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On the Stability of the Periodic Waves for the Benney System\ast 
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Abstract. We analyze the Benney model for interaction of short and long waves in resonant water wave inter-
actions. Our particular interest is in the periodic traveling waves, which we construct and study in
detail. The main results are that, for all natural values of the parameters, the periodic dnoidal waves
are spectrally stable with respect to perturbations of the same period. For another natural set of pa-
rameters, we construct the snoidal waves, which exhibit instabilities, in the same setup. Our results
are the first instability results in this context. On the other hand, the spectral stability established
herein improves significantly on the work of Angulo, Corcho, and Hakkaev [Adv. Difference Equ.,
16 (2011), pp. 523--550], which established stability of the dnoidal waves, on a subset of parameter
space, by relying on the Grillakis--Shatah theory. Our approach, which turns out to give definite
answer for the entire domain of parameters, relies on the instability index theory, as developed by
Kapitula, Kevrekidis, and Sandstede [Phys. D, 3--4 (2004), pp. 263--282]; Kapitula, Kevrekidis, and
Sandstede [Phys. D, 195 (2004), no. 3--4, 263--282], Phys. D, 201 (2005), pp. 199--201]; Lin and
Zeng [Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs, 2021];
and Pelinovsky [Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), pp. 783--812].
Interestingly, end even though the linearized operators are explicit, our spectral analysis requires
subtle and detailed analysis of matrix Schr\"odinger operators in the periodic context, which support
some interesting features.
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1. Introduction. We consider the following system of PDE:

(1.1)

\biggl\{ 
iut + uxx = uv + \beta | u| 2u,  - T \leq x \leq T, t \in R+

vt = (| u| 2)x,

where \beta is a real parameter, u is complex-valued function, and v is real-valued function. This
system is introduced by Benney [9, 10], which models the interaction of short and long waves
in resonant water waves interaction in a nonlinear medium.

The Cauchy problem on the whole line case for the system (1.1) was considered in [7, 14].
The existence and nonlinear stability of solitary waves was studied in [20, 27].
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PERIODIC WAVES OF THE BENNEY SYSTEM 1727

We consider such model on a periodic background; that is, we impose a periodic boundary
condition. The Cauchy problem for (1.1) has been previously considered in this context [3].
Let us pause for the moment and review the said paper, as it serves as a starting point for our
investigation. More precisely, in [3], the authors have established, via the Fourier restriction
method, that the problem is locally well-posed for data (u0, v0) \in Hr[ - T, T ] \times Hs[ - T, T ]
whenever max(0, r  - 1) \leq s \leq min(r, 2r  - 1). In particular, Hadamard well-posedness holds

in the spaces H
1
2 ([ - T, T ])\times L2[ - T, T ] and also in the smaller space H1([ - T, T ])\times L2[ - T, T ].

Interestingly, ill-posedness results (in the sense of nonuniformly continuous dependence on
initial conditions) were also obtained in Hr \times Hs whenever r < 0.

Here we consider the spectral stability of periodic traveling waves of dnoidal and snoidal
type. We are interested in the stability of periodic traveling wave solutions of (1.1) with respect
to perturbations that are periodic of the same period as the corresponding wave solutions.

We provide the relevant definitions of the various notion of stability below, but we would
like to discuss the advances made in the last forty years in the area of stability of periodic
traveling waves. Benjamin, in the seminal work [8], first considered the stability of the cnoidal
solution as a periodic traveling wave of KdV. His results were later clarified and streamlined in
[2], where the authors have made use of the Grillakis--Shatah--Strauss formalism. It is worth
mentioning the work [1], where the author has addressed, in a similar manner, periodic waves
for mKdV and NLS. In the important works [15, 16], the authors have considered the stability
of more general families of solutions arising in the generalized KdV models.

More recently, in the works [4, 5], Angulo and Natali have developed a novel approach
for studying periodic traveling waves for a general class of dispersive models which extracts
the necessary spectral information, based on the so-called positivity theory for the multipliers.
For other models, such as the Klein--Gordon--Schrodinger system, the Schr\"odinger--Boussinesq
system, and the Schrodinger system, stability of periodic waves is obtained in [29, 30, 31, 6, 17].
In the context of standing waves, interesting contributions were made by Gallay and Haragus
[18, 19]. While the results in [18] concern periodic waves in the context of NLS on the line, the
results in [19] are more relevant to our discussion herein. Namely, rigorous stability analysis
was developed to deal with quasi-periodic waves in the cubic NLS context both in the focusing
and defocusing scenarios. All of these works rely, in one degree or another, on the Grillakis--
Shatah--Strauss approach, which establishes orbital stability based on conservation laws. This
almost universally requires a C1 dependence on the wave speed parameters, which is not
always easy to establish, so an ad hoc assumption in that regard is usually made.

As it turns out, one may study an almost equivalent stability property, namely, the spec-
tral/linear stability; see Definition 1 below.1 This is a fast-developing theory which has seen
some spectacular advances in recent years [24, 25, 28, 33]. This approach has several advan-
tages over the classical GSS approach. For example, one can study the spectral stability as
a purely linear problem, without paying particular attention to the actual conservation laws;
see (1.14) below. A second major advantage is that, when it comes to systems of coupled
PDEs, it is just technically hard to deal with the conservation laws directly, as the linearized
operators become nondiagonal matrix operators, which are harder to analyze.

1In fact, under some generic conditions on the waves, one may convert such spectral stability statements
into orbital stability results; see Theorem 5.2.11 in [26].D
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1728 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS STEFANOV

The stability of waves, especially in the context of systems of coupled PDE, especially
in the spatially periodic context, is a challenging topic and an active area of research. We
should point out that great progress was made in the last fifteen years regarding dispersive
equations for scalar quantities---in that regard, we would like to mention the works [11], [12] for
KdV-type models, while [13] established an index counting formula for abstract second-order-
in-time models. Concerning systems of dispersive PDE, there are just a few results available
in the literature about periodic waves. In fact, we are aware of just a few rigorous works on the
subject: [22] deals with stability of periodic waves in systems by the index counting method,
while [21] and [17] apply the more standard GSS formalism to the corresponding problem at
hand. One explanation for the relative scarcity of rigorous analytical results in this context
are the difficulties associated with the spectral analysis of the linearized operators in cases of
systems.

Regarding the Benney system, which is the system of interest in this article, it was already
considered in [3]. More specifically, the authors were able to construct a family of smooth
periodic traveling waves of dnoidal type and show their orbital stability. This was done under
certain conditions on \beta and by relying on the Grillakis--Shatah--Strauss approach. More
specifically, they rely on the following conservation laws for the Benney system:

M(u) =
\int T
 - T | u(t, x)| 2dx,

E(u, v) =
\int T
 - T

\Bigl[ 
v(t, x)| u(t, x)| 2 + | ux(t, x)| 2 + \beta 

2 | u(t, x)| 
4
\Bigr] 
dx,

P (u, v) =
\int T
 - T
\bigl[ 
| v(t, x)| 2 + 2\Im (u(t, x)ux(t, x))

\bigr] 
dx.

In order to explain our spectral stability results in detail, we need to linearize the system (1.1)
about the periodic traveling wave solutions. Then we need to obtain the required spectral
information about the operator of linearization and investigate the index of stability kHam,
as introduced in [28].

The paper is organized as follows. First, we construct the periodic traveling waves of
dnoidal and snoidal type and set up the linearized problem for system (1.1). In section 2,
we overview the index stability theory and investigate spectral properties of the operator of
the linearization. In section 3, using the index counting theory, we analyze the stability of
periodic traveling waves.

1.1. Periodic traveling waves. In this section, we construct periodic waves of the form

u(t, x) = ei\omega tei
c
2
(x - ct)\varphi (x - ct), v(t, x) = \psi (x - ct),

for the Benney system (1.1). Plugging in (1.1), we get the following system:

(1.2)

\Biggl\{ 
\varphi \prime \prime  - 

\Bigl( 
\omega  - c2

4

\Bigr) 
\varphi = \varphi \psi + \beta \varphi 3,

 - c\psi \prime = 2\varphi \varphi \prime .

The case c = 0 leads to semitrivial constant solutions \varphi , so we do not consider it herein.
Henceforth, we assume c \not = 0. Integrating the second equation in (1.2), we get \psi =  - 1

c\varphi 
2+ \gamma ,D
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PERIODIC WAVES OF THE BENNEY SYSTEM 1729

where \gamma is a constant of integration. Substituting \psi in the first equation of (1.2), we get the
following equation for \varphi :

(1.3) \varphi \prime \prime  - \sigma \varphi =

\biggl( 
\beta  - 1

c

\biggr) 
\varphi 3,

where we have introduced the important parameter \sigma = \omega  - c2

4 + \gamma . Integrating, we get

(1.4) \varphi \prime 2 =
1

2

\biggl( 
\beta  - 1

c

\biggr) 
\varphi 4 + \sigma \varphi 2 + a =: U(\varphi ),

where a is a constant of integration. It is well known that \varphi is a periodic function provided
that the energy level set H(x; y) = a of the Hamiltonian system dH = 0,

H(x; y) = y2  - \sigma x2 +
1

2

\biggl( 
1

c
 - \beta 

\biggr) 
x4,

contains an oval (a simple closed real curve free of critical points). Depending on the properties
of the biquadratic polynomial U(\varphi ), we distinguish two cases which give rise to different
explicit solutions, both in terms of the Jacobi elliptic functions.

1.1.1. Dnoidal solutions. Consider the case 1
c  - \beta > 0, \sigma > 0, and a < 0. Denote by

\varphi 0 > \varphi 1 > 0 the positive roots of  - \varphi 4 + 2c\sigma 
1 - c\beta \varphi 

2 + 2ca
1 - c\beta . Then the profile equation (1.4) takes

the form

\varphi \prime 2 =
1 - c\beta 

2c
(\varphi 2

0  - \varphi 2)(\varphi 2  - \varphi 2
1).

Then \varphi 1 < \varphi < \varphi 0, and up to translation, the solution \varphi is given by

(1.5) \varphi (x) = \varphi 0dn(\alpha x, \kappa ),

where

(1.6) \varphi 2
0 + \varphi 2

1 =
2c\sigma 

1 - c\beta 
, \kappa 2 =

\varphi 2
0  - \varphi 2

1

\varphi 2
0

, \alpha 2 =
1 - c\beta 

2c
\varphi 2
0 =

\sigma 

2 - \kappa 2
.

Since the period of dn is 2K(\kappa ), the fundamental period of \varphi is 2T = 2K(\kappa )
\alpha .

The next case of consideration are the snoidal solutions.

1.1.2. Snoidal solutions. Let 1
c  - \beta < 0, \sigma < 0, and a < 0. Then

\varphi \prime 2 =
c\beta  - 1

2c
(\varphi 2

0  - \varphi 2)

\biggl( 
2c\sigma 

1 - c\beta 
 - \varphi 2

0  - \varphi 2

\biggr) 
.

Up to translations, the solution is given by

(1.7) \varphi (x) = \varphi 0sn(\alpha x, \kappa ),

where

(1.8) \kappa 2 =
(1 - c\beta )\varphi 2

0

2c\sigma  - (1 - c\beta )\varphi 2
0

, \alpha 2 =  - 2c\sigma  - (1 - c\beta )\varphi 2
0

2c
=  - \sigma 

1 + \kappa 2
.

Since the period of sn is 4K(\kappa ), the fundamental period of \varphi is 2T = 4K(\kappa )
\alpha .

We formulate our findings in the following proposition.D
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1730 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS STEFANOV

Proposition 1. Let (c, \beta , \sigma ) be three real parameters and \kappa \in (0, 1). Then we can identify
the following families of solutions of (1.4).

If c \not = 0 and \beta < 1
c , \sigma > 0, then \varphi is a family of dnoidal solutions given by (1.5). Its

parameters are given by

(1.9) \varphi 2
0 =

2\sigma 

(2 - \kappa 2)(1c  - \beta )
, \alpha 2 =

\sigma 

2 - \kappa 2
,

whereas its fundamental period is 2T = 2K(\kappa )
\alpha = 2K(\kappa )

\surd 
2 - \kappa 2\surd 
\sigma 

. Note that this is a three free

parameter family, depending and uniquely determined by (1c  - \beta , \sigma , \kappa ) \in R+ \times R+ \times (0, 1).
If c \not = 0 and \beta > 1

c , \sigma < 0, we obtain the snoidal family described in (1.7), where

(1.10) \varphi 2
0 =

2\sigma \kappa 2

(1c  - \beta )(1 + \kappa 2)
, \alpha 2 =  - \sigma 

1 + \kappa 2
,

and the fundamental period is given by 2T = 4K(\kappa )
\surd 
1+\kappa 2\surd 
 - \sigma . This is also uniquely determined

by three independent parameters as follows: (1c  - \beta , \sigma , \kappa ) \in R - \times R - \times (0, 1).

Now that we have identified the relevant nonlinear waves for the Benney model (1.1), we
focus our attention to the corresponding linearized problem.

1.2. Linearized equations. We take the perturbation in the form

(1.11) u(t, x) = ei\omega tei
c
2
(x - ct)(\varphi (x - ct) + U(t, x - ct)), v(t, x) = \psi (x - ct) + V (t, x - ct),

where U(t, x) is complex-valued function and V (t, x) is real-valued function. Plugging in the
system (1.1), using (1.2), and ignoring all quadratic and higher-order terms yields a linear
equation for (U, V ). Furthermore, we split the real and imaginary parts of complex-valued
function U as U = P + iQ, which allows us to rewrite the linearized problem as the following
system:

(1.12)

\left\{       
 - Qt =  - Pxx +

\Bigl( 
w  - c2

4

\Bigr) 
P + 3\beta \varphi 2P + \varphi V + \psi P,

Pt =  - Qxx +
\Bigl( 
w  - c2

4

\Bigr) 
Q+ \psi Q+ \beta \varphi 2Q,

Vt  - cVx = 2\partial x(\varphi P ).

Let us denote

\scrJ :=

\left(  0 0 1
0 2\partial x 0
 - 1 0 0

\right)  , \scrH :=

\left(  L1 \varphi 0
\varphi c

2 0
0 0 L2

\right)  ,

where2

L1 =  - \partial 2x + \sigma +
\bigl( 
3\beta  - 1

c

\bigr) 
\varphi 2,

L2 =  - \partial 2x + \sigma +
\bigl( 
\beta  - 1

c

\bigr) 
\varphi 2.

2Note that the operator L2 is the standard operator L - if we were to consider the waves \varphi as solutions to
the cubic NLS; see (1.3).D
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PERIODIC WAVES OF THE BENNEY SYSTEM 1731

Then the system (1.12) can be written of the form

(1.13) \vec{}Zt = \scrJ \scrH \vec{}Z, \vec{}Z =

\left(  P
V
Q

\right)  .

The standard mapping into a time-independent problem \vec{}Z \rightarrow e\lambda t\vec{}z transforms the linear
differential equation (1.13) into the eigenvalue problem

(1.14) \scrJ \scrH \vec{}z = \lambda \vec{}z.

By general properties of Hamiltonian systems and the operators \scrJ ,\scrH in particular, if \lambda is an
eigenvalue of (1.14), then so are \=\lambda , - \lambda , - \=\lambda . We give now the following standard definition of
spectral stability.

Definition 1. We say that the wave \varphi is spectrally unstable if the eigenvalue problem (1.14)
has a nontrivial solution (\vec{}u, \lambda ), so that \vec{}z \not = 0, \vec{}z \in H2[ - T, T ] \times H1[ - T, T ] \times H2[ - T, T ], and
\lambda : \Re \lambda > 0.

In the opposite case, that is, (1.14) has no nontrivial solutions, with \Re \lambda > 0, we say that
the wave is spectrally stable.

Remark. The definition of linear stability is closely related to the one given in Definition
1 for spectral stability. More precisely, \varphi is a linearly stable wave if the flow of the differential
equation (or equivalently the semigroup generated by \scrJ \scrH ) has Lyapunov exponent less than
or equal to zero. Equivalently,

(1.15) lim sup
t\rightarrow \infty 

ln \| \vec{}U(t)\| 
t

\leq 0

for each initial data \vec{}U(0) \in H2[ - T, T ] \times H1[ - T, T ] \times H2[ - T, T ]. It is a standard fact that
these two notions coincide in the case of periodic domains due to the fact that the spectrum
of \scrJ \scrH consists of eigenvalues only. A general justification of (1.15) which applies to our case
is provided in Theorem 2.2 of [28].

We are now ready to present our main results, which concern the spectral stability of the
traveling periodic waves---of dnoidal and snoidal type.

1.3. Main results. The following is our main result, which concerns the stability of the
dnoidal waves identified in Proposition 1.

Theorem 1 (stability of the dnoidal waves). Let \omega \in R and c \not = 0, \beta < 1
c , \sigma > 0. Then the

Benney system (1.1) has a family of dnoidal solutions in the form

(ei\omega tei
c
2
(x - ct)\varphi (x - ct), \psi (x - ct) =

\biggl( 
ei\omega tei

c
2
(x - ct)\varphi (x - ct), - 1

c
\varphi 2(x - ct) + \sigma +

c2

4
 - \omega 

\biggr) 
,

where the dnoidal solutions \varphi are identified by (1.5), whose parameters are given by (1.9).
These solutions are spatially periodic provided that

(1.16) c
K(\kappa )

\surd 
2 - \kappa 2\surd 
\sigma 

\in 2\pi Z.D
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1732 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS STEFANOV

Under these assumptions, the periodic waves are spectrally stable, in the sense of Definition
1, for all values of the parameters \omega \in R, \sigma > 0, \beta < 1

c , \kappa \in (0, 1), subject to (1.16).

Remark. In [3], the authors proved that dnoidal solutions are orbitally stable for \beta \leq 0
and for \beta > 0 and 8\beta \sigma  - 3c(1  - \beta c)2 \leq 0. This is achieved by evaluating the number of
negative eigenvalues of the operator of linearization around the periodic waves and number
of positive eigenvalues of the Hessian of d(\omega , c) = E(u, v) - c

4P (u, v) - 
\omega 
2M(u, v). We extend

this result herein to the whole domain of the parameters.
Our next result concerns the instability of the snoidal waves, also identified in Proposition

1.

Theorem 2 (instability of the snoidal solutions). Let \omega \in R and c \not = 0, \beta > 1
c , \sigma < 0. Then

the Benney system has a family of snoidal solutions\biggl( 
ei\omega tei

c
2
(x - ct)\varphi (x - ct), - 1

c
\varphi 2(x - ct) + \sigma +

c2

4
 - \omega 

\biggr) 
,

where \varphi is described in (1.7), together with (1.10). These waves are periodic exactly when

(1.17) cK(\kappa )

\surd 
1 + \kappa 2\surd 
 - \sigma 

\in \pi Z.

The snoidal periodic waves are spectrally unstable (with at least one real and positive eigen-
value) for all values of the parameters \omega \in R, \sigma < 0, \beta > 1

c , \kappa \in (0, 1), subject to (1.17).

The plan for the paper as well as some major points are explained below. In section 2,
we introduce the basics of the instability index theory. We also outline well-known results
about the scalar linearized Schr\"odinger operators L1, L2 identified earlier as well as a related
operator L, which plays significant role in our spectral analysis. This allows us to compute
the Morse index of the operator \scrH as well as the kernel and the generalized kernel of \scrJ \scrH ; see
Proposition 3. In section 3, we deploy the instability index theory to reduce matters to the
Morse index of a scalar two-by-two matrix D. For the dnoidal case, the computations here are
involved since only one of the entries of D is (barely) explicitly computable, and it involves the
construction of Green's function for the Schr\"odinger operator L - 1. This is, however, enough
to conclude stability. In the snoidal case, one argues by computing selected (easier) quantities
in the limit 0 < \beta  - 1

c << 1, which allows one to conclude that real instability exists close to
this limit. Then a continuation argument, coupled with an earlier rigidity argument about3

Ker(\scrJ \scrH ), confirms that the real instability persists across the whole domain of parameters.

2. Preliminaries. We first review the basics of the instability index theory as developed
in [24, 25, 28, 33].

2.1. Instability index count. We follow the notations and presentation in [24, 25], but
the same results appears in [33], while the most general version can be found in [28]. Consider
the Hamiltonian eigenvalue problem

(2.1) \scrI \scrL u = \lambda u,

3Establishing that the generalized kernel of \scrJ \scrH remains five dimensional and, importantly, does not change
across the parameter domain.D
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PERIODIC WAVES OF THE BENNEY SYSTEM 1733

where \scrI \ast =  - \scrI ,\scrL \ast = \scrL and \scrI ,\scrH : \scrI f = \scrI \=f, \scrH f = \scrH \=f ; i.e. \scrI ,\scrH map real-valued elements
into real-valued elements.

Introduce the Morse index of a self-adjoint, bounded from below operator S, by setting
n(S) = \#\{ \lambda \in \sigma (S) : \lambda < 0\} , counted with multiplicities. Let kr := \#\{ \lambda \in \sigma pt.(\scrI \scrL ) : \lambda > 0\} 
represent the number of positive real eigenvalues of \scrI \scrL , counted with multiplicities kc :=
\#\{ \lambda \in \sigma pt.(\scrI \scrL ) : \Re \lambda > 0,\Im \lambda > 0\} ---the number of quadruplets of complex eigenvalues of \scrI \scrL 
with nonzero real and imaginary parts---whereas

k - i = \#\{ i\lambda , \lambda > 0 : \scrI \scrL f = i\lambda f, \langle \scrL f, f\rangle < 0\} 

is the number of pairs of purely imaginary eigenvalues of negative Krein signature. Consider
the generalized kernel of \scrJ \scrH :

gker(\scrI \scrL ) = span \cup \infty 
l=1 ker(\scrI \scrL )l.

Under general conditions, described in [24], one has that gker(\scrI \scrL ) is finite dimensional, so
one can take a basis,4 say, \eta 1, . . . , \eta N . Then we introduce a symmetric matrix D by

D := \{ \{ Dij\} Ni,j=1 : Dij = \langle \scrL \eta i, \eta j\rangle \} .

We are now ready to state the main result of this section, namely, the following formula for
the Hamiltonian index:

(2.2) kHam := kr + 2kc + 2k - i = n(\scrL ) - n(D).

Clearly, spectral stability for (2.1) follows from kHam = 0, but such a condition is not necessary
for spectral stability. For example, one might encounter a situation where kHam = 2 but with
k - i = 1, which is an example of spectrally stable configuration with a nonzero KHam.. On the
other hand, it is clear that if kHam is an odd integer, then kr \geq 1, guaranteeing instability.

2.2. Spectral information about \bfscrJ \bfscrH . Due to the results in section 2.1, it becomes clear
that we need a determination of a basis of gker(\scrJ \scrH ). It turns out that it is helpful to
introduce another Schr\"odinger operator, namely,

L =  - \partial 2x + \sigma + 3

\biggl( 
\beta  - 1

c

\biggr) 
\varphi 2.

For context, this is the well-known operator L+ if we were to consider the waves as solutions
to the standard cubic NLS; see (1.3).

2.2.1. The spectra of \bfitL ,\bfitL \bftwo . For self-adjoint operatorH acting on L2
per[0;T ] with domain

D(H) = H2([0;T ]), we have that its spectrum is purely discrete:

\lambda 0 < \mu 0 \leq \mu 1 < \lambda 1 \leq \lambda 2 < \mu 2 \leq \mu 3 < \lambda 3 \leq \lambda 4 < ....

4In the applications, one needs to have an explicit form of such a basis anyway before any determination of
the stability can be made. In a way, we shall need to check the finite dimensionality of gker(\scrI \scrL ).D
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1734 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS STEFANOV

Eigenvalues \lambda i, i = 0, 1, 2..., correspond to the periodic eigenvalues, while \mu i, i = 0, 1, 2...,
correspond to the semiperiodic eigenvalues. Then we have that Hf = \lambda f has a solution of
period T if and only if \lambda = \lambda i, i = 0, 1, 2, ..., and a solution of period 2T if and only if \lambda = \lambda i,
\lambda = \mu i, i = 0, 1, 2, ....

We start with the observation that L\varphi \prime = 0, which is obtained by differentiating (1.3)
respect to x. Also, L2\varphi = 0, which is just a restatement of (1.3). It is actually helpful, for
the rest of the argument to list the lowest few eigenvalues for both operators L,L2, where \varphi 
is either the dnoidal solution (1.5) or the snoidal solution (1.7). In fact, matters reduce to the
explicit Hill operators

\Lambda 1 =  - \partial 2y + 6k2sn2(y, k),

\Lambda 2 =  - \partial 2y + 2k2sn2(y, k).

It is well known that the first four eigenvalues of \Lambda 1 with periodic boundary conditions on
[0, 4K(k)] are simple. These eigenvalues and corresponding eigenfunctions are given by\left\{           

\nu 0 = 2 + 2\kappa 2  - 2
\surd 
1 - \kappa 2 + \kappa 4, \phi 0(y) = 1 - (1 + \kappa 2  - 

\surd 
1 - \kappa 2 + \kappa 4)sn2(y, \kappa ),

\nu 1 = 1 + \kappa 2, \phi 1(y) = cn(y, \kappa )dn(y, \kappa ) = sn\prime (y, \kappa ),

\nu 2 = 1 + 4\kappa 2, \phi 2(y) = sn(y, \kappa )dn(y, \kappa ) =  - cn\prime (y, \kappa ),
\nu 3 = 4 + \kappa 2, \phi 3(y) = sn(y, \kappa )cn(y, \kappa ) =  - \kappa  - 2dn\prime (y, \kappa ).

Regarding \Lambda 2, the first three eigenvalues and the corresponding eigenfunctions with periodic
boundary conditions on [0, 4K(k)] are simple, and

\epsilon 0 = k2, \theta 0(y) = dn(y, k),

\epsilon 1 = 1, \theta 1(y) = cn(y, k),

\epsilon 2 = 1 + k2, \theta 2(y) = sn(y, k).

In the dnoidal case, using that \kappa 2sn2x+ dn2x = 1 and (1.5), (1.6), we get

(2.3) L = \alpha 2[\Lambda 1  - (4 + \kappa 2)].

Note that in this case, \nu 0 and \nu 3 correspond to the periodic eigenvalues, while \nu 1 and \nu 2
correspond to the semiperiodic eigenvalues. It follows that the first two eigenvalues of the
operator L, equipped with periodic boundary condition on [ - T, T ], are simple; zero is the
second eigenvalue; and n(L) = 1. In the snoidal case, using (1.7) and (1.8), we have

(2.4) L = \alpha 2[\Lambda 1  - (1 + \kappa 2)].

It follows again that zero is the second eigenvalue, and n(L) = 1.
Regarding the operator L2, in the dnoidal case, using again (1.5), (1.6), we have that

L2 = \alpha 2[\Lambda 2  - k2],

whence, using the spectral information available for \Lambda 2, we conclude L2 \geq 0, n(L2) = 0.D
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PERIODIC WAVES OF THE BENNEY SYSTEM 1735

In the snoidal case, we have

L2 = \alpha 2[\Lambda 2  - (1 + k2)],

whence the spectral description of \Lambda 2 allows us to conclude that n(L2) = 2, with a simple
eigenvalue at zero. We collect our results about L,L2 in the following proposition.

Proposition 2. Let \varphi be either the dnoidal wave (1.5) or the snoidal wave (1.7). Then
\bullet in both the dnoidal and snoidal cases, the Hill operator L, equipped with periodic bound-
ary conditions on [ - T, T ], has Morse index n(L) = 1 and Ker[L] = span[\varphi \prime ];

\bullet in the dnoidal case, the operator L2 has Morse index n(L2) = 0, Ker[L2] = span[\varphi ];
\bullet in the snoidal case, the operator L2 has Morse index n(L2) = 2, Ker[L2] = span[\varphi ].

We are now ready to describe the kernel and the generalized kernel of \scrJ \scrH .

2.2.2. Generalized kernel of \bfscrJ \bfscrH .

Proposition 3. Let \varphi be either the dnoidal wave (1.5) or the snoidal wave (1.7). Then the
kernel of \scrH is two dimensional, namely,

(2.5) Ker[\scrH ] = span

\left[  \left(  \varphi \prime 

 - 2
c\varphi \varphi 

\prime 

0

\right)  ,

\left(  0
0
\varphi 

\right)  \right]  .
In addition, under the assumption

(2.6) \langle L - 1\varphi ,\varphi \rangle \not = 0,

we can identify all the generalized eigenvectors as follows:

(2.7) gKer(\scrJ \scrH )\ominus Ker(\scrH ) = span

\left[     
\left(     

1
2c(c\beta  - 1)\varphi 

 - \beta 
c(c\beta  - 1)\varphi 

2

L - 1
2 \varphi \prime .

\right)     ,

\left(   - L - 1\varphi 
2
c\varphi L

 - 1\varphi 
0

\right)  ,

\left(  0
1
0

\right)  
\right]     .

Proof. We start with Ker[\scrH ]. We have that

\left(  fg
h

\right)  \in ker\scrH if

(2.8)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L1f + \varphi g = 0,
\varphi f + c

2g = 0,
L2h = 0.

From the second equation of (2.8), we have g =  - 2
c\varphi f , and plugging in the first equation, we

get

0 = L1f + \varphi g =  - \partial 2xf + \sigma f +

\biggl( 
3\beta  - 1

c

\biggr) 
\varphi 2  - 2

c
\varphi 2f = Lf.

From Proposition 2, we get that all solutions are multiples of f = \varphi \prime and g =  - 2
c\varphi \varphi 

\prime . From
Proposition 2, we know that Ker(L2) = span[\varphi ], and so, from the third equation of (2.8),D

ow
nl

oa
de

d 
08

/0
1/

22
 to

 1
38

.2
6.

76
.7

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1736 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS STEFANOV

we have that another vector in Ker(\scrH ) is h = \varphi . This identifies Ker(\scrH ) for us as the one
presented in (2.5).

We now turn to a representation for Ker(\scrJ \scrH ). Consider Ker(\scrJ \scrH ) \ominus Ker(\scrH ). We set

the equations for (
f
g
h
) \in Ker(\scrJ \scrH )\ominus Ker(\scrH ). We need to solve \scrH (

f
g
h
) \in Ker(\scrJ ) = span(

0
1
0
).

This is equivalent to h = 0 and

(2.9)

\bigm| \bigm| \bigm| \bigm| L1f + \varphi g = 0,
\varphi f + c

2g = 1.

Solving it implies in a similar manner

f =  - 2

c
L - 1\varphi , g =

2

c

\biggl( 
1 +

2

c
\varphi L - 1\varphi 

\biggr) 
.

This yields an additional, third vector in the representation of Ker(\scrJ \scrH ). More specifically,
we obtain

(2.10) Ker(\scrJ \scrH ) = span

\left\{   
\left(  \varphi \prime 

 - 2
c\varphi \varphi 

\prime 

0

\right)  ,

\left(  0
0
\varphi 

\right)  ,

\left(   - L - 1\varphi 
1 + 2

c\varphi L
 - 1\varphi 

0

\right)  \right\}   .

We now work on identifying the adjoint/generalized eigenvectors. We start with the next level
adjoints e-vectors, namely, Ker((\scrJ \scrH )2). First, we consider the equation

\scrJ \scrH 

\left(  fg
h

\right)  =

\left(  \varphi \prime 

 - 2
c\varphi \varphi 

\prime 

0

\right)  .

This has solutions which are all multiples of

f =
1

c2
L - 1[\varphi 3] =

1

2c(c\beta  - 1)
\varphi ,

g =  - 2

c2

\biggl( 
\varphi 2

2
+
\varphi L - 1[\varphi 3]

c

\biggr) 
=  - \beta 

c(c\beta  - 1)
\varphi 2,

h = L - 1
2 \varphi \prime ,

where we have used the identity L\varphi = 2(\beta  - 1
c )\varphi 

3. This gives a new element \vec{}\xi \in Ker((\scrJ \scrH )2)\ominus 
Ker(\scrJ \scrH ), namely,

\vec{}\xi :=

\left(   
1

2c(c\beta  - 1)\varphi 

 - \beta 
c(c\beta  - 1)\varphi 

2

L - 1
2 \varphi \prime 

\right)   .

Next, we solve

\scrJ \scrH 

\left(  fg
h

\right)  =

\left(  0
0
\varphi 

\right)  .
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We obtain that all solutions are multiples of the vector

(2.11) f =  - L - 1\varphi , g =
2

c
\varphi L - 1\varphi , h = 0.

We compare this with a similar element, already present in Ker(\scrJ \scrH ). We conclude that we
can consider instead the following new element \vec{}\eta \in Ker((\scrJ \scrH )2)\ominus Ker(\scrJ \scrH ):

\vec{}\eta =

\left(   - L - 1\varphi 
1 + 2

c\varphi L
 - 1\varphi 

0

\right)   - 

\left(   - L - 1\varphi 
2
c\varphi L

 - 1\varphi 
0

\right)  =

\left(  0
1
0

\right)  .

Finally, we solve the equation for the third eigenvector, with unknown \Psi =

\left(  \Psi 1

\Psi 2

\Psi 3

\right)  :

(2.12) \scrJ \scrH \Psi =

\left(   - L - 1\varphi 
1 + 2

c\varphi L
 - 1\varphi 

0

\right)  .

Taking into account that \scrJ \scrH \Psi = (
L2\Psi 3\ast 

\ast 
) necessitates the solvability condition L - 1\varphi \bot 

Ker[L2] = span[\varphi ]. This means that as long as \langle L - 1\varphi ,\varphi \rangle \not = 0, there are no further ele-
ments of Ker((\scrJ \scrH )2)\ominus Ker(\scrJ \scrH ). All in all, we have established that

(2.13) Ker((\scrJ \scrH )2)\ominus Ker(\scrJ \scrH ) = span[\vec{}\xi , \vec{}\eta ].

Next, we show that

(2.14) Ker((\scrJ \scrH )3)\ominus Ker((\scrJ \scrH )2) = \{ 0\} .

Note that combining (2.14) and (2.13) with (2.10) yields the formula (2.7). So, it remains to
show (2.14). To this end, we need to show that the equation

(2.15) \zeta 1\vec{}\xi + \zeta 2\vec{}\eta = \scrJ \scrH \Psi =

\left(  L2\Psi 3

2\partial x(\varphi \Psi 1 +
c
2\Psi 2)

\ast 

\right)  
has no solutions if (\zeta 1, \zeta 2) \not = (0, 0). Note that the first equation in (2.15) reads L2\Psi 3 =

\zeta 1
2c(c\beta  - 1)\varphi . As Ker(L2) = span[\varphi ], this forces a solvability condition, \langle \varphi , \zeta 1

2c(c\beta  - 1)\varphi \rangle = 0,
which is impossible, unless \zeta 1 = 0. Now that we know that \zeta 1 = 0, the second equation in
(2.15) reads

2\partial x(\varphi \Psi 1 +
c

2
\Psi 2) = \zeta 2.

This implies \varphi \Psi 1 +
c
2\Psi 2 = \zeta 2

2 x + const. The left-hand side of this identity is 2T periodic,
while the right-hand side is never 2T periodic, unless \zeta 2 = 0. Thus, we conclude that \zeta 2 = 0
as well, which establishes (2.14).

This completes the proof of Proposition 3.

Next, we compute the Morse index of \scrH .D
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2.3. Morse index of \bfscrH . In the next proposition, we compute the Morse index of \scrH .

Proposition 4. We have the following formula for the Morse index n(\scrH ):
\bullet If \varphi is the dnoidal wave given by (1.5), then n(\scrH ) = 1.
\bullet For the snoidal case, i.e. \varphi is given by (1.7), we have n(\scrH ) = 3.

Proof. Denote \scrH 0 := (
L1 \varphi 
\varphi c

2
). Clearly, n(\scrH ) = n(\scrH 0) + n(L2). Taking into account the

computation of n(L2) in Proposition 2 (which yields n(L2) = 0 in the dnoidal case and
n(L2) = 2 in the snoidal case), it remains to show that n(\scrH 0) = 1 in both cases under
consideration.

To this end, observe that we have the following expression for the quadratic form associated
to \scrH 0:

(2.16)

\biggl\langle 
\scrH 0

\biggl( 
f
g

\biggr) 
,

\biggl( 
f
g

\biggr) \biggr\rangle 
= \langle L1f, f\rangle + 2\langle \varphi f, g\rangle + c

2\langle g, g\rangle 

= \langle Lf, f\rangle +
\int T
 - T

\Bigl[ \sqrt{} 
2
cf +

\sqrt{} 
c
2g
\Bigr] 2
dx.

First, we confirm that \scrH 0 has at least one negative eigenvalue. Recall from Proposition 2 that
n(L) = 1. Let us denote by h the eigenfunction of L corresponding to the negative eigenvalue.
For f = h and g :=  - 2

ch in (2.16), we get\biggl\langle 
\scrH 0

\biggl( 
f
g

\biggr) 
,

\biggl( 
f
g

\biggr) \biggr\rangle 
= \langle Lh, h\rangle < 0.

Hence, \scrH 0 has a negative eigenvalue. Thus, selecting f \bot h and using the max-min charac-
terization of eigenvalues, we have that the second smallest eigenvalue \lambda 1 satisfies the estimate

\lambda 1(\scrH 0) \geq inf
(f,g)\bot (h,0):\| f\| 2+\| g\| 2=1

\biggl\langle 
\scrH 0

\biggl( 
f
g

\biggr) 
,

\biggl( 
f
g

\biggr) \biggr\rangle 
\geq inf

f\bot h,\| f\| \leq 1
\langle Lf, f\rangle \geq 0

since L has n(L) = 1, and so inff\bot h\langle Lf, f\rangle \geq 0. That is, n(\scrH 0) = 1.

3. Stability analysis of the waves. We start by analyzing the stability of the dnoidal
waves. Our starting point is the instability Krein index count (2.2). Thus, it remains to de-
termine the Morse index of the matrix D associated with it. Recall that, under the assumption
(2.6), we have identified

\vec{}\psi 1 =

\left(     
1

2c(c\beta  - 1)\varphi 

 - \beta 
c(c\beta  - 1)\varphi 

2

L - 1
2 \varphi \prime .

\right)     ; \vec{}\psi 2 =

\left(   - L - 1\varphi 
2
c\varphi L

 - 1\varphi 
0

\right)  ; \vec{}\psi 3 =

\left(  0
1
0

\right)  ,

so that gKer(\scrJ \scrH )\ominus Ker(\scrH ) = span[\vec{}\psi 1, \vec{}\psi 2, \vec{}\psi 3]. By direct computations, we have

\scrH \vec{}\psi 1 =

\left(  0
 - 1

2c\varphi 
2

\varphi \prime 

\right)  ; \scrH \vec{}\psi 2 =

\left(   - \varphi 
0
0

\right)  ; \scrH \vec{}\psi 3 =

\left(  \varphi c
2
0

\right)  
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and

D11 = \langle \scrH \psi 1, \psi 1\rangle = \langle L - 1
2 \varphi \prime , \varphi \prime \rangle + \beta 

2c2(c\beta  - 1)
\langle \varphi 2, \varphi 2\rangle ,(3.1)

D12 = D21 = \langle \scrH \vec{}\psi 1, \vec{}\psi 2\rangle =  - 1

2c(c\beta  - 1)
\langle \varphi ,\varphi \rangle ,(3.2)

D22 = \langle \scrH \vec{}\psi 2, \vec{}\psi 2\rangle = \langle L - 1\varphi ,\varphi \rangle , D33 = \langle \scrH \vec{}\psi 3, \vec{}\psi 3\rangle = cT,(3.3)

D13 = D31 = \langle \scrH \vec{}\psi 1, \vec{}\psi 3\rangle =  - 1

2c
\langle \varphi ,\varphi \rangle ,(3.4)

D23 = D32 = \langle \scrH \vec{}\psi 2, \vec{}\psi 3\rangle = 0.(3.5)

3.1. Dnoidal waves. According to instability index count formula (2.2) and Proposition
4, which implies that n(\scrH ) = 1, the stability analysis reduces to establishing that n(D) = 1.
Indeed, in such a case, the right-hand side of (2.2) is zero and thus would rule out all potential
instabilities on the left-hand side.

We proceed to evaluating the elements of the matrix D. In fact, we shall need to only
compute D22 = \langle L - 1\varphi ,\varphi \rangle , which we will now show is negative. To this end, start with the
identity L\varphi \prime = 0. In order to construct Green's function for the operator L, we need a solution
\psi : L\psi = 0. In principle, the following function provides such a solution:

(3.6) \psi (x) = \varphi \prime (x)

\int x 1

\varphi \prime 2(s)
ds,

\bigm| \bigm| \bigm| \bigm| \varphi \prime \psi 
\varphi \prime \prime \psi \prime 

\bigm| \bigm| \bigm| \bigm| = 1.

Unfortunately, as \varphi \prime has zeros in the interval of integration, this integral is not well defined.
Instead, we use the standard roundabout way of making the definition of such integral well
defined, which involves integration by parts. Specifically, we proceed by using the identities

1

cn2(y, \kappa )
=

1

dn(y, \kappa )

\partial 

\partial y

sn(x, \kappa )

cn(y, \kappa )
,

1

sn2(y, \kappa )
=  - 1

dn(y, \kappa )

\partial 

\partial y

cn(x, \kappa )

sn(y, \kappa )
.

Integrating by parts yields the alternative, well-defined expression for \psi , which is formally
equivalent to (3.6):

(3.7) \psi (x) =
1

\alpha 2\kappa 2\varphi 0

\biggl[ 
1 - 2sn2(\alpha x, \kappa )

dn(\alpha x, \kappa )
 - \alpha \kappa 2sn(\alpha x, \kappa )cn(\alpha x, \kappa )

\int x

0

1 - 2sn2(\alpha s, \kappa )

dn2(\alpha s, \kappa )
ds

\biggr] 
.

Thus, we may construct Green's function as follows:

L - 1f = \varphi \prime 
\int x

0
\psi (s)f(s)ds - \psi (s)

\int x

0
\varphi \prime (s)f(s)s+ Cf\psi (x),

where Cf is chosen, so that L - 1f has the same period as \varphi . After integrating by parts, we
get

(3.8) \langle L - 1\varphi ,\varphi \rangle =  - \langle \varphi 3, \psi \rangle + \varphi 2(T ) + \varphi (0)2

2
\langle \varphi ,\psi \rangle + C\varphi \langle \varphi ,\psi \rangle .D
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Figure 1. Graph of \kappa \rightarrow E2(\kappa ) - (1 - \kappa 2)K2(\kappa )

2(1 - \kappa 2)K(\kappa ) - (2 - \kappa 2)E(\kappa )
.

Integrating by parts yields

\langle \psi \prime \prime , \varphi \rangle = 2\psi \prime (T )\varphi (T ) + \langle \psi ,\varphi \prime \prime \rangle .

Using that L\varphi = 2(\beta  - 1
c )\varphi 

3, we get

\langle \psi ,\varphi 3\rangle = c

c\beta  - 1
\psi \prime (T )\varphi (T ).

Using that
\int K(\kappa )
0

1 - 2sn2(x)
dn2(x)

dx = 1
\kappa 2(1 - \kappa 2) [2(1 - \kappa 2)K(\kappa ) - (2 - \kappa 2)E(\kappa )], we get

(3.9)

\langle \varphi ,\psi \rangle = 1
\alpha 3\kappa 2

[E(\kappa ) - K(\kappa )],

\langle \varphi 3, \psi \rangle = 1
\alpha 

c
c\beta  - 1 [2(1 - \kappa 2)K(\kappa ) - (2 - \kappa 2)E(\kappa )],

C\varphi =  - \varphi \prime \prime (T )
2\psi \prime (T )\langle \varphi ,\psi \rangle +

\varphi 2(T ) - \varphi 2(0)
2 .

Taking into account
\varphi 2
0
\alpha 2 = 2c

1 - c\beta , we get

(3.10) D22 = \langle L - 1\varphi ,\varphi \rangle = 1

\alpha 

1
1
c  - \beta 

E2(\kappa ) - (1 - \kappa 2)K2(\kappa )

2(1 - \kappa 2)K(\kappa ) - (2 - \kappa 2)E(\kappa )
< 0

(see Figure 1), so in particular, the condition (2.6) is satisfied. Also, since D22 < 0 for all
values of the parameters, it is clear that D22 = \langle De2, e2\rangle \leq inf\xi \in \bfR 3:\| \xi \| =1\langle D\xi , \xi \rangle , whence5
n(D) \geq 1. As discussed, this implies that the dnoidal waves are spectrally stable.

5By the way, by (2.2), this actually implies that n(D) = 1.D
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3.2. Snoidal waves. According to the formulas (3.1), (3.2), (3.3), and (3.4), we shall need
to compute \langle L - 1

2 \varphi \prime , \varphi \prime \rangle , \langle L - 1\varphi ,\varphi \rangle , and
\int 
\varphi 2,
\int 
\varphi 4.

To this end, we start with the computation of \langle L - 1\varphi ,\varphi \rangle . We have L\varphi \prime = 0 and L\psi = 0,
where \psi (x) = \varphi \prime (x)

\int x 1
\varphi \prime 2(s)ds. Using that

1

cn2(\alpha x)
=

1

\alpha dn(\alpha x)

\partial 

\partial x

sn(\alpha x)

cn(\alpha x)
,

we get the odd function \psi :

\psi (x) =
1

\varphi 0\alpha 2(1 - \kappa 2)

\biggl[ 
sn(\alpha x) - \alpha \kappa 2cn(\alpha x)dn(\alpha x)

\int x

0

1 + sn2(\alpha s)

dn2(\alpha s)
ds

\biggr] 
.

Integration by parts yields the formulas

\langle L - 1\varphi ,\varphi \rangle =  - \langle \varphi 3, \psi \rangle + C\varphi \langle \varphi ,\psi \rangle ,
\langle \psi \prime \prime , \varphi \rangle =  - 2\varphi \prime (T )\psi (T ) + \langle \psi ,\varphi \prime \prime \rangle .

A direct calculation shows that L\varphi = 2
\bigl( 
\beta  - 1

c

\bigr) 
\varphi 3, whence

\langle \varphi 3, \psi \rangle =  - c

c\beta  - 1
\varphi \prime (T )\psi (T ).

Now we have the relations\left\{               

\psi (T ) = \kappa 2

\varphi 0\alpha 2(1 - \kappa 2)
\int 2K(\kappa )
0

1+sn2(x)
dn2(x)

dx,

\varphi \prime (T ) =  - \varphi 0\alpha , C\varphi =  - \varphi \prime (T )
2\psi (T )\langle \varphi ,\psi \rangle ,

\alpha 2 =  - \sigma 
1+\kappa 2

, \varphi 2
0 =

2c\sigma \kappa 2

(1 - c\beta )(1+\kappa 2) .

Integration by parts allows us to compute

\langle \varphi ,\psi \rangle = 1

\alpha 3(1 - \kappa 2)

\Biggl[ \int 2K(\kappa )

0
sn2(x)dx+

\int 2K(\kappa )

0

1 + sn2(x)

dn2(x)
dx - 2K(\kappa )

\Biggr] 
.

Putting all this together, we have\left\{         
\langle \varphi 3, \psi \rangle = 1

\alpha 
c

c\beta  - 1
\kappa 2

1 - \kappa 2
\int 2K(\kappa )
0

1+sn2(x)
dn2(x)

dx,

C\varphi \langle \varphi ,\psi \rangle = 1
\alpha 

c
c\beta  - 1

1

(1 - \kappa 2)
\int 2K(\kappa )
0

1+sn2(x)

dn2(x)
dx

\Bigl[ \int 2K(\kappa )
0 sn2(x)dx+

\int 2K(\kappa )
0

1+sn2(x)
dn2(x)

dx - 2K(\kappa )
\Bigr] 2
,

whence finally

(3.11) \langle L - 1\varphi ,\varphi \rangle = 1

\alpha 

1

(\beta  - 1
c )
F (\kappa ),

D
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Figure 2. Graph of F (\kappa ).

where

F (\kappa ) =

\left[   
\Bigl( \int 2K(\kappa )

0 sn2(x)dx+
\int 2K(\kappa )
0

1+sn2(x)
dn2(x)

dx - 2K(\kappa )
\Bigr) 2

(1 - k2)
\int 2K(\kappa )
0

1+sn2(x)
dn2(x)

dx
 - \kappa 2

1 - \kappa 2)

\int 2K(\kappa )

0

1 + sn2(x)

dn2(x)
dx

\right]   
= 2K(\kappa ) + 2E(\kappa )

\biggl( 
 - 1 +

\kappa 2E(\kappa )

(\kappa 2 + 1)E(\kappa ) - (1 - \kappa 2)K(\kappa )

\biggr) 
.

We have plotted it using Mathematica; see Figure 2. From this, it becomes clear that
\langle L - 1\varphi ,\varphi \rangle > 0. In particular, the condition (2.6) holds, whence the conclusions of Proposition
3 hold.

We will now compute \langle L - 1
2 \varphi \prime , \varphi \prime \rangle . We have L2\varphi = 0, and \psi = \varphi 

\int x 1
\varphi 2ds is also solution

of L2\psi = 0. Using the identity

1

sn2(y, \kappa )
=  - 1

\alpha dn(y, \kappa )

\partial 

\partial y

cn(x, \kappa )

sn(y, \kappa )

and integration by parts, we can alternatively express \psi as follows:

\psi (x) =  - 1

\alpha \varphi 0

\biggl[ 
cn(\alpha x)

dn(\alpha x)
 - \alpha \kappa 2sn(\alpha x, \kappa )

\int x

0

cn2(\alpha s, \kappa )

dn2(\alpha s, \kappa )
ds

\biggr] 
.

Using that \varphi is odd function and \psi is even function, we get

\langle L - 1
2 \varphi \prime , \varphi \prime \rangle =  - 

\int T

 - T
\varphi 2\varphi \prime \psi dx+ C\varphi \prime 

\int T

 - T
\varphi \prime \psi dx,

C\varphi \prime =  - \varphi \prime (T )

2\psi \prime (T )

\int T

 - T
\varphi \prime \psi dx.D
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Hence,

\langle L - 1
2 \varphi \prime , \varphi \prime \rangle =  - 

\int T

 - T
\varphi 2\varphi \prime \psi dx - \varphi \prime (T )

2\psi \prime (T )

\biggl( \int T

 - T
\varphi \prime \psi dx

\biggr) 2

.

In addition, we have\left\{                           

\varphi \prime (T ) =  - \alpha \varphi 0, \psi \prime (T ) =  - \kappa 2

\varphi 0

\int 2K(\kappa )
0

cn2x
dn2x

dx,

\int T
 - T \varphi 

\prime (x)\psi (x)dx =  - 1
\alpha 

\Bigl[ \int 2K(\kappa )
0 cn2(x)dx+

\int 2K(\kappa )
0

cn2(x)
dn2(x)

dx
\Bigr] 
,

\int T
 - T \varphi 

2\varphi \prime (x)\psi (x)dx =  - \varphi 2
0
\alpha 

\Bigl[ 
2
\int 2K(\kappa )
0 sn2(x)cn2(x)dx+ \kappa 2

2

\int 2K(\kappa )
0

sn4(x)cn2(x)
dn2(x)

dx
\Bigr] 
,

\alpha 2 =  - \sigma 
1+\kappa 2

, \varphi 2
0 =

2( - \sigma )\kappa 2
(\beta  - 1

c
)(1+\kappa 2)

.

Putting all this together, we get

\langle L - 1
2 \varphi \prime , \varphi \prime \rangle = \varphi 2

0

\alpha 

\Biggl[ 
2

\int 2K(\kappa )

0
sn2(x)cn2(x)dx+

\kappa 2

2

\int 2K(\kappa )

0

sn4(x)cn2(x)

dn2(x)
dx

\Biggr] 
 - 

 - \varphi 2
0

\alpha 

\Bigl( \int 2K(\kappa )
0 cn2(x)dx+

\int 2K(\kappa )
0

cn2(x)
dn2(x)

dx
\Bigr) 2

2\kappa 2
\int 2K(\kappa )
0

cn2x
dn2x

dx
.

Finally, we have

\langle \varphi ,\varphi \rangle = 2\varphi 2
0

\alpha 

\int 2K(\kappa )

0
sn2(x)dx,

\langle \varphi 2, \varphi 2\rangle = 2\varphi 4
0

\alpha 

\int 2K(\kappa )

0
sn4(x)dx.

We now compute det(D) in the regime \beta = 1
c + \epsilon , 0 < \epsilon << 1. We will establish the following

proposition, regarding the matrix D, introduced in (3.1), (3.2), (3.3), (3.4), (3.5).

Proposition 5. Fix c \not = 0, \sigma < 0. Then there exists \epsilon 0 = \epsilon 0(c, \sigma ) > 0, so that for all
0 < \epsilon < \epsilon 0 and \beta = 1

c + \epsilon , we have that det(D) > 0.

Before we proceed with the proof of Proposition 5, let us finish the proof of Theorem 2.
That is, we show that the snoidal waves are spectrally unstable.

We argue as follows: For very small \epsilon , we have from Proposition 5 that det(D) > 0,
whence the symmetric matrix D has either two negative eigenvalues and a positive one (in
which case n(D) = 2) or three positive eigenvalues or n(D) = 0.

By (2.2), we conclude that either kHam = 3 - 2 = 1 or kHam. = n(\scrL ) - n(D) = 3 - 0 = 3.
This implies that there is at least one real instability. In fact, for systems with kHam = 1,
this is obvious. If kHam. = 3, the possibilities are as follows: Three real instabilities, one
real instability and two complex/oscillatory instabilities, and one real instability and a pair of
purely imaginary eigenvalues of negative Krein signature. Unfortunately, the instability indexD
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theory outlined in section 2.1 does not allow us to specify precisely which situation we find
ourselves in, even for \epsilon << 1. We claim that we can nevertheless confirm that the waves are
unstable in the sense that the eigenvalue problem (1.14) has at least one positive eigenvalue.

To this end, consider the parameters c, \sigma fixed and \beta as a bifurcation parameter. We start
with the observation made above that for small 0 < \epsilon << 1 (that is, \beta slightly bigger than 1

c ),
we have at least one real unstable eigenvalue. Allowing the parameter \beta > 1

c to increase, the
Krein index may of course change since our analysis showed that n(D) = 0 or n(D) = 2 only
for 0 < \epsilon << 1. But regardless of that, there will always be at least one real instability. This
is due to Proposition 3, which asserts that the eigenvalue at zero is of algebraic multiplicity
five for all values of the parameters, with three eigenvectors and two generalized eigenvectors
described there. The only scenario for the real instability present at \epsilon << 1 to become stable
is by passing through the zero generalized eigenspace for some intermediate value of \beta , which
would have been detected by our analysis in Proposition 3. As we have shown, this does
not happen. Thus, the real and positive eigenvalue is present for all \beta > 1

c , and the snoidal
waves \varphi are unstable. This completes the proof of Theorem 2, and it remains to establish
Proposition 5.

3.3. Proof of Proposition 5. We first calculate det(D). By the specifics of it (see (3.1),
(3.2), (3.3), (3.4), (3.5)), we have

det(D) = D33 det( \~D) - 
\biggl( 

1

2c

\int 
\varphi 2

\biggr) 2

D22,

where \~D =

\biggl( 
D11 D12

D12 D22

\biggr) 
. Taking into account the form of \varphi 2

0 = const.\epsilon  - 1, we have

\langle L - 1
2 \varphi \prime , \varphi \prime \rangle = const.\epsilon  - 1 +O(\epsilon  - 2),

while \langle \varphi 2, \varphi 2\rangle = const.\epsilon  - 2 +O(\epsilon  - 1). So, we can conclude that

D11 =
\beta 

2c2(c\beta  - 1)
\langle \varphi 2, \varphi 2\rangle + \langle L - 1

2 \varphi \prime , \varphi \prime \rangle = \beta 

2c2(c\beta  - 1)
\langle \varphi 2, \varphi 2\rangle +O(\epsilon  - 1),

whence

det( \~D) = D11D22  - D2
12 =

=
\beta \varphi 4

0

\alpha c(c\beta  - 1)

\Biggl( \int 2K(k\kappa )

0

sn4(x)dx

\Biggr) 
F (\kappa )

\alpha (c\beta  - 1)
 - \varphi 4

0

\alpha 2c2(c\beta  - 1)2

\Biggl( \int 2K(k\kappa )

0

sn2(x)dx

\Biggr) 2

+O(\epsilon  - 2)

=
\varphi 4
0

\alpha 2(c\beta  - 1)2

\left[  \beta 
c

\Biggl( \int 2K(k\kappa )

0

sn4(x)dx

\Biggr) 
F (\kappa ) - 1

c2

\Biggl( \int 2K(k\kappa )

0

sn2(x)dx

\Biggr) 2
\right]  +O(\epsilon  - 2).

Clearly, the first expression is of the form const.\epsilon  - 4, and hence it is dominant in the regime
\beta = 1

c + \epsilon , 0 < \epsilon << 1. Furthermore, the assignment \beta = 1
c + \epsilon allows us to further extract a

leading-order term as follows:

det( \~D) =
\varphi 4
0

\alpha 2c2(c\beta  - 1)2

\left[  \Biggl( \int 2K(k\kappa )

0
sn4(x)dx

\Biggr) 
F (\kappa ) - 

\Biggl( \int 2K(k\kappa )

0
sn2(x)dx

\Biggr) 2
\right]  +O(\epsilon  - 3).
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Figure 3. Graph of H(\kappa ).

We have computed this last function of \kappa in Mathematica, and we have obtained the
following explicit expression for it:

H(\kappa ) =

\Biggl( \int 2K(k\kappa )

0

sn4(x)dx

\Biggr) 
F (\kappa ) - 

\Biggl( \int 2K(k\kappa )

0

sn2(x)dx

\Biggr) 2

=

=
(2(\kappa 2 + 2)K(k) - 4(\kappa 2 + 1)E(k))

\Bigl( 
2K(k) + 2E(k)

\Bigl( 
\kappa 2E(k)

(\kappa 2 - 1)K(k)+(\kappa 2+1)E(k)
 - 1
\Bigr) \Bigr) 

 - 12(E(k) - K(k))2

3\kappa 4
.

Plotting this leads to the conclusion H[\kappa ] > 0 (see Figure 3) and thus to a leading-order

det( \~D) = C(k, \sigma , c)\epsilon  - 4 +O(\epsilon  - 3)

as \epsilon : 0 < \epsilon << 1. In addition, observe that by (3.11), we have that

\biggl( 
1

2c

\int 
\varphi 2

\biggr) 2

D22 = O(\epsilon  - 3).

Accordingly, we have that

det(D) = D33 det( \~D) - 
\biggl( 

1

2c

\int 
\varphi 2

\biggr) 2

D22 = C(k, \sigma , c)\epsilon  - 4 +O(\epsilon  - 3),

whence det(D) > 0 for all small enough \epsilon > 0. This completes the proof of Proposition 5.
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