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We demonstrate that SO(N.) gauge theories with matter fields in the vector representation confine due to
monopole condensation and break the SU(N) chiral symmetry to SO(N) via the quark bilinear. Our
results are obtained by perturbing the A" = 1 supersymmetric theory with anomaly-mediated supersym-

metry breaking.
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Introduction.—Ever since quarks were proposed as
fundamental constituents of the proton, neutron, and
numerous hadrons by Gell-Mann and Ne’eman [1,2], it
has been a mystery why they cannot be observed directly in
experiments. At the same time, protons and neutrons bind
in atomic nuclei due to the exchange of light pions
predicted by Yukawa [3]. The binding of nuclei, and
correspondingly the entire world of chemistry, hinges on
pions being much lighter than protons, despite the fact that
they are made of the same quarks. The first mystery was
explained by postulating confinement of quarks by con-
densation of magnetic monopoles via the dual Meillner
effect proposed by Mandelstam [4] and 't Hooft [S]. The
second mystery was explained by postulating chiral sym-
metry breaking whose Nambu-Goldstone bosons are the
light pions proposed by Nambu and Jona-Lasinio [6,7]. In
either case, however, it has been a challenge to derive these
properties from the fundamental theory of strong inter-
actions, quantum chromodynamics (QCD).

It has been proposed recently [8] that one can study the
dynamics of gauge theories using the supersymmetric
version of the theory perturbed in a specific way called
anomaly-mediated supersymmetry breaking (AMSB)
[9,10] (see also [11,12] for earlier work containing some
important aspects of AMSB). For other analyses of non-
supersymmetric gauge theories via controlled supersym-
metry breaking, see, for example, [13-26], as well as the
more recent [27]. When AMSB was applied to SU(N,.)
QCD, it was possible to derive chiral symmetry breaking
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for 1 < Np < %NC, while the theory flows to a conformal
fixed point for 3N, < Ny <3N,. Yet the SU(N,) theory
does not confine in the presence of quarks in the funda-
mental representation because any color charges can be
screened.

The SO(N,.) theory with fermions in the vector repre-
sentation is interesting because it does truly confine, since
the spinor representation transforming under the Z, center
cannot be screened. Therefore, we can hope to see the
interplay between the condensation of monopoles on one
hand, and fermion bilinears on the other hand. It turns out
that we should focus on Ny < N,—2 where we can
demonstrate monopole condensation.

Nonsupersymmetric confinement has also been shown in
QCD(adj) on R3 x S' via magnetic bion condensation,
where only the discrete chiral symmetry is broken [28,29].

In this Letter, we sketch the essence of the analysis,
while details are presented in a companion paper [30], that
also contains a discussion of the cases where Ny > N, — 2.

Anomaly mediation.—Anomaly mediation of supersym-
metry breaking (AMSB) is parametrized by a single
number m that explicitly breaks supersymmetry in two
different ways. One is the tree-level contribution based on
the superpotential

Viee = M ((pi %jv - 3W> +c.c. (1)

Note that Eq. (1) also breaks the U(1), symmetry explic-
itly. When the superpotential does not include dimensionful
parameters, this expression identically vanishes. In this
case, there are the loop-level supersymmetry breaking
effects from the superconformal anomaly [31]. In this
Letter, we do not need the loop-level effects that can
be neglected in the presence of the tree-level effects (1).

Published by the American Physical Society



PHYSICAL REVIEW LETTERS 127, 251602 (2021)

The loop-level effects will be discussed in the companion
paper [30] for special cases when they are needed.

Np =N, —2—We consider an SO(N,.) gauge theory
with Ny = N, — 2 flavors Q'. In the supersymmetric limit,
the theory is in an Abelian Coulomb phase [32]. The D-flat
directions are parametrized by the diagonal entries of the
mesons M/ = Q'Q/. As M" are neutral under U(1)g, no
superpotential can be generated, and there is a quantum
moduli space. At a generic point M/ on the meson moduli
space, the gauge symmetry is Higgsed to a U(1), and so the
theory only has a Coulomb branch. The effective gauge
coupling 7 = (6/2x) + (i87/g?) of the theory is given on
the Coulomb branch as a function of the SU(N) invariant
U = det M only. There are singularities at the two points
U=U,=16A*"r and U = 0.

Around the singular point U = U,, the relevant light
degrees of freedom are the monopoles E* with magnetic
charges £1, which transform under the UV global sym-
metry SU(Ny) x U(1), as E*(1),. Since detM = U # 0,
the global symmetry at this point is broken to
SO(N) x U(1)g. The theory has a dynamically generated
superpotential about U = U, of

Wion = f(U - UI)E+E_’ (2)

where f(f) =+ --- is a holomorphic function in the
neighborhood of ¢t = 0. In practice, only the leading order
in f matters for the stabilization of the minimum. Using
canonically normalized fields we have

U -
Woon = A(m - 16) ETE-, (3)

where U = detM and M = M/A, E* = E*/\/A are the
canonically normalized meson and monopoles, respec-
tively. Exactly at U = U, = 16ANr, ’t Hooft anomaly
matching is saturated by E*, MUY, and the photinos
W, ~ W,0N2, whose charges are given in Table L. It
is easy to verify that the U(1)ggravity?, U(1)3, and
U(1)xSO(N)? anomalies all match. Therefore, we know
the degrees of freedom in the IR and their K&hler potentials
are regular at this singularity.

TABLEIL Degrees of freedom in the SO(N,.) theory with N =
N, —2near U = U,. The unbroken global symmetry with M"
5 is SO(N5) x U(1)p.

SO(NC) SU(NF) U(])R U(l)mag SO(NF)
Q! O | 0 O
A H 1 1 1
M 1 11 0 Ex 1+[]
E* 1 1 +1 1
Amag 1 1 0

AMSB generates a tree-level contribution to the scalar
potential from (1), producing the global minimum at
U = U,. In particular, the scalar potential along MY =
M& is given locally as

o (MM 2k L B2
Voo, = (5) - 16] (P + 1EP)
1 MN\N2
+mNF(X> |[EYE™ + Vause.  (4)

Note the (kNg)~! factor in the second line, which comes
from the Kihler term kN MM for M, where k is an
unknown O(1) normalization factor. The tree-level AMSB
contribution is given by (1), i.e.,

Np o
Vamss = mA[16 +(Np—1) <%> ]E+E— +ce (5)

This potential has a minimum at

M = 16'/Nr A, |ET||E~| = 16/NI)=1kmA,
Vinin = —162/Ne N pkm? A% (6)

Since M = M§% in this minimum, the global symmetry is
broken spontaneously to SO(N ), while U(1) is explicitly
broken by AMSB, and there are no 't Hooft anomalies
to match.

The most remarkable feature of the minimum (6) is the
condensation of monopoles E*, which gives an area law to
nontrivial Wilson loop operators, indicating confinement
[5,33,34]. This phenomenon is well known in the context of
the breaking of A/ = 2 Seiberg-Witten theory to ' = 1 by
introducing a tree-level superpotential for the matter field
[35]. In [19,20], monopole condensation was shown in a
nonsupersymmetric theory by introducing soft supersym-
metry (SUSY) breaking on top of the superpotential term
for the Seiberg-Witten model. Here, monopole condensa-
tion and SUSY breaking emerge together as a result of
AMSB. Furthermore, since the global SU(N ) symmetry is
broken to SO(Ny), this is an example of confinement with
chiral symmetry breaking in a nonsupersymmetric theory.

In the large m limit where all scalar superpartners
decouple, we can connect the chiral symmetry breaking
observed here to the familiar one due to fermion bilinears.
To see this, note that in the large m limit the fermion
bilinears are identified with the F component of the meson
chiral superfield:

(wiy;) = Fy, = 16A2Mi‘le+E‘ x 5,~jkmA2 # 0. (7)
In other words, our analysis demonstrates the condensation

of fermion bilinears in a nonsupersymmetric theory, in
addition to the monopole condensate.
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Around the singular point U =0 the relevant light
degrees of freedom are the dyons ¢i* with magnetic charge
41, which transform under the UV global symmetry
SU(Nz) x U(1), as ¢ (0J),. These have a dynamically
generated superpotential about U = 0 of

1 .
Wdyon = ;f(t)MUQi qu (8)

where y is an effective mass scale, t = UA*~?Ne, and f(¢) is
a holomorphic function in the neighborhood of =0,
normalized so that f(0) = 1. However, the scale u can be
absorbed into the normalization of the meson field M =
M/u and the theory at this point has no dimensionful
parameters. Therefore the AMSB is loop suppressed, and
hence so is the vacuum energy. Consequently, the local
AMSB minimum near this singularity is not the global
minimum.

Monopole condensation for Np < N.—2 via mass
deformations.—In the above discussion of the theory with
Np = N, —2, we explicitly saw monopole condensation in
the nonsupersymmetric vacuum of the theory. Here, we
wish to study the cases with fewer flavors, by treating the
latter as the Np = N, — 2 deformed by mass terms u, with
1> A. In this way, we will be able to interpret the theories
with fewer flavors as also corresponding to monopole
condensation all the way down to the pure SO(N,.) Yang-
Mills case. On the other hand, we can also study the same
theory with the Affleck-Dine-Seiberg (ADS) superpotential
perturbed by AMSB. They must agree if we believe in the
holomorphy argument that x4, m, and A can be varied
without a phase transition.

We begin by considering the N = N, — 2 theory in the
supersymmetric limit, with just one mass term for the last
flavor,

det M U
W:A<ANF —16>E+E +§,uAMNFNF. (9)

The equation of motion for MY+Nr gives

1 uAN#

E+E_ —_ ===
2det M’

(10)

where M’ is the matrix of the remaining mesons.
On the other hand, the extra flavor can be integrated out
first to give the ADS superpotential

N =Np=2  (16APNe=Np=0N\ I/ (Ne=N;=2)
Waps = ———& k _ (11
ADS 5 @ < Totil > (11)
where N, =Np—1=N,-3, and APNNr=5 =

uA3NNr=6 is the strong scale of the theory and
w = >/WNe=N=2) with k=0,1,...,N, — N' — 3. Since
N} = N,.—3, there is another branch on which the

superpotential vanishes; we have checked that this branch
does not produce the global minimum when turning on
AMSB. The SUSY theory runs away and does not have
a ground state. Turning on AMSB stabilizes the run-
away behavior of the superpotential at a large amplitude
where the Kihler potential is canonical for ¢ > A with
M = @25, The tree-level AMSB is

Vamss = —mA”

3N.—N}.—6 (16/\2’%) 1/(Ne=Np=2)
+c.c.,

2 o
(12)

which together with the scalar potential derived from the
superpotential (11) gives a minimum

"\ (No=Np=2)/[2(N.~2
o= 22/(N,-2) o A ( )/ [2( )]A’,
Fm
NC —_ 2 A/ (NC_N;"_z)/(NL‘_2>
Vo = —24/Ne=2) o < N, Z) m>A",
N
(13)

with fN;r = [(NL +N;" _2)/(3NL _N;F _6>]

In Fig. 1 we show the minimum of the mass-deformed
theory (9) in the presence of AMSB. As can be seen in the
plot, the vacuum expectation value (VEV) of the first N. —
3 flavors interpolates between the minimum (6) for g = 0,

0.18
Ne=13, Np=N,2 ‘

0.16| mass for last flavor % i=50A

0.14
iO.lQ
= \

0.10 a

0.08

0.06| <=

1.2 1.4 1.6 1.8 2.0 2.2 24
M;/A

FIG. 1. Location of the minimum in the theory with AMSB and

Np =N, -2, deformed by a mass term §uM"rNr for the last
flavor. E is the VEV of the condensed monopoles, while M, is the
common VEV of the first N, — 3 flavors. The different curves are
labeled by the value of m/A. The curves start at the N, —2
minimum (6) for y = 0. The VEV of M; initially decreases by a
very small amount but then increases as u crosses m. As
u/A — oo, the minimum goes over to the one given by
Eq. (13) with N, = N, — 3, while the VEV for the monopoles
E persists. The dashed line for 4 = 50 A is the relation (10). Note
that the end points are a tiny bit off the dashed line as a result of
the interpolating Kéhler potential (14). We have chosen N, = 13
for this plot.
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TABLE II

Summary of the IR behavior of SO(N,) theories with N fundamentals with AMSB. ySB stands for

chiral symmetry breaking. For N, = N. — 1 and N, two branches appear along the flat direction of the maximum
rank of the meson M%, yet the AMSB chooses one over the other, resulting in the ySB.

Range SUSY +AMSB
Np=1 Runaway Confinement

1 <Np<N,-4 Runaway Confinement + ySB
Np=N.—-4 2 branches Confinement + ySB
Np=N.-3 2 branches Confinement + ySB
Np=N,-2 Abelian Coulomb Confinement + ySB
Np=N,-1 Free magnetic, 2 branches Confinement + ySB
Nr =N, Free magnetic, 2 branches Confinement + ySB
N.+1<Np<3(N.-2) Free magnetic Confinement + ySB
3(N,=2) <Np <3(N,.-2) CFT CFT

3(N.—2) < Ng IR free Runaway

and the ADS + AMSB minimum (13) with N, = N, —3
and A - A’ in the large u limit. We can see that the
monopole condensate persists in the large y limit.

To correctly reproduce the ADS + AMSB minimum,
we had to interpolate the Kéhler potential between the
neighborhood of detM ~ U 1, Where it is canonical in M,
to large det M, where the Kihler potential is canonical

in ¢ ~VMA. More specifically, we used the following
interpolating Kéhler potential in the numerical study:

MMt

K AT

interp. — A1 + (14)

Interestingly, for 4 < m, the UV theory itself is unstable,
and has a runaway at EYE~ =0 and M; — co. This is a
feature of the mass term in (9) in the presence of AMSB,
and is unrelated to the dynamics of the gauge theory. Since
this does not affect our analysis, we follow the local
minimum which is continuously connected to the global
minimum for g > m. This accounts for the small “U turn”
of the curves in Fig. 1 between the red points (1 = 0) and
the blue points (4 = m). Note that our argument regarding
monopole condensation in the large u limit is completely
free of this subtlety.

We explicitly checked that the same conclusions hold
when integrating out more than one flavor, such that
0 <N <N.-2. Similarly to the N =N.—-3 case,
for N = N, — 4 we have another branch with vanishing
superpotential, which does not produce the global mini-
mum in the presence of AMSB. For all N’ in the range
0 <Np<N.-2, we find that monopole condensation
persists in the AMSB global minimum. Since in the y — oo
limit, all of the extra flavors effectively decouple, this is a
demonstration of monopole condensation for the entire
range 0 < Np < N_.—-2.

Larger Np.—For N, =2 < Np <3 (N, —2), the SUSY
limit has the IR description in terms of the free mag-
netic SO(Ny — N, + 4) theory with magnetic quarks and

mesons. With AMSB, the global minimum is obtained
when the meson matrix has full rank and the magnetic
quarks are integrated out, similar to the case of SU(N,)
QCD [8]. The low-energy limit is a pure SO(Np — N, + 4)
SUSY Yang-Mills with the gaugino condensate, which is
known to confine. With AMSB, the fermion bilinear also
acquires a VEV, breaking the SU(Ny) global symmetry
to SO(Ng).

On the other hand for %NC < Np <3N, the SUSY
theory flows to conformal fixed point. AMSB effects
disappear by a power law towards the fixed point and
the theory recovers supersymmetry.

All these phases are summarized in Table II, which are
discussed in much more detail in the companion paper [30].

Conclusions.—We studied the dynamics of the SO(N.)
gauge theory with fermions in the vector representation
using its supersymmetric version perturbed by anomaly
mediated supersymmetry breaking. We obtained the
exact global minimum and demonstrated that the magnetic
monopole and fermion bilinear condense for Np <
N. — 2, leading to both confinement and chiral symmetry
breaking. While we cannot exclude the possibility of a
phase transition as m crosses the dynamical scale, there are
strong reasons to believe that no such transition takes place.
Supersymmetry breaking happens via a single holomorphic
parameter m, which may prevent a phase transition if
singularities in the complex m plane are to be isolated. This
is further supported by the consistency of the above mass
deformations. However, a proof excluding a possible phase
transition would be valuable. To the best of our knowledge,
this is the first analytic demonstration of both confinement
and continuous chiral symmetry breaking in nonsupersym-
metric gauge theories.
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