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Estimates of diversification rates at the tips of a phylogeny provide a flexible approach for correlation analyses with multiple traits

and to map diversification rates in space while also avoiding the uncertainty of deep time rate reconstructions. Available methods

for tip rate estimation make different assumptions, and thus their accuracy usually depends on the characteristics of the underlying

model generating the tree. Here, we introduce MiSSE, a trait-free, state-dependent speciation and extinction approach that can

be used to estimate varying speciation, extinction, net diversification, turnover, and extinction fractions at the tips of the tree. We

compare the accuracy of tip rates inferred by MiSSE against similar methods and demonstrate that, due to certain characteristics

of the model, the error is generally low across a broad range of speciation and extinction scenarios. MiSSE can be used alongside

regular phylogenetic comparative methods in trait-related diversification hypotheses, and we also describe a simple correction to

avoid pseudoreplication from sister tips in analyses of independent contrasts. Finally, we demonstrate the capabilities of MiSSE,

with a renewed focus on classic comparative methods, to examine the correlation between plant height and turnover rates in

eucalypts, a species-rich lineage of flowering plants.
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Molecular phylogenies, when scaled in relation to time, are pow-
erful sources of data to understand the diversification dynam-
ics of organisms and have become crucial in multiple areas of
ecology and evolution (Wiens and Donoghue 2004). As the trees
themselves become larger, more robust, and increasingly com-
prehensive (e.g., Beaulieu and O’Meara 2018; Smith and Brown
2018), the statistical tools used to infer macroevolutionary pat-
terns from them also become more biologically realistic (e.g.,
Beaulieu and O’Meara 2016). Modeling the dynamics of lin-
eage origination and extinction through time has allowed us to
understand, for example, how shifts in pollination and disper-
sal strategies are connected to changes in diversification rates of
angiosperms (e.g., Lagomarsino et al. 2016; Vasconcelos et al.
2019; Reginato et al. 2020) or the role of environmental instabil-
ity in the diversification of several vertebrate groups (e.g., Harvey
et al. 2020; Morales-Barbero et al. 2021).

Diversification, Eucalyptus, hidden states, plant height, turnover, state-dependent speciation and extinction.

Recently, however, a renewed wave of criticisms regard-
ing these methods calls into question whether diversification
rates from time-calibrated trees of extant-only organisms should
even be estimated at all (Louca and Pennell 2020). While it is
true that phylogenies are often used to address problems be-
yond their capabilities (Losos 2011; Cooper et al. 2016; Uyeda
et al. 2018), there is still a considerable amount of informa-
tion that extant-only phylogenies can provide about the diver-
sification process (Helmstetter et al. 2022; Morlon et al. 2022).
For instance, O’Meara and Beaulieu (2021) demonstrated that
state-dependent speciation and extinction (SSE) models can
identify different likelihoods for the generating parameters of
trees with different topologies but identical lineages through
time plots. However, they also discuss how the uncertainty
around parameter estimates increases as one moves from tip to
root in the tree, due to the decreasing amount of information
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in ancestral rate reconstructions (O’Meara and Beaulieu
2021).

A solution, then, could be to continue to model diversifica-
tion dynamics, but focus only on rates estimated near the present
or at the tips of the tree, rather than deep in time. Tip rate es-
timates, also referred to as species-specific diversification rates
(Maliet et al. 2019), have additional advantages in their flexibil-
ity when testing for correlations between multistate discrete and
continuous traits (Harvey and Rabosky 2018; Title and Rabosky
2019) and for providing a straightforward way to map diversifi-
cation rates in space (e.g., Sun et al. 2020; Suissa et al. 2021).
Several methods for estimating tip diversification rates have been
proposed in the past decade (e.g., Jetz et al. 2012; Rabosky 2014;
Maliet et al. 2019), and they tend to provide different levels of ac-
curacy for the estimates depending on the underlying model gen-
erating the tree (Title and Rabosky 2019). There are also multiple
views on how to use tip rate estimates in trait-based correlation
analyses, depending on how the tip rates themselves were esti-
mated (Freckleton et al. 2008; Rabosky and Huang 2016; Maliet
et al. 2019). Of course, the underlying processes generating em-
pirical phylogenies are unknown, and therefore developing a flex-
ible method that estimates accurate tip rates under a broad range
of speciation and extinction scenarios is desirable.

Here, we formally describe MiSSE (“Missing State Speci-
ation and Extinction”), an extension of the SSE framework that
provides accurate estimates of various metrics of diversification
rates at the tips of a tree under various speciation and extinc-
tion scenarios. We also show how MiSSE estimates can be used
alongside regular phylogenetic comparative methods after a sim-
ple correction for pseudoreplication of tip rates, contributing to
its flexibility in tip correlation analyses. We compare the accu-
racy of MiSSE against other popular approaches for estimating
tip diversification rates and further demonstrate its capabilities
with an empirical example that examines the correlation between
turnover rates and plant height in eucalypts (Eucalypteae, Myr-
taceae), a diverse lineage of flowering plants. Finally, we argue
why focusing on tip estimates can be advantageous in testing
complex hypotheses of diversification and discuss some caveats
of this approach and possible ways forward for modeling diversi-
fication.

Materials And Methods

THE MISSE MODEL

State-dependent speciation and extinction models expand the
birth-death process to account for speciation (A), extinction (i),
and trait evolution (g, the transition rates between character
states), estimating parameters that maximize the likelihood of ob-
serving both the character states at the tips of the tree and the tree
itself (Maddison et al. 2007). SSE models were initially devel-

oped to overcome three main perceived shortcomings in the field:
(1) the need for greater flexibility in tests of key-innovation hy-
potheses, which, at the time, typically involved sister-clade com-
parisons that could only measure differences in net diversification
and assumed constant rates within the clades under comparison
(Barraclough et al. 1998); (2) the need to incorporate differences
in speciation and/or extinction rates associated with a particular
character state in analyses of trait and geographical range evo-
lution (Goldberg et al. 2010; Goldberg and Igic 2012; Ree and
Sanmartin 2018); and (3) the potentially confounding effects
of different transition and diversification rates when looking
at diversification or character evolution, respectively (Maddison
2006).

All discrete SSE models exist within the following general-
ized ordinary differential equations (corresponding to Equation
la and b in FitzJohn 2012):
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The probability E; (¢) is the probability that a lineage starting
at time 7 in state i leaves no descendants at the present day (1 =
0), and D; (¢) is the probability of a lineage in state i at time ¢
before the present (¢ > 0) evolved the exact branching structure
as observed.

With these ordinary differential equations, any number of
states can be included in an SSE model. For example, in
character-based models, such as BiSSE (“Binary-State Specia-
tion and Extinction”; Maddison et al. 2007), i and j represent
two observed states of a focal character (e.g., observed states
0 and 1). A potential issue in this case is that when comparing
a simple model where there is no variation in rates among states
against a model of trait-dependent diversification, there is almost
always strong support for a trait-dependent diversification pro-
cess in empirical settings (Maddison and Fitzjohn 2015; Rabosky
and Goldberg 2015). The HiSSE model (‘“Hidden-State Specia-
tion and Extinction”; Beaulieu and O’Meara 2016) partially cor-
rects this issue by harnessing the properties of hidden Markov
models to allow rate heterogeneity to depend not only on the fo-
cal trait but also on other factors that were not explicitly scored
as character observations at the tips (see also Caetano et al. 2018;
Nakov et al. 2019; Boyko and Beaulieu 2021, 2022). Thus, with
HiSSE, i and j represent the different observed and hidden state
combinations specified in the model (e.g., observed states 0 and
1, hidden states A and B).

Although hidden state SSE models make hypothesis testing
in diversification studies more realistic, existing SSE models are
still generally used to understand the correlation of a particular
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(c) Trait-unspecified, hidden-states only (MiSSE)
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Figure 1. Diagrammatic representations of state-dependent speciation and extinction models that (a) use only observed trait data in
parameter estimation (e.g., BiSSE), (b) use both observed trait data and hidden states in parameter estimation (e.g., HiSSE, where observed
and hidden are coded as numbers and letters that are combined to yield a four-state system), and (c) use only hidden states in parameter

estimation (e.g., MiSSE).

observed trait or geographical range distribution and the diversi-
fication dynamics of a group. However, in reality, it is not a single
factor but, rather, a combination of circumstances that are respon-
sible for the heterogeneous diversification rates among clades in
a phylogenetic tree (Donoghue and Sanderson 2015; Niirk et al.
2020). Understanding heterogeneous processes that arise from
the effect of multiple traits on the dynamics of speciation, ex-
tinction, and trait evolution is one of the main utilities of hidden
Markov models in phylogenetic comparative methods (Caetano
et al. 2018).

1422 EVOLUTION JULY 2022

It is natural, then, to completely drop the observed trait from
the analysis and focus only on the impact of the “unobserved”
traits, or the hidden states, in the diversification dynamics of a
clade. This is what our MiSSE model, an extension of the HiSSE
framework, is intended to do (see also Barido-Sottani et al. 2020
for a similar SSE extension in a Bayesian framework). MiSSE is
a direct extension of HiSSE, with the main difference between the
two models being that, with HiSSE, we have an observed char-
acter with states 0 or 1, as in BiSSE (Fig. 1a), and hidden states
A and B (Fig. 1b). Essentially, MiSSE operates in the same way
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but simply ignores the observed states altogether and performs
the calculations of the hidden rate classes directly (Fig. 1c).

The assignment of a particular hidden state to each tip is
based on probabilities of the data, which, in the case of MiSSE,
is just the structure of the tree. This process is similar to the
maximum likelihood calculations in other hidden state methods.
These calculations are described thoroughly in Caetano et al.
(2018), so here we provide only a brief overview. The first step
is to search for parameter values that maximize the probability of
observing the tree at the root by marginalizing over all possible
assignment of rate classes at internal nodes and along branches.
This search consists of a bounded stochastic simulated anneal-
ing algorithm, run for 5000 iterations, followed by a bounded
subplex routine that runs until the maximum likelihood is found.
Alternating between a stochastic optimization routine, followed
by a “greedy” hill-climbing routine, helps ease MiSSE away
from finding local optima.

Suppose that, in an iteration, rate class A has X = 0.1 and
p = 0.05, and rate class B has A = 0.2 and i = 0.1. The node
subtending the branch subtending a tip could have started in A
giving rise to an A or B, or it could have started in B giving rise to
an A or a B. Each of these scenarios has a probability associated
with them. The sister edge has the same set of scenarios and its
own set of probabilities. These probabilities are combined at the
nodes (which includes the speciation rate to account for the spe-
ciation event at a node) and carried down the tree in the same way
as in other SSE models. Once at the root, marginal probabilities
for whether the root is in A or B based on a set of rates can be
calculated, as well as the overall log-likelihood that these rates
produced the observed tree.

At this point, all other branches, nodes, and tips are assumed
to be in all possible states. The second step, then, is to take the
maximum likelihood estimation (MLE) of the rates and deter-
mine which of the states at a given node and given tip is more
likely than any of the other possible states. For that, MiSSE sim-
ply chooses a node (or tip), fixes it to be in rate class A, tra-
verses the tree, and calculates the overall likelihood. Then, it
does the same for that same node, but this time, it fixes it to
be in rate class B. At the end, MiSSE calculates the marginal
probabilities by dividing the probability that a node was in each
state divided by the sum of the probabilities across all states.
In that way, every tip and node have a probability of being in
both states A and B, but often one state will be more proba-
ble than the other. For example, in a clade where speciation oc-
curred more rapidly, the higher \ associated with B will be a bet-
ter fit to the shape of that part of the tree, and so the marginal
probabilities will reflect higher support for B. In another clade,
where speciation is slower, lower N will be the better fit, so
the marginal probabilities will reflect the higher support for hid-
den state A in that part of the tree. In other clades, they may

be uncertain, given frequent transitions in and out each hidden
state.

Note that A and B are arbitrary labels that can and will
shift positions at the tips in different runs. What truly matters
is the parameter combination that underlies each label in each
run, which should not change their MLE between runs. Note also
that MiSSE is still a model of tree and character states like other
SSE models, so the topology matters to assign tips to the correct
(hidden) states. Because it uses data from the topology as well
as branch lengths, MiSSE likelihood can distinguish between
trees that have the same lineage through a time plot but differ-
ent topologies (O’Meara and Beaulieu 2021). Additionally, note
that, contrary to previous SSE models, transition rates (q) among
rate classes are always set to be equal. They are informed in the
output, but they have no direct interpretable biological meaning
such as the transition rates in BiSSE, which represent the fre-
quency of state changes among observed character states, or in
GeoSSE, which can be interpreted as the frequency of disper-
sal out of a biogeographic area. Our current implementation will
continue to treat these rates as fixed until it is clearer whether
transition rates are practically feasible in MiSSE. An implemen-
tation where transition rates are allowed to vary would be ideal
given that shifts between rate classes are likely to occur at dif-
ferent speeds throughout the evolution of a group. Differential
diversification rates have a major effect on the tree (since this af-
fects exponential growth of clades), while differential transition
rates are likely (but not guaranteed) to have a less substantial ef-
fect, so for now we use the data only to estimate differences in
the former.

MiSSE is available within the R package hisse (Beaulieu and
O’Meara 2016). Some details of MiSSE’s implementation differ
from other SSE models also implemented in hisse. These dif-
ferences are summarized in SM1 (Supplementary Material), and
readers are also encouraged to follow the example code available
as SM2 when using MiSSE for their empirical analyses.

COMPARING THE ACCURACY OF TIP RATE METRICS
ACROSS DIFFERENT SPECIATION AND EXTINCTION
SCENARIOS

We compare the accuracy of tip diversification rates estimated
by popular methods using a set of simulated trees extracted from
Title and Rabosky (2019) and Maliet et al. (2019). Title and Ra-
bosky (2019) used 5200 trees compiled from previous literature
and simulated under eight different models as a benchmark set
to test the accuracy of different tip rate metrics across a range of
speciation and extinction scenarios. For speed, we selected a ran-
dom sample of 10% of their original set of simulations, i.e., 521
trees, for our analyses. We then excluded trees simulated under
the “multiregime, constant-rate birth—death” of Meyer and Wiens
(2018) because those were represented by only two trees in our
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Table 1. Simulated trees used in comparisons between tip rate metrics.

Simulation model Number of trees Tree-size Source

Speciation rate evolves via diffusion 120 25-662 Rabosky (2010); Beaulieu and
process O’Meara (2015); Rabosky (2016);

Title and Rabosky (2019)

Single- and multiregime, constant-rate 18 9-3458 Mitchell et al. (2019)
birth—death

Single-regime, constant-rate birth—death, 100 100 Title and Rabosky (2019)
lambda uniform

Single-regime, constant-rate birth—death 10 100 Mitchell and Rabosky (2017)

Single- and multiregime, constant-rate 10 100 Moore et al. (2016)
birth—death

Single-regime, constant-rate birth—death, 100 100 Title and Rabosky (2019)
net diversification uniform

Pure birth root regime, 1—4 discrete shifts 117 54-794 Rabosky (2014); Mitchell and
to diversity-dependent regimes Rabosky (2017)

Single- and multiregime, constant-rate 40 10-3157 Rabosky et al. (2017)
birth—death

Rate changes at every speciation event, 32 100-105 Maliet et al. (2019)

constant extinction-fraction

set. From Maliet et al. (2019), we extracted 40 trees simulated un-
der the ClaDS2 scenario for comparison with the ClaDS model
available in the recent data-augmentation implementation (Maliet
and Morlon 2022). We then excluded five trees where the median
height of branch lengths was above a threshold of one trillion
units of time because they could be out of the numerical lim-
its for some methods (e.g., BAMM’s MCMC chains struggled to
reach convergence in those cases). Finally, seven additional trees
were excluded due to modeling limitations in one of the methods
(see details in SM3; Supplementary Material). The final dataset
comprises 547 trees of different sizes, although most of them are
< 500 tips (Table 1).

Six different tip-rate metrics were compared: DR statistics
(Redding and Mooers 2006), BAMM (Rabosky 2014), node den-
sity (ND; Freckleton et al. 2008), the inverse of terminal branch
length (TB; Steel and Mooers 2010), ClaDS (Maliet et al. 2019;
Maliet and Morlon 2022), and our MiSSE model. For MiSSE,
we summarized tip rates in the following ways: (1) tip rates es-
timated from the model with the overall lowest AICc (i.e., the
“best” model; MiSSEy.s); and (2) tip rates estimated by averag-
ing all models according to their Akaike weight (MiSSEyerage)
(see SM3, Supplementary Material, for details on the settings for
other methods).

We followed the same statistical metric as Title and Rabosky
(2019), namely, we compared the mean absolute error, given by
the formula Zf\il |rate; — ratergy | / N, and the RMSE is given
by \/va:‘] (rate; — ratergyg,) 2/ N, where i is a single tip and N
is the total number of tips in all trees of a given type of simulation.

In all cases, the lower the error values are, the more accurate the

1424 EVOLUTION JULY 2022

metric. We assessed the accuracy of five parameters, speciation
(M), extinction (ju), and the orthogonal transformations of these,
namely, net diversification (r = A — ), turnover (t = A\ + ) and
extinction fraction (¢ = /\). Note that TB, ND and DR are non-
parametric (i.e., not based on an underlying model) and only es-
timate h. We then used the function posthoc.kruskal.conover.test
from the R package PMCMR (Pohlert 2014) to perform a pair-
wise test for multiple comparisons of mean rank sums and cal-
culate whether errors are significantly different between metrics,
assuming a significance value of p < 0.05.

EMPIRICAL EXAMPLE: PLANT HEIGHT AND
TURNOVER IN EUCALYPTS

We demonstrate the capabilities of MiSSE estimates for analyses
of tip correlation with an empirical example. Body size is con-
sidered an important trait in studies of animal evolution (Cooper
and Purvis 2010), and it has been interpreted as a potential corre-
late of diversification rates in vertebrates (Cope’s rule; FitzJohn
2010). A similar argument can be made for plants (Boucher et al.
2017). Through a complex link between rates of molecular evolu-
tion, fecundity, and population size, life span and generation time
are expected to be negatively correlated with the number of spe-
ciation and extinction events on a per time basis (Stebbins 1974;
Petit and Hampe 2006); i.e., slower turnover rates. Although
these correlations are expected in theory, surprisingly few studies
have compared them in practice using model-based approaches
(e.g., Boucher et al. 2020). The MiSSE framework allows us to
easily test this correlation by using regular comparative phyloge-
netic methods and tip rates as a response variable.



A FLEXIBLE METHOD FOR TIP RATE ESTIMATION

We examined turnover rates in relation to plant height, a
proxy for lifespan (Westoby 1998), in eucalypts, one of the most
distinctive components of the Australian landscape (Wilson et al.
2005). Eucalypts are members of the tribe Eucalypteae, in the
flowering plant family Myrtaceae, and a group that includes some
of the tallest trees in all angiosperms (e.g., Eucalyptus regnans
can reach up to 120 m height) (Wilson et al. 2005; Nevill et al.
2010). Eucalypts are also unusual for being considered a rela-
tively speciose (c. 800 species) lineage of trees. It is thought that
the tree habit tends to decrease speciation rates, which is offered
as reason that clades comprised of predominantly tree growth
forms are frequently found to be less diverse than their herba-
ceous or shrubby relatives (Petit and Hampe 2006). However,
many eucalypt species are also large shrubs to treelets between
1.5 and 5 m in height (EUCLID 2015), which led to the hypothe-
sis that the radiation is driven primarily by the smaller representa-
tives of the clade (Petit and Hampe 2006). Here, we test this idea
by contrasting tip turnover rates with plant height in this diverse
clade of angiosperms.

We used the “ML1” time-calibrated phylogenetic tree from
Thornhill et al. (2019), which covers 716 out of the c. 800 species
of eucalypts. We then collected data on plant height for 673 spec-
ies available at EUCLID Eucalypts of Australia Edition 4 (2015)
(EUCLID 2015). All measurements represent plant maximum
height and are given in meters. We use the default implementa-
tion of MiSSE (stop.deltaAICc = 10 and chunk.size = 10) to esti-
mate tip turnover rates in Eucalypteae, pruning redundant models
with the function PruneRedundantModels. Next, we estimated tip
turnover rates by averaging all models according to their AICc
weights with the function GetModelAveRates.

To test correlations between plant height and tip turnover
rates, we used the function TipCorrelation, which performs a
regression-through-the-origin of positivized phylogenetic inde-
pendent contrasts (PICs, Felsenstein 1985) between tip rates and
a continuous trait. This function also gives the option of pruning
out PICs from two tips that are sisters to each other and share the
same branch length to the direct ancestral node (i.e., “cherries”)
before regressions. We reasoned that because these sister tips the-
oretically inherit the exact same rate class probabilities in MiSSE,
they may (1) present identical tip rates, forcing the slope of the
regression to be close to 0 since their PICs will be 0, and therefore
(2) constitute pseudoreplicates in the analyses. Note that in this
approach, we prune PICs and not individual sister tips. Pruning
tips might not be adequate because they would affect all other PIC
calculations in the tree; they can also make the results sensitive
to which tip is pruned and give less information for computing
contrasts deeper in the tree. All functions mentioned above are
available in the R package hisse (Beaulieu and O’Meara 2016).
Rates and maximum plant height were log scaled before anal-

yses so that they conformed with Brownian motion evolution
(Felsenstein 1985; Garland et al. 1992).

Results

SIMULATION STUDIES

Comparisons between tip rate metrics using simulated data show
that, in general, MiSSE estimates accurate tip rates across a range
of speciation and extinction scenarios (Fig. 2). We present the re-
sults for the mean absolute error, although the RMSE results are
practically the same (SM4; Supplementary Material). Our results
show that TB is significantly less accurate than other methods in
all simulation scenarios, and in eight out of the nine simulation
scenarios, there was no significant difference in error measure-
ments between ND and DR. In all simulated scenarios, the re-
sults show that the model-based approaches MiSSE, BAMM and
ClaDS tended to be significantly (p < 0.01) more accurate than
the nonparametric methods TB, ND, and DR for speciation rates,
the only parameter estimated by the latter three metrics (see SMS;
Supplementary Material for all pairwise comparisons).

The accuracy among the three model-based approaches for
the five diversification parameters estimated at the tips varies
depending on the model used to generate the simulated tree.
Significant differences in accuracy are observed for extinction
fraction in the “speciation rate evolves via diffusion process”
scenario (Fig. 2a), where ClaDS is significantly more accurate
(p = 0.04) than MiSSE;yerage and BAMM, but not than MiSSE,cq
(p = 0.32). Significant differences in accuracy between the esti-
mates of the MiSSE,.y model and the AICc-weighted average of
the MiSSEerage model were not observed in any other simulated
scenario; therefore, the two results are henceforth treated as a
single MiSSE category. In both the “single-regime, constant-rate
birth—death, lambda uniform” (Fig. 2c) and the “single-regime,
constant-rate birth—death, net diversification uniform” (Fig. 2f)
scenarios, ClaDS estimates for speciation at the tips are signif-
icantly less accurate (p < 0.01) than the other model-based ap-
proaches. ClaDS estimates also perform significantly worse than
MiSSE (p < 0.01 and p = 0.049 when compared to MiSSEp.)
for estimates of net diversification and turnover rates in those sce-
narios. BAMM and ClaDS are significantly more accurate than
MiSSE for speciation in the “Pure birth root regime, 1—4 dis-
crete shifts to diversity-dependent regimes” scenario (p < 0.01;
Fig. 2g). In the same scenario, ClaDS also tends to be more ac-
curate than other methods for extinction rates (p < 0.01) and
BAMM for net diversification rates (p < 0.01), but BAMM is also
significantly less accurate for turnover rates (p < 0.01) than the
other methods in this scenario. ClaDS is significantly more accu-
rate than BAMM for estimates of extinction fraction in trees sim-
ulated under the model “rate changes at every speciation event,
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constant extinction fraction” (p < 0.01; Fig. 2i) but does not sig-
nificantly differ from MiSSE for any parameter in that scenario.

Tip-correlation between plant height and
turnover

Our empirical example using tip rate correlations with MiSSE
shows that, despite the idea that smaller plants have driven the
radiation in eucalypts, maximum plant height appears uncorre-
lated with turnover rates across the tips of the tree (R*> < 0.001,
Fig. 3c). The general lack of correlation is mainly because (1)
higher turnover rates are not always restricted to clades of small
shrubs and treelets, as seen by comparing the distribution of tip
rates and plant height along the tips of the tree (Fig. 3a,b); and (2)
plant height (Fig. 3b) appears to be a much more labile trait than
turnover rates (Fig. 3a). We note that pruning PICs from sister
tips from the tree minimally changes the slope of the regression
line in this example, and it does not change our main conclusion
that turnover rate and plant height are likely uncorrelated in euca-
lypts, given that contrasts of maximum plant height explain less
than 0.1% of the contrasts of turnover. In any event, the inclusion
of PICs from sister tips can force the slope of the PIC regression
toward 0 in other tip rate comparisons, and therefore, they should

be pruned before analyses.

Discussion

MISSE AS A FLEXIBLE MODEL-BASED APPROACH TO
ESTIMATE TIP DIVERSIFICATION RATES

Here, we describe our “trait-free” MiSSE framework and show
how it can be used to estimate accurate diversification rates at the
tips of the tree. Our results show that the difference in accuracy
in parameters estimated by averaging all MiSSE models or using
only the best MiSSE model seems to be minimal and may depend
on the tree (Fig. 2). However, as discussed in previous publica-
tions (Beaulieu and O’Meara 2016; Caetano et al. 2018), the user
is strongly encouraged to focus mainly on parameter estimation
rather than which model fits “best” when using MiSSE, since the
former is more informative about the biology of a clade. We also
note that although extinction fraction and turnover are sometimes
treated as synonymous in the literature (see SM6, Supplementary
Material, for a short terminology survey), we use turnover rate
as an explicit measure of events per unit of time and a param-
eter that is orthogonal to extinction fraction. We emphasize this
difference because many diversification hypotheses may be bet-
ter described by turnover rates rather than net diversification or
extinction fraction (e.g., Vrba 1993; Vasconcelos et al. 2022; our
empirical example). Additionally, given that extinction and spe-
ciation should tend to correlate through time (Marshall 2017), net
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diversification should tend to approach 0. In those scenarios, and
as long as extinction is different from 0, turnover can naturally
become a better metric for understanding diversification dynam-
ics nuances than its isolated components. We note, however, that
when the extinction rate is equal to 0, the turnover rate collapses
into the speciation rate (i.e., there is no turnover). We also note
that our concept of turnover is different from the one used in the
island biogeography literature (e.g., Simberloff 1974).

Key differences between MiSSE and analogous methods are
highlighted by our analyses of simulated data. Although esti-
mates from the three model-based approaches, MiSSE, BAMM,
and ClaDS, tend to provide generally accurate estimates of diver-
sification parameters at the tips, the three methods make very dif-
ferent assumptions. BAMM is based on inferences of discrete rate
shifts, so that all tips after a shift inherit a similar rate (Rabosky
et al. 2014). ClaDS, on the other hand, assumes that changes in
diversification dynamics occur at every speciation event so that
the estimates at the tips are allowed to be highly heterogeneous
in relation to one another (Maliet et al. 2019). MiSSE may also
have some shift-like properties, as in BAMM, in areas where the
probabilities of being in different rate classes change abruptly.
However, because at every moment in the tree, including at the
tips, there is a combined probability of being in all possible rate
classes, the evolution of diversification rates becomes smoother,
allowing it to pick up some rate heterogeneity at the tips, as in
ClaDS. Closely related tips do have similar rates because it is
likely that they will be in the same rate class, but they do not
inherit the absolute same rate.

A visual inspection of individual results (Fig. 4; all plots
in SM7, Supporting Information) shows that differences in ac-
curacy observed in our comparisons probably result from these
operational differences between model-based approaches. For in-
stance, because BAMM works with discrete shifts, this method
tends to be more accurate when the true model assumes that few
large discrete shifts of diversification rates occurred in the tree. In
those scenarios, models such as MiSSE and ClaDS may perform
comparatively worse because they may infer rate heterogeneity
where there is none (Fig. 4d). On the other hand, BAMM can
underestimate rate heterogeneity when the true model produces
highly heterogeneous tip rates in the tree. In those cases, even if
the mean error is low, this method may fail to capture rate vari-
ation in small clades with particularly high or particularly low
rates (Fig. 4a,c). Similarly, ClaDS may overestimate variation
in scenarios where rate heterogeneity is nonexistent, resulting in
higher error (Fig. 4b). Because MiSSE works as an intermedi-
ate between BAMM and ClaDS, we argue that it can become
a model-based approach that is more flexible in identifying ar-
eas of rate heterogeneity or homogeneity at the tips of the tree.
Importantly, even in scenarios where MiSSE is less accurate, it
tends to capture areas with faster and lower rates in the tree cor-
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rectly. In “diversity dependent” scenarios, for example, MiSSE
may be less accurate because it can overestimate speciation rates
of clades with comparatively higher speciation rates, since it does
not explicitly allow speciation rates to slow down along a given
terminal branch (as in BAMM). However, it tends to be similar
to other methods in identifying where variation in rates occurs
(Fig. 44).

PLANT HEIGHT AND TURNOVER RATES ARE
UNCORRELATED IN EUCALYPTS

Our empirical analysis demonstrated that the correlation between
plant height and turnover rates is weak within Eucalypteae. The
use of plant height as a proxy for longevity is common in plants,
but it may be that plant height is not the best proxy for longevity
in eucalypts. Tall eucalypt trees are often native to productive en-
vironments with fertile soils (Pryor 1976; Thornhill et al. 2019),
and it may be that they present fast life cycles for their size, as
observed in other parts of the world where soils are also fertile
(Russo et al. 2008). In fact, many eucalypt trees are known to be
fast-growing plants (e.g., Barnard and Ryan 2003; Almeida et al.
2004), and fast growth is linked to higher mortality through the
growth-survival trade-off hypothesis (Reich 2014), which could
potentially lead to higher turnover rates even in lineages of tall
trees (Baker et al. 2014). If that is the case, perhaps plant height
is not the trait that best captures the variation that we sought to
explore in our hypothesis. Other proxies, such as leaf mass area
and seed size (Westoby 1998; Wright et al. 2004), may be a better
proxy of longevity in these scenarios and should also be tested.

Alternatively, if plant height is, in fact, a good proxy for
longevity in eucalypts, it may be that longevity is generally un-
correlated with turnover in the clade. A similar trend of uncorre-
lated body size and speciation rates has been observed in other
groups (FitzJohn 2010; Boucher et al. 2020), but it is difficult to
ascertain if the lack of correlation is a particularity of the groups
that have been analyzed thus far or a general rule. Given the het-
erogeneity of evolution, identifying what is a rule and what is an
exception in macroevolution requires analyses of multiple natu-
ral replicates. Similar tests in several clades would be ideal to
rule out this possibility. A different approach would be to use
QuASSE (FitzJohn 2010) to construct a model of turnover and
height; the disadvantage of this is the need to model the rela-
tionship and the (current) impossibility of including additional
observed or unobserved factors.

One benefit of MiSSE (and similar methods) is that even
though our hypothesis was not supported, we still have new in-
formation about the tips: turnover rate (and the other diversifica-
tion parameters if one wishes). In the same way that looking at
the correlation of two traits may generate new hypotheses to test
(Boyko and Beaulieu 2021), having estimates of turnover rate at
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tips as in Figure 3 may also lead to new ideas about the factors
leading to higher turnover rates in some eucalypts.

BEST PRACTICES IN TIP RATE ESTIMATION

MiSSE is intended to be used to estimate diversification rates at
the tips of the tree. Tip rates are, technically, an emergent property
of how diversification dynamics are modeled along the branches
of the tree (Freckleton et al. 2008; Title and Rabosky 2019).
However, rate estimates are not unique per tip species, so species
should not be analyzed in isolation. In other words, a tip with an
extinction fraction of 0.9, for instance, does not necessarily indi-
cate that that tip is about to go extinct but rather that many closely
related species are relatively short lived in comparison to the rest
of the tree. Tip rates can then be seen as a “snapshot” of the di-
versification potential of the species in a clade. In the MiSSE
framework, this diversification potential may be interpreted as
the combined effect of the many (hidden) states evolving in the
tree, which are represented by the different rate classes.

From a mathematical standpoint, there is an advantage in
using tip rates because it is at the tips where the certainty around
the probability of being in a particular rate class is the highest
(O’Meara and Beaulieu 2021). The certainty around these prob-
abilities decreases as one moves toward the root of the tree, so
the ability to point out changes in rate classes also decreases. Of
course, the model does use information from the whole phylo-
genetic tree in the calculations of tip rates, but as one moves
toward the present in the tree, more information is available to
reconstruct those rates, and thus, we are more likely to be certain
about the probabilities of being in different rate categories (see
O’Meara and Beaulieu 2021).

The intuitive question that follows is how far back in the
past one can go to interpret how the observable diversification
potential at the tips came to be and how far into the future can
we use them to make predictions about how clades will diver-
sify. The answer is, again, not straightforward and may depend
on the size and age of the phylogenetic tree under analysis. Tip
rates will not be able to tell us about mass extinction events
deep in the past, as these are arguably only measurable from
the fossil record (Barnosky et al. 2011), but they may represent
a good reflection of diversification dynamics above the species
level in time slices close to the present. We therefore recom-
mend great caution with literal interpretations of rate classes deep
in time. That is why MiSSE can “paint” the averaged rate re-
construction along the branches of the tree (i.e., with the func-
tion plot.misse.states in the R package hisse), inferences of rates
through time should not be interpreted literally. The “painting”
should be used just to visualize the rates inferred with MiSSE
and should not be used to support narratives of past diversi-
fication dynamics for a group. Interpreting past rates is risky
given limited information. Similarly, modern drivers of diversi-
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fication dynamics (climate change, invasive species, habitat de-
struction, and more), which affect extinction rates at present, will
not be reflected in the rate estimates returned by MiSSE or similar
methods.

Another issue is the nonindependence of the tip rates. The
identical rates for sister tips have been discussed above, but even
nonsister tips may have somewhat correlated rates. It is impor-
tant to realize that although a phylogenetic model was used in
the estimation of tip rates, they themselves are not corrected for
phylogeny, which is the reason we used independent contrasts
above to compare turnover and plant height. There is also lim-
ited information: a resolved tree of 100 taxa has 198 edges. Al-
though MiSSE, BAMM, ClaDS§, and other methods give 100 tip
estimates, there is not enough information to take each one as
known with great certainty or to draw a strong conclusion based
on a rate shared by a few taxa.

CAVEATS AND PERSISTENT ISSUES IN MODELING
DIVERSIFICATION DYNAMICS

Tip diversification rates are advantageous for their flexibility in
trait-related diversification analyses and for avoiding the uncer-
tainty of rate reconstructions in deep time. However, there are
several caveats that users should consider when using these meth-
ods, including MiSSE: (1) Clade-specific sampling fraction was
found to lead to an incorrect likelihood behavior in any diversi-
fication method despite its appeal (Beaulieu 2020). Contrary to
other similar methods, MiSSE deliberately does not include an
implementation for the clade-specific sampling fraction, so all
sampling fractions are global, and only one sampling fraction is
given for the whole tree. Imputation using stochastic polytomy
resolvers can work as an alternative solution when dealing with
incomplete phylogenies (e.g., Chang et al. 2020; but see Rabosky
2015) (2) How species are defined is the most relevant when look-
ing at tip rates. For diversification rate models, the data come
from the distribution of branching events across the phylogeny.
Since most of these events are nearer the present, lumping and
splitting taxonomic entities at the species level will have a greater
impact on tip-rate estimation. We suspect that the methods dis-
cussed herein are particularly sensitive to taxonomic subjectivity.
(3) There may still be issues related to ascertainment bias and un-
derestimation of extinction rates (Beaulieu and O’Meara 2018).
In that sense, the larger and broader taxonomic sample one uses to
test diversification hypotheses, the more biologically realistic ex-
tinction rates will tend to be. Ideally, one would be able to correct
the extinction estimates in smaller trees, but that is still not pos-
sible with the current implementation of MiSSE or in any other
model we are aware of. Therefore, even though extinction rates
are estimated accurately relative to the simulated data, they may
still be biologically unrealistic in small and young trees. (4) Fi-
nally, given that these models do not account for mass extinction
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events, it is unclear what impact such events will have on tip-rate
estimation in any approach currently available.

Conclusions

Time-calibrated phylogenetic trees have been important sources
of data to understand fundamental aspects of the evolution of or-
ganisms. MiSSE provides a novel tool to explore them, and its
flexibility in estimating accurate tip rates across a broad range
of speciation and extinction scenarios makes MiSSE a powerful
alternative for diversification analyses with correct likelihoods.
There remain many caveats and cautions about its use, but it is an
additional tool to understand diversification processes, including
a focus on parameters of perhaps great biological relevance, such
as turnover rate. We suggest that tip rates estimated by MiSSE
will be useful to several questions that were previously addressed
by other SSE models. Its versatility is appealing to explore inte-
grative questions linking traits, geographical range distribution,
or both in time slices close to the present.

AUTHOR CONTRIBUTIONS

T.V.,B.C.O., and J.M.B. designed the study. J.M.B. led software develop-
ment, T.V. and B.C.O. led the simulation study, and T.V. led the empirical
example. T.V. wrote the first draft, and all authors contributed to the final
writing of the manuscript.

ACKNOWLEDGMENTS

The authors thank members of the Beaulieu lab for discussion. The au-
thors are also grateful to D. Rabosky and two anonymous reviewers for
comments that greatly improved an earlier version of this manuscript.
This work was funded by the National Science Foundation (grants
DEB—1916558 and DEB—1916539).

CONFLICT OF INTEREST
The authors have declared no conflict of interest.

DATA ARCHIVING

All code and data required to reproduce the analyses in this manuscript
can be found at https://github.com/bomeara/missecomparison and in the
Dryad folder linked to this publication: https://doi.org/10.5061/dryad.
9cnpShqm4

LITERATURE CITED

Almeida, A.C., Landsberg, J.J. & Sands, P.J. (2004) Parameterisation of 3-PG
model for fast-growing Eucalyptus grandis plantations. Forest Ecology
and Management, 193, 179-195. https://doi.org/10.1016/j.foreco.2004.
01.029

Baker, T.R., Pennington, R.T., Magallon, S., Gloor, E., Laurance, W.F.,
Alexiades, M., et al (2014) Fast demographic traits promote high di-
versification rates of Amazonian trees. Ecology letters, 17, 527-536.
https://doi.org/10.1111/ele.12252

Barido-Sottani, J., Vaughan, T.G. & Stadler, T. (2020) A multitype birth—
death model for Bayesian inference of lineage-specific birth and death
rates. Systematic Biology, 69, 973-986.

Barnard, H.R. & Ryan, M.G. (2003) A test of the hydraulic limitation hypoth-
esis in fast-growing Eucalyptus saligna. Plant, Cell & Environment, 26,
1235-1245. https://doi.org/10.1046/j.1365-3040.2003.01046.x

Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O., Swartz, B., Quental,
T.B. & Ferrer, E.A. (2011) Has the Earth’s sixth mass extinction already
arrived? Nature, 471, 51-57.

Beaulieu, J. M. & O’Meara, B.C. (2015) Extinction can be estimated from
moderately sized molecular phylogenies. Evolution, 69, 1036—1043.
https://doi.org/10.1111/evo.12614

Beaulieu, J.M. & O’Meara, B.C. (2016) Detecting hidden diversification
shifts in models of trait-dependent speciation and extinction. Systematic
biology, 65, 583-601. https://doi.org/10.1093/sysbio/syw(022

Beaulieu, J.M. & O’Meara, B.C. (2018) Can we build it? Yes we can, but
should we use it? Assessing the quality and value of a very large phy-
logeny of campanulid angiosperms. American Journal of Botany, 105,
417-432. https://doi.org/10.1002/ajb2.1020

Beaulieu, J.M. (2020) The Problem with Clade-specific Sampling Frac-
tions. Available at: https://rdrr.io/cran/hisse/f/inst/doc/Clade-specific-
sampling.pdf.

Barraclough, T.G., Vogler, A.P. & Harvey, PH. (1998) Revealing the fac-
tors that promote speciation. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, 353, 241-249.
https://doi.org/10.1098/rstb.1998.0206

Boucher, F.C., Verboom, G.A., Musker, S. & Ellis, A.G. (2017) Plant size:
a key determinant of diversification? New Phytologist, 216, 24-31.
https://doi.org/10.1111/nph.14697

Boucher, F.C., Quatela, A.S., Ellis, A.G. & Verboom, G.A. (2020) Diversifi-
cation rate vs. diversification density: Decoupled consequences of plant
height for diversification of Alooideae in time and space. PloS one, 15,
€0233597. https://doi.org/10.1371/journal.pone.0233597

Boyko, J.D. & Beaulieu, J.M. (2021) Generalized hidden Markov models for
phylogenetic comparative datasets. Methods in Ecology and Evolution,
12, 468-478. https://doi.org/10.1111/2041-210X.13534

Boyko, J. & Beaulieu, J. (2022) A potential solution to the unresolved chal-
lenge of false correlation between discrete characters. EcoEvoRxiv
https://doi.org/10.32942/ost .io/e2kj8

Chang, J., Rabosky, D.L. & Alfaro, M.E. (2020) Estimating diversification
rates on incompletely sampled phylogenies: theoretical concerns and
practical solutions. Systematic Biology, 69, 602—611. https://doi.org/10.
1093/sysbio/syz081

Caetano, D.S., O’Meara, B.C. & Beaulieu, J.M. (2018) Hidden state models
improve state-dependent diversification approaches, including biogeo-
graphical models. Evolution, 72, 2308-2324. https://doi.org/10.1111/
evo.13602

Cooper, N. & Purvis, A. (2010) Body size evolution in mammals: complexity
in tempo and mode. The American Naturalist, 175, 727-738. https://doi.
org/10.1086/652466

Cooper, N., Thomas, G.H. & FitzJohn, R.G. (2016) Shedding light on the
‘dark side’ of phylogenetic comparative methods. Methods in Ecol-
ogy and Evolution, 7, 693-699. https://doi.org/10.1111/2041-210X.
12533

Donoghue, M.J. & Sanderson, M.J. (2015) Confluence, synnovation, and
depauperons in plant diversification. New Phytologist, 207, 260-274.
https://doi.org/10.1111/nph.13367

EUCLID Eucalypts of Australia Edition 4 (2015) Internet based, hosted by
the Identic Pty Ltd, Brisbane at: https://apps.lucidcentral.org/euclid

FitzJohn, R.G. (2010) Quantitative traits and diversification. Systematic biol-
0gy, 59, 619-633. https://doi.org/10.1093/sysbio/syq053

FitzJohn, R.G. (2012) Diversitree: comparative phylogenetic analyses of di-
versification in R. Methods in Ecology and Evolution, 3, 1084-1092.
https://doi.org/10.1111/j.2041-210X.2012.00234.x

EVOLUTION JULY 2022 1431


https://github.com/bomeara/missecomparison
https://doi.org/10.5061/dryad.9cnp5hqm4
https://doi.org/10.5061/dryad.9cnp5hqm4
https://doi.org/10.1016/j.foreco.2004.01.029
https://doi.org/10.1016/j.foreco.2004.01.029
https://doi.org/10.1111/ele.12252
https://doi.org/10.1046/j.1365-3040.2003.01046.x
https://doi.org/10.1111/evo.12614
https://doi.org/10.1093/sysbio/syw022
https://doi.org/10.1002/ajb2.1020
https://rdrr.io/cran/hisse/f/inst/doc/Clade-specific-sampling.pdf
https://rdrr.io/cran/hisse/f/inst/doc/Clade-specific-sampling.pdf
https://doi.org/10.1098/rstb.1998.0206
https://doi.org/10.1111/nph.14697
https://doi.org/10.1371/journal.pone.0233597
https://doi.org/10.1111/2041-210X.13534
https://doi.org/10.32942/osf.io/e2kj8
https://doi.org/10.1093/sysbio/syz081
https://doi.org/10.1093/sysbio/syz081
https://doi.org/10.1111/evo.13602
https://doi.org/10.1111/evo.13602
https://doi.org/10.1086/652466
https://doi.org/10.1086/652466
https://doi.org/10.1111/2041-210X.12533
https://doi.org/10.1111/2041-210X.12533
https://doi.org/10.1111/nph.13367
https://apps.lucidcentral.org/euclid
https://doi.org/10.1093/sysbio/syq053
https://doi.org/10.1111/j.2041-210X.2012.00234.x

T. VASCONCELOS ET AL.

Felsenstein, J. (1985) Phylogenies and the comparative method. The Ameri-
can Naturalist, 125, 1-15. https://doi.org/10.1086/284325

Freckleton, R.P., Phillimore, A.B. & Pagel, M. (2008) Relating traits to di-
versification: a simple test. The American Naturalist, 172, 102-115.
https://doi.org/10.1086/588076

Garland, Jr, T., Harvey, PH. & Ives, A.R. (1992) Procedures for the analy-
sis of comparative data using phylogenetically independent contrasts.
Systematic biology, 41, 18-32.

Goldberg, E.E., Kohn, J.R., Lande, R., Robertson, K.A., Smith, S.A. & Igi¢,
B. (2010) Species selection maintains self-incompatibility. Science,
330, 493-495. https://doi.org/10.1126/science.1194513

Goldberg, E.E. & Igic, B. (2012) Tempo and mode in plant breeding system
evolution. Evolution: International Journal of Organic Evolution, 66,
3701-37009. https://doi.org/10.1111/1.1558-5646.2012.01730.x

Harvey, M.G. & Rabosky, D.L. (2018) Continuous traits and speciation
rates: Alternatives to state-dependent diversification models. Methods
in Ecology and Evolution, 9, 984-993. https://doi.org/10.1111/2041-
210X.12949

Harvey, M.G., Bravo, G.A., Claramunt, S., Cuervo, A.M., Derryberry, G.E.,
Battilana, J. & Derryberry, E.P. (2020) The evolution of a tropical
biodiversity hotspot. Science, 370, 1343—1348. https://doi.org/10.1126/
science.aaz6970

Helmstetter, A.J., Glemin, S., Kifer, J., Zenil-Ferguson, R., Sauquet, H., de
Boer, H., Dagallier, L.M.J., Mazet, N., Reboud, E.L., Couvreur, T.L.P.,
et al (2022) Pulled diversification rates, lineage-through-time plots and
modern macroevolutionary modeling. Systematic Biology, https://doi.
org/10.1093/sysbio/syab083

Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012) The
global diversity of birds in space and time. Nature, 491, 444-448.

Lagomarsino, L.P., Condamine, F.L., Antonelli, A., Mulch, A. & Davis, C.C.
(2016) The abiotic and biotic drivers of rapid diversification in An-
dean bellflowers (Campanulaceae). New Phytologist, 210, 1430-1442.
https://doi.org/10.1111/nph.13920

Losos, J.B. (2011) Seeing the Forest for the Trees: The Limitations of Phylo-
genies in Comparative Biology: (American Society of Naturalists Ad-
dress). The American Naturalist, 177, 709-727. https://doi.org/10.1086/
660020

Louca, S. & Pennell, M.W. (2020) Extant timetrees are consistent with a myr-
iad of diversification histories. Nature, 580, 502-505. https://doi.org/10.
1038/s41586-020-2176-1

Maddison, W.P. (2006) Confounding asymmetries in evolutionary diversifi-
cation and character change. Evolution, 60, 1743—1746. https://doi.org/
10.1111/5.0014-3820.2006.tb00517.x

Maddison, W.P., Midford, PE. & Otto, S.P. (2007) Estimating a binary char-
acter’s effect on speciation and extinction. Systematic biology, 56, 701—
710. https://doi.org/10.1080/10635150701607033

Maddison, W.P. & FitzJohn, R.G. (2015) The unsolved challenge to phyloge-
netic correlation tests for categorical characters. Systematic biology, 64,
127-136. https://doi.org/10.1093/sysbio/syu070

Maliet, O., Hartig, F. & Morlon, H. (2019) A model with many small shifts
for estimating species-specific diversification rates. Nature ecology &
evolution, 3, 1086—1092. https://doi.org/10.1038/s41559-019-0908-0

Maliet, O. & Morlon, H. (2022) Fast and accurate estimation of species-
specific diversification rates using data augmentation. Systematic Biol-
ogy, 71, 353-366. https://doi.org/10.1093/sysbio/syab055

Marshall, C.R. (2017) Five palaeobiological laws are needed to understand
the evolution of the living biota. Nature Ecology & Evolution, 1, 1-6.
https://doi.org/10.1038/s41559-017-0165

Meyer, A.L. & Wiens, J.J. (2018) Estimating diversification rates for higher
taxa: BAMM can give problematic estimates of rates and rate shifts.
Evolution, 72, 39-53. https://doi.org/10.1111/evo.13378

1432 EVOLUTION JULY 2022

Mitchell, J.S. & Rabosky, D.L. (2017) Bayesian model selection with
BAMM: effects of the model prior on the inferred number of di-
versification shifts. Methods in Ecology and Evolution, 8, 37-46.
https://doi.org/10.1111/2041-210X.12626

Mitchell, J.S., Etienne, R.S. & Rabosky, D.L. (2019) Inferring diversification
rate variation from phylogenies with fossils. Systematic Biology, 68,
1-18. https://doi.org/10.1093/sysbio/syy035

Moore, B.R., Hohna, S., May, M.R., Rannala, B. & Huelsenbeck, J.P. (2016)
Critically evaluating the theory and performance of Bayesian analysis
of macroevolutionary mixtures. Proceedings of the National Academy
of Sciences, 113, 9569-9574. https://doi.org/10.1073/pnas.1518659113

Morales-Barbero, J., Gouveia, S.F. & Martinez, P.A. (2021) Historical cli-
matic instability predicts the inverse latitudinal pattern in speciation rate
of modern mammalian biota. Journal of Evolutionary Biology, 34, 339—
351. https://doi.org/10.1111/jeb.13737

Morlon, H., Robin, S. & Hartig, F. (2022) Studying speciation and extinction
dynamics from phylogenies: addressing identifiability issues. Trends in
Ecology & Evolution, https://doi.org/10.1016/j.tree.2022.02.004

Nakov, T., Beaulieu, J.M. & Alverson, A.J. (2019) Diatoms diversify and
turn over faster in freshwater than in marine environments. Evolution,
73,2497-2511. https://doi.org/10.1111/evo.13832

Nevill, P.G., Bossinger, G. & Ades, P.K. (2010) Phylogeography of the
world’s tallest angiosperm, Eucalyptus regnans: evidence for multiple
isolated Quaternary refugia. Journal of Biogeography, 37, 179-192.
https://doi.org/10.1111/j.1365-2699.2009.02193.x

Niirk, N.M., Linder, H.P,, Onstein, R.E., Larcombe, M.J., Hughes, C.E.,
Fernandez, P., et al (2020) Diversification in evolutionary arenas—
Assessment and synthesis. Ecology and Evolution, 10, 6163-6182.
https://doi.org/10.1002/ece3.6313

O’Meara, B.C. & Beaulieu, J.M. (2021) Potential survival of some, but not
all, diversification methods. Available at https://ecoevorxiv.org/wSnvd/.

Petit, R.J. & Hampe, A. (2006) Some evolutionary consequences of being a
tree. Annual Review of Ecology, Evolution, and Systematics, 37, 187—
214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215

Pohlert, T. (2014) Pairwise Multiple Comparison of Mean Ranks Pack-
age (PMCMR). R package, available at https://CRAN.R-project.org/
package=PMCMR.

Pryor, L.D. (1976) The biology of eucalyptus. Edward Arnold, London, UK.

Rabosky, D.L. (2010) Extinction rates should not be estimated from molec-
ular phylogenies. Evolution, 64, 1816—1824. https://doi.org/10.1111/j.
1558-5646.2009.00926.x

Rabosky, D.L. (2016) Challenges in the estimation of extinction from molec-
ular phylogenies: a response to Beaulieu and O’Meara. Evolution, 70,
218-228. https://doi.org/10.1111/evo.12820

Rabosky, D.L., Grundler, M., Anderson, C., Title, P., Shi, J.J., Brown, J.W.,
Huang, H. & Larson, J.G. (2014) BAMM tools: an R package for
the analysis of evolutionary dynamics on phylogenetic trees. Methods
in Ecology and Evolution, 5, 701-707. https://doi.org/10.1111/2041-
210X.12199

Rabosky, D.L. (2014) Automatic detection of key innovations, rate shifts,
and diversity dependence on phylogenetic trees. PloS one, 9, €89543.
https://doi.org/10.1371/journal.pone.0089543

Rabosky, D.L. (2015) No substitute for real data: a cautionary note on the
use of phylogenies from birth—death polytomy resolvers for down-
stream comparative analyses. Evolution, 69, 3207-3216. https://doi.org/
10.1111/evo.12817

Rabosky, D.L. & Goldberg, E.E. (2015) Model inadequacy and mistaken in-
ferences of trait-dependent speciation. Systematic biology, 64, 340-355.
https://doi.org/10.1093/sysbio/syul31

Rabosky, D.L. & Huang, H. (2016) A robust semiparametric test for detecting
trait-dependent diversification. Systematic biology, 65, 181-193.


https://doi.org/10.1086/284325
https://doi.org/10.1086/588076
https://doi.org/10.1126/science.1194513
https://doi.org/10.1111/j.1558-5646.2012.01730.x
https://doi.org/10.1111/2041-210X.12949
https://doi.org/10.1111/2041-210X.12949
https://doi.org/10.1126/science.aaz6970
https://doi.org/10.1126/science.aaz6970
https://doi.org/10.1093/sysbio/syab083
https://doi.org/10.1093/sysbio/syab083
https://doi.org/10.1111/nph.13920
https://doi.org/10.1086/660020
https://doi.org/10.1086/660020
https://doi.org/10.1038/s41586-020-2176-1
https://doi.org/10.1038/s41586-020-2176-1
https://doi.org/10.1111/j.0014-3820.2006.tb00517.x
https://doi.org/10.1111/j.0014-3820.2006.tb00517.x
https://doi.org/10.1080/10635150701607033
https://doi.org/10.1093/sysbio/syu070
https://doi.org/10.1038/s41559-019-0908-0
https://doi.org/10.1093/sysbio/syab055
https://doi.org/10.1038/s41559-017-0165
https://doi.org/10.1111/evo.13378
https://doi.org/10.1111/2041-210X.12626
https://doi.org/10.1093/sysbio/syy035
https://doi.org/10.1073/pnas.1518659113
https://doi.org/10.1111/jeb.13737
https://doi.org/10.1016/j.tree.2022.02.004
https://doi.org/10.1111/evo.13832
https://doi.org/10.1111/j.1365-2699.2009.02193.x
https://doi.org/10.1002/ece3.6313
https://ecoevorxiv.org/w5nvd/
https://doi.org/10.1146/annurev.ecolsys.37.091305.110215
https://CRAN.R-project.org/package=PMCMR
https://CRAN.R-project.org/package=PMCMR
https://doi.org/10.1111/j.1558-5646.2009.00926.x
https://doi.org/10.1111/j.1558-5646.2009.00926.x
https://doi.org/10.1111/evo.12820
https://doi.org/10.1111/2041-210X.12199
https://doi.org/10.1111/2041-210X.12199
https://doi.org/10.1371/journal.pone.0089543
https://doi.org/10.1111/evo.12817
https://doi.org/10.1111/evo.12817
https://doi.org/10.1093/sysbio/syu131

A FLEXIBLE METHOD FOR TIP RATE ESTIMATION

Rabosky, D.L., Mitchell, J.S. & Chang, J. (2017) Is BAMM flawed? The-
oretical and practical concerns in the analysis of multirate diversifica-
tion models. Systematic biology, 66, 477-498. https://doi.org/10.1093/
sysbio/syx037

Redding, D.W. & Mooers, A.@. (2006) Incorporating evolutionary measures
into conservation prioritization. Conservation Biology, 20, 1670-1678.
https://doi.org/10.1111/j.1523-1739.2006.00555.x

Ree, R.H. & Sanmartin, I. (2018) Conceptual and statistical problems with
the DEC+ J model of founder-event speciation and its comparison
with DEC via model selection. Journal of Biogeography, 45, 741-749.
https://doi.org/10.1111/jbi.13173

Reich, P.B. (2014) The worldwide ‘fast-slow’ plant economics spectrum: a
traits manifesto. Journal of Ecology, 102, 275-301. https://doi.org/10.
1111/1365-2745.1221

Reginato, M., Vasconcelos, T.N., Kriebel, R. & Simoes, A.O. (2020) Is dis-
persal mode a driver of diversification and geographical distribution
in the tropical plant family Melastomataceae? Molecular phylogenet-
ics and evolution, 148, 106815. https://doi.org/10.1016/j.ympev.2020.
106815

Russo, S.E., Brown, P., Tan, S. & Davies, S.J. (2008) Interspecific demo-
graphic trade-offs and soil-related habitat associations of tree species
along resource gradients. Journal of Ecology, 96, 192-203. https://doi.
org/10.1111/j.1365-2745.2007.01330.x

Simberloff, D.S. (1974) Equilibrium theory of island biogeography and
ecology. Annual review of Ecology and Systematics, 5, 161-182.
https://doi.org/10.1146/annurev.es.05.110174.001113

Smith, S.A. & Brown, J.W. (2018) Constructing a broadly inclusive seed plant
phylogeny. American journal of botany, 105, 302-314. https://doi.org/
10.1002/2ajb2.1019

Stebbins, G.L. (1974) Flowering plants: evolution above the species level.
Harvard University Press, Cambridge, MA.

Steel, M. & Mooers, A. (2010) The expected length of pendant and inte-
rior edges of a Yule tree. Applied Mathematics Letters, 23, 1315-1319.
https://doi.org/10.1016/j.am1.2010.06.021

Suissa, J.S., Sundue, M.A. & Testo, W.L. (2021) Mountains, climate and
niche heterogeneity explain global patterns of fern diversity. Journal
of Biogeography, 48, 1296—1308. https://doi.org/10.1111/jbi.14076

Sun, M., Folk, R.A., Gitzendanner, M.A., Soltis, P.S., Chen, Z., Soltis,
D.E. & Guralnick, R.P. (2020) Recent accelerated diversification in

rosids occurred outside the tropics. Nature Communications, 11, 1-12.
https://doi.org/10.1038/s41467-020-17116-5

Title, P.O. & Rabosky, D.L. (2019) Tip rates, phylogenies and diversifica-
tion: what are we estimating, and how good are the estimates? Methods
in Ecology and Evolution, 10, 821-834. https://doi.org/10.1111/2041-
210X.13153

Thornhill, A.H., Crisp, M.D., Kiilheim, C., Lam, K.E., Nelson, L.A., Yeates,
D.K. & Miller, J.T. (2019) A dated molecular perspective of eucalypt
taxonomy, evolution and diversification. Australian Systematic Botany,
32,29-48. https://doi.org/10.1071/SB18015

Uyeda, J.C., Zenil-Ferguson, R. & Pennell, M.W. (2018) Rethinking phy-
logenetic comparative methods. Systematic Biology, 67, 1091-1109.
https://doi.org/10.1093/sysbio/syy03 1

Vasconcelos, T.N., Chartier, M., Prenner, G., Martins, A.C., Schonenberger,
J., Wingler, A. & Lucas, E. (2019) Floral uniformity through evolu-
tionary time in a species-rich tree lineage. New Phytologist, 221, 1597—
1608. https://doi.org/10.1111/nph.15453

Vasconcelos, T., O’Meara, B.C. & Beaulieu, J.M. (2022) Retiring “cradles”
and “museums” of biodiversity. The American Naturalist, 199, 194—
205. https://doi.org/10.1086/717412

Vrba, E.S. (1993) Turnover pulses, the Red Queen, and related topics.
American Journal of Science, 293, 418.

Westoby, M. (1998) A leaf height seed (LHS) plant ecology strategy
scheme. Plant and soil, 199, 213-227. https://doi.org/10.1023/A:
1004327224729

Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and
species richness. Trends in ecology & evolution, 19, 639—644. https:
//doi.org/10.1016/j.tree.2004.09.011

Wilson, P.G., O’brien, M.M., Heslewood, M.M. & Quinn, C.J. (2005) Re-
lationships within Myrtaceae sensu lato based on a mat K phylogeny.
Plant Systematics and Evolution, 251, 3—19 https://doi.org/10.1007/
s00606-004-0162-y

Wright, L.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers,
F, et al (2004) The worldwide leaf economics spectrum. Nature, 428,
821-827. https://doi.org/10.1038/nature02403

Associate Editor: Dr. Daniel Rabosky
Handling Editor: Dr. Andrew McAdam

EVOLUTION JULY 2022 1433


https://doi.org/10.1093/sysbio/syx037
https://doi.org/10.1093/sysbio/syx037
https://doi.org/10.1111/j.1523-1739.2006.00555.x
https://doi.org/10.1111/jbi.13173
https://doi.org/10.1111/1365-2745.1221
https://doi.org/10.1111/1365-2745.1221
https://doi.org/10.1016/j.ympev.2020.106815
https://doi.org/10.1016/j.ympev.2020.106815
https://doi.org/10.1111/j.1365-2745.2007.01330.x
https://doi.org/10.1111/j.1365-2745.2007.01330.x
https://doi.org/10.1146/annurev.es.05.110174.001113
https://doi.org/10.1002/ajb2.1019
https://doi.org/10.1002/ajb2.1019
https://doi.org/10.1016/j.aml.2010.06.021
https://doi.org/10.1111/jbi.14076
https://doi.org/10.1038/s41467-020-17116-5
https://doi.org/10.1111/2041-210X.13153
https://doi.org/10.1111/2041-210X.13153
https://doi.org/10.1071/SB18015
https://doi.org/10.1093/sysbio/syy031
https://doi.org/10.1111/nph.15453
https://doi.org/10.1086/717412
https://doi.org/10.1023/A:1004327224729
https://doi.org/10.1023/A:1004327224729
https://doi.org/10.1016/j.tree.2004.09.011
https://doi.org/10.1016/j.tree.2004.09.011
https://doi.org/10.1007/s00606-004-0162-y
https://doi.org/10.1007/s00606-004-0162-y
https://doi.org/10.1038/nature02403

