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modifications of the standard Shanks transformation that deal with general sequences. One of the goals of

the paper is to lay out a general framework that encompasses most of the known acceleration strategies.

The paper also considers the Anderson Acceleration (AA) method under a new light and exploits
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stabilized version of the AA method. The methods are tested on a number of problems, including a

few that arise from nonlinear partial differential equations.
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1. Introduction

In numerical analysis and in applied mathematics, many applications lead to sequences of numbers,

vectors, matrices or even tensors. When the sequence is slowly converging, or even diverging, and

when one has only access to the sequence and nothing else (i.e., when it is produced by a ‘black

box’), it is possible to transform it, by a sequence transformation, into a new sequence, which,

under some assumptions, converges faster than the original one to the same limit. It was necessary

to develop a variety of such sequence transformations since, in fact, it was proved by Delahaye &

Germain-Bonne (1980) that a universal sequence transformation able to accelerate all sequences, or

even all monotonically converging scalar ones, cannot exist. For a review, see, for example, Brezinski

& Redivo-Zaglia (1991, 2019, 2020), Delahaye (1988), Sidi (2016), Weniger (1989), Wimp (1981).

One way to transform a sequence into a faster converging one is to resort to extrapolation. Here,

the transformation is built so that it yields the exact limit of all sequences satisfying a certain algebraic

relation. The set of these sequences is called the kernel of the transformation. Among these, this paper

focuses on the Shanks transformation (Shanks, 1955) and a number of its generalizations. As we will
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see, this well-established method transforms a sequence (sn) into a set of sequences {(t(k)n )}. Introduced

by Shanks for scalar sequences (Shanks, 1955), it has been extensively studied and extended, in various

ways, to sequences of vectors, matrices and tensors. Here, we only consider the vector case.

All these extensions to vectors of the scalar Shanks transformation share the property that, for a

fixed value of k, t
(k)
n = s for all n if the sequence (sn) of elements of Rp or Cp satisfies, for all n, the

following linear difference equation of order k:

α0(sn − s) + · · · + αk(sn+k − s) = 0, (1.1)

where s is the limit of (sn) if it converges and is called its antilimit otherwise. The numbers αi are

independent of n, and it is assumed that α0αk �= 0, so that the difference equation has order k exactly,

and α0 + · · · + αk �= 0, so that s can be uniquely defined. Thus, these conditions imply that k cannot

be replaced by a smaller value. It does not restrict the generality to assume that α0 + · · · + αk = 1. The

set of sequences satisfying (1.1) is called the Shanks kernel. Among sequences in this kernel are those

produced by the iterations sn+1 = Msn + b, thus providing a link with Krylov subspace and Lanczos

methods; see, in particular, Brezinski (1974, 1980), Sidi (1988), Sidi & Bridger (1988).

Besides their use in a number of different applications, extrapolation techniques have recently

been promoted as an effective tool also for problems related to the emerging field of data science

(Zhang et al., 2020; Cipolla et al., 2020a,b; Scieur et al., 2020). But since there is often some

confusion in the literature about the terminology used, we would like clarify it—using a high level of

generality. Specifically, we would like to draw a distinction between extrapolation methods, sequence
transformations and convergence acceleration methods. This distinction will help the reader to better

understand the approaches described in Section 2 for building our sequence transformations.

Let (sn) be a sequence of elements of a vector space E on C. A common problem encountered

in numerical analysis is to estimate the limit of this sequence from a certain number of its terms.

The problem can be solved by an extrapolation method as follows (Brezinski, 1971; Brezinski &

Redivo-Zaglia, 2021). Let

ϕ : N × D �−→ E, D ⊆ C
k

be such that

for all b ∈ D, lim
n→∞

ϕ(n, b) = 0.

Let Vϕ be the linear variety of sequences of elements of E such that

for all n, sn = s + ϕ(n, b),

with s ∈ E. Obviously, limn→∞ sn = s.

By definition, if (sn) ∈ Vϕ , then, for all n, s = sn − ϕ(n, b). Now, if (sn) /∈ Vϕ , let us consider a

sequence (tn = t+ϕ(n, β)) ∈ Vϕ , and impose that it satisfies the interpolation conditions tn+i = sn+i for

i = 0, . . . , k. The vector β ∈ D can be computed, assuming that it exists and is unique, in different ways

as the solution of a system of k scalar equations that can be obtained as follows. Let E∗ be the algebraic

dual vector space of E, which is the vector space of linear functionals on E. Let y, y1, . . . , yk ∈ E∗, and



SHANKS AND ANDERSON-TYPE ACCELERATION TECHNIQUES FOR SYSTEMS OF NONLINEAR EQUATIONS 3

let 〈·, ·〉 denote the duality product between E∗ and E. The first strategy consists in computing the vector

β as the solution of the system

〈yi, sn+1 − sn〉 = 〈yi, ϕ(n + 1, β) − ϕ(n, β)〉, i = 1, . . . , k.

In the particular case of Shanks transformation, writing this system in matrix form leads to a relation

having the same structure as Approach 3 in the minimal residual approach of Section 2.1.3, but with

different indexes.

In the second strategy, the vector β is the solution of the system

〈y, sn+i+1 − sn+i〉 = 〈y, ϕ(n + i + 1, β) − ϕ(n + i, β)〉, i = 0, . . . , k − 1.

For Shanks transformation, this approach corresponds, in matrix form, to something similar to Approach
6 in the topological approach of Section 2.2.3.

Then, in both cases, we set t = sn − ϕ(n, β). Since t = limn→∞ tn, it is an approximation of s

and it has been obtained by extrapolation. Obviously, t depends on n and k, and we will now denote

it by t
(pk)
n where pk + 1 denotes the number of elements of the initial sequence used in the process.

Thus, when n and pk vary, the sequence (sn) has been transformed into the set of sequences {(t(pk)
n )}.

This procedure is named an extrapolation method. An important remark to be made is that it is a purely

algebraic procedure. Richardson’s and Romberg’s methods and Aitken’s ∆2 process are such well-

known scalar extrapolation methods. Thus, an extrapolation method results in a sequence transformation

T : (sn) �−→ (t
(pk)
n ) when either pk or n is fixed, and the other index tends to infinity. Conversely, most

sequence transformations can be interpreted as extrapolation methods. The variety Vϕ is usually named

the kernel of the transformation T , and it is denoted KT . If, when n or pk tends to infinity, the sequence

(t
(pk)
n ) converges to s faster than the sequence (sn), the denomination convergence acceleration method

is also used. Let us mention that extrapolation methods can also be applied to diverging sequences. They

are often used for accelerating fixed-point iterations, sometimes coupled with a restarting strategy.

In this paper, instead of building Shanks transformation by computing the coefficients in (1.1) as

the solution of a linear system in the usual way, we propose a new optimization approach, based on

minimization. This allows us to easily introduce, for sequences not belonging to the Shanks kernel, a

unified framework that also includes regularized and preconditioned techniques.

Anderson acceleration (AA) (Anderson, 1965, 2019), also called Anderson mixing, Pulay mixing

or direct inversion in the iterative subspace (DIIS) (Pulay, 1980), in the computational physics and

chemistry communities, has been widely used and applied to the solution of various fixed-point

problems over the last decades. The literature on this method is too broad to allow for an exhaustive

discussion but it suffices to search recent citations of this work to understand the truly exceptional

renewed interest in AA across many disciplines. A few of the classical citations include the papers by

Walker & Ni (2011), Higham & Strabić (2016), Toth & Kelley (2015) and Fang & Saad (2009), and a

few papers that describe applications are Banerjee et al. (2016), Fu et al. (2020), Kelley (2018), Lupo

Pasini (2019), Ouyang et al. (2020), Pollock et al. (2019), Zhang et al. (2020).

However, it is important here to stress that AA is not an extrapolation method in the exact sense

defined above since it does not start from an arbitrary given sequence and transform it into a new

sequence. Instead, it builds its own sequence step by step. AA is in fact more akin to quasi-Newton

techniques than to extrapolation. It was viewed as a form of secant method in the classic book by
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Ortega & Rheinboldt (1970, pp. 204–205). Its relations to secant-type methods, specifically ‘multi-

secant methods’ was unraveled by Eyert (1996), and later exploited in Fang & Saad (2009) and also

in Fu et al. (2020). In short, Anderson–Pulay mixing is a second-order method whose goal is to

accelerate a fixed-point iteration. If we were to allow the number of preview iterates used in the process

to increase indefinitely, we would get something rather similar to a standard quasi-Newton method

whose convergence would be superlinear at the limit. This is not done in practice because of cost and

numerical stability considerations. However, a certain relation with the Reduced Rank Extrapolation

(RRE) method, which is an extrapolation method, exists, and AA can be recovered by using the coupled

Shanks transformations, as explained in Brezinski et al. (2018). Due to this connection, we give, in

Section 5, new procedures in the style of AA, that are called Anderson-Type Mixing (ATM in short).

Stabilized and regularized versions of AA will be also proposed.

The outline of the paper is as follows:

− In Section 2 we present an overview of transformation techniques for sequences belonging to

the Shanks kernel and show how their limit or antilimit can be obtained exactly from these

transformations. Four out of six of these techniques are presented in a new way that comes out

from an optimization problem. Coupled sequences used in Section 5 are also described.

− In Section 3 we present transformations based on the Shanks kernel. We show how to adapt

and extend the idea proposed in Scieur et al. (2020) to our approaches. These modifications are

specifically designed to accelerate general/nonlinear sequences, which do not belong to the Shanks

kernel.

− In Section 4 we present the Restarted and the Continuous-Updating (CU) methods for exploiting

the Shanks-based transformations presented in the previous section. In this way we are able

to introduce a unified framework able to encompass simultaneously the newly introduced

transformations and many of transformations already present in the literature.

− In Section 5 we present new ATM methods. We show how the classical AA fits into them. Then

we introduce preconditioning and regularization strategies. Moreover, exploiting the connection

with quasi-Newton methods, we prove the local linear convergence of a stabilized version of the

classical AA, which allows us to substantiate theoretically the regularization strategy encompassed

in the Anderson-type techniques previously presented in this section.

− In Section 6 we perform a comparative experimental study of some of the techniques proposed

using, among other tests, a set of nonlinear problems arising from partial differential equations

(PDEs).

Let us explain our notation. Given a sequence (sn), we set S(j)
i = [si, . . . , si+j−1] ∈ R

p×j. Thus,

the superscript j corresponds to the number of columns formed by the p-dimensional vectors of the

sequence (sn) and the lower index i is the index of the first of these vectors in the sequence. Whenever

it is used, the forward difference operator ∆ is applied to the lower index, that is, ∆S(j)
i = S(j)

i+1 − S(j)
i =

[∆si, . . . , ∆si+j−1], and similarly for ∆2. For a fixed value of k, we denote by S
(j)
i the kp × j matrix

formed by stacking the k matrices S(j)
i , . . . , S(j)

i+k−1 of dimension p × j. When not explicitly indicated,

the norm used is the Euclidean norm. Throughout the paper, if not explicitly indicated, all matrices

whose inverses are needed are assumed to be nonsingular. If it is not the case, the pseudo-inverse may

be used.
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2. Transformations for sequences in the Shanks kernel

Let (sn) be a sequence of vectors in R
p or Cp such that (1.1) holds for a fixed value of k and for all n.

Assuming, without loss of generality, that
∑k

i=0 αi = 1, then we get from (1.1),

α0sn + · · · + αksn+k = s for all n ≥ 0. (2.1)

Alternatively, we can write

sn+k −
k−1∑

j=0

βj∆sn+j = s, (2.2)

with βj =
∑j

i=0 αi for j = 0, . . . , k − 1 (note that the βi are defined in a slightly different way than in

Brezinski et al., 2018, Sect. 3.1.3).

In Sections 2.1 and 2.2, we show that when (sn) belongs to the Shanks kernel for a fixed value of

k, it is possible to compute exactly the limit or the antilimit of the sequence from a certain number ℓk
(which depends on k and on the transformation used) of consecutive vectors of the sequence, where

ℓk = k + 2 (for the minimal residual approaches) or ℓk = 2k + 1 (for the topological approaches).

For this purpose, we present six different strategies for computing the coefficients α = (α0, . . . , αk)
T

or β = (β0, . . . , βk−1)
T. It should be recalled that α and β are not dependent on n if (sn) satisfies

(1.1) or (2.1) or (2.2). Four of these strategies (Approaches 1, 2, 4 and 5 below) are presented as the

solution of a minimization problem. Approaches 1 and 4 proceed in what appears to be a new way,

not considered before in the literature devoted to Shanks sequence transformations. Approaches 2 and

5 can be considered as particular cases of the least-squares strategy evoked in Brezinski et al. (2018,

Sect. 3.1.3). These four strategies will be useful for the generalization presented in Section 3. Two of

these strategies (Approaches 3 and 6 below) are already known since they enter into the framework of

extrapolation methods as explained in Section 1, and are derived in Sections 2.1 and 2.2 by a purely

algebraic process as the solution of a linear system and they can be easily obtained by a modification

of Approaches 2 and 5. Moreover, as will be explained in Section 3, these two strategies could also be

included in the framework of the minimization by changing the metric of the norm. Approaches 3 and

6 will be used in Section 2.3, where the notion of coupled sequence, defined in Brezinski et al. (2018),

is invoked.

Let us explain the idea behind the minimization used for finding the vector α (since β is related to

α, the idea is similar). This idea was introduced in Scieur et al. (2020), but it was not related to Shanks

transformations. In Section 4 and the following ones, our transformations are used to solve the fixed-

point problem s = G(s) from iterates of the form sn+1 = G(sn). Under some assumptions, it holds that

sn − s = (G′(s))n(s0 − s) + O(‖s0 − s‖2). Thus, neglecting the terms of second order,

k∑

i=0

αisn+i − s ≈
(
G′(s)

)n
k∑

i=0

αi(G
′(s))i(s0 − s).
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The idea is to minimize this error term. But ∆sn ≈ (G′(s) − I)(sn − s), and thus

k∑

i=0

αi∆sn+i ≈ (G′(s) − I)(G′(s))n
k∑

i=0

αi(G
′(s))i(s0 − s),

which is similar to the expressions minimized for obtaining the vector α in Approaches 1 and 4 below.

When α or β has been computed, in any one of the ways described below, the vector s is directly

obtained by (2.1) or (2.2) as

s = [sn+i, . . . , sn+i+k]α = S(k+1)
n+i α for all i, (2.3)

or

s = sn+i+k − [∆sn+i, . . . , ∆sn+i+k−1]β = sn+i+k − ∆S(k)
n+iβ for all i. (2.4)

Remark 2.1 As can be seen, (2.4) has the form of a Schur complement

u = u0 − [u1, . . . , uk]A−1v,

where u, u0, u1, . . . , uk ∈ R
p, v ∈ R

k and A ∈ R
k×k. Several other expressions in the sequel have the

same form.

From the extended Schur determinantal formula (Brezinski, 1988), u can be expressed as the ratio

of two determinants

u =

∣∣∣∣
u0 u1 · · · uk
v A

∣∣∣∣
|A| .

The determinant in the numerator is to be understood as the linear combination of the elements of

its first row by applying the classical rules for expanding a determinant with respect its first row. It is

exactly through this connection that all the transformations given in Brezinski et al. (2018) (least-squares

strategy apart) have been defined.

2.1 Minimal residual approaches

All the minimal residual approaches described in this section for computing α or β require the

knowledge of the k + 2 vectors sn, . . . , sn+k+1.

2.1.1 Approach 1. Writing (2.1) for the indices n and n + 1 and subtracting, we obtain

α0∆sn + · · · + αk∆sn+k = 0.

Then one way to compute α = (α0, . . . , αk)
T is to solve the problem

α = arg min
γ∈Rk+1,eTγ=1

‖∆S(k+1)
n γ ‖2, (2.5)
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where e is the vector of all 1s. This is exactly the same relation introduced in Scieur et al. (2020), but

obtained from a different starting point and without regularization. The original paper by Pulay (1980)

also solves the least squares problem with the same constraint that the sum of the αi equals 1 by using

Lagrange multipliers.

Observe that equation (2.1) and the minimality of k ensure that dim ker(∆S(k+1)
n ) = 1. Hence, the

solution of problem (2.5) can be obtained by normalizing the unique vector in the kernel; alternatively,

it can also be obtained as follows (which leads to the SVD-MPE approach; see Sidi, 2003):

α =
α

eTα
where α = arg min

γ∈Rk+1,‖γ ‖2=1

‖∆S(k+1)
n γ ‖2. (2.6)

2.1.2 Approach 2. Writing (2.2) for the indices n and n + 1 and subtracting, we have

∆sn+k −
k−1∑

j=0

βj[∆sn+1+j − ∆sn+j] = 0,

i.e., in compact form,

∆sn+k − ∆2S(k)
n β = 0, (2.7)

where ∆2S(k)
n = [∆2sn, . . . , ∆2sn+k−1].

The vector β is solution of the problem

β = arg min
η∈Rk

‖∆sn+k − ∆2S(k)
n η||2, (2.8)

and therefore it can be obtained by solving the normal equations

(∆2S(k)
n )T∆2S(k)

n β = (∆2S(k)
n )T∆sn+k, (2.9)

which leads to the strategy of the RRE due to Eddy (1979) and Meśina (1977).

2.1.3 Approach 3. This approach generalizes the one seen in the preceding section. We consider a

matrix Y ∈ R
p×k, where p is the dimension of the vectors of the sequence. If we multiply (2.7) by YT,

it is possible to obtain the βi by solving the following system that generalizes (2.9), which is obtained

when Y = ∆2S(k)
n :

YT∆2S(k)
n β = YT∆sn+k, (2.10)

assuming that rank(YT∆2S(k)
n ) = k.

The best choice of the matrix Y is a difficult problem, which has not been studied yet.

However, some experimental results show that an appropriate choice of it can improve the

convergence. As shown, for example, in Brezinski et al. (2018), particular choices of Y yield

several existing extrapolation methods. Thus, the choice Y = [y1, . . . , yk], where the yi are
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k linear independent vectors, corresponds to the Modified Minimal Polynomial Extrapolation

(MMPE) of Brezinski (1975) and Pugachev (1978), which can be recursively implemented by the

Sβ-algorithm of Jbilou & Sadok (1991). The choice yi = ∆sn+i−1 leads to the Minimal Polynomial

Extrapolation (MPE) of Cabay & Jackson (1976), and the RRE of Meśina (1977) and Eddy (1979) is

recovered with yi = ∆2sn+i−1.

2.2 Topological approaches

These approaches differ from those presented in Section 2.1 in that the algebraic equations for

computing the coefficients αi or βi require more vectors of the sequence (sn), namely they now need to

utilize the 2k + 1 vectors sn, . . . , sn+2k.

2.2.1 Approach 4. Writing (2.1) for the indices n, . . . , n + k, and subtracting, we have

α0∆sn+i + · · · + αk∆sn+k+i = 0, for i = 0, . . . , k − 1,

and the coefficients αi are obtained by solving

α = arg min
γ∈Rk+1,eTγ=1

‖∆S
(k+1)

n γ ‖2, (2.11)

where

∆S
(k+1)

n =




∆sn ∆sn+1 · · · ∆sn+k
∆sn+1 ∆sn+2 · · · ∆sn+k+1

...
...

...

∆sn+k−1 ∆sn+k · · · ∆sn+2k−1


 =




∆S(k+1)
n

∆S(k+1)
n+1
...

∆S(k+1)
n+k−1




∈ R
kp×(k+1).

2.2.2 Approach 5. The βi can be computed by writing (2.2) for the indices n + k, . . . , n + 2k, and

subtracting. We have

∆sn+k+i −
k−1∑

j=0

βj∆
2sn+i+j = 0 for i = 0, . . . , k − 1.

The coefficients βi are solutions of the problem

β = arg min
η∈Rk

‖∆S
(1)

n+k − ∆2S
(k)
n η‖2, (2.12)

where

∆S
(1)

n+k =




∆sn+k
...

∆sn+2k−1


 ∈ R

kp, ∆2S
(k)
n =




∆2sn ∆2sn+1 · · · ∆2sn+k−1

∆2sn+1 ∆2sn+2 · · · ∆2sn+k
...

...
...

∆2sn+k−1 ∆2sn+k · · · ∆2sn+2k−2


 ∈ R

kp×k,
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that is,

β = ((∆2S
(k)
n )T∆2S

(k)
n )−1(∆2S

(k)
n )T∆S

(1)

n+k.

2.2.3 Approach 6. As in Approach 3, choosing Y ∈ R
kp×k, we can alternatively solve

YT∆2S
(k)
n β = YT∆S

(1)

n+k (2.13)

if rank(YT∆2S
(2k−2)

n ) = k.

When Y = Ik ⊗ y, for some y ∈ R
p, we recover the so-called Topological Shanks Transformation

that can be implemented recursively by the Topological ε-Algorithms of Brezinski (1975) (in short

TEA) or, more economically, by the Simplified Topological ε-Algorithms (in short STEA) (Brezinski

& Redivo-Zaglia, 2014, 2017).

2.3 Coupled transformations

We now recall the concept of coupled sequences introduced in Brezinski et al. (2018) since, by using

this extension, it is possible to link AA to the transformations based on the Shanks kernel.

Given a sequence (sn) belonging to the Shanks kernel, a coupled sequence (cn) is a sequence that

satisfies, for all n,

α0cn + · · · + αkcn+k = 0,

where the coefficients αi are the same as in (2.1), or equivalently a sequence satisfying

cn+k −
k−1∑

j=0

βj∆cn+j = 0 for all n

with the same coefficients βj as in (2.2). For example, the sequence (cn = ∆msn) is a sequence coupled

to (sn) for any m ≥ 1.

By using a known coupled sequence, we can build additional generalizations of Approaches

3 and 6, which are recovered if we take (cn = ∆sn), and compute β as follows. Let

C(k)
n = [cn, . . . , cn+k−1] ∈ R

p×k. Instead of (2.10), we solve the system

YT∆C(k)
n β = YTcn+k, (2.14)

where Y ∈ R
p×k.

Similarly, by defining the matrix C
(j)
i as made for S

(j)
i , we can, instead of (2.13), solve

YT∆C
(k)
n β = YTC

(1)

n+k, (2.15)

where now Y ∈ R
kp×k,

Particular choices of Y and of the coupled sequence (cn) give expressions similar to those of well-

known methods (see Brezinski et al., 2018 for more details).
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3. Shanks-based transformations for general sequences

The approaches described in the previous section are all equivalent for a sequence belonging to the

Shanks kernel and they yield the exact limit or antilimit. It is clear however, that this is an idealistic

situation. For extrapolating sequences that do not belong to the Shanks kernel (1.1), we still write down

the systems of linear equations or the optimization problems giving the coefficients αi or βi (which now

depend on k and n), and define a sequence transformation as the same linear combination of terms as

above.

In the sequel, for the extrapolated vector, we use the double indexing t
(j)
i that highlights the fact that

the transformations require the j + 1 elements sn, . . . , sn+j of the sequence, in order to compute α or β.

Minimal residual: In the case of the minimal residual approaches there are k + 1 vectors involved

in the linear combination. Thus, since to compute α or β, we need the k +2 vectors sn, . . . , sn+k+1,

we have only the following two different transformations, with the same α and β (we denote the

second transformation with a tilde symbol over the t):

• t
(k+1)
n = [sn+1, . . . , sn+k+1]α = S(k+1)

n+1 α, or equivalently

t
(k+1)
n = sn+k+1 − [∆sn+1, . . . , ∆sn+k]β = sn+k+1 − ∆S(k)

n+1β,

• t̃
(k+1)
n = [sn, . . . , sn+k]α = S(k+1)

n α, or equivalently

t̃
(k+1)
n = sn+k − [∆sn, . . . , ∆sn+k−1]β = sn+k − ∆S(k)

n β,

where α ∈ R
k+1 solves (2.5) or (2.6) (Approach 1) and β ∈ R

k solves (2.8) or (2.10) (Approach 2

or 3) or (2.14) (coupled approach).

Topological: In the topological case, there are again k + 1 vectors involved in the linear

combination, but since we need the 2k + 1 vectors sn, . . . , sn+2k to compute α or β, we have k + 1

different transformations (depending on the choice of the vectors used in the linear combination),

but with the same α and β, and we have

• t
(2k)
n,i = [sn+i, . . . , sn+i+k]α = S(k+1)

n+i α, for i = 0, . . . , k
or equivalently

t
(2k)
n,i = sn+i+k − [∆sn+i, . . . , ∆sn+i+k−1]β = sn+i+k − ∆S(k)

n+iβ, for i = 0, . . . , k,

where α ∈ R
k+1 solves (2.11) (Approach 4) and β ∈ R

k given by (2.12) or (2.13) (Approach 5 or

6) or (2.15) (coupled approach). Among all the possible linear combinations, it seems more

appropriate to use those involving the last available vector of the sequence, which is the trans-

formation with i = k that uses sn+2k. In the sequel, to simplify the notation we will set t
(2k)
n = t

(2k)
n,k .

Of course, if the sequence belongs to the Shanks kernel, all the preceding transformations are equivalent

and give the same result, which is s.

Now let us show how to adapt and extend to our approaches the idea proposed in Scieur et al. (2020).

All the transformations summarized at the beginning of this section can be used, and the only change

deals with the computation of the coefficients αi or the βi. In Scieur et al. (2020), in order to overcome

the problems due to the ill conditioning of problem (2.5) (our Approach 1) the authors consider the

following regularized problem for the computation of the αi in the minimal residual approach:

αλ = arg min
γ∈Rk+1,eTγ=1

(
‖∆S(k+1)

n γ ‖2 + λ‖γ ‖2
)

,
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with λ ∈ R, and whose solution is (assuming that ∆S(k+1)
n is of full rank)

αλ =
((∆S(k+1)

n )T∆S(k+1)
n + λI)−1e

eT((∆S(k+1)
n )T∆S(k+1)

n + λI)−1e
.

Observe that an alternative approach would be to change the metric in the evaluation of the norm, i.e.,

instead of using the Euclidean norm, solve the problem

αM,λ = arg min
γ∈Rk+1,eTγ=1

(
‖∆S(k+1)

n γ ‖2
M + λ‖γ ‖2

)
, (3.1)

where ‖x‖2
M = (x, Mx) and M ∈ R

p×p is a positive definite matrix.

In what follows we will need M to be positive semidefinite only instead of positive definite. In this

case ‖ · ‖M is a seminorm but we abuse the terminology by calling it a ‘norm’.

With this, we have the following lemma.

Lemma 3.1 The solution of problem (3.1) is

αM,λ =
((∆S(k+1)

n )TM∆S(k+1)
n + λI)−1e

eT((∆S(k+1)
n )TM∆S(k+1)

n + λI)−1e
, (3.2)

and the corresponding extrapolated vector is

t(k+1)
n = S(k+1)

n+1 αM,λ or t̃
(k+1)
n = S(k+1)

n αM,λ. (3.3)

Proof. The result follows by writing problem (3.1) as

αM,λ = arg min
γ∈Rk+1,eTγ=1

(
γ T(∆S(k+1)

n )TM∆S(k+1)
n γ + λγ Tγ

)
,

and by applying a technique analogous to that used in Scieur et al. (2020). From (2.3) we

obtain (3.3). �

Motivated by the equivalence of all the approaches described in Section 2.1 for sequences in the

Shanks kernel, we can thus introduce the following problem:

βM,λ = arg min
η∈Rk

(
‖∆sn+k − ∆2S(k)

n η‖2
M + λ‖η‖2

)
, (3.4)

where M is a semipositive definite matrix. Referring to the gradient of the function g(η) = ‖∆sn+k −
∆2S(k)

n η||2M + λ‖η‖2, the solution of (3.4) is given by

βM,λ = ((∆2S(k)
n )TM∆2S(k)

n + λI)−1(∆2S(k)
n )TM∆sn+k, (3.5)

and hence, the corresponding extrapolated vector is

t(k+1)
n = sn+k+1 − [∆sn+1, . . . , ∆sn+k]βM,λ (3.6)
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or

t̃
(k+1)
n = sn+k − [∆sn, . . . , ∆sn+k−1]βM,λ. (3.7)

In particular, if M = YYT where Y ∈ R
p×k is a given matrix and λ = 0, we have

(∆2S(k)
n )TY

(
YT∆2S(k)

n βYYT,0 − YT∆sn+k

)
= 0.

When rank(YT∆2S(k)
n ) = k, we see that Approach 3 (2.10) is a particular case of problem (3.4). As

we already observed, different choices of Y ∈ R
p×k give rise to different acceleration performances for

different types of sequences.

Similarly, following the idea of the topological approaches of Section 2.2, we consider the problems

αM,λ = arg min
γ∈Rk+1,eTγ=1

(
‖∆S

(k+1)

n γ ‖2
M + λ‖γ ‖2

)
(3.8)

or

βM,λ = arg min
η∈Rk

(
‖∆S

(1)

n+k − ∆2S
(k)
n η‖2

M + λ‖η‖2
)

, (3.9)

where, in both cases, M ∈ R
kp×kp is a semipositive definite matrix. The solution of (3.8) is

αM,λ =
((∆S

(k+1)

n )TM∆S
(k+1)

n + λI)−1e

eT((∆S
(k+1)

n )TM∆S
(k+1)

n + λI)−1e
, (3.10)

and the corresponding extrapolated vector is

t(2k)
n = S(k+1)

n+k αM,λ. (3.11)

The solution of problem (3.9) is

βM,λ = ((∆2S
(k)
n )TM∆2S

(k)
n + λI)−1(∆2S

(k)
n )TM∆S

(1)

n+k

and the corresponding extrapolated vector is

t(2k)
n = sn+2k − [∆sn+k, . . . , ∆sn+2k−1]βM,λ. (3.12)

We set M = YYT with Y ∈ R
kp×k and rank(YT∆2S

(k)
n ) = k. If λ = 0, we see that Approach 6 is

a particular case of problem (3.9). If Y = Ik ⊗ y, for some y ∈ R
p, we obtain a method similar to the

topological Shanks transformation (Brezinski, 1975).

We refer the reader to Section 6 for a discussion of different possible strategies for the selection of

the regularization parameter λ.
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4. Possible uses of acceleration strategies

In this section and in the following one, we consider the solution of the fixed-point problem G(s) = s.

There are three ways to proceed.

The simplest way is to use an extrapolation method. The vectors sn are generated one by one by

Picard’s iteration as sn+1 = G(sn), n = 0, 1, . . . , from a given s0. The extrapolation method is applied

after each computation of a new vector sn by using a certain number of the preceding Picard iterates to

produce a completely new extrapolated sequence. This procedure is called the acceleration method but

it is not used in this paper (see Brezinski & Redivo-Zaglia, 2017 for details).

The second way consists in computing a certain number of Picard iterates, then using these in one

of the extrapolation techniques introduced in Section 3, and finally to restarting the Picard iterates from

the extrapolated vector that has been obtained. This is the Restarted Method (RM) treated below.

In the third way, the process builds its own sequence step by step. Each term of the sequence

is obtained by combining, in a certain manner, Picard iterates, preceding terms of the sequence and

extrapolated ones. We will focus on three possible algorithms of this type that are termed Continuous-
Updating (CU), presented in this section, the ATM and the periodic ATM methods, both discussed

in Section 5. The difference between these procedures lies in the way in which previous iterates are

combined in the process to obtain a new vector.

4.1 Restarted method

In this methodology, already described, for example, in Brezinski (1970), Brezinski & Redivo-Zaglia

(2017), Gekeler (1972), a certain number of Picard iterates are produced, an extrapolation strategy is

then applied to them and the Picard iterates are restarted from the extrapolated vector; see Algorithm 1.

The sequence of successive extrapolated terms will be denoted by (xj).

Observe that ℓk = k + 2 if we use (3.3) or (3.6), and ℓk = 2k + 1 if we use (3.11) or (3.12). In the

particular case of (3.6), we have

t
(k+1)
0 = sk+1 − GM,λ∆sk

where

GM,λ = [∆s1, . . . , ∆sk]((∆2S(k)
0 )TM∆2S(k)

0 + λI)−1(∆2S(k)
0 )TM.
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Setting fk = G(sk) − sk = ∆sk we have

t
(k+1)
0 = sk+1 − GM,λfk.

Therefore, we can interpret the RM as a cyclic projection method (see Galántai, 2003 and Brezinski,

1997 for the linear case) for the solution of the problem F(s) = 0 where F(s) = G(s) − s.

The idea of the RM, which is to interleave a certain number of Picard iterates with one extrapolation

step, can also be used in the CU and in the ATM methods (see Section 5 where a general ‘periodic’

algorithm of this type is presented).

A particular case of the RM is the generalized Steffensen method (GSM), which corresponds to the

case where the dimension of the projection space coincides with the dimension of the system, which is

for k = p. Under some assumptions, when λ = 0 and M = I, the sequence (xj) obtained by the GSM

asymptotically converges quadratically to the fixed point s∗ of G even if G is not a contraction. The GSM

is a generalization of the well-known Steffensen method (Steffensen, 1933) when p = 1. It was first

proposed by Brezinski (1970) and Gekeler (1972) for the case of the vector ε-algorithm, but there was a

gap in their proofs as in that of Skelboe for the MPE (Smith et al., 1988) as noticed in Skelboe (1980).

The first complete proof of the quadratic convergence of the GSM was given by Ortega & Rheinboldt

(1970, p. 373) for Henrici’s method (Henrici, 1964, pp. 115 ff.) (a particular case of the MMPE), Le

Ferrand (1992) for the first topological Shanks transformation of Brezinski (1975) and Jbilou and Sadok

for the MPE and the RRE (Jbilou & Sadok, 1991).

4.2 CU method

In this approach the sequence is continuously accelerated by computing a new basic iterate at each step,

using it in the extrapolation process and, after the computation of the extrapolated vector, replacing the

new basic iterate computed before by it. Thus, when compared with the original fixed-point sequence,

the CU scheme builds a completely new sequence whose iterates replace those of the original sequence.

We start with the minimal residual approach for computing the αi. We have the CU method given in

Algorithm 2.
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Algorithm 3 uses formulas (3.5) and (3.7) (i.e. the βi, which solve problem (3.4), are computed by

(3.5))

As in Algorithm 2, the new fixed-point iterate sj+1 is used only for computing βM,λ. Thereafter, this

iterate is not used in the linear combination for computing the extrapolated vector as it is replaced by

the extrapolated one that is computed.

It is possible to highlight the connection between acceleration techniques and the projection

framework. We define

G(j)
M,λ = [∆sj−mj

, . . . , ∆sj−1]((∆2S
(mj)

j−mj
)TM∆2S

(mj)

j−mj
+ λI)−1(∆2S

(mj)

j−mj
)TM.

If we set fj = G(sj) − sj = sj+1 − sj (where here sj+1 denotes the Picard iteration) we can compute a

new vector sj+1 as

sj+1 = sj − G(j)
M,λfj.

Observe that G(j)
M,λ satisfies the following multisecant condition, see, e.g., Fang & Saad (2009) (when

λ = 0):

G(j)
M,λ∆

2S
(mj)

j−mj
= [∆sj−mj

, . . . , ∆sj−1].

It is interesting to notice that, when λ �= 0, we obtain a class of regularized projection methods, which

do not yet seem to have been fully investigated in the literature.

For the sake of simplicity, we did not present here the topological approaches of Section 2.2, but the

preceding algorithms can be easily modified for these transformations.

5. ATM methods

AA (also known as Anderson mixing) is a technique originally presented in Anderson (1965) for

solving systems of nonlinear equations written as F(s) = G(s) − s = 0. In this section we generalize

the basic version of AA as given by Walker & Ni (2011) or by Higham & Strabić (2016). The
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main idea of this generalization is that a procedure similar to AA can be built up with any of the

Shanks transformations. We will name such methods ATM to emphasize the fact that, as will be

explained, these methods use a CU scheme, which mixes information coming out from two different

sequences.

Indeed, in the framework of the CU scheme presented in Section 4.2, two different sequences are

generated, i.e., the continuously updated sequence (sj) on the one hand, and the sequence (G(sj)) on the

other. The main feature of the Anderson-mixing strategy is that it combines the information coming from

these two sequences in order to obtain a better acceleration procedure. We will prove that it coincides

with a quasi-Newton strategy. Since, in this case, the sequence (sj) is not generated by a fixed-point
iteration, we also consider the sequence (fj), where fj = G(sj) − sj = gj − sj, which does not coincide

with the sequence (∆sj).

Algorithm 4 shown below is a prototype version of the ATM method where we define

F
(mj)

j−mj
≡ [fj−mj

, . . . , fj−1]

and use the previous notation S
(mj)

j−mj
≡ [sj−mj

, . . . , sj−1].

The scalar β, usually a fixed positive value with 0 < β ≤ 1, is called a mixing or damping parameter.

It is also possible to change it at each cycle, and it can be used to improve convergence. A common

choice is to take β = 1. In this case, since gj = G(sj) = sj + fj we can define

G
(mj)

j−mj
= [gj−mj

, . . . , gj−1] = S
(mj)

j−mj
+ F

(mj)

j−mj
.

By denoting gj = sj + fj = gj − ∆G
(mj)

j−mj
θ (j), the new iterate can be simply computed as sj+1 = gj. This

is the so-called undamped iterate.
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Let us point out that line 8 in Algorithm 4 can be alternatively written as

sj+1 = sj − (−βfj + (∆S
(mj)

j−mj
+ β∆F

(mj)

j−mj
)θ (j)) (5.1)

and that different choices of θ (j) give rise to different ATMs. Some particular cases are described in the

sequel.

The original AA is obtained when

θ (j) = arg min
η∈Rmj

‖fj − ∆F
(mj)

j−mj
η‖2, (5.2)

that is, assuming that the columns of ∆F
(mj)

j−mj
are linearly independent,

θ (j) = ((∆F
(mj)

j−mj
)T∆F

(mj)

j−mj
)−1(∆F

(mj)

j−mj
)Tfj.

Remark 5.1 It is interesting to observe that defining θ (j) as

θ (j) = arg min
η∈Rmj

‖∆sj − ∆2S
(mj)

j−mj
η‖2,

i.e., using (2.7), would be a good choice if the sequence (sj) is close to the Shanks kernel. Instead, in the

original AA the derivation of the θ (j) using (5.2) could be interpreted as an implicit assumption that the

sequence (fj) is closer to the Shanks kernel than the sequence (sj).

From (5.1) we have

sj+1 = sj − (−βI + (∆S
(mj)

j−mj
+ β∆F

(mj)

j−mj
)((∆F

(mj)

j−mj
)T∆F

(mj)

j−mj
)−1(∆F

(mj)

j−mj
)T)fj, (5.3)

as also observed in Brezinski et al. (2018), Fang & Saad (2009).

Formula (5.1) highlights the connections between Anderson mixing and quasi-Newton methods.

Indeed, in this case, defining

H(β)

j = −βI + (∆S
(mj)

j−mj
+ β∆F

(mj)

j−mj
)((∆F

(mj)

j−mj
)T∆F

(mj)

j−mj
)−1(∆F

(mj)

j−mj
)T,

we can write

sj+1 = sj − H(β)

j fj,

with H(β)

j satisfying the multisecant condition H(β)

j ∆F
(mj)

j−mj
= ∆S

(mj)

j−mj
. In the next section we will fully

make use of this idea: by introducing a stabilization procedure to overcome problems connected to the

ill conditioning of the matrix (∆F
(mj)

j−mj
)T∆F

(mj)

j−mj
, it is possible to prove the local linear convergence of

the AA method.
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As indicated in the previous section, it is also possible to define a periodic ATM method whereby

acceleration steps are interspersed with linear updates at regular intervals. Fixing the period µ ∈ N, with

µ ≥ 1, an Anderson-type update is made each µ iterations. In between these updates, when µ > 1, the

iterates are computed simply as a linear mixing sj+1 = sj +βfj, where β is the mixing parameter (β = 1

corresponds to Picard’s iteration). Clearly, when µ = 1 Algorithm 5 coincides with Algorithm 4.

It is important to underline that the values of µ and m can be chosen independently. However,

when µ ≥ 3 and we choose m = µ − 2, then the terms used for computing the Anderson-type

update are only those terms obtained by the linear mixing update, and therefore in this situation

Algorithm 5 proceeds as an RM method of Algorithm 1, with a different restarting formula. It must also

be noticed that Algorithm 5 with θ (j) computed as in (5.2) is exactly the periodic Pulay method (Banerjee

et al., 2016; compare also with (5.3)). Interleaving AA with fixed-point iterations for improving the

global convergence properties, but not necessarily the speed, has been recognized before in the physics

literature as can be seen from the related discussion and the references in Banerjee et al. (2016). This idea

is also somewhat similar to the A2DR (Anderson accelerated Douglas–Rachford) algorithm proposed

in Fu et al. (2020).

To start the derivation of the new ATMs, we observe that a possible generalization for the derivation

of the θ (j) can be obtained by using the coupled sequences defined in Section 2.3, that is, by taking

θ (j) = (YT∆C
(mj)

j−mj
)−1YTcj. (5.4)

If we take cj = fj for all j, and Y = ∆C
(mj)

j−mj
= ∆F

(mj)

j−mj
we recover the AA choice for θ (j). It is easy

to see that taking into account the transformations defined at the beginning of Section 3, if we consider

the extrapolated vector t̃
(mj+1)

j−mj
= sj − ∆S

(mj)

j−mj
θ (j) we recover exactly the sj computed in Algorithms 4

and 5. If, in this relation, we extrapolate the coupled sequence (fj) with the same θ (j), we obtain fj.

An additional generalization can be made by considering, as in problem (3.4), a different

metric in the evaluation of the norm, and also a regularization parameter λ. We consider the
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problem

θ
(j)
M,λ = arg min

η∈Rmj

(
‖cj − ∆C

(mj)

j−mj
η‖2

M + λ‖η‖2
)

. (5.5)

The solution is

θ
(j)
M,λ = ((∆C

(mj)

j−mj
)TM∆C

(mj)

j−mj
+ λI)−1(∆C

(mj)

j−mj
)TMcj. (5.6)

By taking in (5.6) cj = fj and M = I, that is, by introducing only an ℓ2-regularization term in the

original AA problem, we obtain a method that we call Regularized Anderson Acceleration (in short

RAA).

If we take M = YYT and λ = 0, it is possible to see that θ
(j)
M,λ in (5.6) can be obtained, alternatively,

as the solution of the linear system

(∆C
(mj)

j−mj
)TY(YT∆C

(mj)

j−mj
θ

(j)
YYT,0

− YTcj) = 0,

corresponding exactly to (5.4), assuming that rank((∆C
(mj)

j−mj
)TY) = mj.

The ATM methods can thus be obtained by considering the coupled sequence (cj) = (fj) fixed and

changing the matrix Y . The following particular cases are of interest:

1. ATM-RRE: Y = [∆2sj−mj
, . . . , ∆2sj−1] = ∆2S

(mj)

j−mj
∈ R

p×mj corresponds to a method in the

style of the RRE. For this choice, since we also need knowledge of the vector sj+1, we have to

edit Algorithm 4 slightly by beginning the loop (line 2) with j = 2 and by adding before it the

computation of s2 = s1 + βf1. Modifications that take this into account must also be made in

Algorithm 5. The choice Y = [∆2fj−mj
, . . . , ∆2fj−1] = ∆2F

(mj)

j−mj
∈ R

p×mj is also possible.

2. ATM-MPE: Y = [∆sj−mj
, . . . , ∆sj−1] = ∆S

(mj)

j−mj
∈ R

p×mj or Y = [fj−mj
, . . . , fj−1] = F

(mj)

j−mj
∈

R
p×mj leads to two methods in the style of the MPE.

3. ATM-MMPE: Y = [y1, . . . , ymj
] ∈ R

p×mj leads to an ATM in the style of the MMPE.

4. ATM-TEA: suitably modifying the structure of Algorithms 4 and 5, it is possible to use a

topological approach (see Section 2.2) to obtain the coefficients θ
(j)
M,λ. As in Section 4.2 we omit

all the details for the sake of brevity.

Before concluding this section, we point out that the introduction of an ℓ2-regularization term for AA

has already been studied in recent papers (Anderson, 2019; Fu et al., 2020; Ouyang et al., 2020), and

that (5.5) represents a generalization to the ATM methods of the ℓ2-regularization approach for AA.

In Section 6, for the particular AA case, we will propose and experimentally analyze the choice of the

regularization parameter λ using the Generalized Cross Validation (Golub et al., 1979). This choice

represents a major difference from the above-mentioned works, where the choice of the regularization

parameter is made adaptively based on quantities related to the most recent iterates (see, for example, Fu

et al., 2020, eq. (3.4) and Ouyang et al., 2020, eq. (3)). Sections 5.1 and 5.2 below further justify/clarify

the introduction of an ℓ2-regularization strategy.
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5.1 Stabilized AA

The aim of this section is to present an algorithm that can be viewed as a stabilized version of the AA

method. In particular, in this new version of AA, a check on the linear independence of the vectors ∆fd
is performed (lines 7–16): the residual difference ∆fd is discarded if its projection f̂d onto the orthogonal

of the previously computed residual differences is close to the null vector, i.e., if it results in a vector

of sufficiently small norm when compared to the original one (see Section 5.2 for further details). It

is interesting to note that when, in Algorithm 6, we choose m = 1 (and likely for small values of m)

the introduced stabilization procedure is not required and Algorithm 6 coincides with the classic AA

scheme (compare, in this case, (5.3) and the update at line 20 in Algorithm 6).

T

T T

5.1.1 Local convergence. There already exist in the literature different proofs of the local conver-

gence for the stabilized versions of AA; see, for example, Fu et al. (2020), Gay & Schnabel (1978),

Ouyang et al. (2020), Rohwedder (2010), Rohwedder & Schneider (2011). In principle, our convergence

analysis can be obtained using ideas and techniques from Rohwedder (2010, Sec. 4.2), but we prefer to

present here a full detailed proof. The reasons to present such a detailed proof can be mainly summarized

as follows: (a) our derivation is not completely analogous to that in Rohwedder (2010): simplifying

some arguments, we are able to obtain slightly more general results than those presented in Rohwedder
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(2010, Sec. 4.2) (the interested reader can compare our Theorem 5.8 with Rohwedder, 2010, Th. 4.10);

(b) our analysis does not require the contractivity or nonexpansivity of the fixed-point map G, a major

difference if compared to what has been proved in Fu et al. (2020), Ouyang et al. (2020); (c) our proof

of convergence holds for every mixing parameter β ∈ R, shedding further light on the significance and

the relevance of the parameter β in the AA procedure: it can be interpreted as a scaling factor of the

initial Jacobian approximation (see Theorem 5.8); (d) when m = 1, since Algorithm 6 coincides with

the classic AA scheme (see the beginning of Section 5.1), we obtain, as a by-product of our analysis, an

alternative proof of that given in Toth & Kelley (2015, Sec. 2.3) for the convergence of the classic AA

with m = 1 without assuming, once more, any contractivity of the fixed-point map G. We consider the

function F(s) = G(s) − s, and we make the following assumption:

Assumption 5.2 F : Rn → Rn is differentiable in a open convex set E ⊆ R
n and there exists s∗ ∈ E

such that f∗ = F(s∗) = 0. Moreover, J = F′(s∗) is invertible and for all s ∈ E we have

‖F′(s) − F′(s∗)‖ ≤ L‖s − s∗‖.

The above assumption implies that

‖F(u) − F(v) − J(u − v)‖ ≤ L‖u − v‖ max{‖u − s∗‖, ‖v − s∗‖}

for all u, v ∈ E and that there exists Uκ(s∗) := {u ∈ R
n : ‖u − s∗‖ ≤ κ} s.t., for some ρ > 0,

1

ρ
‖u − v‖ ≤ ‖F(u) − F(v)‖ ≤ ρ‖u − v‖.

In the remainder of this section we use the notation introduced in Algorithm 6.

Lemma 5.3 The matrices H(β)

j (defined at line 19 of Algorithm 6) satisfy the multisecant condition

H(β)

j ∆F
Ij

= ∆S
Ij

.

Proof. The proof is by direct verification. �

Lemma 5.4 H(β)

j can be computed recursively from H0
j = −βI using

Hd
j = Hd−1

j +
(∆skd

− Hd−1
j ∆fkd

)̂f
T

kd

f̂
T
kd

∆fkd

for d = 1, . . . , m̂j

with H
m̂j
j = H(β)

j (see line 17 in Algorithm 6 for the definitions of f̂kd
). In particular, for all

d = 1, . . . , m̂j, we have Hd
j ∆fkp

= ∆skp
for p = 1, . . . , d.

Proof. Define Z ∈ R
n×n−m̂j as a basis for span(∆F

Ij
)⊥. From the definition of H(β)

j we have H(β)

j Z =
−βZ and H(β)

j ∆F
Ij

= ∆S
Ij

. To prove the theorem, we will prove (by induction) that H
m̂j

j satisfies the

same relations. For d = 1 we have H1
j = H0

j +
(∆sk1

−H0
j ∆fk1

)̂f
T
k1

f̂
T
k1

∆fk1

and hence H1
j ∆fk1

= ∆sk1
. Suppose now
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the assumption is true for d = ℓ. By definition we have Hℓ+1
j ∆fkℓ+1

= ∆skℓ+1
and Hℓ+1

j ∆fkp
= ∆skp

for all p = 1, . . . , ℓ since f̂kℓ+1
⊥ ∆fkp

. Finally, since

span(̂fk1
, . . . ,̂ fkm̂j

) = span(∆fk1
, . . . , ∆fkm̂j

),

this implies that Z is also a basis for span(̂fk1
, . . . ,̂ fkm̂j

)⊥, and hence we have H
m̂j
j Z = −βZ. The result

follows observing that, since [∆F
Ij

, Z] is invertible, the equation B[∆F
Ij

, Z] = [∆S
Ij

, −βZ] has a

unique solution. �

Observe that, as already pointed out in Zhang et al. (2020), Lemma 5.4 highlights the connections

between the Jacobian approximations produced by the bad (or type-II) Broyden update (Broyden, 1965)

and the matrices produced by AA.

Lemma 5.5 Let us define ŝk1
= ∆sk1

and for d = 2, . . . , m̂j define ŝkd
= ∆skd

− Hd−1
j Q

kd−1

k1
∆fkd

where

Q
kd−1

k1
=

∑d−1
p=1 (̂fkp̂

f
T

kp
/̂f

T

kp̂
fkp

). Then H(β)

j can be computed recursively from H0
j = −βI using

Hd
j = Hd−1

j +
(̂skd

− Hd−1
j f̂kd

)̂f
T

kd

f̂
T

kd̂
fkd

for d = 1, . . . , m̂j

with H
m̂j
j = H(β)

j . In particular, for all d = 1, . . . , m̂j, we have Hd
j f̂kp

= ŝkp
for p = 1, . . . , d.

Proof. The proof follows from the definition of Hd
j , and observing that

f̂kd
= (I − Q

kd−1

k1
)∆fkd

⇒ f̂
T

kd̂
fkd

= f̂
T

kd
∆fkd

(since (I − Q
kd−1

k1
) is a projector) and that ŝkd

− Hd−1
j f̂kd

= ∆skd
− Hd−1

j ∆fkd
. �

Lemma 5.6 Suppose that skd
, skd+1 ∈ Uκ(s∗) for all d = 1, . . . , m̂j. Then the following inequality is

satisfied:

‖̂skd
− J−1̂fkd

‖ ≤ C‖∆fkd
‖

d∑

p=1

n
kp+1

kp
(2τ)p−d,

where C = ‖J−1‖Lρ and n
kp+1

kp
= max{‖skp+1 − s∗‖, ‖skp

− s∗‖}.

Proof. For d = 1 we have

‖̂sk1
− J−1̂fk1

‖ = ‖∆sk1
− J−1∆fk1

‖ ≤ C‖∆fk1
‖nk1+1

k1
,
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where the last inequality follows from Assumption 5.2. Suppose now the assumption is true for d = ℓ.

To prove the statement for d = ℓ + 1 we have

‖̂skℓ+1
− J−1̂fkℓ+1

‖ ≤ ‖∆skℓ+1
− J−1∆fkℓ+1

‖ + ‖Hℓ
j Qkℓ

k1
∆fkℓ+1

− J−1Qkℓ

k1
∆fkℓ+1

‖

≤ C‖∆fkℓ+1
‖n

kℓ+1+1

kℓ+1
+

ℓ∑

p=1

‖Hℓ
j f̂kp

− J−1̂fkp
‖

‖̂fkp
‖

‖∆fkℓ+1
‖

= C‖∆fkℓ+1
‖n

kℓ+1+1

kℓ+1
+

ℓ∑

p=1

‖̂skp
− J−1̂fkp

‖
‖̂fkp

‖
‖∆fkℓ+1

‖

≤ C‖∆fkℓ+1
‖(nkℓ+1+1

kℓ+1
+τ

ℓ∑

p=1

p∑

h=1

nkh+1
kh

(2τ)p−h)

=C‖∆fkℓ+1
‖(nkℓ+1+1

kℓ+1
+τ

ℓ∑

p=1

n
kp+1

kp

ℓ−p∑

h=0

(2τ)h),

where, in the first inequality we use the definition of ŝkℓ+1
, in the second inequality we use the definition

of Qkℓ

k1
, in the first equality we use the fact that Hℓ

j f̂kp
= ŝkp

for p = 1, . . . , ℓ (see Lemma 5.5) and, in

the third inequality we use our induction hypothesis. Finally, since

ℓ−p∑

h=0

(2τ)h ≤ τ ℓ−p
ℓ−p∑

h=0

2h = τ ℓ−p(2ℓ−p+1 − 1) ≤ τ ℓ−p2ℓ−p+1,

we have

C‖∆fkℓ+1
‖


n

kℓ+1+1

kℓ+1
+ τ

ℓ∑

p=1

n
kp+1

kp

ℓ−p∑

h=0

(2τ)h


 ≤ C‖∆fkℓ+1

‖
ℓ+1∑

p=1

n
kp+1

kp
(2τ)ℓ+1−p,

which concludes the proof. �

Lemma 5.7 The following equality is satisfied:

H(β)

j − J−1 = (−βI − J−1)(I − Q
km̂j
k1

) +
m̂j∑

d=1

(̂skd
− J−1̂fkd

)̂f
T

kd

f̂
T

kd̂
fkd

.

Moreover, if skd
, skd+1 ∈ Uκ(s∗) and nkd+1

kd
≤ ε for all d = 1, . . . , mj, there exists a constant α =

α(τ , m, C) such that

m̂j∑

d=1

‖(̂skd
− J−1̂fkd

)̂f
T

kd
‖

f̂
T

kd̂
fkd

≤ αε.
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Proof. The first part of the statement follows from direct computation using the fact that the vectors f̂kd
are orthogonal (see also Rohwedder, 2010, Lemma 4.17). For the second part, observe that

m̂j∑

d=1

‖(̂skd
− J−1̂fkd

)̂f
T

kd
‖

f̂
T
kd̂

fkd

≤
m̂j∑

d=1

‖(̂skd
− J−1̂fkd

)‖
‖̂fkd

‖

≤ C

m̂j∑

d=1

‖∆fkd
‖

‖̂fkd
‖

d∑

p=1

nnd+1
kd

(2τ)d−p ≤ εCτ

m̂j∑

d=1

d∑

p=1

(2τ)d−p

≤ εCτ

m∑

d=1

d−1∑

h=0

(2τ)h ≤ εCm(2τ)m,

where in the second inequality we use Lemma 5.6 and in the fourth one the fact that m̂j ≤ mj ≤ m for

all j. �

Theorem 5.8 Let s0, s1, . . . be the iterates produced by Algorithm 6 (stabilized AA). Then, for all

q ∈ (0, 1), there exists δ = δ(q, α), ε(q, α) such that if

‖ − βI − J−1‖ ≤ δ and ‖s0 − s∗‖ ≤ ε,

we have

sj+1 ∈ E and ‖sj+1 − s∗‖ ≤ q‖sj − s∗‖

for all j ∈ N.

Proof. For a fixed q, choose δ and ε such that

‖J−1‖Lε + ρ(δ + αε) < q

in a way that Uε(s
∗) ⊆ Uκ(s∗) ⊆ E (where κ and α are the same as in Lemma 5.7, and ρ is the same as

in Assumption 5.2). For j = 0 we have

‖s1 − s∗‖ ≤ ‖s0 + βf0 − s∗‖ ≤ ‖s0 − s∗ − J−1(f0 − f∗)‖ + ‖(−βI − J−1)(f0 − f∗)‖

≤ ‖J−1‖‖J(s0 − s∗) − (f0 − f∗)‖ + δ‖f0 − f∗‖ ≤ (‖J−1‖Lε + δρ)‖s0 − s∗‖

≤ q‖s0 − s∗‖ ≤ ε,
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which proves that s1 ∈ Uε(s
∗). Assume now that, for all j ≥ 0, ‖sj − s∗‖ ≤ qj‖s0 − s∗‖ and hence that

sj ∈ Uε(s
∗). We have

‖sj+1 − s∗‖ = ‖sj − H(β)

j fj − s∗‖

≤ ‖J−1‖‖J(sj − s∗) − (fj − f∗)‖ + ‖H(β)

j − J−1‖‖fj − f∗‖

≤ ‖J‖−1L‖sj − s∗‖2 + ρ‖H(β)

j − J−1‖‖sj − s∗‖

≤ (‖J‖−1Lqjε + ρ(δ + αε))‖sj − s∗‖ ≤ q‖sj − s∗‖,

where in the last inequality we use our induction hypothesis and Lemma 5.7. �

It is interesting to note that, in the particular case that G is contractive, Theorem 5.8 proves that, at

least locally, the stabilized version of AA (Algorithm 6) could improve the rate of convergence of the

fixed-point map sj+1 = G(sj) since the linear convergence parameter q in Theorem 5.8 can be chosen

smaller than the contraction factor of G (see also Evans et al., 2020; Ouyang et al., 2020). Observe,

moreover, that if the inequality ‖ − βI − J−1‖ ≤ δ is not fulfilled, we can consider the preconditioned
nonlinear function F̃ = P−1F where P is some approximation of J = F(s∗), and we obtain in this way

‖ − βI − J−1P‖ ≤ δ.

Finally, let us observe that, as customary in the quasi-Newton literature, we can improve the global

convergence properties of the AA procedure by introducing a step-length parameter αj and transforming

the sequence generated by Algorithm 6 into the sequence

sj+1 = sj − αjH
(β)

j fj.

5.2 Connections between stabilized AA and regularized ATM

As already pointed out in the previous section, from a theoretical point of view, the stabilization

procedure introduced in Algorithm 6, in order to ensure the convergence, aims to detect a subset of

the vectors in ∆F
(mj)

j−mj
that are sufficiently linearly independent: the proposed stabilization procedure in

Algorithm 6 (lines 7–16) can be interpreted simply as a Gram–Schmidt procedure with threshold, i.e.,

the residual difference ∆fd is discarded if it is close to a vector linearly dependent from the previously

computed residual differences. The above observation naturally links the stabilization procedure with

rank-revealing QR factorizations (Chan, 1987; Gu & Eisenstat, 1996). We find this issue particularly

interesting and deserving of further investigation. Here we prefer to adopt a regularization point of

view, as in Anderson (2019), Fu et al. (2020), Ouyang et al. (2020), Scieur et al. (2020), to motivate

the introduction of the regularization parameter λ in the ATM methods as we did at the beginning of

Section 5. To this end, let us consider the ATM obtained by (5.6) with cj = fj and M = I. As already

pointed out, when λ = 0 it coincides with the classical AA but, when λ �= 0, the method obtained can

be viewed as an RAA.

In this setting, we interpret the magnitude of the singular values of the matrix ∆F
(mj)

j−mj
as a

measure of the linear independence of its columns: the presence of linearly dependent vectors in

∆F
(mj)

j−mj
is highlighted by the presence of very small singular values. Let us consider now the SVD

decomposition ∆F
(mj)

j−mj
= UΣVT. We add a regularization parameter λ to the matrix Σ and we set
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∆F̃
(mj)

j−mj
= U

√
Σ2 + λIVT. By direct computation, it is possible to show that (5.6) can be written as

θ
(j)
I,λ = ((∆F̃

(mj)

j−mj
)T∆F̃

(mj)

j−mj
)−1(∆F

(mj)

j−mj
)Tfj.

The statement regarding the linear independence of the columns of the matrix ∆F̃
(mj)

j−mj
can be obtained

by observing that all its singular values are bounded from below by
√

λ. We consider the above argument

as an explanation of the fact that the introduction of a regularization parameter in the AA method (and,

in general, in all the ATMs) could achieve numerically the same task as the stabilization procedure of

Algorithm 6. Adopting a quasi-Newton point of view, it is important to observe that using (5.1) with

θ (j) = θ
(j)
I,λ, the ATM update (see line 8 in Algorithm 4) can be written as

sj+1 = sj − H̃(β)

j fj,

with

H̃(β)

j = −βI + (∆S
(mj)

j−mj
+ β∆F

(mj)

j−mj
)((∆F̃

(mj)

j−mj
)T∆F̃

(mj)

j−mj
)−1(∆F

(mj)

j−mj
)T. (5.7)

The quasi-Newton matrices defined in (5.7) satisfy only an approximated multisecant condition, namely

H̃(β)

j ∆F
(mj)

j−mj
= ∆S

(mj)

j−mj
+ β(∆F

(mj)

j−mj
((∆F̃

(mj)

j−mj
)T∆F̃

(mj)

j−mj
)−1(∆F

(mj)

j−mj
)T∆F

(mj)

j−mj
− ∆F

(mj)

j−mj
),

which represents a noteworthy difference from the multisecant conditions satisfied by the quasi-Newton

matrices used in the classical AA and in its stabilized version (see Lemma 5.3).

6. Numerical results

In this section we investigate the numerical behavior of some of the methods studied in the previous

sections for different test problems.

6.1 Details on the methods and their implementations

We select a subset of the methods presented in the previous sections with the main aims to compare their

numerical performance (with a focus on the rate of convergence), and to prove that the acceleration

performance they deliver behaves consistently. Our choices are, among other things, driven by the

fact that all the acceleration methods considered share the same order of complexity (linear in the

dimension of the problem) per acceleration step. A comprehensive detailed numerical study and the

relative implementations of all the methods described in the previous sections are out of the scope of this

work and are postponed to future works. Table 1 summarizes the methods we consider in our numerical

experiments. In the first column we report the name and the relative abbreviation for the particular

acceleration scheme we consider. In the second column we report the reference equations of the

acceleration scheme and, for the sake of completeness, in the third column we report the strategy type of

the considered acceleration: RM or CU. Finally, in the last column, we report the details concerning the

choice of the regularization parameter: in the Grid Search (GS) approach the regularization parameter

λ is chosen, as proposed in Scieur et al. (2020), as the parameter that achieves the smallest fixed-point
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Table 1 Methods tested

Name Ref. eq. Type Choice of λ

Singular Value Decomposition Acceleration (SVDA) (2.6) RM λ = 0
Regularized Nonlinear Acceleration (RNA) (3.2) RM GS (Alg. 7)
Regularized Reduced Rank Extrapolation (RRRE) (3.5) RM GCV, Golub et al. (1979)
Regularized Topological Shanks Acceleration (RTSA) (3.10) RM GS (Alg. 7)
Anderson Acceleration (AA) with 0 < β ≤ 1 (5.3) CU λ = 0
Regularized Anderson Acceleration (RAA) (5.7) CU GCV, Golub et al. (1979)

residual; the interval [10−12, 1] is discretized logarithmically into 7 values of λ (for more details see

Algorithm 7, which is a modification of Algorithm 1) among which, one of them, λ, is selected. For the

sake of completeness, let us recall that, also in this new algorithm, ℓk = k + 2 if we use (3.3) or (3.6),

and ℓk = 2k + 1 if we use (3.11) or (3.12) For the Generalized Cross Validation (GCV) approach,

which is a natural approach for regularizing ill-posed regression-like problems, we refer the interested

reader to Golub et al. (1979).

Let us point out that, to the best of our knowledge, among the methods presented in Table 1,

RTSA and RRRE/RAA with the regularization parameter chosen using the GCV are new approaches

introduced in this work. Instead, for the other methods, we refer in particular to Sidi (2003)

for the SVDA (which is called SVD-MPE in the original paper) and to Scieur et al. (2020) for

the RNA.

Finally, we mention that in all the numerical experiments we used M = I and that, in the SVDA

approach, we use as extrapolated term t
(k+1)
n = S(k+1)

n+1 α where α is the normalized singular vector

corresponding to the smallest singular value of ∆S(k+1)
n (see equation (2.6)).

All the numerical experiments are performed on a laptop running Linux with 16 Gb memory and

CPU Intel� CoreTM i7-4510U with a clock speed of 2.00 GHz. The code is written and executed in

Python. For the discretization of the PDEs we used Fenics (Alnæs et al., 2015) and, for the GCV
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Fig. 1. PageRank problem.

choice of the regularization parameter, we used the Scikit-learn package (Pedregosa et al., 2011).

Throughout the experiments, to show and test the robustness of the different extrapolation approaches,

we base all our extrapolation schemes on seven previous iterates, i.e., ℓk = 7 in Algorithm 7 or m = 7

in Algorithm 4.

6.2 PageRank

The aim of this first numerical example is to highlight the benefits of introducing regularization

strategies in Shanks-based extrapolation methods. In particular, in this section we consider the PageRank

problem (see Eldén, 2006), i.e., the problem of computing the Perron eigenvector of the matrix

G = αS +
(1 − α)

n
eeT, α ∈ (0, 1),

where S is a non-negative column stochastic matrix. For the solution of this problem, we consider the

power method, i.e., uk+1 = G(uk) where u0 is a non-negative stochastic vector, which is known to be

a linear fixed-point iteration globally convergent with a rate of convergence of O(αk) (Eldén, 2006).

As the previous convergence bound confirms, the rate of convergence of the power method for the

PageRank computation becomes slower as α approaches 1, but this is usually the case of interest in

applications (Eldén, 2006). In this experiment we use as stopping criterion ‖G(uk) − uk‖ < 10−7.
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In the left panel of Fig. 1, we report the acceleration performance of the regularized versions

of the methods considered when compared to the nonregularized ones (in the right panel), for

the computation of the PageRank vector of the matrix amazon-0202 from Davis & Hu (2011)

(which has been suitably modified in order to be stochastic and dangling-nodes-free; Eldén, 2006).

Recall that the sequence generated by the power method belongs to the Shanks kernel and hence, at

least theoretically, all the extrapolation strategies should be equivalent and should work consistently

without any requirement of regularization. Nevertheless, as Fig. 1 clearly shows, the introduction of a

regularization strategy improves the robustness of the extrapolation procedures permitting us, for the

restarted extrapolation methods (namely RNA, RTSA, RRRE), to obtain a more effective acceleration

performance across different choices of the parameter α. Observe also that, in this case, the introduction

of a regularization procedure in the AA scheme (RAA) does not sensibly improve the acceleration

performance.

6.3 Nonlinear Poisson problems

In this section we consider the solution of the nonlinear PDE (see (6.1))

−∇(q(u)∇u) + g(u) + ux = f in D = [0, 1] × [0, 1],

u = v on ∂D.
(6.1)

We use a 1/64 uniform triangular mesh of Ω = [0, 1]2 with a (P2) discretization (Alnæs et al., 2015)

that provides a total of 16,641 degrees of freedom. In particular, we consider the following choices of

the functions:

• q(u) = 1 + u2 or q(u) = 1 + u4, g(u) = 0 and f such that the exact solution of (6.1) is given

by u = exp(−2x) sin(3πy) and v = u on ∂Ω . We refer to these choices as the nonlinear Poisson
problem;

• q(u) = 1, g(u) = λeu with λ = 1 or λ = −1, f = 0 and v = 0 on ∂Ω . We refer to these choices as

the Bratu problem (Hajipour et al., 2018).

After the discretization of (6.1), the corresponding problems can be written as the solution of F(s) = 0,

i.e., as the solution of a linear system of equations. We assume that the derivatives of F are not readily

available or that a sufficiently accurate initial guess is not at our disposal in order to apply Newton’s

method. In this experiment we use as stopping criterion ‖F(uk)‖ < 10−7. Figures 2 and 3 show

the acceleration performance of AA when compared to its regularized version RAA (these problems

are not well scaled and a good choice for the mixing parameter was β = 0.1) for the problems

previously discussed. The figures clearly show that the introduction of the regularization strategy, in

these cases characterized by a higher nonlinearity than for the PageRank example, leads to a better

robustness of the schemes with respect to the choice of the memory parameter m. In particular, the

introduction of the regularization procedure permits us to have a satisfactory rate of convergence

independently from the value m. We point out that, interestingly enough, the need for a stabilization

procedure, needed from the theoretical point of view to prove the convergence of the AA scheme (see

Algorithm 6), is echoed by the experimental observation that increasing m could result in a loss of
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Fig. 2. Nonlinear Poisson problem.

Fig. 3. Bratu problem.

efficiency for the AA scheme (see Fig. 3). The introduction of a regularization procedure mitigates such

a drawback.

6.3.1 Navier–Stokes equation. In this section we compare the numerical performance of

the different restarted extrapolation approaches on the incompressible Navier–Stokes equation

(NSE)

u · ∇u + ∇p − ν∆u = f ,

∇ · u = 0,

u|∂Ω = g,

where ν is the kinematic viscosity, f is the forcing, u and p represent velocity and pressure and Ω is

a given domain in R
2. Following Pollock et al. (2019), we consider a Picard iteration (6.2) to solve

the problem. The iteration, which is commonly used for its stability and global convergence properties,
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Fig. 4. Lid-driven problem: acceleration performance (moving lid on the top).

takes the form

uk · ∇uk+1 + ∇pk+1 − ν∆uk+1 = f ,

∇ · uk+1 = 0, (6.2)

uk+1|∂Ω = g.

The above scheme is written in the fixed-point form uk+1 = G(uk), where G denotes the

solution operator for the linearization (6.2). To be specific, we consider the two-dimensional lid-driven

cavity (Ω = (0, 1)2) and a ‘deep’ lid-driven cavity with Ω = (0, 1) × (0, 3). No-slip (u = 0)

boundary conditions are imposed on the sides and the bottom, and the Dirichlet boundary condition
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Fig. 5. Lid-driven problem: acceleration performance (moving lid on the left).

u(x, 1) = (1, 0)T is imposed on the top to enforce the ‘moving lid’ condition. There is no forcing (f = 0)

and the kinematic viscosity (ν = Re−1) is considered at benchmark values Re = 5000, 7500. We

discretize with (P2, P1) Taylor Hood elements. In the case Ω = (0, 1)2 we use a 1
64

uniform triangular

mesh that provides 37,507 total degrees of freedom and in the case Ω = (0, 1) × (0, 3) we use a
1
40

× 1
120

mesh that provides 87,203 total degrees of freedom. Similarly to the results presented in Pollock

et al. (2019), our experiments confirm that Newton’s method starting with a zero initial guess never

converges. In this experiment we use as stopping criterion ‖G(uk) − uk‖ < 10−5. Figures 4 and 5 show

the acceleration performance of the methods described in Table 1 for the solution of the steady NSE. The

best performer in terms of achieved acceleration is AA and the introduction of a regularization procedure

in this scheme (RAA) seems not to have a relevant impact on the rate of convergence. This is probably

due to the fact that the fixed-point iteration we are considering generates a sequence that is close to being

a linear sequence and, as in the PageRank case, regularization of the AA scheme does not seem to have a

great influence. Concerning the restarted regularized methods, we should notice that the RTSA is not
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able to achieve an acceleration performance in the deep case for Re = 7500. Finally, let us highlight

the particularly interesting performance of the SVDA approach: this approach does not require the

computation of any regularization parameter and only one SVD decomposition every ℓk − 1 fixed-point

iterations is needed, whereas AA requires the solution of a least square solution per step and all the

regularized methods that use the RM approach require the selection of a regularization parameter. The

nonregularized versions of the methods using the RM strategy, as in the PageRank case, exhibited worse

performance and are not reported for this reason.

7. Conclusions

In this work we presented a unified framework for Shanks-based transformations. If, on one hand,

the introduction of this framework allowed us to link apparently different extrapolation/acceleration

techniques with Shanks-based transformations, on the other hand it allowed us to introduce suitable

generalizations able to numerically outperform the existing ones, as highlighted in the preliminary

numerical results presented, especially on problems characterized by a high degree of nonlinearity. To

conclude, we note that the highlighted connection between the Shanks-based transformations and the

quasi-Newton methods and AA shed light on some of its theoretical and numerical behaviors, furthering

our knowledge of the powerful, but poorly understood, AA (Kelley, 2018).
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