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In-Class Attention, Spatial Ability, and Mathematics Anxiety Predict
Across-Grade Gains in Adolescents’ Mathematics Achievement

David C. Geary, Mary K. Hoard, Lara Nugent, and John E. Scofield

University of Missouri

Identifying meaningful cognitive and noncognitive predictors of mathematical competence is critical for
developing targeted interventions for students struggling with mathematics. Here, 317 students’ short-term
verbal memory, verbal and visuospatial working memory, complex spatial abilities, intelligence, and math-
ematics attitudes and anxiety were assessed, and their teachers reported on their attentive behavior in 7th-grade
mathematics classrooms. Bayesian regression models revealed that complex spatial abilities and in-class
attention were the most plausible predictors of 7th-grade mathematics, but not word reading achievement,
controlling for prior mathematics achievement. These results were confirmed with multilevel models that
revealed interactions between these factors and prior achievement. The largest gains were among students with
strong mathematical competencies in 6th grade, and average or better in-class attention in 7th grade as well
as above average spatial abilities. High mathematics anxiety was associated with lower attention and through
this indirectly influenced achievement gains. These results have implications for how to best target interven-

tions for students at risk for long-term difficulties with mathematics.

Educational Impact and Implications Statement

Students’ in-class attention and their spatial abilities emerged as predictors of gains in mathematics from
6th to 7th grade, with mathematics anxiety indirectly related to these gains through in-class attention.
Strategies to enhance students’” engagement in the classroom, possibly by addressing anxiety for some of
them, might facilitate the learning of at-risk students, and further study of the relation between spatial
abilities and mathematics could result in the development of new interventions.

Keywords: mathematics achievement, spatial ability, mathematics attitudes, working memory,

in-class attention

There is consensus that students’ mathematical competence at
school completion contributes to their preparation for and options in
college, improves their wages in the labor market, and facilitates their
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decision making in many routine contexts, such as that related to their
health care (Bynner, 1997; National Mathematics Advisory Panel,
2008; Reyna, Nelson, Han, & Dieckmann, 2009). There is also
consensus that existing mathematical knowledge contributes to the
learning of new knowledge, such that students who are behind in one
grade will tend to remain behind in subsequent grades, controlling
other factors (Duncan et al., 2007). At the same time, the mix of
factors that contribute the most to growth in mathematical competen-
cies remains uncertain. The proposed mechanisms include attitudes
and beliefs about one’s mathematical competence and the long-term
utility of mathematics (Eccles & Wigfield, 2002; Lauermann, Tsai, &
Eccles, 2017), mathematics anxiety (Ashcraft & Kirk, 2001; Dowker,
Sarkar, & Looi, 2016), domain-general cognitive abilities (Geary, Nich-
olas, Li, & Sun, 2017; Lee & Bull, 2016), specific cognitive abilities (e.g.,
spatial; Mix & Cheng, 2012), and in-class attention (Fuchs et al., 2006).
The wide range of proposed mechanisms means it is unclear how to best
focus interventions for students at risk for long-term difficulties. To
narrow this focus, we conducted a broad assessment of functioning in
these areas with the goal of identifying the most important contributors to
gains in mathematics during middle school.

Cognitive Mechanisms

We were particularly interested in the relation between spatial
abilities and mathematics outcomes, as there is a consistent rela-
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tion between these abilities and accomplishment in science, tech-
nology, engineering, and mathematics (STEM) occupations in
adults (Kell, Lubinski, Benbow, & Steiger, 2013; Lubinski &
Benbow, 2006), albeit this relation is not consistently found in
children (Mix & Cheng, 2012). One potential reason is that visu-
ospatial abilities are less important for much of the mathematics
encountered in early grades but become increasingly important for
mathematics encountered in later grades (Li & Geary, 2017),
including some aspects of prealgebra and algebra (Casey, Nuttall,
& Pezaris, 1997; Casey, Nuttall, Pezaris, & Benbow, 1995; Kyttilid
& Lehto, 2008; Mix, 2019; Tolar, Lederberg, & Fletcher, 2009).
Moreover, there are different types of spatial abilities that could be
differentially related to gains in mathematics across grade levels or
across different types of mathematical content (Gilligan, Hodgkiss,
Thomas, & Farran, 2019; Hawes & Ansari, 2020; Uttal et al.,
2013). The result is substantive ambiguity in whether and if so how
and when various spatial abilities contribute to mathematics learn-
ing. We assessed students’ visuospatial working memory and two
more complex spatial abilities to determine which aspects of
spatial ability might be particularly important for mathematics
achievement during middle school.

Intelligence and working memory (holding information in mind
while engaged in other processes) are consistent predictors of
longitudinal gains in mathematics achievement and thus were also
included in our assessments (Bull & Lee, 2014; Deary, Strand,
Smith, & Fernandes, 2007; Geary et al., 2017; Lee & Bull, 2016).
Among other things, working memory processes contribute to the
ease of engaging in any multistep process, including performance
on complex spatial tasks (Tolar et al., 2009). As with spatial
abilities, the dynamic relations between various aspects of working
memory and mathematics learning are not fully understood
(Miller-Cotto & Byrnes, 2019; Paas & Ayres, 2014). Our inclusion
of different types of working memory measures could help to
clarify these relations. In addition to visuospatial working mem-
ory, we included measures of verbal short-term and working
memory as these appear to contribute to basic number processing
(Krajewski & Schneider, 2009), but may become less important as
mathematics becomes more complex (Li & Geary, 2017). More-
over, correlations between spatial abilities and mathematics out-
comes could emerge due to the influence of working memory on
spatial-task performance and not spatial abilities per se. The si-
multaneous consideration of both working memory and spatial
cognition measures helps to mitigate this potential confound.

Attitudes, Anxiety, and In-Class Attention

Various outcomes in mathematics, including grades, standard-
ized achievement scores, and pursuit of math-intensive careers are
correlated with confidence or efficacy about one’s abilities and to
beliefs about the utility of mathematics (Eccles & Wang, 2016;
Eccles & Wigfield, 2002). For older students and adults there
appear to be bidirectional influences between mathematical com-
petence and these beliefs and attitudes (Talsma, Schiiz, Schwarzer,
& Norris, 2018; Valentine, DuBois, & Cooper, 2004), but the
strength of these relations is less certain across elementary and
middle school students (Geary et al., 2019; Gunderson, Park,
Maloney, Beilock, & Levine, 2018). In any event, Lauermann et
al. (2017) found reciprocal relations between mathematics self-
efficacy and utility beliefs and math-intensive career plans

throughout high school that in turn predicted employment in a
mathematics-intensive profession 15 years later (controlling intel-
ligence).

Casey et al. (1997) found that the combination of spatial ability
and mathematics self-efficacy but not math anxiety predicted
SAT-mathematics scores. Despite Casey et al.’s (1997) null result,
relations between mathematical competencies and mathematics
anxiety are often found (Ashcraft & Kirk, 2001; Dowker et al.,
2016; Ma & Xu, 2004). For instance, Byrnes and Miller-Cotto
(2016) found that internalizing issues, including anxiety, were
related to slower mathematics growth across the third- and eighth-
grade academic years, controlling many other factors. Mathemat-
ics anxiety can also result in an avoidance of mathematics and
through this an avoidance of career paths involving even basic
mathematics (Hembree, 1990; Meece, Wigfield, & Eccles, 1990).

Moreover, higher mathematics anxiety is associated with poor
spatial abilities and anxiety about spatial-related activities that in
turn creates a confound if only anxiety or spatial abilities are
assessed (Ferguson, Maloney, Fugelsang, & Risko, 2015). For
instance, the correlation between math anxiety and mathematics
outcomes might be more directly related to a reduced use of spatial
strategies during mathematical problem solving than to anxiety per
se. Consideration of both spatial and anxiety measures enables a
more rigorous examination of their relative contributions to math-
ematics achievement.

It is not surprising that there is a consistent relation between
teacher ratings of students’ in-class attention and concurrent and
longitudinal gains in mathematical competencies (Fuchs et al.,
2006; Fuchs, Geary, Fuchs, Compton, & Hamlett, 2014; Geary,
Hoard, Nugent, & Bailey, 2013). These behaviors include sus-
tained attention and attention to details during school-related ac-
tivities, as well as distractibility in the classroom (Swanson et al.,
2012), and are not fully captured by standard measures of atten-
tional control and working memory. Indeed, many of these studies
have found that working memory, intelligence, and in-class atten-
tion simultaneously predict gains in mathematics achievement, but
these studies have not included measures of mathematics attitudes
or anxiety.

In-class attention also provides a potential mechanism through
which attitudes and anxiety might influence students’ mathemati-
cal development. Strong self-efficacy and belief in the utility of
mathematics should, in theory, be related to greater engagement in
mathematics classrooms. Experimental studies have shown that
mathematics anxiety can disrupt the processing of mathematical
information through disruption of the top-down ability to maintain
attentional focus on problem solving (Ashcraft & Kirk, 2001;
Hopko, McNeil, Gleason, & Rabalais, 2002; Suarez-Pellicioni,
Nunez-Pefia, & Colomé, 2014). The result is a reduction in func-
tional working memory capacity and greater susceptibility to dis-
traction by irrelevant information. It is not unreasonable to assume
that mathematics anxiety might also result in greater proneness to
distraction in mathematics classrooms (Pekrun, 20006). If so, then
mathematics anxiety might directly undermine performance on
mathematical tasks and might indirectly reduce growth in mathe-
matical competencies by reducing engagement in mathematics
classrooms and thereby reducing the opportunity to learn (Byrnes
& Miller-Cotto, 2016).
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Current Study

Evidence can be marshalled in support of myriad cognitive,
attitudinal, and emotional contributors to year-to-year gains in
students’ mathematics achievement. Many of the associated stud-
ies have assessed traits in multiple domains, allowing for an
estimation of the relative contributions of one trait (e.g., spatial
abilities) or another (e.g., self-efficacy) to mathematics achieve-
ment (e.g., Byrnes & Miller-Cotto, 2016; Casey et al., 1997; Geary
et al., 2017; Lauermann et al., 2017; Tolar et al., 2009). None of
these studies, to our knowledge, has provided a broad simultane-
ous assessment of all the different cognitive and noncognitive
traits that have been proposed as influencing children’s mathemat-
ical development. Moreover, there are different competencies
within specific domains, such as spatial abilities (Uttal et al.,
2013), and the relative relation of these different competencies
with mathematical development are not well understood (Gilligan
et al., 2019).

As a result, it is not entirely clear which combination of factors
is the most important for year-to-year gains in mathematics or
whether this combination varies at different points in children’s
schooling. We provide this broad assessment and focus on the
middle school years. Mathematical competencies during these
years are particularly important because any deficits at this time
are likely to presage difficulties with high school algebra, which is
the cornerstone for learning more complex mathematics (National
Mathematics Advisory Panel, 2008).

Even for the studies that include the assessment of multiple
traits, multicollinearity among them results in potential confounds.
To address these potential confounds, we used Bayesian methods
that are better suited to identifying predictors among correlated
variables than are standard methods. This approach allowed us to
first identify the most plausible contributors to seventh-grade
mathematics achievement within the broad noncognitive (e.g.,
math anxiety) and cognitive (e.g., different types of spatial ability
or working memory) domains. These contributors were then used
in standard multilevel models of growth in mathematics achieve-
ment from sixth- to seventh grade.

Method

Participants

The participants were 317 (154 boys) seventh graders enrolled
in an ongoing longitudinal study conducted in collaboration with
the Columbia Public Schools in Columbia, Missouri. They were
recruited across two cohorts from a larger group of 2,027 students
who were assessed on a battery of mathematical competencies
along with mathematics and English attitudes and anxiety at the
end of sixth grade. Of this larger group, data were missing (e.g., no
information on student sex) for 101 students, leaving 1,926 of
them for construction of a sixth-grade mathematical competence
measure (below; Geary et al., 2019). All 1,926 students were
invited to join the longitudinal component of the study and 342 of
them and their parents did so. The 317 students included here
completed all of the seventh-grade assessment sessions, and their
mathematics teachers reported on their in-class attention. The
mathematics teachers of the 25 students who were dropped did not
report on their in-class attention; their sixth-grade mathematical
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competence did not differ from that of the 317 remaining students
(p = .947). The sixth-grade mathematical competence of the
current sample (M = 104.66, SD = 14.98) was higher than that of
the students who did not enroll for the longitudinal component
(M = 99.00, SD = 14.74), d = .38, p < .001.

For students in the longitudinal component, demographic infor-
mation was obtained through a parent survey. As not all questions
were answered on each survey, the n varied for the demographic
variables (n = 259 to 278, depending on the particular item). For
the group of 317 students, 88% of them were non-Hispanic, 6%
were Hispanic or Latino, and the ethnic status of the remaining
students was unknown. The racial composition was 70% White,
14% Black, 3% Asian, 1% Native American, 10% multiracial,
with the remaining unknown. Self-reported annual household in-
come was distributed as follows: $0-24,999 (12%); $25,000—
49,999 (18%); $50,000-74,999 (12%); $75,000-99,999 (22%);
$100,000-149,999 (19%); and $150,000+ (17%). Sixty-three per-
cent of the students had at least one parent with a college degree.
Fifteen percent of the families received food assistance, and five
percent received housing assistance.

Sixth-Grade Mathematics Competence

The tests and detailed instructions (https://osf.io/qwtk6/), as
well as the raw data (https://osf.io/p7vzc/) for the key analyses are
available at the Open Science Framework (OSF). The assessment
included an Exponents and Radical Rules Test that is not reported
here because of a high nonresponse rate. The remaining tests
assess basic mathematics knowledge and skills typically expected
for sixth graders. All of the tests were administered using paper
and pencil for the first cohort, and the Equality Problems, Frac-
tions Comparison Test, Fractions Number Line, Equal Sign items,
and Academic Attitudes and Mathematics Anxiety tasks were
assessed using iPads for the second cohort. There were only two
significant cohort effects (all other ps > .07), whereby students in
the first cohort scored higher on the arithmetic fluency (p = .002,
d = .14) and fractions comparison test (p < .001, d = .17). Given
the null effects for all other measures and the small difference for
the arithmetic fluency and fractions comparison test, the two
cohorts were combined.

Arithmetic fluency. Students were allowed a total of 2 min to
solve as many whole-number arithmetic problems as possible;
addition (n = 24; e.g., 87 + 5), subtraction (n = 24; e.g., 35-8),
and multiplication (n = 24; e.g., 48 X 2). The score was the
number correct across the three operations (M = 18.94, SD =
6.25; a = .57).

Equality problems. This 10-item multiple-choice test as-
sessed students’ understanding of equality in the context of prob-
lems presented in nonstandard formats, such as 8 = __ + 2 — 3.
Students did not answer 3.7% of the items and these were scored
as incorrect. An equality composite was the percent correct for the
10 items (M = .80, SD = .24, o = .80).

Fractions arithmetic. This test included sets of 12 addition
(e.g., 1/3 + 1/6), 12 multiplication (e.g., 1/4 X 1/8), and 10
division (e.g., 2 + 1/4) problems. Students had 1 min for each
operation. The score was the sum of the number of addition (M =
5.86, SD = 3.80), multiplication (M = 2.98, SD = 3.04) and
division (M = 1.49, SD = 2.38) problems that were solved
correctly (a0 = .62).
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Fractions comparison. Students were presented with 48 pairs
of fractions and were asked to circle the larger one within 90 s. The
48 pairs were composed of four item types that reflect common
problem-solving errors and strategies (Geary et al., 2013; Hecht,
1998; Hecht, Close, & Santisi, 2003). The first type assesses
students’ understanding of the inverse relation between the value
of the denominator and the quantity represented by the fraction;
here, the numerator is constant but the denominator differs (e.g.,
2/4 2/5). In the second type numerators have a ratio of 1.5 and
denominators a ratio between 1.1 and 1.25 (e.g., 3/10 2/12),
making identification of the larger magnitude easier using numer-
ators (correct) than denominators (incorrect). Numerators and de-
nominators in the third type are reversed (e.g., 5/6 6/5), which
requires students to choose the fraction with the larger numerator
and smaller denominator. The final type involves skill at using 1/2
as an anchor for estimating fraction values (e.g., 20/40 8/9). A
composite was based on performance (correct—incorrect; M =
16.70, SD = 15.32) across the four item types (o = .87).

Fractions number line. Following Siegler, Thompson, and
Schneider (2011), students were asked to place (one at a time) 10
fractions on the O to 5 number line; 10/3, 1/19, 7/5, 9/2, 13/9, 4/7,
8/3, 7/2, 17/4, 11/4. Target fractions were in large font and cen-
tered above the line. Students were given 4 min to complete the 10
items, and 94.4% of the lines were completed. The data for the
remaining 5.6% of lines were estimated using the average of five
estimates derived from the multiple imputations procedure in SAS
(2014). The score for each item was the absolute percent deviation
between the placement and the correct location, and the overall
score was the mean of the 10 items (M = 20, SD = 14, a = .85).
The latter was multiplied by —1 so that higher scores represent
more accurate placements.

Equal sign. Two items focused explicitly on the “=" (Mc-
Neil, Fyfe, Petersen, Dunwiddie, & Brletic-Shipley, 2011). The
first asked students to identify the meaning of the symbol “=" in

“3 + 4 = 77; the options were add the numbers, solve the problem,
same as, and the answer. The second asked students to identify the
symbol that indicated that five pennies were the same as one
nickel; the options were 5 cents, = , +, and do not know. Perfor-
mance on the first (M = 28% correct) and second (M = 87%
correct) items was only weakly correlated, r = .12, p < .001, but
each was correlated with the other mathematics variables (rs = .16
to .30, ps < .001). Thus, we include both as separate items.

Mathematics competence. The scores for all of the measures
were submitted to a principle components analysis (SAS, 2014).
The analysis yielded one factor with an eigenvalue greater than
one that explained 45% of the covariance among the measures.
Next, each individual variable was standardized (M = 0, SD = 1)
and a composite was created based on their mean (o« = .78). To
make the scores comparable to the standardized measures (below),
the composite was then rescaled (M = 100, SD = 15).

Academic Attitudes and Anxiety

The measures of mathematics and English attitudes were from
the Michigan Study of Adolescent and Adult Transitions (http://
garp.education.uci.edu/msalt.html) and are designed to assess stu-
dents’ self-evaluated efficacy in and their beliefs about the long-
term utility of these areas (Eccles & Wigfield, 2002; Meece et al.,
1990). The mathematics measure included seven items on a 1-to-7

Likert scale; for example, “How much do you like doing math?”
rated from 1 (a little) to 7 (a lot), with the six English items being
similar. Previous analyses using an exploratory principle compo-
nents analysis, as well as parallel and MAP analyses (R Core
Team, 2017), indicated that the mathematics items defined two
factors and the English items one factor (Geary et al., 2019).

Mathematics attitudes. The loadings of individual items on
their respective factors were consistent with distinct utility (Items
1 to 4, inclusive) and self-efficacy (Items 5 to 7) dimensions. The
scores were the sum of the corresponding items (o« = .72 for
utility, and .78 for self-efficacy).

English attitudes. The score was the mean of the six items
(o = .83).

Mathematics anxiety. The 10 items were adapted from
Hopko, Mahadevan, Bare, and Hunt (2003). Each item (e.g.,
“Taking an examination in a math course”) was rated on a 1 (low
anxiety) to 5 (high anxiety) scale. All three analyses (i.e., EFA,
MAP, parallel) indicated two factors. The first was defined by five
items that involved learning mathematics (e.g., “Watching a
teacher work an algebraic equation on the board”; Items 1, 3, 6, 7,
9). The second factor was defined by four items that involved some
type of evaluation (e.g., “Taking an examination in a math course”;
Items 2, 4, 5, 8), and the final item (i.e., “In general, how anxious
are you about math?”). Composite scores were based on the mean
of the five learning anxiety items (o = .76) and the five evaluation
anxiety items (o = .86). The two core factors identified here are
consistent with previous findings (Baloglu & Kogak, 2006).

In-Class Attention

We used the Strength and Weaknesses of ADHD-Symptoms
and Normal-Behavior (SWAN) measure of in-class attention
(Swanson et al., 2012). The measure includes items that assess
attentional deficits and hyperactivity, with scores that are normally
distributed and based on the behavior of a typical student in the
classroom. The nine item (e.g., “Gives close attention to detail and
avoids careless mistakes”) attention subscale was distributed to the
students’ seventh-grade mathematics and language arts teachers
who were asked to rate the behavior of the student relative to other
students of the same age on a 1 (far below) to 7 (far above) scale.
To keep the focus strictly on mathematics, the score was the mean
across the nine items completed by their mathematics teachers
(M = 4283, SD = 1.45; o = .98)

Standardized Measures

Intelligence. The Vocabulary and Matrix Reasoning subtests
of the Wechsler Abbreviated Scale of Intelligence (WASI;
Wechsler, 1999) were used to estimate full-scale IQ, following
procedures detailed in the manual. The intelligence of the sample
was average (M = 104.52, SD = 12.83).

Achievement. Mathematics and reading achievement were as-
sessed using the Numerical Operations and Word Reading subtests
from the Wechsler Individual Achievement Test-Third Edition
(Wechsler, 2009), respectively. The mathematics (M = 99.68,
SD = 18.36) and reading (M = 104.69, SD = 13.01) achievement
of the students was average.
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Cognitive Measures

Most of the cognitive tasks were administered on iPads using
customized programs developed through Inquisit by Millisecond
(https://www.millisecond.com). The verbal memory and proactive
inhibition task was administered using a customized program
developed in Qualtrics (https://www.qualtrics.com); manuals and
detailed descriptions are available on OSF (https://osf.io/qwfk6/).
All of the tasks are standard measures of short-term and working
memory, verbal memory, and various aspects of spatial ability.

Digit span. The administration of the forward and backward
digit span measures followed Experiment 1 in Woods et al. (2011).
The students heard a sequence of auditory digits, at 1-s intervals
starting with three digits for the forward assessment and two digits
for the backward assessment. The task is to recall the digit list in
order (in either a forward or backward manner, respectively) by
tapping the digits on a circle of digits displayed on the screen. If
the response is correct (in digits and presentation order), the
student moves up to the next level. If the response is incorrect, the
same level is presented a second time. If a consecutive error
occurs, the student moves down to a lower level. Each direction
(forward and then backward) ends after 14 trials. The student’s
score was the highest digit span correctly recalled before making
two consecutive errors at the same span length (M = 5.71, 4.59,
SD = 1.12, 1.20 for forward and backward, respectively).

Verbal memory. The verbal memory measure was taken from
a longer proactive inhibition task. The student listens to a record-
ing of a set of four animal words, presented in 1-s intervals using
the iPad speakers. To prevent rehearsal of the words, the student
immediately names colors from a sheet with rows of different
colors for 10 s. After 10 s, a tone prompts the student to recall the
words, in order. Responses are recorded by the experimenter using
Qualtrics on the iPad including options for recalling a word that
was not presented (“other”) and “don’t know.” The process is
repeated with two new sets of four animal words, and finally with
a set of four fruit words. Items were taken from Gilhooly and
Logie (1980) and Paivio, Yuille, and Madigan (1968). The words
were chosen based on Imagery (I) and Concreteness (C) ratings (1
to 7 scale), with all scores >6. The one exception was lime
(imagery of 5.7), which was included because it was the closest (to
6.0) available one-syllable fruit word. Each quartet included one
moderate- to high-frequency word and three low-frequency words
(<10/million), and three one-syllable and one two-syllable words.
All within-list words started with different letters and presentation
orders were initially randomized, and subsequently presented in
the same order to all students. We used percent correct on the first
quartet of words as a measure of short-term verbal memory (M =
.68, SD = .28).

N-back. An adaptive version of a single N-back task with
letters was administered following Jaeggi et al. (2010). The student
is shown a “target” letter and then a sequence of 20 stimulus letters
(all consonants; 6 are target; 14 are not; order determined ran-
domly), and asked to indicate whether the currently presented
letter is a target by tapping a key, or is not a target by not
responding. The target letter could be the first stimuli presented
(N = 0) or could be the same as the one that preceded it (N = 1)
or the same as one presented in the two (N = 2) or three (N = 3)
trials that preceded it.

Each trial presents a letter for 500 ms, followed by a 2,500-ms
blank screen, and then by the next letter in the sequence. Students
have the entire 3,000 ms to respond by tapping a key if they detect
a target. After instructions and three 10-item practice blocks for
levels N = 0 to N = 2, all participants start on level N = 0.
Depending on performance, they move up, stay on the current
level, or move down a level for five total blocks (<3 errors—move
up; 3-5 errors—repeat level; >5 errors—move down). Perfor-
mance feedback (percent correct) is displayed after each block.
Hits (H), Misses, False Alarms (FA), and Correct Rejections are
recorded and summarized by block. The score is (H—FA)/(total
blocks); M = 3.80, SD = 0.76.

Spatial span. The forward Corsi Block Tapping Task was
administered following Kessels, van Zandvoort, Postma, Kappelle,
and de Haan (2000). Students are presented with a display of nine
squares that appear to be randomly arranged. The squares “light
up” in a predetermined sequence (constant across participants),
and students are asked to tap on the squares in the same order they
were lit. The sequence length starts at two squares (level = 2) and
could increase to up to nine squares. Students have two attempts at
each sequence length. If one of the sequences is recalled correctly,
the next sequence level begins; if both sequences at a level are
recalled incorrectly, the task is terminated. The score is the total
number of correctly recalled sequences across the whole task (M =
8.34 SD = 1.83).

Spatial ability. The first spatial measure was the Judgment of
Line Angle and Position Test (JLAP), following Collaer, Reimers,
and Manning (2007). The task requires students to match the angle
of the single presented line to one of 15-line options in an array at
the bottom center of the iPad screen. There are 20 test items
presented one at a time, and the student uses the touch screen to
select the matching angle. Each stimulus is presented for a maxi-
mum of 10 s, and when a selection is made, a reaction time (RT)
is recorded and the next stimulus is immediately presented. The
outcome is the number correct (M = 13.33, SD = 3.03).

The second measure was Peters et al.’s (1995) Mental Rotation
Task (MRT-A). On each trial, the student views images of 3D
drawings of 10 connected cubes. For each trial, there is one target
and four choice options, and the task is to select the two options
that are the same figure as the target, only rotated to various
degrees. After four self-paced practice problems, students are
presented with 24 problems in two blocks of 12 problems each (3
min per block). The score is the number of problems on which the
student chose both correct options (M = 8.75, SD = 4.13).

Procedure

The 45-min end of sixth-grade assessment was administered in
mathematics classrooms to groups of 14 to 32 students. For the
longitudinal component, students were administered the intelli-
gence, achievement, attitudes, anxiety, and cognitive measures
individually at a quiet location in their school across three 45-min
assessments. As shown in Table 1, with the exception of the verbal
memory task (due to time constraints), the cognitive measures
were administered the first semester of seventh grade, and the
remaining measures in the second semester. Parents provided
informed written consent, and assent was obtained from adoles-
cents for all assessments. The University of Missouri Institutional
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Task name M (SD) Sixth grade spring Seventh grade fall Seventh grade spring
Mean age at test 147 153 156
Mathematics competence (sixth grade) 104.66 (14.98) X
Mathematics efficacy 5.00 (1.02) X
Mathematics utility 5.27 (1.00) X
Mathematics anxiety for learning 1.72 (0.66) X
Mathematics anxiety for evaluations 2.63 (0.96) X
Digit span forward 5.71(1.12) X
Digit span backward 4.59 (1.20) X
N-back 3.80 (0.76) X
Corsi 8.34 (1.83) X
JLAP 13.33 (3.03) X
Mental Rotation Test 8.75 (4.13) X
Verbal memory 0.68 (0.28) X
Intelligence 104.52 (12.83) X
Word Reading 104.69 (13.01) X
Numerical Operations 99.68 (18.36) X
In-class attention (math classroom) 4.83 (1.45) X

Note.

Review Board (IRB; Project 2002634, “Algebraic Learning and
Cognition”) approved all methods included in this study.

Analyses

We first used Bayesian regressions to provide a robust and
transparent means for selecting the best set of cognitive and
noncognitive predictors for inclusion in the main analyses (Gal-
listel, 2009; Rouder & Morey, 2012), using the BayesFactor pack-
age in R (v0.9.12-4.2; Morey & Rouder, 2015). Default prior
scales for standardized slopes were used, r,.,,. = ¥2. Bayes factors
provide straightforward information regarding whether the inclu-
sion of specific variables improves model fit above and beyond
other specified variables. This model selection method is more
robust than standard linear regression, especially with potential
multicollinearity, as with the current data. Bayes factors are higher
when one of two highly correlated variables are included in rela-
tion to models containing both or none, providing the ability to
compare the relative contribution of the predictors. In separate
analyses, we selected the best combination of cognitive and then
noncognitive predictors of raw seventh-grade Numerical Opera-
tions scores. The variables identified from each of these analyses
were subsequently used in a follow-up analysis to identify the best
combination of cognitive and noncognitive predictors of these
scores. In a final model, sixth-grade mathematical competence
scores were included with this combination to control for prior
achievement. The sequence of analyses provides structured, step-
by-step information on the best set of cognitive, noncognitive, and
combined predictors of seventh-grade mathematics achievement.

The first set of Bayes factors are noted as MC,,, where m = the
specific set of cognitive (C) predictors in the model (M) and
comparisons as BC,, with B representing the comparison ratio of
Bayes factors between models m and n. BC,,, represents a contrast
of the selected model to a null model with no predictors. These
analyses assess the likelihood of the data for alternative models. As
an example, the full model MC, included the backward digit span,
Corsi, JLAP, MRT, and IQ measures (below). Each of these
predictors was then iteratively dropped one-by-one and change in

Age is in months, SDs range between 4.41 and 4.50 months. JLAP = Judgment of Line Angle and Position Test.

the odds of the model was evaluated. For instance, dropping MRT
resulted in model MC; and the comparison to the full model as
BC;,. The latter resulted in a Bayes factor ratio of .0521, meaning
the model without MRT was 5.21% as probable as the model with
MRT, or the model including MRT was preferred 19 times to 1
(1/.0521). Dropping JLAP resulted in a model that was 57.43% as
probable (MC,,), or with the model including JLAP only being
preferred 1.74 times to 1. Here, lower Bayes factors indicate
greater evidence for a predictor. As a rule of thumb, models that
are less than 33% as probable without the variable provide evi-
dence for retaining it, and models that are less than 10% as
probable provide strong evidence for retaining it (Jeffreys, 1961;
Raftery, 1995). We used the 33% criterion to retain variables,
corresponding to a commonly used cutoff for positive evidence
(e.g., Bayes factor of three, Kass & Raftery, 1995).

As described below, in-class attention and MRT were the only
predictors to survive the Bayesian analyses. These variables were
included with sixth-grade mathematical competence in the predic-
tion of Numerical Operations scores. The model included interac-
tions between sixth-grade mathematical competence and in-class
attention and MRT scores, as well as the three-way interaction. To
control for potential demographic confounds, we first used student
ethnicity (Hispanic or not), race, family income, housing assis-
tance (yes, no), food assistance (yes, no), and parental education as
predictors of sixth-grade mathematical competence. Student race
and family income were the only significant predictors (ps <
.001). To control for these, we created dummy coded (0,1) vari-
ables for the six income categories and dummy coded race vari-
ables for Black, White, and Asian students. These were included in
all models.

Participants were recruited from six schools and there were
small but significant school effects for Numerical Operations
scores, F(5,311) = 3.94, p = .0018, R* = .06. To control for these
effects, we used multilevel models with Proc Mixed (SAS, 2014),
using students as Level 1 units and seventh-grade schools as Level
2 units, allowing intercepts to vary randomly for schools. Seventh-
grade Numerical Operations and predictor variables were centered
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(M = 0, SD = 1), but uncentered scores are shown in Table 1 and
correlations among variables in Figure 1.

Results

Bayesian Analyses

Mathematics achievement. As shown in the top section of
Table 2, the best Bayes model for the cognitive variables included
digit span backward, Corsi, JLAP, MRT, and IQ. The BC_, is very
large for this first model and all alternative models, providing
strong evidence for some combination of cognitive predictors of
Numerical Operations scores relative to the null. Dropping 1Q
resulted in a model that was <1% as probable as the model with
IQ. As noted, the model without MRT was 5.21% as probable as
the model with it, while the model without JLAP was 57.43% as
probable. The next two models indicated that dropping the Corsi
and digit span backward variables resulted in models that were

DS-Forward 0.15 095‘ é’_.:\"&
DS-Backward 0.13. %’0
Q
NBack 0.09 0,22 0.25 ‘,g;"&
Corsi 0.13 0.150.25 028 ¢~
JLAP 0.04 02 024028026 F

Intelligence 0.3 0.25 0.4 0.33 0.27 0.29”
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35.45% and 4.59% as probable as the models with them, respec-
tively. The results suggest that the inclusion of JLAP and Corsi
does not substantively improve the prediction of Numerical Oper-
ations scores relative to the models without them. However, drop-
ping both variables resulted in a model that was only 8.5% as
probable as the model with only digit span backward, MRT, and
IQ (not shown in Table 2), suggesting that either Corsi or JLAP
should be retained. The model with JLAP was only 62% as
probable as the model with Corsi and thus we retained digit span
backward, MRT, IQ, and Corsi for the combined analysis.

The second section of Table 2 indicates that the best set of
noncognitive predictors of Numerical Operations scores included
in-class attention, mathematics anxiety for learning, and mathe-
matics efficacy. Dropping each of these variables in succession
resulted in models that were <8% as probable as the models
without them. Thus, all three variables were retained for the
combined analysis.

@Q‘d’
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q,\(?
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Correlations among key variables. Highlighted cells indicate significant (blue = positive; red =

negative) correlations. JLAP = Judgment of Line Angle and Position Test; Eval = evaluation; Learn = learning;

Op = operations.
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Table 2
Bayes Factor Analyses of Predictors of Seventh Grade Mathematics Achievement
Model: Top cognitive predictors BC,.o Excluded BC,.;
MC, DSB + Corsi + JLAP + MRT + IQ 1.38 x 10 — 1
MC, DSB + Corsi + JLAP + MRT 1.28 X 10%° 1Q .0000
MC; DSB + Corsi + JLAP + 1Q 7.19 X 10% MRT .0521
MC, DSB + Corsi + MRT + IQ 7.93 X 10%° JLAP 5743
MC; DSB + JLAP + MRT + 1Q 4.90 X 10%° Corsi 3545
MC, Corsi + JLAP + MRT + 1Q 6.34 X 10% DSB .0459
Model: Top noncognitive predictors BNC,,o Excluded BNC,,,
MNC, MEff + MAnxLearn + Atten 1.22 X 10%¢ — 1
MNC, MEff + MAnxLearn 2.28 X 10° Atten .0000
MNC, MEff + Atten 4.74 X 10* MAnxLrn .0390
MNC, MAnxLearn + Atten 9.20 X 10** MEFff 0756
Model: Top combined predictors BA,, Excluded BA,,;
MA, MEff + Atten + DSB + Corsi + MRT + IQ 5.21 X 10%® — 1
MA, MEff + Atten + DSB + Corsi + MRT 1.07 X 10%7 IQ .0205
MA, MEff + Atten + DSB + Corsi + IQ 1.08 X 10%7 MRT .0207
MA, MEff + Atten + DSB + MRT + 1Q 2.31 X 103 Corsi 4440
MA4 MEff + Atten + Corsi + MRT + IQ 3.30 X 10%¢ DSB .0063
MA4 MEff + DSB + Corsi + MRT + IQ 1.34 X 10*! Atten .0000
MA, Atten + DSB + Corsi + MRT + IQ 5.78 X 103 MEff 0111
Model: Top combined and sixth-grade mathematics BAS, o Excluded BAS,,;
MAS, Atten + MRT + sixth-grade mathematics 1.43 X 10 — 1
MAS, Atten + MRT 1.89 X 10%® Math .0000
MAS; Atten + sixth-grade mathematics 5.33 X 10%° MRT .0374
MAS, MRT + sixth-grade mathematics 5.26 X 10%® Atten .0004

Note. DSB = digit span backward; Corsi = Corsi Block Tapping Task; JLAP = Judgment of Line Angle and Position Test; MRT = Mental Rotation
Test; Meff = mathematics efficacy; MAnxLearn = mathematics anxiety for learning; Atten = in-class attention in mathematics classrooms; MC = models
for cognitive variables; MNC = models for noncognitive variables; MA = models for all, that is, top cognitive and noncognitive variables; MAS = top
models from MA and sixth-grade mathematics scores. BC = Bayes factors for cognitive variables; BNC = Bayes factors for noncognitive variables; BA =
Bayes factors for all or combined variables; BAS = Bayes factors including sixth-grade mathematics.

The combined analysis included digit span backward, MRT, 1Q,
Corsi, in-class attention, mathematics anxiety for learning, and
mathematics efficacy and the best model included all of them,
except for mathematics anxiety for learning. As shown in the third
section of Table 2, dropping each of these variables in succession
suggested the elimination of Corsi but retention of the remaining
variables.

The final set of models included the five retained variables from
the combined analysis and sixth-grade mathematical competence.
As shown in the last section of Table 2, the combination of
mathematical competence, in-class attention, and MRT predicted
Numerical Operations scores. Dropping any of these variables
resulted in models that were <<4% as probable as the models with
them. In other words, there is very strong evidence that in-class
attention and MRT contribute to seventh-grade mathematics
achievement above and beyond prior mathematics knowledge, and
thus all three were retained for the multilevel models.

Word reading achievement. To assess the discriminant va-
lidity of the Bayes models that predict Numerical Operations
scores, we ran the same models for Word Reading scores. As
shown in the top section of Table 3, the best Bayes model for the
cognitive variables included digit span forward, MRT, and IQ. The
BC,,, is very large for this first model and all alternative models,
providing strong evidence for some combination of cognitive

predictors of Word Reading scores relative to the null. Dropping
IQ and digit span forward resulted in models that were <1% as
probable as the models with them, whereas dropping MRT resulted
in a model that was 33.74% as probable. This suggests that the
inclusion of MRT does not substantively improve the prediction of
Word Reading scores. Follow-up assessments indicated that drop-
ping either digit span forward or IQ resulted in models that
were <1% as probable as the model that included both of them.
Thus, we retained digit span forward and IQ.

The second section of Table 3 indicates that the best set of
noncognitive predictors of Word Reading scores included mathe-
matics utility, English attitudes, mathematics anxiety for learning,
and in-class attention. Dropping each of these variables in succes-
sion resulted in models that were <4% as probable as the models
with them. Thus, all variables were retained for the combined
analysis.

The combined analysis included digit span forward, IQ, math-
ematics utility, English attitudes, mathematics anxiety for learning,
and in-class attention. The third section of Table 3 shows that only
digit span forward and 1Q were included in the top model, indi-
cating that the noncognitive variables did not add substantively to
the prediction of Word Reading scores. The bottom section of the
table indicates that these variables should be retained in a model
that includes them and sixth-grade mathematical competence. The
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Table 3
Bayes Factor Analyses of Predictors of Seventh Grade Word Reading Achievement
Model: Top cognitive predictors BC,.o Excluded BC,.;
MC, DSF + MRT + IQ 7.09 X 10 — 1
MC, DSF + MRT 2.00 X 10'¢ 1Q .0000
MC; DSF + 1IQ 2.39 X 10 MRT 3374
MC, MRT + IQ 1.21 X 10? DSF .0000
Model: Top noncognitive predictors BNC,,, Excluded BNC,,,
MNC, MUtil + EnglishAtt + MAnxLearn + Atten 1.68 X 10° — 1
MNC, MUtil + EnglishAtt + MAnxLearn 1.09 X 10° Atten .0000
MNC; MUtil + EnglishAtt + Atten 7.58 X 10° MAnxLrn .0045
MNC, MUtil + MAnxLearn + Atten 5.15 X 107 English .0307
MNC; EnglishAtt + MAnxLearn + Atten 1.81 X 107 MUtil .0108
Model: Top combined predictors BA.o Excluded BA,,
MA, DSF + 1Q 2.39 X 107 — 1
MA, DSF 1.94 X 10'° 1Q .0000
MA; 1Q 1.50 X 10* DSF .0000
Model: Top combined and sixth-grade mathematics BAS,.o Excluded BAS,
MAS, DSF + IQ + sixth-grade mathematics 1.42 X 10% — 1
MAS, DSF + 1Q 2.39 X 10 Math 0169
MAS; DSF + sixth-grade mathematics 2.12 X 10* IQ .0000
MAS, 1IQ + sixth-grade mathematics 3.46 X 10% DSF .0000

Note. DSF = digit span forward; MRT = Mental Rotation Test; MUtil = mathematics utility; MAnxLearn = mathematics anxiety for learning; Atten =
in-class attention in mathematics classrooms; EnglishAtt = attitudes about English; MC = models for cognitive variables; MNC = models for noncognitive
variables; MA = models for all, that is, top cognitive and noncognitive variables; MAS = top models from MA and sixth-grade mathematics scores. BC =
Bayes factors for cognitive variables; BNC = Bayes factors for noncognitive variables; BA = Bayes factors for all or combined variables; BAS = Bayes

factors including sixth-grade mathematics.

key finding here is that the core predictors of seventh-grade word
reading achievement differ from those that predict seventh-grade
mathematics achievement.

Multilevel Models

Preliminary analyses revealed no sex differences for Numerical
Operations scores, F(1, 315) = 0.46, p = .499, and thus sex was
not considered further. As noted, the initial model included sixth-
grade mathematical competence, in-class attention, and MRT. We
also included the interactions between the two latter variables and
sixth-grade mathematical competence, and the three-way interac-
tion; the income and race variables were included as controls. The
interactions allowed us to explore, for instance, whether the ben-
efits of strong spatial abilities or in-class attention varied depend-
ing on the prior level of mathematical knowledge. These types of
interactions are sometimes found, but vary across grades and
mathematical content (Gilligan et al., 2019) and we assessed
whether this was the case for our sample.

The three-way interaction was not significant, F(1, 296) = 1.34,
p = .248, and thus dropped. Table 4 shows the results for the
model with only the two two-way interactions. The results confirm
the Bayes factors regarding the importance of in-class attention
and spatial ability in predicting seventh-grade mathematics
achievement, controlling prior achievement (ps < .002).

The sixth-grade mathematical competence by in-class attention
interaction, F(1, 297) = 5.99, p = .015, is broken down in the
upper panel of Figure 2. The high and low groups were defined by

cutoffs 1 SD above or below the mean, respectively. The interac-
tion was strongest in the high-attention group [ = 1.08, SE =
0.19], followed in turn by the middle- [ = 0.85, SE = 0.13] and
low-attention [b = 0.63, SE = 0.11] groups (ps < .05). A contrast
of these slopes indicated a significant difference across the high
and low groups, #(307.57) = 2.38, p = .018, and a trend for the
difference across the middle and low groups, #(307.99) = 1.67,
p = .097; the difference across the high and middle groups was not
significant, #(307.46) = 1.45, p = .148. The lower panel shows the
overall relation between predicted scores derived from sixth-grade
mathematical competence, in-class attention, and their interaction
in the prediction of Numerical Operations scores.

Table 4
Multilevel Model of Gains in Mathematics Achievement From
Sixth to Seventh Grade

Variable Estimate  se t P

Intercept 34.37 3.81 9.03 .001
Mathematical competence (sixth

grade) 448 0.32  13.89 .001
In-class attention 1.35 0.29 472 .001
Mental Rotation Test 0.82 0.27 3.09 .002
Math X In-class Attention 0.59 0.24 245 015
Math X Mental Rotation Test 0.42 0.25 1.73  .085

Note. The income and race contrasts are not shown. The Level 2 school
effect was not significant (p = .159).
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Figure 2. The upper panel shows the interaction between sixth-grade mathematical competence and in-class
attention, with the high and low attention-groups including students 1 SD above and below the mean,
respectively. The lower panel shows the relation between predicted scores derived from sixth-grade mathemat-
ical competence, in-class attention, their interaction and Numerical Operations scores.

As shown in Table 4, the sixth-grade mathematical competence
by MRT interaction was only a trend, F(1, 297) = 3.00, p = .085,
but given the potential importance of high spatial abilities for
learning in some areas of mathematics, we broke the interaction
down. The high and low groups were defined by cutoffs 1 SD
above or below the mean, respectively, and are shown in Figure 3.
The interaction was strongest in the high-MRT group [b = 1.23,
SE = 0.19], followed in turn by the middle- [b = 0.83, SE = 0.15]
and low-MRT [b = 0.67, SE = 0.14] groups (ps < .05). A contrast
of these slopes indicated a significant difference across the high
and low groups, #309.23) = 2.93, p = .004, and the high and
middle groups, #(309.92) = 2.89, p = .004; the difference across
the middle and low groups was not significant, #(310.06) = 1.08,
p = .282. The lower panel shows the overall relation between
predicted scores derived from sixth-grade mathematical compe-
tence, MRT scores and their interaction in the prediction of Nu-
merical Operations scores.

Sixth-Grade Mathematics Attitudes and
In-Class Attention

The finding of no direct relations between the noncognitive
measures and Numerical Operations scores does not preclude
indirect effects. As noted in the introduction, such effects could be
related to attention in mathematics classrooms and through this
indirectly influence mathematics achievement. To assess this, we

conducted a series of analyses that examined the relation between
the sixth-grade noncognitive variables and in-class attention in
seventh grade and assessed whether there were any indirect rela-
tions between these noncognitive measures and Numerical Oper-
ations scores.

Among the sixth-grade attitudes variables only mathematics
utility, mathematics efficacy, and mathematics anxiety for learning
were correlated with both in-class attention and Numerical Oper-
ations scores (ps < .02). A Bayesian regression indicated that
mathematics efficacy and mathematics anxiety for learning were
the best set of predictors of in-class attention. Dropping mathe-
matics anxiety resulted in a model that was 2.77% as probable as
the model with it, whereas dropping mathematics efficacy resulted
in a model that was 40.0% as probable as the model with it. These
results indicate that among the sixth-grade noncognitive measures,
mathematics anxiety for learning is the most likely to have an
indirect effect on Numerical Operations scores through in-class
attention.

Indeed, Figure 4 shows a simple mediation model that only
included mathematics anxiety for learning, in-class attention, and
Numerical Operations. In this model, all of the paths are signifi-
cant and the indirect relation between mathematics anxiety
for learning and Numerical Operations scores is significant,
b= —0.97,95% CI [—1.45, —0.49], z = —3.971, p < .001, and
partially mediated by in-class attention.
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Figure 3. The upper panel shows the interaction between sixth-grade mathematical competence and Mental
Rotation Test (MRT) scores, with the high and low MRT groups including students 1 SD above and below the
mean, respectively. The lower panel shows the relation between predicted scores derived from sixth-grade
mathematical competence, MRT, their interaction, and Numerical Operations scores.

As shown in Figure 5, with control of sixth-grade mathematical
competence, MRT scores, the covariances between them, and with
in-class attention and mathematics learning for anxiety, the ¢ path
is no longer significant; ¢ = —.49, 95% CI [—1.11, 0.14],
z = —1.52, p = .127. Hayes (2009) argued that the significance of
this path is not necessary to assess indirect effects, although in this
situation the results are not typically called mediated effects. In
any case, in this model there is a significant indirect relation
between mathematics anxiety and Numerical Operations scores

through in-class attention, b = —0.37, 95% CI [—0.60, —.14],
z = —3.16, p = .002, but now the direct relation between math-
ematics anxiety and Numerical Operations scores is not signifi-
cant, b = —.12, 95% CI [—0.72, 0.48], z = —0.39, p = .699.

Discussion

Students who develop strong mathematical competencies have
enhanced educational opportunities in college and a smoother path

c=-2.14
Mathematics se =0.45, p <.001 Numerical
Anxiety Operations
In-Class
=-0.40 Attention b =242
se =0.09, p <.001 se =0.24, p <.001
c’=-1.16
Mathematics se = 0.40, p =.004 Numerical
Anxiety Operations
Figure 4. In-class attention is a partial mediator of seventh-grade Numerical Operations scores.
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c=-0.49
Mathematics se =0.32, p=.127 Numerical
Anxiety Operations
In-Class
a=-0.40 Attention b1 =0.92
se =0.09, p <.001 se =0.20, p <.001
'=-0.12
Mathematics se =0.31, p=.699 Numerical
Anxiety Operations

b2 =0.29
se =0.02, p <.001

b3 =0.22
se = 0.06, p =.001

6! Grade
Mathematics

Mental
Rotation Test

Figure 5. Mathematics anxiety is indirectly related to Numerical Operations scores though in-class attention,
with control of prior achievement and Mental Rotation Test scores.

to well-paid employment and better long-term opportunities for
career advancement than do their less-prepared peers (Bynner,
1997; National Mathematics Advisory Panel, 2008). Identifying
the factors that contribute the most to this development is a critical
step in the building of supportive educational environments. The
myriad proposals regarding these factors might actually result in
more confusion than direction for the building of such environ-
ments, because it is it not clear which factors should be prioritized,
whether the most important ones vary from one grade to the next,
and whether there are interactive or indirect effects among these
factors.

Our very broad assessment of the associated theoretical terrain
allowed for the identification of the most plausible factors, at least
for middle school students. The overall results indicated that
students with strong prior knowledge, average to above-average
in-class attention, and above-average spatial abilities made stron-
ger gains in mathematics during seventh grade than did other
students, controlling for student race and family income. More-
over, students with high levels of mathematics anxiety were less
attentive in mathematics classrooms, and this in turn appeared to
contribute to their relatively lower gains in mathematics during
seventh grade. We discuss the implications with respect to the
cognitive and noncognitive factors that appear to contribute to the
development of mathematical competencies.

Cognitive Mechanisms

The results of several prior studies are confirmed with the
identification of complex spatial abilities as a robust predictor of
seventh-grade mathematics achievement and by the finding that
students with above-average spatial abilities and strong prior math-
ematical knowledge made the highest gains in seventh-grade math-
ematics (Casey et al., 1995, 1997; Li & Geary, 2017; Mix &
Cheng, 2012). More precisely, the results are consistent with prior
studies that have identified visuospatial abilities as contributing to
mathematics learning in middle school and beyond. These results,

however, do not indicate which aspects of mathematics learning
are facilitated by spatial abilities, and we might speculate that it is
the more complex or more novel mathematics at this grade level
(Mix et al., 2016, 2017). This is because the best scores on the
seventh-grade Numerical Operations test indicated successful stu-
dents were correctly solving several spatially represented basic
geometry problems. The problems that were successfully solved
by average and lower achieving students were largely computa-
tional whole number and fractions arithmetic problems that should
be familiar to most students and for which spatial abilities might
not be as helpful (Geary & Widaman, 1987), but this is not certain
(Hawes & Ansari, 2020; Xie, Zhang, Chen, & Xin, 2020).

Xie et al.’s (2020) meta-analysis revealed that spatial abilities
(visuospatial memory and more complex abilities) are correlated
with most mathematical competencies, including arithmetic, but
these analyses do not typically control for potential confounds,
such as working memory and intelligence. With control of these
confounds, Li and Geary (2013, 2017) found that the relation
between visuospatial working memory and performance on the
Numerical Operations test grew stronger as students moved
through elementary school and into middle school and high school.
In other words, as the complexity of the mathematics increased,
the importance of visuospatial abilities, or at least visuospatial
working memory, appeared to increase. Our results suggest that
any such relation is better captured by the Mental Rotation Test
than by measures of visuospatial working memory (Casey et al.,
1995, 1997), and that the contributions of spatial abilities to gains
in mathematics learning may depend on preexisting mathematical
knowledge.

This conclusion is tentative because different aspects of visu-
ospatial abilities might contribute to different aspects of mathe-
matical learning (Gilligan et al., 2019; Hawes & Ansari, 2020),
which is not captured by our composite measure, and any such
specific relations could vary from one grade to the next (Mix et al.,
2016, 2017). The results nonetheless indicate that more detailed
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studies of the relation between different spatial abilities and the
learning of complex arithmetic and prealgebraic competencies is
warranted. The reason for the interaction between prior achieve-
ment and MRT scores in predicting seventh-grade achievement
needs follow-up studies as well. One prosaic possibility is that
students with average or better mathematical competence in sixth
grade solved more items on the Numerical Operations test and thus
were exposed to more items that had a spatial component (e.g.,
geometry). Students with strong spatial abilities would, on aver-
age, be more successful than other students at solving such prob-
lems. It is also possible that strong prior knowledge facilitates the
use of spatial strategies for solving more complex problems, but
this remains to be determined.

At first blush, our results would appear to contradict many
previous studies that have suggested that intelligence and working
memory contribute to mathematical learning (Bull & Lee, 2014;
Deary et al., 2007; Geary et al., 2017), but this is not the case. Prior
to inclusion of sixth-grade mathematical competencies, the Bayes-
ian analyses indicated that intelligence and working memory
(backward digit span) were strong independent predictors of
seventh-grade mathematics achievement, in addition to spatial
abilities. This means that there was considerable overlap in indi-
vidual differences in working memory and intelligence and sixth-
grade mathematical competencies. As might be expected based on
prior studies and theory (Cattell, 1987), intelligent students with
strong working memory skills acquired more mathematical knowl-
edge by the end of sixth grade than did other students, masking the
direct effect of intelligence and working memory. Nevertheless,
the results do suggest that at this grade level prior knowledge
might be relatively more important or at least just as important as
domain-general abilities in facilitating further learning (Geary et
al., 2017; Lee & Bull, 2016).

Noncognitive Mechanisms

Our finding for attention in mathematics classrooms is consis-
tent with studies of younger students, whereby teachers’ ratings of
student engagement in these contexts predict gains in mathematics
achievement above and beyond the contributions of various cog-
nitive abilities (Fuchs et al., 2006, 2014; Geary et al., 2013). The
finding of an interaction between prior knowledge and attention is
more novel and revealed that the highest achievers at the end of
seventh grade had strong prior mathematical competencies and at
least average in-class attention (see Figure 2), controlling spatial
abilities. Most of the students with below-average engagement in
the classroom also performed poorly on the sixth-grade mathemat-
ics measure. Without information on their in-class attention in
prior grades, we cannot determine whether their low attentive
behavior in seventh-grade classrooms is causing smaller gains in
achievement, reflects a general disengagement with mathematics
or schooling more generally, or some combination. Close inspec-
tion of Figure 2 reveals that even low-attentive students with
average or better sixth-grade mathematical competencies gained
less in seventh grade than did their more attentive peers, suggest-
ing a causal relation. One implication is that interventions for
lower achieving students might need to incorporate components on
self-regulation (Wang et al., 2019) or enhancement of classroom
management strategies (Korpershoek, Harms, de Boer, van Kuijk,
& Doolaard, 2016).

In keeping with previous studies, a combination of mathematics
attitudes and anxiety predicted seventh-grade mathematics achieve-
ment (Dowker et al., 2016; Eccles & Wang, 2016), but these did
not survive the inclusion of prior mathematics achievement. As
with working memory and intelligence, this does not necessarily
mean that these factors do not affect mathematical development
but rather they were not directly critical for gains from sixth to
seventh-grade. Indeed, our finding that mathematics anxiety for
learning indirectly contributes to seventh grade mathematics
achievement through in-class attention suggests a nuanced relation
between noncognitive factors and achievement. The finding is
consistent with Byrnes and Miller-Cotto’s (2016) finding of a
relation between internalizing issues, including anxiety, and gains
in mathematical knowledge across the academic year, and suggests
that students’ engagement in the classroom—influencing their
opportunity to learn—might contribute to this effect.

Over the longer term, attitudes and anxiety about mathematics
contribute to future course and career choices (Lauermann et al.,
2017), and these types of relations would not be detectable with
our study design. Moreover, we assessed a fairly narrow slice of
students’ mathematical development. As was noted earlier, meta-
analyses of cross-lagged relations suggest that attitudes might be a
more consistent influence on later achievement in students older
than those assessed in our study (Talsma et al., 2018; Valentine et
al., 2004).

Limitations and Conclusions

The primary limitation is the correlational nature of the data that
precludes strong causal statements. Although we assessed a much
broader array of cognitive and noncognitive factors than in typical
studies of students’ mathematical development, there may be other
factors that we did not include. Although our findings for in-class
attention and spatial abilities are consistent with many previous
studies, this does not necessarily mean that they will emerge as key
predictors of mathematical gains in earlier or later grades. Also,
our sample had higher sixth-grade mathematical competencies
scores than the full sixth-grade sample, was from relatively high-
income families, and not ethnically diverse. Thus, the extent to
which these findings generalize to other populations remains to be
determined. Despite these limitations, the broad assessment of
cognitive and noncognitive factors enabled a more thorough as-
sessment of individual differences in gains in mathematics
achievement among middle school students than is typical in this
literature and have implications for targeted interventions for stu-
dents at risk for long-term difficulties with mathematics.
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