral instability implies orbital instability. As in the stability
case, there is no satisfactory general result that would cover our examples, so we leave
our rigorous conclusions at the level of spectral instability of the waves and we do not
comment further on orbital instability thereof.

1.2 Main results

Before we present our existence result for the singular elliptic problem (1.5), let us
introduce a function G*, which will be a basic building block in our analysis. Namely,
forallA > Oands > 0,

S
5O = GrEE ea

We first state a few results related to the existence of the waves ¢,,,> under some
conditions on the parameters s, w, n, which turn out to be necessary as well. Then,
we discuss the fact that these waves are also minimizers of a Sobolev embedding
inequality and we present its exact constant.

3 Here the subscript  is to emphasis the w dependency of ¢. Whenever such dependence is too important
for the particular discussion, ¢ will be referred to as ¢y,.
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1.2.1 Existence of the waves ¢,

Theorem 1 (Existence standing waves of the concentrated NLS) Let @ > 0,5 > 5
and o > 0. Then, the function ¢, with

) 1 —(I+45) 1
w(E) = - d . —
Pult) </R QrlED> +w S) QrlED> + o

is a solution of (1.5). Alternatively,

_ 9w
(G (0)) 2

Interestingly, the conditions for w and s in Theorem 1 are necessary for the existence
of solutions ¢ € HS(R™) N C(R") of (1.5).

Proposition 1 Let ¢ € H* (R")NC(R") be a weak solution of (1.5). Then, w (s — %) >

0. That is, either > 0,5 > 5 orw < 0,5 < 3.

The proof of Proposition 1 proceeds via the Pohozaev’s identities, see Sect. 2.1 below.

In the process of the variational construction of the waves ¢,, we establish a
non-surprising connection to the problem for the optimal constant in the Sobolev
embedding HS(R") — L°°(R™). More specifically, we establish that G; = Qsl (and
consequently ¢) are H® functions that saturate the Sobolev embedding, with the
optimal Sobolev constant

n_ n . ni s
s2'7 70 (3) sin (50) Dl < D) Fulls + el (18)

We formulate the result in the following proposition.

Proposition 2 The function G is a solution to the Sobolev embedding minimization
problem

I(=A)2ul?, 4 flull? \
in L22 L2 — 2"g3-Ir <E> sin (E> .
ueS:u#0 ||l,t||LOC 2 2s

Next, we turn our attention towards the stability results. We first state spectral stabil-
ity/instability result, followed by orbital stability statements.

1.2.2 Stability characterization of the waves ¢,

Theorem2 Letn > 1,5 > % and w > 0. Then, the waves &' ¢ are spectrally stable
if and only if

S
O0<o<——1.
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That is, the waves are stable for all 0 < o < 2}—15 — 1 and unstable, when o > 2’1—5 — 1.

Moreover, the instability is due to a presence of a single and simple real mode in the
eigenvalue problem (1.7).

Finally, before we state our orbital stability results, we need to make some natural
assumptions regarding the well-posedness of the Cauchy problem (1.2).

Clearly, the orbital stability is only expected to hold for the case o < % —1,s0
we assume that henceforth. We make the following key assumptions:

(1) The solution map g — u has continuous dependence on initial data property
in a neighborhood of ¢. That is, there exists Ty > 0, so that for all € > 0, there
exists § > 0, so that whenever g : |lg — ¢|lgs < 5, then SUPy ;<7 lug(z,-) —
e Pyl < €.

(2) All initial data, sufficiently close to ¢,in H*norm, generates a global in time
solution u, of (1.2). In addition, the L?-norm and the Hamiltonian for these
solutions are conserved. That is

Mlug(n)] = M[gl, Elug(1)] = E[g].

First, let us mention that this exact result is already available in the one dimensional
case n = 1, [10]. For dimensions, n > 2, we conjecture that this is also the case. That
is, in parallel with the results for the standard semi-linear Schrodinger equation, we
make the following conjecture—please refer to the definitions of the operator £, and
D(L.) in (2.8) and (2.9) below.

Conjecture1 Forn > 2, s > % ug € D(L.), (1.2) is locally well-posed and the

quantities (1.3), (1.4) are conserved. Moreover, if 0 < 0 < % — 1, the solutions
2 .. . .
are global, whereas for o > <+ — 1, finite time blow-up is possible, at least for some

initial data.

Remark Forthecasen = 1,5 > %, this is exactly the statement in [10].
We are now ready to state our orbital stability results.

Theorem3 Letn > 1, w > 0,5 > %, O<o<Z—1.In addition, assume continuous

dependence on initial data and globality of the solutions close to ¢, as outlined above.
Then, the solitons e'“' ¢, are orbitally stable.

We plan our paper as follows. In Sect. 2, we prove the Pohozaev’s identities, which
in turn imply the necessary conditions for existence of the waves. Then, we discuss a
self-adjoint realization of the operators (—A)® + X — ¢§p for A > 0, ¢ > 0.

In Sect. 3, we first provide a variational construction of the waves ¢,,. The special
relation to the Sobolev embedding H*(R") < L*°(R"),s > 7 is highlighted. The
precise results are stated in the explicit formulas in Proposition 2. Finally, in Sect. 3.4,
we discuss the lower part of the spectrum for operators in the form (—A)® 4+ A — 1.
In the particular case of the linearized operator £, this yields the non-degeneracy of
the waves. In our specific case, this takes the form Ker (L) = {0}, due to the broken
translational symmetry.

In Sect. 4, we start with a short introduction to the instability index count theory in
general, and then we apply it to the spectral stability of the waves ¢,,. We explicitly
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calculate the relevant Vakhitov-Kolokolov quantity (E;lqbw, ¢w), which provides the
stability characterization of the waves described in Theorem 2. Finally, under the
necessary and sufficient condition for spectral stability, (L',:L]d)w, do) < 0, we derive
the coercivity of £ on {¢,}*, which is of course crucial in the proof of the orbital
stability.

2 Preliminaries

We use the standard notations for the L”,1 < p < oo spaces. The Sobolev norms
| - llws.» are given by

1 lysr = 1(=A)2 Fllzr: [ flwsr = I(=A)2 FllLe + [ fllLe. 1 < p < oo,

while the corresponding spaces are the completions of Schwartz functions S in these
norms.

Of particular importance will be the Sobolev embedding, W*?(R") < L4(R"),

forl < p<gqg<o0:s > n(%—ql) Also, recall that for s > %, there is

the embedding4 WP s C[S_%]’V(R”) 0<y <s— %. As is well-known, the

embedding H 3 (R") — L°°(R") fails, but sometimes an useful replacement estimate
is the following: for all § € (0, %), there is Cs, so that

[Allzee <= Cs(Lf Il s + NS 5400 2.0

2.1 Pohozaev’s identities and consequences

We would like to address the question for existence of solutions for the profile Eq.
(1.5). Eventually, we will write them down explicitly, but first, we need to identify
some necessary conditions on the parameters, which turn out to be sufficient as well.
The approach here is classical, even though our problem is certainly not. We build
some Pohozaev’s identities, which proceeds by establishing relations between various
norms of the eventual solution ¢, which are a priori assumed finite. As a consequence,
we find that the parameters must obey certain constraints.

Proposition3 Lets > Oand ¢ € H*(R")NC(R") be a weak solution of (1.5). Then,

2 _
16172 = S—I6 @+ 2.2)
I(=A)2¢)%, = %|¢<0)|2”+2. (2.3)

Proof Testing (1.5) with ¢ itself results in

I(=A)2 912, + wllgl2, — 16O = 0. (2.4)

4 Here {x} = x — [x], where [x] = max{n : n < x}.
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Next, we test (1.5) against x - VW, for a test function W. We obtain, by taking into
account the commutation relation [(—A)%, x - V] = 2s(—A)?, that

(@, x - V(=D W) +25((=A) 3, (~A)3 W) =
—(x- Vo, <—A>Sw>+<2s_—n)<(—A)%¢,(—A>%\P>= ,
= —((=A)I[x - V@], (~A)2 W) + 25 —n){(—=A)2 ¢, (~A) 2 W),

(=A)Z¢, (—A)2[x - VW]

This implies the equality

(=82, (—A)2[x - VE]) + (—A) 2 [x - Vg, (—A)1W) = (25 — n)((—A) ¢, (—~A)2W).
Note that the right-hand side of this expression makes sense for>, W = ¢ whence
(=A)2, (—A)2[x - VW]) = (s — §>||<—A>%¢||2. 2.5)
Also®
(¢, x - V) = —n(p, V) — (x - Vo, V),

which also makes sense for ¥ = ¢, whence
n 2
(P, x - VW) = —Elld)lle- (2.6)

Finally, we claim that (§p, x - VW) = O for each test function W. Indeed, let us
introduce a smooth radial function V : R” — R, which is non-negative, supported on
B := {x € R": ||x|| < 1} and normalized so that fR" V(x)dx = 1. It is well-known
that, in a distribution sense, one can use the approximation N"V (Nx) — §p. That is,
limy—, 0o (N"V(N-), f) = f(0). So,

n
(80,x - VW) = lim N" Z/Rn V(Nx)xj3;W(x)dx
j=1

N—o00

N—o0

lim [—nN”/ V(Nx)\I/(x)dx—N"Jrl/ |x|V/(Nx)\IJ(x)dx:|=0,
R’l Rn

since

9] [e¢]
N /Rn x|V (Nx)dx = /Rn VIV (y)dy = |S"‘1|/0 Vi(p)p"dp = fn/O V(p)p"'dp = —n.

5 One can formally take limits of Wy, : [|¥,, — @]l gs — O.
6 Note that ¢ € H!(R") makes this well-defined.
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Putting (89, x - VW) = 0 together with (2.5), (2.6), implies
(s — E)II(—A) ol — 7||¢||L2 =0. (2.7)

Solving the system of Eqgs. (2.4) and (2.7) results in the relations (2.2) and (2.3). O

An immediate corollary of these results follows from the positivity of the norms in
n

both (2.2) and (2.3). This is given by Proposition 1. Namely, either o > 0,5 > 3
orw < 0,5 < 7. Clearly, the case @ > 0,s > 5 is a more physical situation to
consider—after all, one has the embedding H*(R") — C(R") and hence functions

in the class H*(R") are automatically continuous.

2.2 The self-adjoint operators (—A)* + 1 — ¢&p

In this section, we introduce the necessary self-adjoint extensions of the operators
formally introduced as (—A)* + A — ¢§o. There has been quite a bit of recent work on
the subject, see [1,2,4,7,10], among others. In these papers, various (and sometimes
all) self-adjoint extensions of such objects have been studied, under many different
assumptions on the parameters. As dictated by the results of Proposition 1, we work
under the assumption s > 7. Incidentally, this simplifies matters quite a bit, in the
sense that the self-adjoint extension, which generates the standard quadratic form, is
canonical.

More specifically, for given constants A > 0, ¢ > 0, we introduce the following

skew-symmetric quadratic form

Qu(f, 8) = (V=AY + 1) f, V(=D +1)g) — cf (0)5(0), f, g € D(Q)

with domain D(Q) = H*(R"). Note that since D(Q) C C(R"), the values f(0), g(0)
make sense. In addition, the form Q is bounded from below. This is a consequence of
the Sobolev embedding H*(R") — L*(R"), o > % Indeed, choose « : % <a<s
and estimate via the Sobolev and the Gagliardo-Nirenberg’s inequalities

C
Q(f. ) = call Fllzgs — kall T = call fl7gs — ka(jnfn%p +doall f172)
o

2 2
> Do\l fllys — Mol fII72-

In addition, Q is closed form, as ||f||%1s ~ Q(f, f) + M| f|?, for large enough M.
According to the standard theory for quadratic forms, see Theorem VIIL.15 in [22],
there is an unique self-adjoint operator L., so that

D(Le) € D(Q), De(f.8) =(Lcf.8) VfeDKLe), ge D).

Identifying the exact form of £, may not be an easy task, in general. In our case, this
is not so hard, as the operator has been essentially constructed in previous works, see
[10] for the one dimensional case. We follow their notations and approach. To this
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end, introduce the Green’s function of the operator (—A)® + A, namely the function
G*, so that

(=A) 4+ 1)Gr = 8.

By taking the Fourier transform, we can write the following formula for gg

GiE) —
GO = GrgnE 4

Clearly, since s > %, g& € H*(R") ¢ C(R™). Introduce the domain of the operator
L. as

D(L) = (¥ € HHR") : ¢ = g +cy(0)GF, g € H¥ (R} C H'(R"). (2.8)
With this domain, its action is defined as
Loy = ((—A)° +A)g. 2.9)

Note that for v € D(L.) and h € H*(R") = D(Q), we have

(Lo h) = (=AY + g, h) = (V(=A) + 2y, V/(=A) + ih) — cy (0)((—A)° + )G, h)
= (V(=A) 4 2y, /(=A) + Ah) — e (0)h(0) = Qe (W, h).

Thus, L. is a closed symmetric operator, with a quadratic form precisely Q. Note that
the role of the constant A in the definition is to ensure that the function G} has no
singularity at £ = 0. We now need to show that L, is precisely the unique self-adjoint
operator with this property.

Lemma 1 The closed symmetric operator L., with domain given in (2.8) and whose
action is defined in (2.9), is self-adjoint.

Proof For technical reasons, let us first assume the condition
Gy (0) # 1. (2.10)

With that, we work on a different representation on D (L.). More precisely, we would
like to write ¢ purely in terms of g. To this end, we evaluate the identity relating
and g at x = 0. We obtain the equation for v (0)

¥(0) = g(0) + ¢ (0)G; (0).
This equation has a solution, under the condition (2.10),

g(0)

ot @2.11)

v (0) =



136 Page 12 0f 33 A.Ramadan, A. G. Stefanov

One can now write, for ¢ # g+(0),
s

g(0)

2s (N
ey ¢ € HOR)

D(Lo) = (¢ € L*RY) : ¢ = g + cG

which describes D(L,) purely in terms of an arbitrary function g € H> (R").

In order to show that £, = L, it suffices to show that it has a real number in its
resolvent set, see Corollary on p. 137, [21]. To this end, let M >> 1, and we will
show that —M — A € p(L.). Let f € L>(R") is arbitrary and consider

(Le+M =2y = f. (2.12)

This is of course equivalent to the equation ((—A)* + M)g = f, where

_ » 80
V¥ =g+ cGg T=cGh0)

which has the unique solution g = ((—=A)* + M)~! f € H?(R"). Thus, we can
uniquely solve (2.12) as follows

g(0)

o7 — ((— A —1 2s N
gy 6= (A EMT e HE®RY,

Y =g +cG!

In terms of estimates || g|| y2s < Cu | f|l;2 and consequently

Il < llglzz + ClgO)] < ligllas < Cull fliL2-

This shows that all £, with ¢ satisfying (2.10) are self-adjoint. What about ¢, which
fails (2.10)? In this case

1

— ~CH —
=R O=c f e

3

It follows that for every X # A, say > A, we have that cg§ (0) # 1. Thus, following
the scheme described in the previous arguments, the operator Eé, formally defined
through (—A)* + *—c8yis self-adjoint. This means that £, = Ei‘ = 55‘ +(—1)1d,
is self-adjoint as well. O

Note that as a result of the definition of D(L.), we give the following important
formula, for the action on functions ¥ € H*(R"), with ¥/ (0) = 0. Namely,

QW ) = (=) 2Y |12, + AI¥ ]2, (2.13)
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3 Variational construction of the waves ¢, and spectral
consequences

We first construct, in a variational manner, some approximate solutions to the elliptic

profile problem (1.5). This will turn out to be important in our subsequent considera-
tions.

3.1 Variational constructions

Let w, o > 0. For a radial function V : R” — R as before’ and N >> 1, consider
the functional

Jgn (=AY 2ul?dx + a)fR,, u’dx

’

Ly nlu] -
(fR" N”V(Nx)|u|20+2dx) o+1

and the corresponding unconstrained variational problem 7, y[u] — min. Clearly,
I, n[u] > 0, so its optimal value is well-defined

my(w) = inf [, y[ul.
ueS,u#0

Proposition 4 Let s > 7. Then the unconstrained minimization problem
1, ny[u] — min 3.1

has a real-valued solution ¢ € H*(R™) N L, in particular mn (w) > 0. Moreover,
¢nN may be chosen to satisfy

N" / V(Nx)|pn (x)]*°dx = 1.
RVL
Finally, ¢ satisfies the Euler-Lagrange equation
(=AY ¢y + wpy — my(@)N"V(N) gy [* ¢y =0 (3.2)

in distributional sense.

Proof Since ||V | ;1 = 1, we have foru € H*(R") C L,

1
o+
<Nn /R V(Nx)lu(x)|2o+2dx) < llulZ oo gy < CllulZgs gy (3.3)

7 Thatis, V is non-negative, radial, smooth and supported on the unit ball B C R", with fB V(x)dx = 1.
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whence (3.1) is a well-posed variational problem and m y (w) > 0. Next, due to dilation
properties of the functional 7, y, we can assume that the infimum is taken only over
functions with the normalization property

N"/ V(NX)|u(x)|?°2dx = 1.
Rn

Let u; be a minimizing sequence such that fR" N"V(Nx)|ug |2"+2dx = 1 and hence
(1= A)2ull 2 + wlluel72) = my (@).

By weak compactness, we can select a weakly convergent subsequence (which we
assume is just {uy}), ur—u. By the lower semi-continuity of the norms, with respect
to weak convergence

I(=2)2ull?, + ollul?, < limkinf(||<—A)%uk||iz +ollugl,) = my). (34
We now show that {uy} is pre-compact in C(B). Indeed, since s > 5, we have by the
Sobolev embedding that

luklicrrry < Cllugll as, (3.5)
for 0 < y < {s — 3}. Consequently, u; are uniformly Holder-continuous, hence
equicontinuous as elements of C(B). Also, {u;} is a totally bounded by (3.5). By

Arzela-Ascoli, we have that {uy } 2 | is pre-compactin C (B). That is, for a subsequence,
which we again assume it is just uy, we have that uy =p u. It is now clear that

I'=lim N”/ V(N ug(x)|*° dx = N”/ V(N u@x) > 2dx.  (3.6)
R)l RVI

Thus, by (3.4)and (3.6), we conclude that 7, y[u] < my(w). This, by the definition
of my (w) means that I, y[u] = my(w). In particular,

(=) 2ull?, + wllull;, = my (),

so u actually solves the minimization problem (3.1). This is the solution ¢y, that we
were interested in.

Next, we show that the minimizer satisfies the Euler Lagrange equation. To this
end, we take an arbitrary test function % and let € > O consider u = ¢ + €h, and
recall that

/N"V(Nx)|¢N|2"+2dx =1.

Since ¢ is a minimizer we have that I, y[u#] > my(w). Expanding in powers of €,
we obtain

/ (=AY /2@y + eh)*dx + w/<¢N +ehydx = my (@) +26((=A)° + w)py, h) + O(e?).



On the standing waves of the Schrodinger equation with... Page150f33 136

Similarly,

/ V(Nx)lpy + eh|* T 2dx = f V(N©)|gn |2 F2dx + (20 + 2)e f V(NX)|¢n1* pnh + O(e?)

=14+ Qo+ 2)6/ V(Nx) N[> dnh + O(?).

Thus, after simplifying, we arrive at

_ my(o) +2e(((—A)" + w)pn, h) + 0(e?)
N T T4 2e [N"V(Nx) oy |2 dyhdx + O(e2)

= my (@) +26{((=A)° + w)py — my(@)N"V(NX)|pnI* ¢y, h) + O ().

Since this hold for any arbitrary test function /2 and any € > 0 we have that ¢, solves
(3.2). O

Next, we have the following technical result.

Lemma 2 There exists constants C1(w), C2(w), but independent on N, so that
Ci(@) = my(w) = Cr(w).

Furthermore, the sequence {¢pN}3_,, is a pre-compact in every set of the form C(K),
where K is a compact subset of R".

Proof The lower bound, with a constant independent on N follows from (3.3). The

upper bound follows by testing against a concrete function like ug(x) = e~ *. Since

% < up(x) < 1, on the support of V(Nx), N > 1, we have that
my(©) < Lo.xluol <9 (=2 2uol2, + wlluol2,) =: Ca(@),

Next, since ¢y satisfy N [pu V(Nx)|¢n (x)|*° 2dx = 1, we have that I, y[¢n] =
[(=A) 2y 175 4 llgn I3, = my (@). Thus, by Sobolev embedding

lonllcrrry < Cllonllgs < Clwymy(w) < C3().

for 0 < y < min{l,s — %}. It follows by Arzela-Ascolli’s theorem that for each
compact K C R", {¢n} is pre-compact in C(K). O

Clearly, Lemma 2 allows us to take a convergent (sub) sequence as N — co. We wish
to learn what the limit is expected to be. It turns out that it is nothing but the minimizer
for the Sobolev inequality H*(R") < L°°(R"). We justify that in the next section.
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3.2 Relation to the minimizers for the Sobolev embedding H*(R") — L*°(R")

Fors > 5, w > 0, we study the functional

I(=A)2ull2, + olul?,

J,[u]l =
olt] )2 o

and the corresponding minimization problem J,[#] — min. Finally, denote

A(w):= inf  Jy[ul.
ueS:u#0

The described optimization problem has a clear analytical interpretation, namely that
c is the exact constant in the Sobolev embedding estimate

c@lullze < Ml ==/ 1(=A)3ul, + olul,.

We know from the Sobolev embedding H*(R") «— L°°(R") that ¢ is well-defined
and we can alternatively introduce it as follows c(w) = sup{C > 0 : C|lul||p~ <
lull gs . Yu € S}.

Another useful observation is that one can assume, without loss of generality, that
in the infimum procedure described above, ||u|| 1~ is replaced by |« (0)|. That is,

I(=A)2u)?, + wllul?,

2
c (w) = m
(@) ue Hs:1(0)£0 lu(0)|?

Lemma3 Let s > 5,0 > 0and y < min(l,s — 3). Then, there exists C =
C(s,w, y), so that
F(w) <my(@) < @)+ CN7Y 3.7

Proof By (3.3), we see that for every N > 1, I, y > J,,, whence my(w) > A (w).
For the opposite inequality, observe first that since my (w) < Ca(w), we can take

my(w) = inf I, y[u] = Iy nlul.
ueS:u#0

inf
N fgn VINX) gy ()12 +H2dx=1; |lull gs <10C,

So,letu € H* : N" [p, V(Nx)|u(x)|[** 2dx = 1; |l|ulll s < 10C5. Recall that for
every g > 1,thereis C,,sothatfora > 0,0 > 0]a? —b?| < Cq|a—b|(a‘1’1+b‘1’1).
As a consequence, by Sobolev embedding together with the definition

u(x) —u(y)

lullcr == sup I
x,y:x—y7#0 lx — y|

we have that,

2042 2042 2041 2041 2041
()72 = (O 72| < Colu(x) — u(O)[ull75 < Cy o X1 14l gy < Cyoolxl” lull 77
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Since |||l gs < 10C,, we conclude

U@ P = P72 = €y oI (3.8)
It follows that

U@+~ 1] =

[u(0)2°+2 — N”/ V(N |u(x) | dx
RU

= N"

f VO = u@) P dx
R”

scy,a,wN”/ V(Nx)|x|"dx
Rn

= Cy.a,wN_V/

V()’)l)’lydy = Cy,a,wN_ys
Rn

so [u(0)] <1+ Cy ,oN"7. Finally,

202 2
=) 3ul2s + wllul?, <

my(w) = i in
N [ VIND) | (0127 F2dx=1; lul] ys <10C;

=) 2ul?, + olul2
mn
el 5 <10C2,(0) 0 [u(0)?

IA

(1+ Cy,a.wNiy) <c? + Cy’g’wNiy.

]

We now take limitas N — oo. In view of our discussion so far, it is not surprising that
this procedure yields the minimizers for the Sobolev embedding H* (R") < L*°(R").
In turn, this allows us to present an explicit formula for the solutions of (1.5) and to
interpret them as minimizers of the Sobolev embedding problem.

3.3 Description of the solutions for the profile equation (1.5)

Lemma4 Lets > %, w > 0. Then, for every constant C # 0, the function

c

P& = A T o

(3.9)

is a minimizer of the problem min,cys J,[u]. In particular, the optimal Sobolev con-
stant is given by the formula

2 1 )_1
o= ( o e 100 )

Proof From Lemma 3, it follows that limy m y (w) = ¢2(w). In addition, as we have
pointed out, maximizers can be taken, with the property ||¢y | gs < C(w). As H*(R")
embeds in C¥(R") for 0 < y < s — 5 and this is compact embedding on bounded
domains, we can select

by N” / VNl ()7 2dx = 1,
Rn
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so that ¢ is uniformly convergent, on the compact subsets of R" to ¢ € H*(R").
We will show that ¢(0) = 1 and ¢ is in the form (3.9). We have, for each N > 1,

=16 O] < N fR V) |16 P72 = 1O 272 dx
< Co(lpn1I3% + g ) THN™ /R VIND)lpw (x) = §(0)]dx.
But [[¢pn]lLe < ll¢nllas < C(w), while

lon (x) — @ (0)] < [P (x) — dn (0)] + 19N (0) — #(0)] < Cy [x]” + [N (0) — P (O)].

Plugging this back in our estimate for |1 — |¢(0)|2°*2|, we obtain, for each 0 < y <
g1
2 £

1 =16 O)F72| < Clgn (©0) = $(©O)| + CN" /R VND)Ix [ dx < Clgn (©0) = $(0)] + CN77.

Clearly, the expression on the right goes to zeroas N — 00, as ¢y =B ¢. By adjusting
the sign of ¢y, if necessary, this implies that we can take ¢ (0) = limy ¢ (0) = 1.

Next, ¢y satisfies the Euler-Lagrange Eq. (3.2). Test this equation with . We
obtain

(PN, (=A) + )¥) = my(w)N" /Rn V(N gy ()Y (x)dx.  (3.10)
Taking limits in N then yields, after taking into account ¢ (0) = 1,
(@, (=D + 0)¥) = (@)Y (0). (3.11)
In other words, ¢ satisfies the equation
(A + w)p — *89 = 0. (3.12)

in a distributional sense.
By taking v in (3.10) to be an appropriate approximation of the function G (- +x),
we conclude that

¢ (x) = const.G(x)

which is of course the same as (3.9). Additionally, by testing (3.12) by ¢ itself, we
obtain

I(=2)2¢11%, + wllgl?, = ?p(0)* = 2.
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This shows that ¢ is a minimizer for min,cgs J,[u] and so any function in the form
(3.9) is one as well. Also,

I(=A)2G212, + wlIGII2, 1 -1
2(w) = S L s L2 _ 4 313
) G2 (0)? (LNMEWHWJQ G-13)

O

We now state a result that describes the solutions of (1.5).

Lemma5 The non-trivial solutions to (1.5), with ¢ (0) > 0 are given by

: RGN
= ——d —_—. 3.14
e <./1;n QrlEh* + o E) QrlEN* + G149

Proof We can proceed as in the proof of Lemma 4 to see that

In _ 20
#(&) =19 0)] ¢(O)—(2n|§|)2S e

In order to determine ¢ (0), we apply the inverse Fourier transform to obtain an equation
for it as follows

. 1
0) = de = | (0)|*° 0/ S —F
#(0) /Rn¢($) & =1¢0)["¢(0) e ZTEDE + o §

It follows that

200 __ 1 )_l
O _(AMMMW+w@ ’

which proves the claim. O

3.4 The spectrum of (—A)* + @ — U6y

In this section, we develop some tools to study the bottom of the spectrum of the
operators (—A)* + w — udp, depending on the value of . More specifically, we have
the following result.

Proposition5 Let s > 5,w > 0 and L, = (—A)* + w — udy be the self-adjoint
operator introduced in Lemma 1. Then,

o If u > c?(w), the operator L, has one simple negative eigenvalue, —A, , < 0,

with eigenfunction \Vy : @0(5 ) = !

e taotha For the rest of the spectrum

o(Lp) \ {—Aou} C o, 00).

In particular, Ly | (g1 = o.
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o If it = c*(w), L n = 0, 0is a simple eigenvalue, with an eigenfunction W defined
as above. For the rest of the spectrum, there is o (L) \{0} C [w, 00). In particular,
LP« |{\I’O}J' > .

o If 1 < c*(w), there is a simple eigenvalue Ao, € (0, ), with eigenfunction
Yy : Yp(&) = m and o (L) \ {Ao,u} C [, 00). In particular,
LM|{\IJO}J_ > )\a),,u > 0.

Proof Assume first 1 > c. We would like to formally analyze the eigenvalue problem
associated with the lowest eigenvalue of L,. So, we are looking for f # 0, f €
D(L,),sothat L, f = —Af for some A > 0. This is the equation

(=AY + o+ 1) f = uf0). (3.15)

Arguing as in the proof of Lemma 4, by taking Fourier transform etc., we find that all
possible solutions are in the form

wf0)
QN> +w+ A

f® =
Clearly, f € D(L,) and we need to see that there exists A > 0, so that it solves (3.15).
To this end, we have

A 1
O /R f©ds = uf ) fR A ot i

As we seek non-trivial solutions f (and hence f(0) 7~ 0), this amounts to finding A,
so that for the given w, we have

1
”/Rn G rora e =L (3.16)

We claim that under the condition 1 > ¢2, there is exactly one solution A = Ao,y €
(0, 00). Indeed, consider the continuous and decreasing function

1
hd) = “fR CrEE toras T

Computing its limits at the ends of the interval

1 M
lim h(L) = — ge—1=E_1-0, 1im ho) =1,
i h() “/Rn G EE Tt 2~ 1>0 lim k@)

implies that there is a unique eigenvalue A, , > 0. Moreover, the corresponding
eigenfunction is, up to a multiplicative constant

1
QrlEN® + @+ hop

Tp(¢) =
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We now prove the statement about the rest of the spectrum. Consider the spectral
decomposition of the self-adjoint operator L . Assume for a contradiction that for any
§ > 0,wehavethato (L,)N(—Ae,p+3, 0—0) # V. Let W € Image(P (-1, ,+5.0-3))
(ie. ¥ = P(,)\m_ﬂ+5’w,5)\ll) and then normalize it, that is ||W]|;2 = 1. As Wp(0) =
1 .

]R" mds > 0, consider the well-defined element of D(L/,),

- v (0

¥ (0)

= — Wy.
NORE

Note that \TJ(O) = 0, so according to (2.13), we have,

(LW, W) = (=) 207, + 07, = ol P(7, = oll¥];, = o.

~ 2
where we have used that W L Wy, and hence | ]2, = @], + 50 w2, >
wZ(0) L
w17, =1.

On the other hand, againby W L Wy, L, W L Wy, and the properties of the spectral
projections,

(LU, W) = (L,¥ \IJ>+\IIZ(0)(L Wo, Wo) < (w—8) — A v2(0) < )

, W) = ; —— ; < (w—9)— —— <w-—34.
g : v A0
Clearly, the two estimates that we have obtained for (L, W, W) are contradictory, which
is due to the assumption o (L, ) (=X, 4, @—38) # B. Thus, o (L) N(=Ay, 4, ) = .
In other words, o (L) \ {=Aw,u} C [w, 00), which was the claim.

The proof for u = ¢? goes along similar lines. Indeed, for any test function W € H*,
we have

(LW, W) = [(=A)2W2, + ol W%, — 2w () >0,

by the definition of ¢? = inf Jo[W]. Hence, L, > 0. Furthermore, by direct inspection
L,[G;] = 0, whence 0 is an eigenvalue (and it would have to be at the bottom of the
spectrum). Finally, o (L) \ {0} C [w, 00) is shown in the exact same way as in the
case i > 2.

For the case . < ¢?

, we can similarly identify an unique A, , € (0, ), so that

1
-1
“/R rEDE -2

This A, , > 0 is an eigenvalue for L,, with eigenfunction, W¢ : @O(E) =

m. Moreover, o (Ly) \ {Aw,u} C [w, 00) is proved in the same fashion

as above. O

Note that the operators £ have the form

Lo = (=AY +0—1¢0)* 8 = (—A) +w— c*(w)d
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Ly = (=N +w— Q20+ 1)c*(w)d.
As adirect consequence of the results of Proposition 5, we have the following corollary.
Corollary 1 Lets > 5, w > 0, 0 > 0. Then,
o L_ >0, 0is asimple eigenvalue, with eigenfunction G and
o (L-)\ {0} C [w, 00).

Also, £,|{g§y}¢ > w.
e L has a simple negative eigenvalue, with an eigenfunction V. Also,

‘C"Fl{\ll()}L > w > 0.

4 Stability of the waves

In this section, we identify the regions of stability for the waves. We start with a
short introduction in the theory of the Hamiltonian instability index, as developed in
[15-17].

4.1 The Hamiltonian instability index theory

We are concerned with a Hamiltonian eigenvalue problem of the form
IKf =1rf, 4.1

where 7% = —Z, K* = K, 7 is bounded and invertible, so that Z=! : Ker(K) —
Ker(K)*.

We would like to analyze the number of unstable eigenvalues of the eigenvalue
problem (4.1). To this end, we assume that the Morse index of K is finite, that is,

n(K)y=#pneop,(K),n<0} <oo

anddim(Ker(K)) < oo, say Ker(K) = span{y;, j =1, ..., N}.Introduce a scalar
matrix D, with entries®

Dij = (KT, 77y))

Introduce the following three integers: &, is the number of real and positive solutions
A in (4.1), accounting for the real unstable modes, then k. is the number of solutions
X in (4.1) with positive real part. Finally, kofo denotes the dimension of the marginally
stable directions, corresponding to purely imaginary eigenvalue with negative Krein

8 Note that since 77! : Ker(KC) — Ker (IC)L, the operator K1 is well-defined on Z~! v.
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index—that is eigenvalues iu; : JKW; = iu;W;, with (KW;, ¥;) < 0. Then, by
[15-17], we have the formula

ky + ke + k5" = n(L) — n(D). (4.2)

Note that by Hamiltonian symmetry considerations, both k., kofo are even and non-
negative integers. A very immediate corollary of the considerations above is the
following statement, which is often referred to as the Vakhitov-Kolokolov stability
criteria.

Corollary 2 Let K be self-adjoint, withn(KC) = 1, dim(Ker(K)) = 1, say Ker(K) =
span{W}. Assume that T also satisfy the assumptions listed above. Then, the Hamil-
tonian eigenvalue problem (4.1) is stable if and only if

K77, 77wy <o0. (4.3)
Indeed, in such a setup, the matrix D is a one dimensional matrix. Also, the right-hand

side of (4.2) is either O or 1, whence k. = n(£L) — n(D) = 1 — n(D) and stability is
equivalent to n(D) = 1, which is exactly the condition (4.3).

4.2 Instability index count for (1.6)

In our specific case, we need to apply the instability index counting theory to the

eigenvalue problem (1.6). Recall that 7* = — 7 = J!, while £ = (EO_ L? >,
+

whence
n(L)y=n(Ly)+n(L)=140=1,

due to the results of Corollary 1. Also, again by the description in Corollary 1,

[ Ker(L2) 0 . o
Ker(ﬁ)—( 0 >+<Ker(£+))_3pan(0>'

It follows that Corollary 2 is applicable to the eigenvalue problem (1.6), and in fact
the spectral stability of it is equivalent to the condition

(L7 b, do) < 0. (4.4)

Since, ¢, = cG¢, it suffices to compute (E;lg?’, G¥). We accomplish this in the
following proposition.

Proposition6 Letn > 1, w > 0,0 > 0ands > % Then,

n

sgn(L3 9o do) = sgn(L3'G7. GY) = sgn (o — n) .
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In particular, the waves ¢, are spectrally stable if and only if

2s
O0<o<——1.
n

Proof We first need to find c;lg;". That is, we need to solve Ly = G¢. Based on
the formula (2.9) however, we need to solve

G =Ly =((-0) +w)g

whence, we can actually find g pretty easily by taking Fourier transform. Namely,

2s 5 _Co - @
(QrEN™ +w)g€) = gs &) = (2ﬂ|$|)2s +w’

It follows that

1

8O = Grgs

or equivalently g = G % G. We can now proceed to find ¥ from (2.11). Namely,
taking into account that £, = (—A)* + w — (20 + 1)c?, we compute

g(0) o

B 2
Y=g+ Q2o+ 1) 1 — (20 + 1)c2G@(0) ™* "

Note however that g(0) = G¢ % G&(0) = ||g;0||iz. Also, according to (3.13),
c2G2(0) =1, s0

1
20 + 1 Jre GrEprrar s

I//:gs*gs_ 20, dé

T
e TR

So,

n +d$
(316297 = .92 = (g7 w e, gp) - 22 L R T

(gw’ gw)
2 1 : s s/
fR’ QrlEN¥ +w

1 2
— 1 ag — 221 (fR" <(2n|sn2x+w>2d5>
R (275D + w)? 20 e

1
e TS

So, it remains to compute

1
—_—d&, j=1,2,3.
/Rn (@rED® + o 5
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We have done in the Appendix, see Proposition 9. More specifically, substituting the
formulas (A.1), (A.2), (A.3) in the expression for (L;lgjf’, G&), we obtain

_ J'[|S”_l|a)%_3 n n 20 + 1 n\2
£ 1 w’ 0] — 1 - 2 - ) = 1 —_— =
(L4 6595 4s(2m)" sin (%) ( 2s> ( 2s) o ( 2s)
_ m'r|S”_1|a)%*3 (1 n ) o 2s —n
8520 (2)" sin(4E) 2s n '

Note that,as s > 7, only the last term in the expression changes sign over the parameter

space. We have this established Proposition 6 in full. O

Having the above spectral properties of the operator £, we have one last step before
arriving at the orbital stability of the wave. More specifically, we need to argue the coer-
civeness of L4 on the space H*(R"). To that end we have the following proposition.

Proposition7 Lets > 5, w > 0, (L;lqﬁw, ¢w) < 0. Then, the operator L is coercive

on {¢w}l. That is, there exists § > 0, so that for all
(LoW, W) > 8 W]|5s, YO L ¢, 4.5)

Proof This is a version of a well-known lemma in the theory, see for example Lemma
6.7 and Lemma 6.9 in [8]. Recall that we have already showed Ker[L£,] = {0} and
n(Ly) = 1. According9 to Lemma 6.4, [8], under these conditions for £, we have
that for any g L ¢,,,

(Lyg.8) = 0. (4.6)

Consider the associated constrained minimization problem

inf 4,
1A, e d S @7

and set
o :=inf{(Lif, f): f Lo Ifll2=1}>0.

We will show that @ > 0. Assume for a contradiction that & = 0.
Take a minimizing sequence f : || fxll = 1, fr L ¢, so that

o =lim(Ls fi, fi) = h,gn[u(—A)%fk 1> + @ — 20 + D fi(0)]?].

However, by Sobolev embedding and the Gagliardo-Nirenberg’s inequalities, recall

I fkll2 = 1, we have that forall 8 : 5 < B < s and for all € > 0,

£ 1-£
LF O < 1flle = Cpllfllgs + Cllf NIz < CollFl N2 * + Clflle < €l fllgs + Cell £l 2

9 And this is already explicit in a much earlier work by Weinstein.
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Applying this estimate, we obtain a lower bound for (L fk, fi) (recall || fxll 2 = 1),
as follows

1 s
(L fer fi) > 5||<—A)ffk||2 -C.

Since, o = limy (L4 fk, fk), thisimplies that sup, ||(—A)%fk ||2 < 0. This means that
we can select a subsequence of { f; } (denoted by the same), so that f; converges weakly
to f € H*(R"). In addition, by the Sobolev embedding H*(R") — CY(R"),y <
s — 7, we can, as we have done previously, without loss of generality assume that
fn = f on the compact subsets of R”. In particular, limy fx(0) = f(0). Note that by
the weak convergence, (f, ¢,) = limg( fx, ¢») = 0,50 f L ¢, and

lim inf I=A)2 fill> = 1= fI1P, 1f N2 <liminf [ fill 2 =1.  (4.8)

It follows that
(Lyf, f) = limkinf(£+fk, Jiy =0. (4.9)

But by (4.6), and since f L ¢, we have that (L4 f, f) > 0. It follows that 0 =
(Lif, f) = limg (L4 fk, fr). This means that all inequalities in (4.8) and (4.9) are
equalities and in particular

lim I(=A)2 fill 2 = 1(=A)2 £l 2,
tim | il 2 = 11/l

These last identities, in addition to the H* weak convergence f; to f, implies strong
convergence, that is limy || fy — f|lgs = 0. In particular, || f||;2 = limg || fxll.2 = 1.
In other words, f is a minimizer for the constrained minimization problem (4.7). Write
the Euler-Lagrange equation for f

Lyf=df +co. (4.10)

Taking dot product with f and taking into account (L4 f, f) =0, f #0and f L ¢,
implies that d = 0. This means that f = cﬁj_lqﬁw. But then, 0 = (L4 f, f) =
ALY by Po)- Since (LT P, do) # 0, itfollows ¢ = 0. But then, since Ker[L] =
{0}, (4.10) implies that f = 0, which is a contradiction. Thus, we have shown that
o > 0. As a consequence,

(LW, W) > a|| W7, YO L ¢y (4.11)

Note that (4.5) is however stronger than (4.11), as it involves || - || s norms on the right-
hand side. Nevertheless, we show that it is relatively straightforward to deduce it from
(4.11). Indeed, assume for a contradiction in (4.5), that g : llgkllzs = 1, gk L ¢, SO
that limg (L4 gk, gx) = 0.
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Taking into account (4.11), this is only possible if limg ||g«||;2 = 0. So,
b =Tim)(=2)2 gell 72 + lgil721 = Tim (= A)2 gyl

Note that by (2.1), we have that for all 0 < § < s — 2, we have that

n n n n
246 [ 15 4-s

27 2z 22 -2
lgx O] < llgrlizee < Cligall yavs +llgkll ya-s) < Clligall o Ngll2 * A Negrll g llgwll s

whence limy, || g« (0)| = 0. But then, we achieve a contradiction, since

0= lim(C.g. gc) = imll|(—=2)2 gl + @llgel7, — 2o + Deflge O] = 1.

4.3 Orbital stability

In this section, we prove that the spectrally stable solutions are in fact orbitally stable.
There is, in general, a straightforward way to obtain orbital stability, based on spectral
stability, see for example Theorem 5.2.11, [15]. While this is the case in general, we
are dealing with non-standard linearized operators and their domains. In particular,
the Assumption 5.2.5 a) on p. 136, [15] does not apply. Thus, we need to consider a
direct proof, based on the Benjamin’s approach.

As was established already, the case 0 < o < 2n—s — 1 represents the spectrally
stable waves, which we now analyze for orbital stability.

Proposition8 Letw > 0, n > 1,5 > %, 0<o < % — 1 and the key assumptions

(1), (2) are satisfied. Then ' ¢,, is orbitally stable solution of (1.2).

Proof Let us outline first what the consequences of our assumptions are. By Propo-
sition 6, we have that (E:_lqbw, ¢») < 0, which by Proposition 7 means that the
coercivity estimate (4.5) holds. By Corollary 1, Ker (L) = {0}, that is the wave ¢,
is non-degenerate.

We now concentrate on the orbital stability. Our proof is by a contradiction
argument. That is, assume there is €9 > 0 and a sequence of initial data uy :
limy [Jug — @l gs@ny = 0, so that

sup inf fu(t, ) —e Pl > eo. (4.12)
0<t<oo/ER

Using the conserved quantities (1.3) and (1.4), we define a new conserved quantity

w
Elu] := Elu] + EM[M]’
ek == |E[ur(D)] = E[Po]ll + IM[uk ()] — M{po]ll,
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and for all € > 0,

t :=sup{t : sup |[ur(t) — ¢llps@n) < €}

O<t<t

Note that €, is conserved and limy € = 0. By the assumption that local well-posedness
holds, it must be that #; > 0.

Considert € (0, t) andletuy = vp+iwg and [|wg (0) | s ®ey < 2Mluk—P Il gs ey <
€. This leads to the definition of the modulation parameter 6, (¢) such that wy +
sin O ()¢ L ¢, that is,

—sin(@ ()Pl L2 = (wi (). ). (4.13)

By Cauchy-Schwartz we have |(w (¢), ¢)| < €]|¢] ;2 and this means there is an unique
small solution 6 (7) of (4.13), with |6 ()] < €. Also

luk(t, ) — e %Dl gs < Nug(t,-) — @llgs +1e” %D —1|lpllps < C(llpllms)e.
Now define

T == sup{t : sup |lux(t,) —e %@

O<t<t

()l gs@ny < 2Ce}.

Clearly 0 < #; < Ty. From this we see that to get contradiction of (4.12) it is
enough to show that for all € > 0 and large k, T = oo. To that end let r € (0, Tg)
write

Yk = up — e %V = v fiwy — e * g,

and decompose into real and imaginary part of ¥ and projecting on (g) yield

Vg (2, ) — cos (b (1)) ¢ (2, ) ni(t, -) ¢
. = L .
(wku, )+ sm(eka)w) o) (0> * ( &t ) ) ’ ( &, ) ) <0)
4.1
By the choice of 6; we have ¢, L ¢, and from the above decomposition we also have
nx L ¢. So taking the L? norm of (4.14) we have

kO 117 2 + IO 2 + 1@ 172 = [V O)]l72 < 4C3€. (4.15)

Next we take advantage of the two conserved quantities, to that end we consider the
mass

Mmum:3ﬁmem¢+wunﬁu=Aﬂm+umauw@+2z;¢umw”“”mawnw

= MIP] + 1y (t. )72 + 24k (£) cos @ (1)) [B117 2.
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Here we use the fact that wi + sin6x(t)¢ L ¢ and nr L ¢. Solving for u(¢) and
since |6k | is very small and ||y (¢, )||;2 < 2Ce€,int : 0 <t < T} we have

|Mur ()] — M| + 1V (2, )17,
2 cos(Bk (1|12,

< Clex+ V(. )72) < Clex+e€d).

(4.16)
Now we will expand E[uy (1)] — E[¢] but first for any small perturbations of the wave
a1 +iar € HY(R") and using (1.5) we have

lr ()] =

1
El¢ + (o1 +im)] = E[¢] = S{Lar, an) + (L0, )] + Errfay, ool (4.17)

where

|Errlar, a2]] < Cl((¢(0) + a1 (0)? + a3 (0)° T — ¢(0)* +2

Qo +2)20 + 1)
2

< ClIpll) (a1 (0)] + |z (0) ™o +2:3),

- 20 +2)¢(0)* Ty (0) — $* (0)a} (0) — (20 +2)¢* (0)e3 (0)]

Note that

Dy = [cos(Or) (rp + ni) — sin(Bk) &k + i [cos(Bk) &k + sin(Bk) (xd + )] -

Now apply the expansion (4.17) with

a1 = cos(Or) (ke + ni) — sin(Ox) &k, ap = cos(Or) &k + sin(Gk) (k@ + ni)

together with (4.15), we see that ||o || gs + |lo2llgs < Ce. So, we can bound the
contribution of |Err[a;, az]| as follows

|Errlar, az]] < Ce™2D (1o |1, + laa ). (4.18)

By the Sobolev embedding, £L_¢ = 0and £, = L_ —20|¢(0)|>° § together with
(4.15) and (4.16) we have

(Lyar,on) = (Lo me) — C€ + ek + € UInellas + glms) + €lnellas + I1glms)®)
(Loar. o) = (L gk &) — C(€ + e+ Umillms + N &lla) + eUmellas + 16 lla)?).

Taking advantage of the coercivity of £_ and £, which was established in Propo-
sition 5, we have that for some « > 0 and since ng, {x L ¢ together with some
algebraic manipulations yield

Ik () 1375 + 1813 < C(€ + ). (4.19)
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Here C is independent of € and k. This implies that 7;* = oo, since if we assume that
T < oo, then

2Coe = limsup [y ()l < CUur O+ lme@ s + 1Dl e) < Cle? + /&)

*
t—>T7—

(4.20)

which is a contradiction, if € is so that Coe > C e% and then k is so large, and hence
€ 1s so small, that Cpe > C \/e_ , which certainly contradicts (4.20). Hence the wave
is orbitally stable. O

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

APPENDIX A. The integrals [z, mdg

Herein, we compute the integrals that arise in the calculation of the Vakhitov-
Kolokolov index in Proposition 6.

Proposition9 For w > 0, we have

N1 Gk o
e QTEDE T o 2@y sin(ZX) .
1 B 7T|S”7]| N wh-2
1 _wstY n n\ wh-3
R (27|EN? + w)3 ds = 452 )" (1 - g) (2 - Z) @ (A3)

Proof We easily pass to integrals in the radial variable as follows

1 _ 00 pn—l
———dt = |$"! / ——d
L” (2m|EN* + w) §=1 | 0o (2mp)* 4+ w)/ p

_|Sn71| w%_J /oo p%_l do =
- 2520 Jo o+ i

25Qr)" J_oo (e + 1)
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Im(z) ;
—R + 271 < 213 < R+ 271
. <~
~ v
-R O . R Re(z)

Fig. 1 Contour of integration

So, with @ := 7~ € (0, 1), matters are clearly reduced to computing the integrals

[e¢) eta
/ S —
oo @ 1)

fora € (0,1), j = 1,2,3. In order to compute this integral, we use the residue
theorem formula

eLlZ e(lZ
/ ——dz =2mwiRes (— m') .
ve (@ + 1) (5 + 1))

where R >> 1, and yg = 3/11e U yI% U 7/1% U y}‘g, and the curves y", m =1, 2,3, 4 are
given, together with their orientation as follows. Here yg is given in Fig. 1.

vk ={x € R, R}, yg ={R+ih h €[0,27]},
vi ={x+27i,x € (R, —R)}, vy = {(—R +ih, h € [27,0]}.

Clearly,

P P ) R el
/ Z—dZ +/ Z—dZ = (l — 62716”)/ %dl,
vl (et + 1)) y3 (et + 1)) _r (e + 1))

while for R >> 1,

edz eRa
/ ————dz| < C————,
3 (e + 1)/ (e —1)/

az

[ %dz <C
FRCEY
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It follows that

az

e . poo ola
lim ——dz = (1 — eZnaz)/ #dt.
R—00 J,, (&2 + 1)/ oo (e +1)J

It remains to compute the residues associated with this complex integration. This is a
straightforward calculation, the results of which are below

e P iamw
Res (ez e nz) = —e (A4)
e’ P iamw
Res (m, 7Tl> = —(1 — a)e (AS)
e =) l _ _ iamw
N (m, ﬂl) = —2(2 a)(l a)e . (A6)

The formulas (A.1), (A.2), (A.3) follow by substituting these expressions in the residue

formulas and taking R — oo. O
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