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Abstract | Deep learning has transformed the use of machine learning technologies
for the analysis of large experimental datasets. In science, such datasets are
typically generated by large-scale experimental facilities, and machine learning
focuses on the identification of patterns, trends and anomalies to extract
meaningful scientific insights from the data. In upcoming experimental facilities,
such as the Extreme Photonics Application Centre (EPAC) in the UK or the
international Square Kilometre Array (SKA), the rate of data generation and
the scale of data volumes will increasingly require the use of more automated data
analysis. However, at present, identifying the most appropriate machine learning
algorithm for the analysis of any given scientific dataset is a challenge due to the
potential applicability of many different machine learning frameworks, computer
architectures and machine learning models. Historically, for modelling and
simulation on high-performance computing systems, these issues have been
addressed through benchmarking computer applications, algorithms and
architectures. Extending such a benchmarking approach and identifying metrics
for the application of machine learning methods to open, curated scientific
datasets is a new challenge for both scientists and computer scientists. Here, we
introduce the concept of machine learning benchmarks for science and review
existing approaches. As an example, we describe the SciMLBench suite of scientific
machine learning benchmarks.

In the past decade, a subfield of artificial
intelligence (AI), namely, deep learning
(DL) neural networks (or deep neural
networks, DNN), has enabled significant
breakthroughs in many scientifically and
commercially important applications'.
Such neural networks are themselves a
subset of a wide range of machine learning
(ML) methods.

ML methods have been widely used for
many years in several domains of science,
but DNNs have been transformational
and are gaining a lot of traction in many
scientific communities>*. Most of the
national, international and big laboratories
that host large-scale experimental facilities,
as well as commercial entities capable of
large-scale data processing (big tech), are
now relying on DNN-based data analytic
methods to extract insights from their
increasingly large datasets. A recent success
from industry is the use of DL to find

solutions to the protein folding problem*.
Current developments point towards
specializing these ML approaches to be more
domain-specific and domain-aware”, and
aiming to connect the apparent ‘black-box’
successes of DNNs with the well-understood
approaches from science.

The overarching scope of ML in science
is broad. A non-exhaustive list includes
the identification of patterns, anomalies
and trends from relevant scientific
datasets, the classification and prediction
of such patterns and the clustering of data.
The data are not always experimental or
observational but can also be synthetic data.
There are three approaches for developing
ML-based solutions, namely, supervised,
unsupervised and reinforcement learning.
In supervised learning, the ML model is
trained with examples to perform a given
task. In this case, the training data used
must contain the ‘ground truth’ or labels.
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Supervised learning is, therefore, possible
only when there is a labelled subset of the
data. Once trained, the learned model can
be deployed for real-time usage, such as
pattern classification or estimation — which
is often referred to as ‘inference’. Because
of the difficulty in generating labelled data
for supervised learning, particularly for
experimental datasets, it is often difficult
to apply supervised learning directly. To
circumvent this limitation, training is
often performed on simulated data, which
provides an opportunity to have relevant
labels. However, the simulated data may
not be representative of the real data and
the model may, therefore, not perform
satisfactorily when used for inferencing.
The unsupervised learning technique, in
contrast, does not rely on labels. A simple
example of this technique is clustering,
where the aim is to identify several groups
of data points that have common features.
Another example is identification of
anomalies in data. Example algorithms
include k-means clustering®, Support
Vector Machines (SVMs)’ or neural-
network-based autoencoders'. Finally,
reinforcement learning relies on a
trial-and-error approach to learn a given
task, with the learning system being
positively rewarded whenever it behaves
correctly and penalized whenever it
behaves incorrectly''. Each of these learning
paradigms has a large number of algorithms,
and modern developmental approaches are
often hybrid and use one or more of these
techniques together. This leaves many choices
of ML algorithms for any given problem.

In practice, the selection of an ML
algorithm for a given scientific problem is
more complex than just selecting one of
the ML technologies and any particular
algorithm. The selection of the most
effective ML algorithm is based on many
factors, including the type, quantity and
quality of the training data, the availability
of labelled data, the type of problem being
addressed (prediction, classification and so
on), the overall accuracy and performance
required, and the hardware systems
available for training and inferencing.
With such a multidimensional problem
consisting of a choice of ML algorithms,
hardware architectures and a range of
scientific problems, selecting an optimal

NATURE REVIEWS | PHYSICS

VOLUME 4 [ JUNE 2022 | 413


http://orcid.org/0000-0002-2167-1343
http://orcid.org/0000-0001-5289-7460
http://orcid.org/0000-0003-1017-1391
http://orcid.org/0000-0001-6782-3691
http://crossmark.crossref.org/dialog/?doi=10.1038/s42254-022-00441-7&domain=pdf

PERSPECTIVES

ML algorithm for a given task is not trivial.
This constitutes a significant barrier for
many scientists wishing to use modern ML
methods in their scientific research.

In this Perspective, we discuss what
are suitable scientific ML benchmarks
and how to develop guidelines and best
practices to assist the scientific community
in successfully exploiting these methods.
Developing such guidelines and best
practices at the community level will not
only benefit the science community but
also highlight where further research into
ML algorithms, computer architectures and
software solutions for using ML in scientific
applications is needed.

We refer to the development of guidelines
and best practices as benchmarking.
The applications used to demonstrate the
guideline and best practices are referred to as
benchmarks. The notion of benchmarking
computer systems and applications has
been a fundamental cornerstone of
computer science, particularly for compiler,
architectural and system development,
with a key focus on using benchmarks for
ranking systems, such as the TOP500 or
Green500 (REFS'*"'%). However, our notion
of scientific ML benchmarking has a
different focus and, in this Perspective, we
restrict the term ‘benchmarking’ to ML
techniques applied to scientific datasets.
Firstly, these ML benchmarks can be
considered as blueprints for use on a range
of scientific problems, and, hence, are
aimed at fostering the use of ML in science
more generally. Secondly, by using these
ML benchmarks, a number of aspects in
an ML ecosystem can be compared and
contrasted. For example, it is possible to
rank different computer architectures for
their performance or to rank different ML
algorithms for their effectiveness. Thirdly,
these ML benchmarks are accompanied
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by relevant scientific datasets on which the
training and/or inference will be based. This
is different to conventional benchmarks

for high-performance computing (HPC),
where there is little dependency on datasets.
The establishment of a set of open, curated
scientific datasets with associated ML
benchmarks is, therefore, an important step
for scientists to be able to effectively use
ML methods in their research and also to
identify further directions for ML research.

Machine learning benchmarks for
science

In this section, we discuss the elements

of a scientific benchmark and the focus of
scientific benchmarking, along with relevant
examples.

Elements of a benchmark for science.

As discussed above, a scientific ML
benchmark is underpinned by a scientific
problem and should have two elements:
first, the dataset on which this benchmark

is trained or inferenced upon and, second,

a reference implementation, which can be in
any programming language (such as Python
or C++). The scientific problem can be from
any scientific domain. A collection of such
benchmarks can make up a benchmark
suite, as illustrated in FIG. 1.

Focus of benchmarking. There are

three separate aspects of scientific
benchmarking that apply in the context
of ML benchmarks for science, namely,
scientific ML benchmarking, application
benchmarking and system benchmarking.
These are explained below.

e Scientific ML benchmarking. This is
concerned with algorithmic improvements
that help reach the scientific targets
specified for a given dataset. In this
situation, one wishes to test algorithms
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Fig. 1 | The notion of a machine learning benchmark and a benchmark suite. a | Elements of
a scientific machine learning (ML) benchmark. b | Building a scientific ML benchmark suite that
integrates different scientific ML benchmarks from various scientific disciplines.

and their performance on fixed data
assets, typically with the same underlying
hardware and software environment.
This type of benchmark is characterized
by the dataset, together with some
specific scientific objectives. The data are
obtained from a scientific experiment
and should be rich enough to allow
different methods of analysis and
exploration. Examples of metrics could
include the F1 score for training accuracy,
time to solution and any domain-specific
metric(s). A more detailed discussion on
metrics can be found in the next section.
Application benchmarking. This aspect
of ML benchmarks is concerned

with exploring the performance

of the complete ML application
(covering loading of inputs from files,
pre-processing, application of ML,
post-processing and writing outputs to
files) on different hardware and software
environments. This can also be referred
to as an end-to-end ML application
benchmark. A typical performance
target for these types of benchmarks may
include training time or even complete
time to solution. Such application
benchmarks can also be used to evaluate
the performance of the overall system,

as well as that of particular subsystems
(hardware, software libraries, runtime
environments, file systems and so

on). For example, in the case of image
classification, the relevant performance
metric could be a throughput measure
(for example, images per second) for
training or inference, or the time to
solution of the classification problem
(including I/O, ML, and pre-processing
and post-processing), or the scaling
properties of the application.

System benchmarking. This is concerned
with investigating performance effects

of the system hardware architecture

on improving the scientific outcomes/
targets. These benchmarks have
similarities with application benchmarks,
but they are characterized by primarily
focusing on a specific operation that
exercises a particular part of the system,
independent of the broader system
environment. Suitable metrics could

be time to solution, the number of
floating-point operations per second
achieved or aspects of network and data
movement performance.

Examples of scientific machine learning
benchmarks. Scientific ML benchmarks
are ML applications that solve a particular
scientific problem from a specific scientific
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domain. For example, this can be as
simple as an application that classifies
the experimental data in some way, or as
complex as inferring the properties of a
material from neutron scattering data.
Some examples are given below.

e Inferring the structure of multiphase
materials from X-ray diffuse multiple
scattering data. Here, ML is used to
automatically identify the phases
of materials using classification”.

e Estimating the photometric red shifts of
galaxies from survey data'’. Here, ML is
used for estimation.

e Clustering of microcracks in a material
using X-ray scattering data'®. Here, ML
uses an unsupervised learning technique.

* Removing noise from microscope data to
improve the quality of images. ML is used
for its capability to perform high-quality
regression of pixel values".

More detailed examples are provided in
later sections.

The benchmarking process
Although it is possible to provide a collection
of ML-specific scientific applications (with
relevant datasets) as benchmarks for any of
the purposes mentioned above, the exact
process of benchmarking requires the
following elements, given below.
 Metrics of choice. First, depending on the
focus, the exact metric by which different
benchmarks are compared may vary.
For example, if science is the focus, then
this metric may vary from benchmark
to benchmark. However, if the focus is
system-level benchmarking, it is possible
to agree on a common set of metrics that
can span across a range of applications.
However, in the context of ML, owing to
the uncertainty around the underlying
ML model(s), dataset(s) and system
hardware (for example mixed-precision
systems), it may be more meaningful
to ensure that uncertainties of the
benchmark outputs are quantified
and compared wherever necessary.
Likewise, the level of explainability of
methods (and, hence, outputs) can be
a differentiator between different ML
methods and, hence, of benchmarks.
In this way, the explainability of
different ML implementations for a
given benchmark problem could be
considered as a metric as well, provided
this can be well quantified. Another axis
could be around energy efficiency, such
as the ability of an ML implementation
to perform training or inference with
minimum power or energy requirements.

It is clearly essential to agree upon the
appropriate figures of merit and metrics
to be used for comparing different
implementations of benchmarks.
* Framework. Providing just a collection
of disparate applications without a
coherent mechanism for evaluation
requires users to perform a set of fairly
complex benchmarking operations that
are relevant to their specific goals. Ideally,
the benchmark suite should, therefore,
offer a framework that not only helps
users to achieve their specific goals but
also unifies aspects that are common
to all applications in the suite, such as
benchmark portability, flexibility and
logging.
Reporting and compliance. Finally, how
these results are reported is important.
In many cases, a benchmark framework
as discussed above addresses this
concern. However, there are often some
specific compliance aspects that must be
followed to ensure that the benchmarking
process is carried out fairly across
different hardware platforms.

There are also a number of challenges
that need to be addressed when dealing with
the development of ML benchmarks; these
are given below.

e Data. In the previous section, we
highlighted the significance of data
when using ML for scientific problems.
The availability of curated, large-scale,
scientific datasets — which can be
either experimental or simulated data
— is the key to developing useful ML
benchmarks for science. Although a lot
of scientific data are openly available, the
curation, maintenance and distribution
of large-scale datasets for public
consumption is a challenging process.

A good benchmarking suite needs to
provide a wide range of curated scientific
datasets coupled with the relevant
applications. Reliance on external
datasets has the danger of not having full
control or even access to those datasets.
Distribution. A scientific ML

benchmark comprises a reference

ML implementation together with a
relevant dataset, and both of these must
be available to the users. Since realistic
dataset sizes can be in the terabytes range,
the access and downloading of these
datasets is not always straightforward.
Coverage. Benchmarking is a very broad
topic and providing benchmarks to cover
the different focus areas highlighted
above, across a range of scientific
disciplines, is not a trivial task. A good
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benchmark suite should provide a good
coverage of methods and goals, and
should be extensible.

* Extensibility. Although developing
scientific ML benchmarks can be valuable
for scientists, it can be time consuming
to develop benchmarking-specific codes.
If the original scientific application
needs substantial refactoring to be
converted into a benchmark, this will
not be an attractive option for scientists.
Any benchmarking framework should,
therefore, try to minimize the amount of
code refactoring required for conversion
into a benchmark.

In addition to these challenges, ML
benchmarks need to address a number
of other issues, such as problems with
overtraining and overfitting. In most cases,
such issues can be covered by requiring
compliance with some general rules for the
benchmarks — such as specifying the set of
hyperparameters that are open to tuning.
Although one may consider these as aspects
of scientific ML benchmarking, they are best
handled through explicit specification of
the rules of the benchmarking process. For
example, the training and validation data,
and cross-validation procedures, should aim
to mitigate the dangers of overfitting.

Benchmarking initiatives

Comparing different ML techniques is

not a new requirement and is increasingly
becoming common in ML research. In fact,
this approach has been fundamental for the
development of various ML techniques. For
example, the ImageNet***' dataset spurred

a competition to improve computer image
analysis and understanding, and has been
widely recognized for driving innovation in
DL. A recent example of an application and
system benchmark is the High-Performance
LINPACK for Accelerator Introspection
(HPL-AI) benchmark?®, which aims to
drive Al innovation by focusing on the
performance benefits of reduced (and
mixed) precision computing. However,
providing a blueprint of applications,
guidelines and best practices in the context
of scientific ML is a relatively new and
unaddressed requirement. There have

been a number of efforts on this aspect

that address some of the challenges we
highlighted above. In this brief overview of
these benchmarking initiatives, we explicitly
exclude conventional benchmarking
activities in other areas of computer science,
such as benchmarks for HPC systems,
compilers and subsystems, such as memory,
storage and networking'>*’.
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Instead of giving an exhaustive technical
review covering very-fine-grained aspects,
we give a high-level overview of the various
ML benchmark initiatives, focusing on the
requirements discussed in the previous
sections. We shall, therefore, cover the
following aspects:

¢ Benchmark focus: science, application

(end-to-end) and system.

e Benchmark process: metrics, framework,
reporting and compliance.

e Benchmark challenges: data, distribution,
coverage and extensibility.

In the context of ML benchmarking,
there are several initiatives, such as
Deep500 (REF*Y), RLBench*, CORAL-2
(REF*%), DAWNBench?”’, AIBench?,
MLCommons® and SciMLBench™, as well
as specific community initiatives (such as
the well-known community competitions
organized by Kaggle®'). We overview these
initiatives below and note that a specific
benchmarking initiative may or may not
support all the aspects listed above or, in
some cases, may only offer partial support.

Deep500. The Deep500 (REF*) initiative
proposes a customizable and modular
software infrastructure to aid in comparing
the wide range of DL frameworks,
algorithms, libraries and techniques. The key
idea behind Deep500 is its modular design,
where DL is factorized into four distinct
levels: operators, network processing,
training and distributed training. Although
this approach aims to be neutral and
overarching, and also able to accommodate
a wide variety of techniques and methods,
the process of mapping a code to a new
framework has impeded its adoption for
new benchmark development. Furthermore,
despite its key focus on DL, neural networks
and a very customizable framework,
benchmarks or applications are not included
by default and are left for the end user

to provide, as is support for reporting.

The main limitation is the lack of a suite

of representative benchmarks.

RLBench. RLBench” is a benchmark and
learning environment featuring hundreds

of unique, hand-crafted tasks. The focus is
on a set of tasks to evaluate new algorithmic
developments around reinforcement learning,
imitation learning, multitask learning,
geometric computer vision and, in particular,
few-shot learning. The tasks are very specific
and can be considered as building blocks

of large-scale applications. However, the
environment currently lacks support for the
classes of benchmarking discussed above.

CORAL-2. The CORAL-2 (REF**) benchmarks
are computational problems relevant to a
scientific domain or to data science, and

are typically backed by a community code.
Vendors are then expected to evaluate

and optimize these codes to demonstrate
the value of their proposed hardware

in accelerating computational science.

This allows a vendor to rigorously
demonstrate the performance capabilities
and characteristics of a proposed machine
on a benchmark suite that should be relevant
for computational scientists. The ML and
data science tools in CORAL-2 include a
number of ML techniques across two suites,
namely, the big data analytics (BDAS) and
DL (DLS) suites. Whereas the BDAS suite
covers conventional ML techniques, such

as principal components analysis (PCA),
k-means clustering and SVMs, the DLS suite
relies on the ImageNet***' and CANDLE*
benchmarks, which are primarily used

for testing scalability aspects, rather than
purely focusing on the science. Similarly,

the BDAS suite aims to exercise the memory
constraints (PCA), computing capabilities
(SVMs) and/or both these aspects (k-means)
and is also concerned with communication
characteristics. Although these benchmarks
are oriented at ML, the constraints and
benchmark targets are narrowly specified
and emphasize scalability capabilities. The
overall coverage of science in the CORAL-2
benchmark suite is quite broad, but the
footprint of the ML techniques is limited

to the BDAS and DLS suites, and there is
little focus on scientific data distribution

for algorithm improvement.

AlIBench. The AlBench initiative is
supported by the International Open
Benchmark Council (BenchCouncil)?.
The Council is a non-profit international
organization that aims to promote
standardizing, benchmarking, evaluating
and incubating big data, Al and other
emerging technologies. The scope of
AlBench is very comprehensive and
includes a broad range of internet services,
including search engines, social networks
and e-commerce. The underlying ML-
specific tasks in these areas include image
classification, image generation, translation
(image-to-text, image-to-image, text-to-
image, text-to-text), object detection, text
summarization, advertising and natural
language processing. The relevant datasets
are open and the primary metric is system
performance for a fixed target. One of the
important components of the AIBench
initiative is HPC AI500 (REF*), a standalone
benchmark suite for evaluating HPC systems

running DL workloads. The suite covers a
number of representative scientific problems
from various domains, with each workload
being a real-world scientific DL application,
such as extreme weather analysis™. The
suite includes reference implementations,
datasets and other relevant software, along
with relevant metrics. This HPC ML suite
compares best to the SciMLBench work
discussed below. The AIBench environment
also enforces some level of compliance

for reporting ranking information of
hardware systems.

DAWNBench. DAWNBench” is a
benchmark suite for end-to-end DL training
and inference. The end-to-end aspect is
ideal for application-level and system-level
benchmarking. Instead of focusing on model
accuracy, DAWNBench provides common
DL workloads for quantifying training

time, training cost, inference latency and
inference cost across different optimization
strategies, model architectures, software
frameworks, clouds and hardware. There are
two key benchmarks in the suite — image
classification (using the ImageNet and
CIFAR-10 (REF*Y) datasets) and natural-
language-processing-based question
answering™ (based on the Stanford Question
Answering Dataset or SQuAD?) that covers
both training and inference. DAWNBench
does not offer the notion of a framework
and does not have a focus on science.

With key metrics around time and cost

(for training and inference), DAWNBench is
predominantly targeted towards end-to-end
system and application performance.
Although the datasets are public and open,
no distribution mechanisms have been
adopted by DAWNBench.

Benchmarks from the MLCommeons working
groups. MLCommons is an international
initiative aimed at improving all aspects of
the ML landscape and covers benchmarking,
datasets and best practices. The consortium
has several working groups with different
foci for ML applications. Among these
working groups, two are of interest here:
HPC and Science. The MLCommons HPC
benchmark® suite focuses on scientific
applications that use ML, and especially

DL, at the HPC scale. The codes and data
are specified in such a way that execution

of the benchmarks on supercomputers

will help understand detailed aspects

of system performance. The focus is on
performance characteristics particularly
relevant to HPC applications, such as
model-system interactions, optimization

of the workload execution and reducing
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execution and throughput bottlenecks.
The HPC orientation also drives this
effort towards exploration of benchmark
scalability.

By contrast, the MLCommons Science
benchmark™ suite focuses specifically on
the application of ML methods to scientific
applications and includes application
examples from several scientific domains.
The recently announced information on
the science benchmarks at Supercomputing
2021 will spur improvements in defining
datasets for advancing ML for science. The
suite currently lacks a supportive framework
for running the benchmarks but, as with
the rest of MLCommons, does enforce
compliance for reporting of the results.

The benchmarks cover the three areas of
benchmarking — science, application and
system.

SciMLBench. The Scientific Machine
Learning Benchmark suite — or
SciMLBench® — is specifically focused

on scientific ML and covers nearly every
aspect of the cases discussed in the previous
sections. A detailed description of the
SciMLBench initiative is described in the
next section.

Other community initiatives. In addition to
various efforts mentioned above, there are
other efforts towards Al benchmarking by
specific research communities. Two examples
are WeatherBench’ and MAELSTROM™*
from the weather and climate communities,
both of which have specific goals and include
relevant data and baseline techniques.
However, these efforts are not full benchmark
suites, and, instead, are engineered as
individual benchmarks, ideally to be
integrated as part of a suite.

Although community-based
competitions, such as Kaggle’’, can be
seen as a benchmarking activity, these
competitions do not have a coherent
methodology or a controlled approach for
developing benchmarks. In particular, the
competitions do not provide a framework
for running the benchmarks, nor do they
consider data distribution methods. Each
competition is individually constructed and
relies on its own dataset, set of rules
and compliance metrics. The competitions
address concerns such as dataset curation,
choice of metric, presentation of results
and robustness against overfitting,
for example. Although such challenge
competitions can provide a blueprint for
using ML technologies for specific research
communities, the competitions are generally
short lived and are, therefore, unlikely to

deliver best practices or guidelines for the
long term.

The SciMLBench approach

The SciMLBench approach has been
developed by the authors of this article,
members of the Scientific Machine
Learning Group at the Rutherford
Appleton Laboratory, in collaboration
with researchers at Oak Ridge National
Laboratory and at the University of Virginia.
Among all the approaches reviewed above,
only the SciMLBench benchmark suite
attempts to address all of the concerns
discussed previously. To the best of our
knowledge, the SciMLBench approach is
unique in its versatility compared with the
other approaches and its key focus is on
scientific ML.

Core components. SciMLBench has three
components, given below.

* Benchmarks. The benchmarks are ML
applications written in Python that
perform a specific scientific task. These
applications are included by default and
users are not required to find or write
their own applications. On the scale of
micro-apps, mini-apps and apps, these
codes are full-fledged applications.

Each benchmark aims to solve a specific
scientific problem (such as those
discussed earlier). The set of benchmarks
are organized into specific themes,
including DL-focused benchmarks,
training or inference-intensive
benchmarks, benchmarks emphasizing
uncertainty quantification, benchmarks
focusing on specific scientific problems
(such as denoising”’, nonlinear dynamical
systems®, and physics-informed neural
networks®) and benchmarks focusing

on surrogate modelling®. Although the
current set of benchmarks and their
relevant datasets are all image based, the
design of SciMLBench allows for datasets
that are multimodal or include mixed
types of data.

Datasets. Each benchmark relies on one
or more datasets that can be used, for
example, for training and/or inferencing.
These datasets are open, task or domain
specific and compliant with respect to the
FAIR guidelines (Findable, Accessible,
Interoperable and Reusable®). Since
most of these datasets are large, they are
hosted separately on one of the laboratory
servers (or mirrors) and are automatically
or explicitly downloaded on demand.
Framework. The framework serves

two purposes. Firstly, at the user level,

it facilitates an easier approach to the
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actual benchmarking, logging and
reporting of the results. Secondly, at the
developer level, it provides a coherent
application programming interface
(API) for unifying and simplifying the
development of ML benchmarks.

The SciML framework is the basic fabric
upon which the benchmarks are built. It is
both extensible and customizable, and offers
a set of APIs. These APIs enable easier
development of benchmarks based on this
framework and are defined with layers
of abstractions. Example APIs (and their
abstractions) are given below.

e The entry point for the framework to
run the benchmark in training mode,
abstracted to all benchmark developers
(scientists), requires the API to follow
a specific signature. If defined, the
benchmark can then be called to run in
training mode. If this is undefined and
the benchmark is invoked in training
mode, it will fail.

e The entry point for the framework to
run the benchmark in inference mode,
abstracted to all benchmark developers
(scientists), requires the API to follow
a specific signature. If defined, the
benchmark can be called to run in
inference mode. If this is undefined and
the benchmark is invoked in inference
mode, it will fail.

e Control of logging. APIs for logging
of details are available at different
granularities. At the highest (abstraction)
level, this can be simply the starting and
stopping of logging. At the fine-grained
level, it can be controlling what is
specifically being logged.

 Controlling the execution of benchmarks.
These APIs are designed for advanced
benchmark developers to control
aspects around the actual execution of
benchmarks and would be expected to be
seldom used by scientists.

These APIs, in contrast to APIs from
other frameworks, such as Deep500, are
layered and are not fine grained. In other
words, APIs from SciMLBench are
abstracted enough for the benchmarking
process to be automated as much as
possible, instead of providing APIs for
obtaining fine-grained measurements,
such as runtime or I/O or communication
times. In fact, SciMLBench retains these
measurements and makes them available for
detailed analysis, but the focus is on science
rather than on performance. In addition,
these APIs are totally independent of the
application, whereas APIs in frameworks
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like Deep500 are intended to reflect the
operational semantics of the layers or
operations of the neural networks.

The SciMLBench framework is
independent of architecture, and the
minimum system requirement is determined
by the specific benchmark. There is a
built-in logging mechanism that captures all
potential system-level and benchmark-level
outputs during execution, leaving end
users or benchmark designers to decide
the content and format of the report from
these detailed logs. The central component
that links benchmarks, datasets and the
framework is the framework configuration
tool. The most attractive part of the
framework is the possibility of simply
using existing codes as benchmarks, with
only a few API calls necessary to register
the benchmarks. Finally, the framework is
designed with scalability in mind, so that
benchmarks can be run on any computer,
ranging from a single system to a large-scale
supercomputer. This level of support is
essential, even if the included benchmarks,
in their own, are scalable.

Benchmarks and datasets. The currently
released version of SciMLBench has three
benchmarks with their associated datasets.
The benchmarks from this release represent
scientific problems drawn from material
sciences and environmental sciences,

listed below.

e Diffuse multiple scattering (DMS_
Structure). This benchmark uses

ML for classifying the structure of
multiphase materials from X-ray
scattering patterns. More specifically,
the ML-based approach enables
automatic identification of phases.

This application is particularly useful
for the materials science community,

as diffuse multiple scattering allows
investigation of multiphase materials
from a single measurement — something
that is not possible with standard X-ray
experiments. However, manual analysis
of the data can be extremely laborious,
involving searching for patterns to
identify important motifs (triple
intersections) that allow for inference
of information. This is a multilabel
classification problem (as opposed to

a binary classification problem, as in
the cloud masking example discussed
below). The benchmark relies on a
simulated dataset of size 8.6 GB with
three-channel images of resolution

487 x 195 pixels.

Cloud masking (SLSTR_Cloud). Given
a set of satellite images, the challenge for
this benchmark is to classify each pixel
of each satellite image as either cloud or
non-cloud (clear sky). This problem is
known as ‘cloud masking’ and is crucial
for several important applications in
earth observation. In a conventional,

Backup Cloud Mirrors
Data >r — |ttty
Data (push) Data (pull) v ; v
Object
storage
I
Code (pull)
Code

Fig. 2 | Moving the benchmark datasets to the evaluation point. A benchmark has two components:
acode and the associated datasets. Whenever a user wants to use a benchmark, the code component
can easily be directly downloaded from the server. The data component, however, requires careful
delivery. The associated datasets are often too large for it to be possible to download them from the
server through direct download. Instead, they are pushed to the object storage, where they are care-
fully curated and backed up. This curated dataset is then pulled on demand by the user when a bench-
mark that requires this dataset is to be used. Because the exact location of the dataset can lead to
delays, these datasets are often mirrored and can also be made available as part of cloud environments.
This way, the download location can be opted for by the user (or automatically selected by the down-
loading component). The dotted lines imply that the data can come from any of the locations and can
be specified. The ‘pull’ aspect means that the data are downloaded on demand (pulled by the user).
The ‘push’ component means that the dataset distribution is managed by a server or the framework.

non-ML setting, this task is typically
performed using either thresholding
or Bayesian methods. The benchmark
exercises DL and includes two datasets,
DS1-Cloud and DS2-Cloud, with sizes
of 180 GB and 1.2 TB, respectively. The
datasets contain multispectral images
with resolutions of 2,400 x 3,000 pixels
and 1,200 x 1,500 pixels.

Electron microscopy image denoising
(EM_Denoise). This benchmark uses
ML for removing noise from electron
microscopy images. This improves

the signal-to-noise ratio of the image
and is often used as a precursor to
more complex techniques, such as
surface reconstruction or tomographic
projections. Effective denoising can
facilitate low-dose experiments in
producing images with a quality
comparable with that obtained in
high-dose experiments. Likewise, greater
time resolution can also be achieved
with the aid of effective image denoising
procedures. This benchmark exercises
complex DL techniques on a simulated
dataset of size 5 GB, consisting of

256 x 256 images covering noised and
denoised (ground truth) datasets.

The next release of the suite will include
several more examples from various
domains with large datasets, such as a
scanning electron tomography benchmark
from material sciences, a benchmark for
quantifying damage to optical lenses in laser
physics and another denoising benchmark
for cryogenic electron microscopic images
from the life sciences domain.

Benchmark focus. With the full-fledged
capability of the framework to log all
activities, and with a detailed set of metrics,
it is possible for the framework to collect

a wide range of performance details that
can later be used for deciding the focus.
For example, SciMLBench can be used for
science benchmarking (to improve scientific
results through different ML approaches),
application-level benchmarking and
system-level benchmarking (gathering
end-to-end performance, including I/O
and network performance). This is made
possible thanks to the detailed logging
mechanisms within the framework. These
logging mechanisms rely on various
low-level details for gathering system-
specific aspects, such as memory, GPU

or CPU usages. Furthermore, there are
APIs available for logging all the way from
the very simple request of starting and
stopping the logging process to controlling
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Table 1| Overall assessment of various scientific machine learning benchmarking approaches

Benchmark Focus Process
Scientific Application System Metrics Framework Reporting

Deep500 None None Partial ~ Full Full Partial
RLBench None Partial Partial ~ Full None Partial
CORAL-2 (DLS/BDAS) Partial Full Full Full Partial Partial
AlBench+HPC Al500 Full Full Full Full None Full
DAWNBench None Full Full Full None Partial
MLCommons Science Full Full Partial ~ Full None Partial
SciMLBench Full Full Full Full Full Partial
Community Partial None None  Partial  None Partial

competitions

Challenges

Data Distribution Coverage Extensibility
None None None Partial

Partial Partial Partial Partial

None None Full None

Partial Partial Partial Partial

None None None None

Partial Partial Full Partial

Full Full Full Full

Partial None Partial None

In qualitatively assessing how far each approach addresses the concerns, we have indicated whether they offer no support (none), partial or questionable support

(partial) or fully support the concern (full).

what is specifically being logged, such as
science-specific outputs or domain-specific
metrics. Since the logging process includes
all relevant details (including the runtime
or the power and energy usage, where
permitted), the benchmark designer or
developer is responsible for deciding on
the appropriate metric, depending on the
context. For example, it is possible for

the developer to rely on a purely scientific
metric or to specify a metric to quantify the
energy efficiency of the benchmark.

Benchmarking process. With the framework
handling most of the complexity of
collecting performance data, there is the
opportunity to cover a wide range of metrics
(even retrospectively, after the benchmarks
have been run) and have the ability to
control the reporting and compliance
through controlled runs. However, it is
worth noting that, although the framework
can support and collect a wide range of
runtime and science performance aspects,
the choice is left to the user to decide the
ultimate metrics to be reported. For
example, the performance data collected
by the framework can be used to generate

a final figure of merit to compare different
ML models or hardware systems for the
same problem. The benchmarks can be
executed purely using the framework

or using containerized environments,

such as Docker or Singularity. Although
running benchmarks natively using

the framework is possible, native code
execution on production systems is often
challenging and ends up demanding various
dependencies. For these reasons, executing
these benchmarks on containerized
environments is recommended on
production, multinode clusters. We

have found that the resulting container
execution overheads are minimal.

Data curation and distribution.

SciMLBench uses a carefully designed

curation and distribution mechanism

(a process illustrated in FIG. 2), given below.

e Each benchmark has one or more

associated datasets. These benchmark-
dataset associations are specified through
a configuration tool that is not only
framework friendly but also interpretable
by scientists.

* As the scientific datasets are usually large,
they are not maintained along with the
code. Instead, they are maintained in
a separate object storage, whose exact
locations are visible to the benchmarking
framework and to users.

Users downloading benchmarks will only
download the reference implementations
(code) and not the data. This enables fast
downloading of the benchmarks and the
framework. Since not all datasets will
be of interest to everyone, this approach
prevents unnecessary downloading of
large datasets.
 The framework takes the responsibility
for downloading datasets on demand
or when the user launches the
benchmarking process.

In addition to these basic operational
aspects, the benchmark datasets are stored in
an object storage to enable better resiliency
and repair mechanisms compared with
simple file storage. The datasets are also
mirrored in several locations to enable the
framework to choose the data source closest
to the location of the user. The datasets are
also regularly backed up, as they constitute
valuable digital assets.

Extensibility and coverage. The overall
design of SciMLBench supports several user
scenarios: the ability to add new benchmarks
with little knowledge of the framework,

ease of use, platform interoperability and
ease of customization. The design relies

on two API calls, which are illustrated in

the documentation with a number of toy
examples, as well as some practical examples.

Conclusion

In this Perspective, we have highlighted

the need for scientific ML benchmarks and
explained how they differ from conventional
benchmarking initiatives. We have outlined
the challenges in developing a suite of useful
scientific ML benchmarks. These challenges
span a number of issues, ranging from the
intended focus of the benchmarks and

the benchmarking processes, to challenges
around actually developing a useful ML
benchmark suite. A useful scientific

ML suite must, therefore, go beyond just
providing a disparate collection of ML-based
scientific applications. The critical aspect
here is to provide support for end users

not only to be able to effectively use the

ML benchmarks but also to enable them to
develop new benchmarks and extend the
suite for their own purposes.

We overviewed a number of
contemporary efforts for developing ML
benchmarks, of which only a subset has
a focus of ML for scientific applications.
Almost none of these initiatives considers
the problem of the efficient distribution
of large datasets. The majority of the
approaches rely on externally sourced
datasets, with the implicit assumption that
users will take care of the data issues. We
discussed in more detail the SciMLBench
initiative, which includes a benchmark
framework that not only addresses the
majority of these concerns but is also
designed for easy extensibility.

The characteristics of these ML
benchmark initiatives are summarized in
TABLE 1, which shows that the benchmarking
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community has several issues to address

to ensure that the scientific community

is equipped with the right set of tools to
become more efficient in leveraging the use
of ML technologies in science.

Code availability statement

The relevant code for the benchmark suite
can be found at https://github.com/stfc-sciml/
sciml-bench.
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