
parGeMSLR: A Parallel Multilevel Schur Complement Low-Rank Preconditioning and

Solution Package for General Sparse Matrices

Tianshi Xua,∗, Vassilis Kalantzisb, Ruipeng Lic, Yuanzhe Xid, Geoffrey Dillone, Yousef Saada

aDepartment of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
bThomas J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598

cCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551
dDepartment of Mathematics, Emory University, Atlanta, GA 30322

eDepartment of Mathematics, University of South Carolina, Columbia, SC 29208

Abstract

We describe the “parallel Generalized Multilevel Schur complement Low-Rank preconditioner (parGeMSLR)”, a C++ software

library for the solution of (non-)Hermitian systems of linear algebraic equations via preconditioned Krylov subspace methods in

distributed memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain de-

composition, where the adjacency graph associated with a symmetrized coefficient matrix is partitioned recursively into several

non-overlapping partitions via a p-way vertex separator. parGeMSLR offers several approaches to build a Schur complement ap-

proximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction

term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel

partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can

solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with

in-node access to one or more CPUs/GPUs. The parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a

few model problems arising from discretizations of 3D Partial Differential Equations.

Keywords: Schur complement, low-rank correction, distributed memory preconditioner, sparse non-Hermitian linear systems,

Graphics Processing Units

1. Introduction

This paper presents a distributed memory library for the it-

erative solution of systems of linear algebraic equations of the

form

Ax = b, (1)

where the matrix A ∈ Cn×n is large, sparse, and (non-)Hermitian.

Problems of this form typically originate from the discretiza-

tion of a Partial Differential Equation in 2D or 3D domains.

Existing methods to solve problems such as the one in (1) are

generally divided into two main classes: direct solvers, and it-

erative solvers. For large, 3D problems, direct methods can be

impractical due to the large computational and memory require-

ments. On the other hand, iterative approaches solve (1) by a

preconditioned Krylov subspace iterative methods [1, 2], e.g.,

preconditioned Conjugate Gradient [1], if A is Hermitian and

positive-definite, or GMRES [3] if A is non-Hermitian. The

role of the preconditioner is to cluster the eigenvalues in an ef-

fort to accelerate the convergence of Krylov subspace method.

For example, an efficient right preconditioner M transforms (1)

∗The work of the first and the last author was supported by the National Sci-

ence Foundation (NSF) grant DMS-1912048. The work of the third author was

supported by the NSF grant OAC-2003720. This work was performed under the

auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-830724)

into the preconditioned system AM−1(Mx) = b, where M−1 is

an easy-to-apply operator such that the spectrum of AM−1 is in-

cluded in a small bounded region, e.g., a disk or an ellipse, that

does not contain the origin. An additional requirement is that

the setup and application of the operator M−1 should be easily

parallelizable.

Similarly to Krylov subspace methods, algebraic multigrid

(AMG) methods are another widely-used class of iterative solvers

[4]. AMG uses the idea of interpolation and restriction to build

multilevel frameworks recursively in order to eliminate the smooth

components in error efficiently. AMG is provably optimal for

Poisson-like problems on regular meshes where the number of

iterations to achieve convergence almost stays constant as the

problem size increases. This property leads to appealing weak

scaling results of AMG in parallel computing [5, 6, 7]. How-

ever, AMG can fail when solving indefinite problems or deal-

ing with irregular meshes. It is worth mentioning that AMG

can also be used as a preconditioner in the context of Krylov

subspace methods.

For general sparse linear systems, a well-known class of

general-purpose preconditioners is that of Incomplete LU (ILU)

factorization preconditioners [8, 9, 1]. Here, the matrix A is

approximately factored as A ≈ LU where L is lower triangu-

lar and U is upper triangular, and the preconditioner is defined

as M = LU. Applying M−1 then consists of two triangular

Preprint submitted to Elsevier May 4, 2022

solves since M−1 = U−1L−1. ILU methods can be applied to

a greater selection of problems than AMG, including indefi-

nite problems such as discretized Helmholtz equations [10, 11],

and their robustness can be improved by modified/shifted ILU

strategies [12, 13, 14]. On the other hand, the scalability of

ILU preconditioned Krylov subspace methods is not as good

as those of AMG. In particular, even for Poisson-like problems

the number of iterations to achieve convergence with ILU pre-

conditioned Krylov subspace methods will still increase as the

size of matrices increases. In addition, the sequential nature

of ILU-based preconditioners further limits their applications

to large-scale problems, especially on distributed memory sys-

tems. Thus, most recent developments have been focused on

improving their parallel efficiency [15, 16, 17].

The parallel efficiency of ILU-based preconditioners can be

enhanced by domain decomposition (DD), where the original

problem is decomposed into several subdomains which corre-

spond to different blocks of rows of the coefficient matrix A.

The most basic DD-based ILU approach is the block-Jacobi

ILU preconditioner, where a local ILU is performed on each lo-

cal submatrix. Since this method ignores all of the off-diagonal

matrices corresponding to inter-domain couplings, its conver-

gence rate tends to become slower as the number of subdomains

increases. Several strategies have been proposed to handle the

inter-domain couplings in order to improve the convergence

rate. Restricted Additive Schwarz (RAS) methods expand the

local matrix by a certain level to gain a faster convergence rate

at the cost of losing some memory scalability [18]. Global fac-

torization ILU methods factorize local rows corresponding to

interior unknowns first, after which a global factorization of the

couplings matrix is applied based on some graph algorithms

[19, 20]. Another strategy is based on the low-rank approxima-

tion techniques [21]. These methods use partial ILU techniques

with dropping [22, 23], incomplete triangular solve [24], and

low-rank approximation [25] to form the Schur complement

system and can be generalized into multilevel ILU approaches

[22, 23, 25].

Other available preconditioning strategies include the (fac-

torized) sparse approximate inverse preconditioners [26, 27, 28,

29, 30], polynomial preconditioners [31], and rank-structured

preconditioners [32, 33, 34, 35]; see also [36] for a distributed

memory hierarchical solver. Some of the these techniques can

be further compounded with AMG, as “smoothers”, or ILU-

based preconditioners. For example, a combination of SLR [37]

and polynomial preconditioning is discussed in [31].

This paper describes the implementation of a parallel pre-

conditioner, termed1 parGeMSLR, for the iterative solution of

general systems of linear algebraic equations in distributed mem-

ory environments. parGeMSLR2 is written in C++, and com-

munication among different processor groups is achieved by

means of the Message Passing Interface standard (MPI). The

numerical approach followed in parGeMSLR is based on the

1The abbreviation of the library is derived by the complete name “parallel

Generalized multilevel Schur complement Low-Rank preconditioner”
2The source code can be found in https://github.com/Hitenze/

pargemslr

Generalized Multilevel Schur complement Low-Rank (GeM-

SLR) algorithm described in [25]. GeMSLR applies a mul-

tilevel partitioning of the algebraic domain, and the variables

associated with each level are divided into either interior or in-

terface variables. The multilevel structure is built by apply-

ing a p-way graph partitioner to partition the induced subgraph

associated with the interface variables of the preceding level.

Once the multilevel partitioning is completed, GeMSLR cre-

ates a separate Schur complement approximate inverse precon-

ditioner at each level. Each preconditioner is the sum of two

terms, with the first term being an approximate inverse of the

interface coupling matrix, and the second term being a low-

rank correction which aims at bridging the gap between the first

term and the inverse of the Schur complement matrix associated

with that level. Below, we summarize the main features of the

parGeMSLR library:

1. Scalability. parGeMSLR extends the capabilities of low-

rank-based preconditioners, such as GeMSLR, by recur-

sively partitioning the algebraic domain into levels which

have the same number of partitions (or an integer multi-

ple) as the number of MPI processes. Thus, no MPI pro-

cess is left idle as the level counter increases. In turn, this

leads to enhanced scalability when running on distributed

memory environments.

2. Robustness and complex arithmetic. In contrast to ILU-

based preconditioners, the numerical method implemented

in parGeMSLR is less sensitive to indefiniteness and can

be updated on-the-fly without discarding previous com-

putational efforts. Additionally, parGeMSLR supports com-

plex arithmetic and thus can be utilized to solve com-

plex linear systems such as those originating from the

discretization of Helmholtz equations.

3. Hybrid hardware acceleration. GPU acceleration is

now supported in several iterative solver libraries to speed-

up the application of preconditioners such as AMG or

ILU, e.g., hypre [38], PARALUTION [39], and HIFLOW

[40]. Similarly, parGeMSLR can take advantage of GPU

accelerator hardware to offload any computation the user

provides an interface for. The current release of parGeMSLR

provides a CUDA interface to use one or more GPUs dur-

ing the application of the (dense) low-rank correction part

of the GeMSLR preconditioner.

This paper is organized as follows. Section 2 discusses low-

rank correction preconditioners and provides an algorithmic de-

scription of parGeMSLR. Section 3 provides details on the mul-

tilevel reordering used by parGeMSLR. Section 4 presents in-

depth discussion and details related to the implementation and

parallel performance aspects of parGeMSLR. Section 5 demon-

strates the performance of parGeMSLR on distributed memory

environments. Finally, concluding remarks are made in Sec-

tion 6.

2

2. Schur complement approximate inverse preconditioners

via low-rank corrections

This section discussed the main idea behind (multilevel)

Schur complement preconditioners enhanced by low-rank cor-

rections, e.g., see [41, 37, 25, 42].

2.1. The Schur complement viewpoint

Let the linear system Ax = b be permuted as

A0x = PAP(PT x) = Pb, (2)

where P is an n × n permutation matrix such that

A0 =

[
B F

E C

]
=



B(1) F(1)

B(2) F(2)

. . .
...

B(p) F(p)

E(1) E(2) · · · E(p) C



,

and the matrices B(i), F(i), and E(i) are of size di×di, di× si, and

si×di, respectively. The matrix C is of size s× s, and the matrix

partitioning satisfies d+ s =
j=p∑
j=1

d j+ s j = n. Such matrix permu-

tations can be computed by partitioning the adjacency graph of

the matrix |A| + |AT | into p ∈ N non-overlapping partitions and

reordering the unknowns/equations such that the variables asso-

ciated with the d interior nodes across all partitions are ordered

before the variables associated with the s interface nodes.

Following the above notation, the linear system in (2) can

be written in a block form
[
B F

E C

] [
u

v

]
=

[
f

g

]
, (3)

where u, f ∈ R
d and v, g ∈ R

s. Once the solution in (3) is

computed, the solution x of the original, non-permuted system

of linear algebraic equations Ax = b can be obtained by the in-

verse permutation x = P

[
u

v

]
. Throughout the rest of this section

we focus on the solution of the system in (3).

Following a block-LDU factorization of the matrix A0, the

permuted linear system in (2) can be written as

[
I

EB−1 I

] [
B

S

] [
I B−1F

I

] [
u

v

]
=

[
f

g

]
,

where S = C − EB−1F denotes the Schur complement matrix.

The solution of (3) is then equal to

[
u

v

]
=

[
I −B−1F

I

] [
B−1

S −1

] [
I

−EB−1 I

] [
f

g

]
,

which requires: a) the solution of two linear systems with the

block-diagonal matrix B, and b) the solution of one linear sys-

tem with the the Schur complement matrix S . Note that since

the matrix B is block-diagonal, the associated linear systems are

decoupled into p independent systems of linear algebraic equa-

tions. Assuming a distributed memory computing environment

with p separate processor groups, each system of linear alge-

braic equations can be solved in parallel by means of applying

a direct solver locally in each separate process.

In several real-world applications, e.g., those involving the

discretization of PDEs on three-dimensional domains, solving

the systems of linear algebraic equations with matrices B and S

through a direct solver is generally impractical, primarily due

to the large computational and memory cost associated with

forming and factorizing the Schur complement matrix. An al-

ternative then is to solve the linear systems with matrices B and

S inexactly. For example, the solution of linear systems with

matrix B can be computed approximately by replacing its ex-

act LU factorization with an incomplete threshold LU (ILUT)

[8]. Likewise, the exact Schur complement can be sparsified

by discarding entries below a certain threshold value or located

outside a pre-determined pattern. Linear systems with the spar-

sified Schur complement can be then solved approximately by

obtaining an ILUT or other incomplete factorization [23, 43].

From a linear algebraic perspective, an ILUT of matrix B re-

places the latter by an approximation B̂ that is equal to the

product of the incomplete lower and upper triangular factors.

Similarly, the approximate Schur complement can be written as

Ŝ = C−EB̂−1F. The approximate factorizations of the matrices

B and S can be combined to form an approximate LDU factor-

ization in (2.1) which can be then used as a preconditioner in a

Krylov subspace iterative solver such as GMRES.

2.2. Schur complements and low-rank corrections

One of the main drawbacks associated with incomplete fac-

torizations is that they can not be easily updated if one needs

a more accurate preconditioner. Moreover, their robustness can

be limited when the matrix A is indefinite. For such scenarios,

it has been advocated to add a low-rank correction term to en-

hance the efficiency of the Schur complement preconditioner,

without discarding the previously computed incomplete factor-

izations. The low-rank enhancement implemented in parGeMSLR

follows the GeMSLR multilevel preconditioner [25], a non-

Hermitian extension of [37, 42]. Other approaches based on

low-rank corrections can be found in [41, 44].

The GeMSLR preconditioner expresses the Schur comple-

ment matrix as

S = (I − EB−1FC−1)C = (I −G)C, (4)

where G = EB−1FC−1. Perform a complex Schur decomposi-

tion of G

G = EB−1FC−1 = WRWH , (5)

where the s × s matrix W is unitary and the s × s matrix R is

upper-triangular such that its diagonal entries contain the eigen-

values of matrix G. Plugging (5) in (4) gives

S = (I −WRWH)C = W(I − R)WHC,

from which we can write the inverse of the Schur complement

matrix as (Sherman-Morrison-Woodbury formula):

S −1 = C−1 +C−1W[(I − R)−1 − I]WH . (6)

3

Following (6), a system of linear equations with the Schur com-

plement matrix requires the solution of a system of linear equa-

tions with matrix C, as well as matrix-vector multiplications

and triangular matrix inversions with matrices W/WH and (I −

R)−1, respectively. The product of matrices W[(I −R)−1 − I]WH

is a Schur decomposition by itself, with corresponding eigen-

values γi/(1 − γi), i = 1, . . . , s, where γi denotes the i-th eigen-

value of the matrix G. Therefore, as long as the eigenvalues

of the latter matrix are not located close to one, the matrix

C(S −1 − C−1) = W[(I − R)−1 − I]WH can be approximated by

a low-rank matrix, i.e., S −1 is approximately equal to C−1 plus

some low-rank correction.

The expression in (6) can be transformed into a practical

preconditioner if the matrix W[(I − R)−1 − I]WH is replaced by

a rank-k approximation, where k ∈ N is generally a user-given

parameter. More specifically, let Wk denote the s × k matrix

which holds the leading k Schur vectors of matrix G, and let Rk

denote the k × k leading principal submatrix of matrix R. Then,

a GeMSLR approximate inverse preconditioner is equal to3

M−1 = C−1 +C−1Wk[(I − Rk)−1 − I]WH
k ≈ S −1. (7)

An approximate rank-k Schur decomposition of matrix G

can be computed by the Krylov-Schur iterative algorithm [45].

The main idea is to iteratively expand and truncate an m-step

Arnoldi relation with the matrix G,

GVm = VmHm + βmvm+1eH
m ,

where βm ∈ R, em denotes the first column of the m × m iden-

tity matrix, [Vm, vm+1]H[Vm, vm+1] = I, and Hm is either upper-

Hessenberg (Arnoldi) or quasi-triangular (Schur-Krylov). Ide-

ally, we would like to compute the eigenvectors/Schur vectors

associated with eigenvalues located the closest to one, which,

in the case of positive definite problems, is straightforward.

Nonetheless, for indefinite problems, the eigenvalues located

the closest to one will be interior eigenvalues. Our default strat-

egy is to always compute eigenvectors/Schur vectors associated

with eigenvalues located on the periphery of the spectrum of

matrix G.

2.3. Computations with an incomplete factorization of B

For large-scale problems, computing an exact factorization

of the block-diagonal matrix B can be quite expensive. Instead,

what is typically available is an ILUT factorization LU ≈ B.

Therefore, instead of computing an approximate rank-k Schur

decomposition of matrix G, in practice we approximate a trun-

cated Schur decomposition of the matrix Ĝ = E(U−1L−1)FC−1.

Let then

ĜV̂m = V̂mĤm + βmv̂m+1eH
m ,

where [V̂m, v̂m+1]H[V̂m, v̂m+1] = I, and Ĥm is upper-Hessenberg,

denote an m-length Arnoldi relation obtained with matrix Ĝ.

Moreover, let Ĥm = QT QH denote the complex Schur decom-

position of matrix Ĥm. The low-rank correction term used in

3Note that the k × k leading principal submatrix of (I − R)−1 is equal to

(I − Rk)−1.

GeMSLR is of the form Ŵk[(I− R̂k)−1− I]ŴH
k

, where Tk ∈ R
k×k

denotes the k × k leading principal submatrix of matrix T , and

Ŵk = V̂mQk, where Qk ∈ R
s×k denotes the matrix holding the k

leading Schur vectors of matrix Ĥm.

2.4. Multilevel extensions

For large-scale, high-dimensional problems, the application

of the matrix C−1 by means of an LU factorization of matrix

C can still be expensive; especially when the value of p is too

large, leading to large vertex separators. The idea suggested

in [42, 21], and employed by GeMSLR, is to take advantage

of the purely algebraic formulation developed in the previous

section and apply C−1 inexactly by using the Schur complement

low-rank preconditioner described in the previous section. In

fact, this approach can be repeated more than once, leading to a

multilevel preconditioner.

More specifically, let lev ∈ N denote the number of levels,

and define the sequence of matrices

Al = Pl−1Cl−1Pl−1 =

[
Bl Fl

El Cl

]
, C−1 = A, l = 0, 1, . . . , lev−1,

(8)

where the matrix Bl is block-diagonal with p on-diagonal ma-

trix blocks. The 2 × 2 block matrix partition of each matrix Al

is obtained by partitioning the adjacency graph of the matrix

|Cl−1| + |C
T
l−1
| into p non-overlapping partitions and reordering

the unknowns/equations such that the variables associated with

the interior nodes across all partitions are ordered before the

variables associated with the interface nodes of the adjacency

graph. The matrix Cl−1 is then permuted in-place through the

sl−1 × sl−1 permutation matrix Pl−1, where sl−1 denotes the size

of the matrix Cl−1.

The solution of a system of linear algebraic equations with

matrix Al as the coefficient matrix and
[
f T
l

gT
l

]T
as the right-

hand side, can be computed as

[
ul

vl

]
=

[
I −B−1

l
Fl

I

] [
B−1

l

S −1
l

] [
I

−ElB
−1
l

I

] [
fl
gl

]
,

where S l = Cl − ElB
−1
l

Fl denotes the sl × sl Schur complement

matrix associated with the l-th level, where sl ∈ N denotes the

size of the matrix Cl. Instead of computing the exact LU factor-

izations of matrices Bl and S l, the preconditioner implemented

in the parGeMSLR library substitutes B−1
l
≈ (LlUl)

−1, where

LlUl denotes an ILUT factorization of matrix Bl, and

S −1
l ≈ C−1

l +C−1
l Wl,k[(I − Rl,k)−1 − I]WH

l,k, (9)

where Ŵl,k denotes the matrix which holds the approximate

leading k Schur vectors of the matrix Ĝl = ET
l

U−1
l

L−1
l

FlC
−1
l

,

and R̂l,k denotes the approximation of the k×k leading principal

submatrix of the matrix R̂l that satisfis the Schur decomposition

Ĝl = ŴlR̂lŴ
H
l

. Algorithm 2 summarizes the above discussion

(“setup phase”) in the form of an algorithm. Notice that the re-

cursion stops at level lev − 1, and an ILUT of the matrix Clev−1

is computed explicitly.

4

Algorithm 1 outlines the procedure associated with the ap-

plication of the GeMSLR preconditioner (“solve phase”). At

each level, the preconditioning step consists of a forward and

backward substitution with the ILUT triangular factors of Bl,

followed by the application of the rank-k correction term. When

l = lev − 1, there is no low-rank correction term applied, since

this is the last level. Moreover, when l = 0 (root level), it is

possible to enhance the GeMSLR preconditioner by applying

a few steps of right preconditioned GMRES. Note though that

these iterations are performed with the inexact Schur comple-

ment Ŝ l = Cl − El(U
−1L−1)Fl.

Algorithm 1 Standard Parallel GeMSLR Solve

1: procedure pGeMSLRSolve(b, l) ⊲ Solve for q with

right-hand-side b at level l

2: Apply reordering

[
b1

b2

]
= Pl−1b.

3: Solve z1 = U−1
l

L−1
l

b1.

4: Compute z2 = b2 − Elz1.

5: if l = 0 then

6: Solve Ŝ ly2 = z2 by right preconditioned GMRES.

7: else

8: Compute u2 = Ŵl,k[(I − R̂l,k)−1 − I]ŴH
l,k

z2

9: Call y2 = pGeMSLRSolve(u2 + z2, l + 1).

10: end if

11: Compute y1 = z1 − U−1
l

L−1
l

Fly2.

12: Apply reordering q = Pl−1

[
y1

y2

]
.

13: return x

14: end procedure

Algorithm 2 Parallel GeMSLR Setup

1: procedure pGeMSLRSetup(A, lev) ⊲ Setup the parallel

GeMSLR preconditioner

2: Generate lev-level structure by Algorithm 3.

3: for l from 0 to lev − 1 do

4: Compute ILU factorization LlUl ≈ Bl.

5: Compute matrices Ŵl,k and R̂l,k.

6: If l = lev − 1, compute an ILUT factorization

Llev−1Ulev−1 ≈ Clev−1; exit.

7: end for

8: end procedure

3. Multilevel reordering

This section outlines the multilevel reordering approach im-

plemented in the parGeMSLR library. For simplicity, we focus

on symmetric reorderings obtained by applying a p-way vertex

separator to the adjacency graph associated with the matrices

|Cl−1| + |C
T
l−1
|, l = 0, . . . , lev − 1, C−1 = A, [46, 47, 48, 49]. In

particular, given a graph G = (V, E), a p-way vertex separator

computes a separator S ⊂ V and p non-overlapping (disjoint)

sets V1, . . . ,Vp ⊂ V such that V1 ∪ . . . ∪ Vp ∪ S = V and there

are no edges connecting the sets Vi and V j when i , j.

Algorithm 3 Parallel GeMSLR Reordering

1: procedure pGeMSLRReordering(A, lev)

2: Set C−1 ≡ A.

3: for l from 0 to lev − 1 do

4: Apply p-way partitioning to the graph associated

with the matrix |Cl−1| + |C
T
l−1
|.

5: Set Al = Pl−1Cl−1Pl−1 =

[
Bl Fl

El Cl

]
.

6: end for

7: return

8: end procedure

3.1. Hierarchical Interface Decomposition

The GeMSLR preconditioner relies on a Hierarchical In-

terface Decomposition (HID) [50] to reduce the setup cost of

the ILU and low-rank correction parts associated with the setup

phase of the preconditioner. The main idea behind HID is to

partition the adjacency graph of |A| + |AT | into 2lev partitions

via nested dissection with a recursion depth of lev. The vertex

separators at level l are disjoint with each other since they are

divided by vertex separators from higher levels. When ordered

by levels, the global permutation of matrix A will have a block-

diagonal structure with 2lev−l blocks at level 0 ≤ l ≤ lev − 1, i.e.,

the number of diagonal blocks at each level reduce by a factor

of two.

3.2. Multilevel partitioning through p-way vertex separators

In contrast to previous low-rank correction precondition-

ers such as MSLR and GeMSLR [42, 25], the main goal of

parGeMSLR is to sustain good parallel efficiency, and thus HID

is not appropriate.4 Instead, the default approach in parGeMSLR

is to partition the adjacency graph by a multilevel partitioner

where each level consists of p partitions and a vertex separator.

In contrast to HID, where there is only a vertex separator at each

level, the new idea is to apply the same p-way partitioner recur-

sively on the vertex separator associated with each new level.

The main advantage of this multilevel reordering scheme is that

it leads to a fixed number of p partitions at each level, and thus

load balancing is generally much better than that obtained using

HID.

A high-level description can be found in Algorithm 3. At

the root level (l = 0), the graph associated with the matrix

|A| + |AT |, is partitioned into p subdomains with a p-way ver-

tex separator, resulting to p non-overlapping connected com-

ponents and their associated vertex separator. The multilevel

partitioner then proceeds to the next level, l = 1, and applies

the p-way vertex partitioner to the induced subgraph associated

with the vertex separator at level l = 0. This leads to a second

set of p non-overlapping connected components and a new, al-

beit smaller vertex separator. The p-way vertex partitioner is

then applied again to the induced subgraph associated with the

vertex separator obtained at level l = 1, etc. The procedure con-

tinues until either level lev−1 is reached, or the vertex separator

4Nonetheless, HID is offered in parGeMSLR.

5

the experiments presented below are executed in double7 pre-

cision (64-bit precision following the IEE-754 standard). On

top of distributed memory parallelism, parGeMSLR can take ad-

vantage of shared memory parallelism using either OpenMP

or CUDA. The current version of parGeMSLR uses LAPACK

for sequential matrix decompositions and ParMETIS for dis-

tributed graph partitioning [46]. A detailed documentation of

parGeMSLR can be found in the “DOCS” directory of https:

//github.com/Hitenze/pargemslr. This documentation pro-

vides detailed information on how to compile and run parGeMSLR,

and includes a detailed description of all command-line param-

eters as well as visualization of the source code hierarchy. Sev-

eral test drivers, and a sample input file, are also included.

Throughout the rest of this section, we choose Flexible GM-

RES (FGMRES) with a fixed restart size of fifty as the outer

iterative solver. The motivation for using FGMRES instead of

GMRES is that the application of the preconditioner is subject

to variations due to the application of the inner solver in step 9

of Algorithm 1. The stopping tolerance for the relative residual

norm in FGMRES is set equal to 1.0e − 6. Unless mentioned

otherwise, the solution of the linear system Ax = b will be equal

to the vector of all ones with an initial approximation equal to

zero. The low-rank correction term at each level consists of

approximate Schur vectors such that the corresponding approx-

imate eigenvalues are accurate to two digits of accuracy, and

the restart cycle of thick-restart Arnoldi is equal to 2k.

Our distributed memory experiments focus on the parallel

efficiency of parGeMSLR both when the problem size remains

fixed and np increases (strong scaling) and the problem size in-

creases at the same rate with np. In the case of weak scaling,

the parallel efficiency is equal to T1

Tnp
, where T1 and Tnp

denote

the wall-clock time achieved by the sequential and distributed

memory version (using np MPI processes) of parGeMSLR, re-

spectively. Likewise, in the case of strong scaling, the paral-

lel efficiency is equal to T1

npTnp
. In addition, we also compare

parGeMSLR against: a) the BoomerAMG parallel implemen-

tation of the algebraic multigrid method in hypre, and b) the

two-level SchurILU approach in [23]. The latter preconditioner

uses partial ILU to form an approximation of the Schur com-

plement matrix. The preconditioning step is then performed by

applying GMRES with block-Jacobi preconditioning to solve

the linear system associated with the sparsified Schur comple-

ment. The block-Jacobi preconditioner is applied through one

step of ILUT, and our implementation of SchurILU is based on

the parallel ILU(T) in hypre.

Throughout the rest of this section, we adopt the following

notation:

• np ∈ N: total number of MPI processes.

• fill ∈ R: ratio between the number of non-zero entries of

the preconditioner and that of matrix A.

• p-t ∈ R: preconditioner setup time. This includes the

7We note though that parGeMSLR supports both real and complex arith-

metic, as well as both single and double precision.

time required to compute the ILUT factorizations and

low-rank correction terms in parGeMSLR.

• i-t ∈ R: iteration time of FGMRES.

• its ∈ N: total number of FGMRES iterations.

• k ∈ N: number of low-rank correction terms at each

level.

• F: flag signaling that FGMRES failed to converge within

1000 iterations.

5.1. A Model Problem

This section considers a Finite Difference discretization of

the model problem

−∆u − b · ∇u − cu = f in Ω,

u = 0 on ∂Ω, (10)

where b ∈ R
3. Unless mentioned otherwise, we use a 7-pt

stencil, and set b = 0 and Ω = (0, 1)3.

5.1.1. Weak scaling

Our first set of experiments studies the weak scaling effi-

ciency of parGeMSLR. Since varying the values of lev and k lead

to different convergence rates, we first consider the case where

the number of FGMRES iterations is set equal to thirty, regard-

less of whether convergence was achieved or not. The problem

size on each MPI process is fixed to 503, while the number of

subdomains at each level is set equal to 8 × np. Moreover, the

number of levels is varied as lev ∈ {2, 3}
8 while the rank of the

low-rank correction terms is varied as k ∈ {0, 100, 200}.

Figure 5 plots the weak scaling efficiency of parGeMSLR on

up to np = 1, 024 MPI processes. The achieved efficiency is

similar for both options of lev with a slightly higher efficiency

observed for the case lev = 3. As expected, the highest effi-

ciency achieved during the preconditioner setup phase was for

the case k = 0, since there is no communication overhead stem-

ming from the low-rank correction terms. Nonetheless, even

in this case there is some loss in efficiency due to load imbal-

ancing introduced by the ILUT factorizations at different levels.

Regardless of the value of k, the efficiency of parGeMSLR drops

the most when the number of MPI processes is small, regardless

of the value of lev. This reduction is owed to the relatively large

increase on the size of the local Schur complement versus when

a larger number of MPI processes is utilized. Note though,

although not reported in our experiments, that the weak scal-

ing efficiency is typically much higher when each MPI process

handles exactly one subdomain. Finally, the efficiency of the

reordering phase is rather limited, since the wall-clock time re-

quires to partition the graph associated with the matrix |A|+ |AT |

and permute the distributed matrix A increases as the problem

size grows.

8Partitioning the domain into four levels led to a tiny separator in the fourth

level.

9

1 2 4 8 16 32 64 128 256 512 1024

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of the reordering phase

1 2 4 8 16 32 64 128 256 512 1024

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of the setup phase

1 2 4 8 16 32 64 128 256 512 1024

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of the solve phase per iteration

lev = 2, k = 0 lev = 2, k = 100 lev = 2, k = 200
lev = 3, k = 0 lev = 3, k = 100 lev = 3, k = 200

Figure 5: Weak scaling of parGeMSLR for the Poisson problem when the num-

ber of iterations performed by FGMRES is fixed to thirty, and the number of

levels is set to lev = 2 and lev = 3. The number of unknowns on each MPI

process is 125, 000, for a maximum problem size n = 800 × 400 × 400.

Figure 6 plots the weak scalability of parGeMSLR and two-

level SchurILU, where this time we allow enough iterations in

FGMRES until convergence. As previously, we use eight sub-

domains per MPI process, but this time we fix lev = 3 and k =

10. In summary, parGeMSLR is both faster and more scalable

than SchurILU during the solve phase. Moreover, parGeMSLR

also converges much faster than SchurILU, and the number of

total FGMRES iterations increases only marginally with the

problem size. On the other hand, the weak scaling of the pre-

conditioner setup phase of parGeMSLR is impacted negatively

as the problem size increases due to the need to perform more

Arnoldi iterations to compute the low-rank correction terms.

5.1.2. Strong scaling

We now present strong scaling results obtained by solving

(10) with parGeMSLR on a regular mesh of fixed size as the

numbers of MPI processes varies. More specifically, the size

of the problem is fixed to n = 3203 while the number of MPI

processes varies up to np = 1, 024. The values of lev and k are

varied as previously.

Figure 7 plots the strong scaling of parGeMSLR. In con-

trast to the weak scaling case, setting lev = 2 leads to higher

efficiency during both the setup and application phases of the

preconditioner. The reason for this behavior is twofold. First,

increasing the value of lev generally deteriorates the effective-

ness of the preconditioner unless k is large and the threshold

used in the local ILUT factorizations is small. Second, de-

creasing the value of lev enhances strong scalability since it

leads to smaller communication overheads (i.e., recall the dis-

cussion in Section 4). As a general remark, we note that the

setup phase of parGeMSLR generally becomes more expensive

in terms of floating-point arithmetic operations as lev decreases,

thus although scalability deteriorates as lev increases, the actual

wall-clock time might actually decrease if the number of MPI

processes used is small.

5.2. General Problems

This section discusses the performance of parGeMSLR on a

variety of problems in engineering.

5.2.1. Unstructured Poisson problem on a crooked pipe

We consider the numerical solution of (10) on a 3D crooked

pipe mesh. The problem is discretized by second-order Finite

Elements using the MFEM library [54, 55] with local uniform

and parallel mesh refinement. We visualize the (inhomoge-

neous) mesh using the package GLVis [56] in Figure 8. Our ex-

periments consider different refinement levels to generate prob-

lems of different sizes. Moreover, the maximum number of in-

ner iterations in step 9 of Algorithm 1 is varied between three

and five. We compare parGeMSLR against BoomerAMG with

Hybrid Modified Independent Set (HMIS) coarsening, where

we consider both Gauss-Seidel and l1 Jacobi smoother [57],

and report the corresponding results in Table 1. parGeMSLR is

able to outperform Schur ILU, especially for larger problems.

Moreover, the iteration time of parGeMSLR is similar to that

of BoomerAMG with Gauss-Sediel smoother, but much lower

than that of BoomerAMG with l1 Jacobi smoother.

Table 1: Solving (10) on a crooked pipe mesh.

prec size np k fill p-t i-t its

Boomer
AMG

GS

126,805 16 - 1.71 0.17 0.69 106

966,609 32 - 1.79 0.79 5.7 198

7,544,257 64 - 1.81 3.36 45.12 250

Boomer
AMG
Jacobi

126,805 16 - 1.71 0.18 1.29 226

966,609 32 - 1.79 0.8 10.95 431

7,544,257 64 - 1.81 3.39 72.1 568

Schur
ILU

126,805 16 - 1.53 0.22 0.51 65

966,609 32 - 1.86 1.2 12.46 383

7,544,257 64 - 1.94 5.51 - F

par

GeMSLR

126,805 16 10 1.05 0.54 0.46 25

966,609 32 10 1.18 3.59 4.70 53

7,544,257 64 10 1.32 11.76 48.35 128

10

Table 2: Comparison between two-level ILU and the GeMSLR for 3D Linear

elasticity problem. µ = 1 and λ = 10, Poisson ratio is 5
11 ≈ 0.455.

prec size np k fill p-t i-t its

Schur-
ILU

2,475 4 - 2.62 0.03 0.06 49

15,795 8 - 3.78 0.32 0.60 238

111,843 16 - 7.81 4.80 19.05 751

839,619 64 - 11.82 19.67 - F

par

GeMSLR

2,475 4 20 1.94 0.12 0.01 18

15,795 8 40 3.58 0.92 0.04 23

111,843 16 40 7.86 10.06 0.64 41

839,619 64 80 10.05 63.25 3.13 65

Table 3: Comparison between two-level ILU and the GeMSLR for 3D Linear

elasticity problem. µ = 1 and λ = 80, Poisson ratio is 40
81 ≈ 0.494.

prec pr np k fill p-t i-t its

Schur-
ILU

2,475 4 - 2.21 0.03 0.26 336

15,795 8 - 4.03 0.35 1.48 549

111,843 16 - 8.94 6.45 - F

839,619 64 - 14.75 32.17 - F

par

GeMSLR

2,475 4 20 1.91 0.15 0.01 41

15,795 8 40 3.58 1.09 0.15 75

111,843 16 80 6.48 16.16 1.49 93

839,619 64 120 10.31 133.2 6.15 128

Our first set of experiments focuses on the performance of

parGeMSLR where the number of low-rank terms is varied as

k = {10, 20, . . . , 100}, and the number of levels is set equal to

lev = 3. The size of the Helmholtz problem is set equal to

n = 503. The maximum fill-in attributed to the low-rank cor-

rection term was roughly equal to three. Figure 10 plots the

parallel wall-clock time as a function of the number of low-

rank terms k while the number of MPI processes is fixed equal

to sixteen. Overall, larger values of k lead to lower total and it-

eration times up to the point where the time increase associated

with constructing the parGeMSLR preconditioner outweighs the

gains from improving the convergence rate during the iterative

solution by FGMRES. Next, we consider the same problem but

10 20 30 40 50 60 70 80 90 100

101

102

Ranks

T
im

e
(s
)

Time with different ranks

total time solve time

Figure 10: Total and iteration wall-clock times of the 3-level parallel GeMSLR

to solve the Helmholtz equation of size n = 503 using 16 MPI processes.

this time we add a complex shift equal to 0.05i∗
∑

i |Aii|/nA dur-

ing the the ILU factorization of the on-diagonal blocks. The

same idea was already considered in [59, 25, 14] but this time

Table 4: parGeMSLR with complex shifts. The largest problem size is equal to

n = 1603.

ω np k fill r-t p-t i-t its

5π 1 0 2.77 0.04 0.02 0.07 11

7.5π 1 0 3.45 0.13 0.10 0.52 20

10π 2 5 3.83 0.17 0.35 1.14 31

12.5π 4 5 4.01 0.22 0.49 1.77 38

15π 8 10 3.98 0.24 0.63 2.12 44

20π 16 20 4.40 0.35 1.10 4.55 57

40π 64 40 5.18 1.74 4.19 17.26 95

we apply it in the context of distributed memory computing and

make it available in parGeMSLR. Similarly to the previous ref-

erences, adding a shift helps creating a more stable ILU for

indefinite problems, i.e., see Table 4.

5.3. GPU acceleration

The parGeMSLR library can take advantage of the availabil-

ity of GPU hardware to offload the dense linear algebra opera-

tions associated with the rectangular matrix-vector multiplica-

tions with the low-rank correction term in the GeMSLR pre-

conditioner. To demonstrate the benefits of hybrid CPU+GPU

parallelism, we consider a n = 1283 discretization of the model

problem (10) and focus on the speedup achieved per each itera-

tion of FGMRES when the low-rank correction term is applied

through GPU hardware, as opposed to the standard option of

applying the low-rank correction term through thread-level par-

allelism using OpenMP. We set the number of levels equal to

lev = 2 and lev = 3, and vary the number of low-rank correc-

tion terms as k ∈ {0, 100, 200, 300, 400, 500}. At each level,

we apply a 4-way partition and assign each partition to a sep-

arate MPI process binded to a V100 NVIDIA GPU. Figure 11

plots the speedups achieved by the hybrid CPU+GPU version

of parGeMSLR during its solve phase. As expected, the peak

speedup is obtained for the case k = 500, since the cost to apply

the low-rank correction term increases linearly with the value of

k.

0 100 200 300 400 500

2.8

3

3.2

Rank

S
p
ee
d
u
p

Speedup with different ranks

lev = 2 lev = 3

Figure 11: Per-iteration speedup of parGeMSLR with GPU acceleration when

lev = {2, 3}, and k ∈ {0, 100, 200, 300, 400, 500}. The problem size is equal to

n = 1283 problem.

12

6. Conclusion

In this paper, we presented the parGeMSLR library, a general-

purpose C++/MPI software library which extends the GeM-

SLR preconditioner into distributed memory computing envi-

ronments [25]. parGeMSLR is quite flexible by nature, and can

be applied to solved both real and complex systems of linear al-

gebraic equations, using either double or single precision. The

distributed memory performance of parGeMSLR was demon-

strated on a series of problems, verifying the efficiency of the

library as a general-purpose solver.

One limitation of parGeMSLR is the amount of time re-

quired to complete the setup phase of the preconditioner when

the rank of the low-rank correction term is large. As part of our

future work we plan to replace standard Arnoldi by its block

variant in order to reduce latency during this phase. Another

option is to compute the low-rank correction term by applying

a few steps of randomized subspace iteration. On a separate

note, the cost of the setup phase of the GeMSLR precondi-

tioner can be amortized over the solution of linear systems with

the same iteration matrix but varying right-hand sides, e.g. see

[60, 61, 62, 63], and we plan to apply parGeMSLR to this type

of problems. Finally, as part of future work, we plan to study

the application of parGeMSLR to solve linear systems appear-

ing in eigenvalue solvers based on rational filtering [64, 65],

and domain decomposition [66, 67].

References

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, Other Titles in

Applied Mathematics, Society for Industrial and Applied Mathematics,

2003. doi:10.1137/1.9780898718003.

[2] H. A. Van der Vorst, Iterative Krylov methods for large linear systems,

no. 13, Cambridge University Press, 2003.

[3] Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual Al-

gorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on

Scientific and Statistical Computing 7 (3) (1986) 856–869, publisher: So-

ciety for Industrial and Applied Mathematics. doi:10.1137/0907058.

[4] J. W. Ruge, K. St{\”u}ben, Algebraic Multigrid, in: Multigrid Methods,

Frontiers in Applied Mathematics, Society for Industrial and Applied

Mathematics, 1987, pp. 73–130. doi:10.1137/1.9781611971057.

ch4.

[5] V. E. Henson, U. M. Yang, BoomerAMG: A parallel algebraic multigrid

solver and preconditioner, Applied Numerical Mathematics 41 (1) (2002)

155–177. doi:10.1016/S0168-9274(01)00115-5.

[6] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,

S. F. McCormick, G. N. Miranda, J. W. Ruge, Robustness and scalabil-

ity of algebraic multigrid, SIAM Journal on Scientific Computing 21 (5)

(2000) 1886–1908.

[7] N. Bell, S. Dalton, L. N. Olson, Exposing fine-grained parallelism in al-

gebraic multigrid methods, SIAM Journal on Scientific Computing 34 (4)

(2012) C123–C152.

[8] Y. Saad, ILUT: A dual threshold incomplete LU factorization, Numerical

Linear Algebra with Applications 1 (4) (1994) 387–402. doi:10.1002/

nla.1680010405.

[9] E. Chow, Y. Saad, Experimental study of ilu preconditioners for indefinite

matrices, Journal of computational and applied mathematics 86 (2) (1997)

387–414.

[10] O. G. Ernst, M. J. Gander, Why it is Difficult to Solve Helmholtz Prob-

lems with Classical Iterative Methods, in: I. G. Graham, T. Y. Hou,

O. Lakkis, R. Scheichl (Eds.), Numerical Analysis of Multiscale Prob-

lems, Vol. 83, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp.

325–363. doi:10.1007/978-3-642-22061-6_10.

[11] X. Liu, Y. Xi, Y. Saad, M. V. de Hoop, Solving the three-dimensional

high-frequency helmholtz equation using contour integration and polyno-

mial preconditioning, SIAM Journal on Matrix Analysis and Applications

41 (1) (2020) 58–82.

[12] M. Magolu monga Made, R. Beauwens, G. Warzée, Preconditioning of

discrete Helmholtz operators perturbed by a diagonal complex matrix,

Communications in Numerical Methods in Engineering 16 (11) (2000)

801–817. doi:https://doi.org/10.1002/1099-0887(200011)

16:11<801::AID-CNM377>3.0.CO;2-M.

[13] Y. A. Erlangga, C. Vuik, C. W. Oosterlee, Comparison of multigrid and

incomplete LU shifted-Laplace preconditioners for the inhomogeneous

Helmholtz equation, Applied Numerical Mathematics 56 (5) (2006) 648–

666. doi:10.1016/j.apnum.2005.04.039.

[14] D. Osei-Kuffuor, Y. Saad, Preconditioning Helmholtz linear systems, Ap-

plied Numerical Mathematics 60 (4) (2010) 420–431. doi:10.1016/j.

apnum.2009.09.003.

[15] H. Anzt, E. Chow, J. Dongarra, Parilut—a new parallel threshold ilu fac-

torization, SIAM Journal on Scientific Computing 40 (4) (2018) C503–

C519.

[16] H. Anzt, T. Ribizel, G. Flegar, E. Chow, J. Dongarra, Parilut-a paral-

lel threshold ilu for gpus, in: 2019 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), IEEE, 2019, pp. 231–241.

[17] E. Chow, A. Patel, Fine-Grained Parallel Incomplete LU Factorization,

SIAM Journal on Scientific Computing 37 (2) (2015) C169–C193. doi:

10.1137/140968896.

[18] X.-C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for

General Sparse Linear Systems, SIAM Journal on Scientific Computing

21 (2) (1999) 792–797. doi:10.1137/S106482759732678X.

[19] D. Hysom, A. Pothen, Efficient parallel computation of ILU(k) precon-

ditioners, in: Proceedings of the 1999 ACM/IEEE conference on Super-

computing, SC ’99, Association for Computing Machinery, New York,

NY, USA, 1999, pp. 29–es. doi:10.1145/331532.331561.

[20] G. Karypis, V. Kumar, Parallel Threshold-based ILU Factorization, in:

Supercomputing, ACM/IEEE 1997 Conference, 1997, pp. 28–28. doi:

10.1145/509593.509621.

[21] R. Li, Y. Saad, Low-Rank Correction Methods for Algebraic Domain De-

composition Preconditioners, SIAM Journal on Matrix Analysis and Ap-

plications 38 (3) (2017) 807–828. doi:10.1137/16M110486X.

[22] Y. Saad, J. Zhang, BILUTM: A Domain-Based Multilevel Block ILUT

Preconditioner for General Sparse Matrices, SIAM Journal on Ma-

trix Analysis and Applications 21 (1) (1999) 279–299, publisher:

Society for Industrial and Applied Mathematics. doi:10.1137/

S0895479898341268.

[23] Z. Li, Y. Saad, M. Sosonkina, pARMS: a parallel version of the algebraic

recursive multilevel solver, Numerical Linear Algebra with Applications

10 (5-6) (2003) 485–509. doi:10.1002/nla.325.

[24] I. C. L. NIEVINSKI, M. SOUZA, P. GOLDFELD, D. A. AUGUSTO,

J. R. P. RODRIGUES, L. M. CARVALHO, Parallel Implementation of

a Two-level Algebraic ILU(k)-based Domain Decomposition Precondi-

tioner, TEMA (SÃ£o Carlos) 19 (2018) 59–77, publisher: scielo. doi:

10.5540/tema.2018.019.01.0059.

[25] G. Dillon, V. Kalantzis, Y. Xi, Y. Saad, A Hierarchical Low Rank Schur

Complement Preconditioner for Indefinite Linear Systems, SIAM Journal

on Scientific Computing 40 (4) (2018) A2234–A2252. doi:10.1137/

17M1143320.

[26] M. Benzi, M. Tuma, A Sparse Approximate Inverse Preconditioner for

Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing

19 (3) (1998) 968–994. doi:10.1137/S1064827595294691.

[27] E. Chow, Y. Saad, Approximate Inverse Preconditioners via Sparse-

Sparse Iterations, SIAM Journal on Scientific Computing 19 (3) (1998)

995–1023. doi:10.1137/S1064827594270415.

[28] C. Janna, M. Ferronato, G. Gambolati, A Block FSAI-ILU Parallel Pre-

conditioner for Symmetric Positive Definite Linear Systems, SIAM Jour-

nal on Scientific Computing 32 (5) (2010) 2468–2484, publisher: Society

for Industrial and Applied Mathematics. doi:10.1137/090779760.

[29] H. Anzt, T. K. Huckle, J. Bräckle, J. Dongarra, Incomplete sparse approx-

imate inverses for parallel preconditioning, Parallel Computing 71 (2018)

1–22.

[30] M. J. Grote, T. Huckle, Parallel preconditioning with sparse approximate

inverses, SIAM Journal on Scientific Computing 18 (3) (1997) 838–853.

[31] X. Ye, Y. Xi, Y. Saad, Preconditioning via gmres in polynomial space

13

(2019).

[32] D. Cai, E. Chow, L. Erlandson, Y. Saad, Y. Xi, SMASH: Structured matrix

approximation by separation and hierarchy, Numerical Linear Algebra

with Applications 25 (6) (2018) e2204. doi:https://doi.org/10.

1002/nla.2204.

[33] W. Hackbusch, A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices.

Part I: Introduction to ${\Cal H}$-Matrices, Computing 62 (2) (1999) 89–

108. doi:10.1007/s006070050015.

[34] W. Hackbusch, B. N. Khoromskij, A Sparse $\Cal H$-Matrix Arithmetic.

Part II: Application to Multi-Dimensional Problems, Computing 64 (1)

(2000) 21–47. doi:10.1007/PL00021408.

[35] Y. Xi, J. Xia, S. Cauley, V. Balakrishnan, Superfast and Stable Struc-

tured Solvers for Toeplitz Least Squares via Randomized Sampling,

SIAM Journal on Matrix Analysis and Applications 35 (1) (2014) 44–

72, publisher: Society for Industrial and Applied Mathematics. doi:

10.1137/120895755.

[36] C. Chen, H. Pouransari, S. Rajamanickam, E. G. Boman, E. Darve, A

distributed-memory hierarchical solver for general sparse linear systems,

Parallel Computing 74 (2018) 49–64.

[37] R. Li, Y. Xi, Y. Saad, Schur complement-based domain decomposition

preconditioners with low-rank corrections, Numerical Linear Algebra

with Applications 23 (4) (2016) 706–729. doi:10.1002/nla.2051.

[38] R. D. Falgout, U. M. Yang, hypre: A Library of High Performance Pre-

conditioners, in: P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, J. J.

Dongarra (Eds.), Computational Science ICCS 2002, Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, 2002, pp. 632–641.

doi:10.1007/3-540-47789-6_66.

[39] P. Labs, Paralution v1.1.0, http://www.paralution.com/ (2016).

[40] S. Gawlok, P. Gerstner, S. Haupt, V. Heuveline, J. Kratzke, P. Lösel,

K. Mang, M. Schmidtobreick, N. Schoch, N. Schween, J. Schwegler,

C. Song, M. Wlotzka, Hiflow3 – technical report on release 2.0, Preprint

Series of the Engineering Mathematics and Computing Lab (EMCL)

0 (06) (2017). doi:10.11588/emclpp.2017.06.42879.

[41] L. Grigori, F. Nataf, S. Yousef, Robust algebraic Schur complement pre-

conditioners based on low rank corrections, Research Report RR-8557,

INRIA (Jul. 2014).

[42] Y. Xi, R. Li, Y. Saad, An Algebraic Multilevel Preconditioner with Low-

Rank Corrections for Sparse Symmetric Matrices, SIAM Journal on Ma-

trix Analysis and Applications 37 (1) (2016) 235–259. doi:10.1137/

15M1021830.

[43] S. Rajamanickam, E. G. Boman, M. A. Heroux, Shylu: A hybrid-hybrid

solver for multicore platforms, in: 2012 IEEE 26th International Parallel

and Distributed Processing Symposium, IEEE, 2012, pp. 631–643.

[44] H. A. Daas, T. Rees, J. Scott, Two-level nystr\” om–schur precondi-

tioner for sparse symmetric positive definite matrices, arXiv preprint

arXiv:2101.12164 (2021).

[45] G. W. Stewart, A krylov–schur algorithm for large eigenproblems, SIAM

Journal on Matrix Analysis and Applications 23 (3) (2002) 601–614.

[46] G. Karypis, V. Kumar, A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs, SIAM Journal on Scientific Computing

20 (1) (1998) 359–392, publisher: Society for Industrial and Applied

Mathematics. doi:10.1137/S1064827595287997.

[47] U. V. Catalyurek, C. Aykanat, Hypergraph-partitioning-based decom-

position for parallel sparse-matrix vector multiplication, IEEE Transac-

tions on Parallel and Distributed Systems 10 (7) (1999) 673–693. doi:

10.1109/71.780863.

[48] B. Hendrickson, R. Leland, The Chaco User’s Guide Version 2, Sandia

National Laboratories, Albuquerque NM (1994).

[49] F. Pellegrini, Scotch and libScotch 5.1 User’s Guide, INRIA Bordeaux

Sud-Ouest, IPB & LaBRI, UMR CNRS 5800 (2010).

[50] P. Hénon, Y. Saad, A parallel multistage ilu factorization based on a hi-

erarchical graph decomposition, SIAM Journal on Scientific Computing

28 (6) (2006) 2266–2293.

[51] P. R. Amestoy, T. A. Davis, I. S. Duff, An Approximate Minimum De-

gree Ordering Algorithm, SIAM Journal on Matrix Analysis and Appli-

cations 17 (4) (1996) 886–905, publisher: Society for Industrial and Ap-

plied Mathematics. doi:10.1137/S0895479894278952.

[52] A. George, J. W. Liu, Computer Solution of Large Sparse Positive Defi-

nite, Prentice Hall Professional Technical Reference, 1981.

[53] A. Bienz, W. D. Gropp, L. N. Olson, Node aware sparse matrix–vector

multiplication, Journal of Parallel and Distributed Computing 130 (2019)

166–178.

[54] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. C. V.

Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. To-

mov, I. Akkerman, J. Dahm, D. Medina, S. Zampini, MFEM: A modu-

lar finite element library, Computers & Mathematics with Applications

(2020). doi:10.1016/j.camwa.2020.06.009.

[55] MFEM: Modular finite element methods [Software], mfem.org. doi:

10.11578/dc.20171025.1248.

[56] GLVis: Opengl finite element visualization tool, glvis.org. doi:10.

11578/dc.20171025.1249.

[57] A. H. Baker, R. D. Falgout, T. V. Kolev, U. M. Yang, Multigrid Smoothers

for Ultraparallel Computing, SIAM Journal on Scientific Computing

33 (5) (2011) 2864–2887, publisher: Society for Industrial and Applied

Mathematics. doi:10.1137/100798806.

[58] X. Liu, Y. Xi, Y. Saad, M. V. de Hoop, Solving the 3d high-frequency

helmholtz equation using contour integration and polynomial precondi-

tioning, arXiv preprint arXiv:1811.12378 (2018).

[59] Y. A. Erlangga, C. Vuik, C. W. Oosterlee, On a class of preconditioners for

solving the helmholtz equation, Applied Numerical Mathematics 50 (3-4)

(2004) 409–425.

[60] V. Simoncini, E. Gallopoulos, An iterative method for nonsymmetric sys-

tems with multiple right-hand sides, SIAM Journal on Scientific Comput-

ing 16 (4) (1995) 917–933.

[61] A. Hussam, L. GRIGORI, P. Hénon, P. RICOUX, Enlarged gmres for

solving linear systems with one or multiple right-hand sides.

[62] V. Kalantzis, C. Bekas, A. Curioni, E. Gallopoulos, Accelerating data

uncertainty quantification by solving linear systems with multiple right-

hand sides, Numerical Algorithms 62 (4) (2013) 637–653.

[63] V. Kalantzis, A. C. I. Malossi, C. Bekas, A. Curioni, E. Gallopoulos,

Y. Saad, A scalable iterative dense linear system solver for multiple right-

hand sides in data analytics, Parallel Computing 74 (2018) 136–153.

[64] V. Kalantzis, Y. Xi, L. Horesh, Fast randomized non-hermitian eigen-

solvers based on rational filtering and matrix partitioning, SIAM Jour-

nal on Scientific Computing 43 (5) (2021) S791–S815. arXiv:https:

//doi.org/10.1137/20M1349217, doi:10.1137/20M1349217.

[65] Y. Xi, Y. Saad, Computing Partial Spectra with Least-Squares Rational

Filters, SIAM Journal on Scientific Computing 38 (5) (2016) A3020–

A3045. doi:10.1137/16M1061965.

[66] V. Kalantzis, Y. Xi, Y. Saad, Beyond automated multilevel substructuring:

Domain decomposition with rational filtering, SIAM Journal on Scientific

Computing 40 (4) (2018) C477–C502. arXiv:https://doi.org/10.

1137/17M1154527, doi:10.1137/17M1154527.

[67] V. Kalantzis, A domain decomposition rayleigh–ritz algorithm for sym-

metric generalized eigenvalue problems, SIAM Journal on Scientific

Computing 42 (6) (2020) C410–C435.

14

