
Improved Upper Bounds for Finding Tarski Fixed Points∗

XI CHEN, Columbia University, USA

YUHAO LI, Columbia University, USA

We study the query complexity of finding a Tarski fixed point over the 𝑘-dimensional grid {1, . . . , 𝑛}𝑘 .

Improving on the previous best upper bound of 𝑂 (log ⌈2𝑘/3⌉ 𝑛) [7], we give a new algorithm with query

complexity 𝑂 (log ⌈(𝑘+1)/2⌉ 𝑛). This is based on a novel decomposition theorem about a weaker variant of the

Tarski fixed point problem, where the input consists of a monotone function 𝑓 : [𝑛]𝑘 → [𝑛]𝑘 and a monotone

sign function 𝑏 : [𝑛]𝑘 → {−1, 0, 1} and the goal is to find a point 𝑥 ∈ [𝑛]𝑘 that satisfies either 𝑓 (𝑥) ⪯ 𝑥 and

𝑏 (𝑥) ≤ 0 or 𝑓 (𝑥) ⪰ 𝑥 and 𝑏 (𝑥) ≥ 0.

CCS Concepts: ·Theory of computation→ Exact and approximate computation of equilibria;Design

and analysis of algorithms.

Additional Key Words and Phrases: Query Complexity, Tarski Fixed Points, Supermodular Games

ACM Reference Format:

Xi Chen and Yuhao Li. 2022. Improved Upper Bounds for Finding Tarski Fixed Points. In Proceedings of the

23rd ACM Conference on Economics and Computation (EC ’22), July 11ś15, 2022, Boulder, CO, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3490486.3538297

1 INTRODUCTION

In 1955, Tarski [11] proved that every monotone1 function 𝑓 : 𝐿 → 𝐿 over a complete lattice (𝐿, ⪯)

has a fixed point, i.e. 𝑥 ∈ 𝐿 with 𝑓 (𝑥) = 𝑥 . Tarski’s fixed point theorem has extensive applications in

game theory and economics, where it has been used to establish the existence of important solution

concepts such as pure equilibria in supermodular games [9, 12, 13]. As a byproduct, search problems

for these solution concepts naturally reduce to the problem of finding Tarski fixed points, which

motivates the investigation of its computational complexity. More compelling motivations for

studying Tarski fixed points came from a recent work of Etessami, Papadimitriou, Rubinstein and

Yannakakis [5], where they discovered new connections of the Tarski fixed point problem with well

studied complexity classes such as PPAD and PLS, as well as reductions from Condon’s (Shapley’s)

stochastic games [3] to the Tarski fixed point problem. However, our current understanding of the

complexity of Tarski fixed points remains rather limited, whether it is about the query complexity

of finding a Tarski fixed point or the white box version (i.e., when the function is given as a

Boolean circuit) of the problem (e.g., whether the problem is complete in the class CLS [6, 8] as

the intersection of PPAD and PLS). This is in sharp contrast with Brouwer’s fixed point theorem

[1, 2, 10], the other fixed point theorem that played a major role in economics.

In this paper we study the query complexity of finding a Tarski fixed point in the complete lattice

([𝑛]𝑘 , ⪯) over the 𝑘-dimensional grid [𝑛]𝑘 = {1, . . . , 𝑛}𝑘 and equipped with the natural partial

∗Supported by NSF grants CCF-1563155, CCF-1703925, IIS-1838154, CCF-2106429 and CCF-2107187.
1We say 𝑓 is monotone if 𝑓 (𝑎) ⪯ 𝑓 (𝑏) whenever 𝑎 ⪯ 𝑏.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’22, July 11ś15, 2022, Boulder, CO, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9150-4/22/07. . . $15.00

https://doi.org/10.1145/3490486.3538297

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1108

order over Z𝑘 , where 𝑎 ⪯ 𝑏 if 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖 ∈ [𝑘]. An algorithm under this model is given 𝑛 and

𝑘 and has query access to an unknown monotone function 𝑓 over [𝑛]𝑘 . Each round the algorithm

can send a query 𝑥 ∈ [𝑛]𝑘 to reveal 𝑓 (𝑥) and the goal is to find a fixed point of 𝑓 using as few

queries as possible. We will refer to this problem as Tarski(𝑛, 𝑘).

Back in 2011, Dang, Qi, and Ye [4] obtained an 𝑂 (log𝑘 𝑛)-query algorithm for Tarski(𝑛, 𝑘)

when 𝑘 is fixed. Their algorithm is based on a natural binary search strategy over coordinates. No

progress had been made on the problem until recently. In [5], Etessami et al. showed that (among

other results) the upper bound 𝑂 (log2 𝑛) for Tarski(𝑛, 2) [4] is indeed tight (even for randomized

algorithms), which suggested that the algorithm of Dang et al. might be optimal for all fixed 𝑘 .

However, surprisingly, Fearnley, Pálvölgyi and Savani [7] recently showed that the algorithm of

[4] is not optimal by giving an algorithm for Tarski(𝑛, 𝑘) with 𝑂 (log ⌈2𝑘/3⌉ 𝑛) queries.

Our contribution. Our main result is an improved upper bound for the complexity of Tarski:

Theorem 1.1. For any fixed 𝑘 , there is an 𝑂
(

log ⌈(𝑘+1)/2⌉ 𝑛
)

-query algorithm for Tarski(𝑛, 𝑘).

Our algorithm is based on a new variant of the Tarski fixed point problem which we refer to as

Tarski∗. It is inspired by the 𝑂 (log2 𝑛)-query algorithm of [7] for Tarski(𝑛, 3) (its inner algorithm

in particular). Our main contribution is a novel decomposition theorem for Tarski∗, which leads

to a more efficient recursive scheme for performing binary search on coordinates of the grid. We

discuss the variant Tarski∗ and its decomposition theorem next.

1.1 Sketch of the Algorithm

The algorithm of [7] is obtained by combining an 𝑂 (log2 𝑛)-query algorithm for Tarski(𝑛, 3) and

a decomposition theorem. Their algorithm for Tarski(𝑛, 3) consists of an outer algorithm and an

𝑂 (log𝑛)-query inner algorithm. Given 𝑓 : [𝑛]3 → [𝑛]3 as the input function, the outer algorithm

starts by running the inner algorithm to solve the following problem:

• Find a point 𝑥 ∈ [𝑛]3 with 𝑥3 = ⌈𝑛/2⌉ such that 𝑥 is either prefixed (𝑓 (𝑥) ⪯ 𝑥) or postfixed

(𝑥 ⪯ 𝑓 (𝑥)). Note that even though we focus on a layer of the grid (with 𝑥3 = ⌈𝑛/2⌉), the

condition on 𝑥 being either prefixed or postfixed is about all three dimensions.

Once such a point 𝑥 is found, the outer algorithm can shrink the search space significantly by only

considering L𝑥,(𝑛,𝑛,𝑛) if 𝑥 is postfixed, or L (1,1,1),𝑥 if 𝑥 is prefixed, where we write L𝑎,𝑏 to denote

the grid with points 𝑐 : 𝑎 ⪯ 𝑐 ⪯ 𝑏. In both cases we obtain a grid L𝑎,𝑏 such that 𝑎 ⪯ 𝑏, 𝑎 ⪯ 𝑓 (𝑎)

and 𝑓 (𝑏) ⪯ 𝑏. These conditions together guarantee that 𝑓 maps L𝑎,𝑏 to itself and 𝑓 has a fixed

point in L𝑎,𝑏 (see Lemma 2.4). Given that the side length of a dimension goes down by a factor of

2 after each call to the inner algorithm, it takes no more than 𝑂 (log𝑛) calls to reduce the search

space to a grid L𝑎,𝑏 with 𝑏𝑖 − 𝑎𝑖 ≤ 1 and then a fixed point can be found by brute force. The query

complexity of the overall algorithm of [7] for Tarski(𝑛, 3) is 𝑂 (log2 𝑛).

After obtaining the 𝑂 (log2 𝑛)-query algorithm for Tarski(𝑛, 3), [7] uses it to solve higher di-

mensional Tarski by proving a decomposition theorem: if Tarski(𝑛, 𝑎) can be solved in 𝑞(𝑛, 𝑎)

queries and Tarski(𝑛,𝑏) can be solved in 𝑞(𝑛,𝑏) queries, then Tarski(𝑛, 𝑎 + 𝑏) can be solved in

𝑂 (𝑞(𝑛, 𝑎) · 𝑞(𝑛,𝑏)) queries. Combined with the 𝑂 (log2 𝑛)-query algorithm for Tarski(𝑛, 3), they

obtain an 𝑂 (log ⌈2𝑘/3⌉ 𝑛)-query algorithm for Tarski(𝑛, 𝑘).

Our key idea is to develop a new decomposition theorem directly on the problem solved by the

inner algorithm of [7], and only apply the outer algorithm at the very end. More formally we refer

to the following problem as Tarski∗ (𝑛, 𝑘):2

2Note that our formal definition in Section 3 will look different; the problems they capture are the same though.

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1109

Theorem 1.1

with Lemma 3.2 (Algorithm 1)

Lemma 3.3

with Theorem 4.2

Theorem 4.1:

Tarski∗ (𝑛,𝑏)

RefinedTarski∗(𝑛, 𝑎) Tarski∗ (𝑛, 𝑎)

Tarski∗ (𝑛, 𝑎 + 𝑏) Lemma 4.4 (Algorithm 2)Algorithm 3

Fig. 1. A Proof Sketch

• Given a monotone function 𝑓 : [𝑛]𝑘+1 → [𝑛]𝑘+1, find a point 𝑥 with 𝑥𝑘+1 = ⌈𝑛/2⌉ such that

𝑥 is either prefixed or postfixed. As mentioned earlier, the condition on 𝑥 being either

prefixed or postfixed is about all 𝑘 + 1 dimensions.

Similar to the outer algorithm of [7], any algorithm for Tarski∗ (𝑛, 𝑘) can be used as a subroutine

to solve Tarski(𝑛, 𝑘 + 1) with an 𝑂 (log𝑛)-factor overhead (see Lemma 3.2).

The main technical contribution of this work is the proof of a new decomposition theorem

for Tarski∗: if Tarski∗ (𝑛, 𝑎) can be solved in 𝑞(𝑛, 𝑎) queries and Tarski∗ (𝑛,𝑏) can be solved in

𝑞(𝑛,𝑏) queries, then Tarski∗ (𝑛, 𝑎 + 𝑏) can be solved in 𝑂 (𝑞(𝑛, 𝑎) · 𝑞(𝑛,𝑏)) queries. Now despite

sharing the same statement / recursion, the proof of our decomposition theorem requires a number

of new technical ingredients compared to that of [7]. This is mainly due to the extra coordinate

(i.e., coordinate 𝑘 + 1) that appears in Tarski∗ but not in the original Tarski.

One obstacle is that the solution found by Tarski∗ appears to be too weak to directly prove the

new decomposition theorem. In particular, if one gets a postfixed point 𝑥 ⪯ 𝑓 (𝑥) as a solution

to Tarski∗ (𝑛, 𝑘), both 𝑥𝑘+1 = 𝑓 (𝑥)𝑘+1 or 𝑥𝑘+1 < 𝑓 (𝑥)𝑘+1 could happen, and this uncertainty

would cause the proof strategy adopted by [7] to fail. Instead we introduce a stronger variant of

Tarski∗ called RefinedTarski∗ (see Definition 4.3) which poses further conditions on its solution

regarding coordinate 𝑘 + 1. Given the same input, RefinedTarski∗ asks for two points 𝑝ℓ ⪯ 𝑝𝑟

with 𝑝ℓ
𝑘+1

= 𝑝𝑟
𝑘+1

= ⌈𝑛/2⌉ such that 𝑝ℓ is postfixed in the first 𝑘 coordinates, 𝑝𝑟 is prefixed in the

first 𝑘 coordinates, and one of the following three conditions hold:

(1) 𝑝ℓ
𝑘+1

< 𝑓 (𝑝ℓ)𝑘+1;

(2) 𝑝𝑟
𝑘+1

> 𝑓 (𝑝𝑟)𝑘+1; or

(3) 𝑓 (𝑝ℓ)𝑘+1 − 𝑝
ℓ
𝑘+1

= 𝑓 (𝑝𝑟)𝑘+1 − 𝑝
𝑟
𝑘+1

= 0.

While RefinedTarski∗ looks much stronger than Tarski∗, surprisingly we show in Lemma 4.4

that it can be solved by a small number of calls to Tarski∗. With RefinedTarski∗ as the bridge,

we are able to prove the new decomposition theorem and obtain the improved bound for Tarski.

2 PRELIMINARIES

We start with the definition of monotone functions and state Tarski’s fixed point theorem:

Definition 2.1 (Monotone functions). Let (L, ⪯) be a complete lattice. A function 𝑓 : L → L is

said to be monotone if 𝑓 (𝑎) ⪯ 𝑓 (𝑏) for all 𝑎, 𝑏 ∈ L with 𝑎 ⪯ 𝑏.

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1110

Theorem 2.2 (Tarski). For any complete lattice (L, ⪯) and any monotone function 𝑓 : L → L,

there must be a point 𝑥0 ∈ L such that 𝑓 (𝑥0) = 𝑥0, i.e., 𝑥0 is a fixed point.

In this paper we work on the query complexity of Tarski(𝑛, 𝑘), i.e., the problem of finding

a Tarski fixed point over a 𝑘-dimensional grid ([𝑛]𝑘 , ⪯), where [𝑛] denotes {1, 2, · · · , 𝑛} and ⪯

denotes the natural partial order over Z𝑘 : 𝑎 ⪯ 𝑏 if and only if 𝑎𝑖 ≤ 𝑏𝑖 for every 𝑖 ∈ [𝑘]. For 𝑎, 𝑏 ∈ Z
𝑘

with 𝑎 ⪯ 𝑏, we write L𝑎,𝑏 to denote the set of points 𝑥 ∈ Z𝑘 with 𝑎 ⪯ 𝑥 ⪯ 𝑏. A point 𝑥 ∈ [𝑛]𝑘 is

called a prefixed point of 𝑓 if 𝑓 (𝑥) ⪯ 𝑥 ; a point 𝑥 ∈ [𝑛]𝑘 is called a postfixed point of 𝑓 if 𝑥 ⪯ 𝑓 (𝑥).

Let 𝑆 ⊆ Z𝑘 be a finite set of points. A point 𝑝 ∈ Z𝑘 is an upper bound of 𝑆 if 𝑥 ⪯ 𝑝 for all 𝑥 ∈ 𝑆 .

We say 𝑝 is the least upper bound of 𝑆 if 𝑝 is an upper bound of 𝑆 and 𝑝 ⪯ 𝑞 for every upper bound

𝑞 of 𝑆 (i.e., 𝑝𝑖 = max𝑥 ∈𝑆 𝑥𝑖 for all 𝑖 ∈ [𝑘]). Similarly, a point 𝑝 ∈ Z𝑘 is a lower bound of 𝑆 if 𝑝 ⪯ 𝑥

for all 𝑥 ∈ 𝑆 . We say 𝑝 is the greatest lower bound of 𝑆 if 𝑝 is a lower bound of 𝑆 and 𝑞 ⪯ 𝑝 for every

lower bound 𝑞 of 𝑆 (i.e., 𝑝𝑖 = min𝑥 ∈𝑆 𝑥𝑖 for all 𝑖 ∈ [𝑘]). We write LUB(𝑆) and GLB(𝑆) to denote the

least upper bound and the greatest lower bound of 𝑆 , respectively.

We record the following simple fact:

Fact 2.3. Let finite 𝑆,𝑇 ⊆ Z𝑘 be such that 𝑥 ⪯ 𝑦 for all 𝑥 ∈ 𝑆,𝑦 ∈ 𝑇 . Then LUB(𝑆) ⪯ GLB(𝑇).

We include a proof of the following simple lemma for completeness:

Lemma 2.4. Let 𝑓 : [𝑛]𝑘 → [𝑛]𝑘 be a monotone function. Suppose ℓ, 𝑟 ∈ [𝑛]𝑘 satisfy ℓ ⪯ 𝑟 ,

ℓ ⪯ 𝑓 (ℓ) and 𝑓 (𝑟) ⪯ 𝑟 . Then 𝑓 maps Lℓ,𝑟 to itself and has a fixed point in Lℓ,𝑟 .

Proof. For any 𝑥 ∈ Lℓ,𝑟 , we have from ℓ ⪯ 𝑥 ⪯ 𝑟 that

ℓ ⪯ 𝑓 (ℓ) ⪯ 𝑓 (𝑥) ⪯ 𝑓 (𝑟) ⪯ 𝑟

and thus, 𝑓 (𝑥) ∈ Lℓ,𝑟 . The existence of a fixed point in Lℓ,𝑟 follows directly from Tarski’s fixed

point theorem applied on 𝑓 over Lℓ,𝑟 . □

3 REDUCTION TO Tarski
∗

For convenience we focus on Tarski(𝑛, 𝑘 + 1). Our algorithm for Tarski(𝑛, 𝑘 + 1) (see Algorithm

1) over a monotone function 𝑓 : [𝑛]𝑘+1 → [𝑛]𝑘+1 will first set

ℓ = 1𝑘+1 := (1, . . . , 1) and 𝑟 = 𝑛𝑘+1 := (𝑛, . . . , 𝑛)

and then proceed to find a point 𝑥 ∈ [𝑛]𝑘+1 with 𝑥𝑘+1 = ⌈𝑛/2⌉ that is either prefixed (𝑓 (𝑥) ⪯ 𝑥) or

postfixed (𝑥 ⪯ 𝑓 (𝑥)). Note that such a point 𝑥 must exist since by Tarski’s fixed point theorem,

there must be a point 𝑥 with 𝑥𝑘+1 = ⌈𝑛/2⌉ such that 𝑓 (𝑥)𝑖 = 𝑥𝑖 for all 𝑖 ∈ [𝑘] (a fixed point over

the slice 𝑥𝑘+1 = ⌈𝑛/2⌉), and such a point must be either prefixed or postfixed; on the other hand, it

is crucial that the algorithm is not required to find an 𝑥 with 𝑓 (𝑥)𝑖 = 𝑥𝑖 for all 𝑖 ∈ [𝑘] but just an 𝑥

that is either prefixed or postfixed. After finding 𝑥 , the algorithm replaces 𝑟 by 𝑥 if 𝑥 is prefixed, or

ℓ by 𝑥 if 𝑥 is postfixed. It follows from Lemma 2.4 that 𝑓 remains a monotone function from Lℓ,𝑟 to

itself but one of the 𝑘 + 1 dimensions gets cut by one half. The algorithm recurses on Lℓ,𝑟 .

The key subproblem is to find such a point 𝑥 with 𝑥𝑘+1 = ⌈𝑛/2⌉ that is either prefixed or postfixed,

which we formulate as the following problem called Tarski∗ (𝑛, 𝑘):

Definition 3.1 (Tarski*(𝑛, 𝑘)). Given oracle access to a function𝑔 : [𝑛]𝑘 → {−1, 0, 1}𝑘+1 satisfying

• For all 𝑥 ∈ [𝑛]𝑘 and 𝑖 ∈ [𝑘], we have 𝑥𝑖 + 𝑔(𝑥)𝑖 ∈ [𝑛]; and

• For all 𝑥,𝑦 ∈ [𝑛]𝑘 with 𝑥 ⪯ 𝑦, we have (𝑥, 0) + 𝑔(𝑥) ⪯ (𝑦, 0) + 𝑔(𝑦),

find a point 𝑥 ∈ [𝑛]𝑘 such that either 𝑔(𝑥)𝑖 ≤ 0 for all 𝑖 ∈ [𝑘 + 1] or 𝑔(𝑥)𝑖 ≥ 0 for all 𝑖 ∈ [𝑘 + 1].

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1111

Algorithm 1: Algorithm for Tarski(𝑛, 𝑘 + 1) via a reduction to Tarski∗ (𝑛, 𝑘)

Input: Oracle access to a monotone function 𝑓 : [𝑛]𝑘+1 → [𝑛]𝑘+1.

Output: A fixed point 𝑥 ∈ [𝑛]𝑘+1 of 𝑓 with 𝑓 (𝑥) = 𝑥 .

1 Let A be an algorithm for Tarski*(𝑛, 𝑘). Let ℓ = 1𝑘+1 and 𝑟 = 𝑛𝑘+1.

2 while |𝑟 − ℓ |∞ > 2 do

3 Pick an 𝑖 ∈ [𝑘 + 1] with 𝑟𝑖 − ℓ𝑖 > 2 and let

𝐿 = (ℓ1, · · · , ℓ𝑖−1, ℓ𝑖+1, · · · , ℓ𝑘+1) and 𝑅 = (𝑟1, · · · , 𝑟𝑖−1, 𝑟𝑖+1, · · · , 𝑟𝑘+1).

4 Define a new function 𝑔 : L𝐿,𝑅 → {−1, 0, 1}
𝑘+1 as follows:

𝑔(𝑥) B
(

𝑠1, · · · , 𝑠𝑖−1, 𝑠𝑖+1, · · · , 𝑠𝑘+1, 𝑠𝑖
)

where 𝑠 𝑗 B sgn
(

𝑓 (𝑥 ′) 𝑗 − 𝑥
′
𝑗

)

and 𝑥 ′ = (𝑥1, · · · , 𝑥𝑖−1, ⌈(ℓ𝑖 + 𝑟𝑖)/2⌉, 𝑥𝑖 , · · · , 𝑥𝑘).

5 Run algorithm A on 𝑔 to find a point 𝑞 ∈ Lℓ,𝑟 with 𝑞𝑖 = ⌈(ℓ𝑖 + 𝑟𝑖)/2⌉ that is either

prefixed or postfixed; set 𝑟 = 𝑞 if 𝑞 is prefixed and set ℓ = 𝑞 if 𝑞 is postfixed.
6 end

7 Brute-force search Lℓ,𝑟 to find a fixed point and return it.

To see the connection between Tarski∗ (𝑛, 𝑘) and the subproblem described earlier, one can

define 𝑔 : [𝑛]𝑘 → {−1, 0, 1}𝑘+1 using 𝑓 : [𝑛]𝑘+1 → [𝑛]𝑘+1 by letting, for each 𝑥 ∈ [𝑛]𝑘 ,

𝑔(𝑥)𝑘+1 = sgn
(

𝑓 (𝑥, ⌈𝑛/2⌉)𝑘+1 − ⌈𝑛/2⌉
)

and 𝑔(𝑥)𝑖 = sgn
(

𝑓 (𝑥, ⌈𝑛/2⌉)𝑖 − 𝑥𝑖
)

for each 𝑖 ∈ [𝑘]. On the one hand, it is easy to verify that 𝑔 satisfies both conditions in Definition 3.1

when 𝑓 is monotone. On the other hand, every 𝑥 ∈ [𝑛]𝑘 with {−1, 1} ⊈
⋃

𝑖∈[𝑘+1]{𝑔(𝑥)𝑖 } must

satisfy that (𝑥, ⌈𝑛/2⌉) is either prefixed or postfixed in 𝑓 .

The next lemma shows how to use an algorithm for Tarski*(𝑛, 𝑘) to solve Tarski(𝑛, 𝑘 + 1).

Lemma 3.2. If Tarski*(𝑛, 𝑘) can be solved in 𝑞(𝑛, 𝑘) queries, then Tarski(𝑛, 𝑘 + 1) can be solved in

𝑂 (2𝑘 + 𝑘 log𝑛 · 𝑞(𝑛, 𝑘)) queries.

Proof. Suppose that A is an algorithm for Tarski*(𝑛, 𝑘) with 𝑞(𝑛, 𝑘) queries. We present Algo-

rithm 1 and show that it can solve Tarski(𝑛, 𝑘 + 1) in 𝑂 (2𝑘 + 𝑘 log𝑛 · 𝑞(𝑛, 𝑘)) queries.

Correctness. The proof of correctness is based on the observation that ℓ ⪯ 𝑟 , ℓ ⪯ 𝑓 (ℓ) and

𝑓 (𝑟) ⪯ 𝑟 at the beginning of each while loop, which we prove below by induction. The basis is

trivial. For the induction step, assume that it holds at the beginning of the current while loop. Then

𝑓 maps Lℓ,𝑟 to itself and thus, 𝑔 satisfies both conditions in Definition 3.1. As a result, A can be

used to find a point 𝑞 that is either prefixed or postfixed in 𝑓 . (Formally, one needs to embed 𝑔

over L𝐿,𝑅 in the subgrid L1𝑘 ,𝑅−𝐿 of [𝑛]𝑘 and define 𝑔′ : [𝑛]𝑘 → {−1, 0, 1}𝑘+1 such that solving

Tarski∗ (𝑛, 𝑘) on 𝑔′ gives us 𝑞.) The way ℓ or 𝑟 is updated at the end of the loop makes sure that

the statement holds at the beginning of the next loop.

The last line of the algorithm makes sure that it returns a fixed point at the end.

Query complexity. Each while loop of Algorithm 1 costs 𝑞(𝑛, 𝑘) queries. After each loop, the

side length of a dimension goes down by a factor of 2. So there are no more than𝑂 (𝑘 log𝑛) rounds

and thus, the query complexity of Algorithm 1 is 𝑂 (2𝑘 + 𝑘 log𝑛 · 𝑞(𝑛, 𝑘)). □

We prove the following upper bound for solving Tarski* in the next section.

Lemma 3.3. There is an 𝑂 (log ⌈𝑘/2⌉ 𝑛)-query algorithm for Tarski*(𝑛, 𝑘).

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1112

4 A DECOMPOSITION THEOREM FOR Tarski*

The proof of Lemma 3.3 uses the following decomposition theorem for Tarski*:

Theorem 4.1. If Tarski*(𝑛, 𝑎) can be solved in 𝑞(𝑛, 𝑎) queries and Tarski*(𝑛,𝑏) can be solved in

𝑞(𝑛,𝑏) queries, then Tarski*(𝑛, 𝑎 + 𝑏) can be solved in 𝑂 ((𝑏 + 1) · 𝑞(𝑛, 𝑎) · 𝑞(𝑛,𝑏)) queries.

We prove Theorem 4.1 in the rest of this section. We also note that the algorithm of [7] can be

used to solve the 2-dimensional Tarski* (see Theorem 14 in [7]), even though they didn’t define

Tarski∗ formally in the paper. This leads to the following theorem about Tarski∗:

Theorem 4.2 ([7]). There is an 𝑂 (log𝑛)-query algorithm for Tarski*(𝑛, 2).

Lemma 3.3 follows directly by combining Theorem 4.1 and Theorem 4.2.

4.1 A refined version of Tarski*

We start the proof of our new decomposition theorem (Theorem 4.1). To this end we first introduce

a refined version of Tarski*.

Definition 4.3 (RefinedTarski*(𝑛, 𝑘)). Given a function 𝑔 : [𝑛]𝑘 → {−1, 0, 1}𝑘+1 satisfying

• For all 𝑥 ∈ [𝑛]𝑘 and 𝑖 ∈ [𝑘], we have 𝑥𝑖 + 𝑔(𝑥)𝑖 ∈ [𝑛]; and

• For all 𝑥,𝑦 ∈ [𝑛]𝑘 with 𝑥 ⪯ 𝑦, we have (𝑥, 0) + 𝑔(𝑥) ⪯ (𝑦, 0) + 𝑔(𝑦),

find a pair of points 𝑝ℓ , 𝑝𝑟 ∈ [𝑛]𝑘 such that 𝑝ℓ ⪯ 𝑝𝑟 ,

𝑔(𝑝ℓ)𝑡 ≥ 0 and 𝑔(𝑝𝑟)𝑡 ≤ 0, for all 𝑡 ∈ [𝑘]

and one of the following conditions meets

(1) 𝑔(𝑝ℓ)𝑘+1 = 1;

(2) 𝑔(𝑝𝑟)𝑘+1 = −1; or

(3) 𝑔(𝑝ℓ)𝑘+1 = 𝑔(𝑝𝑟)𝑘+1 = 0.

We note that any solution 𝑝ℓ , 𝑝𝑟 of RefinedTarski* would imply a solution of corresponding

Tarski* problem directly by returning either 𝑝ℓ or 𝑝𝑟 . The following lemma shows that, in fact,

these two problems are computationally equivalent in their query complexity.

Lemma 4.4. If Tarski*(𝑛, 𝑘) can be solved in 𝑞(𝑛, 𝑘) queries, then RefinedTarski*(𝑛, 𝑘) can be

solved in 𝑂 (𝑞(𝑛, 𝑘)) queries.

Proof. Suppose that A is an algorithm to solve Tarski*(𝑛, 𝑘) with 𝑞(𝑛, 𝑘) queries. We show

that Algorithm 2 will solve RefinedTarski* in 𝑂 (𝑞(𝑛, 𝑘)) queries.

Correctness. It is easy to verify that 𝑔+ over [𝑛]𝑘 satisfies both conditions of Definition 4.3. So

the point 𝑝∗ returned by algorithm A on line 3 is either a prefixed or a postfixed point of 𝑔+. If

𝑔(𝑝∗)𝑘+1 = 1, then 𝑝ℓ will be updated to 𝑝∗. By the definition of Tarski* we have 𝑔(𝑝∗)𝑡 ≥ 0 for all

𝑡 ∈ [𝑘], which means 𝑝ℓ , 𝑝𝑟 will meet the first condition of RefinedTarski*. When 𝑔(𝑝∗)𝑘+1 = −1

𝑝𝑟 will be updated to 𝑝∗ and 𝑝ℓ , 𝑝𝑟 will meet the second condition of RefinedTarski*.

Now we can assume 𝑔(𝑝∗)𝑘+1 = 0. So 𝑝ℓ is updated to 𝑝∗ and 𝑝𝑟 remains 𝑛𝑘 . Note that 𝑝∗ is

a solution of Tarski* under 𝑔+ and 𝑔+ (𝑝∗)𝑘+1 = 1 (because 𝑔(𝑝∗)𝑘+1 = 0). So 𝑔+ (𝑝∗)𝑡 ≥ 0 for all

𝑡 ∈ [𝑘 + 1] and thus, 𝑔(𝑝ℓ)𝑡 ≥ 0 for all 𝑡 ∈ [𝑘].

Consider the point 𝑞∗ returned by algorithm A on 𝑔− over L𝑝ℓ ,𝑝𝑟 on line 7. If 𝑔(𝑞∗)𝑘+1 = 1, then

𝑝ℓ will be updated to 𝑞∗ and 𝑝𝑙 , 𝑝𝑟 will meet the first condition of RefinedTarski*. Otherwise, we

have 𝑔(𝑞∗)𝑘+1 ≤ 0. Since 𝑝ℓ ⪯ 𝑞∗, by the second property of function 𝑔, we know 0 = 𝑔(𝑝ℓ)𝑘+1 ≤

𝑔(𝑞∗)𝑘+1 ≤ 0, i.e., 𝑔(𝑞∗)𝑘+1 = 0. With the definition of 𝑔−, we know that 𝑔− (𝑞∗) = −1. Note that 𝑞∗

is a solution to Tarski* on 𝑔−, so we have 𝑔− (𝑞∗)𝑡 ≤ 0 for all 𝑡 ∈ [𝑘 + 1]. In this case, 𝑝𝑟 will be

updated as 𝑞∗, so 𝑝ℓ , 𝑝𝑟 will meet the third condition of RefinedTarski*.

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1113

Algorithm 2: Algorithm for RefinedTarski*(𝑛, 𝑘) via a reduction to Tarski∗ (𝑛, 𝑘)

Input: Oracle access to 𝑔 : [𝑛]𝑘 → {−1, 0, 1}𝑘+1 that satisfies the conditions in Definition 4.3.

Output: A solution to RefinedTarski*(𝑛, 𝑘) on 𝑔.

1 Let A be an algorithm for Tarski*(𝑛, 𝑘). Let 𝑝ℓ = 1𝑘 and 𝑝𝑟 = 𝑛𝑘 .

2 Construct a new function 𝑔+ : [𝑛]𝑘 → {−1, 0, 1}𝑘 × {−1, 1} as follows:
{

𝑔+ (𝑥)𝑖 = 𝑔(𝑥)𝑖 , for all 𝑖 ∈ [𝑘]

If 𝑔(𝑥)𝑘+1 ≥ 0, then 𝑔+ (𝑥)𝑘+1 = 1; if 𝑔(𝑥)𝑘+1 = −1, then 𝑔
+ (𝑥)𝑘+1 = −1

3 Run algorithm A to find a solution 𝑝∗ to Tarski∗(𝑛, 𝑘) on 𝑔+ over [𝑛]𝑘 .

4 If 𝑔+ (𝑝∗)𝑘+1 = 1, set 𝑝ℓ ← 𝑝∗; if 𝑔+ (𝑝∗)𝑘+1 = −1, set 𝑝
𝑟 ← 𝑝∗.

5 If 𝑔(𝑝∗)𝑘+1 ≠ 0, return the pair of points 𝑝ℓ , 𝑝𝑟 .

6 Construct a new function 𝑔− : [𝑛]𝑘 → {−1, 0, 1}𝑘 × {−1, 1} as follows:
{

𝑔− (𝑥)𝑖 = 𝑔(𝑥)𝑖 , for all 𝑖 ∈ [𝑘]

If 𝑔(𝑥)𝑘+1 ≤ 0, then 𝑔− (𝑥)𝑘+1 = −1; if 𝑔(𝑥)𝑘+1 = 1, then 𝑔− (𝑥)𝑘+1 = 1

7 Run algorithm A to find a solution 𝑞∗ to Tarski∗ (𝑛, 𝑘) on 𝑔− over L𝑝ℓ ,𝑝𝑟 . (This can be done

by embedding 𝑔− over L𝑝ℓ ,𝑝𝑟 inside [𝑛]
𝑘 and running A.)

8 If 𝑔− (𝑞∗)𝑘+1 = 1, set 𝑝ℓ ← 𝑞∗; if 𝑔− (𝑞∗)𝑘+1 = −1, set 𝑝
𝑟 ← 𝑞∗.

9 return the pair of points 𝑝ℓ , 𝑝𝑟 .

Query Complexity. Algorithm 2 just calls the algorithm A at most two times on line 3 and

line 7, so the query complexity of Algorithm 2 is 𝑂 (𝑞(𝑛, 𝑘)). □

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. SupposeA is a query algorithm to solve Tarski*(𝑛, 𝑎) in 𝑞(𝑛, 𝑎) queries

and B is a query algorithm to solve Tarski*(𝑛,𝑏) in 𝑞(𝑛,𝑏) queries. We will show that Algorithm

3 can solve Tarski*(𝑛, 𝑎 + 𝑏) in 𝑂 ((𝑏 + 1) · 𝑞(𝑛, 𝑎) · 𝑞(𝑛,𝑏)) queries.

Overview. At a high level, Algorithm 3 will run B for Tarski∗ (𝑛,𝑏) on a function ℎ : [𝑛]𝑏 →

{−1, 0, 1}𝑏+1 built on the go using the input 𝑔 : [𝑛]𝑎+𝑏 → {−1, 0, 1}𝑎+𝑏+1 of Tarski∗ (𝑛, 𝑎 + 𝑏) (that

satisfies the conditions in Definition 3.1). Let 𝑞1, . . . , 𝑞𝑖−1 ∈ [𝑛]𝑏 be the 𝑖 −1 queries that B has made

so far, for some 𝑖 ≥ 1, and let 𝑟 1, . . . , 𝑟 𝑖−1 ∈ {−1, 0, 1}𝑏+1 be the query results on ℎ. Let 𝑞𝑖 ∈ [𝑛]𝑏 be

the new query made by B in the 𝑖th round. Our challenge is to use 𝑔 (its restriction on points with

the last 𝑏 coordinates being 𝑞𝑖) to come up with an 𝑟 𝑖 ∈ {−1, 0, 1}𝑏+1 as the answer ℎ(𝑞𝑖) to the

query such that

(1) Lemma 4.7: All results (𝑞1, 𝑟 1), . . . , (𝑞𝑖 , 𝑟 𝑖) are consistent with the conditions of Definition 3.1,

i.e., 𝑞
𝑗
𝑖 + 𝑟

𝑗
𝑖 ∈ [𝑛] for all 𝑖 ∈ [𝑏] and (𝑞

𝑗 , 0) + 𝑟 𝑗 ⪯ (𝑞 𝑗 ′, 0) + 𝑟 𝑗
′
for all 𝑗, 𝑗 ′ with 𝑞 𝑗 ⪯ 𝑞 𝑗 ′ ; and

(2) Lemma 4.8: When 𝑞𝑖 is a solution to Tarski∗ (𝑛,𝑏 + 1) on ℎ, i.e., either 𝑟 𝑖𝑡 ≥ 0 for all

𝑡 ∈ [𝑏 + 1] or 𝑟 𝑖𝑡 ≤ 0 for all 𝑡 ∈ [𝑏 + 1], we can use 𝑞𝑖 to obtain a solution to Tarski∗ (𝑛, 𝑎 + 𝑏)

on the original input function 𝑔.

To obtain 𝑟 𝑖 , we need to run A 𝑏 + 1 times to obtain a pair of points 𝑝 (ℓ,𝑖) , 𝑝 (𝑟,𝑖) ∈ [𝑛]𝑎 and use

𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖) and 𝑔(𝑝 (𝑟,𝑖) , 𝑞𝑖) to determine 𝑟 𝑖 . A crucial component in the computation of 𝑝 (ℓ,𝑖) and

𝑝 (𝑟,𝑖) is to initialize the search space using pairs 𝑝 (ℓ, 𝑗) , 𝑝 (𝑟,𝑗) , 𝑗 ∈ [𝑖 − 1], from previous rounds.

Correctness.We prove a sequence of lemmas about Algorithm 3:

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1114

Algorithm 3: Algorithm for Tarski*(𝑛, 𝑎 + 𝑏) via Tarski∗ (𝑛, 𝑎) and Tarski∗ (𝑛,𝑏)

Input: Oracle access to 𝑔 : [𝑛]𝑎+𝑏 → {−1, 0, 1}𝑎+𝑏+1 satisfying conditions in Definition 3.1.

Output: A solution to Tarski*(𝑛, 𝑎 + 𝑏) on 𝑔.

1 Let A be an algorithm for Tarski*(𝑛, 𝑎) and B be an algorithm for Tarski*(𝑛,𝑏).

2 Let 𝑖 ← 1 be the round number.

3 do

4 For each previous round 𝑘 ∈ [𝑖 − 1], let 𝑞𝑘 ∈ [𝑛]𝑏 be the point queried by B and

𝑟𝑘 ∈ {−1, 0, 1}𝑏+1 be the answer.

5 Given the sequence ((𝑞1, 𝑟 1), · · · , (𝑞𝑖−1, 𝑟 𝑖−1)), let 𝑞𝑖 ∈ [𝑛]𝑏 be the 𝑖th query of B.

6 Set (when 𝑖 = 1, set 𝑝 (ℓ,1) = 1𝑎 and 𝑝 (𝑟,1) = 𝑛𝑎)

𝑝 (ℓ,𝑖) ← LUB
({

𝑝 (ℓ,𝑘) : 𝑘 ∈ [𝑖 − 1] and 𝑞𝑘 ⪯ 𝑞𝑖
})

and

𝑝 (𝑟,𝑖) ← GLB
({

𝑝 (𝑟,𝑘) : 𝑘 ∈ [𝑖 − 1] and 𝑞𝑖 ⪯ 𝑞𝑘
})

7 for each 𝑗 from 𝑎 + 1 to 𝑎 + 𝑏 + 1 do

8 Define a new function 𝑔 𝑗 : [𝑛]
𝑎 → {−1, 0, 1}𝑎+1 as follows:

𝑔 𝑗 (𝑥) =
(

𝑔(𝑥, 𝑞𝑖)1, · · · , 𝑔(𝑥, 𝑞
𝑖)𝑎, 𝑔(𝑥, 𝑞

𝑖) 𝑗

)

, for every 𝑥 ∈ [𝑛]𝑎 .

9 Run Algorithm 2 with A to find a solution 𝑝 (ℓ,∗) , 𝑝 (𝑟,∗) to RefinedTarski∗ (𝑛, 𝑎) on

𝑔 𝑗 over L𝑝 (ℓ,𝑖) ,𝑝 (𝑟,𝑖) ; set 𝑝
(ℓ,𝑖) ← 𝑝 (ℓ,∗) and 𝑝 (𝑟,𝑖) ← 𝑝 (𝑟,∗) .

10 end

11 Construct 𝑟 𝑖 ∈ {−1, 0, 1}𝑏+1 as the query result to 𝑞𝑖 :

𝑟 𝑖𝑡−𝑎 = 𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖)𝑡 , for each 𝑡 ∈ [𝑎 + 𝑏 + 1] \ [𝑎] .

12 If 𝑟 𝑖𝑡 ≥ 0 for all 𝑡 ∈ [𝑏 + 1], return (𝑝 (ℓ,𝑖) , 𝑞𝑖).

13 If 𝑟 𝑖𝑡 ≤ 0 for all 𝑡 ∈ [𝑏 + 1], return (𝑝 (𝑟,𝑖) , 𝑞𝑖).

14 while;

Lemma 4.5. At the end of each round 𝑖 , we have 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖) and

𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖)𝑡 ≥ 0 and 𝑔(𝑝 (𝑟,𝑖) , 𝑞𝑖)𝑡 ≤ 0, for all 𝑡 ∈ [𝑎] . (1)

Proof. We start with the base case for the first round. We have 𝑝 (ℓ,1) = 1𝑎 ⪯ 𝑛𝑎 = 𝑝 (𝑟,1) at

the beginning so Equation (1) holds. It is easy to prove by induction that both 𝑝 (ℓ,1) ⪯ 𝑝 (𝑟,1) and

Equation (1) hold at the beginning of each for loop on line 7, 𝑔 𝑗 over L𝑝 (ℓ,1) ,𝑝 (𝑟,1) satisfies conditions

of Tarski∗ during the for loop and thus, both 𝑝 (ℓ,1) ⪯ 𝑝 (𝑟,1) and Equation (1) hold at the end of the

for loop. This shows that both of them hold at the end of the first main loop.

The induction step is similar. Assume that both conditions hold for 𝑝 (ℓ, 𝑗) , 𝑝 (𝑟, 𝑗) for 𝑗 ∈ [𝑖 − 1].

We start by showing that 𝑝 (ℓ,𝑖) , 𝑝 (𝑟,𝑖) on line 6 satisfy both 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖) and Equation (1).

To prove 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖) , we make the following observation: 𝑝 (ℓ, 𝑗1) ⪯ 𝑝 (𝑟, 𝑗2) for all 𝑗1, 𝑗2 ∈ [𝑖 − 1]

with 𝑞 𝑗1 ⪯ 𝑞 𝑗2 . We divide the proof into three cases:

Case 0: 𝑗1 = 𝑗2 = 𝑗 . Trivially follows from 𝑝 (ℓ, 𝑗) ⪯ 𝑝 (𝑟, 𝑗) .

Case 1: 𝑗1 < 𝑗2. By the inductive hypothesis, we know 𝑝 (ℓ, 𝑗2) ⪯ 𝑝 (𝑟, 𝑗2) . Considering the

while loop 𝑗2, by the definition on line 6 and 𝑞 𝑗1 ⪯ 𝑞 𝑗2 , we know 𝑝 (ℓ, 𝑗1) ⪯ 𝑝 (ℓ, 𝑗2) before the

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1115

loop on line 7. Furthermore, by the updating rule on line 9 , we know that 𝑝 (ℓ, 𝑗2) is

monotonically non-decreasing, which means 𝑝 (ℓ, 𝑗1) ⪯ 𝑝 (ℓ, 𝑗2) holds after while loop 𝑗2. So we

can derive that after while loop 𝑗2, 𝑝
(ℓ, 𝑗1) ⪯ 𝑝 (𝑟,𝑗2) .

Case 2: 𝑗1 > 𝑗2. By the inductive hypothesis, we know 𝑝 (ℓ, 𝑗1) ⪯ 𝑝 (𝑟, 𝑗1) . Considering the

while loop 𝑗1, by the definition on line 6 and 𝑞 𝑗1 ⪯ 𝑞 𝑗2 , we know 𝑝 (𝑟, 𝑗1) ⪯ 𝑝 (𝑟,𝑗2) before the

loop on line 7. Furthermore, by the updating rule on line 9, we know that 𝑝 (𝑟,𝑗1) is

monotonically non-increasing, which means 𝑝 (𝑟, 𝑗1) ⪯ 𝑝 (𝑟, 𝑗2) holds after while loop 𝑗1. So we

can derive that after while loop 𝑗1, 𝑝
(ℓ, 𝑗1) ⪯ 𝑝 (𝑟,𝑗2) .

Now we move back to our proof of 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖) . For every 𝑗1, 𝑗2 ∈ [𝑖 − 1] such that 𝑞 𝑗1 ⪯ 𝑞𝑖 ⪯ 𝑞 𝑗2 ,

we know that 𝑝 (ℓ, 𝑗1) ⪯ 𝑝 (𝑟, 𝑗2) . So the same partial order relation of the least upper bound of 𝑝 (ℓ, 𝑗1)

and the greatest lower bound of 𝑝 (𝑟, 𝑗2) also holds, i.e., 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖) before the loop on line 7.

Next we prove Equation (1) on line 6. For each 𝑡 ∈ [𝑎], given that 𝑝 (ℓ,𝑖) is the LUB, there must

exist 𝑗∗ ∈ [𝑖 − 1] such that

𝑞 𝑗∗ ⪯ 𝑞𝑖 , 𝑝 (ℓ, 𝑗
∗) ⪯ 𝑝 (ℓ,𝑖) and 𝑝

(ℓ, 𝑗∗)
𝑡 = 𝑝

(ℓ,𝑖)
𝑡 .

Since (𝑝 (ℓ, 𝑗
∗) , 𝑞 𝑗∗) ⪯ (𝑝 (ℓ,𝑖) , 𝑞𝑖), we have

𝑝
(ℓ, 𝑗∗)
𝑡 + 𝑔(𝑝 (ℓ, 𝑗

∗) , 𝑞 𝑗∗)𝑡 ⪯ 𝑝
(ℓ,𝑖)
𝑡 + 𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖),

which implies 𝑔(𝑝 (ℓ, 𝑗
∗) , 𝑞 𝑗∗)𝑡 ≤ 𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖)𝑡 . On the other hand, we have 𝑔(𝑝 (ℓ, 𝑗

∗) , 𝑞 𝑗∗)𝑡 ≥ 0 by the

inductive hypothesis. So 𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖)𝑡 ≥ 0. 𝑔(𝑝 (𝑟,𝑖) , 𝑞𝑖)𝑡 ≤ 0 can be proved similarly.

Given that both 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖) and Equation (1) hold at the beginning of the loop on line 7,

the rest of the proof is essentially the same as the proof in the base case. It is easy to prove by

induction that both 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖) and Equation (1) hold at the beginning of each for loop on line 7,

𝑔 𝑗 over L𝑝 (ℓ,𝑖) ,𝑝 (𝑟,𝑖) satisfies conditions of Tarski
∗ during the for loop and thus, both 𝑝 (ℓ,𝑖) ⪯ 𝑝 (𝑟,𝑖)

and Equation (1) hold at the end of the for loop. This shows that both of them hold at the end of

the main while loop.

This completes the induction and the proof of the lemma. □

Lemma 4.6. At the end of every round 𝑖 , we have 𝑔(𝑝1, 𝑞
𝑖)𝑡 = 𝑔(𝑝2, 𝑞

𝑖)𝑡 for all 𝑝1, 𝑝2 ∈ L𝑝 (ℓ,𝑖) ,𝑝 (𝑟,𝑖)

and all 𝑡 ∈ [𝑎 + 𝑏 + 1] \ [𝑎],

Proof. Consider the end of round 𝑡 of the for loop on line 7. If 𝑔(𝑝 (ℓ,∗) , 𝑞𝑖)𝑡 = 1, then for

every 𝑝 (ℓ,∗) ⪯ 𝑝 ⪯ 𝑝 (𝑟,∗) , we have 1 = 𝑔(𝑝 (ℓ,∗) , 𝑞𝑖)𝑡 ≤ 𝑔(𝑝, 𝑞𝑖)𝑡 , i.e., 𝑔(𝑝, 𝑞
𝑖)𝑡 = 1. Similarly, if

𝑔(𝑝 (𝑟,∗) , 𝑞𝑖)𝑡 = −1, then we have 𝑔(𝑝, 𝑞𝑖)𝑡 = −1 for every 𝑝 (ℓ,∗) ⪯ 𝑝 ⪯ 𝑝 (𝑟,∗) . For the last case of

𝑔(𝑝 (ℓ,∗) , 𝑞𝑖)𝑡 = 𝑔(𝑝 (𝑟,∗) , 𝑞𝑖)𝑡 = 0, for every 𝑝 (ℓ,∗) ⪯ 𝑝 ⪯ 𝑝 (𝑟,∗) , we have 0 = 𝑔(𝑝 (ℓ,∗) , 𝑞𝑖)𝑡 ≤ 𝑔(𝑝, 𝑞𝑖)𝑡 ≤

𝑔(𝑝 (𝑟,∗) , 𝑞𝑖)𝑡 = 0, i.e., 𝑔(𝑝, 𝑞𝑖)𝑡 = 0.

For subsequent round 𝑡 + 1, 𝑡 + 2, · · · of the for loop, we know that L𝑝 (ℓ,𝑖) ,𝑝 (𝑟,𝑖) can only shrink.

So the property remains. This finishes the proof of the lemma. □

We are now ready to prove the two lemmas needed for the correctness of Algorithm 3:

Lemma 4.7. For any two rounds 𝑗1 and 𝑗2, if 𝑞
𝑗1 ⪯ 𝑞 𝑗2 , then (𝑞 𝑗1 , 0) + 𝑟 𝑗1 ⪯ (𝑞 𝑗2 , 0) + 𝑟 𝑗2 .

Proof. We consider two cases when 𝑗1 < 𝑗2 and when 𝑗1 > 𝑗2.

Case 1: 𝑗1 < 𝑗2. Considering the round 𝑗2, by the definition on line 6 and 𝑞 𝑗1 ⪯ 𝑞 𝑗2 , we know

that 𝑝 (ℓ, 𝑗1) ⪯ 𝑝 (ℓ, 𝑗2) before the loop on line 7. In the loop on line 7, when 𝑝 (ℓ, 𝑗2) is updated by 𝑝 (ℓ,∗) ,

𝑝 (ℓ, 𝑗2) is monotonically non-decreasing. So at the end of the loop we still have 𝑝 (ℓ, 𝑗1) ⪯ 𝑝 (ℓ, 𝑗2) . Given

that (𝑝 (ℓ, 𝑗1) , 𝑞 𝑗1) ⪯ (𝑝 (ℓ, 𝑗2) , 𝑞 𝑗2), we have for every 𝑡 ∈ [𝑎 + 𝑏] \ [𝑎]:

𝑞
𝑗1
𝑡−𝑎 + 𝑟

𝑗1
𝑡−𝑎 = 𝑞

𝑗1
𝑡−𝑎 + 𝑔(𝑝

(ℓ, 𝑗1) , 𝑞 𝑗1)𝑡 ≤ 𝑞
𝑗2
𝑡−𝑎 + 𝑔(𝑝

(ℓ, 𝑗2) , 𝑞 𝑗2)𝑡 = 𝑞
𝑗2
𝑡−𝑎 + 𝑟

𝑗2
𝑡−𝑎,

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1116

and 𝑟
𝑗1
𝑏+1
≤ 𝑟

𝑗2
𝑏+1

.

Case 2: 𝑗1 > 𝑗2. Case 2 is analogous to Case 1. Considering the round 𝑗1, by the definition on line

6 and 𝑞 𝑗1 ⪯ 𝑞 𝑗2 , we know that 𝑝 (𝑟,𝑗1) ⪯ 𝑝 (𝑟,𝑗2) before the loop on line 7. In the loop on line 7, when

𝑝 (𝑟,𝑗1) is updated by 𝑝 (𝑟,∗) , 𝑝 (𝑟, 𝑗1) is monotonically non-increasing, so that ∀𝑡 ∈ [𝑎 + 𝑏 + 1] \ [𝑎],

𝑔(𝑝 (𝑟, 𝑗1) , 𝑞 𝑗1)𝑡 is non-decreasing. So we have 𝑝 (𝑟,𝑗1) ⪯ 𝑝 (𝑟,𝑗2) at the end of the loop on line 7. Using

(𝑝 (𝑟, 𝑗1) , 𝑞 𝑗1) ⪯ (𝑝 (𝑟,𝑗2) , 𝑞 𝑗2) and Lemma 4.6, we have for every 𝑡 ∈ [𝑎 + 𝑏] \ [𝑎]:

𝑞
𝑗2
𝑡−𝑎 + 𝑟

𝑗2
𝑡−𝑎 = 𝑞

𝑗2
𝑡−𝑎 + 𝑔(𝑝

(ℓ, 𝑗2) , 𝑞 𝑗2)𝑡 = 𝑞
𝑗2
𝑡−𝑎 + 𝑔(𝑝

(𝑟,𝑗2) , 𝑞 𝑗2)𝑡

≥ 𝑞
𝑗1
𝑡−𝑎 + 𝑔(𝑝

(𝑟, 𝑗1) , 𝑞 𝑗1)𝑡 = 𝑞
𝑗1
𝑡−𝑎 + 𝑔(𝑝

(ℓ, 𝑗1) , 𝑞 𝑗1)𝑡 = 𝑞
𝑗1
𝑡−𝑎 + 𝑟

𝑗1
𝑡−𝑎,

and 𝑟
𝑗2
𝑏+1
≥ 𝑟

𝑗1
𝑏+1

.

This completes the proof of the lemma. □

Lemma 4.8. At the end of each round 𝑖 , if 𝑟 𝑖𝑡 ≥ 0 for 𝑡 ∈ [𝑏 + 1], then (𝑝 (ℓ,𝑖) , 𝑞𝑖) is a solution to

Tarski
∗ (𝑛, 𝑎 + 𝑏) on 𝑔; if 𝑟 𝑖𝑡 ≤ 0 for 𝑡 ∈ [𝑏 + 1], then (𝑝 (𝑟,𝑖) , 𝑞𝑖) is a solution to Tarski∗ (𝑛, 𝑎 + 𝑏) on 𝑔.

Proof. By Lemma 4.5 we have 𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖)𝑡 ≥ 0 and 𝑔(𝑝 (𝑟,𝑖) , 𝑞𝑖)𝑡 ≤ 0 for all 𝑡 ∈ [𝑎]. So if 𝑟 𝑖𝑡 ≥ 0

for all 𝑡 ∈ [𝑏 + 1], then 𝑔(𝑝 (ℓ,𝑖) , 𝑞𝑖)𝑡 = 𝑟 𝑖𝑡−𝑎 ≥ 0 for all 𝑡 ∈ [𝑎 + 𝑏 + 1] \ [𝑎] and thus, (𝑝 (ℓ,𝑖) , 𝑞𝑖) is a

solution to Tarski∗ (𝑛, 𝑎 + 𝑏) on 𝑔. Similarly if 𝑟 𝑖𝑡 ≤ 0 for all 𝑡 ∈ [𝑏 + 1], then (𝑝 (𝑟,𝑖) , 𝑞𝑖) is a solution

to Tarski∗ (𝑛, 𝑎 + 𝑏) on 𝑔. □

Query complexity. For each round of Algorithm 3, Algorithm 2 is called 𝑏 + 1 times on line 9

and each call of Algorithm 2 will use 𝑂 (𝑞(𝑛, 𝑎)) queries. The outer algorithm B has no more than

𝑞(𝑛,𝑏) rounds, which means the query complexity of Algorithm 3 is𝑂 ((𝑏 + 1) ·𝑞(𝑛, 𝑎) ·𝑞(𝑛,𝑏)). □

5 DISCUSSION AND OPEN PROBLEMS

While progress has been made on improving the upper bounds for finding Tarski fixed points, the

techniques for lower bounds remain limited.

For the black-box (query complexity) model studied in this paper, the key question left open is

to close the gap between Ω(log2 𝑛) and 𝑂 (log ⌈(𝑘+1)/2⌉ 𝑛). The first gap is from Tarski(𝑛, 4), where

the lower bound is Ω(log2 𝑛) and the upper bound is 𝑂 (log3 𝑛). Note that if one could improve

the lower bound of Tarski(𝑛, 4) to get a tight bound Θ(log3 𝑛), it would imply that 𝑂 (log2 𝑛) is

tight for Tarski∗ (𝑛, 3) (while the tight bounds of Tarski∗ (𝑛, 1) and Tarski∗ (𝑛, 2) are Θ(log𝑛)). Or

even relaxing the goal, is it possible to prove a lower bound Ω(log3 𝑛) for Tarski(𝑛, 𝑘) when 𝑘 is a

constant, say, 𝑘 = 100?

With regards to the white-box model, it is known that Tarski is in the intersection of PPAD

and PLS [5], and so is in CLS [6] and EOPL [8]. It would also be very interesting to see if Tarski is

complete for some computational complexity classes.

ACKNOWLEDGMENTS

We thank anonymous reviewers for helpful comments on an earlier draft.

REFERENCES

[1] Xi Chen and Xiaotie Deng. 2008. Matching algorithmic bounds for finding a Brouwer fixed point. Journal of the ACM

(JACM) 55, 3 (2008), 1ś26.

[2] Xi Chen and Xiaotie Deng. 2009. On the complexity of 2D discrete fixed point problem. Theoretical Computer Science

410, 44 (2009), 4448ś4456.

[3] Anne Condon. 1992. The complexity of stochastic games. Information and Computation 96, 2 (1992), 203ś224.

[4] Chuangyin Dang, Qi Qi, and Yinyu Ye. 2011. Computational models and complexities of Tarski’s fixed points. Technical

Report. Stanford University.

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1117

[5] Kousha Etessami, Christos H. Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis. 2020. Tarski’s Theorem,

Supermodular Games, and the Complexity of Equilibria. In 11th Innovations in Theoretical Computer Science Conference,

ITCS 2020, January 12-14, 2020, Seattle, Washington, USA (LIPIcs, Vol. 151), Thomas Vidick (Ed.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 18:1ś18:19. https://doi.org/10.4230/LIPIcs.ITCS.2020.18

[6] John Fearnley, Paul W Goldberg, Alexandros Hollender, and Rahul Savani. 2021. The complexity of gradient descent:

CLS= PPAD ∩ PLS. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 46ś59.

[7] John Fearnley, Dömötör Pálvölgyi, and Rahul Savani. 2020. A faster algorithm for finding Tarski fixed points. arXiv

preprint arXiv:2010.02618 (2020).

[8] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao. 2022.

Further Collapses in TFNP. arXiv preprint arXiv:2202.07761 (2022).

[9] Paul Milgrom and John Roberts. 1990. Rationalizability, learning, and equilibrium in games with strategic complemen-

tarities. Econometrica: Journal of the Econometric Society (1990), 1255ś1277.

[10] Christos H Papadimitriou. 1994. On the complexity of the parity argument and other inefficient proofs of existence.

Journal of Computer and system Sciences 48, 3 (1994), 498ś532.

[11] Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of Mathematics 5, 2

(1955), 285ś309.

[12] Donald M Topkis. 1979. Equilibrium points in nonzero-sum n-person submodular games. Siam Journal on control and

optimization 17, 6 (1979), 773ś787.

[13] Donald M Topkis. 1998. Supermodularity and Complementarity. Princeton University Press.

Session 9A: Equilibrium Computation ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

1118

	Abstract
	1 Introduction
	1.1 Sketch of the Algorithm

	2 Preliminaries
	3 Reduction to Tarski*
	4 A Decomposition Theorem for Tarski*
	4.1 A refined version of Tarski*

	5 Discussion and Open Problems
	Acknowledgments
	References

