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Abstract

We study exceptional sets of the local time of the continuous-time simple random
walk in scaled-up (by N) versions Dy C Z? of bounded open domains D C R2.
Upon exit from Dy, the walk lands on a “boundary vertex” and then reenters Dy
through a random boundary edge in the next step. In the parametrization by the local
time at the “boundary vertex” we prove that, at times corresponding to a -multiple
of the cover time of Dy, the sets of suitably defined A-thick (i.e., heavily visited)
and A-thin (i.e., lightly visited) points are, as N — oo, distributed according to the
Liouville Quantum Gravity Z f with parameter A-times the critical value. For 6 < 1,
also the set of avoided vertices (a.k.a. late points) and the set where the local time is
of order unity are distributed according to Z 35. The local structure of the exceptional
sets is described as well, and is that of a pinned Discrete Gaussian Free Field for the
thick and thin points and that of random-interlacement occupation-time field for the
avoided points. The results demonstrate universality of the Gaussian Free Field for
these extremal problems.
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1 Introduction
1.1 Motivation

In afamous paper from 1960, Erdés and Taylor [23] studied the most-frequently visited
site by the simple random walk on Z? of time-length n. They showed that the time spent
at that site is of order (log 7)? and conjectured that the time is asymptotically sharp on
that scale. This conjecture was proved in 2001 by Dembo et al. [15] (see also Rosen
[34]) who in addition described the multifractal structure of the set of thick points;
namely, those points where the local time is at least a given positive multiple of its
maximum. The problem has been revisited numerous times; e.g., by Dembo et al. [16]
who studied random walk late points, by Okada [32] who studied the most visited site
on the inner boundary of the range, or by Jego [24] who extended the results of [15,
34] to more general random walks.

Over the past two decades, it has become increasingly clear that many questions
about the local time can be usefully rephrased as questions about an associated Discrete
Gaussian Free Field (DGFF). This connection, discovered originally in mathematical
physics (Symanzik [39], Brydges et al. [12]), is now elegantly expressed via Dynkin-
type Isomorphism/Second Ray—Knight theorems (Dynkin [20], Eisenbaum et al. [22]).
Isomoporphism results of this kind drive the analysis of many important objects;
for instance, random interlacements (Sznitman [40], Rodriguez [35], etc), loop-
soups (Lawler and Werner [29], Le Jan [30], Lupu [31], etc) and the cover time
(Ding et al. [19], Ding [18], etc).
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Exceptional points of two-dimensional random walks. .. 3

In the present paper we use the Second Ray—Knight theorem of [22] to study
the precise statistics of the thick points for the simple random walk run for times
proportional to the cover time of an underlying “planar” graph. In addition to the
thick points, we analyze also the sets of thin points, which are those where the local
time is less than a fraction of its typical value, avoided points, which are those not
visited at all, and light points, where the local time is at most a given constant. We
show that all these level sets are intimately connected with the corresponding (so
called intermediate) level sets of the Discrete Gaussian Free Field studied earlier by
O. Louidor and the second author [10]. In particular, their limiting statistics is captured
by the Liouville Quantum Gravity measures introduced and studied by Duplantier and
Sheffield [21].

1.2 Setting for the random walk

In order to take full advantage of the prior work [10] on the DGFF, we will consider a
slightly different setting than the earlier references [15, 23] and Abe [1], who studied
the leading order of the number of thick and thin points for random walk on two-
dimensional lattice tori. Indeed, our random walk will behave as the simple random
walk only inside a large finite subset of Z?; when it exits this set it reenters in the next
step through a uniformly-chosen boundary edge.

To describe the dynamics of our random walk, consider first a general finite, unori-
ented, connected graph G = (V U {p}, E), where o is a distinguished vertex (not
belonging to V). We assume that each edge e € E is endowed with a number ¢, > 0,
called the conductance of e. Let X denote a continuous-time (constant-speed) Markov
chain on V U {p} that makes jumps at independent rate-1 exponential random times
to a neighbor selected with the help of transition probabilities

Pl v) = {#;), if e::~ (u,v) € E, (1
0, otherwise,
where 7 (1) is the sum of ¢, for all edges incident with u. We will use P* to denote
the law of X with P*(Xg =u) = 1.
Given a path X of the above Markov chain, the local time at v € V U {p} at time ¢
is then given by

1 t
¢/ (v) = %/O ds lix,=u), t>0, (1.2)

where the normalization by (1) ensures that the leading-order growth of ¢ — Etv (v)
is the same for all vertices. We will henceforth work in the time parametrization by the
local time at the distinguished vertex o. For this we set 7, () := inf{s > 0: K;/ (0) >t}
and denote

L) (v) = efvg(t)(v). (1.3)

In this parametrization, ¢ is the expected (and leading-order) value of L,v (v) under P9,
for every v € V U {p}.
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4 Y. Abe and M. Biskup

Fig.1 The graph corresponding to V being the square of 6 x 6 vertices. Each vertex on the outer perimeter
of V has an edge to the “boundary vertex” g; the corner vertices that have two edges to o. The “boundary
vertex” plays the role of the wired boundary condition used often in statistical mechanics. For us this ensures
that the associated DGFF vanishes outside V

Our derivations will make heavy use of the connection of the above Markov chain
with an instance of the Discrete Gaussian Free Field (DGFF). Denoting by

H, = inf{tzO: Xlzv} (1.4)

the first hitting time of vertex v, this DGFF is the centered Gaussian process {h) : v €
V'} with covariances given by

E(hy hy) = G (u, v) := E* (L (v)). (1.5)

Here and henceforth, E denotes expectation with respect to the law P of V. The field
naturally extends to ¢ by k) = 0.

Returning back to random walks on Z2, in our setting V stands for a large finite
subset V' C Z? while o is the boundary vertex obtained by collapsing the set of
vertices outside V' to a single point. The set of edges E is that between the nearest-
neighbor pairs in V plus all the edges from V to Z> ~. V that now “end” in o; see
Fig. 1. The transition rule of the Markov chain is that of the simple random walk
on the underlying graph; indeed, all conductances take a unit value, ¢, := 1, at all
the involved edges including those incident with o. The DGFF associated with this
network then corresponds to the “standard” DGFF in V (cf the review by Biskup [6])
with zero boundary conditions outside V except that our normalization is slightly
different than the one used in [6]—indeed, our fields are half the size of those in [6].

For the lattice domains, we will take sequences of subsets of Z> that approximate,
in the scaling limit, well-behaved continuum domains. The following definitions are
taken from Biskup and Louidor [8]:

Definition 1.1 An admissible domain is a bounded open subset of R? that consists of
a finite number of connected components and whose boundary is composed of a finite
number of connected sets each of which has a positive Euclidean diameter.

We write © to denote the family of all admissible domains and let d (-, -) denote
the £°°-distance on RZ.
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Exceptional points of two-dimensional random walks. .. 5

Definition 1.2 An admissible lattice approximation of D € © is asequence {Dy}n>1
of subsets of Z2 such that the following holds: Thereis Ny € Nsuchthatforall N > Ny
we have

1
Dy C {x € 72 : doo(*/n, R\ D) > N} (1.6)
and, for any § > O there is N = N1(6) € N such that forall N > Ny,
Dy 2 {x € Z* : do(*/y, R* \. D) > 8}. (1.7)

As shown in [8], these choices ensure that the discrete harmonic measure on Dy
tends, under the scaling of space by N, weakly to the harmonic measure on D.
This yields a precise asymptotic expansion of the associated Green functions; see
[6,Chapter 1] for a detailed exposition. In particular, we have GPV (x, x) = glog N +
0O(1) for

gi= — (1.8)

whenever x is deep inside Dy. (This is by a factor 4 smaller than the corresponding
constant in [6, 8] due to a different normalization of our fields.)

Our random walk will invariably start from the “boundary vertex” o; throughout
we will thus write P¢ for the corresponding law of the Markov chain X. (This law
depends on N but we suppress that notationally.)

2 Main results

Our aim in this work is to describe the random walk at times that correspond to a
@-multiple of the cover time, for every 6 > 0. Recall that the cover time of a graph
is the first time that every vertex of the graph has been visited. Although this is a
random quantity, it is quite well concentrated (provided that the maximal hitting time
is of smaller order than the expected cover time; see Aldous [4]). In particular, at the

cover time of Dy the local time at a typical vertex is asymptotic to 2g(log N)?. This
suggests that we henceforth take 7 proportional to (log N)* as N — oc.

2.1 Maximum, minimum and exceptional sets

Let us begin by noting the range of values that the local time takes on Dy:

Theorem 2.1 Let {ty}n>1 be a positive sequence such that, for some 60 > 0,

. N
lim —N _ — g0, 2.1
N (log N2 8 2.
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6 Y. Abe and M. Biskup

Then for any D € ®, any admissible sequence {Dn}n>1 of lattice approximations
of D, the following limits hold in P®-probability:

1 2

and

(log N)2 xr?g}v Ly () N oo 28[(V8 -1 Vol (2.3)

These conclusions have previously been obtained by Abe [1,Corollary 1.3] for
the continuous-time walk on the N x N torus. As is checked from (2.3), the cover
time indeed corresponds to & = 1. Noting that the typical value of the local time at

a @-multiple of the cover time is asymptotic to 2g6 (log N)?, we are naturally led to
consider the set of A-thick points,

T, ) = {x € Dy: L2 (x) = 2¢(v/6 + 2)*(log N)2} (2.4)
for A € (0, 1], and A-thin points,
Ty (0.2) = {x € Dy: LY (x) < 2¢(v/0 — )% (log N)2} 2.5)

for A € (0, NN 1], where the upper bounds on A reflect on (2.2-2.3). As a boundary
case of TN_ (@, 1), we single out the set of r-light points,

Ly@,r):={xeDy: L) <7}, r=0, (2.6)
including the special case of the set of avoided points,
An@®) =[x € Dy: LLV (x) = 0} (2.7)

(Dembo et al. [16] refer to (2.7) as the late points but we prefer the above in order to
make the distinction between (2.6) and (2.7) clear.) By (2.3), the latter two sets will
only be relevant for 6 € (0, 1]. Our aim is to describe the scaling limit of all these
sets in the limit as N — oo. As shown in Figs. 2 and 3, this limit should be a random
fractal.

2.2 Digression on exceptional sets of DGFF

As noted previously, Biskup and Louidor [10] have addressed similar questions in
the context of the DGFF. There the maximum of 2PN is asymptotic to 2,/glog N
and so the set of A-thick points is naturally defined as that where the field exceeds
2X,/glog N. It was noted that taking a limit of these sets directly does not lead to
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Exceptional points of two-dimensional random walks. .. 7

Fig.2 Plots of the A-thick (left) and A-thin (right) level sets for the same sample of the random walk on a
square of side length 1000 and parameter choices 6 := 10 and A := 0.1

Fig. 3 The sets of avoided points for a sample of the random walk on a square of side-length N = 2000
observed at times corresponding to -multiple of the cover time for 6 := 0.1 (left) and 6 := 0.3 (right)

interesting conclusions as, after scaling space by N, they become increasingly dense
in D. A proper way to capture their structure is via the random measure

1
Ny = o D SN @8y, (2.8)

xeDy

where {ay}n>1 is a centering sequence with the asymptotic ay ~ 2A,/glog N and

N2 312\]
Ky = ——=¢ 2%leVN, 2.9
N Tog N (2.9)
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8 Y. Abe and M. Biskup

In [10,Theorem 2.1] it was then shown that, for each A e_(O, 1) there is ¢(1) > O such
that, in the sense of vague convergence of measures on D x (R U {4-00}),

2 o) ZPdx) ® e dh, (2.10)

N—o0

where @ :=2/,/g and Z f is a random measure in D called the Liouville Quantum
Gravity (LQG) at parameter A-times critical. (While n 3 is defined a priori as a mea-
sures on D x R, we will at times regard it as a measure on D x (RU{+00}), where D is
the closure of D and the topology on R U {+o00} extends that on R so that the intervals
of the form [a, +oc] are compact.) The constant ¢(1), given explicitly in terms of A
and the constants in the asymptotic expansion of the potential kernel on Z2, allows us
take Z f to be normalized so that, for each Borel set A € D,

EZP(A) = /ArD(x)de, Q.11

where 7P is an explicit function supported on D that, for D simply connected, is

simply the conformal radius; see [10,(2.10)].

A construction of the LQG measures goes back to Kahane’s Multiplichative Chaos
theory [27]; they were recently reintroduced and further studied by Duplantier and
Sheffield [21]. Shamov [38] neatly characterized the LQG measures for all A € (0, 1)
by their expected value and the behavior under Cameron—Martin shifts of the under-
lying continuum Gaussian Free Field.

2.3 Thick and thin points

Inspired by the above developments, we will encode the level sets ’Ti (6, 1) via the
random measures

1
D
= — 2.12
= D BN ® 310N () ) tog (2.12)

xeDy

where {an}ny>1 is a centering sequence and {fy}y>1 iS a sequence of times, both
growing proportionally to (log N)?, and

N ()’ o)
e g log . .
J/log N

WN =

The normalization by log N in the second delta-mass in (2.12) indicates that we are
tracking variations of the local time of scale log N. (As we will see in Sect. 2.5, this is
also the order of the variation of the local time between nearest neighbors.) We then get:
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Exceptional points of two-dimensional random walks. .. 9

Theorem 2.2 (Thick points). Suppose {tn}n>1 and {an}n>1 are positive sequences
such that, for some 6 > 0 and some A € (0, 1),

=2g0 and lim ——— =2g(VO+ 12 (2.14)

lim —
N—oo (log N)? N—00 (10 N)2

Forany D € ©, any sequence { Dy} N> of admissible approximations of D, and for X
sampled from P®, in the sense of vague convergence of measures on D x (RU {+4o00}),

p law ol/4

- «W)ZPdx) @e *@Mhgp, (2.15)
Vones 2 g (WE+2 T

where (0, \) 1= and c¢(A) is as in (2.10).

g f 0+
For the thin points, we similarly obtain:

Theorem 2.3 (Thin points). Suppose {tn}n>1 and {an}n>1 are positive sequences
such that, for some 6 > 0 and some A € (0,1 A \/5),

=2g6 and lim ———— =2g(v/0 — 1% (2.16)

t
lim — 2~
N—oo (log N)? N—o0 (log N)2

Forany D € D, any sequence { Dy }n>1 of admissible approximations of D, and for X
sampled from P®, in the sense of vague convergence of measures on D x (RU{—o00}),

aw 91/4

L —N VA +a@Mhqp 2.17
N—>oo 2[(\/_ )\.)3/2 C( ) )”( X)®e ( )

N

1A . .
¢ 70 and c(b) is as in (2.10).

Note that, under (2.14) or (2.16), the above implies

where (0, \) =

ITE0, 1) = N2+ (2.18)

where o(1) — 0 in probability. This conclusion has previously been obtained by the
first author in [1,Theorem 1.2], albeit for random walks on tori and under a different
parametrization of the level sets. The present theorems tell us considerably more.
Indeed, they imply that points picked at random from TA}—L (6, 1) have asymptotically
the same statistics as those picked from the set where the DGFF is above the A-multiple
of its absolute maximum.

The connection with the DGFF becomes nearly perfect if instead of log N we
normalize the second coordinate of ¢ 1{,’ by +/2ay. In that parametrization, the resulting
measure coincides (up to reversal of the second coordinate for the thin points) with that
for the DGFF up to an overall normalization constant. This demonstrates universality
of the Gaussian Free Field in these extremal problems.
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10 Y. Abe and M. Biskup

2.4 Light and avoided points

The level sets (2.4-2.5) are naturally nested which suggests that, for 8 € (0, 1), also
the sets of r-light points £y (6, r) and avoided points Ay (0) bear a close connection
to an intermediate level set of the DGFF, this time with A := /0. As the next theorem
shows, this is true albeit under a different normalization:

Theorem 2.4 (Light points). Suppose {ty}n=1 is a positive sequence such that

1 N
=— lim — € (0,1). 2.19
2g N (log N)2 €@Db @.19)

For any D € ©, any sequence {Dn}n>1 of admissible approximations of D, and
for X sampled from P®, consider the measure

D._
op = o Z SN ®8 L2 ey (2.20)
xeDy
where
~ 9 - IN
Wy := N7e sloeN | (2.21)

Then, in the sense of vague convergence of measures on D x [0, 00),
9P Nﬂ V2rg e(VB) 25 (dx) ® u(dh), (2.22)
—

where ¢()) is as in (2.10) and ¢ is the Borel measure

ad 1 29\ n+1
1u(dh) = So(dh)+<z (“T) h")l(o’oo)(h)dh. (2.23)

o nl(n + 1)!

Note that the density of the continuous part of the measure in (2.23) is uniformly
positive on [0, oo) and grows exponentially in /%. Naturally, the atom at zero has the
interpretation of the contribution of the avoided points and so we get:

Theorem 2.5 (Avoided points) Suppose {tn}n>1 is a positive sequence such that
(2.19) holds. For any D € ®©, any sequence {Dy}n>1 of admissible approximations
of D, and for X sampled from P, consider the measure

KN = Z {L )= 0} 3x/N (2.24)

xeD

where WN is as in (2.21). Then, in the sense of vague convergence of measures on D,
KD Nﬂ V2rge(/o) Z5; (), (2.25)
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Exceptional points of two-dimensional random walks. .. 11

where ¢()) is again as in (2.10).

We conclude that, at times asymptotic to a #-multiple of the cover time with 6 < 1,
the total number of avoided points is proportional to Wy = N20=9+0() Moreover,
when normalized by Wy, it tends in law to a constant times the total mass of Z \%.

2.5 Local structure: thick and thin points

Similarly to the case of the DGFF treated in [10], the convergence of the point measures
associated with the exceptional sets can be extended to include information about the
local structure of the exceptional sets under consideration. For the case of thick and
thin points, this structure is captured by the measure on Borel subsets of D x R x RZ?
(under the product topology) defined by

~ 1
D._ -
CN = Wy Z 5x/N
xeDy
3 3 . (2.26
® (L,ZI)VN (x)—aN)/logN ® {(L,[;VN (x)—Lf]’VN(Hz))/logN; zezz} (2.26)
In order to express the limit measure, we need to introduce the DGFF ¢ on Z? pinned
to zero at the origin. This is a centered Gaussian field on Z? with law v determined

by
Eo(dxpy) = a(x) +ay) —alx — ), (2.27)

where a: 72 — [0, o0) is the potential kernel, i.e., the unique function with a(0) = 0
which is discrete harmonic on Z2 ~. {0} and satisfies a(x) = glog|x| + O(1) as
|x| — oo. For the thick points, we then get:

Theorem 2.6 (Local structure of the thick points) Under the conditions of Theorem 2.2
and denoting by ¢ P the limit measure on the right of (2.15),

o~ 1
= P @, (2.28)
N—o0

where vg ;. is the law of 2./8(+/0 + 1) (¢ + ara) under v°.
For the thin points, we in turn get:

Theorem 2.7 (Local structure of the thin points) Under the condition of Theorem 2.3
and denoting by ¢ P the limit measure on the right of (2.17),

~p 1 ~
oy — P, (2.29)
N—o00
where Vg . is the law 0f2¢§(«/§ — A) (¢ — a)ra) under O,
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12 Y. Abe and M. Biskup

As shown in [10], the field ¢ + Aaa describes the local structure of the DGFF
near the points where it takes values (close to) 2,/gA log N. As before, the prefactor
2\/_ (/0 % 1) disappears when instead of log N we normalize the third coordinate
of ;‘N by +/2ay. The above results thus extend the universality of the DGFF to the
local structure as well.

2.6 Local structure: avoided points

The local structure of the local time near the avoided points will be radically different.
Indeed, in the vicinity of an avoided point, the local time will remain of order unity
and so a proper way to extend the measure « Ie is

- 1
KII\? = W_ Z ]{L,L[)VN (x)=0}8x/N ® S{L,L[)VN (x+2): zeZz}’ (2.30)

which is now a Borel measure on D x [0, oo)Zz. Moreover, near an avoided point x,
the walk itself should behave as if conditioned not to hit x. This suggests that its
trajectories will look like two-dimensional random interlacements introduced recently
by Comets et al. [13] and Rodriguez [36], building on earlier work of Sznitman [40]
and Teixeira [41] in transient dimensions. In order to state our limit theorem, we need
to review some of the main conclusions from [13, 36].

First we need some notation. Let W be the set of all doubly-infinite transient
random-walk trajectories on Z2; namely, piece-wise constant right-continuous maps
X: R — Z? that make only jumps between nearest neighbors and spend only
finite time (measured by the Lebesgue measure) in every finite subset of Z?. We
endow W with the o -field W generated by finite-dimensional coordinate projections,
W :=0o(X;:t € R). For A C 7?2 finite, we write W4 for the subset of W of the
trajectories that visit A.

Next we will put a measure Q%Zz on Wy as follows. Let h4 denote the harmonic
measure of A from infinity (i.e., the distribution of the first entry point to A by arandom
walk started at infinity). Assume 0 € A and let P* denote the law of a constant- speed
continuous-time random walk on Z? ~. {0} started at x with conductance a( y)a(z) at
nearest-neighbor edges (y, z) in Z2. By Doob’s h-transform argument, P¥ is the law
of the simple random walk on Z? started from x and conditioned to avoid 0. For all
cylindrical events E¥, E~ € 0(X;: t > 0) and any x € 72, we then set

2
05" ((X-iz0 € E™. Xo = x, (Xp)izo € E7)
=4 a(x)ha(x) P (ET)PY(E™ | Hy = o0). (2.31)
Note that, since cylindrical events are unable to distinguish left and right path
continuity, writing (X—;);>0 € E~ is meaningful. The transience of P* implies

P*(H4 = o0) > 0 whenever h4(x) > 0 and so the conditioning on the right-hand
side is non-singular.
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Exceptional points of two-dimensional random walks. .. 13

The measure Q%’Zz represents the (un-normalized) law of doubly-infinite trajec-
tories of the simple random walk that hit A (recall that h4(x) = O unless x € A)
but avoid O for all times. As the main results of [13, 36] show, the normalization is
chosen such that these measures are consistent, albeit only after factoring out time
shifts. To state this precisely, we need some more notation. Regarding two trajectories
w, w’ € W as equivalent if they are time shifts of each other—i.e., if there is r € R
such that w(s) = w'(s + t) for all s € R—we use W* to denote the quotient space
of W induced by this equivalence relation. Writing IT,: W — W™ for the canonical
projection, the induced o-field on W* is given by W* := {E € W*: I171(E) e W).
Note that W} := I1,(W4) € W*.

Theorems 3.3 and 4.2 of [36] (building on [41,Theorem 2.1], see also [13,p. 133])
then ensure the existence of a (unique) measure on W* such that for any finite A C Z?
and any E € W*,

2 2
vV EENWE = 0% o ENWY). (2.32)
. 0.7% . . . 2 . 0,72
Since O, 1is a finite measure and the set of finitt A C Z< is countable, v
is o-finite. We may thus consider a Poisson point process on W* x [0, co) with
. . 2 . . . .
intensity v%%" ® Leb. Given a sample @ from this process, which we may write

asw =Y iy S(w;',ul.), and any u € [0, 0o), we define the occupation time field at
level u by

1
Lu(x) ==Y 1y;<u) Z/Rdz Lwi(h=x)> X € 22, (2.33)
ieN

where w; € W is any representative of the class of trajectories marked by w;; i.e.,
I, (w;) = w;. (The integral does not depend on the choice of the representative.) We

are now ready to state the convergence of the measures 'K\f\; .

Theorem 2.8 (Local structure of the avoided points) Under the conditions of Theo-
rem 2.5 and for kP denoting the measure on the right of (2.25),

~ law
I3 o P @Rl (2.34)

where v}}l is the law of the occupation time field (L, (X)) c72 atu 1= m0.

We expect a similar result to hold for the light points as well but with the random
interlacements replaced by a suitably modified version that allows the walks to hit the
origin but only accumulating a given (order unity) amount of local time there. Samples
of the occupation time field near an avoided point are shown in Fig. 4.

3 Main ideas, extensions and outline

Let us proceed by a brief overview of the main ideas of the proof and then a list of
possible extensions and refinements. We also outline the remainder of this paper.
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14 Y. Abe and M. Biskup
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Fig.4 Samples of the occupation-time field near two randomly-selected avoided points of a random walk
run for 0.2-multiple of the cover time in a square of side-length N = 2000. Only the square of side-length
81 centered at the chosen avoided point is depicted

3.1 Main ideas

As already noted, key for all developments in this paper is the connection of the local
time L) and the associated DGFF /" . Our initial take on this connection was through
the fact that the DGFF represents the fluctuations of L) at large times via

LY ()—1t law oy

@ t—00

which is proved by decomposing the local time in individual excursions and applying
the Central Limit Theorem. (The observation (3.1) also guided the parametrization in
the earlier work on this problem, e.g., [1].) However, as noted at the end of Sect. 2.3,
for the thick and thin points, the effective 7 in the correspondence (3.1) of the local time
with the DGFF turns out to be ay, rather than ¢y, due to conditioning on large local
time. In particular, approximating the local time fluctuations by the DGFF becomes
accurate only beyond the times of the order of the cover time.

We thus base our proofs on a deeper version of the connection, known under the
name Second Ray—Knight Theorem after Ray [33] and Knight [28] or Dynkin isomor-
phism after Dynkin [20], although the statement we use is due to Eisenbaum et al. [22]
(with an interesting new proof by Sabot and Tarres [37]):

@3.1)

Theorem 3.1 (Dynkin isomorphism) Consider the random walk on V U{p} as detailed
in Sect. 1.2. For each t > 0 there exists a coupling of LtV (sampled under P®) and
two copies of the DGFF hY and h"' such that

Y and le are independent 3.2)
and
1 1 ~
LV ) + z(h;’)2 - E(hX +V21)°, ueVv. (3.3)

This is usually stated as a distributional identity; the coupling version is then a result
of abstract-nonsense theorems in probability (see Zhai [42,Section 5.4]).
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Exceptional points of two-dimensional random walks. .. 15

Our proofs are based on the following natural idea: If we could simply disregard the
DGEFF on the left-hand side of (3.3), the relation would tie the level set corresponding
to L,ll)vN ~ ay to the level sets of the DGFF where

cither WPV ~ f2ay — /2ty or hPN ~ —2ay — /2ty. (3.4)

For ay — o0, the second level set lies further away from the mean of hPV than the
first and its contribution can therefore be disregarded. (This is true for the thick and
thin points; for the light and avoided points both levels play a similar role). One could
then simply hope to plug to the existing result (2.10).

Unfortunately, since Var(h)?’v ) is of order log N, the square of the DGFF on the
left of (3.3) is typically of the size of the anticipated fluctuations of L,?VN and so
it definitely affects the limiting behavior of the whole quantity. The main technical
challenge of the present paper is thus to understand the contribution of this term
precisely. A key observation that makes this possible is that even for x € Dy where
Ltll)VN x) + %(h,?"’ )2 takes exceptional values, the DGFF hxDN remains typical (and
Ltl})VN (x) is thus dominant). This requires proving fairly sharp single-site tail estimates
for the local time and combining them with the corresponding tail bounds for the DGFF.

Once that is done, we include the field /¥ | properly scaled, as a third “coordinate”
of the point process and study weak subsequential limits of these. For instance, for the
thick and thin points this concerns the measure

1
Wr Z Sx/N @ S(Lf;]N (x)—aN)/logN ® (Sth/a/logN' (-5

xeDy

Here the key is to show that the DGFF part acts, in the limit, as an explicit deterministic
measure. For instance, for the thick and thin points this means that if ¢ 16 converges
to some ¢ along a subsequence of N’s, the measure in (3.5) converges to ¢? ® g
where g is the normal law A/ (0, g); see Lemma 5.3.

Denoting by ¢ the second variable and by / the third variable in (3.5), the Dynkin

isomorphism now tells us that the “law” of £ + g under any weak subsequential
limit of the measures in (3.5) is the same as the limit “law” of the DGFF centered
at /2ay — /2ty (for the thick points) which we know from (2.10). This produces
a convolution-type identity for subsequential limits of the local-time point process.
Some technical work then shows that this identity has a unique solution which can be
identified explicitly in all cases of interest.

We note that an important benefit of our reliance on the Dynkin isomorphism is that
our arguments—and, in particular, the proof of convergence of the measures in (3.5)—
avoid the need to work with the second moments of the local time. Unlike the first
moments, these are harder to control explicitly and that particularly so under additional
truncation that would be required to cover the whole regime of interesting behavior.

Our control of the local structure of the exceptional points also relies on isomor-
phism theorems. For the thick and thin points, we combine the Dynkin isomorphism
with Theorem 2.1 of [10] that captures the local structure of intermediate level sets of
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16 Y. Abe and M. Biskup

the DGFF. For the avoided points, we instead invoke the Pinned Isomorphism Theorem
of Rodriguez [36,Theorem 5.5] that links the random-interlacement occupation-time
field (L, (x)),cz2 introduced in (2.33) to the pinned DGFF ¢ defined via (2.27)
as follows:

Theorem 3.2 (Pinned Isomorphism Theorem). Let u > 0 and suppose (L, (X)) ,c72

with law v}f/lﬂ is independent of {¢x : x € 72} with law v°. Then

1 aw 1
Lut5¢* = S(¢+2vua)" (3.6)

where a is the potential kernel. (The extra factor of 2 compared to [36,Theorem 5.5]
is due to different normalizations of the local time, the pinned field and the
potential kernel.)

Itis exactly the generalization of this theorem that blocks us from extending control
of the local structure to the light points. Indeed, we expect that, for the light points,
the associated process is still that of random interlacements but with the local time
at the origin fixed to a given positive number. Developing the theory of this process
explicitly goes beyond the scope of the present paper.

3.2 Extensions and refinements

We see a number of possible ways the existing conclusions may be refined so let us
discuss these in some more detail.

Other “boundary” conditions: Perhaps the most significant deficiency of our setting
is the somewhat unnatural mechanism by which the walk returns back to Dy after
each exit. Contrary to the intuition one might have, this does not lead to the local
time exploding near the boundary; see Fig. 5 or the fact that Z f puts no mass on dD.
The main reason for using the specific setting worked out here is that it allows us to
seamlessly plug in the existing results from [10] on the “intermediate” level sets of
the DGFF. The natural alternatives are

(1) running the walk on an N x N torus, or
(2) running the walk as a simple random walk on all of Z? but only recording the local
time spent inside Dy .

Both of these require developing the level-set analysis of a DGFF on a finite graph
pinned at one vertex.

Time parametrization: Another feature for which our setting may be considered
somewhat unnatural is the parametrization of the walk by the time spent at the “bound-
ary vertex.” A reasonable question is then what happens when we instead use the
parametrization by the actual time of the walk (continuous-time parametrization), or
even by the number of discrete steps that the walk has taken (discrete-time parametriza-
tion). The main problem here is the lack of a direct connection with the underlying
DGFF; instead, one has to rely on approximations.
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Fig. 5 Left: Plot of the trajectory of the random walk on a 200 x 200 square run for 0.3-multiple of the
cover time. The time runs in the vertical direction. Right: The corresponding local time profile. Note that
while short excursions near the boundary are numerous, most contribution to the local time profile comes
from the excursions that reach “deep” into the domain

Preliminary calculations have so far shown that, at least approximately, the local
time in the continuous-time parametrization is still connected with the DGFF as in
(3.3) but now with the field A2V reduced by its arithmetic mean over Dy . This implies
that, for both continuous and discrete-time analogues of the measures ¢ 1{? LU Il\? and « Ie s
their N — oo limits still take the product form as in (2.15), (2.17), (2.22) and (2.25),
respectively, albeit now with Z f replaced by a suitable substitute reflecting on the
reduction of the CGFF by its arithmetic mean. Update in revision: These statements
have now been established rigorously in Abe, Biskup and Lee [3].

Critical cases: Another natural extension to consider concerns various borderline
parameter regimes left out in the present paper; namely, A := 1 for the A-thick points
and A := +/O A1 for the A-thin points as well as 6 := 1 for the avoided points. In analogy
with the corresponding question for the DGFF (Biskup and Louidor [7-9]), we expect
that the corresponding measures will require a different scaling—essentially, boost-
ing by an additional factor of log N—and the limit spatial behavior will be governed
by the critical LQG measure Z 1D . For the simple random walk on a homogeneous
tree of depth n, this program has already been carried out by the first author (Abe
[2]). A breakthrough result along these lines describing the limit law of the cover
time on homogenous trees has recently been posted by Cortines et al. [14] and by
Dembo et al. [17]. Update in revision: The limit law of the maximum cover time has
recently been established by Biskup and Louidor [11].

Brownian local time: Yet another potentially interesting extension concerns the corre-
sponding problem for the Brownian local time. This requires working with the e-cover
time defined as the first time when every disc of radius ¢ > 0 inside D has been
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18 Y. Abe and M. Biskup

visited; the limit behavior is then studied as ¢ | 0. We actually expect that, with proper
definitions, very similar conclusions will hold here as well although we presently do
not see other way to prove them than by approximations via random walks.

Jego [25] recently posted a preprint that proves the existence of a scaling limit for
the process associated, similarly to our ¢ je from (2.12), with the local-time thick points
of the Brownian path killed upon first exit from D. As it turns out, the limit measure
still factors into a product of a random spatial part, defined via limits of exponentials of
the root of the local time, and an exponential measure. However, although the spatial
part of the measure obeys the expectation identity of the kind (2.11), it is certainly not
one of the LQG measures Z ){) above, due to the limited time horizon of the Brownian
path. Jego [26] characterized the limit measure directly by a list of natural properties.

3.3 Outline

The rest of this paper is organized as follows. In the next section (Sect. 4) we derive
tail estimates for the local time that will come handy later in the proofs. These are
used to prove tightness of the corresponding point measures. Section 5 then gives the
proof of convergence for the measure associated with the A-thick points following the
outline from Sect. 3.1. This proof is then used as a blue print for the corresponding
proofs for the A-thin points (Sect. 6) and the light and avoided points (Sect. 7). The
results on the local structure are proved at the very end (Sect. 8).

4 Tail estimates and tightness

We are now ready to commence the proofs of our results. All of our derivations
will pertain to the continuous-time Markov chain started, and with the local time
parametrized by the time spent, at the “boundary vertex.” Let us pick adomain D € ©
and a sequence { Dy }n>1 of admissible approximations of D and consider these fixed
throughout the rest of this paper. Recall the notation ¢ 11\? , 0 13 and k 5 for the measures
in (2.12), (2.20) and (2.24), respectively.

4.1 Upper tails

We begin with estimates on the tails of the random variable LZLI)VN (x) which then readily
imply tightness of the random measures of interest. We first derive these estimates in
the general setting of a random walk on a graph with a distinguished vertex o and only
then specialize to N-dependent domains in the plane. We begin with the upper tail:

Lemma 4.1 (Local time upper tail) Consider the random walk on V U {o} as detailed
in Sect. 1.2. Foralla,t > 0and all b € R such thata +b > t, andall x € V,

_ 2 _
/GV (x, x) _ W2a—21) 7bG\‘{2(Ex;/\727a

26V 0 e

Po(L)(x) = a+b) <

4.1
_«/2(61—1—19)—«/27e @
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Proof We will conveniently use estimates developed in earlier work on this problem.
Denoting by (¥;),>0 the O-dimensional Bessel process and writing Py for its law with
Py (Yo = a) = 1, Lemma 3.1(e) of Belius et al. [5] shows

L) (x) under P® i (YGV(x,x))2 under P))/Z. 4.2)

| =

(Strictly speaking, the derivations in [5] are restricted to random walks on linear graphs.
To make them applicable to our setting, we invoke a “network reduction” argument
that effectively replaces the underlying graph by a single edge connecting o to x. The
reduction preserves both GV (x, x) and the law of LtV (x) under P9.)

Let Py, be alaw under which (By),>0 is a standard Brownian motion on R starting
at r. The process Y is absolutely continuous with respect to B up to the first time it
hits zero; after that Y vanishes identically. The Radon—Nikodym derivative takes the
explicit form (see, for example, [5,(2.13)])

[L e { 3/td 1} {Ho > 1) (4.3)
= | —exp{—— S—1¢, on > t}, .
FHgnt B; P 8 Jo By ’

where F; is the o-field generated by the process up to time ¢ and H, is the first time
the process hits level a.

The identification (4.2) along with the assumptions a + b > 0 translates the event
{LY(x) > a+b}to{Y; > /2(a + b))} intersected by {Hy > t}. For r := /21, the
assumption a + b > t implies that the quantity in (4.3) is less than one everywhere
on the event of interest. Hence,

PO(LY () = a+b) < Py (Boviw = V2@ +D))
= Pp <BGV(x,x) > 2(a +b) — @) (4.4)

Py
dP;

In order to get (4.1) from this, we invoke the Gaussian estimate P (\(0, 02) >x) <
2
1

ox e 27 valid forall x > 0 along with the calculation

(m_ «/27)2 =2(a+b)+21 — 2@@(1 N g)l/z
> 2a+b) + 2~ 2v2av2 (14 %)

V2a — /2t
= (vV2a —v21)* + Zb%, (4.5)
where we used that (1 + x)1/2 <14 x/2 holds for all x > —1. O

From this we readily obtain:

@ Springer



20 Y. Abe and M. Biskup

Corollary 4.2 (Tightness for the thick points) Suppose that ty and ay are such that
the limits in (2.14) exist for some 6 > 0 and some A € (0, 1). For each b € R, there
is c1(b) € (0, 00) such that for all A C R2 closed,

limsup E€[ ¢ (A x [b, 00))] < c1(b) Leb(A N D). (4.6)

N—o0

Proof 1t suffices to prove the bound for all b < 0 with |b| sufficiently large. Pick x €
Dy. If GPN(x, x) > % log N, then Lemma 4.1 witha := ay, t := ty and b replaced

by blog N and the uniform bound GP¥ (x, x) < glog N + ¢ give

E _Wan— ) 3
PQ(L,?[N (x) > an + blog N) < \/IOCW e 2¢Tog N eﬂ\blﬁ’ .7

for some constants ¢ < oo and 8 > 0 independent of » and N, once N is sufficiently
large. This is of order WN/NZ. If, on the other hand, GP¥ (x,x) < b‘% log N, then we

use that GPN (x, x) > JT in the second exponential on the right of (4.1) to get

el _p2 WP =2y
e

D m '1b] log N
PQ(LZNN(x)zaN—f—blogN)gm uloaN— FlbllogN (4 .8y

where again ¢’ < oo and 8’ > 0 do not depend on b or N once N is sufficiently large.
Since the first exponent in (4.8) is of order log N, for |b| large enough, this is again
at most order WN/N2. Now write A, := {x € RZ: deo(x, A) < €} and note that, in
light of (1.6), we have

#{x € Dy: x/N € A} < N*Leb(Ay/y N D). 4.9)
Summing the relevant bound from (4.7-4.8) over x € Dy with x/N € A, the claim

follows by noting that, since A is closed, we have Leb(A;;y N D) — Leb(A N D)
as N — oo. O

4.2 Lower tails
For the lower tail we similarly get:

Lemma 4.3 (Local time lower tail) Consider the random walk on V U{p} as in Sect. 1.2.
Foralla,t > 0andallb’ < b suchthata +b' > 0anda+b <t,andallx € V,

PO(L) (x) —a e[V, b])

1/4 v _ (2i—+2a)? V2i—/2a
< ( t ) /4 GV (x,x) e 2670 e+bGV(’”>m.
a+b'/) 2t — J2(a +b)

(4.10)
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Proof We use again the passage (4.2—4.3) via the Bessel process and Brownian motion
except that here we can no longer bound the prefactor in (4.3) by one. Instead, we get
the root of the ratio of the roots of 2¢ and 2(a + b’). Therefore, (4.4) is replaced by

PO(L) (x) —a e[V, b])

=( ! )1/4P§(BGV(X,X) < V2@ +b) - V). @.11)

a+b

Noting that the difference in the probability on the right is negative, the rest of the
calculation is exactly as before. O

Postponing the tightness of the thin points to the end of this subsection, we first
deal with estimates for the light and avoided points:

Lemma 4.4 (Vanishing local time) For each t > 0 and each x € V,

P(L/(x)=0) =e 6"wn, (4.12)

In fact, for every b > 0, we have

xp{ }

__ b —__t 4p t
Voo <e Vo GVn?, (4.13)

_ t

PO(LY (x) <b) <e @
Proof Here we proceed by a direct argument based on excursion decomposition (see,
however, Remark 4.5). Writing H,, for the first time to return to u after the walk left u,
consider the following independent random variables:

(1) N .= Poisson(t/GV(x,x)), .
(2) {Z,: n > 1} :=1.i.d. Geometric with parameter p := P*(H, < H,),
(3) {Tk,j: k, j = 1} ;= 1.i.d. Exponentials with mean one.

We then claim

N Zy

r@Lf ) E S S 1. (4.14)

k=1 j=I

To see this, note that thanks to the parametrization by the local time at o, the
value L,V (x) is accumulated through a Poisson (7 (0)¢) number of independent excur-
sions that start and end at 0. Each excursion that actually visits x, which happens with
probability P¢(H, < I:IQ), contributes a Geometric(p)-number of independent expo-
nential random variables to the total time the walk spends at x. By Poisson thinning, the
number of excursions that visit x is Poisson with parameter 7 (0) P (H, < I:IQ)t. We
claim that this equals 7/ GV (x, x). Indeed, since the walk is constant speed, reversibil-
ity gives

7(0)P?(Hy < Hp) = 7(x)P*(H, < Hy). (4.15)
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As was just noted, under P* the quantity 7 (x){g, (x) is the sum of Geometric(p)-
number of independent exponentials of mean one. From (1.5) we then conclude
7(x)GY (x,x) = 1/p.

With (4.14) in hand, to get (4.12) we just observe that, modulo null sets, the sum
in (4.14) vanishes only if N = 0. To get (4.13) we note that, for LtV (x) < b we must
have ijil Ti,j < bm(x) foreachk =1, ..., N. The probability that the sum of Z;

independent exponentials is less than b (x) equals 1 —e~?P7() and that this happens
forallk = 1,..., N thus has probability at most

L (t/GY (x, X))

n!

.t _ i —bpr(x)
[1_671”’"“)]”6 Vow =g GVam© ’ . (4.16)

n=0

The claim again follows from 1/p = 7(x)G" (x, x) and thebounde ™ > 1 —x. O

Remark 4.5 We note that a proof based on the connection with the 0-dimensional
Bessel process is also possible. Indeed, by Belius et al. [5,(2.8)], given x > 0 the law
of (Yy)? under Py is given by

_x 1 /x JXYN\ _xt
e ER@) + Lo 0) 50 [T 13T v, (*.17)

(z/*+! : :
where 11(z) := Zk 0 TG - The identity (4.12) then follows from (4.2) and

11( v 2ts ) _ V2ts eiZGVt&%)Z 4.18)
GV(x,x)) ~ 2GY(x,x)

implies the inequality in (4.13) as well.
From Lemma 4.4 we get:

Corollary 4.6 (Tightness for the light and avoided points) Suppose ty is such that
(2.19) holds with some 6 € (0, 1). For each b > 0 there is a constant ¢y (b) € (0, 00)
such that for each A C R2 closed,

limsup E°[ 9 (A x [0, b])] < c2(b) Leb(A N D). (4.19)
N—o0
In particular,
limsup E9[ k£ (A)] < c2(b) Leb(A N D). (4.20)
N—o0

Proof 1t suffices to prove just (4.19) and that for » > 0 sufficiently large. Denote ¢ :=
supy > In/(log N)?Z. We then claim

t ~
N cb3e8b

PO(LPY (x) < b) < e P oeM™ | o7 6PN e . 4.21)

@ Springer



Exceptional points of two-dimensional random walks. .. 23

Indeed, the first term arises for x with GP~ (x,x) < ple—4 log N by the first inequal-
ityin (4.13)and GPV (x, x) > th' The second term controls the remaining x ; we invoke
the second inequality in (4.13) along with bty /GPN (x, x)> < éb3e®.

For b sufficiently large, the first term on the right of (4.21) is O(WN /N 2) indepen-
dently of x € Dy. The second term is in turn O (WN /N 2), with the implicit constant
depending on b, by the fact that that GP¥ (x, x) < glog N + ¢, uniformly in x € Dy.
The sum over such x € Dy with x/N € A is now handled via (4.9). O

4.3 Some corollaries

Combining the conclusions of Lemmas 4.3 and 4.4, we can now derive the easier
halves of Theorem 2.1:

Lemma 4.7 Suppose 6 > 0 is related to ty as in (2.1). Then for each ¢ > 0, the
bounds

(l()g—N)zxeax L’N (x) = 28(\/_4_ ) (4.22)
and
(]oglN)2 mln LPY(x) = 2¢[(VE - 1) VO] —¢ (4.23)

hold with P®-probability tending to one as N — o0.

Proof For the maximum, pick ¢ > 0 and let ay := 2g(\/§ +1+ 8)2(10g N)2. Then
use (4.1) with b := 0 and a := ay to bound the probability that L,[I)VN (x) > ay by
order N ~2(+&)+0() ypiformly in x € Dy. The union bound then gives (4.22).

For the minimum, it suffices to deal with the case 6 > 1. We pick ¢ > 0 such that

VO > 1 + ¢. Abbreviate ay = 2g(\/5 —1- s)z(log N)? and apply Lemma 4.3 to
get, for any b > 0,

PO(LyN (x) < ay)
= PO(LPY (x) < b) + PO(b < LP¥ (x) < ay)
)" ST

b T —Za . (4.24)

< Pe(LPY(x) < b) +(

The proof of Corollary 4.6 bounds the first probability by N =2+ with o(1) — 0
uniformly in x € Dy. (As the quantity is non-decreasing in b, the requirement that b
be sufficiently large is achieved trivially.) Hence, even after summing over x € Dy,
the contribution of this term is negligible.
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For the second term on the right of (4.24) we note that, invoking the uniform upper
bound GPV (x, x) < glog N + ¢, the above choice of ay yields

_ 2
(v ;gDN (; 2;’)’\’) > 2(1+ ¢ + o(1))* log N (4.25)

uniformly in x € Dy. As the prefactors produce only polylogarithmic terms in N,
also the second term on the right of (4.24) is o(N’z) as N — oo. O

A similar argument will allow us to deal with the tightness of the thin points:

Corollary 4.8 (Tightness for the thin points) Suppose that ty and ay are such that the
limits in (2.16) exist for some 0 > 0 and some A € (0, Vo n 1). For all b € R there
is c3(b) € (0, 00) such that for all A C R2 closed,

limsup E€[ ¢4 (A x (—o00,b])] < c3(b) Leb(A N D). (4.26)

N—00

Proof We proceed as in the proof of Lemma 4.7. Let ay ~ 2g(\/_ — A)z(log N)?
be as given, pick & € (0, v/6 — 1) an abbreviate ay := 2ge?(log N)2. Then for any
b >0,

Pe(LPY (x) < ay +blog N) = P(LPY (x) < b)
+ POV < LN () <éay)+ Pany < LRV (x) <ay +blogN).  (4.27)

Exactly as in (4.24), the first term on the right is estimated to be N~2¢+o() —
o(Wy/N?) uniformly in x € Dy, where we used that Wy = N2=27+0(D) gpq
A < /0. The second term is bounded as in (4.24) by N—2W0=e)*+o(l) — o(Wy/N?)
by our choice of ¢.

For the last term we invoke Lemma 4.3 with a + b’ and a + b set to ay and
ay + blog N, respectively. This allows for b in (4.10) to be negative which permits
bounding the last factor on the right by one while keeping the prefactors in (4.10)
bounded by a constant that depends only on ¢, uniformly in x € Dy. Hence, the last
term in (4.27) is O(Wy /N?) uniformly in x € Dy. The observation (4.9) then helps
us deal with the sum over x € Dy subjectto x/N € A. O

Remark 4.9 The reason for using the expressions Leb(A N D) to control the first
moments of the measures of interest is that this will later allow us to restrict attention
to A € D open with A C D in the arguments to follow. Indeed, taking {A,},>1 open
with A, 1 D, as n — oo the expected measure of the complement D ~\ A, tends to
zero by the fact that Leb(D \ A,) — 0.

5 Thick points

We are now ready to move to the proof of the stated convergence for the point measure
associated with A-thick points. Throughout we will assume thatay and ¢ satisfy (2.14)
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with some 6 > 0 and some A € (0, 1). Introduce the auxiliary centering sequence

aN = +/2an — /2tN 5.1

and note that @y ~ 21./glog N as N — oo. The arguments below make frequent

use of the coupling of L,?VN and an independent DGFF hPV to another DGFF RPN
via the Dynkin isomorphism (Theorem 3.1). We will use these notations throughout
and write ’n\ﬁ to denote the DGFF process associated with 7”V and the centering
sequence ay . A key point to note is that Wy then coincides with normalizing constant
from (2.9).

5.1 Tightness considerations

The proof of Theorem 2.2 naturally divides into two parts. In the first part we dom-
inate {16 using 77\113 and control the effect of adding 2PN to the local time Lt[;VN . The
second part is then a derivation, and a solution, of a convolution-type identity link-
ing the weak-limits of ¢ ,e to those of 77\]13 Our tightness considerations start by the
following domination lemma:

Lemma 5.1 (Domination by DGFF process) For any b € R and any measurable
set A C D,

law
R(AxIb00) = TR(4 %[5z L5 00)) +o) (5.2)

where o(1) — 0in probability as N — oo. Similarly, for any measurable A € D x D
and any b € R,

(P @R (A x [b, 0)?) 2 50 ®ﬁ}3(A x [34z 7= oo)2> +o(l). (5.3)
Proof Let us start by (5.2). The Dynkin isomorphism shows
LYY <LPY + %(hDN)Z = %(EDN + 2ty (5.4)
For expression on the left of (5.2) we then get

1
D

ey (A x [b,00)) < W ED VRPN 4 /3o e T g ) (5.5)
xXeDn

x/NeA

Pickany »’ < bm o Once N is sufficiently large, the asymptotic formulas for ay

and 7y give /2ay +2blog N > /2ay + b’ and so
i

W+ o |z vIarategn) = P saye) PR < - va -] OO
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Writing 7y, D for the process associated with the field —72 2V and the centering sequence
J2an + 4/2ty, and K n for the associated normalization from (2.9), we thus have

Ky
X (A x [b,00)) < TN (A x [, 00)) + W 7N (A x [, 00)). (5.7)

Noting that {ﬁl?,: N > 1}istight onD x (RU {4+00}) and Ky = o(Wy), the second

term is o(1) in probability as N — oo. To get (5.2) we now take b’ to blef NG and

invoke the continuity of the limit measure in (2.10) in the second variable.
The proof of (5.3) is completely analogous. Indeed, the same reasoning implies,
for any Borel A € D x D,

(R ® ¢ (A x [b, 00)?)
<7y @7y (A x [, 00) )+—Nﬁ£®nN(A x [, 00)?)

K N e K N\*_ —
+ 27D @ FD(A x [, 00)%) + (—) D @TD(A x [, 00)?).  (5.8)
Wy Wy
Replacing A by D x D in the last three terms shows, via Ky = o(Wy), that these
three terms are again all o(1) in probability as N — oo. A continuity argument in the

second variable then proves (5.3) as well. O

Note that Lemma 5.1 provides an independent proof of the tightness of the mea-
sures {16,) . Based on the proof one might think that g“le is asymptotically close to 77\113 ,
but this is false: Although (5.6) is asymptotically sharp, the inequalities in (5.4-5.5)
are not. To account for this fact, we have to carefully examine the effect of adding the
half of the DGFF-squared to the local time. In particular, we have to ensure that the
DGFF remains typical even at the points where the local time combined with half of
its square is large. This important step is the content of:

Lemma5.2 Let0 < B < 2% \}C}L Then for each b € R there is c4(b) € (0, 00) such

that for all M > 0, all sufficiently large N and all x € Dy,

Pe@P( LAY (hy")? > blog N Ll >M
® N (x)+ B >ay + Og IV, logN -

< by N e hPM? (5.9)

Proof Since the b log N-correction can be absorbed into a re-definition of ay, which
thanks to the assumed asymptotic behavior of ay and 7y only changes Wy by a
multiplicative constant, we may assume for simplicity that b = 0. Assume also that M
is an integer and pick § with

0 <8 <20 (5.10)
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Partitioning the event in (5.9) according to which interval of the form [n,n + 1),
with n € N subject ton > M2, the ratio (h2V)2/log N lies in, the probability in (5.9)
is bounded by

P(|hf~| > 2./gV22 +6 log N)
+ > P((h?¥)? = nlog N)

M?<n<4g(\2+8)log N

1
x PQ<L£JN(x) > ay - 501+ l)logN). (5.11)

A standard Gaussian bound estimates the first probability by a constant times
N —202+9) which is o(Wx /N 2yas N — oo. Concerning the terms in the sum, here
we first note that for all n under the summation symbol,

ay — %(n +DlogN = 2g[ (V8 + )% = (32 + ) + o(1) | (log N)?

=ty +2g(2v0r — 8 + o(1)) (log N)2. (5.12)

Hence, under (5.10), Lemma 4.1 can be applied. Using GPn (x, x) < glogN +c,the
term corresponding to integer n in the sum is thus bounded by

Lo V),

5.13
s (5.13)

UL ! [( YN VAN
(9,4 n
N2 P 2g

where ¢ is a constant that depends on 6, A and our choice of § but not on N or x or n.
Since the assumptions on ay and ty give

J2an — /2t A
VAN TNANG 2,8 (5.14)
J2an N—o00 \/5—}-)»

as soon as N is sufficiently large, the quantity in (5.13) is summable on n and the sum
in (5.11) is thus dominated by the term withn = M 2 The claim follows. O

5.2 Convolution identity

We now move to the second part which consists of the derivation of, and a solution
to, a convolution identity that links weak (subsequential) limits of ¢ If,) to those of ﬁﬁ.
A key input here is the observation that, at the scale of its typical fluctuations, the
field hPN that we add to L 3,” in the Dynkin isomorphism acts like white noise:
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Lemma 5.3 Suppose { Ny} is a subsequence along which {Al,) converges in law to ¢ P.
Then

1 law D
Wy ZD Be/N @80V 1y aysiogn B 0PN g o, ¢ B8 G
xeDy k— 00

where g is the law of N (0, g).

Proof Denote by ¢ 16) X! the measure on the left of (5.15). We need to show that the

integral of any f € C.(D x R x R) with respect to ¢ li,) " converges in law to that

with respect to { P ® g. The restrictions on f imply that there is a compact set A C D
and a number b > 0 such that

| £, €, m)] < 11 flloo 1A 1 {—p,00) () 1[—p,b1 (h). (5.16)

The argument is based on a conditional second moment calculation and domination
by the DGFF process from Lemma 5.1.

Abbreviate L(x) := (L,LI)VN (x) — ay)/log N and hy := h2V/./log N. Writing
Varp, resp., Covp for the conditional variance, resp., covariance given the local time,
we have

1
Vare (64 1)) = or D Cove(f (v L) k). £ (v, L. y) ).

N x,yeDy
(5.17)

Pick ¢ > 0 and split the sum according to whether |[x — y| > &N or not. Focusing first
on the former case, we use the Gibbs—Markov decomposition to write 2PN using the
value hf” and an independent DGFF in Dy ~\ {x} as

RPN & Dyg () + RPN gDy RN (5.18)
where bp,, x: 72 — [0, 1] is the unique function that is discrete harmonic on Dy

{x}, vanishes outside Dy and equals one at x. A key point, proved with the help of
monotonicity of D — bp ,(y) with respect to the set inclusion, is

boya(y) < &)

max ,
x,yeDy Dy x ) = log N
[x—y|>eN

(5.19)

where c(¢) € (0, oo) is independent of N.
Write Ry (8) is the maximal oscillation of f in the third variable on intervals of
size §. In light of (5.16) we then get

bc(e)
EP(f(_._,hx)f(...,hy)) < ||f||ooRf< logN>
+ Ep(f (.. ) Ep(f (..., Ry)). (5.20)
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where  abbreviates the field 72~ and the dots stand for the remaining arguments
of f that are not affected by the expectation with respect to P. As to the expectation
on the right, for any M > b we similarly obtain

Mc(e)
Jlog N

Ep(f(....,hy) — Ep(f(....,hy)| < Ry 12e=M flloe (5.21)
| = Ri(Jiew)

by splitting the expectations depending on the containment in {|h,| < M./log N}
or not and estimating each term separately. The (positive) constant ¢ can be taken as
close to (2g) ™! as desired by taking M sufficiently large.

Putting (5.20-5.21) together and invoking (5.16), the contribution of the pairs (x, y)
with |[x — y| > eN to (5.17) is thus at most

M =
2071 (R (Goag ) +e 11 ) €8 @ 6R(D x D x [0, 007). (522

Writing the product-measure term on the right of (5.22) as the square of {16) (D x
[—b, 00)) we note that this term is stochastically bounded in the limit as N — oo by
Corollary 4.2 (or by the domination argument from Lemma 5.1). Since R¢(8) — 0
as § | 0 by the uniform continuity of f, taking N — oo followed by M — oo shows
that the sum (5.17) restricted to |[x — y| > &N vanishes in P¢-probability as N — oo
for every ¢ > 0.

Moving to the part of the sum in (5.17) corresponding to |x — y| < ¢ N, using (5.16)
this is bounded by || f ||, times

R @ R ({03 v =yl < e} x [=b,00)%) (523)

which by Lemma 5.1 is stochastically bounded by
2 @R ({00 =yl < e} x -5z 2= 00?) +o(). (524

As {(x,y): |x — y| < e}isclosed anday ~ 21, /glog N as N — oo, (2.10) and the
Portmanteau Theorem show that this expression is, in the limit N — o0, stochastically
dominated by a b-dependent constant times

ZP @ ZP({(x. y): Ix — y| < &}). (5.25)

This tends to zero as ¢ | 0 a.s. due to the fact that Zf has no point masses a.s.

D,ext

We conclude that Varp((¢5""", f)) tends to zero in P¢-probability. This implies

) =BGy f)) —> 0, in P @ P-probability.  (5.26)

N—o0
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To infer the desired claim, abbreviate
fa(x, 0) == /g(dh)f(x,é,h) (5.27)

and note that, since A in (5.16) is compact, hxDN/«/log N tends in law to A (0, g)
uniformly for all x € {y € Dy: y/N € A}. The continuity of f along with (5.16)
yield

E((¢y S ) — (€8, fo) . 0. in PC-probability. (5.28)
N—o00
Combining (5.26) and (5.28) we then get (5.15). O

As a consequence of the above lemmas, we now get:

Lemma 5.4 Recall that g is the law of N'(0, g). Given f € C.(D x R) with f > 0,
denote

F9(x, 0) :=/g(dh)f( v hz)). (5.29)

Then for every subsequential weak limit ¢ of ¢ ]f,) , simultaneously for all f as above,

lay

(P, oy & c(,\)/zf(dx)(@e*“*hdh f(x,h), (5.30)

where, we recall, o :=2/./g and ¢(}) is as in (2.10).

Proof Pick f as above. Suppressing, for the duration of this proof, the index Dy on
the fields and the local time, let the DGFF 7 in Dy be related to the local time Ly,
and an independent DGFF £ in Dy via the Dynkin isomorphism. Recalling (5.1), for
large enough N > 1 we then have

1 ~
N £) =5 D fln, e =)

xeDy

Z f(xhwm \/m> LtN(x)+h «/W}
xEDN

Z f(X/Ny\/m \/H)
xGDN

Z S (100 2Ly ) + 02 = V2N )\ __ ey
xEDN

(5.31)
.. . . -~ _ 2 _
where we noted that only the positive sign in hy = /2L, (x) + h% — 4/2ty can

contribute in the second line once N is large due to f having a compact support and
the fact that ay — oo implied by A > 0.
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We start by treating the second term on the extreme right of (5.31) which we note
is bounded in absolute value by

1 ~
I lleo g > < vaam)- (5.32)

xeDy

The result of [10], or even just a simple first-moment estimate, shows that the sum is
at most N2[1=(V0+1)?1+0() with high probability. As Wy = N20=2)+0M and g > 0,
the expression in (5.32) tends to zero in probability as N — oo.

We thus need to extract the limit of the first term on the right of (5.31). For this
we need to first truncate &, to values of order /Iog N. Let x: [0, 00) — [0, 1] be
non-increasing, continuous with x(x) = 1 for0 < x < 1l and x(x) = 0 for x > 2.
Then the first term on the right of (5.31) can be written as

WLNZf(x/Ny\/20N+2[L;N(x)—a/\/]—|—h)2(_\/M)X< 7] )

€Dy M /log N
(5.33)
plus a quantity bounded, in absolute value, by
1
17 lloo 357 > AT iy i =M g (5:34)

xeDy

where b > 0 is such that supp(f) € D x [—b, b]. Lemma 5.2 shows that the L'-norm
of (5.34) under P¢ ® PP is of order e’ﬂMz, uniformly in N > 1, and so we just need
to focus on taking the N — oo limit of (5.33).

The truncation ensures that, for x to contribute to the sum in (5.33), both hi and
Ly (x) — ay must be at most order log N. Expanding the square root and using the
uniform continuity of f along with the tightness of ¢ 1\[,) to replace ay by its asymptotic
expression then recasts (5.33) as

1 Liy—ay  j |72 |
— f t X/Na y ) = X +0(1)7 (535)
Wi x;):N o (v S ) <M~/10gN)
where
e 1 n?
Jext(x, £, h) := f(x, NN (e+% )). (5.36)

The function £, h — fexi(x, £, h) x (|h|/ M) that effectively appears in (5.35) is com-
pactly supported in both variables; Lemma 5.3 then shows that, along subsequences
where ¢ ,f,) converges in law to some ¢ ©, the expression in (5.35) converges to (¢ P, ;,g)

where f;lg is defined by (5.29) with g(dh) replaced by x (|k|/M)g(dh). From the
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known convergence of ﬁﬁ (see (2.10)) we thus conclude
P fif) + 0P B / ZP(dx) @ e™Mdh f(x,h), (5.37)

2, . . . . 2
where O (e “#M") is a random quantity with L'-norm at most a constant times e “#¥"
Taking M — oo via the Monotone Convergence Theorem now gives (5.30). O

Working towards the proof of Theorem 2.2, a key remaining point to show is
that the class of f*9 arising from functions f for which the integral on the right
of (5.30) converges absolutely is sufficiently rich so that (5.30) determines the mea-
sure P uniquely. For this we note that, by an application of the Dominated and
Monotone Convergence Theorems, (5.30) extends from C.(D x R) to the class of
functions (x, h) = 14(x) f(h), where A C D is open with ACDand f € CE[R)
with f > 0. The transformation (5.29) only affects the second variable on which it
takes the form f +— (f *¢) o s, where the convolution is with the function

Bz
e(z) := \/g j__zl(_oo,o)(z) for B:=a(v6+2) (5.38)

and where / — s(h) is the scaling map

h

h)y = ———.
AWV

(5.39)

As it turns out, it then suffices to observe:

Lemma 5.5 Denote ju; (dh) := e~ **"dh and let ¢(-) be as in (5.38) with B > ar. Then
there is at most one Radon measure v on R such that for all f € C°(R) with f > 0,

(v, f % €)= (. ). (5.40)

Proof Writing (5.40) explicitly using integrals and using the fact that the class of all
f € C&P(R) with f > 0 separates Radon measures on R shows

/ v(ds)e(s —h) =e " heR. (5.41)
R
Abbreviating v, (dh) := e‘“‘hv(dh) and ¢ (h) := e_‘“he(h), this can be recast as
/ vi(ds)e, (s —h) =1, heR. (5.42)
R

Integrating this against suitable test functions with respect to the Lebesgue measure
and applying the Dominated Convergence Theorem, we conclude

(v, f ¥ &) = (Leb, ), feSM), (5.43)
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where S(R) is the Schwartz class of functions on R. Note that this identity entails that
the integral on the left-hand side converges absolutely.

Since S(R) separates Radon measures on R, to conclude the statement from (5.40)
it suffices to prove that, for 6 > 0,

f +— f xe, is a bijection of S(R) onto itself. (5.44)

The Fourier transform maps S(R) bijectively onto itself and so we may as well prove
(5.44) in the Fourier picture. For this we note that, as 6 > 0 we have B:=B—ar>0
and so z > ¢, (z) decays exponentially as z — —oo. In particular, ¢, is integrable
and so in the Fourier transform, f +— f % ¢, is reduced to the multiplication by

. 1 - L
k) = / dz ey (z)e”™ ke = \/E/ dx —= e PUH2TIk/Bx (5 45)
R T Jooo) X

Hereby we readily check that k — ¢, (k) is C®°(R) with bounded derivatives which
implies that f — ¢, % f maps S(R) into S(R). Using the substitution x = y* and
computing the complex-Gaussian integral we find that

B I
b= % ————. 5.46
B = s T A (40

As [e5 (k)| > 0 forall k € R, the map f > e; * f is injective; the fact that |fc}(k)|_l
is bounded by a power of |k| then shows that it is also onto. Hence we get (5.44) as
desired. O

We are now ready to give:

Proof of Theorem 2.2 Consider a subsequential limit ¢ D pick f € C.(R) with f >0
and let A € D be open with A € D. Using the notation (5.38-5.39) we then have

(cP, 0a® ) =(¢f. (fxe)os)=(cf 057", fxe), (5.47)

where g“AD is a Borel measure on R defined by {f(B) = ¢P(A x B). Writing
ux(dh) == e~ *Mdp, the identity (5.30) then translates into

law

(Ros™ fxe) E cZP A s, f), (5.48)

where the equality in law holds simultaneously for all A and f as above.
To infer the product form of ¢? from (5.48), define (for a given A and a given
realization of ¢ ?) a Borel measure on R by

V= I:a)\(gAD 05—1, 110,00 * e)]*lé,AD’ (5.49)
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where the conditions on A imply Z f (A) > 0O a.s. and so, by (5.48), the quantity in the
square bracket is strictly positive a.s. By (5.48) we have (vos™!, fxe) = (uy, f) for
all f € C.(R) and so, by Lemma5.5,vo s~ ! and thus also v, is determined uniquely.

In particular, v is the same for all A as above and for a.e. realization of ¢ ?. Using (5.48)
law

in (5.49) then shows ;A (dh) = c(A)Zf(A)v(dh). As this holds simultaneously for
all A as above, Remark 4.9 permits us to conclude

D law

e ()L)ZA ® v, (5.50)
where v is a uniquely-determined deterministic Radon measure on R.

It remains to derive the explicit form of v which, thanks to its uniqueness, we can
do by plugging the desired expression on the left-hand side of (5.30) and checking for
equality. Abbreviate & := «(#, 1) and note that

1

a=——"—ahi. (5.51)
2020 + )
Pick f € Cc(D xR) and perform the following calculation where, in the last step, we
invoke the substitution r := N f+)\) e+ ) and separate integrals using Fubini—
Tonelli:

/ ZP(dx) @ e ¥de f*9(x, £)
DxR
_ D —at 1 n?
— /DXRXR ZPdx) e de®g(dh>f(x, s 2))
_ D —ae+1y al 1 n2
_/DxRxRZ* (@0 @ e D de e ™ g(ah) f(x. s (et 7))

:2\/g7(x/5+)\)(/l;g(dh)e5‘%>/ ZP(dx) @ e dr f(x,r).  (5.52)

DxR

As @ < 1/g, the first integral on the last line converges to the root of (1 — @g)~! =

‘f“ while (5.30) equates the second integral to ¢c(A) "1 (¢ P, £*9) in law. This implies
D law o D al
= —————— (M) Z, (dx) @ e “"dd. 5.53)
28 (VB + 1)32 2 (

In particular, all weakly converging subsequences of {¢ 2 ~ - N > 1} converge to this cP
thus proving the desired claim. |:|

6 Thin points

Our next task is the convergence of point measures g“le associated with A-thin points.
The argument proceeds very much along the same sequence of lemmas as for the
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A-thick points and so we will concentrate on the steps where a different reasoning is
needed. Throughout we assume that ¢y and ay are sequences satisfying (2.16) with
some # > 0 and some A € (0,1 A Vo ). The auxiliary centering sequence ay is now
defined by

EN = /2ty — +/2an 6.1)

which ensures that we still have ay ~ 2A,/glog N as N — oo. Appealing to the
coupling of L,ll)VN and 2PN to APV via the Dynkin isomorphism, we use 7% to denote
the point process associated with RPN and the centering sequence —ay.

The proof again opens up by proving suitable tightness and joint-convergence state-
ments. We start with an analogue of Lemma 5.2:

Lemma 6.1 Let0 < B < ﬁﬁ. Then for each b € R there is cs5(b) € (0, 00) and,
for each M > 0, there is N' = N'(b, M) such that for all N > N’ and all x € Dy,

PCQP(L ()+(XN)2<a +blogN, 1" >M
2 N JlogN —
Wy
<C5(b)—e pM? (6.2)

Proof Let us again for simplicity just deal with the case b = 0. Pick 0 < § < +/6 — A.
Then the probability in question is bounded by

PQ(L,?VN (x) < 28(V8 — % — 8)2(log N)2>
1
+ PQ(Zg(\/E %= 8)(0g ) = L () < ay — M’ log N). 6.3)
Invoking the calculation in (4.24), the first term is at most order N =20:+8)>+0() which

is o(Wn/N 2). The second term is now bounded using Lemma 4.3 and the fact that,
by the uniform bound GPV (x, x) < glog N + ¢ with ¢ independent of N, we have

. log N(V2ty — 2an ) 1 A
min -
xeDy  GDPN(x,x)2any — & O — A

in the limit N — oo. Indeed, this shows that the last exponential in (4.10) for the
choice b := —3 M?log N is less than e~ BM? once N is sufficiently large. o

+o(l) (6.4)

Next we will give an analogue of Lemma 5.3 which we restate verbatim, albeit with
a somewhat different proof:

Lemma 6.2 Suppose { Ny} is a subsequence along which ¢ ,f,) converges in law to ¢ P.
Then

law D
W_N Z ‘SX/N®8(L V- aN)/logN®6th/~/logN szk (meg (6.5
x€Dy k— 00
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where g is the law of N'(0, g).

Proof Let ;1? X! Jenote the measure on the left and let f € Ce(D x R x R) be such
that f > 0. As for Lemma 5.3, the argument hinges on proving

Varp (¢4, £)) = 0. in P2-probability, (6.6)
—00

where Varp denotes the variance with respect to the law of hPv  conditional on LSVN .
Invoking (5.17), we treat the sum over the pairs |x — y| > &N via the argument
following (5.18-5.19). The key difference is that we no longer have the domination
of ¢ Ie by a DGFF process in this case and so we have to control the sum over the pairs
x,y € Dy with |x — y| < eN differently.

Since f is non-negative and compactly supported, we in fact just need to show that,
for any M > 0, the L! (P)-norm of

1
w2 Xl:) HLPY ) <an-+a2 10g W) (02N | <0 Tog )
X,y€
|x—)y|§:;{VN
x 1 (6.7)

1
(LN (<ay+M2log NY {hy N | <M /log N}

vanishes in PC-probability in the limit as N — oo and ¢ | 0. To this end
we note that, dropping the indicators involving the DGFF, (6.7) is bounded by
[¢2 (D x (=00, M?1)]1> which by Corollary 4.8 is bounded in probability as N — oo.
Therefore, it suffices to prove that (6.7) vanishes in the stated limits in P° ® P-
probability.
. . M2
To this end pick b > N

asymptotic forms of ay along with the Dynkin isomorphism yield

and note that, as soon as N is sufficiently large, the

V2N @y zan+m2 100 M) L PV | <1 g )
=1 (2N +/2in)2 <2ay+3M2 log N} — 1{E?Ns—ﬁN+b}' 6.8)
It follows that (6.7) is bounded by
8 @R ({0 ): Ix =yl = e} x (—00, bI?) 6.9)
whose N — oo and ¢ | 0 limits are now handled as before. O

Our next task is a derivation of a convolution identity that will, as for the thick
points, ultimately characterize the limit measure uniquely:

Lemma 6.3 Given f € C.(D x R) with f > 0, let (abusing our earlier notation)

F9(x, £) :=/g(dh)f( R (£+h2)) (6.10)
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Then for every subsequential weak limit P of ¢ 1\[1) , simultaneously for all f as above,

(D, proy c(A)/Zf(dx)@e“)‘hdh f(x, h), 6.11)

where a :=2/,/g and ¢(}) is as in (2.10).

Proof Pick f as above and let x be the function as in the proof of Lemma 5.4. The
fact that f has compact support gives

I oy~
W > F(n B2V +aw)

xeDy

B WLN 2 f<X/N’ _\/m+\/2Lz[;N(x)+(th)2) (6.12)

xeDy

and Lemma 6.1 then bounds this by O (e #Y 2) plus

! Dy Dy o |
o 2 (e ALR )+ P2 ) 61

xeDy

The truncation of the field now forces L ,[])VN — ay to be of order log N. Expanding the
square root and using the uniform continuity with the help of Corollary 4.8 rewrites
this as

! ; Loy @—ax  pP¥ hY |
X N X
Wy erD: fext( /N logN ° JlogN>X<MW>+O(1), (6.14)
N

where
7 o 1 2
Joutr. ) = f (. 5= (04 1) (6.15)

The rest of the proof now proceeds as before. (The exponential on the right-hand side
of (6.11) does not get a negative sign because 7]\2 is centered along negative sequence
of order log N.) O

Using the Dominated and Monotone Convergence Theorems, we now readily
extend (6.11) to functions of the form 14 ® f where A C D is open with A € D
and f € C.(R) obeys f > 0. For such f we then get

(IAa® =14 (f*e¢)osd (6.16)
where ¢’ is given by the same formula as ¢ in (5.38) but with § replaced by

B i=a(vo —1) (6.17)
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and s'(h) := h/(Zﬁ(f — A)). We then state:

Lemma 6.4 Denote (1) (dh) := e dh and let ¢’ be as above with > —a. Then
there is at most one Radon measure v on R such that for all f € C°(R) with f > 0,

(v, f )= (Ui, f) (6.18)

Proof As in the proof of Lemma 5.5, we recast (6.18) as
(va, fx¢)) = (Leb, f), (6.19)

where v (dh) = e~ **'v(dh) and ¢ (h) = e ¢/ (h). Since B := B’ + ar > 0, we

again get that ¢, is integrable. Replacing B by B/, the rest of the argument is then

identical to that in the proof of Lemma 5.5. O
We are now ready to give:

Proof of Theorem 2.3 The argument proving that (6.11) determines ¢ uniquely is the

same as for the thick points so we just need to perform the analogue of the calculation
in (5.52). Denoting, for the duration of this proof,

. 1

-, 6.20
W TN T ©:20)

we get

/ 7P (dx) ® e¥de f*9(x, £)
DxR
= 3 o L g4
B /DXRXR Zi (dx) @ e dt® g(dh) f(x, 2/8(V0—-2) (Z +3 ))
— D a(g+ﬁ) 7&ﬁ I ﬁ
a /DXRXR Zidn@e 7/de®e " 7 g(dh) f(X, 2,/3(0-1) e+ % )>

=2\/§(\/_—)\)(/Rg(dh)e*3%)/D ZP(dx) @ e dr f(x.r).  (6.21)

xR

The Gaussian integral on the last line equals the root of ‘/fj/;‘. It follows that CI{?
converges in law to the measure

Q1/4

m C(A)Zi)(dX) ® eaedﬁ. (622)

This is the desired claim. O
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7 Light and avoided points

In this section we will deal with the point measures @ Ie and « 13 associated with the
light and avoided points, respectively. The argument follows the blueprint of the proof
for the A-thick and A-thin points although important changes arise due to a different
scaling of Wy with N compared to Wy. As before, a key point of the argument is the
extension of the convergence by adding information about an independent DGFF. The
difference now is that this field comes without any normalization:

Lemma 7.1 Suppose {Ny} is a subsequence along which 19}6 converges in law to 9.
Then

«/IOgN law D 1
Ty L SN @ B8y 2 9T E

xeDy k—o00

Leb. (7.1

Proof Let 1‘}5 X! denote the measure on the left and pick f € Co(D x [0, 00) x R).
Suppose that f(x,£,h) = O unless x € A, where A is an open set with A C D,
and unless ¢, h> < M for some M > 0. Noting that the probability density of hxDN
is (14+0(1))(2m g log N)_l/2 with o(1) — Oas N — oo uniformly over any compact
interval shows, with the help of the tightness of {$ ]lv) : N > 1} proved in Corollary 4.6,
that

E@y ™, f)=o(1) + %(ﬁﬁ ® Leb, f). (7.2)

where o(1) — 0 in P2-probability as N — oo. The claim thus reduces to proving

concentration of (ﬁ,e’m, f) around the (conditional) expectation with respect to AN .

Due to the additional /log N factor in the normalization z?,l\?‘m, the domination

arguments for the conditional second moment of (ﬂg’m, f) of the kind (5.18-5.25)
for the thick points and (6.7-6.9) for the thin points seem to fail, so we will instead
work with the Laplace transform of (ﬂﬁ’m, f). This is motivated by noting that,

for f > 0, the conditional Jensen inequality and (7.2) yield
Eo ® E(e_<ﬂ1€£){l’-f>) > eg(l)EQ (e_(2ﬂg)’]/2(79£®Leb’f)>. (73)

It thus suffices to derive the opposite inequality which will require a somewhat tech-
nical argument. A key point is to restrict the measure ﬂﬁ’em by a suitable truncation.

We start with the definition of a truncation event. Writing temporarily L(x), resp.,
h, instead of LSVN (x), resp., hf”, given any &, § > 0, let

o~

w
Fymes) =1 3 1{L<),>+%;1§,§2M}55\/1—LN 74
yeDy 08
[x—y|<eN
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We claim that, with probability tending to one as N — oo and ¢ | O (for
any § > 0 fixed), the event Fi s ¢ s(x) will not occur for any x € Dy. For

this let B.(x) = {y € R2: |y — x| < r} and let xq,...,x, € D be such that
{Be(xj): i =1,...,m}cover D. Writing 'ﬁN for the DGFF measure associated with

the ﬁeld 7Py and centering sequence {+/2fy}ny>1 and noting that the normalization
factor WN /+/1og N in (7.1) then coincides with Ky (for the centering sequence /21y ),
the coupling from Theorem 3.1 yields

m

U Frres@)F € U{nN Bac(x) x [-2V/M,2VM)) > 5}. (1.5)

xeDy i=1

Since ﬁﬁ is known to converge to a measure with no-atoms, the probability of the
event on the right-hand side tends to zero as N — oo and ¢ | 0 for any § > 0, as
claimed.

Introduce the truncated measure

1
Dyext .
ON Mes = Ko D by aes Se/N ® 8L ® iy, (7.6)

xeDy

where we write Ky for Wy /+/log N. We then get

tim timsup P((0057% 5. ) # @ £)) =0 (7.7)

el Nooo

for any § > 0 (and any f and M as above). Next we will invoke the fact that, for
each M > 0 and each A € D open with A C D,

{ﬁﬁ(A X [—-M,M]): N > 1} is uniformly integrable, (7.8)

which follows from the convergence in the mean and control of moments implied by
[10,Lemmas 4.1 and 4.2]. Theorem 3.1 then extends (7.8) to the uniform integrability
of {(ﬂg’m, f): N > 1}. Using (7.7) we then get

11m lim sup
N—o00

EC QE((00, fre ™)

D,ext

—EQ®E(( Dm’ﬂe (ﬁNMzsaf)‘zo (7.9)

uniformly in s € [0, 1]. (We write 2¢ for reasons to be clear in a moment.) As a
consequence, we may thus focus on the second expectation from now on.
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We first use the explicit form of the measure ¢ Ie ***"and, noting that f > 0, apply

the conditional Jensen inequality as

E°Q® E((ﬁ1€>e"t, f) e—S<05,'§2‘zg,5~f>>

! _ D ext .
- K_N Z EQ ® ]E<f(x/N7 L(x), hx)e s<ﬂN.M,2£,§’.f))

xeDy
x/NeA
1 D ,ex
> —— Y EC@E(f(x/N, L(x), hy)e PN s Do) (7.10)
N xeDy
x/NeA

Reflecting on the positivity and support restrictions for f, the conditional expectation
in the exponent is dominated via

1
B0 510 1) [0 00) = = 20 E(F (/N L. y) [0 o)

YEDy
[x—y|>=eN
[FAES E 1 1 h 7.11
+ K Z (L(y)+in2<2M) " FN.m265() o(hy) |- (7.11)
N yeDy V
[x—yl<eN

As aresult of the truncation, since the ball of radius 2¢ N around any y with |y — x| <
¢ N includes the ball of radius ¢ N around x, as soon as Fy_a,2¢.s (y) occurs for at least
one y with |y — x| < ¢N, the sum in the second term on the right is at most § K.
This bounds the second term on the right of (7.11) by §|| f||cc pointwise.

We have reduced estimating the conditional expectation to a bound on the first term
on the right of (7.11). Denoting, for any r > 0,

osc s pm(r) :=sup sup sup |fz . h)— f(z, 0, h)|,  (7.12)
zeD (<M hoh' €[—v/ M M)
lh—h'|<r

the decomposition of iy, = bpy (y)hy + ﬁy from (5.18), where i[_v is the DGFF
in Dy \ {x} independent of #,, along with the support restrictions on f show that,
on {hy < M},

‘E(f(y/N, L) hy) |0 t)) = E(f(y/N, L), hy))’
< [osc 7.1 (00w D[VM + Qog M) P(1y] = /M + by« () (l0g N)/*)

+ 11 flloo P(lhx| > (log NW“)] LL0)<m)» (7.13)
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where the two terms in the large square bracket arise by splitting the second expectation
in the absolute value on the left according to whether the (implicit) absolute value of the
DGFF at x is less than or in excess of (log N)3/#. Next observe that, since |y—x| > eN,
the bound (5.19) applies. Using that osc y y (r) — Oasr | 0by the uniform continuity
of f and that h and h, have variance of order log N, the right-hand side of (7.13) is
at most o((log N) 1/2 M(Lo)<m) unlformly in y.

Invoking o((log N)~ 1/2)/1(1\/ = 0(1/WN) we conclude that, for a non-random
o(1) that obeys o(1) — 0 as N — oo followed by ¢ | 0, uniformly on {h% < M},

E((08 51950 £) |0 () < 81 flloo + E((0 S £))
+o()x (D x [0, M]). (7.14)

Plugging this in (7.9-7.10), invoking (7.2) along with the tightness of {1916 N > 1}

and the uniform integrability of {(y phext , f): N > 1} implied by (7.8) and, finally,
taking § | O after N — oo (and, now 1mpl1cit, ¢ | 0) shows

ECQE((00", e n™1)

> o(1) + (2ng)—1/2E@((19}3 ® Leb, f) e—“zﬂg)“”wb’@mbﬁ), (7.15)

where o(1) — 0 as N — oo uniformly in s € [0, 1]. Integrating both sides over s €
[0, 1] with respect to the Lebesgue measure then gives

E© ® E(e_<ﬁll\]),ext’f>) <o(l)+ E° (e—(271g)—1/2(191lv)®Leb,f)>' (716)

This, in combination with (7.3), proves the desired claim. O
Next we prove an analogue of Lemma 5.4:

Lemma 7.2 Given f € C.(D x [0, 00)) with f > 0 denote

£y, 0) = dh f(x, 0+ 1 ) (7.17)

7 .

Then for every weak subsequential limit 9P of 9P,
(90, Frleb) 2 ¢ /p) / zhidn @ eVohdn f(x, 1) (7.18)

simultaneously for all f as above.
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Proof Pick f € Cc(D x [0, 00)) with £ > 0 and set f*'(x, £, h) := f(x, £+ %hz).
Then

Z f(x/N7 %(EEN + 2tN)2> Z f(X/N’ LI?VN(X) + %(h?N)z)

xeDy xeDy

> (s LY 0, hPY).

xeDy

(7.19)

Since f* is compactly supported in all variables, Lemma 7.1 tells us that, after
multiplying by \/Tog N / Wy and specializing N to the subsequence along which z?D
tends in law to 92, the right-hand side tends to <19D  f *Leb). By (2.10) and the fact
that /2ty ~ Z@ﬂ log N, the left-hand side tends to the measure on the right of
(7.18). O

With these in hand we are ready to prove convergence of ,1\? st

Proof of Theorem 2.4 Pick A C D open with A C D. Taking a sequence of compactly
supported functions converging upward to f (x, h) := 14 (x)e ™" 110,00)(h), where s >
0, and denoting

faa(B) :=9P(A x B), (7.20)

the Tonelli and Monotone Convergence Theorems yield

o0 az
/ fiade ™t ' org c(«/@)zgé(A)eTf, s > 0. (7.21)
0

2
Note that s +— e% is the Laplace transform of the measure in (2.23). Since the
Laplace transform determines Borel measures on [0, co) uniquely, the claim follows
by the fact that the right-hand side is a Borel measure in A which is determined by its
values on A open with the closure in D. O

In order to extend Theorem 2.4 to the control of the measure « ]e associated with
the avoided points, we need the following estimate:

Lemma7.3 Let A C D be open with A C D. Then

NZ
lim limsup —=— max P¢ (O < LDN (x) < s) 0. (7.22)

el0 N W xeDy
—oo TN D Nen
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Proof First note that, using Dynkin’s isomorphism, we get

1
PQ(O <LV < e)P(E(th)z < s)
1
< PC@P(LpY () + S (P < 26, LY () > 0)

|~ 1
= P(E(th — 2t < 28) — }P’(E(hf"’)z < 23)PQ(LSVN(x) =0).
(7.23)

The fact that |GPV (x, x) — g log N| is bounded uniformly for all x € Dy withx/N €
A then shows

1 - N
hDN vV 2t < = 2 + 1 A/ 2 e — 6PN (x,x)
( n’ 8) (2+om)vae 2 GPN (x, x) )

(7.24)

while

1

V2rGPV (x, x)

where o(1) — 0 as ¢ | O uniformly in/]\V > 1 and x as above. In light of (4.12),
the right-hand side of (7.23) divided by Wy /N>-times the DGFF probability on the
extreme left tends to zero as N — oo and ¢ | 0. O

P(l(th)2 < e) = (2+0(1))V2e (7.25)

2

We are ready to give:

Proof of Theorem 2.5 Take f, € Cc([0, 00)) such that f,(h) := (1 —nh) v 0 and
pick A € D open with A € D. Then

2
E@|(K]€,1A)—(9]€,1A®fn)|g?v— 3 P9(0<L,DNN(x)§1/n>. (7.26)

xeDy
x/NeA

By Lemma 7.3, the sum on the right-hand side tends to zero in the limits N — oo
followed by n — oco. Theorem 2.4 in turn shows that

O 148 fu) = V2rge(OZh |1+ f

p@dm fu® ], .27
(0,1/n]

where p is the measure in (2.23). The claim follows by noting that the integral on the
right tends to zero as n — oo. O
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8 Local structure

In this section we deal with local structures of the exceptional level sets associated with
the local time L V. Throughout we again rely on the coupling of L V and an indepen-
dent DGFF hP N to another DGFF /12V via the Dynkin 1som0rph1sm (Theorem 3.1).
We start with the thick points.

8.1 Local structure of thick points

Let ay and ty satisfy (2.14) with some 8 > 0 and some A € (0, 1) and recall the
notation g“ for the extended point measures from (2.26) that describe the A-thick
points along with their local structure. Let ay be the sequence given by (5.1). We will
compare E]f,) to the point measures

b1
V= g 2 SN @8y o
N xeDy

8.1

®4 ~Dy ~Dy Dy
22ay+2Gy N —ap)+ 0, N~ Ny ~py  ~Dy
{ . 2log N S (hx 7hx+z) D zeZ?

associated with the DGFF 7PV . For that we need:

Lemma 8.1 (Gradients of squared DGFF) Forallb € R, all M > 1 and all r > 0,

1 b
N

XP( U {le20? = 222 > dog ny¥, |hDN|<M¢@}>
zeA,(0)

(8.2)
where Ay (x) :={z € Z*: |z — x| < r).
Proof When |h2V| < M /Tog N, we have
|20 — W22 < (1P — 2L+ oM log NIRPY — k| 83)

Thus, for M > 1, the term corresponding to x € Dy on the left-hand side of (8.2) is
bounded from above by

> PALYY () z ay +blog N)P([h2Y = hPY| > (M)~ Gog N)'/4).
zeA,(0)
(8.4)
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For & > 0, abbreviate Dj, : {x € Dy : deo(x, DY) > eN}. Then for any x € DY,
and z € A, (0), Varp(h,?”’ HZ) is equal to

GP¥(x,x) + GP¥(x + z,x +2) —2GPV (x,x 4+ 2)
=glogN + glog N —2glog(N/(1+ |z])) + O(1) <2glog(l +r)+ O(1). (8.5)

The standard Gaussian tail estimate bounds (8.4) by o(1) P© (Lf])VN (x) > an+blogN)
with o(1) — 0 uniformly in x € Dj,. Lemma 4.1 subsequently shows that the sum
over x € Dj, on the left-hand side of (8.2) is o(1) as N — oo. The sum over
x € Dy ~ Dy is bounded from above by E9(§N (D ~. D? x [b, 0))) which tends to
Oas N - o0 followed by ¢ | 0 by Corollary 4.2. O

We are ready to give:

Proof of Theorem 2.6 Pick any f = f(x,¢,¢) € Cc(D x R x RZZ) which depends
only on a finite number of coordinates of ¢, say, those in A, (0) for some r > 0. The
following identity is key for the entire proof

[ Vo + G2 —aw) + 5020, - th} GiPY 7P
=LV ) — LY +2) + <hDN>2——(hx+z)2 (8.6)

Indeed, writing V,s(x) := s(x) — s(x + z) for a version of the discrete gradient of
s: 7Z? — R, we then get

O )—0(1)+—Zf( 2L 0+ Py = 2ay,

xeDy

Dy D
{V LN (x) N V. (hPN)? (x) ze ZZ}> 8.7)

log N 2log N

where o(1) stands for the analogue of the second term on the extreme right of (5.31);
this term tends to zero in probability as N — oo by exactly the same argument.

In order to control the gradients of the DGFF squared that appear on the right-hand
side of (8.7), set

Grr@) = [ {[V:("")200)] < (og )] (8:8)
z€A,(0)

and let, as before, yx : [0, c0) — [0, 1] be a non-increasing, continuous function with
x(x)=1for0 <x <1and x(x) =0 for x > 2. By Lemmas 5.2 and 8.1, we may
truncate (8.7) by introducing 16, , (x) and x (M~ RPY |/+/Tog N) for M > 0 under
the sum and write (37\2, f) as a random quantity whose L' norm is at most a constant
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times || f || o6 P ? uniformly in N plus the quantity

1 X
o 2 loww/ <ﬁ,\/2L,’;N<x)+<h€N>2—\/2aN,

xeDy

V.LEV(x)  V.(hPN)? h

L' @) VP @) X(L) (8.9)
log N 2log N M /log N

Using the uniform continuity of f and Corollary 4.2 and Lemma 8.1, we rewrite (8.9)
by a random quantity which tends to 0 as N — oo in probability plus the quantity

Lo (2 Ly’ (@) — ay {VZLSVW)} hy ]
Wy “\N"" logN ez’ X ’

veDy log N J1og N M /log N
(8.10)
where we introduced
Foxcr £, 6, ) o= f(x 7 VA ¢>. 8.11)
s Ly ’ k) 2\/5(\/54_)\) 2 k]

Note that Corollary 4.2 implies that {2“7\? : N > 1} is tight. Let ED be a subsequential
weak limit of ¢ /\? along the subsequence {/Ny}. By the same argument as in the proof
of Lemma 5.3, as k — oo followed by M — oo, ('ﬁﬁk, f) converges in law to

/ED(dx dede) ® g(dh) fext(x, £, ¢, h). (8.12)

On the other hand, noting that /2ay/log N — Zﬁ(ﬁ + A), [10,Theorem 2.1]
shows that (ﬁf,, f) converges, as N — 00, in law to

f ) ZP(dx) ® e Mdh @ vy, (d) £ (x, B, §). (8.13)

The arguments in the proof of Theorem 2.2 show that the class of functions fex arising

from f € Co(D x R x RZZ) above determines the measure ED uniquely from (8.12);
the calculation (5.52) then gives

1/4
~p law 0 D —a(0,0)¢
= ———((MNZ,; (dx) e AL @ vg a(de). (8.14)
28+ 2 e
This is the desired claim. O
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8.2 Local structure of thin points

We move to the proof of the convergence of point measures /{}]) associated with A-thin
points. The proof follows very much the same steps as for the thick points so we
stay quite brief. Assume that ay and #y satisfy (2.16) with some 6 > 0 and some
A € (0, 1 A +/0). As a counterpart to Lemma 8.1, we need the following:

Lemma 8.2 (Gradients of squared DGFF) Forallb > 0, all M > 1 and all r > 0,

. 1 D
Jim 3 P@(aN —blogN < LP¥(x) < ay +b10gN>

xeDy
x P( U {\(h!?”)z — (h2Y)?] > Qog N)¥4, |hP¥| < M/log N}) =0.
z€A(0)
(8.15)

Proof The proof is the same as that of Lemma 8.1 except that we use Lemma 4.3 and
Corollary 4.8 instead of Lemma 4.1 and Corollary 4.2, respectively. O

We are again ready to start:

Proof of Theorem 2.7 Set
Z?N = /2ty —+/2an (8.16)
and pickany f = f(x,£,¢) € Cc(D xR x Rzz) that depends only on a finite number

of coordinates of ¢. Let ﬁ/[\; be the point process obtained from (8.1) by replacing ay
by —ay. Using the calculation

~ ~ 1 ~ ~ ~ ~
{\/M+ (hPV +ay) + E(hffz -~ th)} PV — PV )
1 1
= Ly (@) = L+ )+ 5 (PN = S (17 (8.17)
we then again have (8.7) for (ﬁﬁ, f). Using Corollary 4.8 and Lemmas 6.1 and 8.2,

we rewrite (8.7) as a random quantity whose L! norm is at most a constant times
2 . . . .
| £ llooe ™#M" uniformly in N plus (8.10), where, in this case,

Jea(x, €, ¢, ) = f(x (¢ + 5h?), d)). (8.18)

1
"2/8(W0 =)

Note that Corollary 4.8 implies the tightness of {?jf,) : N > 1}. Let ED be any subse-
quential weak limit of ¢ ]e along the subsequence {Ny}. By the same argument as in
the proof of Lemma 6.2, as k — oo and M — o0, (ﬁﬁk, f) tends in law to

f?D(dx dede) ® g(dh) fext(x, £, ¢, h). (8.19)
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On the other hand, by [10,Theorem 2.1], as N — oo, (ﬁﬁ, f) converges in law to

/ ¢ ZP(dx) @ e dh @ V5. (dp) f (x, I, §). (8.20)

The arguments in the proof of Theorem 2.3 and the calculation (6.21) then show
0 1/4
2/8(V8 — )32

~p law

¢ ZP(dx) @ ¥OM AL @ Ty (dp).  (8:21)
This is the desired claim. O

8.3 Local structure of avoided points

In this section we will prove the convergence of the point measures associated with
the local structure of the avoided points. The proof will make use of the Pinned
Isomorphism Theorem (see Theorem 3.2) but that so only at the very end. Most of the
argument consists of careful manipulations with the doubly extended measure

~Dext ,__ WV IOgN
o= = > L2y oy Be/N ® 80w o)
xeDy
® sh)?N ® 8{71\5)_{—\/2\()() 22622}7 (8.22)
where, for bp,  as in (5.18),
RPN = PV pDVpp (2), 7 € 7. (8.23)
By (5.18), h?V ) is the field AP¥ conditioned on h2Y = 0. In particular,
PPN Dy (8.24)
Corollary 4.6 implies that {?ﬁ LN > 1} is tight with respect to vague convergence

2 2 . .
of measures on the product space D x [0, 00)%” x R x R%". As before, a key ingredient
we need is factorization of the subsequential limits:

Lemma 8.3 Suppose { Ny} is a subsequence along which 75}3 converges in law to ©P.
Then

~D, ext law 1 ~D 0
’ Leb . 8.25
N wow Jamg k. 2eey (8:29)
k— 00

Proof Let f = f(x,€,h,¢): D x [0, c>o)ZZ x R x RZZ — R be a continuous,
compactly-supported function that depends only on a finite number of coordinates of £
and ¢, say, those in A (0) for some ry > 0. Suppose in addition that f'(x, £, h, ¢) =0
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unless x € A for some open A € D with A C D, and unless |h|2 < M and
£, 191 < M forall z € A, (0) for some M > 0.
Noting that only the second pair of the variables of Tc\ﬁ X is affected by expecta-
tion [E with respect to the law of /P, we now claim

E@L ™, f D @Leb @1’ f) +o0(1), (8.26)

1
Kk
4/27'rg

where 0(1) — 0 in P2-probability as N — oo and where 1° the law of the pinned
DGFF. As in the proof of Lemma 7.1, (8.26) follows by noting that the probability
density of 22 multiplied by «/W tends to (277g)~'/2 uniformly over any com-
pact interval and by the fact (hx 1z X})Ze Ary (0) tends in law to (¢;);c Ary 0) (which
can be gleaned from the representation of the Green function by the potential ker-
nel, see [9,Lemma B.3], and the asymptotic expression for the potential kernel, see
[9,Lemma B.4]). These two convergences may be applied jointly in light of the inde-
pendence (8.24) and the Bounded Convergence Theorem enabled by the tightness
of {kP: N > 1}.

In order to convert the convergence in the mean to the convergence in law, we
proceed as in the proof of Lemma 7.1. Let us abbreviate L N(x), hDN and hfﬁz\m
by L(x), h, and gb(x) respectively, for the duration of thls proof. Recall the event
Fn pm.¢.5(x) in the proof of Lemma 7.1. By the argument leading up to (7.9), for the
truncated measure

1
~D.ext .
KN’;);’S’B = K_ Z lFN,M18v5(x) l{L(x)zo} SX/N ® 8{L(x+z): z€72}
N xeDy
®5hx ® 8{¢>5X):zeZZ}’ (827)
where Ky abbreviates WN /+/Tog N we get
~D ,ex
lim lim sup| E? ®IE(("D Xt gy g5y t,f>)
el0 N>oo
~D,ex
—E°® E((AD ext’ f) e—S(KN Mlzgé /) )‘ -0 (8.28)

uniformly in s € [0, 1]. Focusing attention on the second expectation and writing
Gy, (x) for the o-field generated by {h,,: z € A,,(0)}, the conditional Jensen inequal-
ity shows

E? ®E(<AD M fye s O ))

— 3 B @E(1rwomo) f (/N, Llx + ), iy, 0)e E s N0 0) - (8.29)
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The conditional expectation in the exponent is bounded by

E((®y 512650 )| Gro ()

=Y oo E(FO/N. LG ke 6) | G 0)

K
N YEDN
[x—=y|=eN

£
+ KNOOE Z 1{L(y)+%h§52/w}IFN,M,zs,a(y)’gro(x))' (8.30)

y€Dy
[x—y|<eN

-

As in (7.11), the second term on the right is bounded by §|| f||co pointwise.
Concerning the first term on the right of (8.30), we consider the analogue of the
quantity osc ¢,y (r) in (7.12) defined, for any » > 0, by

sup sup sup sup | f(z b h, @) — f(z, L, h,¢)|.
€D g0, M1*70 @ b e[-VM M) ¢4 e[—M, M 0@
|h—h'|<r | —pL|<r. Yz€ A, (0)

(8.31)

Consider the decomposition of 71, = ZzeAro ) ng)(y)hx+z+h§’r0 , where ng)(y) =
PY(Hn, vy < Ho. XHy, () = X +2) and =y is the DGFF in Dy . Ay, (x) inde-

pendent of /i, ;, z € A, (0). On the event {h% <M}nNn mzeAro(O){|¢z(x)| < M}, we
have

IE(f(y/N’ L+ 9.y, 00) | Gry ) = B (v/N. LGy + . By, W))'
< ose;u (269 [2M + Qog N> 4] ) P(I70] = VM + 6% (1) (log N)*/*)

+ 1 oo Y. P(lhetzl > (og N4, (8.32)
zeArO(O)

where b (y) := max.ea, ) P*T[Ha, ) < Hpl. Since |y — x| > &N, the bound
(5.19) dominates b™ (y) by c(log N)~!, where ¢ > 0 depends on ¢ and ry.

Using these observations (as in (7.14)), the conditional expectation on the right
of (8.29) is at most ]E((Tc\le’m, ) 48l fllec + 0(1) where o(1) — 0 in probability
as N — oo. The rest of the proof of Lemma 7.1 then applies to give the desired claim.

O

We are now ready to give:

Proof of Theorem 2.8 Consider the coupling from Theorem 3.1 between the local
time Lt[,)VN and two copies hP¥ and PV of the DGFF in Dy, with the former inde-

pendent of L~ . Recall the definition of 22V >1¥) from (8.23), write ¢{*) := 223>t
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and abbreviate V,s(x) := s(x) — s(x + z). Then for each x € Dy and z € Z?, we
have

(WP~ + /21 - %VZEDN ) (=P ()
= VL2V (o) + = (¢>(x> + by + RPY)? — (th)z. (8.33)

Let ®,(z) and W,(z) denote the left-hand side and the right-hand side of (8.33),
respectively. Then for each f: D x [0, o0) x RZ® — R,

Vlv%iN dSr <x/N, %(ﬁ,?N +V2t0) (@) z € Z2}>

_ /logN
=5

xeDy

> f (x/N LY (x) + 5 (hDN> {‘I/x(z):zezz}) (8.34)

xeDy

Next pick F': RZ — R that is continuous and depends only on a finite number of
coordinates, say, in A,(0), and obeys F(¢) = O unless |¢,| < M for all z € A,(0)
for some M > 0. Then set f(x, ¢, ) := 1a(x) fn(£)F(¢), where A C D is an open
set with A € D and fn: [0,00) — [0, 1] are given by f,(£) := (1 —nf) v 0. The
Bounded Convergence Theorem ensures that (8.34) applies to these f’s as well so
we will now explicitly compute both sides (suitably scaled) in the joint distributional
limit as N — oo and n — oo. Note that taking the limit jointly preserves pointwise
equality (8.34).

Starting with the right hand side of (8.34), the uniform continuity of F and Corol-
lary 4.6, we may rewrite it as a random quantity whose L'-norm under P¢ ® P is at
most o(1)n~ /2, with o(1) — 0 as n — oo, plus the quantity

J1og N 1
o an(L,’;N<x)+5<h€N>2) ({L YOk D)+ 5 @) zez2}>

XEAN

(8.35)

where we denoted Ay = {x € Z*: x /N € A}. Decomposing the sum over x with
(x) = 0 and the sum over x with L V(x) > 0 and applying Lemma 7.3 to the
latter we rewrite (8.35) as

;)/gN Z Loy o= O}f”( h)?)F ([ RRRAE (¢(X)) ZGZZD
xeA

N
(8.36)

plus a random quantity whose L!-norm under P? ® P is at most o(1)n~'/? with
o(l) - 0as N — oo followed by n — oo. Let P bea (subsequential) weak limit
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of Tc‘ﬁ along the subsequence {Ny}. By Lemma 8.3, as k — 00, (8.36) converges in
law to

o I
\/:/KD(dx df) @ dh ® v“(c1¢>)1A(x)f,1(§)F([13Z +392ize Zz})

=D 0 L5, 2
=3 dxdf) ® v (d¢>)1A(x)F<{eZ +30%izel }) (8.37)

where we used the explicit form of f,, to perform the integral over 4. Multiplying this
by 4f as n — oo this converges to

J_/ (dZ)®v0(d¢)F<[£ + 502 zeZ2]) (8.38)

as n — oo where Ky D(B) :=%kP(A x B). This is the N — oo and n — oo limit of
the (rescaled) right-hand side of (8.34).

Concerning the left-hand side of (8.34), whenever A is such that Leb(dA) = 0
(which implies Z?, (3A) = 0 a.s.), [10,Theorem 2.1] yields convergence to

«(v0)ZP (A)/dh Qv 5(de) e £ (1) F<{(h — 1) (—¢): z € ZZD,
(8.39)

where v g is the law of ¢ + a+/6 a with ¢ distributed according to v°. Using that

/dh eV p (1) = % +0m?), n— oo, (8.40)

(8.39) multiplied by 4\/> converges to

«(v0)ZP (A)f 0(d¢)F({ (b, +avo a)*: ZGZZ}) (8.41)

asn — oo. This is the N — o0 and n — oo limit of the (rescaled) left-hand side
of (8.34).

We now finally have a chance to invoke the Pinned Isomorphism Theorem of
[36]. Indeed, since 2+/2u = a~/0 implies u = w6, (3.6) equates (8.41) (and thus
(8.38)) with

«0)Z?h (A)/ Mo @A F({t + 392 ze2?)). B42)

The Bounded Convergence Theorem extends the equality of (8.38) and (8.42) to F of
the form F(£) := exp{—)__. A, 0) b€z} for any by > 0. This effectively transforms
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the term %d)zz away from both expressions and, thanks to the Cramér—Wold device,
implies

70de) & Jamg c(\/g)Z%(A) vl(de). (8.43)
As this holds for all open A € D with ‘A C D, the claim follows. O
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