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1. Introduction

We consider the Schrédinger equation with focusing exponential nonlinearity
iug + Au+ fo(u) =0; (t,r) € R x R? (1.1)
with )
Fulw) = (1F —1 —drpfuyu, pe {0,1}.

Note that this model enjoys the conserved quantities
1
M(u) = / |u|2dx,Eu(u) = f/ Vu)*dz —/ F,(u)dz,
R2 2 R2 R2

where F), = f,, F,(0) = 0. Explicitly, F,,(u) = g~ (e477|“|2 —1 —drxju]® - 87r2u|u|4) , p€{0,1}. Our work
concentrates on the solitary waves of (1.1), namely the solutions in the form u = e'“!¢,w > 0, which clearly

satisfy the profile problem
— Ad+wo = fu(9). (1.2)
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1.1. Ground states

There are various definitions of ground states, which may be adopted for such objects. The notion of
ground state has to do with an underlying mode of variational construction. In our case, we shall exclusively
consider the Ruf-Sani construction, [1], which solves a particular constrained variational problem. Here is
the precise result, due to Ruf-Sani, [1].

Proposition 1 (/1], See also [2]). Let f : Ry — Ry be a continuous function, which satisfies

lim & =0, limsup 210 f(@) _ { 0 a>4n

>0, lim 7
=0t [t too €472 T Jt]mo0 eot? +00 a <dm

For F:F' = f F(0)=0, and all s # 0, 0 < 2F(s) < sf(s). Then, the minimization problem

[IVu| — min (13)
subject to 3 |ul]* = [z F(u(z))dz = 0. '
has a solution Q. Moreover, Q satisfies the following properties:
o () solves the Euler—Lagrange equation
- A4Q+Q = f(Q) (1.4)
e Q is radially symmetric, Q € C?> N L™, Q is exponentially decaying at +oo.
e 0<||IVQ| <1 and
1
SIel = [ @, 1vQP+el - [ e (1.5)
R2 R2

Remark. We would like to note that if one starts with a nice solution of the elliptic problem (1.4), then
the relation (1.5) is nothing but the Pohozaev identity for such solutions and can be easily obtained by
integration by parts, by taking dot product of (1.4) with - V@Q and with @ respectively.

As a simple consequence of this result, we will obtain suitable solutions of (1.2). Indeed, for a fixed
w > 0, set f(z) = %(64ﬂ22 — 1 — dmpz?)z,u € {0,1}, with the corresponding function F(z) =
— (64”'“‘2 — 1 —dn|ul® — 872ulul*) . We claim that the pair f, F,u € {0,1} satisfies the conditions in

Proposition 1. For the case, u = 0, the only non trivial part of this statement is the inequality 2F(z) < zf(z2),
which can be seen by the expansion in McLaurin series

> 7TZ2l > 7TZ2l
zF(z)ZLZ(4 : L 12%_1;! = zf(2)

l 47w
1=2 1=2

and similar for the case p = 1. We can thus infer the existence of a function @), as specified in Proposition 1.
Moreover, the assignment ¢, (z) = Q. (y/wz) introduces a function, which is a solution of (1.2), since
Q. solves the Euler-Lagrange equation (1.4), corresponding to the specific nonlinearity f,. We say that
f is Schwarz symmetric (bell-shaped) if f = f*, its decreasing rearrangement. The minimization problem
(Ruf-Sani)

. 1
wt {I9ul s ghli - [ Fuute)as = o}
R2

always has a Schwarz-symmetric (bell-shaped) minimizer. For further results on decreasing rearrangements
in this context, we refer to [3]. We are now ready to collect our findings about ¢,, in the following corollary.
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Corollary 1. For each w > 0 and p € {0,1}, there exists a solution ¢, of the elliptic problem (1.2).
Moreover, ¢, € C* N L™ is a bell-shaped function, 0 < ||[Vyl|/2 <1 and

w 2 _ 2 2 _
S10ulP = [ P, 190l +leul? = [ 60, (1.6

Remark. We call the functions ¢, the Ruf-Sani solitons associated with the nonlinear
Schrodinger equation with exponential nonlinearity (1.1).

1.2. Main results

The main objective of this paper is to study further properties of the Ruf-Sani solitons. It is for example
easy to compute the precise asymptotics at +oo. Namely, it is a standard to obtain

e—Volz| <e\/5w
+
V|

see for example Theorem 2, [4], which applies to any for general super-linear nonlinearity.

dw(x) =CcC

]

) J|z) > 1,2 € R? (1.7)

Next, we shall be interested in the properties of the linearized operators Zy. For convenience, introduce
functions g, G

g(z) = '™ — 1 —dmpz (1.8)
Az 1—-14 -8 2,,,2
G(z) = ¢ L o , (1.9)
4

so that f(z) = g(2?)z, G(2?) = 2F(z) and G(0) = 0,G’(2) = g(2). In these variables,

L= —Atw—g(¢?) = —A+w— ("% — 1 — dmpug?);
2
Ly = —Atw— (207 (0°) + 9(¢°)) = —A +w — ("% (8m¢2 + 1) — 1 — 12umd).
as these are paramount in the stability analysis of the waves ¢,, as solutions to (1.1), see (1.10) below.
In line with the expectations in the classical cases of power nonlinearities, we have the usual properties

of Z.. Recall that for a semi-bounded from below self-adjoint operator S with a finite dimensional negative
subspace X_, the Morse index is defined as follows n(S) = dim(X_) = #{0p(S) N (—0,0)}.

Proposition 2. Letw > 0, € {0,1} and ¢, are the Ruf-Sani solitons constructed in Corollary 1. Then,
the Schrodinger operators Ly have the following properties

o L >0, with a simple eigenvalue at zero, Ker[L_] = span|¢,].
o Ly has Morse index 1. That is, n(Zy) = 1.

Our next result concerns the instability of the Ruf-Sani waves. In order to put the results in the proper
context, let us consider the linearization of the Schrédinger equation with exponential nonlinearity in a
vicinity of the soliton e™“!@,,. More precisely, take u = e™“(p,(z) + v) = (¢, (x) + v1 + ive) and plug
this in (1.1). After ignoring all terms O(|v|?), we obtain the linearized system

f(2D)-(5 D5 2 () om

Passing to a time independent problem, ¥ — e*#, allows us to reduce matters to the eigenvalue problem

LT = M. (1.11)



H. Hajaiej and A.G. Stefanov Applied Mathematics Letters 130 (2022) 107988

Definition 1. We say that the wave ¢, is spectrally unstable, if the eigenvalue problem (1.11) has a
non-trivial solution (A, @) : R\ > 0,0 € D(¥),7 # 0.

The next theorem is the main result of our work.

Theorem 1. Let w > 0, € {0,1}. Then, the Ruf-Sani waves e*“t¢,, are spectrally unstable, with a single
real growing mode. These waves are also unstable by blow-up.

Instability by blow up results in similar contexts have been obtained in [5,6].

2. Proof of Proposition 2
2.1. An alternative variational characterization of ¢,

Specifically, taking into account that @, is a constrained minimizer for (1.3), it is easy to see, by rescaling,
that ¢, is a constrained minimizer of

{ |Vul| 2 — min

subject to wllul|* — & [eo (64”|“‘2 — 1 —dnlul’ — 87T2[L|u|4) dx = 0. (2.1)

We will show that reversing the roles of the constraints and the cost function produces the same outcome.

Lemma 1. The constrained minimization problem

Iu] = wllul* = & [z (64“"42 —1 —4rful® - 8772u|u|4) dr — min
subject to ||Vullp2 = |[Voul 12

has a solution and Iy = inf|vyu|=|ve,| [[u] = 0. In particular, u = ¢, solves (2.2).

Proof. The argument is pretty straightforward and exploits the fact that ¢, is a solution of (2.1). Indeed,
as u = ¢, satisfies the constraint of (2.1) and (2.2), we have that

I[u] SI[(bw]:O

Tnin = inf
IVul|=[IV o |l

Note that, so far, we have not even ruled out the scenario I,;, = —oo! We however claim that I, = 0,
which means that u = ¢,, is a solution to (2.2).

Assume, for a contradiction, that this is not the case. That is, assume I, < 0. Then, there exists ¢ #0,
so that |[V@|| = ||[Vé.|, but I[¢] < 0. Consider then the continuous function h(a) = I[ad] : [0,1] — R.

Since? org
o 1S, [ ()
_ 2 2 202
Moy =a? [t - = > on [ BEEL

=2 or [=3

it is clear that h(a) > 0, for all 0 < o < 1. Since h(1) = I[¢] < 0, it follows by continuity that for some
& € (0,1), we have that I(a¢) = h(a) = 0. Thus, @ := &¢ satisfies the constraints in (2.1). But then, we
reach a contradiction, as |V, || < ||Vl = @|Ve|| = @||Ves|. O

Our next task is to establish the spectral properties of %, based on the fact that ¢, is a constrained

minimizer of (2.2).

2 In the case pu = 0, the sum runs from [ = 2, while in the case u = 1, from [ = 3.
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2.2. The Morse index of £y is exactly one

We consider a variation of the function ¢, in (2.2), which has a built in property ||Vul|| = ||V,]||. More
specifically, for a test function h, consider

bw + €h
ue = |V )
IV (¢w +€h)]|
which satisfies the constraints of (2.2). The function m(e) := Ifuc] then has a minimum at ¢ = 0, with

m(0) = 0. The necessary condition m’(0) = 0 yields the Euler-Lagrange equation for this problem, which
is, as expected, nothing but (1.2). Note that this follows, as we take into account the relation (1.6). Next,
the necessary condition m’(0) > 0 can be written explicitly as well. However, this gets a bit technical, so
we reduce our considerations to the case h 1. A¢,,, which is enough for our purposes, while simplifying the
expressions. Indeed, we have

IV (0 + en)|? = [IVoul* = 2¢(Agu, h) + €[|Vh||* = [V ||* + €*||Vhl|?

Also, note that since already we have ensured the validity of m(0) = m’(0) = 0, it follows that m(e) =
const.€2 + o(e?). Thus, we can ignore all powers of € in the expansion of m(¢). To this end,

m(e) = Ifu] = wlhulfa = [ Glu) =

» 2 2 o h 21 K112 2
:w”¢ H + €<¢ ’ >+€ ” H _/ G<¢i+2€¢wh+€2 <h2— ¢w 2||Vh|2>> —
L+ reoop VA2 R? Vool

2
bull?

= (L h,h) +O(e),

where we took into account (1.6). Clearly then, (£, h,h) = m”2(0) > 0, for all h L Ag¢,. In particular,

n(Zy) < 1. On the other hand,

<$+¢wv¢w> = Hv¢wH2 +w||¢wH2 - /f(¢31) - 8”/(64‘”52 - :U’)d)f)dx = —87T/(647r¢3’ - ,u)gzﬁf)dx < 07

which shows by the min—max characterization of the eigenvalues, that there is a negative eigenvalue, whence

2.3. £ >0 with a simple eigenvalue at zero

As Z_ is a Schrodinger operator with a radial kernel, its action, can be decomposed, in a standard way,
on the spaces of spherical harmonics. Indeed, A acts invariantly on each separate spherical harmonic space
23,1 =0,... (composed of the eigenfunctions for a fixed eigenvalue \; = —I? for Ag1). So, denoting

1 2
L= Ll = O — 0+ 1 — (),
we obtain .Z_ = @2 . ;, which can be thought of as acting on L?(rdr). Note that
gf’o <$,’1 <L see

Note that Z_[¢,,] = 0, which implies that Z_ o[¢,,] = 0. Since ¢, > 0, this must be the ground state and
the lowest eigenvalue for Z_ ( is zero. It follows that £~ > Z_, > 0, with a simple eigenvalue at zero,

spanned by ¢,,.
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3. Spectral instability of the Ruf-Sani solitons

One may provide a necessary and sufficient condition, even when ¢, is not necessarily weakly non-
degenerate, but under the conditions .Z_ > 0, and n(%;) = 1, which we have established already. Indeed,
this is done in Theorem 4.1, [7]. The precise result is the following

Proposition 3. Suppose L > 0, Ker[.Z_] = span|¢], and n(Z;) = 1. Then, the spectral problem (1.11)
is spectrally stable if and only if .$+|{¢}L > 0.

Remark. Even though the result already exists as stated, see Theorem 4.1, [7], we provide the short proof
for the readers convenience.

Proof. Assume spectral instability, then there exists hy, ho : Z_ha = Ahy,.ZL1h1 = —Aha. So, X_B?Thl =
~A2hy. As hy € Range[.Z_],h1 # 0, it follows that h; L ¢. As L |4yt =0 >0, there is n := Z_7hy €

{¢}+ is well-defined. Then
VL LN L=\

It follows that —\? is real, as an element of the spectra of the self-adjoint \/.Z_ .2, \/Z_, whence A € iRUR.
Thus, A > 0 is real, as an unstable eigenvalue. But now

0> =N|nl* = (VL Lo/ Lon ) = (Liha, ha)

whence the condition .2 5,1 > 0 fails.
Conversely, assume that 2 [(4,1 > 0 fails. Then, there is 7} € {¢}+ so that (Z,7,7) < 0. Thus, there is

n:+/ZL-n=1.So,
<\/ $*$+ \% g*n777> <0.

It follows that /.Z_ %, \/Z_ has negative e-value, so \/.Z_. %L/ Lz = —A2z, X > 0. Hence instability. O

This justifies the following sufficient condition for spectral instability.

Corollary 2. Ifn(%;) =1 and there exists ¥ L ¢y, so that (L, ¥, ¥) < 0, then the wave ¢, is spectrally
unstable, with exactly one unstable real mode.

3.1. Proof of the spectral instability of the waves

Per the results of Proposition 3, it suffices to construct ¥ L ¢, so that (£, ¥, ¥) < 0. To this end, set
U :=x- -V, + ¢,. A direct calculation shows ¥ L ¢,,. Indeed,

2
1
(7.6.) = (0 V6ur) + ool = 35 [ 20002 + ol =0,

It remains to calculate (£, ¥, ¥). Since —A(z-Vf) = —a-VAf —2Af and using the profile equation (1.2),
we compute Z, (x - V) = —2A¢,. So,
<$+ v, !p> = <$+(l‘ : v¢w),x -V, + ¢w> + <¢w;$+(x : V(rbw» + <$+¢7¢> =
2800, V0u) +4IV0u|F <2 [ g (@2)okde =4|VoL|? ~2 [ (62)obdn =
R

R2
/ (4f(¢w)bw — 8F (¢u) — 29" (62)0,) dw = — / [e‘*WQ (8mszt N 4¢i> - 1} da.
R2 R2 T T
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where we have used that (A¢,,z - Vo) = 0, L ¢, = —2¢39'(¢?) and the Pohozaev identities (1.6) and
(1.6). We will show momentarily that the integrand function,

1 1
et (87rz4 +-— 4z2> —=>0 (3.1)
m T

whence (£, ¥, ¥) < 0.

According to Proposition 3, this implies the spectral instability of ¢,,. It remains to prove (3.1). Indeed,
it suffices to show that x(z) = 8ra?+ L -4z — e—i” > 0 for all z > 0. However, note that f(0) = f'(0) =0,
while f(z) = 167(1 — e~*"*) > 0, whence f(z) > 0 for all z > 0.

4. Instability by blow up

Before tackling the strong instability of the standing waves, we need to make sure that the following

Cauchy problem:
iug + Au+ fu(u) =0, (t,z) € R x R?
(4.1)
u(t,0) = ug(z)
where g is an initial data in H'(R?), has a unique solution for a time 7' > 0. (4.1) has been resolved in [8].

More precisely, the authors have proved the following result.

Lemma 4.1 (Theorem 1.10, [8]). Let ug € H*(R?) such that ||Vuol|lo < 1, then there exist a time T > 0
and a unique solution to the Cauchy problem (4.1) in the space Cp(H'(R?)) with initial data ug. Moreover
u € L‘%(C% (R2)), where C* is the space of a-Hélder continuous functions endowed with the norm

u(e) - uly
lullee = flufloo + sup 12 =8| . Iy

THY |l‘ -y

Additionally, if T* denote the mazimal time, i.e, T* = sup{T > 0, (4.1) has a solution on [0,T]}, we say
that a solution blows up at T*, if lim; a7« | Vu(t,.)||3 = 1. We also have the mass and energy conservation
for the solutions of (4.1), which take the form

M (u(t,.)) = M(uo), By (ult, ) = E(uo) (4.2)
For v € H(R?), we define the action functional in the following way:

Su(v) = Eu(v) + 3 M) = 3 IVoll + ol ~ [ Fule)da.
Note that S, (®) can also be rewritten in the following way :

Su(®) = inf {S,(v) : v e H'(B2)\ {0}, L(v) = 0}.
Note that a ground state as defined by (1.3) minimizes the action functional in the following way:

S, (@) =inf {S,(v): ve H'(R*)\ {0}, P,(v) =0}.

The following two quantities also play a crucial role in the study of strong instability:
Lo
Pu(v) = 5llvllz = [ Fu(v)de,

u(0) = 3IV0l = [ ofuede = 2B,0) = [ v,(0) - 1B, (0)da,

7
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A virial property has also been shown in [2], More precisely, the authors showed that if u is a solution to

(4.1), then
2

d *
S loulld = 81.(w), ¥te0,T7).

Lastly, we introduce two classical sets that are important in the study of orbital stability as they have the
desired invariance with respect to the flow of (4.1):

K, = {ve H' (R*)\{0}: S.(v) < Su(®), I,(v) <0}

KZ" {ve H'(R*\{0} : S.(v) < Su(®), I.(v) >0}

The following lemma provides sufficient conditions for a finite time blow-up.

Lemma 4.2 (Lemma 3.9, [2]). Let p € {0,1} and ug € H*(R?) be such that |Vug|3 < 1 and E,(up) > 0. If
up € K, ug € H'(R?) N L*(|z]*dw),
then the corresponding solution to (4.1) blows up in finite time.

The next result, also proved in [2], shows that appropriate and close rescales of the ground state satisfy
the requirements of Lemma 4.2 and hence provide the instability by blow up claimed in Theorem 1.

Lemma 4.3 (Lemma 3.13, [2]). Let p € {0,1}, ®x(x) = AP(A\x). There exists € > 0, so that for all
A1 < A< 1+e¢, the following holds true:

E (@) >0, I,(®)) <0, S,.(®y) < S,(P), (4.3)
Vo2 <1, &) e H'(R?) N L(|z]>dz)

Remark. The precise statement of Lemma 3.13 in [2] requires a slight modification, but the result quoted
here holds true due to the arguments presented there.

We are now ready to complete the proof of the strong instability of the waves @. Consider &, (x) :=
An @(Anx), for a sequence A\, — 1+4. Clearly, lim,, ||®, — ®||z1 = 0. Also, the sequence &, satisfies all the
assumptions in Lemma 4.2, due to Lemma 4.3. Therefore, all solutions with initial data @,, blow up in finite
time, whence we conclude the strong instability of the waves @.
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