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Abstract
We study exceptional sets of the local time of the continuous-time simple random
walk in scaled-up (by N ) versions DN ⊆ Z

2 of bounded open domains D ⊆ R
2.

Upon exit from DN , the walk lands on a “boundary vertex” and then reenters DN

through a random boundary edge in the next step. In the parametrization by the local
time at the “boundary vertex” we prove that, at times corresponding to a θ -multiple
of the cover time of DN , the sets of suitably defined λ-thick (i.e., heavily visited)
and λ-thin (i.e., lightly visited) points are, as N → ∞, distributed according to the
Liouville Quantum Gravity ZD

λ with parameter λ-times the critical value. For θ < 1,
also the set of avoided vertices (a.k.a. late points) and the set where the local time is
of order unity are distributed according to ZD√

θ
. The local structure of the exceptional

sets is described as well, and is that of a pinned Discrete Gaussian Free Field for the
thick and thin points and that of random-interlacement occupation-time field for the
avoided points. The results demonstrate universality of the Gaussian Free Field for
these extremal problems.
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1 Introduction

1.1 Motivation

In a famous paper from1960, Erdős andTaylor [23] studied themost-frequently visited
site by the simple randomwalk onZ

2 of time-length n. They showed that the time spent
at that site is of order (log n)2 and conjectured that the time is asymptotically sharp on
that scale. This conjecture was proved in 2001 by Dembo et al. [15] (see also Rosen
[34]) who in addition described the multifractal structure of the set of thick points;
namely, those points where the local time is at least a given positive multiple of its
maximum. The problem has been revisited numerous times; e.g., by Dembo et al. [16]
who studied random walk late points, by Okada [32] who studied the most visited site
on the inner boundary of the range, or by Jego [24] who extended the results of [15,
34] to more general random walks.

Over the past two decades, it has become increasingly clear that many questions
about the local time can be usefully rephrased as questions about an associatedDiscrete
Gaussian Free Field (DGFF). This connection, discovered originally in mathematical
physics (Symanzik [39], Brydges et al. [12]), is now elegantly expressed via Dynkin-
type Isomorphism/SecondRay–Knight theorems (Dynkin [20], Eisenbaumet al. [22]).
Isomoporphism results of this kind drive the analysis of many important objects;
for instance, random interlacements (Sznitman [40], Rodriguez [35], etc), loop-
soups (Lawler and Werner [29], Le Jan [30], Lupu [31], etc) and the cover time
(Ding et al. [19], Ding [18], etc).
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Exceptional points of two-dimensional randomwalks… 3

In the present paper we use the Second Ray–Knight theorem of [22] to study
the precise statistics of the thick points for the simple random walk run for times
proportional to the cover time of an underlying “planar” graph. In addition to the
thick points, we analyze also the sets of thin points, which are those where the local
time is less than a fraction of its typical value, avoided points, which are those not
visited at all, and light points, where the local time is at most a given constant. We
show that all these level sets are intimately connected with the corresponding (so
called intermediate) level sets of the Discrete Gaussian Free Field studied earlier by
O. Louidor and the second author [10]. In particular, their limiting statistics is captured
by the Liouville QuantumGravity measures introduced and studied by Duplantier and
Sheffield [21].

1.2 Setting for the randomwalk

In order to take full advantage of the prior work [10] on the DGFF, we will consider a
slightly different setting than the earlier references [15, 23] and Abe [1], who studied
the leading order of the number of thick and thin points for random walk on two-
dimensional lattice tori. Indeed, our random walk will behave as the simple random
walk only inside a large finite subset of Z

2; when it exits this set it reenters in the next
step through a uniformly-chosen boundary edge.

To describe the dynamics of our random walk, consider first a general finite, unori-
ented, connected graph G = (V ∪ {�}, E), where � is a distinguished vertex (not
belonging to V ). We assume that each edge e ∈ E is endowed with a number ce > 0,
called the conductance of e. Let X denote a continuous-time (constant-speed) Markov
chain on V ∪ {�} that makes jumps at independent rate-1 exponential random times
to a neighbor selected with the help of transition probabilities

P(u, v) :=
{

ce
π(u)

, if e := (u, v) ∈ E,

0, otherwise,
(1.1)

where π(u) is the sum of ce for all edges incident with u. We will use Pu to denote
the law of X with Pu(X0 = u) = 1.

Given a path X of the above Markov chain, the local time at v ∈ V ∪ {�} at time t
is then given by

�Vt (v) := 1

π(u)

∫ t

0
ds 1{Xs=u}, t ≥ 0, (1.2)

where the normalization by π(u) ensures that the leading-order growth of t 	→ �Vt (v)

is the same for all vertices. We will henceforth work in the time parametrization by the
local time at the distinguished vertex�. For thiswe set τ̂�(t) := inf{s ≥ 0 : �Vs (�) > t}
and denote

LV
t (v) := �V

τ̂�(t)(v). (1.3)

In this parametrization, t is the expected (and leading-order) value of LV
t (v) under P�,

for every v ∈ V ∪ {�}.
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4 Y. Abe and M. Biskup

Fig. 1 The graph corresponding to V being the square of 6× 6 vertices. Each vertex on the outer perimeter
of V has an edge to the “boundary vertex” �; the corner vertices that have two edges to �. The “boundary
vertex” plays the role of the wired boundary condition used often in statistical mechanics. For us this ensures
that the associated DGFF vanishes outside V

Our derivations will make heavy use of the connection of the above Markov chain
with an instance of the Discrete Gaussian Free Field (DGFF). Denoting by

Hv := inf
{
t ≥ 0 : Xt = v

}
(1.4)

the first hitting time of vertex v, this DGFF is the centered Gaussian process {hVv : v ∈
V } with covariances given by

E
(
hVu h

V
v

) = GV (u, v) := Eu(�VH�
(v)
)
. (1.5)

Here and henceforth, E denotes expectation with respect to the law P of hV . The field
naturally extends to � by hV� = 0.

Returning back to random walks on Z
2, in our setting V stands for a large finite

subset V ⊆ Z
2 while � is the boundary vertex obtained by collapsing the set of

vertices outside V to a single point. The set of edges E is that between the nearest-
neighbor pairs in V plus all the edges from V to Z

2
� V that now “end” in �; see

Fig. 1. The transition rule of the Markov chain is that of the simple random walk
on the underlying graph; indeed, all conductances take a unit value, ce := 1, at all
the involved edges including those incident with �. The DGFF associated with this
network then corresponds to the “standard” DGFF in V (cf the review by Biskup [6])
with zero boundary conditions outside V except that our normalization is slightly
different than the one used in [6]—indeed, our fields are half the size of those in [6].

For the lattice domains, we will take sequences of subsets of Z
2 that approximate,

in the scaling limit, well-behaved continuum domains. The following definitions are
taken from Biskup and Louidor [8]:

Definition 1.1 An admissible domain is a bounded open subset of R
2 that consists of

a finite number of connected components and whose boundary is composed of a finite
number of connected sets each of which has a positive Euclidean diameter.

We write D to denote the family of all admissible domains and let d∞(·, ·) denote
the �∞-distance on R

2.

123



Exceptional points of two-dimensional randomwalks… 5

Definition 1.2 An admissible lattice approximation of D ∈ D is a sequence {DN }N≥1
of subsets ofZ2 such that the following holds: There is N0 ∈ N such that for all N ≥ N0
we have

DN ⊆
{
x ∈ Z

2 : d∞
(
x/N, R

2
� D

)
>

1

N

}
(1.6)

and, for any δ > 0 there is N1 = N1(δ) ∈ N such that for all N ≥ N1,

DN ⊇
{
x ∈ Z

2 : d∞(x/N, R
2

� D) > δ
}
. (1.7)

As shown in [8], these choices ensure that the discrete harmonic measure on DN

tends, under the scaling of space by N , weakly to the harmonic measure on D.
This yields a precise asymptotic expansion of the associated Green functions; see
[6,Chapter 1] for a detailed exposition. In particular, we have GDN (x, x) = g log N +
O(1) for

g := 1

2π
(1.8)

whenever x is deep inside DN . (This is by a factor 4 smaller than the corresponding
constant in [6, 8] due to a different normalization of our fields.)

Our random walk will invariably start from the “boundary vertex” �; throughout
we will thus write P� for the corresponding law of the Markov chain X . (This law
depends on N but we suppress that notationally.)

2 Main results

Our aim in this work is to describe the random walk at times that correspond to a
θ -multiple of the cover time, for every θ > 0. Recall that the cover time of a graph
is the first time that every vertex of the graph has been visited. Although this is a
random quantity, it is quite well concentrated (provided that the maximal hitting time
is of smaller order than the expected cover time; see Aldous [4]). In particular, at the
cover time of DN the local time at a typical vertex is asymptotic to 2g(log N )2. This
suggests that we henceforth take t proportional to (log N )2 as N →∞.

2.1 Maximum,minimum and exceptional sets

Let us begin by noting the range of values that the local time takes on DN :

Theorem 2.1 Let {tN }N≥1 be a positive sequence such that, for some θ > 0,

lim
N→∞

tN
(log N )2

= 2gθ. (2.1)
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6 Y. Abe and M. Biskup

Then for any D ∈ D, any admissible sequence {DN }N≥1 of lattice approximations
of D, the following limits hold in P�-probability:

1

(log N )2
max
x∈DN

LDN
tN (x) −→

N→∞ 2g
(√

θ + 1
)2 (2.2)

and

1

(log N )2
min
x∈DN

LDN
tN (x) −→

N→∞ 2g
[
(
√

θ − 1) ∨ 0
]2

. (2.3)

These conclusions have previously been obtained by Abe [1,Corollary 1.3] for
the continuous-time walk on the N × N torus. As is checked from (2.3), the cover
time indeed corresponds to θ = 1. Noting that the typical value of the local time at
a θ -multiple of the cover time is asymptotic to 2gθ(log N )2, we are naturally led to
consider the set of λ-thick points,

T +
N (θ, λ) :=

{
x ∈ DN : LDN

tN (x) ≥ 2g(
√

θ + λ)2(log N )2
}

(2.4)

for λ ∈ (0, 1], and λ-thin points,

T −
N (θ, λ) :=

{
x ∈ DN : LDN

tN (x) ≤ 2g(
√

θ − λ)2(log N )2
}

(2.5)

for λ ∈ (0,
√

θ ∧ 1], where the upper bounds on λ reflect on (2.2–2.3). As a boundary
case of T −

N (θ, λ), we single out the set of r -light points,

LN (θ, r) := {x ∈ DN : LDN
tN (x) ≤ r

}
, r ≥ 0, (2.6)

including the special case of the set of avoided points,

AN (θ) := {x ∈ DN : LDN
tN (x) = 0

}
(2.7)

(Dembo et al. [16] refer to (2.7) as the late points but we prefer the above in order to
make the distinction between (2.6) and (2.7) clear.) By (2.3), the latter two sets will
only be relevant for θ ∈ (0, 1]. Our aim is to describe the scaling limit of all these
sets in the limit as N →∞. As shown in Figs. 2 and 3, this limit should be a random
fractal.

2.2 Digression on exceptional sets of DGFF

As noted previously, Biskup and Louidor [10] have addressed similar questions in
the context of the DGFF. There the maximum of hDN is asymptotic to 2

√
g log N

and so the set of λ-thick points is naturally defined as that where the field exceeds
2λ
√
g log N . It was noted that taking a limit of these sets directly does not lead to
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Exceptional points of two-dimensional randomwalks… 7

Fig. 2 Plots of the λ-thick (left) and λ-thin (right) level sets for the same sample of the random walk on a
square of side length 1000 and parameter choices θ := 10 and λ := 0.1

Fig. 3 The sets of avoided points for a sample of the random walk on a square of side-length N = 2000
observed at times corresponding to θ -multiple of the cover time for θ := 0.1 (left) and θ := 0.3 (right)

interesting conclusions as, after scaling space by N , they become increasingly dense
in D. A proper way to capture their structure is via the random measure

ηD
N :=

1

KN

∑
x∈DN

δx/N ⊗ δ
h
DN
x −aN , (2.8)

where {aN }N≥1 is a centering sequence with the asymptotic aN ∼ 2λ
√
g log N and

KN := N 2

√
log N

e−
a2N

2g log N . (2.9)

123



8 Y. Abe and M. Biskup

In [10,Theorem 2.1] it was then shown that, for each λ ∈ (0, 1) there is c(λ) > 0 such
that, in the sense of vague convergence of measures on D × (R ∪ {+∞}),

ηD
N

law−→
N→∞ c(λ) ZD

λ (dx)⊗ e−αλhdh, (2.10)

where α := 2/
√
g and ZD

λ is a random measure in D called the Liouville Quantum
Gravity (LQG) at parameter λ-times critical. (While ηD

N is defined a priori as a mea-
sures on D×R, we will at times regard it as a measure on D×(R∪{+∞}), where D is
the closure of D and the topology on R∪{+∞} extends that on R so that the intervals
of the form [a,+∞] are compact.) The constant c(λ), given explicitly in terms of λ

and the constants in the asymptotic expansion of the potential kernel on Z
2, allows us

take ZD
λ to be normalized so that, for each Borel set A ⊆ D,

E ZD
λ (A) =

∫
A
r D(x)2λ

2
dx, (2.11)

where r D is an explicit function supported on D that, for D simply connected, is
simply the conformal radius; see [10,(2.10)].

A construction of the LQGmeasures goes back to Kahane’s Multiplichative Chaos
theory [27]; they were recently reintroduced and further studied by Duplantier and
Sheffield [21]. Shamov [38] neatly characterized the LQG measures for all λ ∈ (0, 1)
by their expected value and the behavior under Cameron–Martin shifts of the under-
lying continuum Gaussian Free Field.

2.3 Thick and thin points

Inspired by the above developments, we will encode the level sets T ±
N (θ, λ) via the

random measures

ζ D
N := 1

WN

∑
x∈DN

δx/N ⊗ δ(
L
DN
tN

(x)−aN
)
/ log N

, (2.12)

where {aN }N≥1 is a centering sequence and {tN }N≥1 is a sequence of times, both
growing proportionally to (log N )2, and

WN := N 2

√
log N

e−
(
√

2tN−
√

2aN )
2

2g log N . (2.13)

The normalization by log N in the second delta-mass in (2.12) indicates that we are
tracking variations of the local time of scale log N . (As we will see in Sect. 2.5, this is
also the order of the variation of the local time between nearest neighbors.)We then get:
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Exceptional points of two-dimensional randomwalks… 9

Theorem 2.2 (Thick points). Suppose {tN }N≥1 and {aN }N≥1 are positive sequences
such that, for some θ > 0 and some λ ∈ (0, 1),

lim
N→∞

tN
(log N )2

= 2gθ and lim
N→∞

aN
(log N )2

= 2g(
√

θ + λ)2. (2.14)

For any D ∈ D, any sequence {DN }N≥1 of admissible approximations of D, and for X
sampled from P�, in the sense of vague convergence of measures on D×(R∪{+∞}),

ζ D
N

law−→
N→∞

θ1/4

2
√
g (
√

θ + λ)3/2
c(λ)ZD

λ (dx)⊗ e−α(θ,λ)hdh, (2.15)

where α(θ, λ) := 1
g

λ√
θ+λ

and c(λ) is as in (2.10).

For the thin points, we similarly obtain:

Theorem 2.3 (Thin points). Suppose {tN }N≥1 and {aN }N≥1 are positive sequences
such that, for some θ > 0 and some λ ∈ (0, 1 ∧√θ),

lim
N→∞

tN
(log N )2

= 2gθ and lim
N→∞

aN
(log N )2

= 2g(
√

θ − λ)2. (2.16)

For any D ∈ D, any sequence {DN }N≥1 of admissible approximations of D, and for X
sampled from P�, in the sense of vague convergence of measures on D×(R∪{−∞}),

ζ D
N

law−→
N→∞

θ1/4

2
√
g (
√

θ − λ)3/2
c(λ)ZD

λ (dx)⊗ e+α̃(θ,λ)hdh, (2.17)

where α̃(θ, λ) := 1
g

λ√
θ−λ

and c(λ) is as in (2.10).

Note that, under (2.14) or (2.16), the above implies

|T ±
N (θ, λ)| = N 2(1−λ2)+o(1), (2.18)

where o(1) → 0 in probability. This conclusion has previously been obtained by the
first author in [1,Theorem 1.2], albeit for random walks on tori and under a different
parametrization of the level sets. The present theorems tell us considerably more.
Indeed, they imply that points picked at random from T ±

N (θ, λ) have asymptotically
the same statistics as those picked from the set where theDGFF is above the λ-multiple
of its absolute maximum.

The connection with the DGFF becomes nearly perfect if instead of log N we
normalize the second coordinate of ζ D

N by
√
2aN . In that parametrization, the resulting

measure coincides (up to reversal of the second coordinate for the thin points) with that
for the DGFF up to an overall normalization constant. This demonstrates universality
of the Gaussian Free Field in these extremal problems.
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10 Y. Abe and M. Biskup

2.4 Light and avoided points

The level sets (2.4–2.5) are naturally nested which suggests that, for θ ∈ (0, 1), also
the sets of r -light points LN (θ, r) and avoided points AN (θ) bear a close connection
to an intermediate level set of the DGFF, this time with λ := √

θ . As the next theorem
shows, this is true albeit under a different normalization:

Theorem 2.4 (Light points). Suppose {tN }N≥1 is a positive sequence such that

θ := 1

2g
lim

N→∞
tN

(log N )2
∈ (0, 1). (2.19)

For any D ∈ D, any sequence {DN }N≥1 of admissible approximations of D, and
for X sampled from P�, consider the measure

ϑD
N := 1

ŴN

∑
x∈DN

δx/N ⊗ δ
L
DN
tN

(x)
, (2.20)

where

ŴN := N 2e−
tN

g log N . (2.21)

Then, in the sense of vague convergence of measures on D × [0,∞),

ϑD
N

law−→
N→∞

√
2πg c(

√
θ) ZD√

θ
(dx)⊗ μ(dh), (2.22)

where c(λ) is as in (2.10) and μ is the Borel measure

μ(dh) := δ0(dh)+
( ∞∑

n=0

1

n!(n + 1)!
(α2θ

2

)n+1
hn
)
1(0,∞)(h) dh. (2.23)

Note that the density of the continuous part of the measure in (2.23) is uniformly
positive on [0,∞) and grows exponentially in

√
h. Naturally, the atom at zero has the

interpretation of the contribution of the avoided points and so we get:

Theorem 2.5 (Avoided points) Suppose {tN }N≥1 is a positive sequence such that
(2.19) holds. For any D ∈ D, any sequence {DN }N≥1 of admissible approximations
of D, and for X sampled from P�, consider the measure

κD
N := 1

ŴN

∑
x∈DN

1{
L
DN
tN

(x)=0
} δx/N , (2.24)

where ŴN is as in (2.21). Then, in the sense of vague convergence of measures on D,

κD
N

law−→
N→∞

√
2πg c(

√
θ) ZD√

θ
(dx), (2.25)
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Exceptional points of two-dimensional randomwalks… 11

where c(λ) is again as in (2.10).

We conclude that, at times asymptotic to a θ -multiple of the cover time with θ < 1,
the total number of avoided points is proportional to ŴN = N 2(1−θ)+o(1). Moreover,
when normalized by ŴN , it tends in law to a constant times the total mass of ZD√

θ
.

2.5 Local structure: thick and thin points

Similarly to the case of theDGFF treated in [10], the convergence of the pointmeasures
associated with the exceptional sets can be extended to include information about the
local structure of the exceptional sets under consideration. For the case of thick and
thin points, this structure is captured by the measure on Borel subsets of D×R×R

Z
2

(under the product topology) defined by

ζ̂ D
N := 1

WN

∑
x∈DN

δx/N

⊗δ(
L
DN
tN

(x)−aN
)
/ log N

⊗ δ{(
L
DN
tN

(x)−L
DN
tN

(x+z)
)
/ log N : z∈Z2

}. (2.26)

In order to express the limit measure, we need to introduce the DGFF φ on Z
2 pinned

to zero at the origin. This is a centered Gaussian field on Z
2 with law ν0 determined

by

Eν0(φxφy) = a(x)+ a(y)− a(x − y), (2.27)

where a : Z
2 → [0,∞) is the potential kernel, i.e., the unique function with a(0) = 0

which is discrete harmonic on Z
2

� {0} and satisfies a(x) = g log |x | + O(1) as
|x | → ∞. For the thick points, we then get:

Theorem 2.6 (Local structure of the thick points)Under the conditions of Theorem 2.2
and denoting by ζ D the limit measure on the right of (2.15),

ζ̂ D
N

law−→
N→∞ ζ D ⊗ νθ,λ, (2.28)

where νθ,λ is the law of 2
√
g(
√

θ + λ)(φ + αλa) under ν0.

For the thin points, we in turn get:

Theorem 2.7 (Local structure of the thin points) Under the condition of Theorem 2.3
and denoting by ζ D the limit measure on the right of (2.17),

ζ̂ D
N

law−→
N→∞ ζ D ⊗ ν̃θ,λ, (2.29)

where ν̃θ,λ is the law of 2
√
g(
√

θ − λ)(φ − αλa) under ν0.
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12 Y. Abe and M. Biskup

As shown in [10], the field φ + λαa describes the local structure of the DGFF
near the points where it takes values (close to) 2

√
gλ log N . As before, the prefactor

2
√
g(
√

θ ± λ) disappears when instead of log N we normalize the third coordinate
of ζ̂ D

N by
√
2aN . The above results thus extend the universality of the DGFF to the

local structure as well.

2.6 Local structure: avoided points

The local structure of the local time near the avoided points will be radically different.
Indeed, in the vicinity of an avoided point, the local time will remain of order unity
and so a proper way to extend the measure κD

N is

κ̂D
N := 1

ŴN

∑
x∈DN

1{
L
DN
tN

(x)=0
}δx/N ⊗ δ{

L
DN
tN

(x+z) : z∈Z2
}, (2.30)

which is now a Borel measure on D × [0,∞)Z
2
. Moreover, near an avoided point x ,

the walk itself should behave as if conditioned not to hit x . This suggests that its
trajectories will look like two-dimensional random interlacements introduced recently
by Comets et al. [13] and Rodriguez [36], building on earlier work of Sznitman [40]
and Teixeira [41] in transient dimensions. In order to state our limit theorem, we need
to review some of the main conclusions from [13, 36].

First we need some notation. Let W be the set of all doubly-infinite transient
random-walk trajectories on Z

2; namely, piece-wise constant right-continuous maps
X : R → Z

2 that make only jumps between nearest neighbors and spend only
finite time (measured by the Lebesgue measure) in every finite subset of Z

2. We
endow W with the σ -fieldW generated by finite-dimensional coordinate projections,
W := σ(Xt : t ∈ R). For A ⊆ Z

2 finite, we write WA for the subset of W of the
trajectories that visit A.

Next we will put a measure Q0,Z2

A on WA as follows. Let hA denote the harmonic
measure of A from infinity (i.e., the distribution of the first entry point to A by a random
walk started at infinity). Assume 0 ∈ A and let P̂ x denote the law of a constant-speed
continuous-time random walk on Z

2
� {0} started at x with conductance a(y)a(z) at

nearest-neighbor edges (y, z) in Z
2. By Doob’s h-transform argument, P̂ x is the law

of the simple random walk on Z
2 started from x and conditioned to avoid 0. For all

cylindrical events E+, E− ∈ σ(Xt : t ≥ 0) and any x ∈ Z
2, we then set

Q0,Z2

A

(
(X−t )t≥0 ∈ E−, X0 = x, (Xt )t≥0 ∈ E+

)
:= 4 a(x)hA(x)P̂ x (E+)P̂ x (E− | HA = ∞). (2.31)

Note that, since cylindrical events are unable to distinguish left and right path
continuity, writing (X−t )t≥0 ∈ E− is meaningful. The transience of P̂ x implies
P̂ x (HA = ∞) > 0 whenever hA(x) > 0 and so the conditioning on the right-hand
side is non-singular.
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Exceptional points of two-dimensional randomwalks… 13

The measure Q0,Z2

A represents the (un-normalized) law of doubly-infinite trajec-
tories of the simple random walk that hit A (recall that hA(x) = 0 unless x ∈ A)
but avoid 0 for all times. As the main results of [13, 36] show, the normalization is
chosen such that these measures are consistent, albeit only after factoring out time
shifts. To state this precisely, we need some more notation. Regarding two trajectories
w,w′ ∈ W as equivalent if they are time shifts of each other—i.e., if there is t ∈ R

such that w(s) = w′(s + t) for all s ∈ R—we use W � to denote the quotient space
of W induced by this equivalence relation. Writing �� : W → W � for the canonical
projection, the induced σ -field on W � is given byW� := {E ⊆ W � : �−1

� (E) ∈W}.
Note that W �

A := ��(WA) ∈W�.
Theorems 3.3 and 4.2 of [36] (building on [41,Theorem 2.1], see also [13,p. 133])

then ensure the existence of a (unique) measure onW � such that for any finite A ⊆ Z
2

and any E ∈W�,

ν0,Z
2
(E ∩W �

A) = Q0,Z2

A ◦�−1
� (E ∩W �

A). (2.32)

Since Q0,Z2

A is a finite measure and the set of finite A ⊆ Z
2 is countable, ν0,Z

2

is σ -finite. We may thus consider a Poisson point process on W � × [0,∞) with
intensity ν0,Z

2 ⊗ Leb. Given a sample ω from this process, which we may write
as ω = ∑

i∈N
δ(w�

i ,ui )
, and any u ∈ [0,∞), we define the occupation time field at

level u by

Lu(x) :=
∑
i∈N

1{ui≤u}
1

4

∫
R

dt 1{wi (t)=x}, x ∈ Z
2, (2.33)

where wi ∈ W is any representative of the class of trajectories marked by w�
i ; i.e.,

��(wi ) = w�
i . (The integral does not depend on the choice of the representative.) We

are now ready to state the convergence of the measures κ̂D
N .

Theorem 2.8 (Local structure of the avoided points) Under the conditions of Theo-
rem 2.5 and for κD denoting the measure on the right of (2.25),

κ̂D
N

law−→
N→∞ κD ⊗ νRIθ , (2.34)

where νRIθ is the law of the occupation time field (Lu(x))x∈Z2 at u := πθ .

We expect a similar result to hold for the light points as well but with the random
interlacements replaced by a suitably modified version that allows the walks to hit the
origin but only accumulating a given (order unity) amount of local time there. Samples
of the occupation time field near an avoided point are shown in Fig. 4.

3 Main ideas, extensions and outline

Let us proceed by a brief overview of the main ideas of the proof and then a list of
possible extensions and refinements. We also outline the remainder of this paper.
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14 Y. Abe and M. Biskup

Fig. 4 Samples of the occupation-time field near two randomly-selected avoided points of a random walk
run for 0.2-multiple of the cover time in a square of side-length N = 2000. Only the square of side-length
81 centered at the chosen avoided point is depicted

3.1 Main ideas

As already noted, key for all developments in this paper is the connection of the local
time LV

t and the associated DGFF hV . Our initial take on this connection was through
the fact that the DGFF represents the fluctuations of LV

t at large times via

LV
t (·)− t√

2t

law−→
t→∞ hV (3.1)

which is proved by decomposing the local time in individual excursions and applying
the Central Limit Theorem. (The observation (3.1) also guided the parametrization in
the earlier work on this problem, e.g., [1].) However, as noted at the end of Sect. 2.3,
for the thick and thin points, the effective t in the correspondence (3.1) of the local time
with the DGFF turns out to be aN , rather than tN , due to conditioning on large local
time. In particular, approximating the local time fluctuations by the DGFF becomes
accurate only beyond the times of the order of the cover time.

We thus base our proofs on a deeper version of the connection, known under the
name Second Ray–Knight Theorem after Ray [33] and Knight [28] or Dynkin isomor-
phism after Dynkin [20], although the statement we use is due to Eisenbaum et al. [22]
(with an interesting new proof by Sabot and Tarres [37]):

Theorem 3.1 (Dynkin isomorphism)Consider the randomwalk on V ∪{�} as detailed
in Sect. 1.2. For each t > 0 there exists a coupling of LV

t (sampled under P�) and
two copies of the DGFF hV and h̃V such that

hV and LV
t are independent (3.2)

and

LV
t (u)+ 1

2
(hVu )2 = 1

2

(̃
hVu +

√
2t
)2

, u ∈ V . (3.3)

This is usually stated as a distributional identity; the coupling version is then a result
of abstract-nonsense theorems in probability (see Zhai [42,Section 5.4]).
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Exceptional points of two-dimensional randomwalks… 15

Our proofs are based on the following natural idea: If we could simply disregard the
DGFF on the left-hand side of (3.3), the relation would tie the level set corresponding
to LDN

tN ≈ aN to the level sets of the DGFF where

either h̃DN ≈ √2aN −
√
2tN or h̃DN ≈ −√2aN −

√
2tN . (3.4)

For aN → ∞, the second level set lies further away from the mean of h̃DN than the
first and its contribution can therefore be disregarded. (This is true for the thick and
thin points; for the light and avoided points both levels play a similar role). One could
then simply hope to plug to the existing result (2.10).

Unfortunately, since Var(hDN
x ) is of order log N , the square of the DGFF on the

left of (3.3) is typically of the size of the anticipated fluctuations of LDN
tN and so

it definitely affects the limiting behavior of the whole quantity. The main technical
challenge of the present paper is thus to understand the contribution of this term
precisely. A key observation that makes this possible is that even for x ∈ DN where
LDN
tN (x) + 1

2 (h
DN
x )2 takes exceptional values, the DGFF hDN

x remains typical (and

LDN
tN (x) is thus dominant). This requires proving fairly sharp single-site tail estimates

for the local time and combining themwith the corresponding tail bounds for theDGFF.
Once that is done, we include the field hDN , properly scaled, as a third “coordinate”

of the point process and study weak subsequential limits of these. For instance, for the
thick and thin points this concerns the measure

1

WN

∑
x∈DN

δx/N ⊗ δ(
L
DN
tN

(x)−aN
)
/ log N

⊗ δ
h
DN
x /

√
log N

. (3.5)

Here the key is to show that the DGFF part acts, in the limit, as an explicit deterministic
measure. For instance, for the thick and thin points this means that if ζ D

N converges
to some ζ D along a subsequence of N ’s, the measure in (3.5) converges to ζ D ⊗ g
where g is the normal law N (0, g); see Lemma 5.3.

Denoting by � the second variable and by h the third variable in (3.5), the Dynkin
isomorphism now tells us that the “law” of � + h2

2 under any weak subsequential
limit of the measures in (3.5) is the same as the limit “law” of the DGFF centered
at
√
2aN − √2tN (for the thick points) which we know from (2.10). This produces

a convolution-type identity for subsequential limits of the local-time point process.
Some technical work then shows that this identity has a unique solution which can be
identified explicitly in all cases of interest.

We note that an important benefit of our reliance on the Dynkin isomorphism is that
our arguments—and, in particular, the proof of convergence of the measures in (3.5)—
avoid the need to work with the second moments of the local time. Unlike the first
moments, these are harder to control explicitly and that particularly so under additional
truncation that would be required to cover the whole regime of interesting behavior.

Our control of the local structure of the exceptional points also relies on isomor-
phism theorems. For the thick and thin points, we combine the Dynkin isomorphism
with Theorem 2.1 of [10] that captures the local structure of intermediate level sets of
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16 Y. Abe and M. Biskup

theDGFF. For the avoided points, we instead invoke thePinned Isomorphism Theorem
of Rodriguez [36,Theorem 5.5] that links the random-interlacement occupation-time
field (Lu(x))x∈Z2 introduced in (2.33) to the pinned DGFF φ defined via (2.27)
as follows:

Theorem 3.2 (Pinned Isomorphism Theorem). Let u > 0 and suppose (Lu(x))x∈Z2

with law νRIu/π is independent of {φx : x ∈ Z
2} with law ν0. Then

Lu + 1

2
φ2 law= 1

2

(
φ + 2

√
2u a

)2
, (3.6)

where a is the potential kernel. (The extra factor of 2 compared to [36,Theorem 5.5]
is due to different normalizations of the local time, the pinned field and the
potential kernel.)

It is exactly the generalization of this theorem that blocks us from extending control
of the local structure to the light points. Indeed, we expect that, for the light points,
the associated process is still that of random interlacements but with the local time
at the origin fixed to a given positive number. Developing the theory of this process
explicitly goes beyond the scope of the present paper.

3.2 Extensions and refinements

We see a number of possible ways the existing conclusions may be refined so let us
discuss these in some more detail.

Other “boundary” conditions: Perhaps the most significant deficiency of our setting
is the somewhat unnatural mechanism by which the walk returns back to DN after
each exit. Contrary to the intuition one might have, this does not lead to the local
time exploding near the boundary; see Fig. 5 or the fact that ZD

λ puts no mass on ∂D.
The main reason for using the specific setting worked out here is that it allows us to
seamlessly plug in the existing results from [10] on the “intermediate” level sets of
the DGFF. The natural alternatives are

(1) running the walk on an N × N torus, or
(2) running the walk as a simple randomwalk on all ofZ

2 but only recording the local
time spent inside DN .

Both of these require developing the level-set analysis of a DGFF on a finite graph
pinned at one vertex.

Time parametrization: Another feature for which our setting may be considered
somewhat unnatural is the parametrization of the walk by the time spent at the “bound-
ary vertex.” A reasonable question is then what happens when we instead use the
parametrization by the actual time of the walk (continuous-time parametrization), or
even by the number of discrete steps that thewalk has taken (discrete-time parametriza-
tion). The main problem here is the lack of a direct connection with the underlying
DGFF; instead, one has to rely on approximations.
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Exceptional points of two-dimensional randomwalks… 17

Fig. 5 Left: Plot of the trajectory of the random walk on a 200 × 200 square run for 0.3-multiple of the
cover time. The time runs in the vertical direction. Right: The corresponding local time profile. Note that
while short excursions near the boundary are numerous, most contribution to the local time profile comes
from the excursions that reach “deep” into the domain

Preliminary calculations have so far shown that, at least approximately, the local
time in the continuous-time parametrization is still connected with the DGFF as in
(3.3) but nowwith the field h̃DN reduced by its arithmetic mean over DN . This implies
that, for both continuous and discrete-time analogues of the measures ζ D

N , ϑD
N and κD

N ,
their N →∞ limits still take the product form as in (2.15), (2.17), (2.22) and (2.25),
respectively, albeit now with ZD

λ replaced by a suitable substitute reflecting on the
reduction of the CGFF by its arithmetic mean. Update in revision: These statements
have now been established rigorously in Abe, Biskup and Lee [3].

Critical cases: Another natural extension to consider concerns various borderline
parameter regimes left out in the present paper; namely, λ := 1 for the λ-thick points
andλ := √

θ∧1 for theλ-thin points aswell as θ := 1 for the avoidedpoints. In analogy
with the corresponding question for the DGFF (Biskup and Louidor [7–9]), we expect
that the corresponding measures will require a different scaling—essentially, boost-
ing by an additional factor of log N—and the limit spatial behavior will be governed
by the critical LQG measure ZD

1 . For the simple random walk on a homogeneous
tree of depth n, this program has already been carried out by the first author (Abe
[2]). A breakthrough result along these lines describing the limit law of the cover
time on homogenous trees has recently been posted by Cortines et al. [14] and by
Dembo et al. [17]. Update in revision: The limit law of the maximum cover time has
recently been established by Biskup and Louidor [11].
Brownian local time: Yet another potentially interesting extension concerns the corre-
sponding problem for the Brownian local time. This requires working with the ε-cover
time defined as the first time when every disc of radius ε > 0 inside D has been
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18 Y. Abe and M. Biskup

visited; the limit behavior is then studied as ε ↓ 0.We actually expect that, with proper
definitions, very similar conclusions will hold here as well although we presently do
not see other way to prove them than by approximations via random walks.

Jego [25] recently posted a preprint that proves the existence of a scaling limit for
the process associated, similarly to our ζ D

N from (2.12), with the local-time thick points
of the Brownian path killed upon first exit from D. As it turns out, the limit measure
still factors into a product of a random spatial part, defined via limits of exponentials of
the root of the local time, and an exponential measure. However, although the spatial
part of the measure obeys the expectation identity of the kind (2.11), it is certainly not
one of the LQG measures ZD

λ above, due to the limited time horizon of the Brownian
path. Jego [26] characterized the limit measure directly by a list of natural properties.

3.3 Outline

The rest of this paper is organized as follows. In the next section (Sect. 4) we derive
tail estimates for the local time that will come handy later in the proofs. These are
used to prove tightness of the corresponding point measures. Section 5 then gives the
proof of convergence for the measure associated with the λ-thick points following the
outline from Sect. 3.1. This proof is then used as a blue print for the corresponding
proofs for the λ-thin points (Sect. 6) and the light and avoided points (Sect. 7). The
results on the local structure are proved at the very end (Sect. 8).

4 Tail estimates and tightness

We are now ready to commence the proofs of our results. All of our derivations
will pertain to the continuous-time Markov chain started, and with the local time
parametrized by the time spent, at the “boundary vertex.” Let us pick a domain D ∈ D
and a sequence {DN }N≥1 of admissible approximations of D and consider these fixed
throughout the rest of this paper. Recall the notation ζ D

N , ϑD
N and κD

N for the measures
in (2.12), (2.20) and (2.24), respectively.

4.1 Upper tails

Webegin with estimates on the tails of the random variable LDN
tN (x)which then readily

imply tightness of the random measures of interest. We first derive these estimates in
the general setting of a randomwalk on a graph with a distinguished vertex � and only
then specialize to N -dependent domains in the plane. We begin with the upper tail:

Lemma 4.1 (Local time upper tail) Consider the random walk on V ∪ {�} as detailed
in Sect. 1.2. For all a, t > 0 and all b ∈ R such that a + b > t , and all x ∈ V ,

P�
(
LV
t (x) ≥ a + b

) ≤
√
GV (x, x)√

2(a + b)−√2t
e
− (

√
2a−√2t)2

2GV (x,x) e
−b

√
2a−√2t

GV (x,x)
√
2a . (4.1)
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Exceptional points of two-dimensional randomwalks… 19

Proof We will conveniently use estimates developed in earlier work on this problem.
Denoting by (Ys)s≥0 the 0-dimensional Bessel process and writing Pa

Y for its law with
Pa
Y (Y0 = a) = 1, Lemma 3.1(e) of Belius et al. [5] shows

LV
t (x) under P� law= 1

2

(
YGV (x,x)

)2 under P
√
2t

Y . (4.2)

(Strictly speaking, the derivations in [5] are restricted to randomwalks on linear graphs.
To make them applicable to our setting, we invoke a “network reduction” argument
that effectively replaces the underlying graph by a single edge connecting � to x . The
reduction preserves both GV (x, x) and the law of LV

t (x) under P�.)
Let Pr

B be a law under which (Bs)s≥0 is a standard Brownian motion on R starting
at r . The process Y is absolutely continuous with respect to B up to the first time it
hits zero; after that Y vanishes identically. The Radon–Nikodym derivative takes the
explicit form (see, for example, [5,(2.13)])

dPr
Y

dPr
B

∣∣∣FH0∧t
=
√

r

Bt
exp

{
−3

8

∫ t

0
ds

1

B2
s

}
, on {H0 > t}, (4.3)

where Ft is the σ -field generated by the process up to time t and Ha is the first time
the process hits level a.

The identification (4.2) along with the assumptions a + b > 0 translates the event
{LV

t (x) ≥ a + b} to {Yt ≥ √
2(a + b)} intersected by {H0 > t}. For r := √

2t , the
assumption a + b > t implies that the quantity in (4.3) is less than one everywhere
on the event of interest. Hence,

P�
(
LV
t (x) ≥ a + b

) ≤ P
√
2t

B

(
BGV (x,x) ≥

√
2(a + b)

)
= P0

B

(
BGV (x,x) ≥

√
2(a + b)−√2t

)
. (4.4)

In order to get (4.1) from this, we invoke the Gaussian estimate P(N (0, σ 2) ≥ x) ≤
σ x−1e−

x2

2σ2 valid for all x > 0 along with the calculation

(√
2(a + b)−√2t

)2 = 2(a + b)+ 2t − 2
√
2a
√
2t
(
1+ b

a

)1/2
≥ 2(a + b)+ 2t − 2

√
2a
√
2t
(
1+ b

2a

)

= (√2a −√2t
)2 + 2b

√
2a −√2t√

2a
, (4.5)

where we used that (1+ x)1/2 ≤ 1+ x/2 holds for all x > −1. ��
From this we readily obtain:
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Corollary 4.2 (Tightness for the thick points) Suppose that tN and aN are such that
the limits in (2.14) exist for some θ > 0 and some λ ∈ (0, 1). For each b ∈ R, there
is c1(b) ∈ (0,∞) such that for all A ⊆ R

2 closed,

lim sup
N→∞

E�
[
ζ D
N

(
A × [b,∞)

)] ≤ c1(b)Leb(A ∩ D). (4.6)

Proof It suffices to prove the bound for all b < 0 with |b| sufficiently large. Pick x ∈
DN . If GDN (x, x) ≥ g

b2
log N , then Lemma 4.1 with a := aN , t := tN and b replaced

by b log N and the uniform bound GDN (x, x) ≤ g log N + c give

P�
(
LDN
tN (x) ≥ aN + b log N

) ≤ c̃√
log N

e−
(
√

2aN−
√

2tN )2

2g log N eβ|b|3, (4.7)

for some constants c̃ < ∞ and β > 0 independent of b and N , once N is sufficiently
large. This is of order WN/N 2. If, on the other hand, GDN (x, x) ≤ g

b2
log N , then we

use that GDN (x, x) ≥ 1
4 in the second exponential on the right of (4.1) to get

P�
(
LDN
tN (x) ≥ aN + b log N

) ≤ c̃′√
log N

e−b
2 (
√

2aN−
√

2tN )2

2g log N eβ ′|b| log N , (4.8)

where again c̃′ < ∞ and β ′ > 0 do not depend on b or N once N is sufficiently large.
Since the first exponent in (4.8) is of order log N , for |b| large enough, this is again
at most order WN/N 2. Now write Aε := {x ∈ R

2 : d∞(x, A) < ε} and note that, in
light of (1.6), we have

#
{
x ∈ DN : x/N ∈ A

} ≤ N 2Leb(A1/N ∩ D). (4.9)

Summing the relevant bound from (4.7–4.8) over x ∈ DN with x/N ∈ A, the claim
follows by noting that, since A is closed, we have Leb(A1/N ∩ D) → Leb(A ∩ D)

as N →∞. ��

4.2 Lower tails

For the lower tail we similarly get:

Lemma 4.3 (Local time lower tail)Consider the randomwalk on V∪{�}as in Sect.1.2.
For all a, t > 0 and all b′ < b such that a + b′ > 0 and a + b < t , and all x ∈ V ,

P�
(
LV
t (x)− a ∈ [b′, b])

≤
( t

a + b′
)1/4 √

GV (x, x)√
2t −√2(a + b)

e
− (

√
2t−√2a)2

2GV (x,x) e
+b

√
2t−√2a

GV (x,x)
√
2a . (4.10)
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Proof We use again the passage (4.2–4.3) via the Bessel process and Brownianmotion
except that here we can no longer bound the prefactor in (4.3) by one. Instead, we get
the root of the ratio of the roots of 2t and 2(a + b′). Therefore, (4.4) is replaced by

P�
(
LV
t (x)− a ∈ [b′, b])

≤
( t

a + b′
)1/4

P0
B

(
BGV (x,x) ≤

√
2(a + b)−√2t

)
. (4.11)

Noting that the difference in the probability on the right is negative, the rest of the
calculation is exactly as before. ��

Postponing the tightness of the thin points to the end of this subsection, we first
deal with estimates for the light and avoided points:

Lemma 4.4 (Vanishing local time) For each t > 0 and each x ∈ V ,

P�
(
LV
t (x) = 0

) = e
− t

GV (x,x) . (4.12)

In fact, for every b ≥ 0, we have

P�
(
LV
t (x) ≤ b

) ≤ e
− t

GV (x,x)
exp{− b

GV (x,x)
} ≤ e

− t
GV (x,x)

+b t
GV (x,x)2 . (4.13)

Proof Here we proceed by a direct argument based on excursion decomposition (see,
however, Remark 4.5). Writing Ĥu for the first time to return to u after the walk left u,
consider the following independent random variables:

(1) N := Poisson(t/GV (x, x)),
(2) {Zn : n ≥ 1} := i.i.d. Geometric with parameter p := Px (H� < Ĥx ),
(3) {Tk, j : k, j ≥ 1} := i.i.d. Exponentials with mean one.

We then claim

π(x)LV
t (x)

law=
N∑

k=1

Zk∑
j=1

Tk, j . (4.14)

To see this, note that thanks to the parametrization by the local time at �, the
value LV

t (x) is accumulated through a Poisson(π(�)t) number of independent excur-
sions that start and end at �. Each excursion that actually visits x , which happens with
probability P�(Hx < Ĥ�), contributes a Geometric(p)-number of independent expo-
nential randomvariables to the total time thewalk spends at x . By Poisson thinning, the
number of excursions that visit x is Poisson with parameter π(�)P�(Hx < Ĥ�)t . We
claim that this equals t/GV (x, x). Indeed, since the walk is constant speed, reversibil-
ity gives

π(�)P�(Hx < Ĥ�) = π(x)Px (H� < Ĥx ). (4.15)
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As was just noted, under Px the quantity π(x)�H� (x) is the sum of Geometric(p)-
number of independent exponentials of mean one. From (1.5) we then conclude
π(x)GV (x, x) = 1/p.

With (4.14) in hand, to get (4.12) we just observe that, modulo null sets, the sum
in (4.14) vanishes only if N = 0. To get (4.13) we note that, for LV

t (x) ≤ b we must
have

∑Zk
j=1 Tk, j ≤ bπ(x) for each k = 1, . . . , N . The probability that the sum of Zk

independent exponentials is less than bπ(x) equals 1−e−bpπ(x), and that this happens
for all k = 1, . . . , N thus has probability at most

∞∑
n=0

(t/GV (x, x))n

n!
[
1− e−bpπ(x)]ne− t

GV (x,x) = e
− t

GV (x,x)
e−bpπ(x)

. (4.16)

The claim again follows from 1/p = π(x)GV (x, x) and the bound e−x ≥ 1− x . ��
Remark 4.5 We note that a proof based on the connection with the 0-dimensional
Bessel process is also possible. Indeed, by Belius et al. [5,(2.8)], given x > 0 the law
of (Ys)2 under Px

Y is given by

e−
x
2s δ0(dy)+ 1(0,∞)(y)

1

2s

√
x

y
I1
(√xy

s

)
e−

x+y
2s dy, (4.17)

where I1(z) :=∑∞
k=0

(z/2)2k+1
k!(k+1)! . The identity (4.12) then follows from (4.2) and

I1
( √

2ts

GV (x, x)

)
≤

√
2ts

2GV (x, x)
e

ts
2GV (x,x)2 (4.18)

implies the inequality in (4.13) as well.

From Lemma 4.4 we get:

Corollary 4.6 (Tightness for the light and avoided points) Suppose tN is such that
(2.19) holds with some θ ∈ (0, 1). For each b > 0 there is a constant c2(b) ∈ (0,∞)

such that for each A ⊆ R
2 closed,

lim sup
N→∞

E�
[
ϑD
N (A × [0, b])] ≤ c2(b)Leb(A ∩ D). (4.19)

In particular,

lim sup
N→∞

E�
[
κD
N (A)

] ≤ c2(b)Leb(A ∩ D). (4.20)

Proof It suffices to prove just (4.19) and that for b > 0 sufficiently large. Denote c̃ :=
supN≥1 tN/(log N )2. We then claim

P�
(
LDN
tN (x) ≤ b

) ≤ e−btN (log N )−1 + e
− tN

GDN (x,x)
+c̃b3e8b

. (4.21)
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Indeed, the first term arises for x withGDN (x, x) ≤ b−1e−4b log N by the first inequal-
ity in (4.13) andGDN (x, x) ≥ 1

4 . The second term controls the remaining x ; we invoke
the second inequality in (4.13) along with btN/GDN (x, x)2 ≤ c̃b3e8b.

For b sufficiently large, the first term on the right of (4.21) is o(ŴN/N 2) indepen-
dently of x ∈ DN . The second term is in turn O(ŴN/N 2), with the implicit constant
depending on b, by the fact that that GDN (x, x) ≤ g log N + c, uniformly in x ∈ DN .
The sum over such x ∈ DN with x/N ∈ A is now handled via (4.9). ��

4.3 Some corollaries

Combining the conclusions of Lemmas 4.3 and 4.4, we can now derive the easier
halves of Theorem 2.1:

Lemma 4.7 Suppose θ > 0 is related to tN as in (2.1). Then for each ε > 0, the
bounds

1

(log N )2
max
x∈DN

LDN
tN (x) ≤ 2g

(√
θ + 1

)2 + ε (4.22)

and

1

(log N )2
min
x∈DN

LDN
tN (x) ≥ 2g

[
(
√

θ − 1) ∨ 0
]2 − ε (4.23)

hold with P�-probability tending to one as N →∞.

Proof For the maximum, pick ε > 0 and let aN := 2g
(√

θ + 1+ ε
)2

(log N )2. Then

use (4.1) with b := 0 and a := aN to bound the probability that LDN
tN (x) ≥ aN by

order N−2(1+ε)+o(1) uniformly in x ∈ DN . The union bound then gives (4.22).
For the minimum, it suffices to deal with the case θ > 1. We pick ε > 0 such that√
θ > 1 + ε. Abbreviate aN := 2g

(√
θ − 1 − ε

)2
(log N )2 and apply Lemma 4.3 to

get, for any b > 0,

P�
(
LDN
tN (x) ≤ aN

)
= P�

(
LDN
tN (x) ≤ b

)+ P�
(
b < LDN

tN (x) ≤ aN
)

≤ P�
(
LDN
tN (x) ≤ b

)+ ( tN
b

)1/4
√
GDN (x, x)√
2tN −√2aN

e
− (
√

2tN−
√

2aN )2

2GDN (x,x) . (4.24)

The proof of Corollary 4.6 bounds the first probability by N−2θ+o(1), with o(1) → 0
uniformly in x ∈ DN . (As the quantity is non-decreasing in b, the requirement that b
be sufficiently large is achieved trivially.) Hence, even after summing over x ∈ DN ,
the contribution of this term is negligible.
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For the second term on the right of (4.24) we note that, invoking the uniform upper
bound GDN (x, x) ≤ g log N + c, the above choice of aN yields

(
√
2tN −√2aN )2

2GDN (x, x)
≥ 2
(
1+ ε + o(1)

)2 log N (4.25)

uniformly in x ∈ DN . As the prefactors produce only polylogarithmic terms in N ,
also the second term on the right of (4.24) is o(N−2) as N →∞. ��

A similar argument will allow us to deal with the tightness of the thin points:

Corollary 4.8 (Tightness for the thin points) Suppose that tN and aN are such that the
limits in (2.16) exist for some θ > 0 and some λ ∈ (0,

√
θ ∧ 1). For all b ∈ R there

is c3(b) ∈ (0,∞) such that for all A ⊆ R
2 closed,

lim sup
N→∞

E�
[
ζ D
N

(
A × (−∞, b])] ≤ c3(b)Leb(A ∩ D). (4.26)

Proof We proceed as in the proof of Lemma 4.7. Let aN ∼ 2g(
√

θ − λ)2(log N )2

be as given, pick ε ∈ (0,
√

θ − λ) an abbreviate âN := 2gε2(log N )2. Then for any
b′ > 0,

P�
(
LDN
tN (x) ≤ aN + b log N

) = P�
(
LDN
tN (x) ≤ b′

)
+ P�

(
b′ < LDN

tN (x) ≤ âN
)+ P�

(
âN < LDN

tN (x) ≤ aN + b log N
)
. (4.27)

Exactly as in (4.24), the first term on the right is estimated to be N−2θ+o(1) =
o(WN/N 2) uniformly in x ∈ DN , where we used that WN = N 2−2λ2+o(1) and
λ <

√
θ . The second term is bounded as in (4.24) by N−2(

√
θ−ε)2+o(1) = o(WN/N 2)

by our choice of ε.
For the last term we invoke Lemma 4.3 with a + b′ and a + b set to âN and

aN + b log N , respectively. This allows for b in (4.10) to be negative which permits
bounding the last factor on the right by one while keeping the prefactors in (4.10)
bounded by a constant that depends only on ε, uniformly in x ∈ DN . Hence, the last
term in (4.27) is O(WN/N 2) uniformly in x ∈ DN . The observation (4.9) then helps
us deal with the sum over x ∈ DN subject to x/N ∈ A. ��
Remark 4.9 The reason for using the expressions Leb(A ∩ D) to control the first
moments of the measures of interest is that this will later allow us to restrict attention
to A ⊆ D open with A ⊆ D in the arguments to follow. Indeed, taking {An}n≥1 open
with An ↑ D, as n →∞ the expected measure of the complement D � An tends to
zero by the fact that Leb(D � An) → 0.

5 Thick points

We are now ready to move to the proof of the stated convergence for the point measure
associatedwithλ-thick points. Throughoutwewill assume thataN and tN satisfy (2.14)
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with some θ > 0 and some λ ∈ (0, 1). Introduce the auxiliary centering sequence

âN :=
√
2aN −

√
2tN (5.1)

and note that âN ∼ 2λ
√
g log N as N → ∞. The arguments below make frequent

use of the coupling of LDN
tN and an independent DGFF hDN to another DGFF h̃DN

via the Dynkin isomorphism (Theorem 3.1). We will use these notations throughout
and write η̂D

N to denote the DGFF process associated with h̃DN and the centering
sequence âN . A key point to note is thatWN then coincides with normalizing constant
from (2.9).

5.1 Tightness considerations

The proof of Theorem 2.2 naturally divides into two parts. In the first part we dom-
inate ζ D

N using η̂D
N and control the effect of adding hDN to the local time LDN

tN . The
second part is then a derivation, and a solution, of a convolution-type identity link-
ing the weak-limits of ζ D

N to those of η̂D
N . Our tightness considerations start by the

following domination lemma:

Lemma 5.1 (Domination by DGFF process) For any b ∈ R and any measurable
set A ⊆ D,

ζ D
N

(
A × [b,∞)

) law≤ η̂D
N

(
A × [ 1

2
√
g

b√
θ+λ

,∞))+ o(1) (5.2)

where o(1) → 0 in probability as N →∞. Similarly, for any measurable A ⊆ D×D
and any b ∈ R,

ζ D
N ⊗ ζ D

N

(
A × [b,∞)2

) law≤ η̂D
N ⊗ η̂D

N

(
A × [ 1

2
√
g

b√
θ+λ

,∞)2)+ o(1). (5.3)

Proof Let us start by (5.2). The Dynkin isomorphism shows

LDN
tN ≤ LDN

tN + 1

2
(hDN )2 = 1

2

(̃
hDN +√2tN

)2
. (5.4)

For expression on the left of (5.2) we then get

ζ D
N

(
A × [b,∞)

) ≤ 1

WN

∑
x∈DN
x/N∈A

1{|̃hDN
x +√2tN |≥√2aN+2b log N }. (5.5)

Pick any b′ < b 1
2
√
g

1√
θ+λ

. Once N is sufficiently large, the asymptotic formulas for aN

and tN give
√
2aN + 2b log N ≥ √2aN + b′ and so

1{∣∣∣̃hDN
x +√2tN

∣∣∣≥√2aN+2b log N
} ≤ 1{

h̃
DN
x ≥âN+b′

} + 1{
h̃
DN
x ≤−√2aN−√2tN−b′

}. (5.6)
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Writing ηD
N for the process associated with the field−h̃DN and the centering sequence√

2aN +√2tN , and K̄N for the associated normalization from (2.9), we thus have

ζ D
N

(
A × [b,∞)

) ≤ η̂D
N

(
A × [b′,∞)

)+ K̄N

WN
ηD
N

(
A × [b′,∞)

)
. (5.7)

Noting that {ηD
N : N ≥ 1} is tight on D× (R∪ {+∞}) and K̄N = o(WN ), the second

term is o(1) in probability as N →∞. To get (5.2) we now take b′ to b 1
2
√
g

1√
θ+λ

and
invoke the continuity of the limit measure in (2.10) in the second variable.

The proof of (5.3) is completely analogous. Indeed, the same reasoning implies,
for any Borel A ⊆ D × D,

ζ D
N ⊗ ζ D

N

(
A × [b,∞)2

)
≤ η̂D

N ⊗ η̂D
N

(
A × [b′,∞)2

)+ K̄N

WN
η̂D
N ⊗ ηD

N

(
A × [b′,∞)2

)
+ K̄N

WN
ηD
N ⊗ η̂D

N

(
A × [b′,∞)2

)+ ( K̄N

WN

)2
ηD
N ⊗ ηD

N

(
A × [b′,∞)2

)
. (5.8)

Replacing A by D × D in the last three terms shows, via K̄N = o(WN ), that these
three terms are again all o(1) in probability as N →∞. A continuity argument in the
second variable then proves (5.3) as well. ��

Note that Lemma 5.1 provides an independent proof of the tightness of the mea-
sures ζ D

N . Based on the proof one might think that ζ D
N is asymptotically close to η̂D

N ,
but this is false: Although (5.6) is asymptotically sharp, the inequalities in (5.4–5.5)
are not. To account for this fact, we have to carefully examine the effect of adding the
half of the DGFF-squared to the local time. In particular, we have to ensure that the
DGFF remains typical even at the points where the local time combined with half of
its square is large. This important step is the content of:

Lemma 5.2 Let 0 < β < 1
2g

√
θ√

θ+λ
. Then for each b ∈ R there is c4(b) ∈ (0,∞) such

that for all M ≥ 0, all sufficiently large N and all x ∈ DN ,

P� ⊗ P

(
LDN
tN (x)+ (hDN

x )2

2
≥ aN + b log N ,

|hDN
x |√
log N

≥ M

)

≤ c4(b)
WN

N 2 e
−βM2

. (5.9)

Proof Since the b log N -correction can be absorbed into a re-definition of aN , which
thanks to the assumed asymptotic behavior of aN and tN only changes WN by a
multiplicative constant, we may assume for simplicity that b = 0. Assume also that M
is an integer and pick δ with

0 < δ < 2
√

θλ. (5.10)
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Partitioning the event in (5.9) according to which interval of the form [n, n + 1),
with n ∈ N subject to n ≥ M2, the ratio (hDN

x )2/ log N lies in, the probability in (5.9)
is bounded by

P

(
|hDN

x | ≥ 2
√
g
√

λ2 + δ log N
)

+
∑

M2≤n≤4g(λ2+δ) log N

P
(
(hDN

x )2 ≥ n log N
)

× P�
(
LDN
tN (x) ≥ aN − 1

2
(n + 1) log N

)
. (5.11)

A standard Gaussian bound estimates the first probability by a constant times
N−2(λ2+δ) which is o(WN/N 2) as N → ∞. Concerning the terms in the sum, here
we first note that for all n under the summation symbol,

aN − 1

2
(n + 1) log N ≥ 2g

[
(
√

θ + λ)2 − (λ2 + δ)+ o(1)
]
(log N )2

= tN + 2g
(
2
√

θλ− δ + o(1)
)
(log N )2. (5.12)

Hence, under (5.10), Lemma 4.1 can be applied. Using GDN (x, x) ≤ g log N + c, the
term corresponding to integer n in the sum is thus bounded by

c̃
WN

N 2 exp

{
1

2g

[
(n + 1)

√
2aN −√2tN√

2aN
− n
]}

, (5.13)

where c̃ is a constant that depends on θ , λ and our choice of δ but not on N or x or n.
Since the assumptions on aN and tN give

√
2aN −√2tN√

2aN
−→
N→∞

λ√
θ + λ

< 1− 2gβ (5.14)

as soon as N is sufficiently large, the quantity in (5.13) is summable on n and the sum
in (5.11) is thus dominated by the term with n = M2. The claim follows. ��

5.2 Convolution identity

We now move to the second part which consists of the derivation of, and a solution
to, a convolution identity that links weak (subsequential) limits of ζ D

N to those of η̂D
N .

A key input here is the observation that, at the scale of its typical fluctuations, the
field hDN that we add to LDN

tN in the Dynkin isomorphism acts like white noise:
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Lemma 5.3 Suppose {Nk} is a subsequence along which ζ D
N converges in law to ζ D.

Then

1

WN

∑
x∈DN

δx/N ⊗ δ
(L

DN
tN

(x)−aN )/ log N
⊗ δ

h
DN
x /

√
log N

law−→
N=Nk
k→∞

ζ D ⊗ g, (5.15)

where g is the law of N (0, g).

Proof Denote by ζ
D,ext
N the measure on the left of (5.15). We need to show that the

integral of any f ∈ Cc(D × R × R) with respect to ζ
D,ext
N converges in law to that

with respect to ζ D ⊗ g. The restrictions on f imply that there is a compact set A ⊆ D
and a number b > 0 such that∣∣ f (x, �, h)

∣∣ ≤ ‖ f ‖∞1A(x)1[−b,∞)(�)1[−b,b](h). (5.16)

The argument is based on a conditional second moment calculation and domination
by the DGFF process from Lemma 5.1.

Abbreviate L(x) := (LDN
tN (x) − aN )/ log N and hx := hDN

x /
√
log N . Writing

VarP, resp., CovP for the conditional variance, resp., covariance given the local time,
we have

VarP
(〈ζ D,ext

N , f 〉) = 1

W 2
N

∑
x,y∈DN

CovP

(
f
(
x/N, L(x), hx

)
, f
(
y/N, L(y), hy

))
.

(5.17)

Pick ε > 0 and split the sum according to whether |x − y| ≥ εN or not. Focusing first
on the former case, we use the Gibbs–Markov decomposition to write hDN using the
value hDN

x and an independent DGFF in DN � {x} as

hDN law= hDN
x bDN ,x (·)+ ĥDN�{x}, hDN

x ⊥⊥ ĥDN�{x}, (5.18)

where bDN ,x : Z
2 → [0, 1] is the unique function that is discrete harmonic on DN �

{x}, vanishes outside DN and equals one at x . A key point, proved with the help of
monotonicity of D 	→ bD,x (y) with respect to the set inclusion, is

max
x,y∈DN|x−y|≥εN

bDN ,x (y) ≤ c(ε)

log N
, (5.19)

where c(ε) ∈ (0,∞) is independent of N .
Write R f (δ) is the maximal oscillation of f in the third variable on intervals of

size δ. In light of (5.16) we then get

EP

(
f (. . . , hx ) f (. . . , hy)

)
≤ ‖ f ‖∞R f

( bc(ε)√
log N

)
+ EP

(
f (. . . , hx )

)
EP

(
f (. . . , ĥ y)

)
, (5.20)
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where ĥ abbreviates the field ĥDN�{x} and the dots stand for the remaining arguments
of f that are not affected by the expectation with respect to P. As to the expectation
on the right, for any M > b we similarly obtain

∣∣∣EP

(
f (. . . , ĥ y)

)− EP

(
f (. . . , hy)

)∣∣∣ ≤ R f

( Mc(ε)√
log N

)
+ 2e−c̃M2‖ f ‖∞ (5.21)

by splitting the expectations depending on the containment in {|hx | ≤ M
√
log N }

or not and estimating each term separately. The (positive) constant c̃ can be taken as
close to (2g)−1 as desired by taking M sufficiently large.

Putting (5.20–5.21) together and invoking (5.16), the contribution of the pairs (x, y)
with |x − y| ≥ εN to (5.17) is thus at most

2‖ f ‖∞
(
R f

( Mc(ε)√
log N

)
+ e−c̃M2‖ f ‖∞

)
ζ D
N ⊗ ζ D

N

(
D × D × [−b,∞)2

)
, (5.22)

Writing the product-measure term on the right of (5.22) as the square of ζ D
N (D ×

[−b,∞)) we note that this term is stochastically bounded in the limit as N →∞ by
Corollary 4.2 (or by the domination argument from Lemma 5.1). Since R f (δ) → 0
as δ ↓ 0 by the uniform continuity of f , taking N →∞ followed by M →∞ shows
that the sum (5.17) restricted to |x − y| ≥ εN vanishes in P�-probability as N →∞
for every ε > 0.

Moving to the part of the sum in (5.17) corresponding to |x− y| ≤ εN , using (5.16)
this is bounded by ‖ f ‖2∞ times

ζ D
N ⊗ ζ D

N

({
(x, y) : |x − y| ≤ ε

}× [−b,∞)2
)

(5.23)

which by Lemma 5.1 is stochastically bounded by

η̂D
N ⊗ η̂D

N

({
(x, y) : |x − y| ≤ ε

}× [− 1
2
√
g

b√
θ+λ

,∞)2
)
+ o(1). (5.24)

As {(x, y) : |x − y| ≤ ε} is closed and âN ∼ 2λ
√
g log N as N →∞, (2.10) and the

Portmanteau Theorem show that this expression is, in the limit N →∞, stochastically
dominated by a b-dependent constant times

ZD
λ ⊗ ZD

λ

({(x, y) : |x − y| ≤ ε}). (5.25)

This tends to zero as ε ↓ 0 a.s. due to the fact that ZD
λ has no point masses a.s.

We conclude that VarP(〈ζ D,ext
N , f 〉) tends to zero in P�-probability. This implies

〈ζ D,ext
N , f 〉 − E

(〈ζ D,ext
N , f 〉) −→

N→∞ 0, in P� ⊗ P-probability. (5.26)
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To infer the desired claim, abbreviate

fg(x, �) :=
∫

g(dh) f (x, �, h) (5.27)

and note that, since A in (5.16) is compact, hDN
x /

√
log N tends in law to N (0, g)

uniformly for all x ∈ {y ∈ DN : y/N ∈ A}. The continuity of f along with (5.16)
yield

E
(〈ζ D,ext

N , f 〉)− 〈ζ D
N , fg〉 −→

N→∞ 0, in P�-probability. (5.28)

Combining (5.26) and (5.28) we then get (5.15). ��
As a consequence of the above lemmas, we now get:

Lemma 5.4 Recall that g is the law of N (0, g). Given f ∈ Cc(D × R) with f ≥ 0,
denote

f ∗g(x, �) :=
∫

g(dh) f
(
x, 1

2
√
g(
√

θ+λ)

(
�+ h2

2

))
. (5.29)

Then for every subsequential weak limit ζ D of ζ D
N , simultaneously for all f as above,

〈ζ D, f ∗g〉 law= c(λ)

∫
ZD

λ (dx)⊗ e−αλhdh f (x, h), (5.30)

where, we recall, α := 2/
√
g and c(λ) is as in (2.10).

Proof Pick f as above. Suppressing, for the duration of this proof, the index DN on
the fields and the local time, let the DGFF h̃ in DN be related to the local time LtN
and an independent DGFF h in DN via the Dynkin isomorphism. Recalling (5.1), for
large enough N ≥ 1 we then have

〈̂ηD
N , f 〉 = 1

WN

∑
x∈DN

f
(
x/N, h̃x − âN

)

= 1

WN

∑
x∈DN

f
(
x/N,

√
2LtN (x)+ h2x −

√
2aN

)
1{̃hx=

√
2LtN (x)+h2x−

√
2tN }

= 1

WN

∑
x∈DN

f
(
x/N,

√
2LtN (x)+ h2x −

√
2aN

)

− 1

WN

∑
x∈DN

f
(
x/N,

√
2LtN (x)+ h2x −

√
2aN

)
1{̃hx=−

√
2LtN (x)+h2x−

√
2tN },

(5.31)

where we noted that only the positive sign in h̃x = ±√2LtN (x)+ h2x −
√
2tN can

contribute in the second line once N is large due to f having a compact support and
the fact that âN →∞ implied by λ > 0.
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We start by treating the second term on the extreme right of (5.31) which we note
is bounded in absolute value by

‖ f ‖∞ 1

WN

∑
x∈DN

1{̃hx≤−√2aN }. (5.32)

The result of [10], or even just a simple first-moment estimate, shows that the sum is
at most N 2[1−(

√
θ+λ)2]+o(1) with high probability. AsWN = N 2(1−λ2)+o(1) and θ > 0,

the expression in (5.32) tends to zero in probability as N →∞.
We thus need to extract the limit of the first term on the right of (5.31). For this

we need to first truncate hx to values of order
√
log N . Let χ : [0,∞) → [0, 1] be

non-increasing, continuous with χ(x) = 1 for 0 ≤ x ≤ 1 and χ(x) = 0 for x ≥ 2.
Then the first term on the right of (5.31) can be written as

1

WN

∑
x∈DN

f
(
x/N,

√
2aN + 2[ LtN (x)− aN ] + h2x −

√
2aN

)
χ
( |hx |
M
√
log N

)
(5.33)

plus a quantity bounded, in absolute value, by

‖ f ‖∞ 1

WN

∑
x∈DN

1{√2LtN (x)+h2x≥
√
2aN−b}1{|hx |≥M

√
log N }, (5.34)

where b > 0 is such that supp( f ) ⊆ D×[−b, b]. Lemma 5.2 shows that the L1-norm
of (5.34) under P� ⊗ P is of order e−βM2

, uniformly in N ≥ 1, and so we just need
to focus on taking the N →∞ limit of (5.33).

The truncation ensures that, for x to contribute to the sum in (5.33), both h2x and
LtN (x) − aN must be at most order log N . Expanding the square root and using the
uniform continuity of f along with the tightness of ζ D

N to replace aN by its asymptotic
expression then recasts (5.33) as

1

WN

∑
x∈DN

fext
(
x/N,

LtN (x)−aN
log N , hx√

log N

)
χ
( |hx |
M
√
log N

)
+ o(1), (5.35)

where

fext(x, �, h) := f
(
x, 1

2
√
g(
√

θ+λ)

(
�+ h2

2

))
. (5.36)

The function �, h 	→ fext(x, �, h)χ(|h|/M) that effectively appears in (5.35) is com-
pactly supported in both variables; Lemma 5.3 then shows that, along subsequences
where ζ D

N converges in law to some ζ D , the expression in (5.35) converges to 〈ζ D, f ∗gM 〉
where f ∗gM is defined by (5.29) with g(dh) replaced by χ(|h|/M)g(dh). From the
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known convergence of η̂D
N (see (2.10)) we thus conclude

〈ζ D, f ∗gM 〉 + O(e−βM2
)

law= c(λ)

∫
ZD

λ (dx)⊗ e−αλhdh f (x, h), (5.37)

where O(e−βM2
) is a random quantity with L1-norm at most a constant times e−βM2

.
Taking M →∞ via the Monotone Convergence Theorem now gives (5.30). ��

Working towards the proof of Theorem 2.2, a key remaining point to show is
that the class of f ∗g arising from functions f for which the integral on the right
of (5.30) converges absolutely is sufficiently rich so that (5.30) determines the mea-
sure ζ D uniquely. For this we note that, by an application of the Dominated and
Monotone Convergence Theorems, (5.30) extends from Cc(D × R) to the class of
functions (x, h) 	→ 1A(x) f (h), where A ⊆ D is open with A ⊆ D and f ∈ C∞c (R)

with f ≥ 0. The transformation (5.29) only affects the second variable on which it
takes the form f 	→ ( f ∗ e) ◦ s, where the convolution is with the function

e(z) :=
√

β

π

eβz

√−z 1(−∞,0)(z) for β := α
(√

θ + λ
)

(5.38)

and where h 	→ s(h) is the scaling map

s(h) := h

2
√
g(
√

θ + λ)
. (5.39)

As it turns out, it then suffices to observe:

Lemma 5.5 Denoteμλ(dh) := e−αλhdh and let e(·) be as in (5.38)withβ > αλ. Then
there is at most one Radon measure ν on R such that for all f ∈ C∞c (R) with f ≥ 0,

〈
ν, f ∗ e〉 = 〈μλ, f 〉. (5.40)

Proof Writing (5.40) explicitly using integrals and using the fact that the class of all
f ∈ C∞c (R) with f ≥ 0 separates Radon measures on R shows

∫
R

ν(ds)e(s − h) = e−αλh, h ∈ R. (5.41)

Abbreviating νλ(dh) := eαλhν(dh) and eλ(h) := e−αλhe(h), this can be recast as∫
R

νλ(ds)eλ(s − h) = 1, h ∈ R. (5.42)

Integrating this against suitable test functions with respect to the Lebesgue measure
and applying the Dominated Convergence Theorem, we conclude

〈
νλ, f ∗ eλ

〉 = 〈Leb, f 〉, f ∈ S(R), (5.43)
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where S(R) is the Schwartz class of functions on R. Note that this identity entails that
the integral on the left-hand side converges absolutely.

Since S(R) separates Radon measures on R, to conclude the statement from (5.40)
it suffices to prove that, for θ > 0,

f 	→ f ∗ eλ is a bijection of S(R) onto itself. (5.44)

The Fourier transform maps S(R) bijectively onto itself and so we may as well prove
(5.44) in the Fourier picture. For this we note that, as θ > 0 we have β̃ := β−αλ > 0
and so z 	→ eλ(z) decays exponentially as z → −∞. In particular, eλ is integrable
and so in the Fourier transform, f 	→ f ∗ eλ is reduced to the multiplication by

êλ(k) :=
∫

R

dz eλ(z)e
2π ikz =

√
β

π

∫
(0,∞)

dx
1√
x
e−β̃(1+2π ik/β̃)x . (5.45)

Hereby we readily check that k 	→ êλ(k) is C∞(R) with bounded derivatives which
implies that f 	→ eλ ∗ f maps S(R) into S(R). Using the substitution x = y2 and
computing the complex-Gaussian integral we find that

∣∣̂eλ(k)∣∣ =
√

β

β̃

1

|1+ 2π ik/β̃|1/2 . (5.46)

As |̂eλ(k)| > 0 for all k ∈ R, the map f 	→ eλ ∗ f is injective; the fact that |̂eλ(k)|−1
is bounded by a power of |k| then shows that it is also onto. Hence we get (5.44) as
desired. ��

We are now ready to give:

Proof of Theorem 2.2 Consider a subsequential limit ζ D , pick f ∈ Cc(R) with f ≥ 0
and let A ⊆ D be open with A ⊆ D. Using the notation (5.38–5.39) we then have

〈
ζ D, (1A ⊗ f )∗g

〉 = 〈ζ D
A , ( f ∗ e) ◦ s〉 = 〈ζ D

A ◦ s−1, f ∗ e〉, (5.47)

where ζ D
A is a Borel measure on R defined by ζ D

A (B) := ζ D(A × B). Writing
μλ(dh) := e−αλhdh, the identity (5.30) then translates into

〈
ζ D
A ◦ s−1, f ∗ e〉 law= c(λ)ZD

λ (A)〈μλ, f 〉, (5.48)

where the equality in law holds simultaneously for all A and f as above.
To infer the product form of ζ D from (5.48), define (for a given A and a given

realization of ζ D) a Borel measure on R by

ν :=
[
αλ
〈
ζ D
A ◦ s−1, 1[0,∞) ∗ e

〉]−1
ζ D
A , (5.49)
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where the conditions on A imply ZD
λ (A) > 0 a.s. and so, by (5.48), the quantity in the

square bracket is strictly positive a.s. By (5.48) we have 〈ν ◦ s−1, f ∗ e〉 = 〈μλ, f 〉 for
all f ∈ Cc(R) and so, by Lemma 5.5, ν ◦ s−1, and thus also ν, is determined uniquely.
In particular, ν is the same for all A as above and for a.e. realization of ζ D . Using (5.48)

in (5.49) then shows ζ D
A (dh)

law= c(λ)ZD
λ (A)ν(dh). As this holds simultaneously for

all A as above, Remark 4.9 permits us to conclude

ζ D law= c(λ)ZD
λ ⊗ ν, (5.50)

where ν is a uniquely-determined deterministic Radon measure on R.
It remains to derive the explicit form of ν which, thanks to its uniqueness, we can

do by plugging the desired expression on the left-hand side of (5.30) and checking for
equality. Abbreviate α̃ := α(θ, λ) and note that

α̃ = 1

2
√
g(
√

θ + λ)
αλ. (5.51)

Pick f ∈ Cc(D×R) and perform the following calculation where, in the last step, we
invoke the substitution r := 1

2
√
g(
√

θ+λ)
(�+ h2

2 ) and separate integrals using Fubini–

Tonelli:∫
D×R

ZD
λ (dx)⊗ e−α̃�d� f ∗g(x, �)

=
∫
D×R×R

ZD
λ (dx)⊗ e−α̃�d�⊗ g(dh) f

(
x, 1

2
√
g(
√

θ+λ)

(
�+ h2

2

))

=
∫
D×R×R

ZD
λ (dx)⊗ e−α̃(�+ h2

2 )d�⊗ e α̃ h2
2 g(dh) f

(
x, 1

2
√
g(
√

θ+λ)

(
�+ h2

2

))

= 2
√
g(
√

θ + λ)
(∫

R

g(dh)e α̃ h2
2

) ∫
D×R

ZD
λ (dx)⊗ e−αλrdr f (x, r). (5.52)

As α̃ < 1/g, the first integral on the last line converges to the root of (1 − α̃g)−1 =√
θ+λ√
θ

while (5.30) equates the second integral to c(λ)−1〈ζ D, f ∗g〉 in law. This implies

ζ D law= θ1/4

2
√
g (
√

θ + λ)3/2
c(λ)ZD

λ (dx)⊗ e−α̃�d�. (5.53)

In particular, all weakly converging subsequences of {ζ D
N : N ≥ 1} converge to this ζ D ,

thus proving the desired claim. ��

6 Thin points

Our next task is the convergence of point measures ζ D
N associated with λ-thin points.

The argument proceeds very much along the same sequence of lemmas as for the
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λ-thick points and so we will concentrate on the steps where a different reasoning is
needed. Throughout we assume that tN and aN are sequences satisfying (2.16) with
some θ > 0 and some λ ∈ (0, 1 ∧√θ). The auxiliary centering sequence âN is now
defined by

âN :=
√
2tN −

√
2aN (6.1)

which ensures that we still have âN ∼ 2λ
√
g log N as N → ∞. Appealing to the

coupling of LDN
tN and hDN to h̃DN via the Dynkin isomorphism, we use η̂D

N to denote
the point process associated with h̃DN and the centering sequence −âN .

The proof again opens up by proving suitable tightness and joint-convergence state-
ments. We start with an analogue of Lemma 5.2:

Lemma 6.1 Let 0 < β < 1
2g

λ√
θ−λ

. Then for each b ∈ R there is c5(b) ∈ (0,∞) and,

for each M ≥ 0, there is N ′ = N ′(b, M) such that for all N ≥ N ′ and all x ∈ DN ,

P� ⊗ P

(
LDN
tN (x)+ (hDN

x )2

2
≤ aN + b log N ,

|hDN
x |√
log N

≥ M

)

≤ c5(b)
WN

N 2 e
−βM2

. (6.2)

Proof Let us again for simplicity just deal with the case b = 0. Pick 0 < δ <
√

θ −λ.
Then the probability in question is bounded by

P�
(
LDN
tN (x) ≤ 2g(

√
θ − λ− δ)2(log N )2

)
+ P�

(
2g(

√
θ − λ− δ)2(log N )2 ≤ LDN

tN (x) ≤ aN − 1

2
M2 log N

)
. (6.3)

Invoking the calculation in (4.24), the first term is at most order N−2(λ+δ)2+o(1) which
is o(WN/N 2). The second term is now bounded using Lemma 4.3 and the fact that,
by the uniform bound GDN (x, x) ≤ g log N + c with c independent of N , we have

min
x∈DN

log N
(√

2tN −√2aN
)

GDN (x, x)
√
2aN

≥ 1

g

λ√
θ − λ

+ o(1) (6.4)

in the limit N → ∞. Indeed, this shows that the last exponential in (4.10) for the
choice b := − 1

2M
2 log N is less than e−βM2

once N is sufficiently large. ��
Next we will give an analogue of Lemma 5.3 which we restate verbatim, albeit with

a somewhat different proof:

Lemma 6.2 Suppose {Nk} is a subsequence along which ζ D
N converges in law to ζ D.

Then

1

WN

∑
x∈DN

δx/N ⊗ δ
(L

DN
tN

(x)−aN )/ log N
⊗ δ

h
DN
x /

√
log N

law−→
N=Nk
k→∞

ζ D ⊗ g, (6.5)
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where g is the law of N (0, g).

Proof Let ζ D,ext
N denote the measure on the left and let f ∈ Cc(D × R× R) be such

that f ≥ 0. As for Lemma 5.3, the argument hinges on proving

VarP
(〈ζ D,ext

N , f 〉) −→
N→∞ 0, in P�-probability, (6.6)

where VarP denotes the variance with respect to the law of hDN , conditional on LDN
tN .

Invoking (5.17), we treat the sum over the pairs |x − y| ≥ εN via the argument
following (5.18–5.19). The key difference is that we no longer have the domination
of ζ D

N by a DGFF process in this case and so we have to control the sum over the pairs
x, y ∈ DN with |x − y| ≤ εN differently.

Since f is non-negative and compactly supported, we in fact just need to show that,
for any M > 0, the L1(P)-norm of

1

W 2
N

∑
x,y∈DN|x−y|≤εN

1{LDN
tN

(x)≤aN+M2 log N }1{|hDN
x |≤M

√
log N }

× 1{LDN
tN

(y)≤aN+M2 log N }1{|hDN
y |≤M

√
log N } (6.7)

vanishes in P�-probability in the limit as N → ∞ and ε ↓ 0. To this end
we note that, dropping the indicators involving the DGFF, (6.7) is bounded by
[ζ D

N (D× (−∞, M2])]2 which by Corollary 4.8 is bounded in probability as N →∞.
Therefore, it suffices to prove that (6.7) vanishes in the stated limits in P� ⊗ P-
probability.

To this end pick b > M2
√
g(
√

θ−λ)
and note that, as soon as N is sufficiently large, the

asymptotic forms of aN along with the Dynkin isomorphism yield

1{LDN
tN

(x)≤aN+M2 log N }1{|hDN
x |≤M

√
log N }

≤ 1{(̃hDN
x +√2tN )2≤2aN+3M2 log N } ≤ 1{̃hDN

x ≤−âN+b}. (6.8)

It follows that (6.7) is bounded by

η̂D
N ⊗ η̂D

N

({
(x, y) : |x − y| ≤ ε

}× (−∞, b]2
)

(6.9)

whose N →∞ and ε ↓ 0 limits are now handled as before. ��
Our next task is a derivation of a convolution identity that will, as for the thick

points, ultimately characterize the limit measure uniquely:

Lemma 6.3 Given f ∈ Cc(D × R) with f ≥ 0, let (abusing our earlier notation)

f ∗g(x, �) :=
∫

g(dh) f
(
x, 1

2
√
g(
√

θ−λ)

(
�+ h2

2

))
. (6.10)
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Then for every subsequential weak limit ζ D of ζ D
N , simultaneously for all f as above,

〈ζ D, f ∗g〉 law= c(λ)

∫
ZD

λ (dx)⊗ eαλhdh f (x, h), (6.11)

where α := 2/
√
g and c(λ) is as in (2.10).

Proof Pick f as above and let χ be the function as in the proof of Lemma 5.4. The
fact that f has compact support gives

1

WN

∑
x∈DN

f
(
x/N, h̃DN

x + âN
)

= 1

WN

∑
x∈DN

f
(
x/N,−√2aN +

√
2LDN

tN (x)+ (hDN
x )2

)
(6.12)

and Lemma 6.1 then bounds this by O(e−βM2
) plus

1

WN

∑
x∈DN

f
(
x/N,−√2aN +

√
2LDN

tN (x)+ (hDN
x )2

)
χ
( |hDN

x |
M
√
log N

)
. (6.13)

The truncation of the field now forces LDN
tN − aN to be of order log N . Expanding the

square root and using the uniform continuity with the help of Corollary 4.8 rewrites
this as

1

WN

∑
x∈DN

f̃ext
(
x/N,

L
DN
tN

(x)−aN
log N ,

h
DN
x√
log N

)
χ
( |hDN

x |
M
√
log N

)
+ o(1), (6.14)

where

f̃ext(x, �, h) := f
(
x, 1

2
√
g(
√

θ−λ)

(
�+ h2

2

))
. (6.15)

The rest of the proof now proceeds as before. (The exponential on the right-hand side
of (6.11) does not get a negative sign because η̂D

N is centered along negative sequence
of order log N .) ��

Using the Dominated and Monotone Convergence Theorems, we now readily
extend (6.11) to functions of the form 1A ⊗ f where A ⊆ D is open with A ⊆ D
and f ∈ Cc(R) obeys f ≥ 0. For such f we then get

(1A ⊗ f )∗g = 1A ⊗ ( f ∗ e′) ◦ s′ (6.16)

where e′ is given by the same formula as e in (5.38) but with β replaced by

β ′ := α
(√

θ − λ
)

(6.17)
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and s′(h) := h/(2
√
g(
√

θ − λ)). We then state:

Lemma 6.4 Denote μ′λ(dh) := eαλhdh and let e′ be as above with β ′ > −αλ. Then
there is at most one Radon measure ν on R such that for all f ∈ C∞c (R) with f ≥ 0,

〈
ν, f ∗ e′〉 = 〈μ′λ, f 〉. (6.18)

Proof As in the proof of Lemma 5.5, we recast (6.18) as

〈
νλ, f ∗ e′λ

〉 = 〈Leb, f 〉, (6.19)

where νλ(dh) = e−αλhν(dh) and e′λ(h) = eαλhe′(h). Since β̃ ′ := β ′ + αλ > 0, we
again get that e′λ is integrable. Replacing β̃ by β̃ ′, the rest of the argument is then
identical to that in the proof of Lemma 5.5. ��

We are now ready to give:

Proof of Theorem 2.3 The argument proving that (6.11) determines ζ D uniquely is the
same as for the thick points so we just need to perform the analogue of the calculation
in (5.52). Denoting, for the duration of this proof,

α̂ := 1

2
√
g (
√

θ − λ)
αλ, (6.20)

we get

∫
D×R

ZD
λ (dx)⊗ eα̂�d� f ∗g(x, �)

=
∫
D×R×R

ZD
λ (dx)⊗ eα̂�d�⊗ g(dh) f

(
x, 1

2
√
g(
√

θ−λ)

(
�+ h2

2

))

=
∫
D×R×R

ZD
λ (dx)⊗ eα̂(�+ h2

2 )d�⊗ e−α̂ h2
2 g(dh) f

(
x, 1

2
√
g(
√

θ−λ)

(
�+ h2

2

))

= 2
√
g(
√

θ − λ)
(∫

R

g(dh)e−α̂ h2
2

) ∫
D×R

ZD
λ (dx)⊗ eαλrdr f (x, r). (6.21)

The Gaussian integral on the last line equals the root of
√

θ−λ√
θ

. It follows that ζ D
N

converges in law to the measure

θ1/4

2
√
g (
√

θ − λ)3/2
c(λ)ZD

λ (dx)⊗ eα̂�d�. (6.22)

This is the desired claim. ��
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7 Light and avoided points

In this section we will deal with the point measures ϑD
N and κD

N associated with the
light and avoided points, respectively. The argument follows the blueprint of the proof
for the λ-thick and λ-thin points although important changes arise due to a different
scaling of ŴN with N compared to WN . As before, a key point of the argument is the
extension of the convergence by adding information about an independent DGFF. The
difference now is that this field comes without any normalization:

Lemma 7.1 Suppose {Nk} is a subsequence along which ϑD
N converges in law to ϑD.

Then

√
log N

ŴN

∑
x∈DN

δx/N ⊗ δ
L
DN
tN

(x)
⊗ δ

h
DN
x

law−→
N=Nk
k→∞

ϑD ⊗ 1√
2πg

Leb. (7.1)

Proof Let ϑ
D,ext
N denote the measure on the left and pick f ∈ Cc(D × [0,∞)× R).

Suppose that f (x, �, h) = 0 unless x ∈ A, where A is an open set with A ⊆ D,
and unless �, h2 ≤ M for some M > 0. Noting that the probability density of hDN

x
is (1+o(1))(2πg log N )−1/2 with o(1) → 0 as N →∞ uniformly over any compact
interval shows, with the help of the tightness of {ϑD

N : N ≥ 1} proved in Corollary 4.6,
that

E
〈
ϑ
D,ext
N , f

〉 = o(1)+ 1√
2πg

〈
ϑD
N ⊗ Leb, f

〉
, (7.2)

where o(1) → 0 in P�-probability as N → ∞. The claim thus reduces to proving
concentration of 〈ϑD,ext

N , f 〉 around the (conditional) expectation with respect to hDN .

Due to the additional
√
log N factor in the normalization ϑ

D,ext
N , the domination

arguments for the conditional second moment of 〈ϑD,ext
N , f 〉 of the kind (5.18–5.25)

for the thick points and (6.7–6.9) for the thin points seem to fail, so we will instead
work with the Laplace transform of 〈ϑD,ext

N , f 〉. This is motivated by noting that,
for f ≥ 0, the conditional Jensen inequality and (7.2) yield

E� ⊗ E
(
e−〈ϑ

D,ext
N , f 〉) ≥ eo(1)E�

(
e−(2πg)−1/2〈ϑD

N⊗Leb, f 〉
)
. (7.3)

It thus suffices to derive the opposite inequality which will require a somewhat tech-
nical argument. A key point is to restrict the measure ϑ

D,ext
N by a suitable truncation.

We start with the definition of a truncation event. Writing temporarily L(x), resp.,
hx instead of L

DN
tN (x), resp., hDN

x , given any ε, δ > 0, let

FN ,M,ε,δ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

∑
y∈DN|x−y|<εN

1{L(y)+ 1
2 h

2
y≤2M} ≤ δ

ŴN√
log N

⎫⎪⎪⎬
⎪⎪⎭ . (7.4)
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We claim that, with probability tending to one as N → ∞ and ε ↓ 0 (for
any δ > 0 fixed), the event FN ,M,ε,δ(x) will not occur for any x ∈ DN . For
this let Br (x) := {y ∈ R

2 : |y − x | < r} and let x1, . . . , xm ∈ D be such that
{Bε(xi ) : i = 1, . . . ,m} cover D. Writing η̂D

N for the DGFF measure associated with
the field h̃DN and centering sequence {√2tN }N≥1 and noting that the normalization
factor ŴN/

√
log N in (7.1) then coincideswith KN (for the centering sequence

√
2tN ),

the coupling from Theorem 3.1 yields

⋃
x∈DN

FN ,M,ε,δ(x)
c ⊆

m⋃
i=1

{
η̂D
N

(
B2ε(xi )× [−2

√
M, 2

√
M]) > δ

}
. (7.5)

Since η̂D
N is known to converge to a measure with no-atoms, the probability of the

event on the right-hand side tends to zero as N → ∞ and ε ↓ 0 for any δ > 0, as
claimed.

Introduce the truncated measure

ϑ
D,ext
N ,M,ε,δ :=

1

KN

∑
x∈DN

1FN ,M,ε,δ(x) δx/N ⊗ δL(x) ⊗ δhx , (7.6)

where we write KN for ŴN/
√
log N . We then get

lim
ε↓0 lim sup

N→∞
P
(
〈ϑD,ext

N ,M,ε,δ, f 〉 �= 〈ϑD,ext
N , f 〉

)
= 0 (7.7)

for any δ > 0 (and any f and M as above). Next we will invoke the fact that, for
each M > 0 and each A ⊆ D open with A ⊆ D,

{
η̂D
N (A × [−M, M]) : N ≥ 1

}
is uniformly integrable, (7.8)

which follows from the convergence in the mean and control of moments implied by
[10,Lemmas 4.1 and 4.2]. Theorem 3.1 then extends (7.8) to the uniform integrability
of {〈ϑD,ext

N , f 〉 : N ≥ 1}. Using (7.7) we then get

lim
ε↓0 lim sup

N→∞

∣∣∣∣E� ⊗ E

(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N , f 〉)

− E� ⊗ E

(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N ,M,2ε,δ , f 〉

)∣∣∣∣ = 0 (7.9)

uniformly in s ∈ [0, 1]. (We write 2ε for reasons to be clear in a moment.) As a
consequence, we may thus focus on the second expectation from now on.
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We first use the explicit form of the measure ϑ
D,ext
N and, noting that f ≥ 0, apply

the conditional Jensen inequality as

E� ⊗ E

(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N ,M,2ε,δ , f 〉

)
= 1

KN

∑
x∈DN
x/N∈A

E� ⊗ E

(
f
(
x/N , L(x), hx

)
e−s〈ϑ

D,ext
N ,M,2ε,δ , f 〉

)

≥ 1

KN

∑
x∈DN
x/N∈A

E� ⊗ E

(
f
(
x/N , L(x), hx

)
e−sE(〈ϑD,ext

N ,M,2ε,δ , f 〉|σ(hx ))
)
. (7.10)

Reflecting on the positivity and support restrictions for f , the conditional expectation
in the exponent is dominated via

E
(〈ϑD,ext

N ,M,2ε,δ, f 〉 ∣∣ σ(hx )
) ≤ 1

KN

∑
y∈DN|x−y|≥εN

E

(
f
(
y/N , L(y), hy

) ∣∣∣ σ(hx )
)

+ ‖ f ‖∞
KN

E

⎛
⎜⎜⎝ ∑

y∈DN|x−y|<εN

1{L(y)+ 1
2 h

2
y≤2M}1FN ,M,2ε,δ(y)

∣∣∣ σ(hx )

⎞
⎟⎟⎠ . (7.11)

As a result of the truncation, since the ball of radius 2εN around any y with |y− x | <
εN includes the ball of radius εN around x , as soon as FN ,M,2ε,δ(y) occurs for at least
one y with |y − x | < εN , the sum in the second term on the right is at most δKN .
This bounds the second term on the right of (7.11) by δ‖ f ‖∞ pointwise.

We have reduced estimating the conditional expectation to a bound on the first term
on the right of (7.11). Denoting, for any r > 0,

osc f ,M (r) := sup
z∈D

sup
�≤M

sup
h,h′∈[−√M,

√
M]

|h−h′|≤r

∣∣ f (z, �, h)− f (z, �, h′)
∣∣, (7.12)

the decomposition of hy = bDN ,x (y)hx + ĥ y from (5.18), where ĥ y is the DGFF
in DN � {x} independent of hx , along with the support restrictions on f show that,
on {h2x ≤ M},
∣∣∣∣E( f (y/N , L(y), hy

) ∣∣∣ σ(hx )
)
− E

(
f
(
y/N , L(y), hy

))∣∣∣∣
≤
[
osc f ,M

(
bDN ,x (y)

[√
M + (log N )3/4)

])
P

(
|̂hy | ≤

√
M + bDN ,x (y)(log N )3/4

)

+ ‖ f ‖∞ P
(|hx | > (log N )3/4

)]
1{L(y)≤M}, (7.13)
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where the two terms in the large square bracket arise by splitting the second expectation
in the absolute value on the left according towhether the (implicit) absolute value of the
DGFF at x is less than or in excess of (log N )3/4. Next observe that, since |y−x | ≥ εN ,
the bound (5.19) applies. Using that osc f ,M (r) → 0 as r ↓ 0 by the uniform continuity
of f and that ĥ y and hx have variance of order log N , the right-hand side of (7.13) is
at most o((log N )−1/2)1{L(y)≤M} uniformly in y.

Invoking o((log N )−1/2)/KN = o(1/ŴN ) we conclude that, for a non-random
o(1) that obeys o(1) → 0 as N →∞ followed by ε ↓ 0, uniformly on {h2x ≤ M},

E
(〈ϑD,ext

N ,M,2ε,δ, f 〉 ∣∣ σ(hx )
) ≤ δ‖ f ‖∞ + E

(〈ϑD,ext
N , f 〉)

+o(1)ϑD
N

(
D × [0, M]). (7.14)

Plugging this in (7.9–7.10), invoking (7.2) along with the tightness of {ϑD
N : N ≥ 1}

and the uniform integrability of {〈ϑD,ext
N , f 〉 : N ≥ 1} implied by (7.8) and, finally,

taking δ ↓ 0 after N →∞ (and, now implicit, ε ↓ 0) shows

E� ⊗ E

(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N , f 〉)

≥ o(1)+ (2πg)−1/2E�
(
〈ϑD

N ⊗ Leb, f 〉 e−s(2πg)−1/2〈ϑD
N⊗Leb, f 〉

)
, (7.15)

where o(1) → 0 as N →∞ uniformly in s ∈ [0, 1]. Integrating both sides over s ∈
[0, 1] with respect to the Lebesgue measure then gives

E� ⊗ E
(
e−〈ϑ

D,ext
N , f 〉) ≤ o(1)+ E�

(
e−(2πg)−1/2〈ϑD

N⊗Leb, f 〉
)
. (7.16)

This, in combination with (7.3), proves the desired claim. ��

Next we prove an analogue of Lemma 5.4:

Lemma 7.2 Given f ∈ Cc(D × [0,∞)) with f ≥ 0 denote

f ∗Leb(x, �) := 1√
2πg

∫
R

dh f
(
x, �+ h2

2

)
. (7.17)

Then for every weak subsequential limit ϑD of ϑD
N ,

〈
ϑD, f ∗Leb

〉 law= c(
√

θ)

∫
ZD√

θ
(dx)⊗ eα

√
θ hdh f

(
x, h2

2

)
(7.18)

simultaneously for all f as above.
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Proof Pick f ∈ Cc(D × [0,∞)) with f ≥ 0 and set f ext(x, �, h) := f (x, �+ 1
2h

2).
Then

∑
x∈DN

f
(
x/N,

1

2
(̃hDN

x +√2tN
)2) = ∑

x∈DN

f
(
x/N, LDN

tN (x)+ 1

2
(hDN

x )2
)

=
∑
x∈DN

f ext
(
x/N, LDN

tN (x), hDN
x

)
.

(7.19)

Since f ext is compactly supported in all variables, Lemma 7.1 tells us that, after
multiplying by

√
log N /ŴN and specializing N to the subsequence along which ϑD

N
tends in law to ϑD , the right-hand side tends to

〈
ϑD, f ∗Leb

〉
. By (2.10) and the fact

that
√
2tN ∼ 2

√
g
√

θ log N , the left-hand side tends to the measure on the right of
(7.18). ��

With these in hand we are ready to prove convergence of ϑD
N ’s:

Proof of Theorem 2.4 Pick A ⊆ D open with A ⊆ D. Taking a sequence of compactly
supported functions convergingupward to f (x, h) := 1A(x)e−sh1[0,∞)(h),where s >

0, and denoting

μ̃A(B) := ϑD(A × B), (7.20)

the Tonelli and Monotone Convergence Theorems yield

∫ ∞

0
μ̃A(d�)e−�s law= √

2πg c(
√

θ)ZD√
θ
(A) e

α2θ
2s , s > 0. (7.21)

Note that s 	→ e
α2θ
2s is the Laplace transform of the measure in (2.23). Since the

Laplace transform determines Borel measures on [0,∞) uniquely, the claim follows
by the fact that the right-hand side is a Borel measure in A which is determined by its
values on A open with the closure in D. ��

In order to extend Theorem 2.4 to the control of the measure κD
N associated with

the avoided points, we need the following estimate:

Lemma 7.3 Let A ⊆ D be open with A ⊆ D. Then

lim
ε↓0 lim sup

N→∞
N 2

ŴN
max
x∈DN
x/N∈A

P�
(
0 < LDN

tN (x) ≤ ε
)
= 0. (7.22)
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Proof First note that, using Dynkin’s isomorphism, we get

P�
(
0 < LDN

tN (x) ≤ ε
)
P
(1
2
(hDN

x )2 ≤ ε
)

≤ P� ⊗ P

(
LDN
tN (x)+ 1

2
(hDN

x )2 ≤ 2ε, LDN
tN (x) > 0

)
= P

(1
2
(̃hDN

x −√2tN )2 ≤ 2ε
)
− P

(1
2
(hDN

x )2 ≤ 2ε
)
P�
(
LDN
tN (x) = 0

)
.

(7.23)

The fact that |GDN (x, x)−g log N | is bounded uniformly for all x ∈ DN with x/N ∈
A then shows

P

(1
2
(̃hDN

x −√2tN )2 ≤ ε
)
= (2+ o(1)

)√
2ε

1√
2πGDN (x, x)

e
− tN

GDN (x,x)

(7.24)

while

P
(1
2
(hDN

x )2 ≤ ε
)
= (2+ o(1)

)√
2ε

1√
2πGDN (x, x)

, (7.25)

where o(1) → 0 as ε ↓ 0 uniformly in N ≥ 1 and x as above. In light of (4.12),
the right-hand side of (7.23) divided by ŴN/N 2-times the DGFF probability on the
extreme left tends to zero as N →∞ and ε ↓ 0. ��

We are ready to give:

Proof of Theorem 2.5 Take fn ∈ Cc([0,∞)) such that fn(h) := (1 − nh) ∨ 0 and
pick A ⊆ D open with A ⊆ D. Then

E�
∣∣〈κD

N , 1A〉 − 〈ϑD
N , 1A ⊗ fn〉

∣∣ ≤ 2

ŴN

∑
x∈DN
x/N∈A

P�
(
0 < LDN

tN (x) ≤ 1/n
)

. (7.26)

By Lemma 7.3, the sum on the right-hand side tends to zero in the limits N → ∞
followed by n →∞. Theorem 2.4 in turn shows that

〈ϑD
N , 1A ⊗ fn〉 law−→

N→∞
√
2πg c(

√
θ)ZD√

θ
(A)
[
1+

∫
(0,1/n]

μ(dh) fn(h)
]
, (7.27)

where μ is the measure in (2.23). The claim follows by noting that the integral on the
right tends to zero as n →∞. ��
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8 Local structure

In this sectionwe deal with local structures of the exceptional level sets associatedwith
the local time LDN

tN . Throughout we again rely on the coupling of LDN
tN and an indepen-

dent DGFF hDN to another DGFF h̃DN via the Dynkin isomorphism (Theorem 3.1).
We start with the thick points.

8.1 Local structure of thick points

Let aN and tN satisfy (2.14) with some θ > 0 and some λ ∈ (0, 1) and recall the
notation ζ̂ D

N for the extended point measures from (2.26) that describe the λ-thick
points along with their local structure. Let âN be the sequence given by (5.1). We will
compare ζ̂ D

N to the point measures

η̂D
N :=

1

WN

∑
x∈DN

δx/N ⊗ δ
h̃
DN
x −âN

⊗δ{
2
√

2aN+2(̃h
DN
x −âN )+(̃h

DN
x+z−h̃

DN
x )

2 log N (̃h
DN
x −h̃DN

x+z) : z∈Z2

} (8.1)

associated with the DGFF h̃DN . For that we need:

Lemma 8.1 (Gradients of squared DGFF) For all b ∈ R, all M ≥ 1 and all r > 0,

lim
N→∞

1

WN

∑
x∈DN

P�
(
LDN
tN (x) ≥ aN + b log N

)

× P

( ⋃
z∈�r (0)

{∣∣(hDN
x )2 − (hDN

x+z)2
∣∣ > (log N )3/4, |hDN

x | ≤ M
√
log N

})
= 0,

(8.2)

where �r (x) := {z ∈ Z
2 : |z − x | ≤ r}.

Proof When |hDN
x | ≤ M

√
log N , we have

∣∣(hDN
x )2 − (hDN

x+z)2
∣∣ ≤ ∣∣hDN

x − hDN
x+z
∣∣2 + 2M

√
log N

∣∣hDN
x − hDN

x+z
∣∣. (8.3)

Thus, for M ≥ 1, the term corresponding to x ∈ DN on the left-hand side of (8.2) is
bounded from above by

∑
z∈�r (0)

P�
(
LDN
tN (x) ≥ aN + b log N

)
P

(∣∣hDN
x − hDN

x+z
∣∣ > (4M)−1(log N )1/4

)
.

(8.4)
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For ε > 0, abbreviate Dε
N := {x ∈ DN : d∞(x, Dc

N ) > εN }. Then for any x ∈ Dε
N

and z ∈ �r (0), VarP(hDN
x − hDN

x+z) is equal to

GDN (x, x)+ GDN (x + z, x + z)− 2GDN (x, x + z)

= g log N + g log N − 2g log(N/(1+ |z|))+ O(1) ≤ 2g log(1+ r)+ O(1). (8.5)

The standard Gaussian tail estimate bounds (8.4) by o(1)P�(LDN
tN (x) ≥ aN+b log N )

with o(1) → 0 uniformly in x ∈ Dε
N . Lemma 4.1 subsequently shows that the sum

over x ∈ Dε
N on the left-hand side of (8.2) is o(1) as N → ∞. The sum over

x ∈ DN � Dε
N is bounded from above by E�(ζ D

N (D � Dε × [b,∞))) which tends to
0 as N →∞ followed by ε ↓ 0 by Corollary 4.2. ��

We are ready to give:

Proof of Theorem 2.6 Pick any f = f (x, �, φ) ∈ Cc(D × R × R
Z
2
) which depends

only on a finite number of coordinates of φ, say, those in �r (0) for some r > 0. The
following identity is key for the entire proof

[√
2aN + (̃hDN

x − âN )+ 1

2
(̃hDN

x+z − h̃DN
x )

]
(̃hDN

x − h̃DN
x+z)

= LDN
tN (x)− LDN

tN (x + z)+ 1

2
(hDN

x )2 − 1

2
(hDN

x+z)2. (8.6)

Indeed, writing ∇zs(x) := s(x) − s(x + z) for a version of the discrete gradient of
s : Z

2 → R, we then get

〈̂ηD
N , f 〉 = o(1)+ 1

WN

∑
x∈DN

f

(
x

N
,

√
2LDN

tN (x)+ (hDN
x )2 −√2aN ,

{∇z L
DN
tN (x)

log N
+ ∇z(hDN )2(x)

2 log N
: z ∈ Z

2
})

, (8.7)

where o(1) stands for the analogue of the second term on the extreme right of (5.31);
this term tends to zero in probability as N →∞ by exactly the same argument.

In order to control the gradients of the DGFF squared that appear on the right-hand
side of (8.7), set

GN ,r (x) :=
⋂

z∈�r (0)

{∣∣∇z(h
DN )2(x)

∣∣ ≤ (log N )3/4
}

(8.8)

and let, as before, χ : [0,∞) → [0, 1] be a non-increasing, continuous function with
χ(x) = 1 for 0 ≤ x ≤ 1 and χ(x) = 0 for x ≥ 2. By Lemmas 5.2 and 8.1, we may
truncate (8.7) by introducing 1GN ,r (x) and χ(M−1|hDN

x |/√log N ) for M > 0 under
the sum and write 〈̂ηD

N , f 〉 as a random quantity whose L1 norm is at most a constant
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times ‖ f ‖∞e−βM2
uniformly in N plus the quantity

1

WN

∑
x∈DN

1GN ,r (x) f

(
x

N
,

√
2LDN

tN (x)+ (hDN
x )2 −√2aN ,

{∇z L
DN
tN (x)

log N
+∇z(hDN )2(x)

2 log N
: z ∈ Z

2
})

χ

( |hDN
x |

M
√
log N

)
. (8.9)

Using the uniform continuity of f and Corollary 4.2 and Lemma 8.1, we rewrite (8.9)
by a random quantity which tends to 0 as N →∞ in probability plus the quantity

1

WN

∑
x∈DN

fext

(
x

N
,
LDN
tN (x)− aN
log N

,
{∇z L

DN
tN (x)

log N

}
z∈Z2

,
hDN
x√
log N

)
χ

( |hDN
x |

M
√
log N

)
,

(8.10)

where we introduced

fext(x, �, φ, h) := f

(
x,

1

2
√
g(
√

θ + λ)

(
�+ 1

2h
2), φ). (8.11)

Note that Corollary 4.2 implies that {̂ζ D
N : N ≥ 1} is tight. Let ζ̂ D be a subsequential

weak limit of ζ̂ D
N along the subsequence {Nk}. By the same argument as in the proof

of Lemma 5.3, as k →∞ followed by M →∞, 〈̂ηD
Nk

, f 〉 converges in law to

∫
ζ̂ D(dx d� dφ)⊗ g(dh) fext(x, �, φ, h). (8.12)

On the other hand, noting that
√
2aN/ log N → 2

√
g(
√

θ + λ), [10,Theorem 2.1]
shows that 〈̂ηD

N , f 〉 converges, as N →∞, in law to

∫
c(λ)ZD

λ (dx)⊗ e−αλhdh ⊗ νθ,λ(dφ) f (x, h, φ). (8.13)

The arguments in the proof of Theorem 2.2 show that the class of functions fext arising
from f ∈ Cc(D×R×R

Z
2
) above determines the measure ζ̂ D uniquely from (8.12);

the calculation (5.52) then gives

ζ̂ D law= θ1/4

2
√
g(
√

θ + λ)3/2
c(λ)ZD

λ (dx)⊗ e−α(θ,λ)�d�⊗ νθ,λ(dφ). (8.14)

This is the desired claim. ��
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8.2 Local structure of thin points

Wemove to the proof of the convergence of point measures ζ̂ D
N associated with λ-thin

points. The proof follows very much the same steps as for the thick points so we
stay quite brief. Assume that aN and tN satisfy (2.16) with some θ > 0 and some
λ ∈ (0, 1 ∧√θ). As a counterpart to Lemma 8.1, we need the following:

Lemma 8.2 (Gradients of squared DGFF) For all b > 0, all M ≥ 1 and all r > 0,

lim
N→∞

1

WN

∑
x∈DN

P�
(
aN − b log N ≤ LDN

tN (x) ≤ aN + b log N
)

× P

( ⋃
z∈�r (0)

{∣∣(hDN
x )2 − (hDN

x+z)2
∣∣ > (log N )3/4, |hDN

x | ≤ M
√
log N

})
= 0.

(8.15)

Proof The proof is the same as that of Lemma 8.1 except that we use Lemma 4.3 and
Corollary 4.8 instead of Lemma 4.1 and Corollary 4.2, respectively. ��

We are again ready to start:

Proof of Theorem 2.7 Set

âN :=
√
2tN −

√
2aN (8.16)

and pick any f = f (x, �, φ) ∈ Cc(D×R×R
Z
2
) that depends only on a finite number

of coordinates of φ. Let η̂D
N be the point process obtained from (8.1) by replacing âN

by −âN . Using the calculation{√
2aN + (̃hDN

x + âN )+ 1

2
(̃hDN

x+z − h̃DN
x )

}
(̃hDN

x − h̃DN
x+z)

= LDN
tN (x)− LDN

tN (x + z)+ 1

2
(hDN

x )2 − 1

2
(hDN

x+z)2 (8.17)

we then again have (8.7) for 〈̂ηD
N , f 〉. Using Corollary 4.8 and Lemmas 6.1 and 8.2,

we rewrite (8.7) as a random quantity whose L1 norm is at most a constant times
‖ f ‖∞e−βM2

uniformly in N plus (8.10), where, in this case,

fext(x, �, φ, h) := f

(
x,

1

2
√
g(
√

θ − λ)

(
�+ 1

2h
2), φ). (8.18)

Note that Corollary 4.8 implies the tightness of {̂ζ D
N : N ≥ 1}. Let ζ̂ D be any subse-

quential weak limit of ζ̂ D
N along the subsequence {Nk}. By the same argument as in

the proof of Lemma 6.2, as k →∞ and M →∞, 〈̂ηD
Nk

, f 〉 tends in law to

∫
ζ̂ D(dx d� dφ)⊗ g(dh) fext(x, �, φ, h). (8.19)
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On the other hand, by [10,Theorem 2.1], as N →∞, 〈̂ηD
N , f 〉 converges in law to

∫
c(λ)ZD

λ (dx)⊗ eαλhdh ⊗ ν̃θ,λ(dφ) f (x, h, φ). (8.20)

The arguments in the proof of Theorem 2.3 and the calculation (6.21) then show

ζ̂ D law= θ1/4

2
√
g(
√

θ − λ)3/2
c(λ) ZD

λ (dx)⊗ eα̃(θ,λ)�d�⊗ ν̃θ,λ(dφ). (8.21)

This is the desired claim. ��

8.3 Local structure of avoided points

In this section we will prove the convergence of the point measures associated with
the local structure of the avoided points. The proof will make use of the Pinned
Isomorphism Theorem (see Theorem 3.2) but that so only at the very end. Most of the
argument consists of careful manipulations with the doubly extended measure

κ̂
D,ext
N :=

√
log N

ŴN

∑
x∈DN

1{LDN
tN

(x)=0}δx/N ⊗ δ{LDN
tN

(x+z) : z∈Z2}

⊗ δ
h
DN
x
⊗ δ{̂hDN �{x}

x+z : z∈Z2}, (8.22)

where, for bDN ,x as in (5.18),

ĥDN�{x}
z := hDN

z − hDN
x bDN ,x (z), z ∈ Z

2. (8.23)

By (5.18), ĥDN�{x} is the field hDN conditioned on hDN
x = 0. In particular,

ĥDN�{x} ⊥⊥ hDN
x . (8.24)

Corollary 4.6 implies that {̂κD,ext
N : N ≥ 1} is tight with respect to vague convergence

of measures on the product space D×[0,∞)Z
2×R×R

Z
2
. As before, a key ingredient

we need is factorization of the subsequential limits:

Lemma 8.3 Suppose {Nk} is a subsequence along which κ̂D
N converges in law to κ̂D.

Then

κ̂
D, ext
N

law−→
N=Nk
k→∞

1√
2πg

κ̂D ⊗ Leb⊗ ν0. (8.25)

Proof Let f = f (x, �, h, φ) : D × [0,∞)Z
2 × R × R

Z
2 → R be a continuous,

compactly-supported function that depends only on a finite number of coordinates of �
and φ, say, those in�r0(0) for some r0 > 0. Suppose in addition that f (x, �, h, φ) = 0
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unless x ∈ A for some open A ⊆ D with A ⊆ D, and unless |h|2 ≤ M and
�z, |φz | ≤ M for all z ∈ �r0(0) for some M > 0.

Noting that only the second pair of the variables of κ̂
D,ext
N is affected by expecta-

tion E with respect to the law of hDN , we now claim

E〈̂κD,ext
N , f 〉 = 1√

2πg
〈̂κD

N ⊗ Leb⊗ ν0, f 〉 + o(1), (8.26)

where o(1) → 0 in P�-probability as N → ∞ and where ν0 the law of the pinned
DGFF. As in the proof of Lemma 7.1, (8.26) follows by noting that the probability
density of hDN

x multiplied by
√
log N tends to (2πg)−1/2 uniformly over any com-

pact interval and by the fact (̂hDN�{x}
x+z )z∈�r0 (0) tends in law to (φz)z∈�r0 (0) (which

can be gleaned from the representation of the Green function by the potential ker-
nel, see [9,Lemma B.3], and the asymptotic expression for the potential kernel, see
[9,Lemma B.4]). These two convergences may be applied jointly in light of the inde-
pendence (8.24) and the Bounded Convergence Theorem enabled by the tightness
of {̂κD

N : N ≥ 1}.
In order to convert the convergence in the mean to the convergence in law, we

proceed as in the proof of Lemma 7.1. Let us abbreviate LDN
tN (x), hDN

x and ĥDN�{x}
x+z

by L(x), hx and φ
(x)
z , respectively, for the duration of this proof. Recall the event

FN ,M,ε,δ(x) in the proof of Lemma 7.1. By the argument leading up to (7.9), for the
truncated measure

κ̂
D,ext
N ,M,ε,δ :=

1

KN

∑
x∈DN

1FN ,M,ε,δ(x) 1{L(x)=0} δx/N ⊗ δ{L(x+z) : z∈Z2}

⊗δhx ⊗ δ{φ(x)
z :z∈Z2}, (8.27)

where KN abbreviates ŴN/
√
log N we get

lim
ε↓0 lim sup

N→∞

∣∣∣∣E� ⊗ E

(
〈̂κD,ext

N , f 〉 e−s 〈̂κD,ext
N , f 〉)

− E� ⊗ E

(
〈̂κD,ext

N , f 〉 e−s 〈̂κD,ext
N ,M,2ε,δ , f 〉

)∣∣∣∣ = 0 (8.28)

uniformly in s ∈ [0, 1]. Focusing attention on the second expectation and writing
Gr0(x) for theσ -field generated by {hx+z : z ∈ �r0(0)}, the conditional Jensen inequal-
ity shows

E� ⊗ E

(
〈̂κD,ext

N , f 〉 e−s 〈̂κD,ext
N ,M,2ε,δ , f 〉

)
≥ 1

KN

∑
x∈DN
x/N∈A

E� ⊗ E

(
1{L(x)=0} f

(
x/N , L(x + ·), hx , φ(x))e−sE(〈̂κD,ext

N ,M,2ε,δ , f 〉|Gr0 (x))
)
. (8.29)
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The conditional expectation in the exponent is bounded by

E
(〈̂κD,ext

N ,M,2ε,δ, f 〉 ∣∣Gr0(x))
≤ 1

KN

∑
y∈DN|x−y|≥εN

1{L(y)=0} E
(
f
(
y/N , L(y + ·), hy, φ

(y)) ∣∣∣Gr0(x))

+ ‖ f ‖∞
KN

E

( ∑
y∈DN|x−y|<εN

1{L(y)+ 1
2 h

2
y≤2M}1FN ,M,2ε,δ(y)

∣∣∣Gr0(x)). (8.30)

As in (7.11), the second term on the right is bounded by δ‖ f ‖∞ pointwise.
Concerning the first term on the right of (8.30), we consider the analogue of the

quantity osc f ,M (r) in (7.12) defined, for any r > 0, by

sup
z∈D

sup
�∈[0,M]�r0 (0)

sup
h,h′∈[−√M,

√
M]

|h−h′|≤r

sup
φ,φ′∈[−M,M]�r0 (0)

|φz−φ′z |≤r ,∀z∈�r0 (0)

∣∣ f (z, �, h, φ)− f (z, �, h′, φ′)
∣∣.

(8.31)

Consider the decomposition of hy =∑z∈�r0 (0) b
(x)
z (y)hx+z+hx,r0y , where b(x)

z (y) :=
Py(H�r0 (x) < H�, XH�r0 (x) = x + z) and hx,r0y is the DGFF in DN � �r0(x) inde-

pendent of hx+z , z ∈ �r0(0). On the event {h2x ≤ M} ∩⋂z∈�r0 (0){|φ(x)
z | ≤ M}, we

have∣∣∣∣E( f (y/N , L(y + ·), hy, φ
(y)) ∣∣∣Gr0(x))− E

(
f
(
y/N , L(y + ·), hy, φ

(y)))∣∣∣∣
≤ osc f ,M

(
2b(x)(y)

[
2M + (log N )3/4)

])
P

(
|hx,r0y | ≤ √M + b(x)(y)(log N )3/4

)
+ ‖ f ‖∞

∑
z∈�r0 (0)

P
(|hx+z | > (log N )3/4

)
, (8.32)

where b(x)(y) := maxz∈�r0 (0) Py+z[H�r0 (x) < Hρ]. Since |y − x | ≥ εN , the bound

(5.19) dominates b(x)(y) by c(log N )−1, where c > 0 depends on ε and r0.
Using these observations (as in (7.14)), the conditional expectation on the right

of (8.29) is at most E(〈̂κD,ext
N , f 〉) + δ‖ f ‖∞ + o(1) where o(1) → 0 in probability

as N →∞. The rest of the proof of Lemma 7.1 then applies to give the desired claim.
��

We are now ready to give:

Proof of Theorem 2.8 Consider the coupling from Theorem 3.1 between the local
time LDN

tN and two copies hDN and h̃DN of the DGFF in DN , with the former inde-

pendent of LDN
tN . Recall the definition of ĥDN�{x} from (8.23), write φ

(x)
z := ĥDN�{x}

x+z
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and abbreviate ∇zs(x) := s(x) − s(x + z). Then for each x ∈ DN and z ∈ Z
2, we

have

(
h̃DN
x +√2tN − 1

2
∇z h̃

DN (x)
)(
−∇z h̃

DN (x)
)

= −∇z L
DN
tN (x)+ 1

2

(
φ(x)
z + bDN ,x (x + z)hDN

x

)2 − 1

2
(hDN

x )2. (8.33)

Let �x (z) and �x (z) denote the left-hand side and the right-hand side of (8.33),
respectively. Then for each f : D × [0,∞)× R

Z
2 → R,

√
log N

ŴN

∑
x∈DN

f

(
x/N ,

1

2
(̃hDN

x +√2tN )2, {�x (z) : z ∈ Z
2}
)

=
√
log N

ŴN

∑
x∈DN

f

(
x/N , LDN

tN (x)+ 1

2
(hDN

x )2, {�x (z) : z ∈ Z
2}
)

. (8.34)

Next pick F : R
Z
2 → R that is continuous and depends only on a finite number of

coordinates, say, in �r (0), and obeys F(φ) = 0 unless |φz| ≤ M for all z ∈ �r (0)
for some M > 0. Then set f (x, �, φ) := 1A(x) fn(�)F(φ), where A ⊆ D is an open
set with A ⊆ D and fn : [0,∞) → [0, 1] are given by fn(�) := (1 − n�) ∨ 0. The
Bounded Convergence Theorem ensures that (8.34) applies to these f ’s as well so
we will now explicitly compute both sides (suitably scaled) in the joint distributional
limit as N →∞ and n →∞. Note that taking the limit jointly preserves pointwise
equality (8.34).

Starting with the right hand side of (8.34), the uniform continuity of F and Corol-
lary 4.6, we may rewrite it as a random quantity whose L1-norm under P� ⊗ P is at
most o(1)n−1/2, with o(1) → 0 as n →∞, plus the quantity

√
log N

ŴN

∑
x∈AN

fn

(
LDN
tN (x)+ 1

2
(hDN

x )2
)
F

({
LDN
tN (x + z)+ 1

2
(φ(x)

z )2 : z ∈ Z
2
})

,

(8.35)

where we denoted AN := {x ∈ Z
2 : x/N ∈ A}. Decomposing the sum over x with

LDN
tN (x) = 0 and the sum over x with LDN

tN (x) > 0 and applying Lemma 7.3 to the
latter, we rewrite (8.35) as

√
log N

ŴN

∑
x∈AN

1{LDN
tN

(x)=0} fn
(1
2
(hDN

x )2
)
F

({
LDN
tN (x + z)+ 1

2
(φ(x)

z )2 : z ∈ Z
2
})

(8.36)

plus a random quantity whose L1-norm under Pρ ⊗ P is at most o(1)n−1/2 with
o(1) → 0 as N →∞ followed by n →∞. Let κ̂D be a (subsequential) weak limit
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of κ̂D
N along the subsequence {Nk}. By Lemma 8.3, as k → ∞, (8.36) converges in

law to

1√
2πg

∫
κ̂D(dx d�)⊗ dh ⊗ ν0(dφ)1A(x) fn

( h2
2

)
F

({
�z + 1

2
φ2
z : z ∈ Z

2
})

= 4

3
√

πgn

∫
κ̂D(dx d�)⊗ ν0(dφ)1A(x)F

({
�z + 1

2
φ2
z : z ∈ Z

2
})

(8.37)

where we used the explicit form of fn to perform the integral over h. Multiplying this

by 3
4

√
n
2 , as n →∞ this converges to

1√
2πg

∫
κ̂D
A (d�)⊗ ν0(dφ)F

({
�z + 1

2
φ2
z : z ∈ Z

2
})

(8.38)

as n → ∞ where κ̂D
A (B) := κ̂D(A × B). This is the N → ∞ and n → ∞ limit of

the (rescaled) right-hand side of (8.34).
Concerning the left-hand side of (8.34), whenever A is such that Leb(∂A) = 0

(which implies ZD√
θ
(∂A) = 0 a.s.), [10,Theorem 2.1] yields convergence to

c(
√

θ)ZD√
θ
(A)

∫
dh ⊗ ν√θ (dφ) eα

√
θh fn

( h2
2

)
F

({(
h − 1

2φz
)
(−φz) : z ∈ Z

2
})

,

(8.39)

where ν√θ is the law of φ + α
√

θ a with φ distributed according to ν0. Using that

∫
dh eα

√
θh fn

( h2
2

) = 4
√
2

3
√
n
+ O(n−3/2), n →∞, (8.40)

(8.39) multiplied by 3
4

√
n
2 converges to

c(
√

θ)ZD√
θ
(A)

∫
ν0(dφ)F

({ 1
2 (φz + α

√
θ a)2 : z ∈ Z

2}) (8.41)

as n → ∞. This is the N → ∞ and n → ∞ limit of the (rescaled) left-hand side
of (8.34).

We now finally have a chance to invoke the Pinned Isomorphism Theorem of
[36]. Indeed, since 2

√
2u = α

√
θ implies u = πθ , (3.6) equates (8.41) (and thus

(8.38)) with

c(
√

θ)ZD√
θ
(A)

∫
νRIθ (d�)⊗ ν0(dφ)F

({
�z + 1

2φ
2
z : z ∈ Z

2}). (8.42)

The Bounded Convergence Theorem extends the equality of (8.38) and (8.42) to F of
the form F(�) := exp{−∑z∈�r (0) bz�z} for any bz ≥ 0. This effectively transforms
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54 Y. Abe and M. Biskup

the term 1
2φ

2
z away from both expressions and, thanks to the Cramér–Wold device,

implies

κ̂D
A (d�)

law= √
2πg c(

√
θ)ZD√

θ
(A) νRIθ (d�). (8.43)

As this holds for all open A ⊆ D with A ⊆ D, the claim follows. ��
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