parGeMSLR: A Parallel Multilevel Schur Complement Low-Rank Preconditioning and
Solution Package for General Sparse Matrices

Tianshi Xu®*, Vassilis Kalantzis?, Ruipeng Li¢, Yuanzhe Xid, Geoffrey Dillon®, Yousef Saad?®

“Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
b Thomas J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598
€Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551
‘lDepartment of Mathematics, Emory University, Atlanta, GA 30322
¢Department of Mathematics, University of South Carolina, Columbia, SC 29208

Abstract

We describe the “parallel Generalized Multilevel Schur complement Low-Rank preconditioner (parGeMSLR)”, a C++ software
library for the solution of (non-)Hermitian systems of linear algebraic equations via preconditioned Krylov subspace methods in
distributed memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain de-
composition, where the adjacency graph associated with a symmetrized coefficient matrix is partitioned recursively into several
non-overlapping partitions via a p-way vertex separator. parGeMSLR offers several approaches to build a Schur complement ap-
proximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction
term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel
partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can
solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with
in-node access to one or more CPUs/GPUs. The parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a

few model problems arising from discretizations of 3D Partial Differential Equations.

Keywords: Schur complement, low-rank correction, distributed memory preconditioner, sparse non-Hermitian linear systems,

Graphics Processing Units

1. Introduction

This paper presents a distributed memory library for the it-
erative solution of systems of linear algebraic equations of the
form

Ax =b, 1)

where the matrix A € C™™" is large, sparse, and (non-)Hermitian.

Problems of this form typically originate from the discretiza-
tion of a Partial Differential Equation in 2D or 3D domains.
Existing methods to solve problems such as the one in (1) are
generally divided into two main classes: direct solvers, and it-
erative solvers. For large, 3D problems, direct methods can be
impractical due to the large computational and memory require-
ments. On the other hand, iterative approaches solve (1) by a
preconditioned Krylov subspace iterative methods [1, 2], e.g.,
preconditioned Conjugate Gradient [1], if A is Hermitian and
positive-definite, or GMRES [3] if A is non-Hermitian. The
role of the preconditioner is to cluster the eigenvalues in an ef-
fort to accelerate the convergence of Krylov subspace method.
For example, an efficient right preconditioner M transforms (1)

*The work of the first and the last author was supported by the National Sci-
ence Foundation (NSF) grant DMS-1912048. The work of the third author was
supported by the NSF grant OAC-2003720. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-830724)

Preprint submitted to Elsevier

into the preconditioned system AM~'(Mx) = b, where M~ is
an easy-to-apply operator such that the spectrum of AM~! is in-
cluded in a small bounded region, e.g., a disk or an ellipse, that
does not contain the origin. An additional requirement is that
the setup and application of the operator M~! should be easily
parallelizable.

Similarly to Krylov subspace methods, algebraic multigrid
(AMG) methods are another widely-used class of iterative solvers
[4]. AMG uses the idea of interpolation and restriction to build
multilevel frameworks recursively in order to eliminate the smooth
components in error efficiently. AMG is provably optimal for
Poisson-like problems on regular meshes where the number of
iterations to achieve convergence almost stays constant as the
problem size increases. This property leads to appealing weak
scaling results of AMG in parallel computing [5, 6, 7]. How-
ever, AMG can fail when solving indefinite problems or deal-
ing with irregular meshes. It is worth mentioning that AMG
can also be used as a preconditioner in the context of Krylov
subspace methods.

For general sparse linear systems, a well-known class of
general-purpose preconditioners is that of Incomplete LU (ILU)
factorization preconditioners [8, 9, 1]. Here, the matrix A is
approximately factored as A ~ LU where L is lower triangu-
lar and U is upper triangular, and the preconditioner is defined
as M = LU. Applying M~ then consists of two triangular

May 4, 2022

solves since M~! = U'L!. ILU methods can be applied to
a greater selection of problems than AMG, including indefi-
nite problems such as discretized Helmholtz equations [10, 11],
and their robustness can be improved by modified/shifted ILU
strategies [12, 13, 14]. On the other hand, the scalability of
ILU preconditioned Krylov subspace methods is not as good
as those of AMG. In particular, even for Poisson-like problems
the number of iterations to achieve convergence with ILU pre-
conditioned Krylov subspace methods will still increase as the
size of matrices increases. In addition, the sequential nature
of ILU-based preconditioners further limits their applications
to large-scale problems, especially on distributed memory sys-
tems. Thus, most recent developments have been focused on
improving their parallel efficiency [15, 16, 17].

The parallel efficiency of ILU-based preconditioners can be
enhanced by domain decomposition (DD), where the original
problem is decomposed into several subdomains which corre-
spond to different blocks of rows of the coefficient matrix A.
The most basic DD-based ILU approach is the block-Jacobi
ILU preconditioner, where a local ILU is performed on each lo-
cal submatrix. Since this method ignores all of the off-diagonal
matrices corresponding to inter-domain couplings, its conver-
gence rate tends to become slower as the number of subdomains
increases. Several strategies have been proposed to handle the
inter-domain couplings in order to improve the convergence
rate. Restricted Additive Schwarz (RAS) methods expand the
local matrix by a certain level to gain a faster convergence rate
at the cost of losing some memory scalability [18]. Global fac-
torization ILU methods factorize local rows corresponding to
interior unknowns first, after which a global factorization of the
couplings matrix is applied based on some graph algorithms
[19, 20]. Another strategy is based on the low-rank approxima-
tion techniques [21]. These methods use partial ILU techniques
with dropping [22, 23], incomplete triangular solve [24], and
low-rank approximation [25] to form the Schur complement
system and can be generalized into multilevel ILU approaches
[22, 23, 25].

Other available preconditioning strategies include the (fac-
torized) sparse approximate inverse preconditioners [26, 27, 28,
29, 30], polynomial preconditioners [31], and rank-structured
preconditioners [32, 33, 34, 35]; see also [36] for a distributed
memory hierarchical solver. Some of the these techniques can
be further compounded with AMG, as “smoothers”, or ILU-
based preconditioners. For example, a combination of SLR [37]
and polynomial preconditioning is discussed in [31].

This paper describes the implementation of a parallel pre-
conditioner, termed! parGeMSLR, for the iterative solution of
general systems of linear algebraic equations in distributed mem-
ory environments. parGeMSLR2 is written in C++, and com-
munication among different processor groups is achieved by
means of the Message Passing Interface standard (MPI). The
numerical approach followed in parGeMSLR is based on the

IThe abbreviation of the library is derived by the complete name “parallel
Generalized multilevel Schur complement Low-Rank preconditioner”

>The source code can be found in https://github.com/Hitenze/
pargemslr

Generalized Multilevel Schur complement Low-Rank (GeM-
SLR) algorithm described in [25]. GeMSLR applies a mul-
tilevel partitioning of the algebraic domain, and the variables
associated with each level are divided into either interior or in-
terface variables. The multilevel structure is built by apply-
ing a p-way graph partitioner to partition the induced subgraph
associated with the interface variables of the preceding level.
Once the multilevel partitioning is completed, GeMSLR cre-
ates a separate Schur complement approximate inverse precon-
ditioner at each level. Each preconditioner is the sum of two
terms, with the first term being an approximate inverse of the
interface coupling matrix, and the second term being a low-
rank correction which aims at bridging the gap between the first
term and the inverse of the Schur complement matrix associated
with that level. Below, we summarize the main features of the
parGeMSLR library:

1. Scalability. parGeMSLR extends the capabilities of low-
rank-based preconditioners, such as GeMSLR, by recur-
sively partitioning the algebraic domain into levels which
have the same number of partitions (or an integer multi-
ple) as the number of MPI processes. Thus, no MPI pro-
cess is left idle as the level counter increases. In turn, this
leads to enhanced scalability when running on distributed
memory environments.

2. Robustness and complex arithmetic. In contrast to ILU-
based preconditioners, the numerical method implemented
in parGeMSLR is less sensitive to indefiniteness and can
be updated on-the-fly without discarding previous com-
putational efforts. Additionally, parGeMSLR supports com-
plex arithmetic and thus can be utilized to solve com-
plex linear systems such as those originating from the
discretization of Helmholtz equations.

3. Hybrid hardware acceleration. GPU acceleration is
now supported in several iterative solver libraries to speed-
up the application of preconditioners such as AMG or
ILU, e.g., hypre [38], PARALUTION [39], and HIFLOW
[40]. Similarly, parGeMSLR can take advantage of GPU
accelerator hardware to offload any computation the user
provides an interface for. The current release of parGeMSLR
provides a CUDA interface to use one or more GPUs dur-
ing the application of the (dense) low-rank correction part
of the GeMSLR preconditioner.

This paper is organized as follows. Section 2 discusses low-
rank correction preconditioners and provides an algorithmic de-
scription of parGeMSLR. Section 3 provides details on the mul-
tilevel reordering used by parGeMSLR. Section 4 presents in-
depth discussion and details related to the implementation and
parallel performance aspects of parGeMSLR. Section 5 demon-
strates the performance of parGeMSLR on distributed memory
environments. Finally, concluding remarks are made in Sec-
tion 6.

2. Schur complement approximate inverse preconditioners
via low-rank corrections

This section discussed the main idea behind (multilevel)
Schur complement preconditioners enhanced by low-rank cor-
rections, e.g., see [41, 37, 25, 42].

2.1. The Schur complement viewpoint

Let the linear system Ax = b be permuted as
Aox = PAP(P"x) = Pb, 2

where P is an n X n permutation matrix such that

B FO
B® F®
B F
B» W@
EL E@ ... E® C

and the matrices B, F®, and E® are of size d; xd;, d;x s;, and
s; X d;, respectively. The matrix C is of size s X s, and the matrix

partitioning satisfies d+ s = jzp dj+s; = n. Such matrix permu-
j=1
tations can be computed by [j)artitioning the adjacency graph of
the matrix |A| +]AT| into p € N non-overlapping partitions and
reordering the unknowns/equations such that the variables asso-
ciated with the d interior nodes across all partitions are ordered
before the variables associated with the s interface nodes.
Following the above notation, the linear system in (2) can
be written in a block form

B Fllu|l |f
£ ellil-[e) ®
where u, f € R? and v,g € R Once the solution in (3) is

computed, the solution x of the original, non-permuted system
of linear algebraic equations Ax = b can be obtained by the in-

verse permutation x = P [v] Throughout the rest of this section

we focus on the solution of the system in (3).
Following a block-LDU factorization of the matrix Ay, the
permuted linear system in (2) can be written as

A iR

where S = C — EB™'F denotes the Schur complement matrix.
The solution of (3) is then equal to
f
Il|gl’

i (]

which requires: a) the solution of two linear systems with the
block-diagonal matrix B, and b) the solution of one linear sys-
tem with the the Schur complement matrix S. Note that since
the matrix B is block-diagonal, the associated linear systems are
decoupled into p independent systems of linear algebraic equa-
tions. Assuming a distributed memory computing environment

with p separate processor groups, each system of linear alge-
braic equations can be solved in parallel by means of applying
a direct solver locally in each separate process.

In several real-world applications, e.g., those involving the
discretization of PDEs on three-dimensional domains, solving
the systems of linear algebraic equations with matrices B and S
through a direct solver is generally impractical, primarily due
to the large computational and memory cost associated with
forming and factorizing the Schur complement matrix. An al-
ternative then is to solve the linear systems with matrices B and
S inexactly. For example, the solution of linear systems with
matrix B can be computed approximately by replacing its ex-
act LU factorization with an incomplete threshold LU (ILUT)
[8]. Likewise, the exact Schur complement can be sparsified
by discarding entries below a certain threshold value or located
outside a pre-determined pattern. Linear systems with the spar-
sified Schur complement can be then solved approximately by
obtaining an ILUT or other incomplete factorization [23, 43].
From a linear algebraic perspective, an ILUT of matrix B re-
places the latter by an approximation B that is equal to the
product of the incomplete lower and upper triangular factors.
Similarly, the approximate Schur complement can be written as
S =C-EB'F. The approximate factorizations of the matrices
B and S can be combined to form an approximate LDU factor-
ization in (2.1) which can be then used as a preconditioner in a
Krylov subspace iterative solver such as GMRES.

2.2. Schur complements and low-rank corrections

One of the main drawbacks associated with incomplete fac-
torizations is that they can not be easily updated if one needs
a more accurate preconditioner. Moreover, their robustness can
be limited when the matrix A is indefinite. For such scenarios,
it has been advocated to add a low-rank correction term to en-
hance the efficiency of the Schur complement preconditioner,
without discarding the previously computed incomplete factor-
izations. The low-rank enhancement implemented in parGeMSLR
follows the GeMSLR multilevel preconditioner [25], a non-
Hermitian extension of [37, 42]. Other approaches based on
low-rank corrections can be found in [41, 44].

The GeMSLR preconditioner expresses the Schur comple-
ment matrix as

S=(-EB'FCHC=(-0G)C, 4)

where G = EB"'FC~!. Perform a complex Schur decomposi-
tion of G
G =EB'FC' = WRW", ®)

where the s X s matrix W is unitary and the s X s matrix R is
upper-triangular such that its diagonal entries contain the eigen-
values of matrix G. Plugging (5) in (4) gives

S = -WRWhHC =wu - RmWAC,

from which we can write the inverse of the Schur complement
matrix as (Sherman-Morrison-Woodbury formula):

st=c'+c'wiu-R)" - nwH. (6)

Following (6), a system of linear equations with the Schur com-
plement matrix requires the solution of a system of linear equa-
tions with matrix C, as well as matrix-vector multiplications
and triangular matrix inversions with matrices W/W# and (I —
R)™!, respectively. The product of matrices W[(I - R)~! — Il|W#
is a Schur decomposition by itself, with corresponding eigen-
values y;/(1 —y;), i = 1,..., s, where y; denotes the i-th eigen-
value of the matrix G. Therefore, as long as the eigenvalues
of the latter matrix are not located close to one, the matrix
C(S~' - = W[— R)~" — ITWH can be approximated by
a low-rank matrix, i.e., S ™! is approximately equal to C~! plus
some low-rank correction.

The expression in (6) can be transformed into a practical
preconditioner if the matrix W[(I — R)™! — IJW! is replaced by
a rank-k approximation, where k € N is generally a user-given
parameter. More specifically, let W, denote the s X k matrix
which holds the leading k Schur vectors of matrix G, and let Ry,
denote the k X k leading principal submatrix of matrix R. Then,
a GeMSLR approximate inverse preconditioner is equal to?

M'=C'+C' WU -RY) -NIW = ST (D)

An approximate rank-k Schur decomposition of matrix G
can be computed by the Krylov-Schur iterative algorithm [45].
The main idea is to iteratively expand and truncate an m-step
Arnoldi relation with the matrix G,

H
GVm = VmHm +ﬂmvm+lem;

where 3,, € R, e,, denotes the first column of the m X m iden-
tity matrix, [V, Ve 1 1 [Vins V1] = I, and H,, is either upper-
Hessenberg (Arnoldi) or quasi-triangular (Schur-Krylov). Ide-
ally, we would like to compute the eigenvectors/Schur vectors
associated with eigenvalues located the closest to one, which,
in the case of positive definite problems, is straightforward.
Nonetheless, for indefinite problems, the eigenvalues located
the closest to one will be interior eigenvalues. Our default strat-
egy is to always compute eigenvectors/Schur vectors associated
with eigenvalues located on the periphery of the spectrum of
matrix G.

2.3. Computations with an incomplete factorization of B

For large-scale problems, computing an exact factorization
of the block-diagonal matrix B can be quite expensive. Instead,
what is typically available is an ILUT factorization LU =~ B.
Therefore, instead of computing an approximate rank-k Schur
decomposition of matrix G, in practice we approximate a trun-
cated Schur decomposition of the matrix G=E (UL HFC.
Let then L

GV, =V,H, +ﬁm7m+1€g,

where [V, Vst 17 [V, Va1 = 1, and H,, is upper-Hessenberg,
denote an m-length Arnoldi relation obtained with matrix G.
Moreover, let ﬁm = QT Q" denote the complex Schur decom-
position of matrix ﬁm. The low-rank correction term used in

3Note that the k x k leading principal submatrix of (I — R)™! is equal to
I -R™.

GeMSLR is of the form W;[(I —Ry)™" = IIW/, where T} € R*
denotes the k X k leading principal submatrix of matrix 7, and
Wk = Vka, where Oy € R denotes the matrix holding the k
leading Schur vectors of matrix H,,.

2.4. Multilevel extensions

For large-scale, high-dimensional problems, the application
of the matrix C~! by means of an LU factorization of matrix
C can still be expensive; especially when the value of p is too
large, leading to large vertex separators. The idea suggested
in [42, 21], and employed by GeMSLR, is to take advantage
of the purely algebraic formulation developed in the previous
section and apply C~! inexactly by using the Schur complement
low-rank preconditioner described in the previous section. In
fact, this approach can be repeated more than once, leading to a
multilevel preconditioner.

More specifically, let ., € N denote the number of levels,
and define the sequence of matrices

B, F,

A =P C Py = [Ez C

], C1=A, 1=0,1,...,0,-1,
®)

where the matrix B, is block-diagonal with p on-diagonal ma-
trix blocks. The 2 X 2 block matrix partition of each matrix A;
is obtained by partitioning the adjacency graph of the matrix
[Ciy| + |ClT_1| into p non-overlapping partitions and reordering
the unknowns/equations such that the variables associated with
the interior nodes across all partitions are ordered before the
variables associated with the interface nodes of the adjacency
graph. The matrix C;_; is then permuted in-place through the
Sj-1 X §;-1 permutation matrix P;_j, where s;_; denotes the size
of the matrix C;_;.

The solution of a system of linear algebraic equations with

. . . T .
matrix A; as the coefficient matrix and [1 gIT] as the right-
hand side, can be computed as

L1 sl)

where §; = C; — E,Bl‘lF 1 denotes the s; X s; Schur complement
matrix associated with the /-th level, where s; € N denotes the
size of the matrix C;. Instead of computing the exact LU factor-
izations of matrices B; and S, the preconditioner implemented
in the parGeMSLR library substitutes Bl‘1 ~ (LU)™", where
L,U; denotes an ILUT factorization of matrix B;, and

Sitx G+ O Wil - Ry - TTWSE,)

where Wzyk denotes the matrix which holds the approximate
leading k Schur vectors of the matrix G, = E'U 'L FCY,
and E,k denotes the approximation of the k X k leading principal
submatrix of the matrix R, that satisfis the Schur decomposition
51 = WZEW}L’ . Algorithm 2 summarizes the above discussion
(“setup phase”) in the form of an algorithm. Notice that the re-
cursion stops at level /., — 1, and an ILUT of the matrix C;,,—;
is computed explicitly.

Algorithm 1 outlines the procedure associated with the ap-
plication of the GeMSLR preconditioner (“solve phase™). At
each level, the preconditioning step consists of a forward and
backward substitution with the ILUT triangular factors of By,
followed by the application of the rank-k correction term. When
! = 1,, — 1, there is no low-rank correction term applied, since
this is the last level. Moreover, when [= 0 (root level), it is
possible to enhance the GeMSLR preconditioner by applying
a few steps of right preconditioned GMRES. Note though that
these iterations are performed with the inexact Schur comple-
ment S, = C; — E(U™'L™)F,.

Algorithm 1 Standard Parallel GeMSLR Solve

1: procedure PGEMSLRSoLVE(D,)
right-hand-side b at level /

> Solve for g with

2: Apply reordering [Zl] = P._b.
2

3 Solve z; = Ul_lLl‘lbl.

4 Compute 7, = b, — Ejz;.

5: if [= O then

6: Solve §1y2 = 7 by right preconditioned GMRES.
7: else

8 Compute 1, = Wi [(I - Ri)™ = Wiz

9 Call y, = pGeMSLRSolve(u; + 75,1+ 1).

10: end if
11: Compute y; = z; — Ul’lLl’lFlyz.
12: Apply reordering g = P;_; [y 1}.

»2
13: return x

14: end procedure

Algorithm 2 Parallel GeMSLR Setup

1: procedure PGEMSLRSETUP(A,)
GeMSLR preconditioner

> Setup the parallel

2: Generate /,,-level structure by Algorithm 3.

3: for [fromOtol,, — 1 do

4: Compute ILU factorization L;U; ~ B;.

5: Compute matrices Wl,k and E,k.

6: Ifl = I, — 1, compute an ILUT factorization
L, U,-1=Cp-1; exit.

7: end for

8: end procedure

3. Multilevel reordering

This section outlines the multilevel reordering approach im-
plemented in the parGeMSLR library. For simplicity, we focus
on symmetric reorderings obtained by applying a p-way vertex
separator to the adjacency graph associated with the matrices
ICal +ICL 1, 1=0,..., Ly — 1, C_; = A, [46, 47, 48, 49]. In
particular, given a graph G = (V, E), a p-way vertex separator
computes a separator S C V and p non-overlapping (disjoint)
sets Vi,...,V, c Vsuchthat Vi U...UV,US =V and there
are no edges connecting the sets V; and V; when i # j.

Algorithm 3 Parallel GeMSLR Reordering

1: procedure PGEMSLRREORDERING(A, /,,)

2: Set C_; = A.

3: for [fromOtol,, — 1do

4: Apply p-way partitioning to the graph associated
with the matrix |C;_i| + |C], .

B, F,
5: SetA; = Pi_1Ci_1 Py = .
I -1C -1 [Ez Cz}
6: end for
7: return

8: end procedure

3.1. Hierarchical Interface Decomposition

The GeMSLR preconditioner relies on a Hierarchical In-
terface Decomposition (HID) [50] to reduce the setup cost of
the ILU and low-rank correction parts associated with the setup
phase of the preconditioner. The main idea behind HID is to
partition the adjacency graph of |A| + |A| into 2% partitions
via nested dissection with a recursion depth of /,,. The vertex
separators at level / are disjoint with each other since they are
divided by vertex separators from higher levels. When ordered
by levels, the global permutation of matrix A will have a block-
diagonal structure with 2~/ blocks at level 0 < [< [, — 1, i.e.,
the number of diagonal blocks at each level reduce by a factor
of two.

3.2. Multilevel partitioning through p-way vertex separators

In contrast to previous low-rank correction precondition-
ers such as MSLR and GeMSLR [42, 25], the main goal of
parGeMSLR is to sustain good parallel efficiency, and thus HID
is not appropriate.* Instead, the default approach in parGeMSLR
is to partition the adjacency graph by a multilevel partitioner
where each level consists of p partitions and a vertex separator.
In contrast to HID, where there is only a vertex separator at each
level, the new idea is to apply the same p-way partitioner recur-
sively on the vertex separator associated with each new level.
The main advantage of this multilevel reordering scheme is that
it leads to a fixed number of p partitions at each level, and thus
load balancing is generally much better than that obtained using
HID.

A high-level description can be found in Algorithm 3. At
the root level (I = 0), the graph associated with the matrix
|A| + |AT|, is partitioned into p subdomains with a p-way ver-
tex separator, resulting to p non-overlapping connected com-
ponents and their associated vertex separator. The multilevel
partitioner then proceeds to the next level, / = 1, and applies
the p-way vertex partitioner to the induced subgraph associated
with the vertex separator at level [= 0. This leads to a second
set of p non-overlapping connected components and a new, al-
beit smaller vertex separator. The p-way vertex partitioner is
then applied again to the induced subgraph associated with the
vertex separator obtained at level / = 1, etc. The procedure con-
tinues until either level /,, — 1 is reached, or the vertex separator

4Nonetheless, HID is offered in parGeMSLR.

Figure 1: Left: a three-dimensional domain partitioned into p = 4 subdomains. The vertex separator consists of four faces, with each face located between
neighboring subdomains. Center: partitioning of the root-level separator into p = 4 subdomains. Right: partitioning of the vertex separator at the second level.

at the current level [has so few vertices that it can not be further
partitioned into p non-overlapping partitions.

An illustration of a three-level, four-way partitioner applied
to a three-dimensional algebraic domain (a unit cube) is shown
in Figure 1. The leftmost subfigure shows the p = 4 sepa-
rate partitions obtained by the application of the four-way ver-
tex partitioner as well as the vertex separator itself (shown in
white color) at level [= 0. This vertex separator, which con-
sists of four two-dimensional faces, forms the algebraic object
to be partitioned at level [= 1, and the partitioning is shown in
the middle subfigure, where this time the vertex separator is a
one-dimensional object. Finally, at level / = 2, the most recent
vertex separator is further partitioned into four independent par-
titions, leading to a new vertex separator which consists of only
three vertices; see the rightmost subfigure.

In addition to the above illustration, Figure 2 plots the spar-
sity pattern of a Finite Difference discretization of the Laplace
operator on a three-dimensional domain, after reordering its
rows and columns according to a p-way, multilevel reordering
with /,, = 4 and p = 4 (left). A zoom-in of the submatrix
associated with the permutation of the vertex separators is also
shown (right). Note that in this particular example, the last level
has already too few variables to be partitioned any further. In
addition to the global, multilevel permutation, each matrix B;
can be further permuted locally by a reordering scheme such as
reverse Cuthill-Mckee (RCM) algorithm or approximate mini-
mal degree algorithm (AMD) [51, 52] to reduce the fill-ins.

4. Implementation details of parGeMSLR

The parGeMSLR library consists of three main modules: a) a
distributed memory reordering scheme, b) a Krylov subspace it-
erative accelerator, and c) the setup and application of the GeM-
SLR preconditioner. The first module was described in greater
detail in Section 3, and is implemented through a distributed
memory partitioner such as ParMETIS. Additional point-to-point
communication between neighboring partitions, as well as a

single All-to-All message are required (to find the new neigh-
bors of each partition post-partitioning). Next, we focus on the
implementation of the other two modules in a distributed mem-
ory environment where different processor groups communi-
cate via MPL.

4.1. Distributed memory operations in Krylov accelerators

Standard, non-preconditioned Krylov iterative methods are
built on top of simple linear algebraic operations such as matrix-
vector multiplication, vector scaling and additions, and DOT
products. Iterative solvers such as GMRES or FGMRES also
require the solution of small-scale ordinary linear-least squares
problems which are typically solved redundantly in each MPI
process.

Assuming that the data associated with the system of lin-
ear algebraic equations we wish to solve is already distributed
across the different MPI process, AXPY operations can be exe-
cuted locally and involve no communication overhead. On the
other hand, sparse matrix-vector multiplications and DOT prod-
ucts involve either point-to-point or collective communication.
In particular, assume n, € N MPI processes. A DOT product
then requires a collective operation, i.e., MPI_Allreduce, to
sum the 1, local DOT products. The cost of this operation is
roughly O(log(n,)a), where a € R denotes the latency between
any two separate MPI process.” On the other hand, a matrix-
vector multiplication with the coefficient matrix of the linear
system requires point-to-point communication, where the local
matrix-vector product in each MPI process consists of opera-
tions using local data, as well as data associated with MPI pro-
cesses which are assigned to neighboring subdomains, e.g., see
[53] for additional details and recent advances.

5In practice the latency between different pairs of MPI processes might not
be identical depending on the underlying topology, but this difference is gener-
ally exceptionally small.

4-level, 4-way partitioning
[I ' '

1000

| |
2000 | |

Root-level separator
I T T '

200

400

600 ¢

800 ¢

Figure 2: Left: global permutation of matrix A following a multilevel partitioning with l,, = 4 and p = 4. Right: zoom-in at the submatrix associated with the

permutation of the vertex separators (right-bottom submatrix of the left subfigure).

4.2. Setting up and applying the preconditioner

The main module of parGeMSLR is the setup of the GeM-
SLR preconditioner, followed by the application of the latter at
each iteration of the Krylov subspace iterative solver of choice.
Following a multilevel partition into /,, levels (see Section 3),
the setup phase of the GeMSLR preconditioner associated with
each level I = 0,1,...,1, — 1, is further divided into two sep-
arate submodules: a) computation of an ILUT factorization
By = LUy, and b) computation of an approximate rank-k Schur
decomposition of the matrix 51 = EIT Ul’lLl’lF ICI’I.

Let us consider each one of the above two tasks separately.
Recall that the data matrix at each level 0 <[< [,, — 1 has the
following pattern

))
B! 2 F
BY F?
B F ;
b
) Bﬁp) Fi
EY EP ¢

Now, without loss of generality, assume that each partition is
assigned to a separate MPI process. Figure 3 plots a graphical
illustration of the data layout of matrix A; obtained by a permu-
tation using p = 4, across four different MPI processes. Data
associated with separate MPI processes are presented with a
different color. Notice that the right-bottom submatrix denotes
the matrix C; representing the coupling between variables of the
vertex separator at level /. Computing an ILUT factorization of
the matrix B; decouples into p independent ILUT subproblems
BED ~ LEJ)UI(/), j=1,..., p, and thus no communication over-
head is enabled. On the other hand, the computation of the low-
rank correction term requires the application of several steps of
the Arnoldi iteration, and requires communication overhead.
More specifically, the Arnoldi iteration requires communi-
cation among the various MPI processes to compute matrix-
vector multiplications with the iteration matrix 51, as well as to
maintain orthogonality of the Krylov basis. When the latter is

Distribution of matrix A).across four MPI processes

MPI process #1 =

MPI process #3 =

]

]

!

|

|

MPI process #2 = :
+5

1

1

1

Vertex separator

e

Figure 3: Layout of the matrix correction term across four MPI processes (same
forany level 0 <1<, — 1).

MPI process #4 =

achieved by means of standard Gram-Schmidt, Arnoldi requires
one MPI_Allreduce operation at each iteration. Similarly, the
matrix-vector multiplication between G, and a vector z is equal
to

(1) 7D -1
Ll Ul

P

FV
s otz
LPu?| |FP
The computation of the product Cl’lz requires access to the in-
complete ILUT factorizations and rank-k correction terms asso-
ciated with all levels I < I < I, — 1. Therefore, the rank-k cor-
rection terms are built in a bottom-up fashion, from/ = /,,—1 to
[= 0, so that level / has immediate access to the data associated
with all levels 7 > 1. Once the matrix-vector multiplication Cl’lz
is computed, the matrix-vector multiplication with matrix F;
is computed with trivial parallelism among the MPI processes,
and the same holds for the linear system solutions with matri-
ces LEJ), U;j), j=1,..., p. Finally, the matrix-vector multipli-
cation with matrix E; requires an MPI_Allreduce operation.
Note though that if we were to replace vertex separators with
edge separators (this option is included in parGeMSLR) then the

latter multiplication would also be communication-free.

Distribution of low-rank correction terms across four MPI processes

N
MPI process #2 = \
: Replicated on all MPI processes
MPI process #3 =
MPI process #4

Figure 4: Layout of a rank-k correction term across four MPI processes (same
forany level 0 < I < I, — 1).

Finally, applying the preconditioner requires embarrassingly
parallel triangular substitutions with the ILUT factorizations of
the block-diagonal matrices B; as well as dense matrix-vector

multiplications with matrices VVl,k, Wlk, and (I — Rl oL A

matrix-vector multiplication with the matrix Wl,k requires no
communication among the MPI processes, while a matrix-vector
multiplication with the matrix f/\Vlh,'< requires an MPI_Allreduce
operation at level /. Finally, the matrix-vector multiplication
with the k& X k matrix (I — I?l,k)’l is performed redundantly in
each MPI process since k is typically pretty small.

4.2.1. Communication overhead analysis

In this section we focus on the communication overhead
associated with setting up and applying the preconditioner im-
plemented in parGeMSLR. For simplicity, we assume that the
number of MPI processes 7, is equal to the number of partitions
p at each level. The main parameters of the preconditioner are
the number of levels /., and the value of rank k.

Let us first consider the application of m Arnoldi iterations
to compute the matrices Wl,k and (I — I?Lk)’l for some 0 </ <
l., — 1. As was discussed in the previous section, computing
matrix-vector products with the matrix G requires communi-
cation only during the application of the matrices E; and Cl’l.
In turn, the latter requires computations with the distributed ma-
trices Cl+1’ 1+1 o C1+12’ l+2k’ and so on, until we reach level
ley — 1 where an ILUT of the matrix C;_; is computed explic-
itly. Thus, a matrix-vector multiplication with the matrix G
requires ., —(/+1) (low-rank correction term) and ,,— (C 1’1 re-
cursion) MPI_Allreduce operations. In summary, an #-length
Arnoldi cycle with standard Gram-Schmidt orthonormalization
requires (2/,, — 21 + 1)m MPI_Allreduce operations, where we
also accounted for the two MPI_Allreduce operations stem-
ming by Gram-Schmidt and vector normalization at each iter-
ation. This communication overhead is inversely proportional
to the level index I. Accounting for all /,, — 1 levels, the to-
tal communication overhead associated with the setup phase of
the preconditioner amounts is bounded by 6(k) Zl =1, —
21 + 1)m MPI_Allreduce operations, where 6(k) € N denotes
the maximum number of cycles performed by Arnoldi at any

level. In parGeMSLR, the default cycle length is m = 2k itera-
tions. Finally, after the set up phase, one full application of the
preconditioner implemented in the parGeMSLR library requires
2(loy —) + 1 MPI_Allreduce operations.

The analysis presented in this section demonstrates that the
communication overhead associated with the construction of
the GeMSLR preconditioner is directly proportional to an in-
crease in the value of I,,. On the other hand, increasing the
value of /., can reduce the computational complexity associ-
ated with setting up the GeMSLR preconditioner in lower lev-
els. Nonetheless, the value of /., can not be too large, espe-
cially when the value of p is small, since the size of the vertex
separator reduces dramatically between successive levels (as is
demonstrated in Figure 1).

4.3. Applying Cl:vl—l

Due to partitioning with a multilevel vertex separator, the
matrix Cy,,_; forms a separate partition which is replicated among
all MPI processes. Therefore, the simplest approach to apply
Cl’wlf1 is to do so approximately, through computing an ILUT
redundantly in each MPI process. However, for large problems,
this approach can quickly become impractical, even if a shared-
memory variant of ILUT is considered [15]. On the other hand,
applying a distributed memory approach that requires commu-
nication among the MPI processes can lead to considerable high
communication overhead since the application of Cl’wlf1 is the
most common operation during the setup phase of the precon-
ditioner.

parGeMSLR includes several® options to apply an approxi-
mation of Cl:vl—l‘ The default option considered throughout our
experiments is to apply Cl’wlf1 approximately through a block-
Jacobi approach where C;__; is first permuted by reverse RCM
and then replaced by its on-diagonal block submatrices while
the rest of the entries are discarded. Generally speaking, drop-
ping these entries of C, ! , has minor effects since (7, is al-
ready close to being block -diagonal for modest values of [,
(e.g., three or four) as was already demonstrated in Figure 1.
By default, the number of retained on-diagonal blocks of ma-
trix C;,_; is set equal to p. The approximate application of
o ! _, 1s then trivially parallel among the MPI processes, and
each one of the retained on-diagonal blocks is applied through
an ILUT.

5. Numerical Experiments

In this section we demonstrate the parallel performance of
parGeMSLR. We run our experiments on the Quartz cluster
of Lawrence Livermore National Laboratory. Each node of
Quartz has 128 GB memory and consists of 2 Intel Xeon ES-
2695 CPUs with 36 cores in total. We use the default MPI,
MVAPICH2 2.2.3, to compile parGeMSLR. By default, all of

6See section 2.1 in https://github.com/Hitenze/pargemslr/blob/
main/ParGeMSLR/DOCS/Documentation.pdf

the experiments presented below are executed in double’ pre-
cision (64-bit precision following the IEE-754 standard). On
top of distributed memory parallelism, parGeMSLR can take ad-
vantage of shared memory parallelism using either OpenMP
or CUDA. The current version of parGeMSLR uses LAPACK
for sequential matrix decompositions and ParMETIS for dis-
tributed graph partitioning [46]. A detailed documentation of
parGeMSLR can be found in the “DOCS” directory of https:

//github.com/Hitenze/pargemslr. This documentation pro-
vides detailed information on how to compile and run parGeMSLR,

and includes a detailed description of all command-line param-
eters as well as visualization of the source code hierarchy. Sev-
eral test drivers, and a sample input file, are also included.

Throughout the rest of this section, we choose Flexible GM-
RES (FGMRES) with a fixed restart size of fifty as the outer
iterative solver. The motivation for using FGMRES instead of
GMRES is that the application of the preconditioner is subject
to variations due to the application of the inner solver in step 9
of Algorithm 1. The stopping tolerance for the relative residual
norm in FGMRES is set equal to 1.0e — 6. Unless mentioned
otherwise, the solution of the linear system Ax = b will be equal
to the vector of all ones with an initial approximation equal to
zero. The low-rank correction term at each level consists of
approximate Schur vectors such that the corresponding approx-
imate eigenvalues are accurate to two digits of accuracy, and
the restart cycle of thick-restart Arnoldi is equal to 2k.

Our distributed memory experiments focus on the parallel
efficiency of parGeMSLR both when the problem size remains
fixed and n, increases (strong scaling) and the problem size in-
creases at the same rate with n,,. In the case of weak scaling,
the parallel efficiency is equal to % where T and T, denote

the wall-clock time achieved by the sequential and distributed
memory version (using n, MPI processes) of parGeMSLR, re-
spectively. Likewise, in the case of strong scaling, the paral-
lel efficiency is equal to n,TTl,,, In addition, we also compare
parGeMSLR against: a) the BoomerAMG parallel implemen-
tation of the algebraic multigrid method in hypre, and b) the
two-level SchurlLU approach in [23]. The latter preconditioner
uses partial ILU to form an approximation of the Schur com-
plement matrix. The preconditioning step is then performed by
applying GMRES with block-Jacobi preconditioning to solve
the linear system associated with the sparsified Schur comple-
ment. The block-Jacobi preconditioner is applied through one
step of ILUT, and our implementation of SchurIL.U is based on
the parallel ILU(T) in hypre.

Throughout the rest of this section, we adopt the following
notation:

e n;, € N: total number of MPI processes.

e fill € R: ratio between the number of non-zero entries of
the preconditioner and that of matrix A.

e p-t € R: preconditioner setup time. This includes the

"We note though that parGeMSLR. supports both real and complex arith-
metic, as well as both single and double precision.

time required to compute the ILUT factorizations and
low-rank correction terms in parGeMSLR.

e i-t € R: iteration time of FGMRES.
e its € N: total number of FGMRES iterations.

e k € N: number of low-rank correction terms at each
level.

o F: flag signaling that FGMRES failed to converge within
1000 iterations.

5.1. A Model Problem

This section considers a Finite Difference discretization of
the model problem

—Au-b-Vu—-—cu =

u =

FinQ,
0 on 0Q, (10)

where b € R?. Unless mentioned otherwise, we use a 7-pt
stencil, and set b = 0 and Q = (0, 1)°.

5.1.1. Weak scaling

Our first set of experiments studies the weak scaling effi-
ciency of parGeMSLR. Since varying the values of /,, and k lead
to different convergence rates, we first consider the case where
the number of FGMRES iterations is set equal to thirty, regard-
less of whether convergence was achieved or not. The problem
size on each MPI process is fixed to 50%, while the number of
subdomains at each level is set equal to 8 X n,. Moreover, the
number of levels is varied as ,, € {2,3}® while the rank of the
low-rank correction terms is varied as k € {0, 100, 200}.

Figure 5 plots the weak scaling efficiency of parGeMSLR on
up to n, = 1,024 MPI processes. The achieved efficiency is
similar for both options of /., with a slightly higher efficiency
observed for the case l,, = 3. As expected, the highest effi-
ciency achieved during the preconditioner setup phase was for
the case k = 0, since there is no communication overhead stem-
ming from the low-rank correction terms. Nonetheless, even
in this case there is some loss in efficiency due to load imbal-
ancing introduced by the ILUT factorizations at different levels.
Regardless of the value of k, the efficiency of parGeMSLR drops
the most when the number of MPI processes is small, regardless
of the value of /,,. This reduction is owed to the relatively large
increase on the size of the local Schur complement versus when
a larger number of MPI processes is utilized. Note though,
although not reported in our experiments, that the weak scal-
ing efficiency is typically much higher when each MPI process
handles exactly one subdomain. Finally, the efficiency of the
reordering phase is rather limited, since the wall-clock time re-
quires to partition the graph associated with the matrix |A| +]AT|
and permute the distributed matrix A increases as the problem
size grows.

8Partitioning the domain into four levels led to a tiny separator in the fourth
level.

‘ Efficiency of the reordering phase H
100 - s
5:‘: 50 |- -
=)
=
S S S sy | 1|
1 2 4 8 16 32 64 128 256 512 1024
Number of MPI processes
N Efficiency of the setup phase B
100 - s
g
S 50 .
&
=
S S S I
1 2 4 8 16 32 64 128 256 512 1024
Number of MPI processes
[Efficiency of the solve phase per iteration BE
100 - -
Z 501 -
=]
=
S S N N N N - |

Ll I I N |
1 2 4 8 16 32 64 128 256 512 1024
Number of MPI processes

ol =2, k=0-4-l,y =2 k=100-® I, =2, k=200
—o— =3, k=0-a-1lo, =3, k=100-# I, =3, k=200

Figure 5: Weak scaling of parGeMSLR for the Poisson problem when the num-
ber of iterations performed by FGMRES is fixed to thirty, and the number of
levels is set to l,, = 2 and l,, = 3. The number of unknowns on each MPI
process is 125,000, for a maximum problem size n = 800 x 400 x 400.

Figure 6 plots the weak scalability of parGeMSLR and two-
level SchurlLU, where this time we allow enough iterations in
FGMRES until convergence. As previously, we use eight sub-
domains per MPI process, but this time we fix [,, = 3 and k =
10. In summary, parGeMSLR is both faster and more scalable
than SchurIlLU during the solve phase. Moreover, parGeMSLR
also converges much faster than SchurlLU, and the number of
total FGMRES iterations increases only marginally with the
problem size. On the other hand, the weak scaling of the pre-
conditioner setup phase of parGeMSLR is impacted negatively
as the problem size increases due to the need to perform more
Arnoldi iterations to compute the low-rank correction terms.

5.1.2. Strong scaling

We now present strong scaling results obtained by solving
(10) with parGeMSLR on a regular mesh of fixed size as the
numbers of MPI processes varies. More specifically, the size
of the problem is fixed to n = 320° while the number of MPI
processes varies up to n, = 1,024. The values of /., and k are
varied as previously.

Figure 7 plots the strong scaling of parGeMSLR. In con-

10

trast to the weak scaling case, setting /,, = 2 leads to higher
efficiency during both the setup and application phases of the
preconditioner. The reason for this behavior is twofold. First,
increasing the value of /,, generally deteriorates the effective-
ness of the preconditioner unless k is large and the threshold
used in the local ILUT factorizations is small. Second, de-
creasing the value of [, enhances strong scalability since it
leads to smaller communication overheads (i.e., recall the dis-
cussion in Section 4). As a general remark, we note that the
setup phase of parGeMSLR generally becomes more expensive
in terms of floating-point arithmetic operations as /,, decreases,
thus although scalability deteriorates as /., increases, the actual
wall-clock time might actually decrease if the number of MPI
processes used is small.

5.2. General Problems

This section discusses the performance of parGeMSLR on a
variety of problems in engineering.

5.2.1. Unstructured Poisson problem on a crooked pipe

We consider the numerical solution of (10) on a 3D crooked
pipe mesh. The problem is discretized by second-order Finite
Elements using the MFEM library [54, 55] with local uniform
and parallel mesh refinement. We visualize the (inhomoge-
neous) mesh using the package GLVis [56] in Figure 8. Our ex-
periments consider different refinement levels to generate prob-
lems of different sizes. Moreover, the maximum number of in-
ner iterations in step 9 of Algorithm 1 is varied between three
and five. We compare parGeMSLR against BoomerAMG with
Hybrid Modified Independent Set (HMIS) coarsening, where
we consider both Gauss-Seidel and /; Jacobi smoother [57],
and report the corresponding results in Table 1. parGeMSLR is
able to outperform Schur ILU, especially for larger problems.
Moreover, the iteration time of parGeMSLR is similar to that
of BoomerAMG with Gauss-Sediel smoother, but much lower
than that of BoomerAMG with /; Jacobi smoother.

Table 1: Solving (10) on a crooked pipe mesh.

prec size n,|k fill pt it its
Boomer | 126,805 16| - 1.71 0.17 0.69 106
AMG | 966,609 32| - 1.79 079 5.7 198
GS 17544257 64| - 1.81 3.36 45.12 250
Boomer | 126,805 16| - 1.71 0.18 1.29 226
AMG | 966,609 32| - 1.79 0.8 10.95 431
Jacobi 17544257 64| - 1.81 3.39 72.1 568
St | 126:805 16[- 1.53 022 0.51 65
LU | 966,609 32| - 1.86 12 12.46 383
7,544257 64| - 194 551 - F

par | 126805 1610 1.05 0.54 0.46 25
GeMSLR | 966.609 3210 1.18 3.59 4.70 53
7,544,257 64]10 1.32 11.76 48.35 128

i - —/7 150
10" £ - = rgl r E 5 i;
— L = = w O B
L, [- _ - g [= H =: H =
P] E : 27 = F NI = 100 =
£ g o - : ks e EE = = = 2
& L 5 = = FE H4 5 :E//,E E s
10-1 E : i i iE e iE ; 150 F
g = E £ = = e . - a
F =) e —— m=hs =7hs 5 7 = 5
102 Ea“wz“wi‘”Ez‘sz 1 | S H‘E“H 0
1 2 4 8 16 32 64 128 1024

Number of MPT processes

E= pargemslr-reordering+setup pargemslr-solve T pargemslr-total —e— pargemslr-its
== schurilu-reordering+setup schurilu-solve 1 schurilu-total —e— schurilu-its

Figure 6: Weak scaling of parGeMSLR and SchurlLU on Poisson problems. The number of unknowns on each MPI process is 125, 000, for a maximum problem
size n = 800 X 400 x 400.

5.2.2. Linear elasticity equation

F TEfficiency of the setup phase|] In the section we consider the solution of the following lin-
100 i | ear elasticity equation:
S r l AU+ A+ w)V(V-u) = f inQ, (11
- | |
9
g 80 s where Q is a 3D cantilever beam as shown in Figure 9. The left
& | |
& | |
60 |- 5
L [I I . = L]
32 64 128 256 512 1024
Number of MPI processes
| Efficiency of the preconditioning alone per iteration)
~ 100 .
=
- | i
£ 80| =
5| |]
60 | | | L L L Figure 9: Linear elasticity problem on a 3D beam.
32 64 128 256 512 1024
Number of MPI . .
mper e procese end of the beam is fixed, while a constant force (represented
1, =2,k =0-4-l, =2, k=504l =2, k=100 . . .
el =3 k—0-a 1. —3 k=50 % L. —3 k=100 by f) pulls down .the beam from the r1ght.en’d. Herfnn, u is the
displacement, while A and y are the material’s Lamé constants.
Figure 7: Strong scaling results for Poisson problems of size n = 320°. The Tables 2 and 3 show a comparison between parGeMSLR and
number of subdomains is set equal to 2048 in all levels. SchurlLU for different uniform mesh refinements obtained us-

ing first-order Finite Element. For each mesh, the problem be-
comes more ill-conditioned as the ratio 2 grows larger. For
this reason, we fix g = 1 and vary 4 = 10 and 1 = 80. Note
that standard AMG would typically fail for this problem since
the problem is almost singular. Concisely, parGeMSLR leads to
considerable wall-clock time savings compared to SchurlL.U,
even when the latter is allowed a higher level of fill-in.

5.2.3. Helmholtz equation
In this section we consider the complex version of parGeMSLR
and apply it to solve the Helmholtz problem

—A+u=f inQ=[0,17, (12)

Figure 8: Left: Poisson problem on a crooked pipe mesh. Right: zoom-in of
the center part of the mesh.

where we use the Perfectly Matched Layer (PML) boundary
condition [58] and set the number of points per wavelength
equal to eight.

11

Table 2: Comparison between two-level ILU and the GeMSLR for 3D Linear
elasticity problem. ¢ = 1 and A = 10, Poisson ratio is % ~ 0.455.

prec size n,|k fill p-t it its
2475 4]- 262 0.03 0.06 49

Schur- | 15,795 8| - 3.78 0.32 0.60 238
ILU 111,843 16| - 7.81 4.80 19.05 751
839,619 64| - 11.82 1967 - F

2475 4120 1.94 0.12 0.01 18

par | 15,795 8 (40 3.58 0.92 0.04 23
GeMSLR|111,843 16[40 7.86 10.06 0.64 41
839,619 64|80 10.05 63.25 3.13 65

Table 3: Comparison between two-level ILU and the GeMSLR for 3D Linear
elasticity problem. ¢ = 1 and A = 80, Poisson ratio is g ~ 0.494.

prec pr n,| k fill pt it its

2475 4] - 221 0.03 0.26 336

Schur- | 15,795 8| - 4.03 0.35 1.48 549
ILU 111,843 16| - 894 645 - F

839,619 64| - 14753217 - F

2475 4120 191 0.15 0.01 41

par | 15,795 8|40 3.58 1.09 0.15 75

GeMSLR 111,843 16/ 80 6.48 16.16 1.49 93
839,619 64120 10.31 133.2 6.15 128

Our first set of experiments focuses on the performance of
parGeMSLR where the number of low-rank terms is varied as
k = {10,20,...,100}, and the number of levels is set equal to
l,, = 3. The size of the Helmholtz problem is set equal to
n = 503. The maximum fill-in attributed to the low-rank cor-
rection term was roughly equal to three. Figure 10 plots the
parallel wall-clock time as a function of the number of low-
rank terms k while the number of MPI processes is fixed equal
to sixteen. Overall, larger values of & lead to lower total and it-
eration times up to the point where the time increase associated
with constructing the parGeMSLR preconditioner outweighs the
gains from improving the convergence rate during the iterative
solution by FGMRES. Next, we consider the same problem but

10% ¢

——— - - :
‘ Time with different ranks ‘

Time (s)

10 20 30 40

IS I S S S S I
50 60
Ranks

—e— total time —=— solve time

Figure 10: Total and iteration wall-clock times of the 3-level parallel GeMSLR
to solve the Helmholtz equation of size n = 50 using 16 MPI processes.

this time we add a complex shift equal to 0.05i %) ; |A;i|/na dur-
ing the the ILU factorization of the on-diagonal blocks. The
same idea was already considered in [59, 25, 14] but this time

12

Table 4: parGeMSLR with complex shifts. The largest problem size is equal to
n = 160%.

w n, k fill rt p-t it its
5S¢ 1 0 2.77 0.04 0.02 0.07 11
757 1 0 3.450.13 0.10 0.52 20
10r 2 5 3.830.17 035 1.14 31
1257 4 5 4.01 0.22 0.49 1.77 38
157 8 10 3.98 0.24 0.63 2.12 44
20 16 20 4.40 0.35 1.10 4.55 57

40mr 64 40 5.18 1.74 4.19 17.26 95

we apply it in the context of distributed memory computing and
make it available in parGeMSLR. Similarly to the previous ref-
erences, adding a shift helps creating a more stable ILU for
indefinite problems, i.e., see Table 4.

5.3. GPU acceleration

The parGeMSLR library can take advantage of the availabil-
ity of GPU hardware to offload the dense linear algebra opera-
tions associated with the rectangular matrix-vector multiplica-
tions with the low-rank correction term in the GeMSLR pre-
conditioner. To demonstrate the benefits of hybrid CPU+GPU
parallelism, we consider a n = 1283 discretization of the model
problem (10) and focus on the speedup achieved per each itera-
tion of FGMRES when the low-rank correction term is applied
through GPU hardware, as opposed to the standard option of
applying the low-rank correction term through thread-level par-
allelism using OpenMP. We set the number of levels equal to
l,, = 2 and [, = 3, and vary the number of low-rank correc-
tion terms as k € {0, 100,200, 300,400, 500}. At each level,
we apply a 4-way partition and assign each partition to a sep-
arate MPI process binded to a V100 NVIDIA GPU. Figure 11
plots the speedups achieved by the hybrid CPU+GPU version
of parGeMSLR during its solve phase. As expected, the peak
speedup is obtained for the case k = 500, since the cost to apply
the low-rank correction term increases linearly with the value of
k.

39l ‘ Speedup with different ranks ‘ ‘ |
2, L
n
2.8 .
| 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1
0 100 200 300 400 500
Rank

‘+lm,:2+lm,:3‘

Figure 11: Per-iteration speedup of parGeMSLR with GPU acceleration when
ley = {2,3}, and k € {0, 100, 200, 300, 400, 500}. The problem size is equal to
n = 1283 problem.

6. Conclusion

In this paper, we presented the parGeMSLR library, a general-
purpose C++/MPI software library which extends the GeM-
SLR preconditioner into distributed memory computing envi-
ronments [25]. parGeMSLR is quite flexible by nature, and can
be applied to solved both real and complex systems of linear al-
gebraic equations, using either double or single precision. The
distributed memory performance of parGeMSLR was demon-
strated on a series of problems, verifying the efficiency of the
library as a general-purpose solver.

One limitation of parGeMSLR is the amount of time re-
quired to complete the setup phase of the preconditioner when
the rank of the low-rank correction term is large. As part of our
future work we plan to replace standard Arnoldi by its block
variant in order to reduce latency during this phase. Another
option is to compute the low-rank correction term by applying
a few steps of randomized subspace iteration. On a separate
note, the cost of the setup phase of the GeMSLR precondi-
tioner can be amortized over the solution of linear systems with
the same iteration matrix but varying right-hand sides, e.g. see
[60, 61, 62, 63], and we plan to apply parGeMSLR to this type
of problems. Finally, as part of future work, we plan to study
the application of parGeMSLR to solve linear systems appear-
ing in eigenvalue solvers based on rational filtering [64, 65],
and domain decomposition [66, 67].

References
[1] Y. Saad, Iterative Methods for Sparse Linear Systems, Other Titles in
Applied Mathematics, Society for Industrial and Applied Mathematics,
2003. doi:10.1137/1.9780898718003.
H. A. Van der Vorst, Iterative Krylov methods for large linear systems,
no. 13, Cambridge University Press, 2003.
Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual Al-
gorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on
Scientific and Statistical Computing 7 (3) (1986) 856-869, publisher: So-
ciety for Industrial and Applied Mathematics. doi:10.1137/0907058.
J. W. Ruge, K. St{\”u}ben, Algebraic Multigrid, in: Multigrid Methods,
Frontiers in Applied Mathematics, Society for Industrial and Applied
Mathematics, 1987, pp. 73-130. doi:10.1137/1.9781611971057.
ch4.
V. E. Henson, U. M. Yang, BoomerAMG: A parallel algebraic multigrid
solver and preconditioner, Applied Numerical Mathematics 41 (1) (2002)
155-177. doi:10.1016/S0168-9274(01)00115-5.
A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,
S. F. McCormick, G. N. Miranda, J. W. Ruge, Robustness and scalabil-
ity of algebraic multigrid, SIAM Journal on Scientific Computing 21 (5)
(2000) 1886-1908.
N. Bell, S. Dalton, L. N. Olson, Exposing fine-grained parallelism in al-
gebraic multigrid methods, SIAM Journal on Scientific Computing 34 (4)
(2012) C123-C152.
Y. Saad, ILUT: A dual threshold incomplete LU factorization, Numerical
Linear Algebra with Applications 1 (4) (1994) 387-402. doi:10.1002/
nla.1680010405.
E. Chow, Y. Saad, Experimental study of ilu preconditioners for indefinite
matrices, Journal of computational and applied mathematics 86 (2) (1997)
387-414.
O. G. Ernst, M. J. Gander, Why it is Difficult to Solve Helmholtz Prob-
lems with Classical Iterative Methods, in: I. G. Graham, T. Y. Hou,
0. Lakkis, R. Scheichl (Eds.), Numerical Analysis of Multiscale Prob-
lems, Vol. 83, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp.
325-363. doi:10.1007/978-3-642-22061-6_10.

[2]
[3]

[4]

[5]

[6]

(7]

[8]

[9]

(10]

13

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

X. Liu, Y. Xi, Y. Saad, M. V. de Hoop, Solving the three-dimensional
high-frequency helmholtz equation using contour integration and polyno-
mial preconditioning, SIAM Journal on Matrix Analysis and Applications
41 (1) (2020) 58-82.

M. Magolu monga Made, R. Beauwens, G. Warzée, Preconditioning of
discrete Helmholtz operators perturbed by a diagonal complex matrix,
Communications in Numerical Methods in Engineering 16 (11) (2000)
801-817. doi:https://doi.org/10.1002/1099-0887 (200011)
16:11<801::AID-CNM377>3.0.C0;2-M.

Y. A. Erlangga, C. Vuik, C. W. Oosterlee, Comparison of multigrid and
incomplete LU shifted-Laplace preconditioners for the inhomogeneous
Helmholtz equation, Applied Numerical Mathematics 56 (5) (2006) 648—
666. doi:10.1016/j.apnum.2005.04.039.

D. Osei-Kuftuor, Y. Saad, Preconditioning Helmholtz linear systems, Ap-
plied Numerical Mathematics 60 (4) (2010) 420—-431. doi:10.1016/j.
apnum.2009.09.003.

H. Anzt, E. Chow, J. Dongarra, Parilut—a new parallel threshold ilu fac-
torization, SIAM Journal on Scientific Computing 40 (4) (2018) C503—
C519.

H. Anzt, T. Ribizel, G. Flegar, E. Chow, J. Dongarra, Parilut-a paral-
lel threshold ilu for gpus, in: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), IEEE, 2019, pp. 231-241.

E. Chow, A. Patel, Fine-Grained Parallel Incomplete LU Factorization,
SIAM Journal on Scientific Computing 37 (2) (2015) C169—-C193. doi:
10.1137/140968896.

X.-C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for
General Sparse Linear Systems, SIAM Journal on Scientific Computing
21 (2) (1999) 792-797. doi:10.1137/S106482759732678X.

D. Hysom, A. Pothen, Efficient parallel computation of ILU(k) precon-
ditioners, in: Proceedings of the 1999 ACM/IEEE conference on Super-
computing, SC '99, Association for Computing Machinery, New York,
NY, USA, 1999, pp. 29—es. doi:10.1145/331532.331561.

G. Karypis, V. Kumar, Parallel Threshold-based ILU Factorization, in:
Supercomputing, ACM/IEEE 1997 Conference, 1997, pp. 28-28. doi:
10.1145/509593.509621.

R. Li, Y. Saad, Low-Rank Correction Methods for Algebraic Domain De-
composition Preconditioners, STAM Journal on Matrix Analysis and Ap-
plications 38 (3) (2017) 807-828. doi:10.1137/16M110486X.

Y. Saad, J. Zhang, BILUTM: A Domain-Based Multilevel Block ILUT
Preconditioner for General Sparse Matrices, SIAM Journal on Ma-
trix Analysis and Applications 21 (1) (1999) 279-299, publisher:
Society for Industrial and Applied Mathematics. doi:10.1137/
S0895479898341268.

Z.Li, Y. Saad, M. Sosonkina, pARMS: a parallel version of the algebraic
recursive multilevel solver, Numerical Linear Algebra with Applications
10 (5-6) (2003) 485-509. doi:10.1002/nla.325.

I. C. L. NIEVINSKI, M. SOUZA, P. GOLDFELD, D. A. AUGUSTO,
J. R. P. RODRIGUES, L. M. CARVALHO, Parallel Implementation of
a Two-level Algebraic ILU(k)-based Domain Decomposition Precondi-
tioner, TEMA (SA£o Carlos) 19 (2018) 59-77, publisher: scielo. doi:
10.5540/tema.2018.019.01.0059.

G. Dillon, V. Kalantzis, Y. Xi, Y. Saad, A Hierarchical Low Rank Schur
Complement Preconditioner for Indefinite Linear Systems, SIAM Journal
on Scientific Computing 40 (4) (2018) A2234-A2252. do0i:10.1137/
17M1143320.

M. Benzi, M. Tuma, A Sparse Approximate Inverse Preconditioner for
Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing
19 (3) (1998) 968-994. doi:10.1137/51064827595294691.

E. Chow, Y. Saad, Approximate Inverse Preconditioners via Sparse-
Sparse Iterations, SIAM Journal on Scientific Computing 19 (3) (1998)
995-1023. doi:10.1137/S1064827594270415.

C. Janna, M. Ferronato, G. Gambolati, A Block FSAI-ILU Parallel Pre-
conditioner for Symmetric Positive Definite Linear Systems, SIAM Jour-
nal on Scientific Computing 32 (5) (2010) 2468-2484, publisher: Society
for Industrial and Applied Mathematics. doi:10.1137/090779760.

H. Anzt, T. K. Huckle, J. Brickle, J. Dongarra, Incomplete sparse approx-
imate inverses for parallel preconditioning, Parallel Computing 71 (2018)
1-22.

M. J. Grote, T. Huckle, Parallel preconditioning with sparse approximate
inverses, SIAM Journal on Scientific Computing 18 (3) (1997) 838-853.
X. Ye, Y. Xi, Y. Saad, Preconditioning via gmres in polynomial space

[32]

(33]

[34]

(35]

(36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]
[49]

[50]

[51]

[52]

(53]

(2019).

D. Cai, E. Chow, L. Erlandson, Y. Saad, Y. Xi, SMASH: Structured matrix
approximation by separation and hierarchy, Numerical Linear Algebra
with Applications 25 (6) (2018) €2204. doi:https://doi.org/10.
1002/nla.2204.

W. Hackbusch, A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices.
Part I: Introduction to ${\Cal H}$-Matrices, Computing 62 (2) (1999) 89—
108. doi:10.1007/s006070050015.

W. Hackbusch, B. N. Khoromskij, A Sparse $\Cal H$-Matrix Arithmetic.
Part II: Application to Multi-Dimensional Problems, Computing 64 (1)
(2000) 21-47. doi:10.1007/PL00021408.

Y. Xi, J. Xia, S. Cauley, V. Balakrishnan, Superfast and Stable Struc-
tured Solvers for Toeplitz Least Squares via Randomized Sampling,
SIAM Journal on Matrix Analysis and Applications 35 (1) (2014) 44—
72, publisher: Society for Industrial and Applied Mathematics. doi:
10.1137/120895755.

C. Chen, H. Pouransari, S. Rajamanickam, E. G. Boman, E. Darve, A
distributed-memory hierarchical solver for general sparse linear systems,
Parallel Computing 74 (2018) 49-64.

R. Li, Y. Xi, Y. Saad, Schur complement-based domain decomposition
preconditioners with low-rank corrections, Numerical Linear Algebra
with Applications 23 (4) (2016) 706-729. doi:10.1002/nla.2051.

R. D. Falgout, U. M. Yang, hypre: A Library of High Performance Pre-
conditioners, in: P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, J. J.
Dongarra (Eds.), Computational Science ICCS 2002, Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2002, pp. 632-641.
doi:10.1007/3-540-47789-6_66.

P. Labs, Paralution v1.1.0, http://www.paralution.com/ (2016).

S. Gawlok, P. Gerstner, S. Haupt, V. Heuveline, J. Kratzke, P. Losel,
K. Mang, M. Schmidtobreick, N. Schoch, N. Schween, J. Schwegler,
C. Song, M. Wlotzka, Hiflow3 — technical report on release 2.0, Preprint
Series of the Engineering Mathematics and Computing Lab (EMCL)
0(06) (2017). doi:10.11588/emclpp.2017.06.42879.

L. Grigori, F. Nataf, S. Yousef, Robust algebraic Schur complement pre-
conditioners based on low rank corrections, Research Report RR-8557,
INRIA (Jul. 2014).

Y. Xi, R. Li, Y. Saad, An Algebraic Multilevel Preconditioner with Low-
Rank Corrections for Sparse Symmetric Matrices, SIAM Journal on Ma-
trix Analysis and Applications 37 (1) (2016) 235-259. doi:10.1137/
15M1021830.

S. Rajamanickam, E. G. Boman, M. A. Heroux, Shylu: A hybrid-hybrid
solver for multicore platforms, in: 2012 IEEE 26th International Parallel
and Distributed Processing Symposium, IEEE, 2012, pp. 631-643.

H. A. Daas, T. Rees, J. Scott, Two-level nystr\” om-schur precondi-
tioner for sparse symmetric positive definite matrices, arXiv preprint
arXiv:2101.12164 (2021).

G. W. Stewart, A krylov—schur algorithm for large eigenproblems, SIAM
Journal on Matrix Analysis and Applications 23 (3) (2002) 601-614.

G. Karypis, V. Kumar, A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs, SIAM Journal on Scientific Computing
20 (1) (1998) 359-392, publisher: Society for Industrial and Applied
Mathematics. doi:10.1137/51064827595287997.

U. V. Catalyurek, C. Aykanat, Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication, IEEE Transac-
tions on Parallel and Distributed Systems 10 (7) (1999) 673-693. doi:
10.1109/71.780863.

B. Hendrickson, R. Leland, The Chaco User’s Guide Version 2, Sandia
National Laboratories, Albuquerque NM (1994).

F. Pellegrini, Scotch and libScotch 5.1 User’s Guide, INRIA Bordeaux
Sud-Ouest, IPB & LaBRI, UMR CNRS 5800 (2010).

P. Hénon, Y. Saad, A parallel multistage ilu factorization based on a hi-
erarchical graph decomposition, SIAM Journal on Scientific Computing
28 (6) (2006) 2266-2293.

P. R. Amestoy, T. A. Davis, 1. S. Duff, An Approximate Minimum De-
gree Ordering Algorithm, SIAM Journal on Matrix Analysis and Appli-
cations 17 (4) (1996) 886-905, publisher: Society for Industrial and Ap-
plied Mathematics. doi:10.1137/5S0895479894278952.

A. George, J. W. Liu, Computer Solution of Large Sparse Positive Defi-
nite, Prentice Hall Professional Technical Reference, 1981.

A. Bienz, W. D. Gropp, L. N. Olson, Node aware sparse matrix—vector
multiplication, Journal of Parallel and Distributed Computing 130 (2019)

14

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

166-178.

R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. C. V.
Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. To-
mov, I. Akkerman, J. Dahm, D. Medina, S. Zampini, MFEM: A modu-
lar finite element library, Computers & Mathematics with Applications
(2020). doi:10.1016/j.camwa.2020.06.009.

MFEM: Modular finite element methods [Software], mfem.org. doi:
10.11578/dc.20171025.1248.

GLVis: Opengl finite element visualization tool, glvis.org. doi:10.
11578/dc.20171025.1249.

A. H. Baker, R. D. Falgout, T. V. Kolev, U. M. Yang, Multigrid Smoothers
for Ultraparallel Computing, SIAM Journal on Scientific Computing
33 (5) (2011) 2864-2887, publisher: Society for Industrial and Applied
Mathematics. doi:10.1137/100798806.

X. Liu, Y. Xi, Y. Saad, M. V. de Hoop, Solving the 3d high-frequency
helmholtz equation using contour integration and polynomial precondi-
tioning, arXiv preprint arXiv:1811.12378 (2018).

Y. A. Erlangga, C. Vuik, C. W. Oosterlee, On a class of preconditioners for
solving the helmholtz equation, Applied Numerical Mathematics 50 (3-4)
(2004) 409-425.

V. Simoncini, E. Gallopoulos, An iterative method for nonsymmetric sys-
tems with multiple right-hand sides, STAM Journal on Scientific Comput-
ing 16 (4) (1995) 917-933.

A. Hussam, L. GRIGORI, P. Hénon, P. RICOUX, Enlarged gmres for
solving linear systems with one or multiple right-hand sides.

V. Kalantzis, C. Bekas, A. Curioni, E. Gallopoulos, Accelerating data
uncertainty quantification by solving linear systems with multiple right-
hand sides, Numerical Algorithms 62 (4) (2013) 637-653.

V. Kalantzis, A. C. I. Malossi, C. Bekas, A. Curioni, E. Gallopoulos,
Y. Saad, A scalable iterative dense linear system solver for multiple right-
hand sides in data analytics, Parallel Computing 74 (2018) 136-153.

V. Kalantzis, Y. Xi, L. Horesh, Fast randomized non-hermitian eigen-
solvers based on rational filtering and matrix partitioning, SIAM Jour-
nal on Scientific Computing 43 (5) (2021) S791-S815. arXiv:https:
//doi.org/10.1137/20M1349217,doi:10.1137/20M1349217.

Y. Xi, Y. Saad, Computing Partial Spectra with Least-Squares Rational
Filters, SIAM Journal on Scientific Computing 38 (5) (2016) A3020—
A3045. doi:10.1137/16M1061965.

V. Kalantzis, Y. Xi, Y. Saad, Beyond automated multilevel substructuring:
Domain decomposition with rational filtering, SIAM Journal on Scientific
Computing 40 (4) (2018) C477-C502. arXiv:https://doi.org/10.
1137/17M1154527, doi:10.1137/17M1154527.

V. Kalantzis, A domain decomposition rayleigh-ritz algorithm for sym-
metric generalized eigenvalue problems, SIAM Journal on Scientific
Computing 42 (6) (2020) C410-C435.

