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Abstract. For generalized Korteweg—De Vries (KdV) models with polynomial nonlin-
earity, we establish a local smoothing property in H* for s > % Such smoothing effect
persists globally, provided that the H' norm does not blow up in finite time. More specif-
ically, we show that a translate of the nonlinear part of the solution gains min(2s—1,1)—
derivatives for s > % Following a new simple method, which is of independent interest,

we establish that, for s > 1, H® norm of a solution grows at most by (t)s_l"' if H! norm
is a priori controlled.
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1. Introduction

In this paper, we shall be concerned with real-valued solutions of the periodic gen-

eralized Korteweg-De Vries (KdV) given by
Ut + Ugzzs = O (P(u)), z€T,

u(0) = f € H, s>,

(1.1)
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where P(-) is a polynomial. Let us take the opportunity to review some recent
developments about the model (1.1) as well as other related dispersive models, as
they pertain to our goal in this paper.

1.1. Cauchy theory, local smoothing effect and polynomial bounds

Classical models which are given by P(u) = u?,u® are the ubiquitous KdV and
mKdV models which are completely integrable. These are easily the most well-
studied PDE models, modeling a uni-directional propagation of surface water wave
along shallow channels.

Sharp results for Cauchy problems involving these models are available. Using
inverse scattering, KdV (respectively, mKdV) is globally well-posed on H ! (respec-
tively, L?) [16, 17] which is shown to be sharp in [25, 26]. Using perturbative
approaches, KdV (respectively, mKdV) on the torus is known to be globally well-
posed in H* for s > —1 (respectively, s > 1) [3, 6, 18, 28]. Also, see [1, 22, 27, 37]
for unconditional uniqueness results for these models. Some authors have also con-
sidered models with a mixed nonlinearity, in the form P(u) = au? + bu® — referred
to as the Gardner model. Gardner equation can be derived from KdV by Miura
transform, and a number of properties regarding its solutions are inherited from
KdV theories [15, 24].

For gKdV with general polynomial nonlinearity, local well-posedness in H*
is known [8] for s > % For global well-posedness, monomial-type nonlinearities
P(u) = u**! are considered and the distinction between focusing and defocusing
cases become more significant due to supercricality. For defocusing cases, global
well-posedness in H® is known [2] for s > 1 for k = 3 and for s > § for k = 4.
Furthermore for the supercritical regime (i.e. k > 4), defocusing gKdV is known [8]
to be globally well-posed in H® for s > % — % In [19], focusing mass-critical gKdV
on the real-line is shown to contain finite-time blow-up solutions in H*, while we
are unaware of analogous blow-up result for the torus.

Another feature, which we will be a central theme of interest for us in this paper,
concerns nonlinear smoothing property. Informally, nonlinear smoothing refers to
the idea that the roughest part of a solution is contained in the free solution (in some
cases, another explicit expression of initial data [10, 29]), whereas the remainder
is smoother than the initial data. These issues have been thoroughly explored in
many contexts, see [1, 5, 11-13, 23, 28, 29, 36].

Either directly or indirectly, nonlinear smoothing property has been one of the
main ingredients in establishing polynomial bounds for H* norm of solutions. Quest
for obtaining polynomial bounds was initiated by Bourgain’s work in [4] and was
followed by [7, 10, 11, 31-35] among others. Results concerning higher Sobolev
norms demonstrate low-to-high frequency cascade in solutions and have implications
to the physical phenomenon of weak-turbulence. See [31] and references therein.

Results on lower bounds for Sobolev norms of solutions are more scarce. In [4],
a perturbation of a nonlinear wave equation is shown to contain solutions whose
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Sobolev norms grow polynomially in time. Also, authors in [9] demonstrated that 2D
cubic nonlinear Schrédinger equation on the torus contains solutions which grows
over time, although the rate of growth is not necessarily a polynomial-type.

For many completely integrable models, uniform-in-time bounds are available.
For instance, H® norm of solutions of KdV is shown [14, 20, 21] to be uniformly
bounded in time for s > —1 and also s > —% in case of mKdV. These results
take advantage of inverse scattering technique and do not extend to related non-
integrable models. For this reason, polynomial-bound results are still relevant for
non-integrable perturbations of KAV and mKdV using linear potentials or variable

coefficients [11, 34].

1.2. Main results

Going back to (1.1), let us make some reductions, which will be helpful in the sequel.
First, the solutions to (1.1) (formally) conserve their mean value

/T u(t, z)dr = /T f(z)dz. (1.2)

The transformation u(t,z) — u(t,z) — [; f(z')dz’ changes right-hand side of
(1.1) to be 8y (P(u+ [ fdz')) which still belongs to the class of derivative polynomial
nonlinearity. Thus, we may assume that the solution u of (1.1) has the mean-zero
property. Further, it is our standing assumption that the solution is real valued.
Additionally, the transformation u(¢, ) — u(t, z —ct) can eliminate any linear term
in P(u) and any constant term is removed by the derivative. So, we may assume
that the smallest possible degree monomial appearing in P(:) is a quadratic term.

In what follows, we state local well-posedness of (1.1) for H2+(T) data.

Theorem 1.1. Lets > § and0 < € < s—3. Then there ezists T = T(||f||H%+E) >0
such that, Eq. (1.1) has a unique solution u given as a translate of u € Y —
CY([0,T); H:(T)) given in (2.3). Here, Y is an auziliary space to be defined in
Sec. 2.

Furthermore, this solution u of (1.1) satisfies

lullosqoryars S lllys < CPys, I £l 3l 1l

In particular, if we assume an a priori control of H norm, then this solution extends
globally in time for s > 1.

Local well-posedness of (1.1) in H® for s = % was proved in [8]. Theorem 1.1
does not contain the endpoint s = % but is otherwise sharp in the sense of analytic
well-posedness.

We now redirect our discussion to the smoothing property, which is given below.

Theorem 1.2. Let s > % and u be the solution given in Theorem 1.1 and let u be
a translate of u given in (2.1). Then for each 0 < v < min(2s — 1,1), there erists



902 S. Oh & A. G. Stefanov

T=T(fll ) > 0 satisfying

H1+E
—~— 333
[0~ €2 £l oo mymary < CO Pl Fllgmies) |l for all 0 <t <T.

Statement of Theorem 1.2 is in the same vein as results obtained in [10, 29] where
smoothing is obtained after imposing a resonant phase-shift on either the nonlinear
solution or the free solution. In this case, the phase-shift (2.1) is simply a translation
which is invertible and well-behaved. As in [11, 29], such smoothing property can
be shown to persist globally in time if H* norm of the underlying solution does not
blow up in finite time. In [11, 29], KdV is shown to have a smoothing of order 1 —¢
for f € H® for s > —%. Theorem 1.2 demonstrates that such smoothing effect is
shared by gKdV in higher regularity, s > 1. Low-regularity smoothing is unavailable
for gKdV due to absence of required Strichartz estimates.

Our next topic concerns polynomial bounds. Clearly, in order to discuss polyno-
mial bounds, one needs global solutions. Our work does not present new results in
this direction, instead we focus on models in the form (1.1) for which H! norm of a
solution is a priori controlled. In this case, Theorem 1.1 guarantees global solutions
in H® for s = 1.

We describe the framework in a bit more detail. In addition to the conservation
law (1.2), there is conservation of mass and Hamiltonian

Hut) = [ w2 (t.yde = I11),
1 (13)
Hlu(0) = [ Flusl? + Glute))ds = HIJ),

where G is the polynomial with G'(z) = P(z),G(0) = 0. Conservation of H is
especially important, as it sometimes allows for control of ||u(¢, -)|| g2 along the evo-
lution. It is also well known that, due to the Gagliardo—Nirenberg—Sobolev inequal-
ity, a priori control of H! norm is automatic for all H! initial data, if deg(P) < 4,
or if deg(P) = 5 and the data is small. Even when P contains higher-power non-
linearities, conservation of H may still provide the H! bounds, provided G is of
even power with a positive leading coeflicient. This leads to global well-posedness
for these models. On the other hand, Eq. (1.1) containing higher power nonlineari-
ties lack such control® and consequently, they may exhibit finite time blow-up [19].
Here is our final main result, which provides polynomial-in-time bounds for global
solutions of (1.1).

Theorem 1.3. Let s > 1 and assume an a priori control of H' norm of solutions
for (1.1). Then the global-in-time solution w given in Theorem 1.1 satisfies the

agpecifically when G is of odd power or alternatively, G is of even power, but with negative leading
order coefficient.
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following polynomial-in-time bound:
[w(®)l e < C (&P, || £llge) &) for any & > 0. (1.4)

Per the discussion preceding the statement of Theorem 1.3, we may state the
following representative corollary.

Corollary 1.4. Suppose the nonlinearity is given by P(z) = E?f; ! aj-zj , where

asny1 > 0. Then, for f € H*(T),s > 1, the unique global solution to (1.1) obeys
the polynomial bound (1.4).

Remarks:

e For KdV, mKdV and Gardner models, uniform-in-time bounds are available [21].
e In [34], a polynomial bound with the same exponent as Theorem 1.3 is shown
for non-integrable perturbation of KdV and mKdV on the torus. For gKdV with

k+1 a polynomial bound is derived [35] at rate

monomial nonlinearity P(u) = u
(t) %% for s > 1, assuming a priori control of H' norm. Theorem 1.3 improves the
exponent for gKdV bounds to the level equivalent to perturbed KdV and mKdV
models given in [34].

e Our scheme suggests that statement of Theorem 1.3 may extend to the class of
nonlinearities given by C°° functions P, which are analytic at zero. We do not

pursue this herein.

We now outline the plan for the paper. For simplicity of our subsequent dis-
cussion, we work with polynomials containing only two terms: namely P(u) =
au™ + bu™. It will be apparent that our scheme easily extends to general polyno-
mial models. In Sec. 2, we introduce basic notations and functions spaces, as well
as linear estimates from literature. In Sec. 3, we present one of the main technical
tools, namely the multi-linear estimates, which allow for the smoothing estimates
later on. In Sec. 4, we provide the proof of Theorem 1.1. In Sec. 5, we perform normal
form transformation of the equation and prove consequent smoothing estimates. In
Sec. 6, we prove the nonlinear smoothing property given in Theorem 1.2. Finally, in
Sec. 7, we introduce a new technique for deriving polynomial bounds from nonlinear
smoothing estimates. We believe that this simple and efficient method is new and
it is likely to be useful in other situations as well.

2. Functional Spaces and Equations Set-Up

For any function f(z), denote the kth Fourier coefficient by fi for k € Z. If the
function has the mean-zero property, then we assume that k& % 0. When as sum over
such index is written, it is assumed that the summation takes place over k € Z* :=
Z\{0} rather than over Z. Also, for a function of ¢, denote the Fourier transform of
g(t) by g().

We denote (-) = (1+-)2.

For any two quantities A and B, we write A < B (similarly A 2 B) if there is an
absolute positive constant ¢ satisfying |A| < ¢|B| (similarly |A| = ¢|B]). Negation
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of A < B is denoted A > B (similarly, negation of A = B is A < B). Concurrence
of A< Band A2 B is denoted A ~ B.

2.1. Functions spaces

Let T > 0. For any functional space Y — C? involving time variable t, define the
norm Y7 by

||y, = inf{|[v]ly : v €Y and v(t) = u(t) for all 0 <t < T'}.

Next, we introduce Bourgain space Y* := X2 N H5L! defined in [6] which embeds
in COHZ. This norm is defined by

lully. = ||<¢ - k3>%<k>sa('r)”1,gzi + I|<k>suh’=('r)||:i1¢'

Because X %7 fails to embed in CYH? and also X % bilinear estimate fails for any
b £ % [18], it is necessary to intersect it with HSLL. As give in [6], the space Y* is
accompanied by the space Z° whose norm is defined by

”“I (k)sﬁfg('r)

=)
Then, we state the following results.

2= I =) 0 T+

1211

Proposition 2.1 ([6]). For anyn e S; and f € C(T), F € Z°,

()= fl|y2 S 1F1 5o

i
Hn(t) / 9% F (s)ds
0

S IE ] ze-
YS
Following linear estimates are known from [3]:

In()ll gz = [l xoos 1] zrz S lollxoasass,

In(@)vllLe , S vl xoases  [In@)vlls  Ses 0l e gvss

r ]_ ]-
In(t/T)ollxon ST vl o for =5 <b<¥ <.

Interpolation yields that, given any 2 < g < 6, there exist some £ > 0 satisfying
In@vlle e loll oy o
Following linear estimates are from [2, Lemma 2.2]
el S ol 3

In@)vlls, Se llvlly--

t,x
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2.2. FEquation set-up
Consider the nonlinearity in (1.1), which we assumed that it consists of two terms
only. We can decompose the kth Fourier coeflicient of d,(u™ +u™) as

n

a Z ik ug; +b Z ik ﬁ Uk, -
1

kE1+--4kn=k j= k*‘1+...+k;n=k j'=1

Resonance in gKdV occurs when one of the interior frequency k; equals the exterior
frequency k. Note that a quadratic nonlinearity does not contain any resonance due
to the mean-zero restriction. The right-hand side can be written as R[u] + N'R[u]
where

Rlu] :=a Z ik ﬁ ug; +b Z ik ﬁ U -
j=1 j'=1

ky+---+kn=EFk i+ kp, =k

k; =k for some jg k;; = k for some jj,
Jo

Jo

Here, R stands for Resonant term and A'R stands for Non-Resonant term. Let us
carefully examine the structure of R[u]. We will focus on the first term correspond-
ing to ady(u™) since the second term can be managed analogously. The set over
which this summation occurs is

Ry ={(k1,....kn) € (Z*)" : k1 + -+ kn =k, kj, =k for some 1 < jp < n}.
Define for 1 <1 < n,
RL = {(k1,....,kn) € (Z*)" :ky+--- 4 ki1t kg1 + -+ kn =0, k; = k}.

Clearly, Ry = U, R} but there are a lot of repeated elements in this union. We
will need to keep track of these repeated elements later. First, we note that

T
S ik ]k, = iku D TLue, = ke [t ),
R, =1 itk bRtk =0 j£1 T
which is independent of I. Finally, observe that
n
SIY Y Y Y Y
Ry =1 RL 11132 RLIHRLZ !1,12,13 RLIHRLZHR:?

We will show that (1) the first summation can be eliminated by a well-behaved
transformation and (2) the remaining summation already has enough smoothness
already built in.

We write R[u] = R![u] + R?[u] where R![u] contains only the first summation.
That is,

R u)y = ikug (an/ u™ (¢, )dx + bm/um_l(t, .E)dI) .
T T
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Consider a transformation defined by

n(t) == uk(t)exp(ik /D t /T anu“‘l(t’,:t:)+bmum_1(t’,a:)d:cdt’). (2.1)

Note that w and u has the same initial value, [jul/,;. = |[ul|;. and also
JpuP(t,z)dz = [ uP(t, x)dx for any p € N. If u solves (1.1), then @ solves

(at + 8z1z)a = RQ[m +NR['?"]:

Uli=0 = f € H5(T). (22)

Conversely, if u solves above, then

t
u(t,z) = ﬁ(t,x + / f ant™ (', ) + bma™ (', z)dx dt’) (2.3)
0 JT

satisfies (1.1). Thus, we will focus on solving (2.2) from here on. For simplicity of
notation, we will still use u instead of % in the sequel.

3. Symmetric Multi-Linear Estimates
In order to establish multi-linear dispersive estimates, we first consider nonlinear
dispersive interactions: For any n € N, denote

3

H, :=H,(ki,... k) = Zﬂ:kj —ik?.
j=1 Jj=1

We need a result which exploits the dispersion relation to its fullest. We will however
convince ourselves that this alone will not give the desired smoothing estimates,
without the help of a normal form transformation. Nevertheless, this will reduce
matters to some very specific terms, which will be eliminated via the said normal
forms.

3.1. Analysis of the dispersion relation

We have the following proposition.

Proposition 3.1. Consider k = E?:l kj for kj € Z* and H, as defined
above. Denote kmax := max{|ki|,...,|kn|} and kmax, be the jth largest term in
{|k1|: ey |kﬂ.|}'

(1) Let n=2. Then A: Hy 2 k2 ..

(2) Let n = 3. At least one of the following is true:
(A) Hz 2 kfax-
(B) kj, =k for some jo € {1,2,3}.
(C) kj Z k for all j € {1,2,3}.
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(3) Let n = 4. At least one of the following is true:
(A) Hn 2 kax-

(B) k =k;j, for some jo € {1,...,n}. (resonance)
(C) Emaxs = k.

(D) krgnaxa km&xd Zr kl?nax

Proof. For H,, the proof is immediate when since H,, = 3kk;ky where none of the
factors can vanish. At least two of the frequencies should be comparable to kpax,
giving the desired result.

For n > 3, we will derive a contradiction after negating all conditions listed
above. For n = 3, we assume by contrary that

(1) Hs < k3.
(2) k#k;j for any j € {1,2,3}.
(3) ks < k.

Note that Hs = 3(k1 + ka)(k2 + k3)(ks + k1). None of the factors can vanish due
to the assumption (2). Our assumption k3 < k < k; implies ks + k1 ~ k1. Also,
if k1 ~ ko, then the second factor ko + k3 ~ ki; and if k; > ko, then the first
term k; 4+ ko ~ ki. In either cases, we get Hy =

~

k? which contradicts with our
assumption. This proves our estimate for Hs.
For n > 4, we define the following notation:

kj:=kj+---+kn where |ki| > |ka| > - > |knl,
where we have assumed a descending order of frequency indices without loss of
generality, we assume that

(1) H, < k.

(2) k#k;j for any j € {1,...,n}.
(3) ks < k.

(4) k2ky < k2.

We begin by observing the following identity:

Hn:?é"]?'—kf'—---—kﬁ

-3 . ~3 ~3 . =3 —~3 . —~3
=k —k —ka )+ (k2 —ky—ks )+ + (ko1 —ky g —Fn)

= 3kykko + 3kokoks + - - + 3kn_1kn_1kn

n—1
=3 kjkjkji1. (3.1)
J=1

Consider the first two terms of H,, from above:

krkaky + kokaks = ka(ks + k1) (k1 + ko).
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Assumption k3 < k implies that k; + ko # 0. Also, since J;:T_:, S ks €k <k, we
have that ki + ks # 0. Finally, we are given by assumption that ko # 0. Thus, the
expression above does not vanish.

Since i’% < ki, the middle factor J;:T_:, + k1 ~ k1. We claim that the remaining
term f;:;(kl +k2) = (k2 + Eg)(kl + k2) Z k1. To see this, we need to split into two
cases: k1 ~ kg or k1 > ko.

In the first case k1 ~ ko, the first factor ks + Eg ~ ki since by assumption
k3 < kq ~ ko. In the second case k; > ko, the last factor ki + kg ~ ky. This shows
that, in either cases, (ko + ks)(k1 + k2) = k1.

So far, we have shown that the first two terms of H, is at least the size of
k2. Since we need to have H, < kI, we need the remaining terms of H, to be
comparable to k2 in order to cancel out the first two terms. Namely we need

ksksks + - - + kn_1kn—_1kn > k.
But note f::; < k; for any j, so we have

k2 < ksksky + - + kn_1kn_1kn < K2|ka| + -+ k2 |kn| S K24

~

But our assumption states kZ2ks < kf, which contradicts with above. This proves
the desired result. O

Remark. Proposition 3.1 is used to establish our heuristics. It would be helpful
to establish a strategy at this point using a rough derivative count. Our goal is to
prove an estimate of the form:

182 (u™)l| zosv S Ilully-

This means that we need to fight 1 + s + ~ derivatives with |H,|'/? as well as
H?:l |kj|°. Case (B) is resonance, which is mostly taken care of via direct transfor-
mation. We still need to deal with R2, but at least three internal frequencies are
comparable to k in R2. This places R? in case (C).

In case (C), we have that (kmax, Fmaxs kmaxs)® = |k[>¢, which gives us 3s deriva-
tives without using any of the dispersive gain H,. So, we need 1 + s +~v < 3s <
y<2s—1.

In case (D), (Kmax, Fmax,Fmaxs bmax,)® 2 Fmax, (kﬁluakmud)s > k32 . This leads
to the same restriction as above.

In case (A), a normal form must be used because the gain of H? > kL. is
insufficient for any v > 0. But taking a normal form for this term means that we gain
the full H,, derivative. The remainder terms will now contain an extra derivative,
which means that we now need to fight 2 + s+ derivatives. Establishing remainder
estimates for normal form will be very delicate and this is as far as heuristics can
take us.

We now need a technical tool to estimate various operator norms of multi-linear

operators, based on size estimates of the multipliers.
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3.2. Size estimates for multi-linear operators

Definition 3.2. Given a symbol o = o(ky,...,kn) with n > 2, a multi-linear
Fourier multiplier T is defined via

Tc?(ul':"':uﬂ) = Z Z J(kla"':kn) H(uj)kjeik::: (3‘2)
kEZ* (ki1,....kn)EQ j=1

where () places a restriction in frequency interactions. This domain is associated
with the operator T,

Following is one of the main tools in achieving our estimates. It deals with
symmetric estimates where all inputs of T are identical.

Proposition 3.3. Let n = 2 and 0 < T < 1. Consider estimates of the following
type: Given a multi-linear operator T} as defined in (3.2)

-1
T3 (s - W)l 220 Sen T Nullye llullye:

for some sg, 51,82 > % where u := u(t) = n(t/T)u(t) for a smooth cut-off function
n. The inequality above is satisfied if either of the following conditions is met:

e If dispersion weight H,, is used, then we need

wp o k) g (3.3

(K1, ik ) €S (Hn)% Ktax, ktax,

where kmax; 15 as defined in Proposition 3.1.
e If dispersion weight H,, is not used, then we need

sup Mol k) ), (3.4)

81 —E &2
(k1,...kn)EQ krr%'axl (kmaxg kmax;; kma.)u)

We use the convention that kmax; = 1 for j > n.

Proof. Assuming condition (3.3): We need to show two estimates: one for
X 30’_%, and the other for I%L}, with a given weight. By splitting the frequency
set {x into n! rearranged partitions, we can assume |k1| = |ka| = -+ - .

Let the symbol above be bounded by M > 0. First, we show the estimate for
Xo~3,

IT7 ()l oy 3 = sup Th(u, .. u)z de dt.

||z||x_su’% =1.JTxR
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By Plancherel, the integral on the right-hand side is bounded by

/ Z o(hy, . kn)2(r) [] % (),
j=1

kn)e Qp

where dI' is the inherited measure on the hyperplane I" given by
T={(r,71,--sTn, ks b1, k) i+ =1,k +- -+ kn = k}.

Note that the summand above is controlled by

(Hn)? 1" [K2| |k~ 2 (r) [ ] i (7). (3.5)
j=1

By algebraic association, we note that

Hl/?(Z( 1/2

where we denoted 79 := 7 and kg := k. Then we can replace H,, by the sum above.
The first term from (3.5) is

™
1/2,, | _gy —~ _ _ _
(1o — K§)'2 k|~ s (0) | Ky |** Tk, (1) | Ko | 22k (72) I @ ()

j=3
Although the argument is not totally symmetric, the other terms are not so different.
We thus omit the other terms (i.e. ones containing ('rj- — k? > for j > 0). Applying
Plancherel, we apply Holder’s inequality, we place Li » lorm on z, Lf,z on the next
two terms and LgS, on the rest. We obtain the bound which is

12l —co.3 1Dz wll e _I1Dz?ullps [lulzz
By linear estimates, this is bounded by

[ e 7 T 17 e [

for any so > % Note that we have a room spare in the X? weight. Using time-

localization, we can obtain a positive power in T for the X $=3 bound.
Next, we need to estimate

H (k)™ Fi.[T5]

k) (3.6)

2LL '

We will split into two cases: first when ('r—k3> ~ H,, and second when <'r—k3> o0 Hy.
In the first case, Note that ('r — k3>_%XHn (('r — k3>) € L2 uniformly in k and

H,,. Then (3.6) under this restriction is bounded by

(k)™ Fe2[T7]

| =

1212

which is bounded by the right-hand side as before.

X003
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Next, if <'r - k3> o Hy, then there is a jp € {1,...,n} satisfying either <'rj0 -
k?o> 2 H,. Using Cauchy—-Swartz, (3.6) is bounded by

||<T — k3>_% (k)so Ft x[Tn' ||1',2L2 = |Tn||x30=_% = sup /Z a H ﬁ-k‘; Z.J';gd].—‘.

[E T o

1 1
Note that, in this case, (H n> 2 can be replaced by Z?:l <'rj - k?) 2. Once again,
we just take the first term of this sum: In this case, we need to estimate

kol =2k (o) (1 — k) 2 [k | i, (1) ko | i, (m2) [ | i, ()
=3
Applying Plancherel and Hélder, we place L%I on the middle term, L4 on the first

and the third term and L, on the rest. Then linear estimates give the bound

2l g el ey g el g a2,

where X%2:3 can vield a positive power in T by time localization. This shows the
desired result with assumption (3.3).

Assuming condition (3.4): Here we do not need to use H,,, which makes the argu-
ments simpler. We will prove the statement for n > 4. For n = 2, 3, the numerology
resulting from Holder and linear estimates are strictly better and we omit these

1

computations below. For the X 9:~2 estimate, we need to bound

n
ol =20 23y (o) I | =< ea| 2 ka2 ka2 T ] i (ry)-
j=1

Using Plancherel and Holder, we can estimate

||DI—SD—E‘/5

3 4
u”L?:m HUHL??I'

ng”Dil_e/s LS, |Dgz==/3

Using L?,I and L7 embeddings, we get

3 —4
2l e ol oy e el g e el

J to generate a small power in T by time-localization.
Now for I%L}, estimate, we noted already that the case ('r - k3> ~ H, reduces
to the estimate for X% which is already established. If <'r — k3> ~ H,, then we

need to estimate

We can use ||u]|

mn
o =0 Z2 (ro) s [ kol s |2 [ ] 5, ),
j=1
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where z € X535, Applying Plancherel and Hélder, we place L on z, Lii’ 3 on

t,x

four terms containing v and Lg%, on the rest.

1Dz |

3 —4
R o =)
pe 1Pz pieo P2l eyl
By linear estimates and time-localization as before, we obtain the desired bound.
O

The following lemma allows us to take symmetric estimates resulting from
Proposition 5.3 and apply it to asymmetric variables as long as s; = ss.

Lemma 3.4. Let T be a symmetric n-multi-linear operator mapping from (Y )" —
Z for some normed spaces Y and Z. Also, suppose that we are given

T3 (..., u)llz S lully  for all weY.

Then this implies

n
T w1, - on)llz Sn [[ llwslly  for all vy,... 00 €Y.
j=1

Proof. For simplicity of notation, we will denote T} (u) := T} (u,...,u) when all
input is identical. Also, for any k = 1, 2,...,n, let Py be a set of subsets of {1,...,n}
with size k. We first observe the following identity:

n

s Zvj —ZT; Zvj —I—ZT;" Z'Uj —

j=1 AePy JjEA AeP2 jgA

= CpT ] (v1,v2,...,05).
To see this identity, consider the full expansion of the first term T;“(E?Zl ’Uj).
We would like to remove all terms from this expansion that do not include all of
V1y.-.3Un-

Say a term from the expansion contains v; repeated k; times for j = 1,...,n
with E;.]':l kj = n. Without loss of generality, say that k; = 0: i.e. the term does
not include v;. The number of occurrences of this term from expansion is the same
as the number of occurrences of the identical term from expansion of T)' (3" 41 ;).
Now, if k7 is the only zero index, then this term will be immediately eliminated. But
if ky = ko = 0, then this term is counted twice: once for T;"( > i1 vj) and another
time for T (Z 2 UJ-). In this case, this repetition is canceled out by the third term
Tg‘( > 41,2 vj). Iterating in this manner, the identity above can be established.
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Now, add coeflicients a; > 0 to v; which we will determine later. Then we have

ZGJU—?' —1—2( 1)* ZT”‘ Zaj.vj = CrT3(v1,v2,-..,n)-

AeEP; JEA

Using the given symmetric estimate, we can write

n
[T | 1T 1,02, o)l
=1

n n—1
So (T D aioi || +D0 D0 1T D asvs
j=1 z k=1 AcPy JEA zZ
n n—1 n
Se D a0 )0 (1D e
j=1 v k=1 AcPi ||jEA v

n n
n n—1
Sn | Do aslvilly | D)0 D0 1D asllvlly
j=1 k=1 AePr \jgA

Now select a; = 1/||vj||,,. Then right-hand side of above is Oy (1). Thus, dividing
by H?:l a;, we obtain

-1

n n
T w1,v2, o)z Sn | [Tas | =TT Ilvsly- O
j=1 Jj=1

3. Non-smoothing estimates

Following is a. non-smoothing estimate to obtain a priori estimate of the solution u
of (2.2) in Y*. Using the proposition established above, we only need to walk through
cases (A)—(D) of Proposition 3.1.

Lemma 3.5. For s > %, there exists an € > 0 such that for any 0 <T < 1,

|R?u]ll 2= + IWR]|

7o Se TNl (full 5 + l750)-
Proof. Here, the symbol o = ik for both R? and N'R. In the context of Proposi-
tion 3.3, sp = s1 = s and so = min(s, 1).
Case (A). Here, H,, > k2,,. Then condition (3.3) is written as
k|*lik]  _ [k[*+
(Hp)% kg, Kb

=0(1),
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which is satisfied for any s > —1. Note that, for n = 2, this is all that is required
to show the desired statement.

Case (B). Only R?[u] contains components belonging to case (B). But in this
case, we must have two internal frequencies equal to k. Without loss of generality,
say that k; = ko = k. Then we must have k + k3 + --- + k, = 0, which forces
max{|ks|,..., |kn|} ~ k. This implies kmax, > k which makes R?[u] belong to case
(C). So, we defer estimates for R%[u] to case (C).

Case (C). In this case, kmax, 2 k. Using condition (3.4),
|k[* |2k

— 1
kglail (kmaxzkmaX3 ) 2 +e

= 0(1)

as long as £ > 0.

Case (D). Recall that this case is only for n > 4. In this case, we must have
K2k 2 k2. .. Then condition (3.4) can be written as

maxs "MaXy ~» “m

|k|*|ik| ||+
8—¢ lie — pstlte = O(l):
max; (kmaxz kmax;; kma)u) 2 kmax
which is true for any £ > 0. |

Remark 3.6. Combining Lemmas 3.4 and 3.5 with ¢ = s — %,

any vy,...,vp, € Y* and s > % such that each v;(t) is supported in ¢t € [-T,T],

we obtain that for

IR?]

j=1 j=1

7o TINRlze S T° (H loslly- + T 1 ||'”J'||YS): (3.7)

where R2, AR contain input (vq,...,v,) and (vi,...,vm).

4. Proof of Theorem 1.1

Before we can prove Theorem 1.1, we prove a weaker version of this theorem.

Proposition 4.1. Let s > 3 and f € H*. Then for some T = T(||f|z.) > 0,
Eq. (2.2) has a unique solution v € Y7 satisfying

llully S 1l

Proof. Let n = n(¢) be a smooth cutoff function with =1 on [-1,1] and n =0
for |t| = 2. For t € [0,T], Eq. (2.2) can be formulated as

u(t) = e f + /D e (R2[p(s/T)u(s)] + N'Rln(s/T)u(s)))ds =: T'r[u].
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We will show that, for small 0 < T" < 1, I'r is a contraction map in Y inside a small
ball B centered at €= f with radius 0 < r < | fl g« so that ”u”Y;E < C| fll - for all
u € Y7 Let v € Y with () = u(t) for 0 <t < T and satisfying ||v,. < 2”“”1(;.-

1

Then applying Proposition 2.1 and Lemma 3.5 with ¢ = s — 3,

T r[u] — etz f /O =992 (R2[(s/T)u(s)] + N'Rln(s/T)u(s)])ds

e 5|
T

Yr

< Hn(t) | e R T)o(o)] + A Rin(s (s

Ys
< |R?Wt/T)o(@) + NR[(¢/T)o(e))ds| .

STl + ) S T(lully, + lullf)

STl + IF17)-

Select T = T'(|| f|| =) so that the right-hand side above is smaller than the given
radius r, we can show that I'v : B — B.

Next, we will show that I'r is a contraction on B for a small T > 0. Let u,v € B.
Then using analogous computations as the one directly above along with (3.7), we

can obtain
-1 -1
ITz[u] = Trlvllly: ST U fllE- + IfIlg )llu—vlly,.

Selecting a small T' = T'(||f||-) so that the implicit coefficient of [lu —v|ly, is
smaller than 1, we have proved our claim that I'r is a contraction map on B for
T =T(||f!| ;). This proves an existence and uniqueness of solutions in Y as well
as an estimate claimed in the statement. O

Now, we are ready to prove Theorem 1.1. First, Let v € Y* satisfying v(t) = u(t)
forall0 <t <T and [Jv]ly. < 2|ully,. Let u= Irlu] in Y as given in the proof of
lemma above. Then using Proposition 2.1 and Lemma 3.5,

lully, < [[m(t)e®= £

YB
4 Hn(t) [ R s/ T)o(o)] + N RInts Ty

S I f e + |R? I/ T)w(6)] + NRln(t/T)o(t)]|

-1 —1
S lgge + T ellys (llull™ 3 + IIHIIEQ-
T

1
Zz
Yy

Y=

Za

) given in Theorem 3.5, we obtain

Taking T < T(|,,

3+e

-1 -1
lullys S 1 lLare + TNl (L1 + 11T E)-
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Select T' = T(||f||H%+E) so that

-1 -1
T g AT 500 < 1,

H3+e
we have the desired estimate.
Note that length of each time interval T' depends on ||f|| 1. only. So, if s > 1

and we assume a prior: control of ||u(t)|| 41, then we can take a uniform time-step

T =T(||f|| ) and iterate this in time. In this case, analogous estimate would state

l[eelly S llu(nT) g -

[nT,(n+1)T)

This proves Theorem 1.1.

5. Normal form Transformation and Asymmetric Estimates

Next, we proceed with the required smoothing estimates which is achieved via nor-
mal form transformation. Normal form method was introduced by Shatah [30] in the
context of a scattering problem for cubic Klein—Gordon equation. Since then, nor-
mal form and other related methods have been used for various nonlinear dispersive
models to gain derivatives for nonlinearities. See for instance [1, 10, 11, 22, 28, 29, 36]
and references therein.

Without normal form, we can only establish a non-smoothing estimate given in
Lemma 3.5. Thus, we further decompose our right-hand side and perform normal
form transformation in order to obtain smoothing.

To that end, we split A'R into two components: N'R[u] = HL[u]+ HH[u] where
‘HL stands for a high-low frequency interaction and HH stands for a high-high
frequency interaction.

NRYulx = Z Z iakHukj —1—2 Z ibk H Uk,
j=1 =1 j=1

I=1 ky+- - +kn=~F i =1 ky+ - +km=%k
|k:|:$ma‘::j#l Ikl lkilﬁmuj’#llkj’l
Ejgl by #0 Ty ky #0
n m
= an E ik I I ug; + bm E ik | I Uk,
ki +--tkn=k  j=1 ky -t km =k =1
Ik1] = max;q lk;l ey > max o kgl
Fo2ki #0 Tl gk #0

=: anHL [u,...,ulx +bmHL [u,. .., u]k,

where we rearranged frequency indices to make the first input of HL™ and HL™ to
carry the highest frequency component. By construction, HH carries at least two
high internal frequencies and is non-resonant. Then we can rewrite (2.2) as

g + Ugzr = R2[u] + anHL [u, . .., u] + bnHL™ [u, . .., u] + HH][u].

In the next lemma, we will see that R? and H'H are already smooth. As for HL"
and HL™, we can see from Proposition 3.1 that these terms belong to case (A)
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which is non-resonant. For the part of H£! which has free solution etdz f in the
first component, we will filter out using normal form transform. For this purpose,
we define normal form operators T, for any n > 2:

k LI
Tn 1 n = E - 7 _ilk1+-t+kn)T
NF(F e ) Hp(ky,y. .. ky) I_]fk,-e )
kyt-cc 4 kn =k j=1
k1 =» max(kg,..., kn)

kg + - -+ kn #0

where A'F stands for the normal form symbol for the given n. For any smooth
functions f = f(z) and v = v(t, z), we have

(8y + 02T (%% f,v) = HL %= £,0] + (n — )T r (€2 £, v, (8; + 82)v).
(5.1)

Then we define a new variable w
uw=ePf 4+ anTpr(e® fu, ... u)+ bnTHr(e% fu,. .. ou) +w, (5.2)

where u solves (2.2). We will abbreviate the normal form terms as T}, and T}7,
when their inputs are the same as above. Then w satisfies the equation given by

Wi 4 Weze = R2[u] + HH[u] (5.3)
+ anHL" [w,u, ... ., u] + b HL™ [w,u, . . ., u] (5.4)

+ (n = 1)TR (e fou,. .., u, R2[u] + NR[u]) (5.5)

+ (m — V)T (e fou, . .., u, R2[u] + NR[u]) (5.6)

+ & PHL TR pyu, . . u] + PP HL™ [Tht g, u, . -, ul (5.7)

+ abnm(HL T, u, . . ., u] + HE™ [Ty, - . ) (5.8)

w0 = ~TNr(f-- s ) =T E(fo- ooy ) (5.9)

Note that terms in (5.4), (5.7) and (5.8) result from replacing the first input u of
HL™ and HL™ by (5.2). The term with free solution €@z f as the first input is
eliminated by the normal form. Terms in (5.5) and (5.6) are the remainder terms
from normal form resulting from (5.1). Finally, the initial data (5.9) can be obtained
by using (5.2).

The following lemma places the initial data (5.9) in H**!. This also sets a ceiling
for any possible smoothing to follow.

Lemma 5.1. For anyn > 2 and s > %,

—1
TR (s 0, 0) | o e Ml e 20 e
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Proof. Under the frequency restriction in T'§;r, we must have that H, 2 k2 ~ k2
according to Proposition 3.1. So

n < kl*’ﬂl“rl
TR 5 (v, ) g S > Tt E Hvk,
ky 4+ kn=EF 1
k1 = max{|kz|...., lkn 1} 12
n
S Z |k1|‘gukl H vkj.
kit--kn=Fk j=1 2

2

1Fer [k 1z H ok, lleg | Se Muallz 1ol 2“
j=2

which proves the desired claim. |

Next, we obtain a smoothing estimate for the first two terms on the right-hand

side of (5.3).

Lemma 5.2. For s > % and 0 < v < min(1,2s — 1), there erists an € > 0 such
that for any 0 < T < 1,

-1
[R2@]|| 4ot + IHHU ot Se TEully (lulymine.ny + 2l Pminee.n))-

Proof. This proof is a slight modification of the proof for Lemma 3.5 with sg =
s+, s1 = s and so = min(s, 1). The symbol o for this estimate is again o = ik as
in Lemma 3.5. As before, we will go through all cases of Proposition 3.1 and then
apply appropriate conditions of Proposition 3.3.

Case (A). Here, we have H, > kZ_, . Since both R? and H'H has at least two
internal frequencies comparable to the outside frequency k, we can apply (3.4) by
observing
|K|**7 |ak|
[ e [ P02 ~

|k|’}’ —min(s,1) __ O(].)

which is true as long as v < min(s,1) Since min(2s — 1,1) < min(s, 1) for any s,
this condition is met from our assumption.

Case (B)—(D). Similar to the proof of Lemma 3.5, the condition (3.4) is written as

|k|**7]ik| < |k[yHire-2mints) — (1),

kiag, (max, Fmaxs Fmax, )™ ~

which holds as long as v < 2min(s, 1) — 1 = min(2s — 1,1). This proves the desired
result. O



Smoothing and growth bound of periodic gKdV equation 919

For the remaining estimates, we will need an asymmetrical version of Proposi-
tion 3.3, which is given as follows.

Proposition 5.3. Let n > 2 and 0 < T < 1. Here, we only consider multi-linear
operators T (u,v,...,v) with has a frequency restriction ki ~ k.

-1
175 (w, 0, -, 0)l 220 Sem T Nlullyar 0]l

for some so,s1,82 > & where u == u(t) = n(t/T)u(t) for a smooth cut-off function
n. The inequality above is satisfied if either of the following conditions is met:

e If dispersion weight H,, is used, then we need
kI |o| (K1, - - . Fn)

su T =0(1), (5.10)
(k1 ikn) EQ (Hp)? kntax,
where kpax, = max{|ks|,-..,|knl|}-
e If dispersion weight H,, is not used, then we need
gp—81+<
sup |k| |J|(k11"'7kﬂ) _ O(l). (5‘11)

(k1 skn ) E (':lcmax;kmax;;kma.:n(d)'g2
We use the convention that kmax; = 1 for j > n.

Proof of this proposition is identical to Proposition 3.3, except that rearrange-
ment of indices occurs for |ka| > |k3| = - --. We omit the details. Now, we are ready
to we estimate the two terms in (5.4).

Lemma 5.4. For s > %, n > 2 and any vy € R, there exists an € > 0 such that for
any 0 <T < 1,

-1 -1
IHL [, sl oy Se TENwllyress (lull 3 + el 00)-

Proof. We apply Proposition 5.3 withe = ik, sp = s; = s+ and s9 = % +¢e. By
construction of HL", there cannot be frequency interactions of the form (B) or (C)
of Proposition 3.1, so we only need to consider cases (A) and (D).
Case (A). Here H,, = k? ~ k, so condition (5.10) is
|ik|
|Hol2

= 0(1),

which holds for any s,y € R.

Case (D). This applies only for n > 4, where the condition (5.11) becomes
|2k|
(Kmase, Kinase, Fmax, ) 22

which holds for any £ > 0. |

S [k7F=0(1),

Next, we estimate the normal form remainder terms in (5.5) and (5.6).
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Lemma 5.5. Let n > 2. For s > % and v < min(s,1), there exists an € > 0 such
that for any 0 < T < 1,

I 5 (e £, -y, R[] + NR[u])|

Zety

2n—2 +m—2
Se T ll e (lullymimceny + [l yminen)-

Proof. There are two estimates to consider here: (1) when R? or N'R contains the
nth degree nonlinearity, (2) when R? or 'R contains the mth degree nonlinearity.
But essentially, we can deal with them together here, since we can set m = n later
if needed. So, we assume this estimate to be of the second kind mentioned. Note
that this is an n + m — 1 multi-linear estimate.

Again, we use Proposition 5.3 with sg = s+, s1 = 8, 89 = %—H—: and the symbol

_ ik(kn +---+ kn+m—1)
H‘n.(klu- . -:kn—lskn + - +kn+m—1)'

a

Note that the denominator of this symbol H,, should be distinguished by the expres-
sion Hyym—1 of the condition 5.3. By construction, we know that H,, = k% ~ k as

well as |kp 4+ -+ + knsm—1| < |k1|- Thus, we have 0 = O(1). Now, we go through
the cases:

Case (A). Here, we have Hyym—1 = k2, and o = O(1). So using the condition
(5.10)

k[ o]

r SR =0(1),
|Hﬂ.+m—1|§

which holds as long as v < 1.

Case (B). Recall that the operator T};r comes with the frequency-restriction:

k1| > max(|kal, . .., [kn—1], [kn + - -+ knpm—1l)-
Then, in order to be in case (B), we must have either ky = k or kj, = k for
jo € {n,...,n+m — 1}. In the former scenario, we have
k2 + -+ kn+m_1 =0« max{|k2|; ey |kn—1|} Z, |kn + -+ kn+m_1|.

Without loss of generality, say ka 2 kn + -+ + Entm—1. Then since H, in the

~

denominator gives a gain of k%, we use the condition (5.11) to obtain

ke o E|i+v+e kp+ -, knim—_1
_ +
|k2|min(s11) - Hn|k2|min(s,,1)

S, |k]_ |’}’— ].-‘rE‘ké—min(s:l) .

For v < 1, this is controlled by |k;|Y~™"(%:1) which is uniformly bounded if v <
min(s,1).
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In the latter scenario, say without loss of generality that knim—1 = k. Then,
Bit et Fnima = 0 < max{lkal, ., Fontm_al} 2 [kt ~ [K.
Without loss of generality, let k2 2 ki ~ k. Then using the criterion (5.11)

|k["*5|o]
(ko2 [ 41 [ )i

which is uniformly bounded if v < min(2s, 2).

—2min(s,1
5 5 |k|'y+£ min(s ),

Cases (C) and (D). In these cases, (5.11) gives

|k|’Y+E|J| < J.7+e—2min(s,1)

(kmax2 kmax3 kmax,, )min(s,l) ~ "max )

which leads to the same estimate as before. Applying Proposition 3.3 in each case,
we obtain the desired estimate. O

Next, we deal with the two terms in equation of (5.7).

Lemma 5.6. Let n > 2. For s > % and 0 < v < min(1,3s — 1), there ezists an
€ > 0 such that for any 0 < T < 1

||H£H[T§F(etaif!u! ""lu)!u)" '3u]|

2n—2
Ze+ Se T°| fll g ||u||ynmin(a,1)-

By a normal size-estimate, this estimate should fail. But there is a cancellation
structure here that can be utilized. This cancellation structure has an explicit alge-
braic expression in case of mKdV (n = 3) and was used to establish a well-posedness
of periodic mKdV below s = 1 in [28]. It is remarkable that analogous cancellation
structure exists for gKdV even with a non-explicit algebraic expression.

Proof. Again, this is a 2n — 1 multi-linear estimate. Symbol ¢ can be put in the
following form:

ik(ky + -+ k)
Hﬂ(klj"":kﬂ) )

What makes this symbol worse that the similar-looking symbol from the previous
lemma is that two derivatives in the numerator are both high-frequency. So the
trick used in case (B) of this estimate in Lemma 5.5 does not work here. In fact,
condition 3.4 fails for any « > 0 in case (B) of Proposition 3.1. Before we perform
a size-estimate, we will first harvest cancellations from the worst term here.

Note that due to the frequency restriction of HL"™ and Tfr, we must have
k1 > max{|ka|, ..., |k2n—1|}. So the only possible cases of Proposition 3.1 are cases
(A) and (B). Furthermore, case (B) can occur when ks + - -+ + kap—1 = 0 which
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means ki = k. Consider this term with the frequency restriction given by
ko +---+ kon_1 =0, m§§(|k3| < k. (512)
iz

We decompose this nonlinearity as follows:
2n—1 _ B A
T =T +T7,

where T2 is the 2n — 1 multi-linear Fourier multiplier with symbol o and frequency
restrictions corresponding to (5.12). For T, there will be enough smoothing to
perform a direct size estimate. For T2, we must first further decompose the symbol
to take advantage of cancellation.

Note that we are guaranteed of kg + - - - + kj, # 0 by construction of T'. Define
_ i

I
We will show that Ta‘?_” is bounded using Proposition 5.3, while Tf cancels out
entirely. First, we estimate the size of ¢ — p here. Argument is made separately for

I

n = 2 (quadratic normal form), n = 3 (cubic normal form) and n > 4.

o — p estimate for n = 2. This is the simplest case where Tc;g—,u = 0. Since
Hy = 3k1ka(k1 + k2) # 0, so we have

_ ik i _itkatke)
B = 3kky  3ky  3kika

since ko 4+ k3 = 0 by (5.12).

o —

o — p estimate for n = 3. Recall that Hs = 3(k1 + ko) (k2 + k3)(ks + k1) # 0.
Then

_ ik(k1 + ko + k3) ]
# = 3k + ka) (ko + ka)(ks + k1) 3(ka + k3)

ki (k1 + ko + k3) — i(ks + k1) (k1 + ko)

B 3(k1 + ko) (k2 + k3)(ks + k1)

- —ikaks

 3(ky + ko) (k2 + k3) (ks + k1)

o —

kma.x 2 '1‘:1'[] axg
~ 2
kl

o — p estimate for n > 4. For this argument, we will use the notation f::;. =
kj + --- + kpn similar to the one introduced during the proof of Proposition 3.1.
However, note that the summation here stops at index n, where there are a total
of 2n — 1 indices.

_ikk: i 3ikikiko —iH,
Hyp 3k, 3keH,

o —
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Now, recall from the (3.1) that H,, is equal to

Hy, = 3kykykg + 3kokoks + - - - + 3kn_1Kn_1kn.
Combining this with above, we obtain

kokoks + - - + kn_1kn_1kn koks g ki 1k 1k
3 — =-3 — 3 — .
kQHn Hﬂ kQHﬂ.

o—p=—

The numerator of the first fraction on right-hand side is bounded by |kmax, ||Fmaxs |,
which can be controlled by the denominator. So, the first fraction has size |k1|™1.
For the second fraction, we examine the numerator:

ki kjiky =Ky _a(ky —ka — - — kja)(k; + -+ kn)

=kokj_1k;— > Y kikj_ikm.

I<j—1m>j—1

It is important to notice in this computation is that the first term contains J;:Hg,
which will cancel with the denominator, and the remaining term is a product of
three non-overlapping frequencies. Thus, we can write

o= —3i koks 3 > =3 kj1k; - 33,23-:3 Dicj-1 §m>5—1 kik:-‘—lkm‘
H, H, ko Hy,
Since H,, 2 ki, we have
|J _ "JJ| S kmugkm&xakm&xd . (5‘13)

ki

We will use the above estimate for all n > 3. Since this is a 2n — 1 multi-linear
estimate, Emax, still makes sense for n = 3. For n = 2, we observed that the entire
term Ta‘?_# cancels out. Now, we have

T =TA+TP  +T7.

We will use Proposition 5.3 to estimate the first two terms. Also, we will show that
the last term cancels completely.

Estimate for T2. By construction H, > kf, and also since we are in case (A),
Hyn_1 2 k2. To satisfy (5.10),

Y ik | k1 + - - - + kn
|Hpl||Han—1?

L <t =0q)

we need v < 1. This concludes the estimate for T.
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Estimate T2 u- We use (5.11) and (5.13) to obtain this estimate. We need to
control
|k|" € — p |k|y+skmuzkmua Fmax,
)mm(s 1) ~ kQ(k )min(s,l)
4

(kmaxz kmaxg MAX maxy max3 kmax

S |k]_ |’Y—2+E(kmax2 kmax:; kmud) 1—min(s,1)
< |k1 |’y+1+s—3min{s,1)_
Here, we need v < 3min(s,1) — 1 = min(3s — 1, 2).

Cancellation of Tf . The kth Fourier coefficient of Tf is written as

2n—1

eitk fkeikx Z 3(k2 F— k ) H

kz4+---4+kzp_1=0
k = max(kgz, ..., kap_1)
ka +:--+kn #0

The sum above can be written as

2n—1

YiY IIw X IT =

[ f=rAd k= max(kg, ..., kn) j=2 k:&mu(kn+1=---=kzn—1)3 =n+1
kg + -+ kn =1 kny1+ -+ kan_1=-1

Due to the symmetry in frequency indices (ko,...,kn) and (knt1,kon—1), this sum
cancels out completely. For instance, we can split the sum into [ > 0 and [ < 0 and
observe that they cancel each other out. Roughly speaking, this is equivalent to the
calculation fT(a_lg)gda: = 0, for appropriately chosen function g : g(0) = 0. Thus,
TB = 0 which completes the proof. |

Finally, the next lemma deals with the mixed terms in (5.8).

Lemma 5.7. Let n #* m > 2. For s > % and 0 < v < min(1,3s — 1), there exists
an £ > 0 such that for any 0 < T < 1,

NE:Uyeo s Uf|| oty NFE Uy s Ul zoty e He U ymin(:,l)'
IHL™ [T I zeev + IHL™ [T Il Se T £l o llull oimcc
Proof. Here both of them are n + m — 1 multi-linear estimates. Two symbols

interact with each other to result in a surprising cancellation. Symbol involved in
this estimate is

_ ik(ky + -+ k) +ik(k1+---+kn)
Hm(klu---:km) Hﬂ(klj"":kﬂ) .

Once again, frequency restriction forces k1 > max(|ksa|,...,|kn+m—1|), so the only
cases to consider are cases (A) and (B) of Proposition 3.1. As before, we decompose
2n—1 _ A B B

Tar _Tcr +Tcr—;_.: +T;_.: ]
where the restriction B is defined analogously as (5.12) and p is given by
i i

B2+t km) | B(kat -+ Kn)

’u,:
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Following the algebra in the previous proof leads to the size estimate for o — p given
in (5.13). Thus, estimates for the first two terms are identical to the one given in
the proof of Lemma 5.6.

It remains to show the cancellation for Tf. Its kth Fourier coefficient is written as

. n+m—1
ith® ikz L
o e 2 (3(kz+---+kn) ST ) H e

k2 +---+kgp_1 =
k = max(kgz,....kan_1)
kg + ko #0

The sum above can be written as

i n4+m—1
DIE DY 1w, > I w
I€Z* © k> max(kg, ..., kn) j=2 k> max(ky, 1. knym_ 1) j'=n+1
ka+ -+ kn =1 b1+ o b kngmo1 =
i m n+m—1
D IE D DR | £ > IT
=yiAd k > max(kz,..., km) j=2 k> mu(km+1 ----- kntm—1) j'=m+1
kz + -+ km =1 Emi1+ - -+ knpm—1 = —1

Note that we can use symmetry in the second sum to reassign (Emi1,...
kntm—1) — (k1,...,kn) and produce

i n n+m—1
25 > = > IT
=y A k= max(kg, ..., ’Cn) j=2 k= max(knpyy, ..., knim—_1) j'=n4l1
kz -+ kn =1 kny1+ -+ knpm_1 = -1

which cancels completely with the first sum. This proves our desired estimate. O

6. Proof of Theorem 1.2

From the equation for w, note that we have

lwllysty S WTRF(S, -5 Ollgess +ITEES, - Ollgesn +1(5:3)ll zosn

11(5.8)l] -

Using lemmas from this section, we can bound these by

lwllyetr S W e F I 3 4e +1FIT340)
+ T lully,; (lully mm(a b+ [lullg mm(s 1
+ T Nwlly el 1+E + [l 1+E)
2n—2 -2
T F N = (el mimcenns + IIUIliﬁ?ﬁfs,nJ

+ T | 1o Ul oo el e )-
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Now, selecting T" < T(||f||H%+E) from Theorem 1.1, we get

lwllys+r S UF e NFIG 3+ + 1F G 340)

—1 -1
+ TN f 1l g (1 I mince.vy + 1 [ gmince, )
-1 -1

+ T wlly e (1 g A7)
2n—2 +m—2

AT f 1| o (1 gpmincens + 1 F | rrmimcern )
2n—2 +m—2

F TN £l e (1 f pgmince.vy + [1F [ gpminerns)-

Selecting T(||f||H%+E) small so that

-1 -1
Te(|IfII7 1se + ||f||$%+s) <1,

H3+e

we obtain that [wlly; < C(| || smmcn) |l -
Recalling (5.2), for v < 1,

[u(t) — e f|

C2([0,T):Hz ™)
S ITRFl oty + 1T Fl gor + 1[0 @] gross

—1 -1
S @l s (@I 35 + @I 500) + 1wl gosy

n—1 m—1
S IIUIly;(IIullyéH + IIHIIYT%H) + l[wlly e+

Sl gmince,ny 1 gzs-

This proves Theorem 1.2.

Remark 6.1. Note that, for s > 1, if we assume a priori control of H' norm,
the length of time increment is uniform over a global iteration. Also, the implicit
constant depends on the H! norm, which is assumed to be controlled. So for s > 1
and € > 0,

w(®) = DT | o g sy sz ey < O P gl e
(6.1)

7. Proof of Theorem 1.3

First, we will prove the statement for s € (1,2). Take T' = T'(|| f|| ;) by selecting
€ =1 in Theorem 1.2. We will use the statement of this Theorem in form of (6.1).

Let ¢t € [nT, (n + 1)T]. Define Fourier projection operators P<, and P, to be
Fourier frequency restrictions to |k| < n and |k| > n, respectively. Then using the
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decomposition
u(t) = e D%y (nT) + vn(2),
we have

IP>nu(®)lg. < [IP>nu(nto)llge + IP>nvn(®)l g (7.1)

Take the second term from right-hand side of (7.1). Using (6.1) and a priori control
of H! norm, we get

1P ntn @l = [|D2PonD* 0n(®)]] 2 S 72 on(®)ll 72
S 2O f Nl gn)-
Now, take the first term from right-hand side of (7.1). We can iterate this term by
u(nT) = eT%u((n — 1)T) + va_1 (nT).
Then, we have
IPsnu(n D)l < [Psn-1u(nT) . < [Psnsu((n— 1T
T IP>n19n-1(nT)l| g,

where the last term on the right-hand side above is bounded by (n —
1)*=2*C(||f|| i) by applying (6.1). Continuing this iteration all the way to the
interval [0,T] yield the following estimate:

IPsnu(®)lge < 11l + CUUSllr) 3 K24 S 1 flgge + COUS o).
k=1

For the low-frequency component, a trivial estimate below is sufficient:
P <nu(®)l e S n°Hu@®)llgn = n* " CIF )
Since n ~ (t) (implicit constant depending on T'), this gives
[u@® e < Psnu(®) e + IP<nu(®)llgs Sipny, n°H ~r )77

This proves the desired statement for s € [1,2).

We will use induction for s > 2. For some integer N > 2, let the claim hold
for sp € [N — 1, N). Then we will show that it holds for s € [N, N + 1). Note
that Theorem 1.2 allows for a uniform time-step T = T(||f| ;). Given a time
t € [nT,(n+1)T), again we write

u(t) = e D%y (nT) + va(2).
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As before, application of (6.1) yields
”1:)‘/“"’_“,{‘%(t)”Hs — ||DS_N_1+QEP>nDN+1_QEUn(t)||L2

S ns_N_H_?S||”n(t)||HN+1—2s

—N—142
Sifl 770 E [T gy
Using the induction hypothesis, note

[w(rT)| grv—e = Oy (BTN ) Sggn PN
Then

IPsnva(®)ll e Sy 257212

Now, we can iterate the same way as before to arrive ||Pspu(t)|| . S né=1+3¢
after summation. The low-frequency estimate |P<nu(t)|| ;. < n | f]l4 is still

~

identical. So together we get

—143 —143
(@)l e Sl 7 S @

This proves Theorem 1.3 for all s > 1.
The following statement immediately follows from analogous computations as
above. Its proof is omitted.

Corollary 7.1. For any k € N, if H* norm of solutions for (1.1) can be controlled,
then the global-in-time solution w with initial value f € H*(T) for s > k satisfies
the following polynomial-in-time bound:

—k
lu@)l g Sepifle E)° e for any € > 0.
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