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a b s t r a c t

We study the two dimensional non-linear Schrödinger equation with two types of
exponential non-linearities. It is well-known by a work of Ruf–Sani (Ruf and Sani,
2013), that such models support solitary wave solutions, which are solutions of
some constrained minimization problem. We show that the Ruf–Sani solitons are
spectrally unstable and unstable by blow up.
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1. Introduction

We consider the Schrödinger equation with focusing exponential nonlinearity

iut + ∆u + fµ(u) = 0; (t, x) ∈ R × R2 (1.1)

with
fµ(u) = (e4π|u|2 − 1 − 4πµ|u|2)u, µ ∈ {0, 1}.

Note that this model enjoys the conserved quantities

M(u) =
∫
R2

|u|2dx, Eµ(u) = 1
2

∫
R2

|∇u|2dx −
∫
R2

Fµ(u)dx,

here F ′
µ = fµ, Fµ(0) = 0. Explicitly, Fµ(u) = 1

8π

(
e4π|u|2 − 1 − 4π|u|2 − 8π2µ|u|4

)
, µ ∈ {0, 1}. Our work

concentrates on the solitary waves of (1.1), namely the solutions in the form u = eiωtϕ, ω > 0, which clearly
satisfy the profile problem

− ∆ϕ + ωϕ = fµ(ϕ). (1.2)
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.1. Ground states

There are various definitions of ground states, which may be adopted for such objects. The notion of
round state has to do with an underlying mode of variational construction. In our case, we shall exclusively
onsider the Ruf–Sani construction, [1], which solves a particular constrained variational problem. Here is
he precise result, due to Ruf–Sani, [1].

roposition 1 ([1], See also [2]). Let f : R+ → R+ be a continuous function, which satisfies

lim
t→0

f(t)
t

= 0, lim sup
|t|→+∞

tf(t)
e4πt2 > 0, lim

|t|→∞

f(t)
eαt2 =

{
0 α > 4π

+∞ α < 4π

or F : F ′ = f, F (0) = 0, and all s ̸= 0, 0 < 2F (s) ≤ sf(s). Then, the minimization problem{
∥∇u∥ → min
subject to 1

2 ∥u∥2 −
∫
R2 F (u(x))dx = 0.

(1.3)

has a solution Q. Moreover, Q satisfies the following properties:

• Q solves the Euler–Lagrange equation

− ∆Q + Q = f(Q) (1.4)

• Q is radially symmetric, Q ∈ C2 ∩ L∞, Q is exponentially decaying at ±∞.
• 0 < ∥∇Q∥ < 1 and

1
2∥Q∥2 =

∫
R2

F (Q), ∥∇Q∥2 + ∥Q∥2 =
∫
R2

f(Q)Q. (1.5)

emark. We would like to note that if one starts with a nice solution of the elliptic problem (1.4), then
he relation (1.5) is nothing but the Pohozaev identity for such solutions and can be easily obtained by

integration by parts, by taking dot product of (1.4) with x · ∇Q and with Q respectively.

As a simple consequence of this result, we will obtain suitable solutions of (1.2). Indeed, for a fixed
ω > 0, set f(z) := 1

ω (e4πz2 − 1 − 4πµz2)z, µ ∈ {0, 1}, with the corresponding function F (z) =
1

8πω

(
e4π|u|2 − 1 − 4π|u|2 − 8π2µ|u|4

)
. We claim that the pair f, F, µ ∈ {0, 1} satisfies the conditions in

roposition 1. For the case, µ = 0, the only non trivial part of this statement is the inequality 2F (z) ≤ zf(z),
which can be seen by the expansion in McLaurin series

2F (z) = 1
4πω

∞∑
l=2

(4πz2)l

l! <
1

4πω

∞∑
l=2

(4πz2)l

(l − 1)! = zf(z)

and similar for the case µ = 1. We can thus infer the existence of a function Qω, as specified in Proposition 1.
oreover, the assignment ϕω(x) := Qω(

√
ωx) introduces a function, which is a solution of (1.2), since

Qω solves the Euler–Lagrange equation (1.4), corresponding to the specific nonlinearity fω. We say that
f is Schwarz symmetric (bell-shaped) if f = f∗, its decreasing rearrangement. The minimization problem
(Ruf–Sani)

inf
{

∥∇u∥2
2 : 1

2∥u∥2
2 −

∫
R2

Fµ(u(x))dx = 0
}

always has a Schwarz-symmetric (bell-shaped) minimizer. For further results on decreasing rearrangements
in this context, we refer to [3]. We are now ready to collect our findings about ϕ in the following corollary.
ω
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orollary 1. For each ω > 0 and µ ∈ {0, 1}, there exists a solution ϕω of the elliptic problem (1.2).
Moreover, ϕω ∈ C2 ∩ L∞ is a bell-shaped function, 0 < ∥∇ϕω∥L2 < 1 and

ω

2 ∥ϕω∥2 =
∫
R2

F (ϕω), ∥∇ϕω∥2 + ω∥ϕω∥2 =
∫
R2

f(ϕω)ϕω. (1.6)

Remark. We call the functions ϕω the Ruf–Sani solitons associated with the nonlinear
Schrödinger equation with exponential nonlinearity (1.1).

.2. Main results

The main objective of this paper is to study further properties of the Ruf–Sani solitons. It is for example
asy to compute the precise asymptotics at ±∞. Namely, it is a standard to obtain

ϕω(x) = c
e−

√
ω|x|√
|x|

+ o

(
e−

√
ω|x|

|x|

)
, |x| ≫ 1, x ∈ R2 (1.7)

see for example Theorem 2, [4], which applies to any for general super-linear nonlinearity.
Next, we shall be interested in the properties of the linearized operators L±. For convenience, introduce

unctions g, G

g(z) = e4πz − 1 − 4πµz (1.8)

G(z) = e4πz − 1 − 4πz − 8π2µz2

4π
, (1.9)

so that f(z) = g(z2)z, G(z2) = 2F (z) and G(0) = 0, G′(z) = g(z). In these variables,

L− = −∆ + ω − g(ϕ2
ω) = −∆ + ω − (e4πϕ2

ω − 1 − 4πµϕ2
ω);

L+ = −∆ + ω − (2ϕ2g′(ϕ2) + g(ϕ2)) = −∆ + ω − (e4πϕ2
ω (8πϕ2

ω + 1) − 1 − 12µπϕ2
ω).

s these are paramount in the stability analysis of the waves ϕω as solutions to (1.1), see (1.10) below.
In line with the expectations in the classical cases of power nonlinearities, we have the usual properties

of L±. Recall that for a semi-bounded from below self-adjoint operator S with a finite dimensional negative
subspace X−, the Morse index is defined as follows n(S) = dim(X−) = #{σp(S) ∩ (−∞, 0)}.

roposition 2. Let ω > 0, µ ∈ {0, 1} and ϕω are the Ruf–Sani solitons constructed in Corollary 1. Then,
he Schrödinger operators L± have the following properties

• L− ≥ 0, with a simple eigenvalue at zero, Ker[L−] = span[ϕω].
• L+ has Morse index 1. That is, n(L+) = 1.

Our next result concerns the instability of the Ruf–Sani waves. In order to put the results in the proper
ontext, let us consider the linearization of the Schrödinger equation with exponential nonlinearity in a
icinity of the soliton eiωtϕω. More precisely, take u = eiωt(ϕω(x) + v) = eiωt(ϕω(x) + v1 + iv2) and plug
his in (1.1). After ignoring all terms O(|v|2), we obtain the linearized system

∂t

(
v1
v2

)
=
(

0 1
−1 0

)(
L+ 0
0 L−

)(
v1
v2

)
=: J L v⃗. (1.10)

assing to a time independent problem, v⃗ → eλtv⃗, allows us to reduce matters to the eigenvalue problem

J L v⃗ = λv⃗. (1.11)
3
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efinition 1. We say that the wave ϕω is spectrally unstable, if the eigenvalue problem (1.11) has a
on-trivial solution (λ, v⃗) : ℜλ > 0, v⃗ ∈ D(L ), v⃗ ̸= 0.

The next theorem is the main result of our work.

heorem 1. Let ω > 0, µ ∈ {0, 1}. Then, the Ruf–Sani waves eiωtϕω are spectrally unstable, with a single
eal growing mode. These waves are also unstable by blow-up.

Instability by blow up results in similar contexts have been obtained in [5,6].

. Proof of Proposition 2

.1. An alternative variational characterization of ϕω

Specifically, taking into account that Qω is a constrained minimizer for (1.3), it is easy to see, by rescaling,
hat ϕω is a constrained minimizer of{

∥∇u∥L2 → min
subject to ω∥u∥2 − 1

4π

∫
R2

(
e4π|u|2 − 1 − 4π|u|2 − 8π2µ|u|4

)
dx = 0.

(2.1)

We will show that reversing the roles of the constraints and the cost function produces the same outcome.

Lemma 1. The constrained minimization problem{
I[u] := ω∥u∥2 − 1

4π

∫
R2

(
e4π|u|2 − 1 − 4π|u|2 − 8π2µ|u|4

)
dx → min

subject to ∥∇u∥L2 = ∥∇ϕω∥L2
(2.2)

has a solution and Imin := inf∥∇u∥=∥∇ϕω∥ I[u] = 0. In particular, u = ϕω solves (2.2).

Proof. The argument is pretty straightforward and exploits the fact that ϕω is a solution of (2.1). Indeed,
as u = ϕω satisfies the constraint of (2.1) and (2.2), we have that

Imin := inf
∥∇u∥=∥∇ϕω∥

I[u] ≤ I[ϕω] = 0

Note that, so far, we have not even ruled out the scenario Imin = −∞! We however claim that Imin = 0,
which means that u = ϕω is a solution to (2.2).

Assume, for a contradiction, that this is not the case. That is, assume Imin < 0. Then, there exists ϕ̃ ̸= 0,
so that ∥∇ϕ̃∥ = ∥∇ϕω∥, but I[ϕ̃] < 0. Consider then the continuous function h(α) := I[αϕ̃] : [0, 1] → R.
Since2

h(α) = α2

[
ω∥ϕ̃∥2 − 1

4π

∞∑
l=2 or l=3

α2l−2
∫
R2

(4πϕ̃2)l

l!

]
,

t is clear that h(α) > 0, for all 0 < α ≪ 1. Since h(1) = I[ϕ̃] < 0, it follows by continuity that for some
˜ ∈ (0, 1), we have that I(α̃ϕ̃) = h(α̃) = 0. Thus, ũ := α̃ϕ̃ satisfies the constraints in (2.1). But then, we
each a contradiction, as ∥∇ϕω∥ ≤ ∥∇ũ∥ = α̃∥∇ϕ̃∥ = α̃∥∇ϕω∥. □

Our next task is to establish the spectral properties of L±, based on the fact that ϕω is a constrained
inimizer of (2.2).

2 In the case µ = 0, the sum runs from l = 2, while in the case µ = 1, from l = 3.
4
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.2. The Morse index of L+ is exactly one

We consider a variation of the function ϕω in (2.2), which has a built in property ∥∇u∥ = ∥∇ϕω∥. More
pecifically, for a test function h, consider

uϵ = ∥∇ϕω∥ ϕω + ϵh

∥∇(ϕω + ϵh)∥ ,

hich satisfies the constraints of (2.2). The function m(ϵ) := I[uϵ] then has a minimum at ϵ = 0, with
(0) = 0. The necessary condition m′(0) = 0 yields the Euler–Lagrange equation for this problem, which

s, as expected, nothing but (1.2). Note that this follows, as we take into account the relation (1.6). Next,
he necessary condition m′′(0) ≥ 0 can be written explicitly as well. However, this gets a bit technical, so
e reduce our considerations to the case h ⊥ ∆ϕω, which is enough for our purposes, while simplifying the

expressions. Indeed, we have

∥∇(ϕω + ϵh)∥2 = ∥∇ϕω∥2 − 2ϵ⟨∆ϕω, h⟩ + ϵ2∥∇h∥2 = ∥∇ϕω∥2 + ϵ2∥∇h∥2

Also, note that since already we have ensured the validity of m(0) = m′(0) = 0, it follows that m(ϵ) =
const.ϵ2 + o(ϵ2). Thus, we can ignore all powers of ϵ in the expansion of m(ϵ). To this end,

m(ϵ) = I[uϵ] = ω∥uϵ∥2
L2 −

∫
R2

G(u2
ϵ) =

= ω
∥ϕω∥2 + 2ϵ⟨ϕω, h⟩ + ϵ2∥h∥2

1 + ϵ2
∥∇ϕω∥2 ∥∇h∥2

−
∫
R2

G

(
ϕ2

ω + 2ϵϕωh + ϵ2
(

h2 − ϕ2
ω

∥∇ϕω∥2 ∥∇h∥2
))

=

= ϵ2⟨L+h, h⟩ + O(ϵ3),

here we took into account (1.6). Clearly then, ⟨L+h, h⟩ = m′′(0)
2 ≥ 0, for all h ⊥ ∆ϕω. In particular,

n(L+) ≤ 1. On the other hand,

⟨L+ϕω, ϕω⟩ = ∥∇ϕω∥2 + ω∥ϕω∥2 −
∫

f(ϕ2
ω) − 8π

∫
(e4πϕ2

− µ)ϕ4
ωdx = −8π

∫
(e4πϕ2

ω − µ)ϕ4
ωdx < 0,

which shows by the min–max characterization of the eigenvalues, that there is a negative eigenvalue, whence
n(L+) = 1.

2.3. L− ≥ 0 with a simple eigenvalue at zero

As L− is a Schrödinger operator with a radial kernel, its action, can be decomposed, in a standard way,
on the spaces of spherical harmonics. Indeed, ∆ acts invariantly on each separate spherical harmonic space
Xl, l = 0, . . . (composed of the eigenfunctions for a fixed eigenvalue λl = −l2 for ∆S1). So, denoting

L−,l := L+|Xl
= −∂rr − 1

r
∂r + l2

r2 − g(ϕ2),

we obtain L− = ⊕∞
l=0L−,l, which can be thought of as acting on L2(rdr). Note that

L−,0 < L−,1 < · · · .

ote that L−[ϕω] = 0, which implies that L−,0[ϕω] = 0. Since ϕω > 0, this must be the ground state and
he lowest eigenvalue for L−,0 is zero. It follows that L− ≥ L−,0 ≥ 0, with a simple eigenvalue at zero,
panned by ϕ .
ω

5
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. Spectral instability of the Ruf–Sani solitons

One may provide a necessary and sufficient condition, even when ϕω is not necessarily weakly non-
egenerate, but under the conditions L− ≥ 0, and n(L+) = 1, which we have established already. Indeed,
his is done in Theorem 4.1, [7]. The precise result is the following

roposition 3. Suppose L− ≥ 0, Ker[L−] = span[ϕ], and n(L+) = 1. Then, the spectral problem (1.11)
s spectrally stable if and only if L+|{ϕ}⊥ ≥ 0.

emark. Even though the result already exists as stated, see Theorem 4.1, [7], we provide the short proof
or the readers convenience.

roof. Assume spectral instability, then there exists h1, h2 : L−h2 = λh1, L+h1 = −λh2. So, L−L+h1 =
λ2h1. As h1 ∈ Range[L−], h1 ̸= 0, it follows that h1 ⊥ ϕ. As L−|{ϕ}⊥ ≥ δ > 0, there is η := L

− 1
2

− h1 ∈
ϕ}⊥ is well-defined. Then √

L−L+
√

L−η = −λ2η.

t follows that −λ2 is real, as an element of the spectra of the self-adjoint
√

L−L+
√

L−, whence λ ∈ iR∪R.
hus, λ > 0 is real, as an unstable eigenvalue. But now

0 > −λ2∥η∥2 = ⟨
√

L−L+
√

L−η, η⟩ = ⟨L+h1, h1⟩

hence the condition L+|{ϕ}⊥ ≥ 0 fails.
Conversely, assume that L+|{ϕ}⊥ ≥ 0 fails. Then, there is η̃ ∈ {ϕ}⊥ so that ⟨L+η̃, η̃⟩ < 0. Thus, there is

:
√

L−η = η̃. So,
⟨
√

L−L+
√

L−η, η⟩ < 0.

t follows that
√

L−L+
√

L− has negative e-value, so
√

L−L+
√

L−z = −λ2z, λ > 0. Hence instability. □

This justifies the following sufficient condition for spectral instability.

orollary 2. If n(L+) = 1 and there exists Ψ ⊥ ϕω, so that ⟨L+Ψ ,Ψ⟩ < 0, then the wave ϕω is spectrally
nstable, with exactly one unstable real mode.

.1. Proof of the spectral instability of the waves

Per the results of Proposition 3, it suffices to construct Ψ ⊥ ϕω, so that ⟨L+Ψ ,Ψ⟩ < 0. To this end, set
:= x · ∇ϕω + ϕω. A direct calculation shows Ψ ⊥ ϕω. Indeed,

⟨Ψ , ϕω⟩ = ⟨x · ∇ϕω, ϕω⟩ + ∥ϕω∥2 =
2∑

j=1

1
2

∫
R2

xj∂jϕ2
ω + ∥ϕω∥2 = 0.

t remains to calculate ⟨L+Ψ ,Ψ⟩. Since −∆(x ·∇f) = −x ·∇∆f −2∆f and using the profile equation (1.2),
e compute L+(x · ∇ϕω) = −2∆ϕω. So,

⟨L+Ψ ,Ψ⟩ = ⟨L+(x · ∇ϕω), x · ∇ϕω + ϕω⟩ + ⟨ϕω, L+(x · ∇ϕω)⟩ + ⟨L+ϕ, ϕ⟩ =

− 2⟨∆ϕω, x · ∇ϕω⟩ + 4∥∇ϕω∥2 − 2
∫
R2

g′(ϕ2
ω)ϕ4

ωdx = 4∥∇ϕω∥2 − 2
∫
R2

g′(ϕ2
ω)ϕ4

ωdx =∫ (
4f(ϕω)ϕω − 8F (ϕω) − 2g′(ϕ2

ω)ϕ4
ω

)
dx = −

∫ [
e4πϕ2

(
8πϕ4

ω + 1 − 4ϕ2
ω

)
− 1

]
dx.
R2 R2 π π

6
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here we have used that ⟨∆ϕω, x · ∇ϕω⟩ = 0, L+ϕω = −2ϕ3
ωg′(ϕ2) and the Pohozaev identities (1.6) and

(1.6). We will show momentarily that the integrand function,

e4πz2
(

8πz4 + 1
π

− 4z2
)

− 1
π

≥ 0 (3.1)

hence ⟨L+Ψ ,Ψ⟩ < 0.

According to Proposition 3, this implies the spectral instability of ϕω. It remains to prove (3.1). Indeed,
t suffices to show that χ(x) := 8πx2 + 1

π −4x− e−4πx

π ≥ 0 for all x ≥ 0. However, note that f(0) = f ′(0) = 0,
while f ′′(x) = 16π(1 − e−4πx) ≥ 0, whence f(x) > 0 for all x > 0.

4. Instability by blow up

Before tackling the strong instability of the standing waves, we need to make sure that the following
Cauchy problem: ⎧⎨⎩ iut + △u + fµ(u) = 0, (t, x) ∈ R × R2

u(t, 0) = u0(x)
(4.1)

where u0 is an initial data in H1(R2), has a unique solution for a time T > 0. (4.1) has been resolved in [8].
More precisely, the authors have proved the following result.

Lemma 4.1 (Theorem 1.10, [8]). Let u0 ∈ H1(R2) such that ∥∇u0∥0 < 1, then there exist a time T > 0
and a unique solution to the Cauchy problem (4.1) in the space CT (H1(R2)) with initial data u0. Moreover
u ∈ L4

T (C 1
2 (R2)), where Cα is the space of α-Hölder continuous functions endowed with the norm

∥u∥Cα = ∥u∥∞ + sup
x ̸=y

|u(x) − u(y)|
|x − y|α

.

dditionally, if T ∗ denote the maximal time, i.e, T ∗ = sup {T > 0 , (4.1) has a solution on [0, T ]} , we say
hat a solution blows up at T ∗, if limt↗T ∗ ∥∇u(t, .)∥2

2 = 1. We also have the mass and energy conservation
or the solutions of (4.1), which take the form

M(u(t, .)) = M(u0), Eµ(u(t, .)) = E(u0) (4.2)

For v ∈ H1(R2), we define the action functional in the following way:

Sµ(v) = Eµ(v) + 1
2M(v) = 1

2∥∇v∥2
2 + 1

2∥v∥2
2 −

∫
Fµ(v)dx.

Note that Sµ(Φ) can also be rewritten in the following way :

Sµ(Φ) = inf
{

Sµ(v) : v ∈ H1(R2) \ {0}, Iµ(v) = 0
}

.

ote that a ground state as defined by (1.3) minimizes the action functional in the following way:

Sµ(Φ) = inf
{

Sµ(v) : v ∈ H1(R2) \ {0}, Pµ(v) = 0
}

.

he following two quantities also play a crucial role in the study of strong instability:

Pµ(v) = 1
2∥v∥2

2 −
∫

Fµ(v)dx,

Iµ(v) = 1∥∇v∥2
2 −

∫
vfµ(v)dx = 2Eµ(v) −

∫
vfµ(v) − 4Fµ(v)dx.
2

7
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L

virial property has also been shown in [2], More precisely, the authors showed that if u is a solution to
4.1), then

d2

dt2 ∥xu∥2
2 = 8Iµ(u), ∀ t ∈ [0, T ∗).

astly, we introduce two classical sets that are important in the study of orbital stability as they have the
esired invariance with respect to the flow of (4.1):

K−
µ =

{
v ∈ H1(R2)\{0} : Sµ(v) < Sµ(Φ), Iµ(v) < 0

}
K+

µ =
{

v ∈ H1(R2)\{0} : Sµ(v) < Sµ(Φ), Iµ(v) > 0
}

he following lemma provides sufficient conditions for a finite time blow-up.

emma 4.2 (Lemma 3.9, [2]). Let µ ∈ {0, 1} and u0 ∈ H1(R2) be such that ∥∇u0∥2
2 < 1 and Eµ(u0) ≥ 0. If

u0 ∈ K−
µ , u0 ∈ H1(R2) ∩ L2(|x|2dx),

then the corresponding solution to (4.1) blows up in finite time.

The next result, also proved in [2], shows that appropriate and close rescales of the ground state satisfy
the requirements of Lemma 4.2 and hence provide the instability by blow up claimed in Theorem 1.

Lemma 4.3 (Lemma 3.13, [2]). Let µ ∈ {0, 1}, Φλ(x) := λΦ(λx). There exists ϵ > 0, so that for all
λ : 1 < λ < 1 + ϵ, the following holds true:

Eµ(Φλ) > 0, Iµ(Φλ) < 0, Sµ(Φλ) < Sµ(Φ), (4.3)
∥▽Φλ∥2

2 < 1, Φλ ∈ H1(R2) ∩ L2(|x|2dx) (4.4)

Remark. The precise statement of Lemma 3.13 in [2] requires a slight modification, but the result quoted
here holds true due to the arguments presented there.

We are now ready to complete the proof of the strong instability of the waves Φ. Consider Φn(x) :=
λnΦ(λnx), for a sequence λn → 1+. Clearly, limn ∥Φn − Φ∥H1 = 0. Also, the sequence Φn satisfies all the
assumptions in Lemma 4.2, due to Lemma 4.3. Therefore, all solutions with initial data Φn blow up in finite
time, whence we conclude the strong instability of the waves Φ.
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