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Abstract

We study random walks on Z¢ (with d > 2) among stationary ergodic random con-
ductances {Cy y: x,y € 7%} that permit jumps of arbitrary length. Our focus is on the
quenched invariance principle (QIP) which we establish by a combination of corrector
methods, functional inequalities and heat-kernel technology assuming that the p-th
moment of Y 74 Co x|x |2 and g-th moment of 1/Cy , for x neighboring the origin
are finite for some p, ¢ > 1 with p~! +¢~' < 2/d. In particular, a QIP thus holds for
random walks on long-range percolation graphs with connectivity exponents larger
than 2d in all d > 2, provided all the nearest-neighbor edges are present. Although
still limited by moment conditions, our method of proof is novel in that it avoids
proving everywhere-sublinearity of the corrector. This is relevant because we show
that, for long-range percolation with exponents between d + 2 and 2d, the corrector
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exists but fails to be sublinear everywhere. Similar examples are constructed also for
nearest-neighbor, ergodic conductances in d > 3 under the conditions complementary
to those of the recent work of Bella and Schiffner (Ann Probab 48(1):296-316, 2020).
These examples elucidate the limitations of elliptic-regularity techniques that underlie
much of the recent progress on these problems.

Mathematics Subject Classification 60F17 - 60J45

1 Introduction

Random walks among random conductances have seen much interest in recent years.
The term “random walk” actually refers to a Markov chain whose states will be con-
fined, for the purpose of the present paper, to the d-dimensional hypercubic lattice Z4
and the transition probabilities P(x, y) determined by a collection {Cy y: x,y € Zd}
of non-negative numbers via

P(x,y) := % where 7(x):= Y Cyy. (1.1)

yezd
where 7 (x) € (0, 00) is assumed for all x € Z¢. The symmetry condition
Cry=Cyx, x,y€l (1.2)

is imposed and the common value is called the conductance of unordered edge (x, y).
As is easily checked, 7 is then a reversible measure for the chain. The setting naturally
includes the cases when only nearest-neighbor jumps occur, i.e., those for which
Cy,y := 0 whenever x and y are not nearest neighbors in 74 (this includes x = y).

Many “ordinary” random walks are naturally covered by the above setting; notably,
the simple random walk when Cy y is set to one for nearest neighbors x and y and zero
otherwise, or random walks with a-stable tail when Cy , := |x — y|~@*®) where
o € (0, 2) and |x| denotes the Euclidean norm of x. Our interest here is in the situation
when {Cy y:x,y € 74} is itself random. Writing P for the law of the conductances
and E for its expectation, we impose:

Assumption 1.1 Throughout we assume:

(1) PP is stationary and jointly ergodic with respect to the shifts of Z¢, and
(2) denoting the origin of Z¢ by “0”, we have E Cy o < 00,

where we allow C¢ ¢ > 0 to permit the walk to “hold” in place but require finite mean
to ensure that holding does not dominate its behavior. In this framework we then ask
what conditions guarantee various properties known for the “ordinary” random walks
with symmetric jumps, e.g., lack of speed, recurrence/transience, etc. Here we will
focus on the validity of an Invariance Principle, i.e., convergence of the path law to
Brownian motion under the diffusive scaling of space and time.
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Quenched invariance principle for random walks 849

The so called Annealed (or Averaged) Invariance Principle (AIP) has been known
since late 1980s (Kipnis and Varadhan [39], De Masi et al. [33,34]). The adjective
“annealed” refers to the convergence taking place for a joint law of the chain and the
environment. With Assumption 1.1 in force, this convergence was shown under the
moment conditions

]E< Z CO,x|X|2> < oo and ]E(C1

xezd 0.x

) < oo whenever |x| = 1. (1.3)

These are directly linked to the limiting Brownian motion having finite and positive
variance and so, in this sense, can be regarded as optimal.

Much effort in the past 15 years went to derivations of Individual or Quenched
Invariance Principle (QIP) where the convergence to Brownian motion takes place for
a.e. sample of the random conductances. The influential initial study by Sidoravicius
and Sznitman [49], where a QIP was proved for all uniformly-elliptic nearest-neighbor
conductances, elucidated the need for additional ingredients compared to AIP; namely,
estimates on the heat kernel. Analyses of the simple random walk on supercritical
percolation clusters (Sidoravicius and Sznitman [49], Berger and Biskup [17], Mathieu
and Piatnitski [45]) then paved the way to a complete resolution of all i.i.d. nearest-
neighbor random conductance models (Mathieu [44], Biskup and Prescott [26], Barlow
and Deuschel [12] and Andres et al. [3]).

Compared to the i.i.d. cases, our understanding of general non-uniformly elliptic
conductances remains only partial and often restricted to special cases. For nearest-
neighbor models satisfying Assumption 1.1, the restriction may come as a limitation
on the spatial dimension. Indeed, as shown in Biskup [22, Exercise 4.4 and Theorem
4.7], a QIP holds true in d = 1, 2 whenever

1
x—yl=1 = EC,, <oo and E( ) < 0. (1.4
0,x

These are deemed sharp in light of (1.3) although examples violating (1.4) exist for
which QIP fails yet AIP holds (Barlow et al. [11]). Another way to limit the form of the
distribution is through decay of correlations. Indeed, Procaccia et al. [48] proved a QIP
in correlated percolation models subject to technical conditions on correlation decay.

A third type of restriction comes via moment conditions on individual (nearest-
neighbor) conductances. These can be expressed by means of numbers p, g > 1 such
that

x—yl=1 = C,eL’(P) and

e L1(P). (1.5)
.X,y

For these Andres, Deuschel and Slowik [5] proved a QIP under the condition 1/p +
1/q < 2/d. This extends to a local QIP [6] and also to the control of the heat kernel
[7]. Bella and Schéffner [14] recently improved the methods of [S] and gave a proof
of a QIP under a slightly weaker condition
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I 1 2

The key additional ingredient for the improvement of the moment condition from
(1.5) into (1.6) is a local boundedness result for finite difference equations in diver-
gence forms under essentially optimal moment conditions; see [14, Theorem 2]. We
will show that (1.6) is, in fact, infinitesimally close to sharp, at least for the method
of proof.

The main goal of the present paper is to push the control of a QIP to include models
with arbitrarily large jumps. We will work under the following moment assumption:

Assumption 1.2 Assume d > 2 and that there are p, g € (1, co) satisfying

1 1 2
—+- <= (1.7)
p q d
such that
> Coxlxl* € LP(P) (1.8)
xeZd
and
€ L9(P) whenever|x| = 1. (1.9)

0,x

In particular, Co > 0 for all |x| = 1 P-a.s.

Assumption 1.2 is a direct extension of the conditions from the work [5], which is thus
subsumed by the present paper (albeit with different proofs). We note that Cy, , > 0 for
all nearest-neighbors x and y ensures that the underlying Markov chain is irreducible.

2 Main results

We will invariably work with random collections of conductances {Cy, =
Cyr:ix,y€ Zd} such that 7 (x) € (0, co) for a.e. sample from PP. This ensures that
the transition probability in (1.1) is well defined almost surely in all cases of interest.

We will write Z := {Z,,: n > 0} for the paths of the associated discrete-time Markov
chain and use P* to denote its law subject to the initial condition P*(Zy = x) = 1.

2.1 QIP for general conductances

As noted above, our main point of interest is the validity of the Quenched Invariance
Principle—or QIP for short—which we formalize as follows:
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Quenched invariance principle for random walks 851

Definition 2.1 Let C([0, T]) denote the space of continuous functions on [0, T']
endowed with the supremum topology. Given a path {Z,,: n > 0} of the chain, define

1
B0 = —(Zny + n = )Py 1 = Zim)). 120, D)

Jn

We will say that a QIP holds if for each 7 > 0 and P-a.e. realization of the conduc-
tances, the law of B™ induced on C([0, T] by PY tends weakly, as n — 00, to that
of a Brownian motion whose covariance is non-degenerate and constant a.s.

Our main result is then:
Theorem 2.2 Suppose d > 2. Then a QIP holds under Assumptions 1.1 and 1.2.

As noted earlier, for nearest neighbor conductances that are bounded from below,
our results degenerate to those of [5]. An interesting corollary arises in the context of
random walks on a family of long-range percolation graphs. These graphs are obtained
from a “nice” underlying graph, in our case Z¢, by adding edges independently with
probability that depends only on the displacement between the endpoints. While this
probability is typically assumed to decay as a power of the distance, our formulation
only requires a summability condition.

Corollary 2.3 Let d > 2. Given a function p: 7Z¢ — [0, 1] such that

(1) p(x) = p(—x) forall x € 7,
(2) p(0) = 0 and p(x) = 1 whenever |x| =1,
(3) D iezd p(x)|x|*P < oo for some p > d /2,

consider a random graph with vertices 7 and an (unoriented) edge between x and y
present with probability p(y — x), independently of all other edges. Then a QIP holds
for the simple random walk on this graph.

To make the setting clear, the conductances in Corollary 2.3 take only valuesin {0, 1}
with P(Cy y = 1) = p(x — y). In each step, the “simple random walk” on the graph
selects an available neighbor at random. This is meaningful because the graphs in
Corollary 2.3 are automatically connected (since p(x) = 1 for [x| = 1) and of finite
degree at every vertex (as ensured by Y ., p(x) < 00). Restricting attention to
power-law decaying connection probabilities, our results show that if

) = x| D x| = oo, (2.2)
for some s > 2d, then a QIP holds in d > 2. This is sharp in d = 2 but weaker than
expected in d > 3 because, based on (1.3), we expect a QIP to hold for all s > d + 2.
Note also that, since Cyy € {0, 1},

p

El| D CoxlxP| | =D po)lxl?” (2.3)

xeZd xeZd

whenever p > 1. Condition (3) is thus necessary for Assumption 1.2 to hold.
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Intheregime s € (d, d +2), the simple random walk on the long-range percolation
graph is supposed to scale to a stable process with index « := s — d. This was proved
for o € (0, 1) in all d > 1 by Crawford and Sly [30,31] under the L”-space topology
for any r € [1, c0) (which is weaker than the Skorohod topology). In d = 1 the
regime when a QIP holds extends to all « > 1, i.e., even beyond the summability of
Y ez |x|?p(x), cf. [31, Theorem 1.2] (see also Kumagai and Misumi [41, Theorem
2.2] concerning heat kernels). This is due to absence of percolation and the existence
of cut-points. A corrector-based approach exists as well (Zhang and Zhang [50]).

We note that, in the regime s € (d, 2d), the long-range percolation graph is rather
different from Z. Indeed, as shown by Biskup [20,21] and Biskup and Lin [24], the
graph distances grow polylogarithmically with the Euclidean distance and balls in
the intrinsic metric thus exhibit stretched-exponential volume growth. When s = 2d,
the scaling of intrinsic metric relative to Euclidean one is only polynomial, but with
exponents strictly less than one (Ding and Sly [36]). Notwithstanding, for s > d + 2,
these do not seem to affect the asymptotic of the random walk, at least at the level
of AIP.

2.2 Lack of everywhere sublinearity

The second set of our results address limitations of the techniques presently used for
proofs of the QIP. This requires introducing the basic object of stochastic homogeniza-
tion, the so-called corrector x.Consider the generator L := P —id associated with the
discrete-time Markov kernel P. Explicitly, L acts on finitely-supported f:Z¢ — R as

1
LNHG) = = Y Colrom - ) 24)

yezd

Under Assumption 1.1, the conditions (1.3) permit the construction of a random func-
tion y : Z¢ — R? which is characterized by the following properties:

(1) normalization x (0) = 0,
(2) stationarity of increments under the shifts of Vi

x@ = x:ixy ez Y [xx—y:xyez), 2.5)

(3) weighted square-integrability E(} ", .74 Co,x lx ()% < oo,
(4) harmonicity of the function

U(x):=x+ x(x) (2.6)
in the sense that
(L¥)x) =0, xez’ 2.7)
(For this reason, ¥ is sometimes referred to as “harmonic coordinate.”)
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Quenched invariance principle for random walks 853

We refer to, e.g., Biskup [22, Proposition 3.7] for a detailed exposition and proofs of
this otherwise completely classical material.

Remark 2.4 In all QIPs discussed in this paper, the covariance matrix X' = (X;;) of
the limiting Brownian motion is related to the corrector via

1

ij = ME<§Z; Cox(xi +& - x(0))(x; +8&; - x(x))), (2.8)

where x; denotes the i-th Cartesian component of x and €; denotes the unit vector in
the i-th coordinate direction. Note that X' is non-degenerate and finite under (1.3); see
Proposition 4.2 for an explicit statement.

It it well known (see [22, Lemma 4.8]) that (1.3) ensures that x is sublinear along
coordinate directions in the sense that % x(nx) — 0P-as.asn — oo foreachx € Z<.
This is what gives a QIP in all d = 1 situations. In d > 2 this implies sublinearity on
average,

. 1
Vs > 0: 'lILrI;O pY] Z Ly >sny =0, P-as. 2.9)
[x|<n

see [22, Proposition 4.15]. A key step underlying all of the aforementioned approaches
to QIP is the proof of sublinearity everywhere,

1
lim — max |[x(x)|=0, P-as. (2.10)

n—oo n x: |x|<n

This is known to be sufficient to get a Brownian limit for diffusively-scaled paths of the
Markov chain (see, e.g., Biskup [22, Section 4.2], Kumagai [40, Section 8.4] or [5]).

While our proof of Theorem 2.2 avoids everywhere sublinearity, the conditions we
work under are still generally necessary for everywhere sublinearity to hold:

Theorem 2.5 Let d > 3 and consider the long-range percolation graph obtained
from 72 as above with p having the asymptotic (2.2) for some s € (d + 2, 2d). Then
the corrector is (well defined yet) not sublinear everywhere.

Note that this is true despite the conjecture that a QIP holds for all s > d + 2. A
natural question is whether such examples can be constructed also for nearest-neighbor
conductances. This is answered in:

Theorem 2.6 Suppose d > 3 and let p, g > 1 be such that

1+1 2
-4+ - > .
P q d—1

@2.11)
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Then there is a law P on nearest-neighbor conductances satisfying condition (1) in
Assumption 1.1 and

x|=1 = Co.€LP®) and e L1(P) (2.12)

0,x

for which the corrector is (well defined yet) not sublinear everywhere.

Modulo a boundary case, condition (2.11) is complementary to (1.6) under which
Bella and Schéffner [14] proved that the corrector is sublinear everywhere and thus a
QIP holds. While Theorem 2.6 presents counterexamples only to the method of proof,
rather than the QIP itself, it makes it unlikely that the elliptic-regularity methods
underlying [5,14] would ever yield a proof of a QIP in nearest-neighbor conductance
models under the presumably optimal conditions (1.4). It appears that more promising
strategies are to either try to infer a QIP directly from the AIP (which is known to hold
under (1.4)) or restrict proofs of sublinearity of the corrector to just the set of vertices
visited by the random walk. An attempt in the latter direction has been made by Ba
and Mathieu [9], albeit for diffusions in periodic environments.

2.3 Main ideas

Although our proofs are based on a combination of the corrector method with heat-
kernel technology, our strategy is somewhat different from that used in proofs of QIPs
so far. Through the use of functional inequalities we first control the first exit times
of the walk from large balls. These are used to prove tightness of diffusively-scaled
Markov-chain paths. The proof of a QIP then boils down to the proof of a quenched
Central Limit Theorem (CLT). For this we use the corrector method but, since this is
“just” a CLT, with everywhere sublinearity replaced by sublinearity on average.

As usual, we work primarily with continuous-time versions of our random walk. A
key innovation is the use of

v(x) = Y Ceylx — yP (2.13)

yeZd

as the time-change measure for the walk. The need for this particular normalization was
discovered in the derivation of off-diagonal heat-kernel estimates using the so called
Davies method; cf the proof of Proposition 3.8. Another instance where this measure
naturally appears are estimates on Dirichlet forms of spatially-mollified functions;
see the proof of Proposition 3.3. Notwithstanding, the use of the time change by v is
purely technical. In particular, a QIP will hold for all time-change measures that have
finite expectation under the invariant law from the point of the particle.

Unlike the recent work [5,6] on QIPs under moment conditions, in order to control
the heat kernel and exit probabilities we do not use complicated inductive schemes
such as Moser or De Georgi iterations. Instead, we base our argument on localization,
which amounts to restricting jumps larger than unity to only a finite “active” ball, and
truncation, by which we discard jumps larger than a constant (called « below) multiple
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Quenched invariance principle for random walks 855

of the “active” ball radius. The localization helps us control “small” jumps using
Sobolev inequalities and standard techniques from heat kernel theory. The contribution
of “large” jumps is managed with the help of so called Meyer’s construction (see
[13,47]) which, to put simply, is a way to control the transition probabilities of a Markov
process with jumps by explicating, just as in the integral form of the Kolmogorov
backward equation, the first “large” jump of the process.

While the idea to combine localization argument with Meyer’s construction is
drawn from a recent paper by some of the authors [28] (see Section 2.2 therein for
more details), their extension to the present context requires non-trivial adaptations
and generalizations. A key point for us is that localization enables a class of scale
dependent Sobolev inequalities and Davies’s method that yield estimates for the heat
kernel and exit times (see Propositions 3.3 and 3.8 below). With these in hand, a QIP
can be proved from sublinearity on average of the associated corrector alone.

Although we do not address everywhere sublinearity of the corrector in our
parameter regime, we suspect that it does hold under Assumption 1.1 and 1.2. The
counterexamples in the nearest-neighbor case are strongly inspired by analogous
examples of i.i.d. nearest neighbor conductances (Mathieu and Remy [46], Berger,
Biskup, Hoffman and Kozma [18], Biskup and Boukhadra [23]) for which the return
probabilities exhibit strongly subdiffusive decay while the path distribution still scales
to a non-degenerate Brownian motion. The key mechanism there is trapping.

2.4 Open problems

We finish by stating a few open problems that naturally build on the results of the
present note. As a starter, we pose:

Problem 2.7 Under the conditions of Theorem 2.2, prove a local CLT by
showing, e.g.,

lim  sup |2n)Y?P?(0,x) — ki (x//n)| =0, P-a.s., (2.14)
"7 ey

lx|<v/n

where ky is the probability density of a centered normal with covariance (2.8).

We believe that this holds under the same conditions as a CLT by analogy with the
nearest-neighbor situations in [5,6]. For nearest-neighbor variable speed random walks
in ergodic environments, a local CLT is obtained in [6,8,16] under some moment
condition whereas a QIP has been established in [3,5,11,12,14]. In particular, according
to [35, Proposition 1.5], when d > 4 and ¢ = oo, the moment condition (1.6) (note
that the dimension d of [35] corresponds to d — 1 in the present paper) is sufficient
and, except for the equality, generally necessary for a local CLT to hold for variable
speed random walks in ergodic environments.

Techniques to prove quenched local CLT results are definitely available. Indeed,
Andres, Chiarini and Slowik [4] extended the iteration methods underlying [5,6] to
non-elliptic situations under a condition slightly weaker than (1.7). Very recently,
Bella and Schiffner [15,16] use the regularity theory of weak solutions of elliptic

@ Springer



856 M. Biskup et al.

equations to prove a local CLT for nearest-neighbor variable speed random walks even
under the weaker moment condition (1.6). Still, a quenched local CLT in both papers
[6,16] is based on parabolic Harnack inequalities. The problem is that, for models
with arbitrarily large jumps, elliptic Harnack inequalities may not hold in general
even for large balls and parabolic Harnack inequalities may thus not hold either.
See [29, Section 4.2.2] for related discussions on random conductance models with
stable-like jumps.

Another extension that we believe should be possible by a reasonably straightfor-
ward adaptation of the methods of the present work is the content of:

Problem 2.8 Let d > 2 and suppose p: Z¢ — [0, 1] obeys (2.2) with s > 2d and
p(x) := pwhen |x| = 1 forsome p € [0, 1). Assume that the random graph with vertex
set 74 and an edge between x and y present with probability p(y — x) independently of
other edges, contains an infinite connected component C*° a.s. Prove that the simple
random walk on C*° obeys a QIP.

Here the key challenge is the potential absence (as even p = 0 is allowed) of nearest-
neighbor edges in the computations involving Dirichlet forms in our proofs. Barlow
[10] and the recent work of Flegel et al. [37] provide good possible starting points.

In light of Theorems 2.5 and 2.6, a different strategy than used so far is needed
to get a QIP beyond the regime marked by (1.6) or (1.8) and, in particular, for long-
range percolation graphs with decay exponents s € (d + 2, 2d]. Here we propose to
start with:

Problem 2.9 Consider the long-range percolation graph with exponents s € (d +
2,2d] and p(x) = 1 for |x| = 1. Prove a QIP.

The requirement p(x) = 1 ensures that the underlying graph is connected. A key
obstacle is thus the lack of the Sobolev inequalities underlying our proofs. Although
the corrector fails to be everywhere sublinear in these cases, this is not an obstacle
for our approach, for which sublinearity on average is sufficient. We find it worth-
while to start by addressing the non-percolating regime, i.e., the situations when, upon
removal of the nearest-neighbor edges, the graph does not contain an infinite connected
component a.s.

A considerably more robust way to go beyond the p, g-conditions would be to
prove corrector sublinearity along typical paths of the Markov chain

1 0
max —|x(Zy)| —> 0, P-as. (2.15)
n—o0

1<k<n ﬁ

This is, in fact, what underlies the known proofs of the AIP under the optimal conditions
(1.3) and even the present paper goes part of the way along this line. Ba and Mathieu
[9] have been able to utilize this strategy to prove a QIP for a continuum diffusion in
a random environment subject to a periodicity requirement.

The approach of [9] is based on Dirichlet form theory, time change arguments and
new weighted Sobolev-type inequalities for integrable potentials. The main benefit of
the periodicity of the environment is that only global weighted Sobolev-type inequal-
ities and on-diagonal heat-kernel upper bounds are required (while here we have to
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work with scale-dependent Sobolev inequalities and off-diagonal heat kernel upper
bounds). A question relevant from the point of view of our counterexamples is whether
the corrector in [9] is everywhere sublinear or not—for if it is, then the periodicity
assumption is perhaps too strong to tell us much in our context.

Our last question, which is undoubtedly the one most ambitious, concerns the
random walk on one-dimensional long-range percolation graphs (i.e., the setting of
Corollary 2.3, (1,2) and (2.2)). Indeed, as noted above, there we get (s — 1)-stable
process convergence when s € (1, 2) and a Brownian limit when s > 2.

Problem 2.10 Prove (quenched or annealed) convergence for suitably scaled random
walk on one-dimensional long-range percolation graphs for s = 2.

We conjecture that all the «-stable limits with o € (1, 2) somehow appear fors = 2. If
so, we would expect that the index of stability depends on the precise asymptotic of the
connection probabilities; i.e., on B := limy|— 0o |x|?p(x). Since the 1/r2-percolation
model is known to exhibit multiple phase transitions (cf Aizenman and Newman [1],
Imbrie and Newman [38]), the dependence of @ on f may even undergo interesting
phase transitions as well.

3 Functional inequalities and heat-kernel estimates

We will now move to the exposition of the proofs. In this section, we develop the
main technical ingredients underlying the proof of QIP in Theorem 2.2. We start by
introducing continuous-time versions of our discrete-time Markov chains.

3.1 Continuous time processes

Recall that Z := {Z,,: n > 0} denotes the discrete-time process on Z4 with transition
probabilities P (x, y) and associated stationary measure 7 as defined in (1.1). We will
consider two continuous-time variants of Z. The first one is the canonical variable-
speed chain X := {X; : t > 0}—the VSRW—obtained from Z by taking jumps at
independent exponential times whose parameter at x is 7 (x). The process X is then a
continuous-time Markov chain on Z¢ with the generator

Lx ) =Y Coy[f() = FW]. 3.1)

yezd

The counting measure p(x) := 1 on 74 is stationary and reversible for X. Hence, the
Dirichlet form (D, .%) associated with the process X is given by

D(f.f= Y. Coy[f) -], feZ,
x,yeZd (3.2)
F ={felw:D(f. f) <o}

@ Springer



858 M. Biskup et al.

Here, for any p € [1, co) and any measure A on 74 let £ (1) denote the space of p-
integrable functions f: Z¢ — R and denote by || f || ¢r (v the corresponding £7-norm.

Our second, and more important, continuous-time chain Y := {Y; : t > 0} will be
a time change of the process X defined as follows: ¥, := X A where

t
At_1 = inf{s > 0: A; >t} for A; ::f v(X;)ds, 3.3)
0

with v(x) as in (2.13). Then Y is a continuous-time Markov chain on Z¢ with the
generator

Ly H(x) == ﬁ Cay[f) = f(0)] 34

and Y is thus reversible with respect to v. (Alternatively, ¥ can be defined directly
from Z and independent exponentials that at x have parameter 7 (x)/v(x).) In partic-
ular, the Dirichlet form (D F ) associated with the process Y is given by

~ Cy ~
Dif.p= > v -=[f»m ~f@] =D, ). feF
x,yezd V) (35)

[feW): D(f, ) < oo}

~

F

We will henceforth think of the chains Z, X and Y as defined on the same probability
space, and write P* for the joint law of their paths where (each) chain is at x at time
zero a.s. We will use E* to denote expectation with respect to P*.

The random processes X, ¥ and Z on Z¢ naturally induce corresponding random
processes on the space of random environments, via the “point of view of the particle.”
These are stationary and reversible with respect to the measures Qx, Qy and Qg ,
respectively, defined by Qx (dw) := P(dw),

v(0) 71(0)
dw) =
Qy(dw) Ev0) Ex(0)

P(dw), (3.6)

where @ denotes a generic element from the sample space carrying the conductance
law P. Thanks to our assumptions, all three measures are mutually absolutely contin-
uous with respect to P. Moreover, according to Assumption 1.1 and the definitions
(1.1) and (2.13), both of the measures 7 and v satisfy that w(x) = 7(0) o 7, and
v(x) = v(0) ot forall x € 74, where {tx},eza are the shifts of 74 . This structure
ensures absence of finite-time blow-ups:

Lemma 3.1 Suppose Assumptions 1.1 and 1.2 hold. Then both X and Y are conser-
vative under P*, for all x € Z¢ and P-a.e. sample of the conductances.

Proof We will invoke a standard criterion (see, e.g., Liggett [43, Chapter 2]) plus
some stationarity and the fact that X and Y are derived from the discrete-time Markov
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chain Z. Focusing on X first, wehave X; = Zy, for N, :=sup{n > 0: T\ +---+T, <
t} where, conditional on Z, the random times {7} : k > 1} are independent exponentials
with T} having parameter 7 (Z_1). Thanks to the 1st and 2nd Borel-Cantelli lemmas,

Y Ti=00 as. & Y EYTi|Z)=o0 as. (3.7)
k>1 k>1

so no blow-ups occur if and only if the sum on the right diverges a.s. Now E* (T |Z) =
1/7(Zk~1) and so we need D ;- 1/7(Z;) = oo a.s. The stationarity and ergodicity
of Q7 for the process on environments induced by Z imply

1 n—1

- Z 1/n(Zy) — Eq,(1/7(0)) =1/Ex(0) as. (3.8)

n =0 n—od

The limit is positive since Ex(0) < oo by Assumption 1.2. In particular, we have
Y k=0 /7 (Z) = o0 as.

The argument for Y process is analogous; only that Tj; is now (conditionally
on Z) exponential with parameter 7 (Zy)/v(Zy). Here we also need 0 < Ev(0) < oo
as implied by Assumption 1.2 as well as v(x) = v(0) o 7, for all x € 74 as noted
above. O

3.2 Localization and truncation

Our proof focuses on the process Y. The main challenge is to control the contribution
of large jumps. As noted earlier, we do this by way of localization, which is a change of
the environment that limits all the complexity to a finite ball, and truncation, where we
remove jumps larger than a certain cutoff from the environment. We remark that the
idea of considering localized modifications of non-local Dirichlet forms has appeared
in [28, Section 2.2], but here the construction is more delicate as we need to modify
both the conductances and the reference measure.
We start by localization. Denote

B(x,R) :=x + ([—R, RI“ nz%). (3.9)

For any integer R > 1, let

C..y, ifx € B(0,2R) ory € B(0,2R),

Cﬁy =11, ifx ¢ B(O,2R)and y ¢ B(0,2R) and |x —y| =1, (3.10)
0, otherwise
and
v(x), if x € B(0,2R),
vy =1+ v(x), ifx € B(0,4R) ~ B(0,2R), (3.11)
1, if x ¢ B(0,4R)

and define a symmetric regular Dirichlet form (DX, .Z ) by
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~ 2 ~
DR(f. =) c&lrm-rw], reFk,
x,yeZd (3.12)
FR.={fe0®): DR(f, f) < o).
This form corresponds to the localized version of our process.
Next we move to truncation. Here we first show:
Lemma3.2 Forallk € (0,1]andall R > 1,
1
sup ——— CR |x — 2§1+2d 3.13
S LRG Z ol =l (3.13)
YEZ
[x—y|<kR
and
1 R 1+2d
sup  —— C' < ——. (3.14)
xeB(0.4R) VR(X) Zd YT k2R?
A
|y—x|>kR
Proof By (1.9), (3.10) and (3.11), for all R > 1 and all x € B(0, 2R),
= Y Ry = Y Gl y = (3.15)
v (x) Y v(x) - ’ '

yezd yezd

while for x € B(0,4R) ~ B(0,2R) we get

1 R 2
IES) > Gl =yl
yezd

1 2
= — Cyylx — 1l <1+4+2d. (3.16
oo E oyl —yl7+ E 1= + (3.16)
yeB(0,2R) y€B(0,2R)¢
lx—yl|=1

Hence,
1

R 2
sup  sup ——— C'llx—yl"<1+2d.
R>1xeB(0.4R) VR(x) ygzd Y

In particular, for all « € (0, 1] and all R > 1,

Yo =yl

yezd
[x—y|l=kR

Yok lx—yP<1+24.
yeZd

sup  ———
xeB(0.4R) VE(X)

sup
xeB0.4R) VE(x)
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On the other hand, (3.10) and (3.11) also give us that forall R > 1 and all ¥ € (0, 1],

1
sup —— » CRlx—yP< sup > 1=2d. (3.19)
xeB.4R) VE(X) ezt ’ xeBOAR)

|x—y|<kR [x—yl=1

Combining (3.18-3.19), we have (3.13). Noting that, in light of (3.17), the sum in
(3.14) is bounded by

1 el
Z L@ 3.20
K2R? xeB(O4R) VR(X) ~ k’R? (5:20)

the claim follows. O

For all « € (0, 1] and 311 R = 1 satisfying k R > 1 we now define a truncated,
localized Dirichlet form (D®-¢ .7 R) by

DRer = Y. R rom-rwl. feFk, (3.21)

x,yezd
|x—yl<«R

which is well defined by (3.13). A starting point of our derivations is the following
Sobolev inequality for (DR, ZR):

Proposition 3.3 Let d > 2 and suppose Assumptions 1.1 and 1.2 hold. There are ¢ €
o, d4T2)’ a constant c1 € (0, 00) and an a.s.-finite random variable Ry := Ro(w) > 1
such that

_de ~ _ de
1 Barery < et (RTFFDRE(L N+ RIS IS e)  B22)

holds for all k € (0, 1], all f € 62(VR) and all R > Ry with kR > 1.
The proof is based on two lemmas. Consider the Dirichlet form

Di(f. )= Y. Coy[f@) - o) (3.23)

x,yeZd
lx—yl=1

associated with an auxiliary collection {C Xy = C y.x @ |x—y| = 1} of nearest-neighbor
conductances. We then have:

Lemma 3.4 Foralld > 2, thereisc(d) € (0, 00) and, forall p, q € (%, o) satisfying
(1.7) there is & € (0, 7+5) with

1, 2 1_2
g 24ep d 24¢

(3.24)
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such that for all L > 1, a_ll f: Z‘f — [0, co) with supp(f) € B(0, L), all v: 74 —
[0, 00) and all positive {Cy y = Cy y: |x —y| =1},

(X rwim)™

xezd

2 oEs b
p—1 ) @i B L DS f) (3.25)

holds with

1 _ 1 -
ay, = 7d E v(x)’ and Br := 7d E (Cx,y) 1. (3.26)
x€B(0,L) xeB(0,L)
yily—x|=1

Proof Let p,q € (4, 00) obey (1.7). Then (3.24) is solved for ¢ by

szzz(%—l—l)(¥+;})_l e (0, 7%). (3.27)

Let s > 1 be the index Holder conjugate to p. Then by our restriction on the support

of f,

1/s
Y@ < | Y far @ | o)L, (3.28)
xeZd xeZd
Next define r by
rd_ T =s5s2+e¢) (3.29)

and note that, since s > 1 and ¢ > 0, we have r > 1. Using that |a¥ — bY| <
yla—b|(a”~' +bY~1) holds foralla, b > O and all y > 1, the £'-Sobolev inequality
implies
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d—1

Sorwrat| oze Y [re - foy|
o Pl (3:30)

<2r Y fOTNF@ - fO)

lx—yl=1

’

where c is a d-dependent constant (which is directly related to the isoperimetric con-
stant on Z4).
Define 6 € (0,1/2) by 6 := (1 — %) and note that, by (3.24),

d
—1=6 . 3.31
r rd_1 ( )

The Holder inequality and the restriction on the support of f then give

Yo @@ - f0)

x—yl=1
rd g AT\ 10 (A 2\ 2
= Y @ T (C T (Gl @ - fof)
lx—yl=1
0 36
.
<|2¢ Y fooya Y & Db HrG3Y
xezd x€B(0,L)
y: ly=xl=1
Since (3.29) and (3.31) show
d—1 1
S - (3.33)
d s2+e)
using 6 < 1/2 we can combine (3.32) with (3.30) to get
i
s(2+¢) ! 4 s '
Do fx) e <2cQd)2r L% B," Di(f, )2 (3.34)
xezd
Plugging this in (3.28), we obtain
2
e d,_2d 2
Y f@ e | =8dc? 2 Lat i o7 B/ Di(f, f). (3.39)
xeZd
The claim now follows from (3.24) and (for the r2 term) (3.29). O
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Remark 3.5 As noted by a referee, by (3.27),

(1-5) 7=
24e=2(1—-—) —m7—-—.
p)d—2+4+d/q

The inequality (3.25) in Lemma 3.4 (with an imprecise constant) can be directly
deduced from a weighted version of Sobolev inequality given in [5, (26) in
Remark 3.6].

For the next lemma, let

Do(f. /)= 3 [Ff) =] (336)
|Ly€%ﬂ
x—yl=

denote the Dirichlet form associated with the simple random walk. Recall that u is
the counting measure on Z¢. Then we have:

Lemma 3.6 For each d > 2 there is a constant c(d) € (0, 00) such that for all
e € (0, 7%5) and all f € (*(w),

2
2+e

Z f(x)2+8

xezd
1— ed
o » 2(2+¢)
< (c(d) 2 +)7% Do(f, HZ | D f(x)? . (33N
xeZd
Proof Let ¢ € (0, d4T2) and set
d—1
ro= max{Z, Q+e)— } (3.38)
Then rddTl > 2 and so there exist unique 8, y € R such that
24e=pro—+(1-p2. (3.39)
1
r-l:yrd_l +(§—y)2. (3.40)
A calculation shows
B ( rd 2)7] d ( 2)( rd 2)7l (3.41)
=¢ — an =0 -=-2)—— . .
d—1 v d-1

We claim that 8 € (0, 1] and y € [0, 1/2). Indeed, 8 > 0 and y > 0 are immediate
from (3.41) and r > 2. The inequality § < 1 is equivalent » > dd;](Z + &), which
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holds for our choice of r in (3.38), while y < 1/2 is equivalent to r < 22%. This
requires 2 4+ ¢ < deTz, which holds thanks to & < ﬁ.

We first assume that f: Z¢ — [0, 0o) has compact support. Using (3.39) and
Holder’s inequality we have

Y s < (X ro#) (X rer) (3.42)

xeZd xeZd xeZd

Furthermore, by the £!-Sobolev inequality on Z¢, as in (3.30) we obtain

d—1

d

Y| <er 3 r@ 7 fe - £

xeZd xeZd

(3.43)
14 -V

<crDo(f. N[ s | [ rw?| .

xeZd xeZd

D=

where ¢ € (0, co) depends only on the spatial dimension d and where we relied on
(3.40) to get the second inequality. Hence we get

d—1 1
a 7 i
rd_ 1
) <crDo(f, 2 Y. P . (44
xezd xezd
Noting that
d—1 Bld—1/, rd 28
—_——y = — —2)—(r—-2)|=— 345
a 7 s[d(d—l >(’ )} de (345)
and, after a short calculation, also
de 24¢ ed
1— 1 _y)== -, 3.46
from (3.42) and (3.44) we conclude
24 _sd
2 4
ed ed
Y@< enIDo(f, HT | D] f)? : (3.47)
xeZd xeZd

Raising both sides to % and using the definition of r, the conclusion for all f: Z¢ —
[0, oo) with compact support follows.

Next we suppose that f € Ez(u). Choose a sequence { f,,},>1 of functions with
compact support such that f, converges to f in £>(u) as n — 00. As Do(f, f) <
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8d||f||§2(m for all f € €2(w), we have Do(fy, fu) — Do(f, f) as n — oo. There-

fore, the conclusion for f € ¢>(u) follows by applying £, into (3.37) first and then
letting n — oo. O

We remark that an alternative proof of Lemma 3.6 can be devised based on estimates
for the transition probabilities of the simple random walk. In particular, (3.37) is true
even when d = 1 with ¢ € (0, 00). On the other hand, the proof of Lemmas 3.4
and 3.6 becomes considerably easier in d > 3 where one can rely on the ¢2-Sobolev
inequality.

With the above lemmas in hand, we are ready to give:

Proof of Proposition 3.3 Let d > 2 and suppose Assumption 1.2 holds. Since the
inequality in (1.7) is strict, we may assume that both indices are finite, i.e., p,q €
(%, 00). Under Assumption 1.1, the Spatial Ergodic Theorem yields the existence of
a constant ¢y € (0, oo0) and a random variable Ry = Ro(w) (which may depend on
p,q) with P(1 < Ry < 0o) = 1 such that, for all R > Ry,

> v@P <R and Y (Cry) Y <R (3.48)
x€B(0,16R) x€B(0,16R)
yily=x|=1

The definitions (3.10-3.11) of CX and vX then give, for all R > Ry,

X,y

sup > vR@P <R and )Y (CR)TI<RT (3.49)
x€Z% 1eB(x,8R) x€B(0,8R)
yily—x|=1

for some ¢ € (0, 0o) that also may depend on p and ¢.

Lete € (0, ﬁ) solve (3.24) and fix ¥ € (0, 1]. Lemma 3.4 with v(x) := vR(x),
C_'x,y = Cf’y, L := 8R) along with (3.49) shows the existence of a constant ¢, €
(0, oo) that depends only on d, p, € and ¢ above such that

2
2+e
Y fR@ | < RTE DR ) (3.50)

xeZd

holds for all R > Ro with kR > 1 and all f: Z? — [0, 00) such that supp(f) <
@(O, 8R). Here we used that D{(f, f) < DR”‘(f, f) due to kR > 1 and the choice
Cry:=CF,.

Next we invoke Lemma 3.6 along with the fact that, for some constant ¢ > 0,

b 1— é‘dg
2 ) e+ (3.51)

_ de _ de
reTxea+r 2+sbzca<—
a
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isvalidforalla, b, r > 0, to getthe existence of c3 € (0, oo) such that, forall f : 74 —
[0, 00) with supp(f) € B(0,4R)¢,

2
( > f(x)Z“UR(x))

xezd

< csR™H (RzDo(f, N+ fw? (3.52)
xeZd
<o | RZFDRA (. H+ R Y f0)R @)

xeZd

Here we used vE(x) = 1 for all x € B(0, 4R)¢ and the definitions (3.10-3.11) along
with k R > 1 to ensure that the conductance C 5 y is no smaller than that of the simple
random walk whenever x or y is in supp(f).

Consider a mollifier ¢ : 74 — [0, 1] subject to

=1, x € B(0,4R),
dpr(x){€[0,1], x e B(0,8R)~ B(0,4R), (3.53)
=0, x € B(0,8R)¢,
and
|pr(x) — pr(Y)| < IXZ—RyI’ x,yeZ (3.54)

Let f: 74 — |0, 00). Since supp(for) S B(0, 8R) while supp(f (1 — ¢r)) <
B(0, 4R)¢, the bounds (3.50) and (3.52) show

2
2+e
( 3 f(x)va(x)) :
xeZd
2
2+e
<2 Y (Fer) T vR @)
xeZd

e (3.55)
+2 Y (F = gr@)) R ()

xezd

< cuR*5E [ DR (f . fom) + DR (£(1 = dr), £(1 = ¢) ]
+ R Y F0RRw),

xezd
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where ¢4 := 2 max{cy, c3}. For the sum of the two Dirichlet forms we then get

DR*(for, for) + DR*(f(1 - pr), F( - ¢r))
<4DRe(f 44 Y CR [or(0) — o] @)

x,yEZd
|x—yl<«R

S 45R,K(f’ f) + R—2 Z C§y|x _ y|2f(x)2 (356)

x,yezd
[x—y|=kR

<4DRF(f, )+ A+2DRT Y F0PvR),

xezZd

where (3.13) was used in the last inequality. Plugging this in (3.55), the claim follows.
]

We note that the above proof highlights the need for v as a reference measure and

its modification vE.

3.3 Heat-kernel estimates

We will now apply the above functional inequalities to estimates of the heat kernels.
Denote by Y* := {YIR : t > 0} the Hunt process associated with (5R, FR) and let
pR(t, x, y) be the associated transition probabilities. Similarly, write YR« = {YtR’K :
t > 0} for the Hunt process associated with (D%, .ZR) and let p®-* (¢, x, y) be the
corresponding the transition probabilities.

We start a simple consequence of Proposition 3.3:

Lemma 3.7 Suppose that Assumptions 1.1 and 1.2 hold, and let ¢ € (0, d4T2) and the
random variable Ry := Ry(w) be as in Proposition 3.3. Then there exists a constant
¢ > 0 such that

t _
PR, x,y) <cR™ (ﬁ) e KR (y) (3.57)

holds forallk € (0, 1), all R > RywithkR > 1,allt >0andallx,y € 74,

Proof Let ¢ € (0, d4T2) and Ro be as in Proposition 3.3. For f: 74 — [0, 00),
Holder’s inequality shows

> MR = Y F T Feo TR

xeZd xezZd
<| X r@*vfw Yo ranfw ] 358
xezd xeZd
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Pick k € (0, 1) and assume R > Ry with k R > 1. Then (3.22) turns this into the
Nash inequality

H—s

LA < R (BREE )+ B2 f 1) I (359

The general equivalence between heat-kernel bounds and the Nash inequality, cf Carlen
et al. [27, Theorem (2.1)], states that the Nash inequality (for any real n > 0)

4/n

1157 < A(DC )+ 81713111 (3.60)

leads to a uniform bound on the heat kernel by (nA/r)"/?e 3% _which reflects the

“missing” 1/2 in our normalization of the Dirichlet form. Applymg this to (3 59)

with the specific parameter values n = 221’8 § = R 2and A := ¢|R*™
we get (3.57). |:|

The inequality (3.57) is particularly useful when ¢ and R are related by diffusive
scaling and it provides a version of a uniform, a.k.a. diagonal, heat-kernel upper bound.
For the off-diagonal estimate, we have to work somewhat harder:

Proposition 3.8 Suppose Assumptions 1.1 and 1.2 hold, and let ¢ € (0, d4T2) and the
random variable Ry := Ro(w) be as in Proposition 3.3. For every k € (0, 1], there is
a constant ¢ € (0, 00) such that for all x,y € 74 all R > Ro(w) with kR > 1 and
all0 <t < R?,

Rk (4 <R_"(t)_% i LW 361
pUt(t,x,y) <c o exp ser el )Y (y). @61

Proof We will invoke an argument from Carlen, Kusuoka and Stroock [27] (based
on an earlier argument of Davies [32]) for obtaining off-diagonal heat-kernel bounds
from the Nash inequality (3.59). For that we first introduce the auxiliary objects

Fr)() = — (x) D @OV 2R 1 yi<er)
, yer! (3.62)
AW = | TR |, Vv [TrR(=¥) |

Eg(t,x,y) = sup{|¥ (x) — ¥ ()| — tAQW)* 1 AY) < oo}.
Here ¢ can be chosen to be any bounded function in the domain of the Dirichlet form
(DR”‘ , IR ). In particular, we can take ¥ with bounded support. Carlen, Kusuoka and

Stroock [27, Theorem (3.25)] then shows that there is a constant ¢y > 0 such that for
all k € (0, 1],all R > Ry(w) withk R > 1,allt > 0andall x, y € 74,

t T e _
pR< x,y) <co R (ﬁ) 1R 7 =ErCrxy) R (1) (3.63)
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which, we note, refines the estimate from Lemma 3.7. In order to bring (3.63) into the
desired form, it thus suffices to supply a good lower bound on Eg(2¢, x, y).
Fix xq, yo € Z¢, let A > 0 and consider the test function

¥ (x) = A(lxo — yol — lxo — x1) - (3.64)

The triangle inequality gives |¢ (x) — ¥ (y)| < A|x — y|. According to the elementary
inequalities [¢’ — 1|> < r%e?/l and r?e "l < 2 for 7 > 0, we then get from (3.13) that

1 - 2R
TR = Txes %(e%“” YO~ 1)2CE Ly <oy
S

1

< e R — yPCR L yi<er)
vi(x) ;
yeZd
< (1 +2d)A*e* R <21 4+ 2d)k 2> RR 2. (3.65)

Since the same bound applies to I'r(—) as well, the fact that ¥ (xg) = |xo — yol
while ¥ (yg) = 0 shows

— ER(2t, x0, y0) < —Alxo — yo| + 2(1 + 2d)tk ~2e*RR2, (3.66)

Suppose that 0 < r < R? and set

P (Rz) (3.67)
= ——log(—). i
5« R g t
Then
_ R2
(2t x0. y0) < 2(1 + 2d)—2 — o= ol 1og(—). (3.68)
5k R t
Denoting ¢ := e%+2(1+2d)"72c0, the claim now follows from (3.63). m|

3.4 Exittime estimates
The uniform estimate on the transition probabilities of the truncated, localized pro-
cess YR permits us to control the tails of the exit times thereof. This can then be

extended to the process Y as well. Indeed, given A C Zd, define the first exit time
from A by

Tp:=inf{t > 0:Y; ¢ A}. (3.69)
We then have:
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Proposition 3.9 Under Assumptions 1.1 and 1.2, there is a random variable R| =
Ri(w) withP(1 < Ry < 00) = 1 and, foreach § € (0, 1], a constant ¢ € (0, 00) such
that forallt > 0, all R > 8~ 'Ry and all x € B(0, R),

ct
P (tpxsr) <1) < o (3.70)

The proof is based on a comparison with the corresponding exit problems for the
walks YR and Y®% Forall R > 1, allk € 0,1],allx € 74 and all r > 1, let

rg(x ;) i=inf{t > 0: Y ¢ B(x, ). (3.71)

We then have:

Lemma 3.10 Suppose Assumptions 1.1 and 1.2 hold and let Ry := Ro(w) be as in
Proposition 3.3. There is k € (0, 1] and, for each § € (0, 1], also ¢ > 0 such that for
allx € 74, all R > max{168~ 'Ry, (k8)~ '} and all t > 0,

RS ct
P* (‘L’B(XK(SR) <t) < = (3.72)

Proof Lete € (0, %) and Ry be as in Proposition 3.3 and let k € (0, 1] be such that

12
Lo_ztEe oy (3.73)
20k e

Fix § € (0, 1]. Since (3.61) applies with « replaced by k6 for all R > Ry satisfy-
ingkdR > 1,all0 < ¢ < R%Zand all x € Z4, we get

P (1Y% — x| = 18R)
2+¢

N =yl (RPN g
< o (ﬁ) R Z exp <— SocR log (7 vi(y)

yezd
ly—x|=16R

2+e

o) RL D e (Hggtes(F)) o

yeZd
n§2 |)

X pt 1

(3.74)
where ¢ depends on « and 8. Assuming in addition that 1 < R?/3 (which ensures

log(R?/t) > 1) and noting that the condition SR > 16Ry(w) enables us to apply
(3.48) and (3.49), the two sums on the right are now bounded by

Zexp(——l g(Rz))( > o)

n=1 yEB(x, s (n+1)SR)
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o0 2
< c1(8R)danexp <_ﬂl g(R ))

n=1

., 1 R? S\
< R exp —ﬁlog - =R = (3.75)

for some ¢, depending on « and §. Combining (3.74-3.75), from (3.73) we obtain

t
PE(IY% — x| = 18R) < €37 (3.76)

forallx € Z4,all R > Rywith«8R > 1,8R > 16Ro(w) and all r with0 < ¢ < R2/3.
The strong Markov property at the first exit time from B(x, § R) shows

p* (Tg(jKSR) <1)

< PHIYE —xl 2 30R) + P (105 — x| = 3R,y <1)

1
2
< PX(),% — x| = 18R) + sup sup PV —z1 = 1sR). (3.77)

2t—s
ze74d 0<s<2t

Invoking (3.76), we get the claim for all r < R?/6. Adjusting the constant ¢ if neces-
sary, the claim holds trivially for ¢ > R /6. O

Next we set
R = inf{r > 0: YR ¢ A} (3.78)

Then we get the following deterministic estimate:

Lemma 3.11 Thereisc > Osuchthatallt > 0,allk € (0,1],all R > 1 withk R > 1,
allr > 1 and all x € 74,

Z ck.. 379

|ly— z\>KR

P =)= PR <0 2t s s

Proof This is proved by following the argument of [28, Lemma 3.1], which is itself

based on the Meyer’s construction of Y X (see [13, Section 3.1]). O

We are ready to give:

Proof of Proposition 3.9 Fix k € (0, 1]in (D®*, ZR) to the constant in Lemma 3.10.
Since the processes Y and Y R «gee” the same conductances in B(0,2R), for all R >
r>1,allr > 0andall x € B(0, R) we have

P*(tpry < 1) = P* (T < 1) (3.80)
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Lemma 3.11 along with (3.14) then show

ct
‘PX(TB(XJ) <) - Px(rg(f’(r) <1)| < = (3.81)
foral R > r > 1 withé«R > 1,alltr > Oand all x € Zd, where ¢ depends on
the constant from (3.79), « and §. Setting r := § R, Lemma 3.10 gives the claim with
R1 :=16Ry/k. O

Let pB O.B) (¢, x, y) denote the (substochastic) transition probabilities of the
process Y killed upon exiting the ball B(0, R). The conclusions for the heat-kernel
associated with the truncated, localized process Y R.& can then be transferred to Y:

Proposition 3.12 Under Assumptions 1.1 and 1.2, and with ¢ € (0, L/%z) and Ry as in
Proposition 3.3, there is a constant ¢ > 0 such that forall R > Ry, all x, y € B(0, R)
and all 0 <t < R?,

_ 2+4e

t &
pBORG x y)y <cR™ <ﬁ> v(y). (3.82)

Proof Denote by p®-BO-R) the transition probabilities of the process Y ¥ killed upon
exiting the ball B(0, R). Then for all x, y € B(0, R) and all # > 0,

pPOR @ x, y) = pPPOR @ x, ). (3.83)

Since, trivially,
pREOR@ 2 y) < pRiexy) (3.84)
it suffices to prove the desired bound for the transition probabilities pR(t x,y) of
the process Y %. Here we note that the associated Dirichlet forms obey DR« . N =
DR (f, f) and so the Nash inequality (3.59) applies for the Dirichlet form (DR fR)

as well. Since v® = v on B(0, R), the argument from the proof of Lemma 3.7 then
gives the claim. O

4 Proof of quenched invariance principle

Having established the needed bounds on the transition probabilities and exit times,
we proceed to the proof the quenched invariance principle.

4.1 Tightness
We start with the proof of tightness of diffusively-scaled process Y. Our aim is to

apply the criterion for tightness from Aldous [2]. Unfortunately, this result if not
formulated for the space C([0, T']) but rather for the Skorohod space D([0, T']) of
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functions f: [0, T] — R4 that are right continuous on [0, 7') and have left limits on
(0, T]. This space can be endowed with the standard Skorohod topology (see, e.g.,
Billingsley [19]) that makes it a Polish space which in turn permits considerations of
weak limits of probability measures.

A d-dimensional version of Aldous [2, Theorem 1] then implies that the sequence
(Y™ n > 1} of processes is tight in D([0, T']) when the following two conditions
are met:

(1) {Y,("): n > 1} is tight, as R9-valued random variables, for each ¢ € [0, T], and
(2) for any sequence {t, : n > 1}, where 7, is for each n > 1 a stopping time for the
natural filtration of Y™, and any 8, > 0 with §, — 0,

(n) ()
(orsonr ~ Yonr =20 @.1)
in probability.
We will apply this to the choice
yo . =0 4o
t = ﬁ nt> =0, 4.2)

to get:

Proposition 4.1 Let d > 2. For each T > 0 and a.e. realization of the conductances,
the laws of {Y™ : n > 1} induced by P° on D([0, T1) are tight.

Proof Let Ry = Rj(w) be as in Proposition 3.9. We will check that the above con-
ditions (1-2) from Aldous [2] hold on the set {R; < oo}. To distinguish various
processes, let us write tp(X) for the first exit time of the process X from set B.

For (1) we note that, by (3.70) in Proposition 3.9, when r/n > Ry,

PO(1v 1 > 1)
< P(ton(¥Y") <t) = P(tp,ym(¥) <nt) <cit/r*  (43)
This implies condition (1) above on {R] < oo}.

Next, pick T > 0 and n > 0, let 7,, be stopping times bounded by 7" and choose §,
with 8, | 0. For any r > 0, the strong Markov property gives

PO(1¥yhs, = Y1 > )
< POtpon(Y™) = T)+ max _ PI(|vy" —z//n| >n).  (44)

2€B(0,r/n)

Using (4.3), the first quantity on the right is at most ¢; 7'/ whenever r/n > R;. For
the second quantity Proposition 3.9 with § := n/r gives

max PZ(|Y8(n) —z/s/n| > 77)
2€B(0,r\/n) "
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< max Pt Y) < n8,) < 28, /1> 4.5
B i) ( B(z,nﬁ)( n) 2 n/ ( )

for min{r./n, n/n} > R;. While ¢, depends on the ratio n/r, for n and r fixed the
right-hand side tends to zero in light of §,, — 0. Thus we get

lim sup P0(|Y(")

s, YT(:)| > 1) < c3 T/r*  on{R| < oo} (4.6)
n—oo

for some constant ¢3 € (0, co) regardless of n or the choice of stopping times t,, (as
long as 7, < T'). But the left-hand side does not depend on r and so taking » — oo,

we obtain condition (2) above on {R; < oo}. Aldous [2, Theorem 1] then implies
tightness of the processes {Y ™ : n > 1} on D([0, T]). O

4.2 Proof of a QIP

Having proved tightness, our proof of a QIP is now reduced to the convergence of
finite-dimensional distributions. Let {B,: ¢ > 0} denote a d-dimensional Brownian
motion such that, for all v € R? and ¢ >0,

E7m (0)
Ev(0)

E(B) =0 and E((v-B)*) =1 v X, 4.7

where X is the matrix with entries as in (2.8). Then we have:

Proposition 4.2 Let d > 2 and consider the processes {Y™ : n > 1} from (4.2) with
law PO. Then the following holds on a set of conductances of full P-measure: For each

k> 1landeachty,...,t satisfying) <t <th <--- <t <00,
(n) (n)y law = Y
(yv,".....r") — (B, ..., By). (4.8)

Proof One of the main issues in the proof is a proper demonstration of the set of
conductances of full P-measure on which (4.8) holds for all k-tuples (71, . .., #;) with
the stated properties. We will therefore keep careful track of all requisite events.

Let ¥ (x) denote the “harmonic coordinate” function from (2.6); this is defined (and
depends on) conductances in a measurable set 21 with P(£21) = 1. Given a realization
of the conductances and a path Z := {Z,, : n > 1} of the discrete-time Markov chain,
consider the random variables {¥ (Z,)}. A classical argument (cf, e.g., Corollary 3.10
of Biskup [22]) based on the fact that ¥ (Z,,) is a martingale implies that, under our
standing assumptions, there is a measurable set £2, C £2; with P(§£2;) = 1 such that
for each realization of conductances in §2;, the law of

1
t— —nW(ZLth) 4.9)

7

induced by P? on D([0, T])—in fact, even on €([0, T']), provided we interpolate
values linearly—tends to Brownian motion with mean zero and covariance X
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Next we will prove a similar statement for ¢ — \/LEII/(YM) but for that we

have to control the time change that takes Z into Y. To that end, conditionally
on Z,let Ty, T1, . . . denote independer}vt exponentials with parameters 7 (Zp)/v(Zyp),
w(Zy)/v(Zy), ..., respectively. Then {Y;: t > 0}, defined by

I?t i=Zy, for Ny:=max{k>0:T) 4+ -+ T <t} (4.10)

has the law of {Y;: r > 0}. Letting £23 € £2, be the subset of conductances on which

1 & v(Zy) v(0)
lim - —E <—) PO-as. 411
nr%o 7 ]; 7Zo 2 \70) . 1D
and
. 1 V(Zk) 0
Ve>0:  lim - ZO 70 Lpzo/nzo=eny =0, Plas.  (4.12)

The stationarity and ergodicity of Qz with respect to the chain on environments
induced by Z guarantees (via the Pointwise Ergodic Theorem) that P(£23) = 1. Invok-
ing the Weak Law of Large Numbers (with a simple truncation step enabled by (4.12))
and a renewal argument, we then have

N, Ex (0)

- oo BvO) in P°-probability (4.13)

for all conductances from £23. In light of monotonicity of r — N,, this gives a locally-
uniform closeness of s — N / t to a linear function. By the definition of the Skorohod

topology, the identification Y ™ ¥ now shows that also the law

t > Llp(Y,l,) (4.14)

Jn

induced by P on D([0, T']) tends to that of a Brownian motion with mean zero and
covariance (Em (0)/Ev(0)) X, for every realization of conductances in §23.

Since convergence on D([0, T]) to a process with continuous paths implies con-
vergence of finite-dimensional distributions, to get (4.8) it now suffices to identify a
measurable set 2* C £23 of conductances with P(£2*) = 1 such that

—= XYl — 0 in P-probability, (4.15)

f
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holds on £2* for each ¢ > 0. For this we argue as follows. For any > 0,

P(Ix(Yi)| = n/n)
< P (0.1 i (¥) < tn)

(4.16)
0
+ > Lewnvim PO (a0 ym (V) > in, Yo = x).
Ix|<n~ty/n
Assume that 7 is so small that r < n’z. By Proposition 3.9,
PO(rB(O’nqﬁ)(Y) < tn) < nzt whenever n_l n> R 4.17)

for some ¢ independent of n, n and ¢, where Ry = Rj(w) is as in Proposition 3.9.
The contribution of this term to (4.16) thus vanishes as n — oo followed by 1 | 0.
Let Ry = Ro(w) be as in Proposition 3.3. Proposition 3.12 in turn gives

_ 24 _
P (tp0-tym(¥) > tn, Yoy = x) < con(tn®) "= n~Pux)  (4.18)

whenever n_l n>Rpandt < n_z, where c; is independent of n, x,  and ¢. Using

Holder’s inequality with p as Assumption 1.2, the sum on the right of (4.16) is thus
bounded by a constant times

1/p
_ 24 _
()~ | nin=Y? Z v(x)?
lxl<n=tyn
1-1/p
d. —d)2
<[ =T Lyonem : (4.19)
|x|<n='y/n

The p-integrability of v ensures that the term in the first large parentheses is bounded
uniformly in n > 1, [P-a.s. Thanks to corrector sublinearity on average (2.9), the term
in the second large parentheses, and thus the whole expression, tends to zero P-a.s. as
n — oo. This proves (4.15) and thus the whole claim. O

Let us now see how the above proposition implies our main result:

Proof of Theorem 2.2 Fix T > 0. Proposition 4.1 tells us that the laws of ¥ ") are tight
on D([0, T]). By Proposition 4.2 we then conclude that ¥ ™ converges in law to B
while the time-change argument in (4.10) and (4.13) then shows that ¢ > \/lﬁZLm 1
as an element of D([0, T']), tends in law to a centered Brownian motion with covari-
ance X. As the limit process has continuous paths, this implies the convergence of the
linear interpolation B” of Z-values from (2.1) in the space C([0, T']). O

@ Springer



878 M. Biskup et al.

4.3 Assumption 1.2 for long-range percolation

To complete our results concerning quenched invariance principles, it remains to verify
the conditions on long-range percolation model that ensure convergence of the random
walk to Brownian motion.

Proof of Corollary 2.3 Let p > ‘7’ be as in the statement. Fix any total order x <y
on Z¢ and let {Cxy:x,y € 74, x < v} be independent, zero-one valued random
variables with P(Cy y, = 1) = p(x — y), where p is as in the statement. Identify
Cy,y = Cy x to get symmetric conductances. Given ng > 1 to be determined later, let

My:= Y X (Cox—ECo)= Y,  [PPWw), 4.20)

no<|x|<no+n no<l|x|<no+n
where
W(x) := Cox —ECp . 4.21)

Then {M, : n > 1} is a martingale with respect to the filtration &, := o (Co x: |x| <
ng + n) with the variational process

Myu= Y W2 (4.22)

no<|x|<no+n
The Burkholder-Gundy-Davis inequality thus shows, for any p > 1,

r/2
E(|My|?) < cE((M)}%) = ¢ E Yoo W) (423

no<|x|<no+n

Furthermore, according to [42, Theorem 1], for every n > 1, the expectation on the
right is at most

/2
cpinf{r>0: > log(E[<1+t_1|z|4W(z)2)p :|>§p/2 . (4.24)
no<lz|<no+n

We now have to estimate the infimum.
Since —p(x) < W(x) < l¢,,=1},» we have E(|W (x)|") < p(x) forall r > 1. By
(I +x)" <+ axly>1) + bx") valid with r-dependent a, b > 0 for all x > 0, we
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then get that for p > 1,

log<E[(l 4! |z|4W(z)2)p/2])

< log (1 +ost z*p @ L1y + 03t_”/2|z|2pp(z)) (4.25)
< Cst_1|Z|4P(Z)11{p/2zl} + e3t7P2121PPp(z)
< a1 PPp(2),

where the constant c¢3 in the first inequality depends on p, in the second inequality we
also used the fact that In(1 + x) < x for all x > 0, and the last inequality is due to
Ix[*L(p/221) < |x[?” for |x| > 1. By our assumption, the sum on the right of (4.24)
is bounded by a constant times

) Y 1) (4.26)

[x[>no

uniformly in n > 1. For a given r > 0, say ¢ := 1, this can be made smaller than p/2
by choosing ng sufficiently large. The infimum (4.24) is then bounded by one and so
sup,~1 E[|M,|P] < cicz. With the help of the Monotone Convergence Theorem we
then éet v(0) € L?(P). The QIP then follows from Theorem 2.2. O

As noted earlier, Corollary 2.3 readily deals with the cases when {Cy, =
Cyxlyyeze are independent, zero-one valued random variables with
(assuming x # y)

1

P(Cx,y = 1) = m

(4.27)

A QIP is then inferred for all s > d. Another example is motivated by long range
stable-like random conductance models studied in [28]. There one takes (assuming
again that x # y)

Cry: Sx.y (4.28)

T lx — y|a’+s

where {§xy = &y x}, yeza areii.d. Bernoulli random variables except for [x — y| =1
where we set€, , := 1. Inthis case the conditions of Corollary 2.3 are met forall s > 2.

5 Failures of everywhere sublinearity
In this section we provide the promised counterexamples to everywhere sublinearity of

the corrector and thus prove Theorems 2.5 and 2.6 . We begin with the counterexample
arising in the context of long-range percolation.
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5.1 Long-range percolation

Consider long-range percolation with the connection probability p(x) having the
asymptotic (2.2) with exponent s € (d + 2, 2d), which is non-vacuous only when
d > 3. We will assume p(0) = 0, p(x) = 1 for x with |[x| = 1 and p(x) < 1 for all x
with |x| > 1. The conductances then obey

(1) Cx x =0forall x as.,
(2) Cyx,y = 1 whenever |x — y| =1as,
(3) P(Cy,y =1) = p(y — x) whenever |[x — y| > L.

As already mentioned, a key point is the proof of the existence of a “long” edge of
length n from o(n)-neighborhood of the origin. This would itself be easy to guarantee;
what makes it harder is that our arguments also need that the “far away” endpoint of
the “long” edge is incident to no other edges than the nearest-neighbor ones. The exact
statement is the subject of:

s—d 2s—d

Lemma5.1 Notingthat2 < s—d < dwemaypicky € (5=, =57~ A1) and consider

the event
Ax,y) :={Cyy =1}N {Vz VAR x}:ly—zl>1 = Cy;, = O}. 5.1

Then

A=) U Axy (5.2)

xezd yezd
|x|<n¥ n<|y|<2n

occurs for infinitely many n a.s.

Proof Instead of (5.1) consider the event
A, y) = (Coy=1n{VzeZ |y—zl > 1 & |z] > n” = Cy, =0}(5.3)

whose advantage over A(x, y) is that the two events on the right are now independent
as soon as x and y are as in the union in (5.2). Set

A= U Axw. (5.4)

xezd yezd
[x|<nY n<l|y|<2n

Obviously, A, C Z,,. Moreover, for n so large that n” < n — 1 (note that y < 1), on
A; ~ AS there is an edge between some x with |x| < n¥ and some y withn < |y| < 2n
so that y has another edge to some x” with |x’| < n”. Defining, also for later use,

Ixl, X'l <n”, n < |yl,y'| <2n
B,:=13x,x',y,y € 72 x,y) # &y, Cry=1=Cyyy¢, 5.5
y ?éy/ = Cy,y’ =1
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we thus have
AS C (A° N BS) U B,. (5.6)

We will now proceed to estimate probabilities of two events on the right-hand side.

For the probability of B,, we invoke a straightforward union bound. Let &,
denote the set of all quadruples (x, x’, y, ¥’) that satisfy the geometrical conditions in
event B,,. Then, for some constants ¢, ¢’ < 0o,

P(B) < Y, p(y—x)p0 —x)(8yy +p0—)))

x,x',y,y' €8y,

< CnZd}/—ZS-‘rO(l) Z (Sy,y/ + p(y _ y/)) < c/nZdy—ZsJ,-d-i-o(l)’ (57)

vyt
n=|yl.y'1<2n

where we first used that both p(y — x) and p(y’ — x’) are at most n ~*T°1)  then carried
out the sums over x and x’ to get a constant times n¢? from each and, finally, applied
that z — p(z) is summable because s > d. Noting that, in light of our choice of y, the
final exponent in (5.7) is negative, we get that Bo» occurs only for finitely many #, a.s.

Concerning the firstevent in (5.6), let N denote the number of edges between some x
with |x| < n? and some y with n < |y| < 2n and let {(x;, y,-):~i =1,..., N} list the
corresponding pairs of vertices connected by these edges. On A§, N B, we then know
that (once N > 1) all y; are distinct and each y; must have at least one non-nearest
neighbor edge to a vertex z with |z|] > n” and z ¢ {y1,..., yn}. Conditioning on
Fpi=0(Cyxy: x| <n¥, n <|y| < 2n), we thus have

N
P(A5 N By |F,) < Tiv=o) + Lin=0) 1"[(1 - [ (=pt-y) ) (5.8)
Jj=1 YEVLs IN
ly=yjl>1
where N and (yy, ..., ¥,) are as specified above. The product is bounded from below
by
ci=[]a=pc) (5.9

|z|>1

which is positive by the summability of p and our assumption that p(z) < 1 once |z| >
1. Hence,

P(AS N BS) <B(N <n’) + (1 — o) (5.10)
holds true for any § > 0. To estimate P(N < n%), let

gn = min  min_  p(y —x). (5.11)

[x|<n¥ n<|y|<2n
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and let V,, be the number of pairs (x, y) with |x| < n? andn < |y| < 2n. Then N is
stochastically dominated from below by a binomial random variable with parameters
V, and §,. As V,§, = n?d+) =510 with d(1 + y) —s > 0 by our assumptions
about y, the probability P(N < n?) decays, for 8 positive but small, exponentially in
a power of n. Using this in (5.10), the Borel-Cantelli lemma implies that Zf, N By
occurs only finitely often a.s. O

With the existence of the desired “long” edge established, we can move to the
construction of a counterexample to everywhere sublinearity of the corrector.

Proof of Theorem 2.5 Consider the long-range percolation setting as specified above.
The asymptotic (2.2) with s > d +2 implies E(}_ 74 Co x |x|2) < oo and so the cor-
rector can be defined by any of the standard methods (see, e.g., Biskup [22, Section 3]
for a discussion of these). In fact, by (2.9) above, the corrector is sublinear on average
(cf. [22, Proposition 4.15]), meaning that {x: |x (x)| > ¢|x|} is, for each ¢ > 0, a set
of zero density in Z<.

To show that yx is not sublinear everywhere in the sense of (2.10) we will assume,
for the sake of contradiction, that for each ¢ > 0 there is a (random) K < oo such
that

x| < K +elx|, xez (5.12)

(This is equivalent to (2.10).) Suppose that A, occurs and let x and y be the endpoints
of an edge that make A(x, y) in the definition of A,, occur. The harmonicity condition
(2.7) for ¥ from (2.6) at point y then reads

XA x@ = (+xM+ Y, GHxG+D—xM)=0,  (5.13)

z: |z|=1

where we noted that C,/,, = 1forx” = x and x’ being a neighbor of y; otherwise C,,, =
0. Applying (5.12) and the fact that |x|, |y|, |y + z| < 2n + 1 for all z with |z] = 1
yield

ly — x| < 2 +4d)K +2d + £(2 + 4d)(2n + 1). (5.14)

For ¢ small this contradicts |y — x| > n — n". Hence, by Lemma 5.1, (5.12) cannot
occur on A, for n large enough and, since A, does occur for infinitely many » a.s.,
(5.12) fails a.s. O

5.2 Nearest-neighbor conductances

Next we move to the context underlying Theorem 2.6. We start by defining some
auxiliary processes that will be used later to construct the desired environment law P.
As all of these live on the same probability space, we will keep using the same P
throughout. In the construction we assume that d > 2 although the ultimate conclusion
will be restricted to d > 3.
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Let {£,(x): L > 1,x € Z% be independent 0-1-valued random variables with
PEL(x) =1) =L, (5.15)

Note that £ (x) = 1 a.s. for all x. Consider a strictly increasing sequence {Ly : k > 1}
of integers with L = 1. A simple use of the Borel-Cantelli lemma shows

YL <oo = suplk=1:&,(0) =1} <ocas VxeZ! (516)
k>1

(The set on the right is non-empty a.s. as & (x) = 1 a.s.) Thus, assuming henceforth
Lk_d to be summable, let £(x) denote the maximal k with &7, (x) = 1.

Next let &1, ..., €, be the unit vectors in the coordinate directions and let us
regard Z%~! as the integer span of {&,, ..., &;}. Denote by

Ap=1{jéi+z:j=-3L,....3L, z€Z%7" |zl < 1}~ {0}.  (5.17)
the set consisting of 6L vertices in the first coordinate direction and centered at, but not

containing, the origin along with all of their nearest neighbors in the other coordinate
directions. Note that

Pz p=1-[la-L;H =Y L7 (5.18)

k>j k>j

By the monotonicity of k — Lg, we have ijl L;j Zkzj Lk_d =D i>1 21;21 Lj
L,:d < Zkz 1 kL ,lfd, so another use of the Borel-Cantelli lemma gives

ZkL,i_d <00
k>1
= sup{k > 1: max £(x +2) >k} < ocoas. Vx eZ% (5.19)

ZGALk

Assuming henceforth kL,i_d to be summable, let m(x) denote the maximal & in this
set for the given x. As {Ly : kK > 1} is increasing, we get

m(x) <f(x) = mx+z) >Ll(x)>Llx+2), z€ Ary,,. (5.20)

Obviously, the collection {(£(x), m(x)): x € 7%} is stationary. Moreover, as Ay does
not contain the origin, m(x) is independent of £(x) for each x. We now observe:

Lemma 5.2 Suppose that ) ;- | kL,lc_d < 00. Then there is a constant ¢ > 0 such
that

cLi! <P(m(x) < t(x) =k) < L;* (5.21)
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holds true for all k > 2 and all x € Z%. Moreover; if also Ly > 2Ly for all k > 1,
then

[3x € Z%: Ly < Ix]oo < 2Ly, m(x) < €(x) =k} (5.22)

occurs for infinitely many k, a.s.

Proof The definition of £(x) gives

P(e(x) =k) =L [Ja - L;d). (5.23)
=k

This yields immediately the upper bound in (5.21). On the other hand, the fact that
{Ly} is non-decreasing shows

1ALl
P(m(x) <k) = <]_[(1 - L]Td)>

j=k

> [AL;~NAr; |
xH((H(l—L, )) ) (5.24)

>k r>j

By |Ar| = O(L), the fact that L, > 1 and the summability of kL ,i_d, both terms in
the parentheses are bounded from below by a positive constant uniformly in k > 2.
Since m(x) and £(x) are independent we get the lower bound in (5.21) as well.

For the second part, recall that we regard Z?~! as the linear span of {&, ..., &;}
over the ring of integers. Given y € Z%~! and j € Z, define

Gi(y, j) :=={m(y + jér) <ty + j&) =k}. (5.25)

We observe that, by (5.20), we have G (y, ))NGr(y, j)) = Baslongas0 < |j—j'| <
3L. Hence, invoking also the lower bound in (5.21), we get

2Ly 2Ly
P<,-L£ Gi(y, j)) - XL: P(m(y + jé1) < £y + jér) =k) = L}~ (5.26)
=L J=Lk

Moreover, the giant unions are for distinct y € (3Z)?~! independent. Hence, we get

2L

P Gv(yv, j)) = >0 (5.27)
(U U

ye(3z)4-!  j=Lk
Li<|yloo<2Lk

for some ¢’ independent of k.

Now observe that the union in (5.27) is a subset of the event (5.22). Also note that,
as soon as we have Ly > 2L, the unions in (5.27) use, for distinct k’s, disjoint sets

@ Springer



Quenched invariance principle for random walks 885

of underlying coordinates {7 (x): L > 1, x € 7%} and are thus independent of one
another. By the second Borel-Cantelli lemma, the event in (5.22) occurs for infinitely
many k a.s. O

Let us introduce the shorthand

K (x) = Ly <ex) (5.28)

and note that {k (x)} is a stationary, ergodic process with a positive density of 1°’s. The
following observation will turn out to be quite useful:

Lemma 5.3 Given x € Z%, let E1 (x) denote the set of (nearest-neighbor) edges inci-
dent with vertices in {x + jé;: j =0,...,L}. Then

Y#EX & k) =1=«(X) = Er,,@x)N ELys x) = 0. (5.29)
Proof IfELM(x)ﬁELw) (x) #Wandx # x,thenx € )E+ALM) and X € X+ ALy

But then (5.20) and (5.28) yield m(x) > €(x) > £(x) and, similarly, m(x) > ¢(x) >
£(x), a contradiction. O

Proof of Theorem 2.6 Let p, g > 1 be numbers such that (2.11) holds and let p’ > p
and g’ > g be such that we still have

+—=>— (5.30)
(This is where we need to require d > 3.) Define sequences

ap = L~€=V/4" and p; .= L@-D/P (5.31)

Consider the construction given above with {Lj; : k > 1} such that Ly4; > 2L and

Ly := 1 so that all objects £(x), m(x) and k(x) are well defined. Given an x with
k(x) = 1, denote k := {£(x) and consider the set of edges E, (x) incident with at
least one vertex in {x + j&;: j = 0,..., Li}. Set the conductance to by, on edges

with both endpoints in this set and to a;, to those with only one endpoint in this set.
Thanks to Lemma 5.3, the conductance of each edge is set at most once so no conflict
can arise. We set the conductance on edges not in | J{E Lo - k(x) = 1} to one.

The resulting configuration of conductances is a measurable function of random
variables {£7 (x): L > 1, x € Z%} and, since this family is stationary and ergodic with
respect to shifts, so is the induced conductance law. Let us check that the integrability
conditions (2.12) hold. Fix any x with [x| = 1. Noting that E;, (z) contains Ly edges
of conductance by, and Ry := 2+ (2d — 2)(Ly + 1) edges of conductance ay,,, we
have

E(C§,) <1+ Z L;d(Lk(bLk)P + Ri(ar)?). (5.32)
k>1
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Plugging in (5.31), invoking that p’ > p and ¢’ > ¢ and using that {L;} grows
exponentially, we get Co ,» € L?(IP) as desired. Similarly,

E(Cod) < 14 Y L (Li(br) ™ + Re(ar,) ™), (5.33)
k>1

which is again finite by (5.31), our choices of p” and ¢’ and the exponential growth of
the sequence {Ly}.

Now let us move to the violation of sublinearity of the corrector. Suppose the
event (5.22) occurs at some x with Ly < [x|ec < 2L¢. The conductances Cy, on
edges (y,z) € Er,(x) then take values a;, and b;, as specified above. Denote by
D = {x+ jé:j=0,..., L} the corresponding set of vertices (which depends
on x) and let

Ep(H= Y. Culf®-rf@f (5.34)

(y,z)€EL, (x)

be the Dirichlet energy for a (R¢-valued) function f on D. The “harmonic coor-
dinate” ¥ from (2.6) solves the Dirichlet problem on D and so f := ¥ has
minimal € p(f) among all functions that agree with ¥ on the external boundary 9 D
of D.

We now derive bounds on Ep(¥). To get a lower bound, we fix the values at x
and x + L€, and set all conductances on edges with only one endpoint in D to zero.
Optimizing the remaining values is now a one-dimensional problem whose simple
solution yields

EpW) = br L W (x + Lié) — w (0] (5.35)

For the upper bound, we take the test function f that equals ¥ (x) everywhere on D.
This gives

EpW) <ar, Y |[w(y) —ww|. (5.36)
yeaD

Let us now see that this is not compatible with sublinearity of the corrector. Indeed, if
(5.12) were true, then the fact that D U 3D C [—3Lg, 3Lk]? yields

¥ () —¥x)| < (1 +6e)Ly +2K, yedD, (5.37)
while
| (x 4+ L&) — ¥ (x)| = (1 — 66)Li — 2K. (5.38)

But that contradicts the fact, implied by (5.30), that ay,, L%I&DI &L by, Li once k is
sufficiently large. Hence we cannot have (5.12) and, at the same time, the event in
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(5.22) to occur for k large. Lemma 5.2 implies that (5.12) fails for all ¢ > 0 and
all K < oo a.s. O
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