



## Mathematics Clusters Reveal Strengths and Weaknesses in Adolescents' Mathematical Competencies, Spatial Abilities, and Mathematics Attitudes

John E. Scofield, Mary K. Hoard, Lara Nugent, Joseph LaMendola V & David C. Geary

To cite this article: John E. Scofield, Mary K. Hoard, Lara Nugent, Joseph LaMendola V & David C. Geary (2021) Mathematics Clusters Reveal Strengths and Weaknesses in Adolescents' Mathematical Competencies, Spatial Abilities, and Mathematics Attitudes, *Journal of Cognition and Development*, 22:5, 695-720, DOI: [10.1080/15248372.2021.1939351](https://doi.org/10.1080/15248372.2021.1939351)

To link to this article: <https://doi.org/10.1080/15248372.2021.1939351>



[View supplementary material](#) 



Published online: 21 Jun 2021.



[Submit your article to this journal](#) 



Article views: 61



[View related articles](#) 



[View Crossmark data](#) 



# Mathematics Clusters Reveal Strengths and Weaknesses in Adolescents' Mathematical Competencies, Spatial Abilities, and Mathematics Attitudes

John E. Scofield, Mary K. Hoard, Lara Nugent, Joseph LaMendola V, and David C. Geary

University of Missouri

## ABSTRACT

Pre-algebra mathematical competencies were assessed for a large and diverse sample of sixth graders ( $n = 1,926$ ), including whole number and fractions arithmetic, conceptual understanding of equality and fractions magnitudes, and the fractions number line. The goal was to determine if there were clusters of students with similar patterns of pre-algebra strengths and weaknesses and if variation between clusters was related to mathematics attitudes, anxiety, or for a subsample ( $n = 342$ ) some combination of intelligence, working memory, or spatial abilities. Critically, strengths and weaknesses were not uniform across the three identified clusters. Lower-performing students had pronounced deficits in their understanding of mathematical equality, fractions magnitudes, and the fractions number line. Higher-performing students had particular advantages in whole number and fractions arithmetic, and the fractions number line. Students could be reliably placed into clusters based on their mathematics self-efficacy and a combination of intelligence and spatial abilities. The results contribute to our understanding of key aspects of students' mathematical development, highlight areas in need of intervention for at-risk students, and identify cognitive areas in which scaffolds might be incorporated into these interventions.

## Introduction

Students' mathematical competencies provide a gateway to well-paying mathematics-intensive careers and contribute to ease of coping with important life decisions (Bynner, 1997; Reyna, Nelson, Han, & Dieckmann, 2009). Unfortunately, there is substantial variation in the extent to which students develop these competencies, differences that persist into adulthood (Mamedova, Sparks, & Hoyer, 2017). Most of these studies have examined the relation between early mathematical competencies and later mathematics achievement or economic outcomes based on composite achievement scores (Duncan et al., 2007; Ritchie & Bates, 2013). These studies confirm the importance of overall mathematical competencies but do not capture the variation existing within groups of students, especially those who have difficulties learning mathematics (Bartelet, Ansari, Vaessen, & Blomert, 2014; Geary, Hoard, Nugent, & Bailey, 2012; Vanbinst, Ceulemans, Ghesquière, & De Smedt, 2015). Elementary school children have relative mathematical strengths as well as weaknesses

(Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Geary et al., 2012), but much less is known about patterns of development in middle-school students.

Performance in middle school (grades 6 to 8, 11- to 13-year-olds) mathematics is critical because it lays the foundation for success in high school (grades 9 to 12, 14- to 18-year-olds) algebra, and provides an opportunity to identify and remediate deficits beforehand. Remedial interventions are typically focused on specific competencies, such as the fractions number line or mathematical word problems (e.g., Barbieri, Rodrigues, Dyson, & Jordan, 2020; Fuchs et al., 2020), and would be most beneficial if they targeted the most pronounced deficits of at-risk students. Accordingly, one goal here was to determine if lower-achieving students showed uniform deficits in pre-algebra competencies or strengths and weaknesses in these competencies. Identifying the latter would be useful for the development of focused remedial interventions. A second goal was to determine if clusters of students with different mathematical strengths and weaknesses differed in their mathematics attitudes, anxiety, and cognitive abilities. We were particularly interested in any relation between profiles of strengths and weaknesses and spatial abilities, as a consistent relation between the latter and mathematics is found but not fully understood (Hawes & Ansari, 2020; Kell, Lubinski, Benbow, & Steiger, 2013; Mix, 2019).

The study here is part of an on-going longitudinal project that is focused on individual differences in preparation for and success in high school algebra, as related (in part) to mathematics attitudes, anxiety, and spatial abilities. A novel feature of the study is the broad assessment of pre-algebra competencies and mathematics attitudes and anxiety in a large ( $n = 1,926$ ) and diverse group of sixth graders, and the integration of measures of intelligence, working memory, and spatial abilities of a subsample of them in seventh grade ( $n = 342$ ). We used state-of-the-art clustering techniques to identify groups of sixth graders with different patterns of strengths and weaknesses in pre-algebra arithmetic and multivariate pattern analyses to identify attitudinal and cognitive differences across these clusters.

### ***Mathematical competencies***

It has been shown that success in mathematics is dependent, in part, on the adequate development of prerequisite skills (Geary, Nicholas, Li, & Sun, 2017; Lee & Bull, 2016). As noted, the larger study was designed to, among other things, identify the most important prerequisite competencies needed for later success in high school algebra and the selection of prerequisite measures was based on recommendations from the National Mathematics Advisory Panel (NMAP, 2008) and results of cognitive studies of mathematical development (e.g., Alibali, Knuth, Hattikudur, McNeil, & Stephens, 2007; Braithwaite, Leib, Siegler, & McMullen, 2019; Braithwaite, Tian, & Siegler, 2018; Siegler, Thompson, & Schneider, 2011). Competence with whole number arithmetic was identified by the NMAP as foundational to the preparation for algebra and is predictive of concurrent (Tolar, Lederberg, & Fletcher, 2009) and longitudinal algebraic outcomes (Casey, Lombardi, Pollock, Fineman, & Pezaris, 2017; Siegler et al., 2012). We thus included a measure of fluency with whole number arithmetic.

Fractions were highlighted by the NMAP (2008) and empirical studies support their importance for preparation for algebra. For instance, elementary students' competence with fractions predicts their later competence in high school algebra, controlling domain-general abilities and family background (Siegler et al., 2012). In the United States, students typically begin to learn fractions by fourth grade (sometimes earlier). Nevertheless, about half of

them struggle with correctly ordering a series of fractions in eighth grade (Martin, Strutchens, & Elliott, 2007), and many of them do not understand that the sum of 12/13 and 7/8 is closer to 2 than 19 or 21 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Hecht & Vagi, 2010; Mazzocco & Devlin, 2008). In other words, there is substantive variation in middle school students' understanding of fractions and this variation is likely to predict variation in later algebra outcomes. Thus, we included measures of fractions arithmetic and measures that assess students' understanding of fractions magnitudes (e.g., the fractions number line).

Eventual competence with algebra is also dependent on an understanding of several core concepts (Booth, Barbieri, Eyer, & Paré-Blagoev, 2014). In an analysis of algebra errors committed by high school students, Booth and colleagues identified several persistent categories of conceptual error that predicted end of year performance. Difficulties with mathematical equality, variables (e.g., a belief they represent a single value), and mathematical properties (e.g., confusing order of operation) were the strongest predictors of later algebra performance (see also Booth & Koedinger, 2008). We were not able to assess all of these and focused on equivalence, as students' difficulties here have been extensively studied (Knuth, Alibali, McNeil, Weinberg, & Stephens, 2005). Middle-school students who do not understand equivalence typically interpret the “=” as a signal that the preceding numbers need to be operated on, such as added, rather than an indicator of the relation between the values to the left and right of it. Students who have an operational conception of equivalence have difficulties solving problems presented in a nonstandard format, such as  $6 + 3 = \underline{\quad} - 1$ , and will often indicate that the “=” means that they should solve the problem (Alibali et al., 2007; McNeil, Fyfe, Petersen, Dunwiddie, & Brletic-Shipley, 2011; McNeil et al., 2019). We included nonstandard format equivalence problems to assess this misconception.

### ***Mathematics attitudes and anxiety***

Eventual success in algebra and beyond can also be influenced by confidence or efficacy about one's abilities (i.e., a personal judgment of one's ability to perform well in future endeavors, see Talsma, Schüz, Schwarzer, & Norris, 2018) and by beliefs about the later usefulness or utility of mathematics (e.g., as related to future occupation; Eccles et al., 2016). Several meta-analyses have revealed small but reliable relations between students' academic efficacy and their later grades or achievement (Talsma et al., 2018; Valentine, DuBois, & Cooper, 2004), however cause-and-effect are unclear. Older students' and adults' academic achievement contributes to subsequent attitudes, and these contribute to later achievement. Similar bidirectional effects are sometimes (Gunderson, Park, Maloney, Beilock, & Levine, 2018) but not always (Geary et al., 2019) found in younger students. In any event, Lauermann, Tsai, and Eccles (2017) found reciprocal relations between mathematics self-efficacy, utility beliefs, and math-intensive career plans throughout high school, which in turn predicted employment in a mathematics-intensive profession 15 years later.

Mathematical competencies are also correlated with mathematics anxiety, although cause-and-effect relations are again not fully understood (Carey, Hill, Devine, & Szűcs, 2016; Devine, Hill, Carey, & Szűcs, 2017; Hill et al., 2016). Mathematics anxiety is apprehension or fear associated with thoughts about engagement in mathematical activities (Dowker, Sarkar, & Looi, 2016). One possibility is that anxiety undermines students' mathematical performance by the intrusion of performance-related thoughts during

problem solving that in turn reduce working memory capacity and increase problem-solving errors (Ashcraft & Kirk, 2001; Maloney & Beilock, 2012). Mathematics anxiety can also result in an avoidance of mathematics and reduced opportunities to learn (Hembree, 1990; Meece, Wigfield, & Eccles, 1990). Mathematics anxiety appears to be composed of several components that could influence mathematical development and performance in different ways. The core components include anxiety about mathematics learning generally (e.g., reading a math textbook) and anxiety during mathematics evaluations (Baloglu & Koçak, 2006). The former could potentially result in a general avoidance of mathematics and the latter underperformance on high-stakes tests.

If mathematics attitudes or anxiety are associated with specific clusters of pre-algebra strengths and weaknesses, they could exacerbate or ameliorate at-risk students' engagement in middle-school mathematics and thus their preparation for algebra. To assess if there is such a relation, we included measures of mathematics utility beliefs, self-efficacy, and anxiety as related to mathematics learning and evaluations. We also included a measure of students' attitudes about English as a contrast to their mathematics attitudes, that is, to determine if the reported attitudes were specific to mathematics.

### **Cognitive mechanisms**

The most consistent cognitive predictors of overall mathematics achievement or longitudinal gains in achievement are intelligence and components of executive function (Deary, Strand, Smith, & Fernandes, 2007; Geary, 2011; Geary et al., 2017; Van de Weijer-Bergsma, Kroesbergen, & Van Luit, 2015). The latter includes updating or holding something in mind (often called working memory), inhibition of task-irrelevant information, and shifting from one task to another and then appropriately returning to the first (Miyake et al., 2000). Of these, the most consistent predictor of mathematics achievement is updating or working memory (Bull & Lee, 2014; Friso-van den Bos et al., 2013). These cognitive abilities are particularly important for mathematics learning because of the highly abstract nature of the material and the continual introduction of new material during schooling. Although the focus of the larger project is on spatial abilities, we included measures of working memory and intelligence as controls.

One goal, as noted, of the larger project is to examine the relation between spatial abilities and ease of learning spatial-related aspects of algebra (e.g., recognizing how common functions map to coordinate space) in high school. On the basis of this goal and a consistent finding of a relation between spatial and mathematical abilities (Geer, Quinn, & Ganley, 2019; Hawes & Ansari, 2020; Mix, 2019; Mix et al., 2016, 2017), we included three measures of spatial competence – visuospatial working memory, visuospatial attention, and mental rotation – in the study. We included three measures because the relative importance of different components of spatial ability could vary with the complexity and content of the mathematics assessments (Bull, Epsy, & Wiebe, 2008; Geary et al., 2007). For instance, Gilligan, Thomas, and Farran (2020) found that a short-term intervention that enhanced skill at rotating objects improved performance on missing item problems (e.g.,  $2 + \square = 7$ ), whereas enhancement of sensitivity to proportional relations improved accuracy in placing numerals on the number line.

Visuospatial short-term memory appears to be involved in an array of mathematical domains, especially in later grades, but these specific relations are not fully understood (De

Smedt et al., 2009; Li & Geary, 2017; Swanson, Jerman, & Zheng, 2008). Visuospatial attention contributes to the ability to represent and compare the relative magnitude of numerals (Longo & Lourenco, 2007; Zorzi et al., 2012) and is more strongly related to performance on the fractions number line than are other spatial abilities, such as visuospatial working memory (Geary, Scofield, Hoard, & Nugent, 2021). The latter finding appears to be consistent with the results of Gilligan et al. (2020); specifically, focusing students' attention on proportional distance improved number line performance. More complex spatial abilities (including mental rotation) are related to some aspects of mathematical abilities (Mix & Cheng, 2012), and may become increasingly important as mathematical development shifts from number/arithmetic to algebra/geometry (Casey, Nuttal, Pezaris, & Benbow, 1995; Kyttälä & Lehto, 2008).

### ***Current study***

The current study extends prior work with the inclusion of multiple mathematical competencies in a single assessment and in doing so enabled an examination of patterns of strengths and weaknesses in a large and diverse sample of lower- and higher-achieving students. The study also contributes to prior work by simultaneously identifying the attitudinal, anxiety, and cognitive strengths and weaknesses that emerge in different achievement clusters. More precisely, we used state-of-the-art clustering procedures to identify groups of students with different patterns of pre-algebra mathematical strengths and weaknesses and multivariate pattern analysis to identify attitudinal and cognitive predictors of cluster membership.

An assessment of whether intelligence, working memory, or one or several forms of spatial ability are associated with weaknesses in pre-algebra competencies could have implications for the development of remedial interventions. This is because interventions that include scaffolds that accommodate cognitive weaknesses are more successful in remediating at-risk students' mathematical deficits than are interventions that do not include them (e.g., Fuchs et al., 2020). Information on the cognitive correlates of students with an at-risk profile of pre-algebra competencies would identify both areas of potential intervention and provide insights into the type of scaffold that might enhance remediation efforts. Similarly, the identification of attitudes or anxiety that predict cluster membership could indicate additional areas of remediation.

## **Method**

### ***Participants***

The original sample included 2,027 sixth graders who were assessed across two cohorts ( $ns = 1,157, 870$ ) conducted in collaboration with the Columbia Public Schools in Columbia, MO. Data were missing for 101 of these students (e.g., no information on student sex), leaving 1,926 of them for the analyses of mathematics performance and attitudes. The first cohort included approximately 86% of all sixth-grade students enrolled the district. The remaining 14% of students were absent the day of the assessment or unable to participate. The second cohort included 83% of invited sixth graders. The sampling for the two cohorts occurred in consecutive academic years and were otherwise identical, with

the exception that one school was omitted for the second cohort because of over-representation of students from this school (from the first cohort) in the longitudinal sample. As part of an on-going longitudinal study, 342 students from the sixth-grade sample were tested again in seventh grade.

Demographic information was not available for the sixth-grade sample but should be very similar to that of the district as a whole. For the district, sixth-graders were 61% white, 20% black, 5% Asian, 7% Hispanic, and 6% multiracial, and 43% qualified for free or reduced lunch. Demographic information was obtained through a parent survey ( $n = 281$ ) for the longitudinal sample. Eighty-eight percent of the students were non-Hispanic, 6% Hispanic or Latino, with the remaining unknown. The racial composition of the sample was 70% White, 14% Black, 3% Asian, 1% Native American, 10% multi-racial, and the remaining unknown. Self-reported annual household income was as follows: 0 USD-\$24,999 (12%); 25,000 USD-\$49,999 (18%); 50,000 USD-\$74,999 (12%); 75,000 USD-\$99,999 (22%); 100,000 USD-\$149,999 (19%); and 150,000 USD+ (17%). Seventy-one percent of the students had at least one parent with a college degree. Sixteen percent of families received food assistance, and six percent housing assistance.

### **Mathematics tests**

The tests, detailed instructions, and raw data for the key analyses are available on OSF (<https://osf.io/qwfk6/>). The assessment included an Exponents and Radical Rules Test that is not reported here because of a high nonresponse rate, and an Equal Sign task due to a low number of trials. All tests were administered using paper-and-pencil for the first cohort, and the Equality Problems, Fractions Comparison Test, Fractions Number Line, and Academic Attitudes and Mathematics Anxiety were assessed using iPads for the second cohort. There were only 2 significant cohort effects (all other  $p$ 's  $> .07$ ), whereby students in the first cohort scored higher on the arithmetic fluency ( $p = .002$ ,  $d = .14$ ) and fractions comparison test ( $p = .0003$ ,  $d = .17$ ). Given the null effects for all other measures and the small difference for the arithmetic fluency and fractions comparison test, the two cohorts were combined.

### **Arithmetic fluency**

The test included 24 whole-number addition (e.g.,  $87 + 5$ ), 24 subtraction (e.g.,  $35 - 8$ ), and 24 multiplication (e.g.,  $48 \times 2$ ) problems. Students had 2 min to solve as many problems as possible. A composite arithmetic fluency score was based on the number correct across the three operations ( $M = 18.94$ ,  $SD = 6.25$ ;  $\alpha = .57$ ). Despite the relatively low reliability, performance on this measure is more strongly correlated with mathematics ( $r = .62$ ) than reading achievement ( $r = .32$ ), indicating the measure shows both convergent and discriminant validity.

### **Equality problems**

Students who struggle with mathematical equality have difficulties with problems in non-standard formats, such as  $8 = \underline{\hspace{1cm}} + 2 - 3$ . Thus, we created a 10-item test in multiple choice format (4 options) to assess competence at solving such problems. 3.7% of the items were unanswered and scored as incorrect. A composite was the mean percent correct for the 10 items ( $M = 79.99$ ,  $SD = 23.89$ ,  $\alpha = .80$ ).

### **Fractions arithmetic**

The items were sets of 12 addition (e.g.,  $1/3 + 1/6$ ), 12 multiplication (e.g.,  $1/4 \times 1/8$ ), and 10 division (e.g.,  $2 \div 1/4$ ) problems. Students had 1 min for each operation. The score was the number of correctly solved problems ( $M = 10.33$ ,  $SD = 6.91$ ;  $\alpha = .62$ ). Despite the relatively low reliability, performance on this measure is more strongly correlated with mathematics ( $r = .70$ ) than reading achievement ( $r = .41$ ), indicating the measure shows both convergent and discriminant validity.

### **Fractions comparison**

For each of 48 pairs, students circled the larger of two fractions, within 90 sec. There were four item types that reflect common problem-solving errors and strategies (see Geary, Hoard, Nugent, & Bailey, 2013). In the first type the numerator is constant, but the denominator differs (e.g.,  $2/4$   $2/5$ ), which assesses students' understanding of the inverse relation between the value of the denominator and the quantity represented by the fraction. In the second type numerators have a ratio of 1.5 and denominators a ratio between 1.1 and 1.25 (e.g.,  $3/10$   $2/12$ ), making identification of the larger magnitude easier using numerators (correct) than denominators (incorrect). Numerators and denominators in the third type are reversed (e.g.,  $5/6$   $6/5$ ), which requires students to choose the fraction with the larger numerator and smaller denominator. The final type involves skill at using  $1/2$  as an anchor for estimating fraction values (e.g.,  $20/40$   $8/9$ ). The foils are always close to one but contain smaller numerals than the  $1/2$  fraction. A composite was based on performance (correct – incorrect;  $M = 16.70$ ,  $SD = 15.32$ ) across the four item types ( $\alpha = .87$ ).

### **Fractions number line**

Students sequentially placed 10 fractions ( $10/3$ ,  $1/19$ ,  $7/5$ ,  $9/2$ ,  $13/9$ ,  $4/7$ ,  $8/3$ ,  $7/2$ ,  $17/4$ ,  $11/4$ ) that were centrally presented in large font onto the 0-to-5 number line (Siegler et al., 2011), and 94.4% of the lines were completed within a 4 min time limit. The data for the remaining 5.6% of lines were estimated using a multiple imputations procedure in SAS (2014). Individual items were scored as the absolute percent deviation between the placement and the correct location, which were averaged across the 10 items ( $M = 20.50$ ,  $SD = 14.09$ ,  $\alpha = .85$ ), and then multiplied by  $-1$  so that higher scores represent more accurate placements.

### **Academic attitudes and anxiety**

The grade-appropriate mathematics and English language attitudes measures were from the Michigan Study of Adolescent and Adult Transitions (<http://garp.education.uci.edu/msalt.html>) and are designed to assess students' self-evaluated efficacy and their beliefs about the long-term utility of competence in these areas (Eccles & Wigfield, 2002; Meece et al., 1990). The mathematics attitudes measure included seven items on a 1-to-7 Likert scale; e.g., "How much do you like doing math?" rated from 1 ("a little") to 7 ("a lot"), with six similar English items. We used three approaches to determine their factor structure, including an exploratory principle component analysis (PCA) with promax rotation (SAS, 2014), as well as parallel and MAP analyses (R Core Team, 2017).

### **Mathematics and English attitudes**

The MAP analysis suggested one component, but the eigenvalues from the PCA and the parallel analysis suggested two mathematics factors. The factor loadings were consistent with distinct utility (Items 1 to 4, inclusive) and self-efficacy (Items 5 to 7, inclusive) dimensions. The scores were the mean of the corresponding items ( $\alpha = .77$  for utility; .84 for self-efficacy). All of the procedures indicated a single factor for English Attitudes, which was scored as the mean of the six items ( $\alpha = .85$ ).

### **Mathematics anxiety**

The 10 items were adapted from Hopko, Mahadevan, Bare, and Hunt (2003). Each item (e.g., "Taking an examination in a math course") was rated on a 1 (induces low anxiety) to 5 (induces high anxiety) scale. All three analyses indicated two factors. The first was defined by five items that involved learning mathematics (e.g., "Having to use the tables in the back of a math book"). The second factor was defined by four items that involved some type of evaluation (e.g., "Taking an examination in a math course"), and one other item (i.e., "In general, how anxious are you about math?"). Composite scores were based on the mean of the five learning anxiety items ( $\alpha = .78$ ) and the five evaluation anxiety items ( $\alpha = .84$ ).

### **Standardized measures**

#### **Intelligence**

Students in the longitudinal component were administered the Vocabulary and Matrix Reasoning subtests of the *Wechsler Abbreviated Scale of Intelligence* (WASI; Wechsler, 1999). Based on standard procedures, subscale scores were used to generate an estimated full-scale IQ. The intelligence of the longitudinal sample was average ( $M = 105$ ,  $SD = 13$ ).

#### **Achievement**

For the longitudinal cohort, mathematics and reading achievement was assessed with the age-appropriate Numerical Operations (NO) and Word Reading (WR) subtests from the *Wechsler Individual Achievement Test-Third Edition* (Wechsler, 2009), respectively. The NO included basic arithmetic and continued through fractions, algebra, geometry and calculus. The WR assessed single word reading, beginning with 1-syllable words and progressing to more complex vowel, consonant, and morphology types. The mathematics ( $M = 100$ ,  $SD = 19$ ) and reading ( $M = 104$ ,  $SD = 13$ ) achievement of the students in the longitudinal sample was average.

#### **Cognitive measures**

The cognitive tasks were administered using iPads using customized programs developed through Inquisit by Millisecond (<https://www.millisecond.com>) or through Qualtrics (<https://www.qualtrics.com>). Manuals and detailed descriptions of these tasks are available at Open Science Framework (<https://osf.io/qwfk6/>) and are all standard measures of working- and short-term memory, and spatial ability. A verbal memory task was assessed (described in the SOM) but not reported here as we focused *a-priori* of working memory and spatial abilities.

### ***Digit span***

Forward and backward digit span measures were administered, following Woods et al. (2011). Digits were auditorily (using the iPad) and sequentially presented at 1s intervals, beginning with 3 digits for the forward task and 2 digits for the backward task. Students were asked to tap the digits on a circular display after the sequence in forward/backward order. Correct responses increased the sequence length for the following trial, and two consecutive errors reduced the sequence length. Each task terminated after 14 trials. The longest digit sequence correctly recalled before two consecutive errors at the same length was scored as the span ( $M = 5.71, 4.59, SD = 1.12, 1.20$  for the forward and backward, respectively).

### ***N-back***

Following Jaeggi et al. (2010), a similar version of a single n-back task with letters was administered. A “target” letter and then a sequence of 20 stimulus letters was presented (all consonants; 6 are target; 14 are not; randomly determined). Students indicated whether the currently presented letter is a target by tapping a key within a 3,000 ms response period (500 ms + 2,500 ms blank ITI), otherwise withholding a response. Target letters were either the very first stimuli of the sequence ( $N = 0$ ), the same as the one immediately preceding it ( $N = 1$ ), or as the one in the two ( $N = 2$ ) or three ( $N = 3$ ) preceding trials. After several practice items, students began on level  $N = 0$ . Across five blocks, students either moved up, down, or remained at a level (<3 errors – move up; 3–5 errors – repeat level; >5 errors – move down). Feedback (% correct) was displayed after each block. The score ( $M = 3.80, SD = 0.76$ ) was calculated as (Hits – False Alarms)/(total blocks).

### ***Spatial span***

The Corsi Block Tapping Task was administered (Kessels, van Zandvoort, Postma, Kappelle, & de Haan, 2000). Students viewed a display of nine squares (appearing randomly arranged) that “lit up” in a predetermined sequence and tapped on the squares in the same order they were lit. Sequences started at two squares and increased up to nine squares. Students had two attempts at each sequence length. Correct responses were followed by an increase in sequence length, and two incorrect responses at a given level terminated the task. The score is the total number of correctly recalled sequences across the entire task ( $M = 8.34, SD = 1.83$ ).

### ***Spatial ability***

The first spatial measure was the Judgment of Line Angle and Position Test (JLAP; Collaer, Reimers, & Manning, 2007). Here, students matched the angle of a single presented line to one of 15-line options in an array at the bottom of the screen. There were 20 test items sequentially presented. Stimuli were presented for a maximum of 10s, with the trial terminating when the student made a selection. The JLAP was scored as the number correct ( $M = 13.33, SD = 3.03$ ).

The second measure used was the Mental Rotation Task (MRT-A; Peters et al., 1995). On each of 24 trials, students viewed 3D images of 10 connected cubes. On each trial, there was one target and four response options, requiring students to select the two options that were the same figure, only rotated to various degrees. After four practice problems, students completed two blocks of 12 problems each with a 3 min per block time limit. The MRT was scored as the number of problems on which both correct responses were chosen ( $M = 8.75, SD = 4.13$ ).

## Procedure

During a 45 min assessment, groups of 14 to 32 students were administered the mathematics tests and academic attitudes measures in their classroom (Age:  $M = 146.88$  months,  $SD = 4.51$ ). For the longitudinal component, tasks were individually administered in 45 min sessions in a quiet location in their school. The cognitive measures were administered in the fall semester (Age:  $M = 152.63$  months,  $SD = 4.45$ ) and the achievement and attitudes measures in the spring (Age:  $M = 156.79$  months,  $SD = 4.41$ ). Tasks were administered in a fixed order across participants. Parents provided informed written consent, and assent was obtained from adolescents for all assessments. The University of Missouri Institutional Review Board (IRB; Approval # 2002634, “Algebraic Learning and Cognition”) approved all methods included in this study.

## Analyses

Individual continuous mathematics measures were standardized ( $M = 0$ ,  $SD = 1$ ), and the attitudes and anxiety measures were standardized to  $M = 100$  ( $SD = 15$ ). Hierarchical cluster analyses (Ward’s method) were used to identify subsets of students with different math competence profiles. The stability of the cluster solution was validated using the Bootstrapped Jaccard similarity coefficient (shortened to  $J$ ; see Hennig, 2007 for details), with values above 0.6 interpreted as acceptable. Between-subjects ANOVAs (and Bayes Factor ANOVA equivalents) were used to test differences across clusters. A “leave-one-out” (LOO) cross-validation approach was also used for testing cluster differences in each mathematics measure. For example, to test cluster differences between performance on the fractions number line, the cluster analysis was re-estimated using every measure except for the fractions number line. This ensures that cluster differences on a given test reflects a novel, out-of-sample test, thus avoiding issues of circularity.

For the sixth-grade attitudes and anxiety measures and cognitive measures from the longitudinal component, multivariate pattern analyses (MVPA; logistic regression classifier,  $L2$  penalty,  $C = 0.5$ ) using the *scikit-learn* module in python was used to predict students’ identified math cluster. A similar LOO cross-validation was used for model training and testing to ensure each students’ prediction was a novel out-of-sample case left out of model training. Classifier accuracy is reported here, with chance being 33.3% (three possible cluster labels). Model significance was tested through permutation testing, which entails randomly shuffling the cluster labels of students and re-training the classifier 500 times on the shuffled data. Significance is reported as the proportion of times the shuffled data accuracies exceeded the true observed accuracy.

To further elucidate the relative contributions of each specific predictor, a Bayesian model comparison approach was used (Rouder, Engelhardt, McCabe, & Morey, 2016). Cluster labels were used as the dependent measure, with the six cognitive measures and IQ, or the five attitude/anxiety measures, as predictors. To assess evidence for the inclusion/exclusion of a certain predictor (e.g., digit span), ratios of Bayes Factors (BFs) were taken from the best model that included a certain predictor (e.g., digit span, MRT, and JLAP) to the model that excluded it (only MRT and JLAP). All analyses were performed using R (v.3.5.1) and python (v.3.7.4). Main statistical interpretations are based on Bayesian statistics (*Bayes Factor* package using default priors), where  $BFs < 1$  indicate evidence for

the null hypothesis, 1–3 weak/ambiguous evidence, and  $>3$  as evidence for the alternative hypothesis (Kass & Raftery, 1995). As a supplement, frequentist statistics are also presented alongside each analysis, as using multiple estimates can often be informative in model evaluation (Valentine, Buchanan, Scofield, & Beauchamp, 2019).

## Results

Correlations among the sixth-grade mathematics variables and the cognitive, attitudes, and achievement measures are shown in Table 1; correlations among the seventh-grade cognitive and achievement measures are in the SOM and data used in the analyses are available in OSF (<https://osf.io/wqjv7/>).

### Clusters

Table 2 presents descriptive statistics for the sixth-grade and longitudinal sample variables; code for the full statistical analyses are available in the SOM. The clustering analysis was applied to the standardized scores for individual mathematics measures. Two main clusters were first identified, segregating students into high ( $n = 1,429$ ;  $J = .758$ ) and low ( $n = 497$ ;  $J = .608$ ) groups. Figure 1(a) shows a radar chart for the two main clusters (high and low), where values closer to the center indicate lower performance and values closer to the perimeter of the circle indicate higher performance. For all five mathematics measures, clear high-low differences emerged ( $BF_{10}$ 's  $\geq 1.3e^{+98}$ ,  $p$ 's  $< .001$ ), and were maintained when using the left-out validation test measures ( $BF_{10}$ 's  $\geq 2.2e^{+65}$ ,  $p$ 's  $< .001$ ). More interestingly, from inspection of the cluster solution (visual inspection of the cluster dendrogram; see supplemental materials) and examining cluster stability, it was apparent that the high group was further divided into two higher subgroups, creating a total of three groups overall. For the remainder of the analyses, we discuss these as low ( $n = 497$ ;  $J = .683$ ), medium ( $n = 1,001$ ;  $J = .649$ ), and high ( $n = 428$ ;  $J = .692$ ) groups.

**Table 1.** Correlations between the mathematics variables and cognitive and attitudes variables.

| Variable                     | Sixth Grade Mathematics |                   |                      |                      |                       |
|------------------------------|-------------------------|-------------------|----------------------|----------------------|-----------------------|
|                              | Arithmetic Fluency      | Equality Problems | Fractions Arithmetic | Fractions Comparison | Fractions Number Line |
| Intelligence                 | .30                     | .56               | .47                  | .41                  | .51                   |
| Digit Span Forward           | .17                     | .30               | .28                  | .21                  | .28                   |
| Digit Span Backward          | .22                     | .40               | .38                  | .26                  | .31                   |
| N-back                       | .16                     | .29               | .34                  | .25                  | .36                   |
| Spatial Span                 | .31                     | .30               | .35                  | .32                  | .28                   |
| Judgment Line Angle Position | .22                     | .26               | .30                  | .19                  | .34                   |
| Mental Rotation Test         | .23                     | .35               | .29                  | .25                  | .33                   |
| Mathematics Utility          | .28                     | .17               | .24                  | .11                  | .15                   |
| Mathematics Self-Efficacy    | .38                     | .36               | .39                  | .20                  | .30                   |
| Math Anxiety – Evaluation    | -.04                    | -.12              | -.10                 | -.09                 | -.11                  |
| Math Anxiety – Learning      | -.05                    | -.26              | -.20                 | -.27                 | -.23                  |
| English Attitudes            | .08                     | .05               | .04                  | -.06                 | .01                   |
| Numerical Operations         | .62                     | .61               | .70                  | .39                  | .59                   |
| Word Reading                 | .32                     | .46               | .41                  | .33                  | .42                   |

Correlations  $>|.11|$  are significant,  $p < .05$ .

**Table 2.** Descriptive statistics for the low, medium, and high groups.

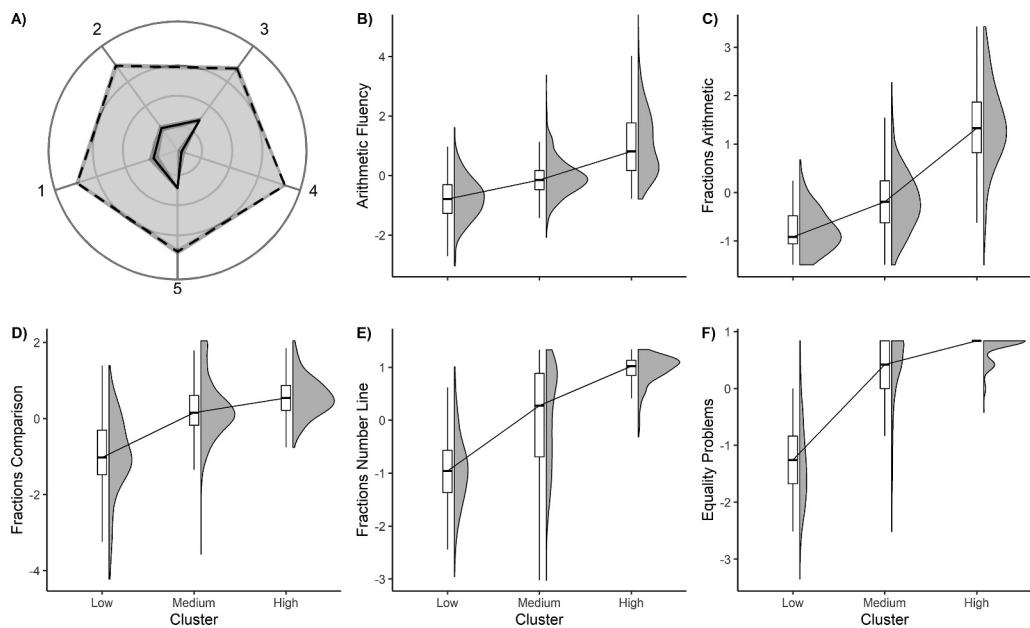
| Measure                      | Low<br><i>M</i> ( <i>SD</i> ) | Medium<br><i>M</i> ( <i>SD</i> ) | High<br><i>M</i> ( <i>SD</i> ) | Low Deficits ( <i>d</i> ) | High Advantages ( <i>d</i> ) |
|------------------------------|-------------------------------|----------------------------------|--------------------------------|---------------------------|------------------------------|
| Arithmetic Fluency           | -0.79(0.69)                   | -0.07(0.63)                      | 1.06(1.08)                     | 1.19                      | 1.66                         |
| Equality Problems            | -1.34(0.76)                   | 0.36(0.61)                       | 0.71(0.24)                     | 2.95                      | 0.99                         |
| Fractions Arithmetic         | -0.78(0.43)                   | -0.20(0.61)                      | 1.37(0.86)                     | 1.19                      | 2.60                         |
| Fractions Comparison         | -0.99(1.03)                   | 0.25(0.78)                       | 0.56(0.50)                     | 1.64                      | 0.76                         |
| Fractions Number Line        | -0.95(0.67)                   | 0.07(0.91)                       | 0.95(0.28)                     | 1.55                      | 1.41                         |
| Mathematics Utility          | 4.62(1.29)                    | 4.86(1.23)                       | 5.16(1.15)                     | 0.27                      | 0.31                         |
| Mathematics Efficacy         | 3.96(1.38)                    | 4.71(1.18)                       | 5.20(0.98)                     | 0.75                      | 0.60                         |
| English Attitudes            | 4.99(1.27)                    | 4.98(1.22)                       | 5.21(1.08)                     | 0.04                      | 0.19                         |
| Math Anxiety – Eval          | 3.17(1.02)                    | 2.91(1.00)                       | 2.73(0.97)                     | 0.32                      | 0.27                         |
| Math Anxiety – Learn         | 2.37(0.91)                    | 1.94(0.78)                       | 1.68(0.66)                     | 0.63                      | 0.50                         |
| Digit Span Forward           | 5.03(0.83)                    | 5.62(1.11)                       | 6.10(1.14)                     | 0.72                      | 0.59                         |
| Digit Span Backward          | 3.69(1.05)                    | 4.58(1.01)                       | 5.00(1.17)                     | 0.94                      | 0.57                         |
| N-back                       | 3.30(0.71)                    | 3.80(0.73)                       | 4.11(0.62)                     | 0.90                      | 0.62                         |
| Spatial Span                 | 7.36(1.58)                    | 8.15(1.90)                       | 9.14(1.65)                     | 0.66                      | 0.68                         |
| Judgment Line Angle Position | 11.94(2.98)                   | 12.97(3.01)                      | 14.62(2.73)                    | 0.57                      | 0.66                         |
| Mental Rotations Test        | 6.26(2.91)                    | 8.74(4.17)                       | 10.25(4.13)                    | 0.77                      | 0.54                         |
| Intelligence                 | 90.77(9.56)                   | 104.61(11.61)                    | 111.96(10.53)                  | 1.48                      | 0.93                         |
| Numerical Operations         | 78.65(9.59)                   | 97.20(13.58)                     | 115.33(16.13)                  | 1.62                      | 1.50                         |
| Word Reading                 | 91.48(14.25)                  | 104.63(11.73)                    | 110.74(9.22)                   | 1.33                      | 0.78                         |

The individual mathematics variables are centered ( $M = 0$ ,  $SD = 1$ ), and the intelligence and numerical operations are standardized ( $M = 100$ ,  $SD = 15$ ). Effect sizes (Cohen's *d*) are presented in two ways. First, to highlight deficits in the lowest groups, Cohen's *d* is calculated comparing the low group versus the medium and high group together (one vs. rest approach). Likewise, the high group advantages highlight the relative differences between the high group and both the low and medium groups.

When analyzing differences among the three clusters, we observed strong main effects across all five measures; Arithmetic fluency,  $BF_{10} = 6.8e^{+218}$ ,  $F(2,1923) = 676.35$ ,  $p < .001$ ; Equality problems,  $BF_{10} = 3.3e^{+428}$ ,  $F(2,1923) = 1746.59$ ,  $p < .001$ ; Fractions arithmetic,  $BF_{10} = 7.8e^{+376}$ ,  $F(2,1923) = 1431.61$ ,  $p < .001$ ; Fractions comparison,  $BF_{10} = 3.1e^{+180}$ ,  $F(2,1923) = 532.09$ ,  $p < .001$ ; and, Fractions number line,  $BF_{10} = 9.7e^{+234}$ ,  $F(2,1923) = 741.08$ ,  $p < .001$ . Post-hoc independent-samples *t*-tests (Tukey's HSD) revealed significant differences across all clusters and measures (*p*'s  $< .001$ ; Low  $<$  Medium  $<$  High). While students composing the clusters showed the same graded pattern among measures, their strengths and weaknesses were not uniform. As shown in Table 1, the low group (as compared to the medium and high groups combined) had especially pronounced deficits for the equality problems, fractions comparison, and the fractions number line. Higher performing students (as compared to the medium and low groups combined) had especially high performance in fractions arithmetic, arithmetic fluency, and the fractions number line. Figure 1(b-f) shows mean differences across clusters for the mathematics measures. Importantly, we validated these patterns of strengths and weaknesses and overall cluster differences using a LOO cross-validation approach, and main effects for all measures remained strong ( $BF_{10}$ 's  $\geq 2.9e^{+66}$ , *p*'s  $< .001$ ).

### Attitudes and mathematics anxiety

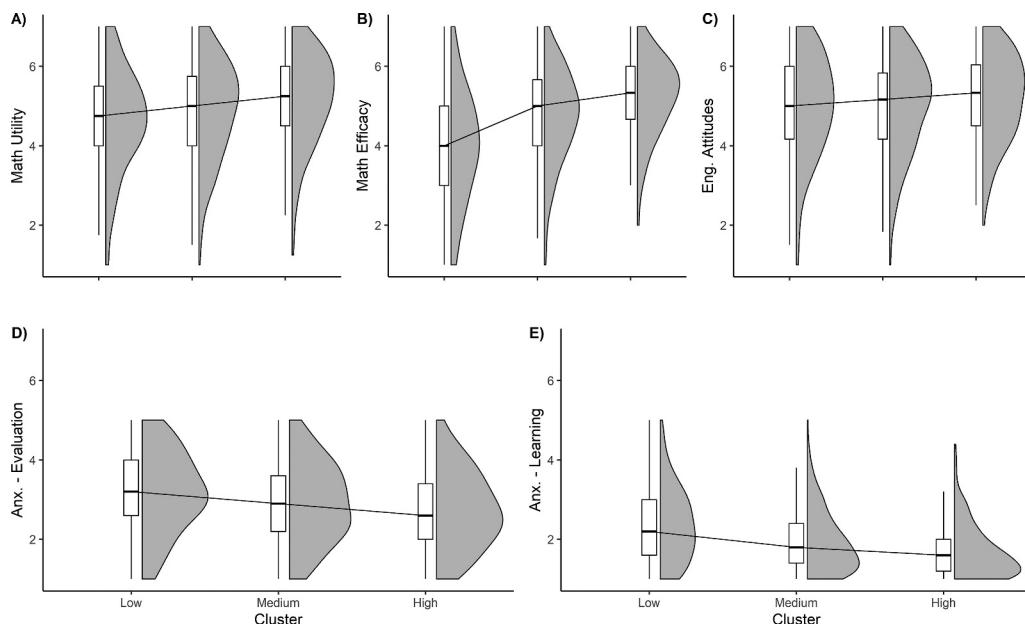
Next, we tested how self-reported attitudes and anxiety measures related to the clear differences found in the objective mathematics measures. We found strong evidence for a main effect of cluster for mathematics utility,  $BF_{10} = 2.0e^{+7}$ ,  $F(2,1922) = 22.54$ ,  $p < .001$ ,



**Figure 1.** (a) Radar chart of sixth grade mathematics measures from the two (high, low) cluster solution; lower scores are near the center and higher near the periphery. Clear high (dashed) and low (solid) groups are evident across all measures. 1 = Fractions comparison; 2 = Fractions number line; 3 = Arithmetic fluency; 4 = Equality problems; 5 = Fractions arithmetic. (b-f) Boxplots depicting the median and first and third quartiles across the three clusters for each mathematics measure. To the left of each boxplot is a density plot showing the distribution of scores.

and an even larger effect for mathematics efficacy,  $BF_{10} = 2.8e^{+50}$ ,  $F(2,1922) = 130.91$ ,  $p < .001$ . In a graded fashion, attitudes about mathematics utility and efficacy increased across cluster groups ( $p$ 's  $\leq .001$ ; Low > Medium > High; [Figure 2\(a-c\)](#)). This was not the case, however, with attitudes about English. While still significant using frequentist statistics [ $F(2,1922) = 5.87$ ,  $p = .003$ ], Bayesian evidence revealed a severely damped effect of English attitudes ( $BF_{10} = 2.1$ ) compared to the strong effects found in mathematics attitudes. Both mathematics anxiety measures showed significant cluster effects: Evaluation,  $BF_{10} = 5.0e^{+7}$ ,  $F(2,1922) = 23.47$ ,  $p < .001$ ; Learning,  $BF_{10} = 2.0e^{+35}$ ,  $F(2,1922) = 91.68$ ,  $p < .001$ . Post-hoc comparisons showed that in both measures, there were decreases in anxiety from the low- to high-cluster groups ( $p$ 's  $\leq .004$ ; High < Medium < Low), which are visualized in [Figure 2\(d-e\)](#).

As an alternative to the mass univariate analyses presented above, MVPA classifiers were used to predict students' cluster labels from the multivariate relationships of the five attitudes and anxiety measures. This is an especially useful approach when analyzing factors that are external to the clustering analysis. Using a LOO cross-validated logistic regression classifier, a model using these five measures was able to predict cluster membership with 55.0% accuracy (see [Figure 3](#)). Permutation testing confirmed this to be above chance accuracy,  $p < .001$  (with chance performance at 33.3%). Bayesian model comparisons clearly identified mathematics efficacy as the measure contributing the most to cluster differences (see [Table 3](#)).  $BF_{10}$ 's for mathematics utility, anxiety for evaluation, anxiety for learning, and

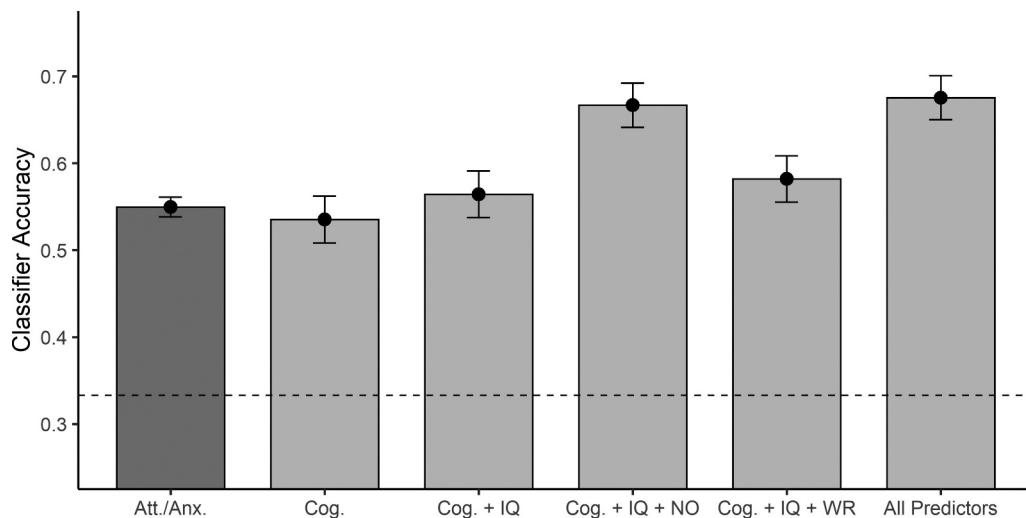


**Figure 2.** Boxplots illustrating the median and first and third quartiles across the three clusters for (a-c) mathematics and English attitudes, and (d-e) mathematics anxiety. To the left of each boxplot is a density plot showing the distribution of scores.

English attitudes were all  $<1$  (evidence for the null hypothesis) compared to models including mathematics efficacy. Indeed, the best overall model was for efficacy alone,  $BF_{10} = 445.44$  against an intercept only model. Comparing the model including all five predictors to one excluding efficacy showed the importance of efficacy ( $BF_{10} = 30.52$ ) while controlling for all other predictors.

### Cognitive measures

The last set of analyses sought to test the prediction that students' cognitive performance in seventh grade was related to and can predict mathematics competence from the end of the previous year. Univariate analyses showed strong main effects of cluster across all cognitive variables: Digit span forward,  $BF_{10} = 2.4e^{+6}$ ,  $F(2,339) = 20.56$ ,  $p < .001$ ; Digit span backward,  $BF_{10} = 8.7e^{+8}$ ,  $F(2,339) = 27.69$ ,  $p < .001$ ; N-back,  $BF_{10} = 8.3e^{+8}$ ,  $F(2,339) = 27.61$ ,  $p < .001$ ; Spatial span,  $BF_{10} = 1.2e^{+7}$ ,  $F(2,339) = 22.45$ ,  $p < .001$ ; Judgment of Line Angle and Position,  $BF_{10} = 1.1e^{+6}$ ,  $F(2,339) = 19.58$ ,  $p < .001$ ; Mental Rotations Test,  $BF_{10} = 2.3e^{+6}$ ,  $F(2,339) = 20.55$ ,  $p < .001$ . Intelligence was additionally assessed in the longitudinal component,  $BF_{10} = 4.1e^{+24}$ ,  $F(2,339) = 75.98$ ,  $p < .001$ . With intelligence showing strong effects across the different clusters, we re-assessed the cognitive differences while controlling for intelligence, and all predictors retained their effects ( $BF_{10}$ 's ranging from 13.15 to 347,  $p$ 's  $\leq .05$ ) with the exception of the Mental Rotations Test ( $BF_{10} = 0.421$ ,  $p = .089$ ). As seen in Figure 4(a-i), graded effects of cognitive differences are evident, similar to the attitudes and anxiety measures, (all  $p$ 's  $\leq .007$ ; Low < Medium < High).



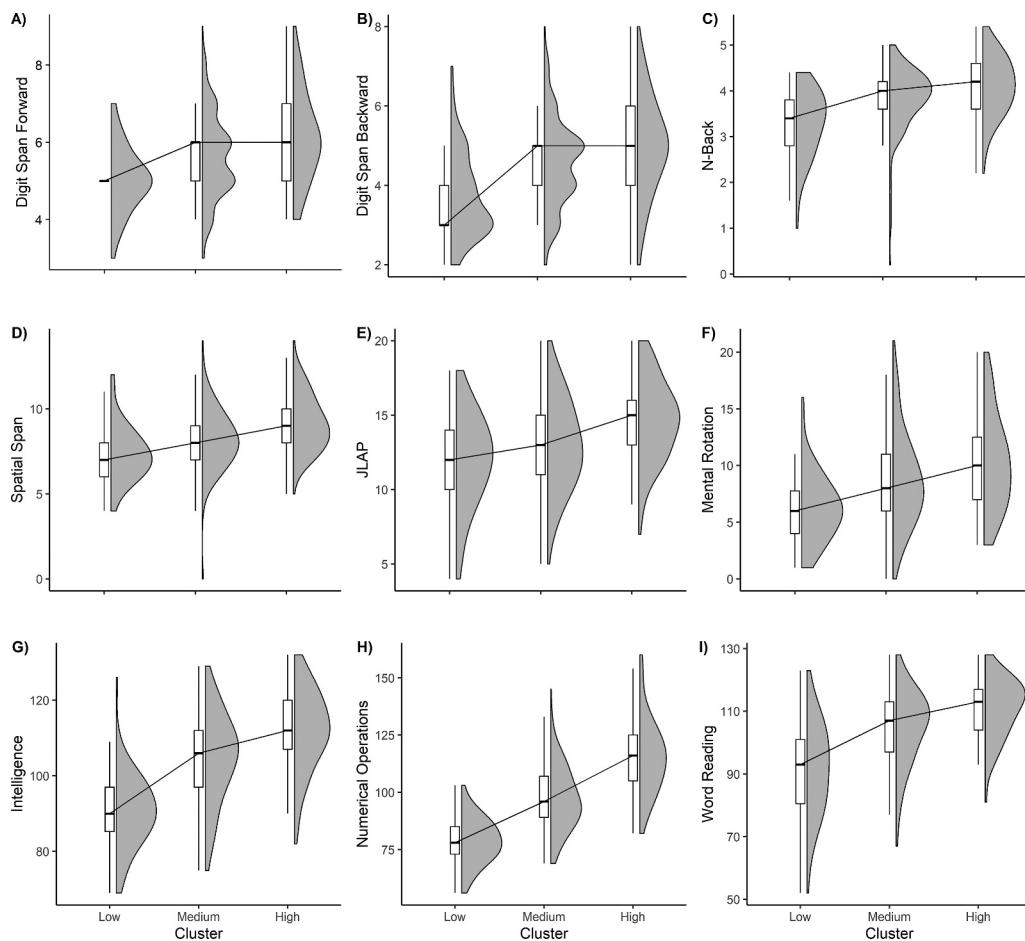
**Figure 3.** Accuracy of classifying students into their respective clusters (with standard error of the mean) using the variables noted on the x-axis (see text). The darker gray for the attitudes and anxiety indicates this model was trained using the sixth-grade sample. All other models were trained using the longitudinal data. All predictors indicates that the model was trained using the six cognitive measures, IQ, Numerical Operations, Word Reading, and the attitudes and anxiety measures. Cog. = the working memory and spatial measures; NO = Numerical Operations; WR = Word Reading; Att./Anx. = mathematics attitudes, anxiety, and English attitudes. The dashed horizontal bar indicates chance performance at 33.33%. All models were significantly above chance performance from permutation testing.

**Table 3.** Bayes Factors for individual and combined predictors.

| Sample        | Measure                          | $BF_{10}$ |
|---------------|----------------------------------|-----------|
| Sixth grade   | Mathematics Efficacy             | 30.52     |
|               | Mathematics Utility              | 0.17      |
|               | English Attitudes                | 0.19      |
|               | Mathematics Anxiety – Evaluation | 0.16      |
|               | Mathematics Anxiety – Learning   | 0.25      |
|               | Intelligence                     | 1.80      |
|               | Digit Span Forward               | 1.32      |
|               | Digit Span Backward              | 0.22      |
|               | N-back                           | 0.26      |
|               | Spatial Span                     | 3.62      |
| Seventh grade | Judgment Line Angle Position     | 4.06      |
|               | Mental Rotations Test            | 0.21      |
|               | Spatial Span & JLAP              | 54.45     |
|               | Spatial Span & IQ                | 24.10     |
|               | JLAP & IQ                        | 39.23     |

Bayes Factors for a given predictor, controlling for the contributions of each other predictor in the model.

Next, a similar logistic regression classifier was trained and validated to predict cluster membership, this time solely using the six cognitive measures. We were able to predict cluster membership with a classification accuracy of 53.51%, which was significantly above chance,  $p < .001$ . As strong IQ differences were seen across clusters, IQ scores were added to the cognitive measures, which improved classification accuracy to 56.4%. While post-hoc comparisons may have indicated larger deficits and strengths in measures of working memory



**Figure 4.** Boxplots illustrating the median and first and third quartiles across the three clusters for (a-f) the six cognitive measures, and (g-i) intelligence, Numerical Operations, and Word Reading. To the left of each boxplot is a density plot showing the distribution of scores.

before controlling for IQ, Bayesian model comparisons (Table 2) showed that individually, both spatial span and performance on the JLAP contributed the most to cluster differences ( $BF_{10}$ 's of 3.62 and 4.06, respectively). However, the overall best model was one that included JLAP, spatial span, as well as IQ. Thus, a combination of measures resulted in above chance accuracies, above the contribution of any single predictor. Spatial span with JLAP ( $BF_{10} = 54.45$ ) appeared to contribute more than either spatial span with IQ ( $BF_{10} = 24.10$ ), or JLAP with IQ (39.23).

For completeness, Numerical Operations and Word Reading scores in seventh grade were also considered. Numerical Operations showed large across-cluster differences in the expected direction (Low < Medium < High),  $BF_{10} = 9.1e^{+42}$ ,  $F(2,339) = 146.48$ ,  $p < .001$ , as did Word Reading scores,  $BF_{10} = 5.7e^{+18}$ ,  $F(2,339) = 56.82$ ,  $p < .001$ . Indeed, adding Numerical Operations scores to the cognitive predictors and IQ increased cluster classification accuracy to 66.7%,  $p < .001$ , and to a lesser extent with the addition of Word Reading scores, 58.2%,  $p < .001$  (see Figure 3). Notably, adding the sixth-grade attitudes/anxiety

variables to the model including the cognitive measures, IQ, Numerical Operations, and Word Reading minimally improved classification accuracy (67.5%,  $p < .001$ ) compared to the alternative models. However, these results show that later cognitive performance of students can reliably predict across-grade mathematical competencies, underscoring the importance of mathematical differences in its relation across different domains.

## Discussion

The primary contributions of the current study include a broad assessment of pre-algebra competencies and the identification of clusters of students with similar patterns of strengths and weaknesses in these competencies, as well as identifying the attitudes and cognitive abilities that best discriminate the clusters. Moreover, we applied state-of-the-art clustering techniques and multivariate pattern analyses to the performance of students in a larger and more diverse sample than is typical in these types of studies. As the reader knows, the use of these methods resulted in the identification of three clusters of students with different patterns of pre-algebra strengths and weaknesses. The results make theoretical and practical contributions to our understanding of mathematical development, but the focus here is on the lowest performing students. This is because their patterns of strengths and weaknesses provide useful information on where to best focus intervention efforts. The cognitive abilities that best classify students into groups provide potentially useful information on the types of scaffolds that might be included in any such interventions.

### ***Mathematics competencies***

The lower-performing students had deficits across mathematical areas, but critically these were not uniform, in keeping with studies of younger students who have difficulties with mathematics learning (Geary et al., 2012). In support of recent work by Siegler and colleagues (Braithwaite et al., 2019; Siegler et al., 2011) and McNeil and colleagues (e.g., McNeil et al., 2019), the lower-performing students had particularly large deficits in their understanding of fractions magnitudes and mathematical equality. If early deficits in these areas predict later performance in algebra – a planned assessment for the current project once data collection is completed – controlling other factors (e.g., intelligence, parental education), then they could be used as a quick screening measure to identify at-risk students before they enter middle school. This would not mean that these are their only deficits but would indicate a broader assessment of their strengths and weaknesses is warranted. Whatever their performance in other areas, targeted interventions in these domains would be an important component of better preparing them for success in algebra. This is because an understanding of fractions and mathematical equality have been found to predict later performance in algebra (Booth et al., 2014; Booth & Koedinger, 2008; Siegler et al., 2012).

The fraction deficits of these lower-performing students were evident with the simple comparison of the magnitudes of two fractions and in terms of their skill at situating fractions magnitudes on the number line. A strikingly ( $d = 2.95$ ) poor understanding of mathematic equivalence also stood out among the lower-performing students. The magnitude of these students' deficits here was roughly double their relative deficits on the fraction measures and more than double their relative cognitive deficits. We did not have information on how they were approaching these problems, but the results are in keeping with

a rigid operational view of the “=” (Alibali et al., 2007; McNeil et al., 2011, 2019). Whatever they were doing, the results here add substantial weight to the argument that mathematical equivalence is a key part of students’ conceptual understanding of mathematics and that a poor understanding of this concept slows mathematical development.

The higher-achieving students had particularly large advantages in computational fluency with whole number and fractions arithmetic, that is, larger advantages than might be expected based on their cognitive performance and intelligence. Fluency is dependent on the memorization of basic facts and procedures and for fractions arithmetic is dependent on a conceptual understanding of these procedures (e.g., that multiplying proper fractions results in smaller magnitudes; Braithwaite et al., 2019, 2018). A relatively better understanding of fractions is also indicated by their strong performance on the fractions number line that in turn may have been facilitated by their ability to transform fractions (e.g.,  $17/4 = 4\ 1/4$ ; Siegler et al., 2011). These advantages in number development and computational fluency are very likely to result in later advantages in learning algebra above and beyond the contributions of cognitive abilities (National Mathematics Advisory Panel, 2008; Siegler et al., 2012). Moreover, these results suggest that achieving computational fluency is an important part of mathematical development, likely because fluency will reduce the working memory demands associated with solving more complex problems in which basic facts and procedures are embedded (Geary & Widaman, 1992; Sweller, van Merriënboer, & Paas, 2019).

The important point is that the results from our large and diverse sample are consistent with previous studies and confirm that a poor understanding of fractions magnitudes and mathematical equivalence are core deficits of low-achieving students. A unique contribution here is that these deficits are evident *above and beyond* their more general mathematics deficits. The pattern of results shown here is useful not only in identifying and targeting specific deficits, but in identifying areas in which higher-performing students especially excel. The latter was most evident on the measures of fluency of solving whole number and fractions problems, which was highlighted by the National Mathematics Advisory Panel (2008) as foundational to preparation to algebra. The implication is that any interventions that focus on at-risk students’ conceptual understanding of fractions and mathematical equivalence should not do so at the expense of building procedural fluency. The relative importance of these different pre-algebra skills in predicting later algebra outcomes is not currently known but will be assessed in the on-going longitudinal component of the study.

### **Academic attitudes and anxiety**

Students’ performance in mathematics, whether it was toward the low- or high-end, had little relation to their attitudes about English. The result indicates that students were differentiating between English and mathematics and that difficulties with mathematics might not be associated with negative attitudes about schooling more broadly, at least for sixth graders. In keeping with many previous studies, the lower-performing students had a lower mathematics self-efficacy, lower beliefs in the utility of mathematics, and higher levels of mathematics anxiety for both learning and evaluation than did their higher-performing peers (Ashcraft & Kirk, 2001; Carey et al., 2016; Dowker et al., 2016; Hill et al., 2016; Maloney & Beilock, 2012). However, when controlling for these various attitudes and anxiety measures instead of analyzing them individually, mathematics self-efficacy stood out in terms of predicting cluster membership. A striking result of this is the weaker relation between mathematical competencies and all other

attitudes and anxiety once controlling for self-efficacy, in support of results found by Devine et al. (2017), that is, that many students struggling with mathematics do not show particularly high levels of mathematics anxiety.

The disconnect between the lower-performing students' attitudes and their actual competencies is illustrated by a contrast of the differences between them and their typically-achieving (middle cluster) peers. Differences in mathematics ranged from  $d = 1.19$  to  $2.95$  ( $M = 1.7$ ), but group differences for mathematics self-efficacy, the best predictor of cluster membership, showed a Cohen's  $d$  of  $0.75$  (Cohen, 1988). The latter is less than half the size of their actual mathematics deficits, with even starker disconnects for the anxiety measures. These patterns are consistent with the broader Kruger-Dunning effect, whereby lower-performing individuals significantly over-estimate their relative competencies in many domains (Kruger & Dunning, 1999). The reasons for the disconnect between actual performance and estimates of relative performance are widely debated and include statistical regression, poor meta-cognition, and insensitivity to the commission of errors, among others (Gignac & Zajenkowski, 2020; Jansen, Rafferty, & Griffiths, 2021; McIntosh, Fowler, Lyu, & Della Sala, 2019). The Kruger-Dunning effect is not generally integrated within studies of children's academic development, but our results suggest that such an integration might be fruitful.

It is not clear what is underlying the effect in this sample, but one potential contributing factor is that these students are receiving inaccurate feedback about their mathematical development and thus might not fully appreciate the difficulties they will face in high school algebra. At the same time, whatever is maintaining their self-efficacy and keeping their anxiety in check could serve as a protective mechanism as they move forward in their mathematics education.

### **Cognitive performance**

Students in the lowest performing group had general deficits in mathematics that were related to intelligence, but above and beyond the effects of intelligence, we observed reliable cognitive differences across clusters. Students in the lowest-performing group had an achievement and cognitive profile that is very similar to that of students identified as having mathematical learning difficulties in the broader literature (Geary et al., 2007; Murphy, Mazzocco, Hanich, & Early, 2007). More precisely, their cognitive profile was characterized by lower intelligence and working memory span (e.g., n-back) than students in other groups, as well as spatial deficits. Interestingly, through Bayesian model comparisons, even though digit span and n-back showed significant main effects, their contribution was mitigated when the effects of other cognitive factors were taken-into-account. This is surprising, as Geary et al. (2012) found especially poor working memory for fifth-graders with a mathematical learning disability, as is commonly found (Bull & Lee, 2014; Mazzocco & Kover, 2007; McLean & Hitch, 1999). We included a more extensive assessment of cognitive abilities than in most previous studies, including various spatial abilities and spatial working memory. The inclusion of these measures is the most likely explanation for the mitigated contributions of standard working memory measures (e.g., digit span) in differentiating lower-achieving students from their higher achieving peers (Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001).

The deficits of the lower-performing group, and differences across clusters broadly, were best explained through the combination of intelligence and specific spatial abilities; specifically, visuospatial working memory and visuospatial attention (JLAP). The relationship

between mathematics achievement and spatial processing has long been of interest (see Bishop, 1980 for review), and multiple lines of evidence have implicated visuospatial processing in the development of mathematics skills (Geary, 2004; Geer et al., 2019; Hawes & Ansari, 2020; Mix, 2019; Mix et al., 2016, 2017; Reuhkala, 2001). This might be due to the use of the visuospatial system for representing numerical and mathematical knowledge and implementing certain types of problem-solving strategies, but this is still uncertain (Hawes & Ansari, 2020; Mix, 2019).

In any case, Li and Geary (2017) found that the relation between visuospatial working memory and mathematics achievement increases across grades. These types of patterns do not mean there is a causal relationship but if there is (see Gilligan et al., 2020), additional deficits in mathematics areas that are influenced by spatial abilities may emerge as students move through middle school and into high school. The results also suggest that incorporating more spatial information into remediation programs could be helpful for struggling students. These could involve short spatial activities that might prime visuospatial attention before the presentation of the mathematical information, as was done by Gilligan and colleagues. Instruction on the use of visuospatial representations to aid in mathematical problem solving, such as word problems, is often helpful (Hord & Xin, 2013). And interventions to improve students' fractions knowledge and their understanding of equivalence often have spatial components built into them (Barbieri et al., 2020; McNeil et al., 2019).

The issue that remains to be determined is whether there is an interaction between student's spatial abilities and the use of spatial interventions in learning key mathematical concepts. It could be that student's with strong spatial abilities do not need the same level of spatial scaffolding as their peers which in turn could lead to an underestimate of the importance of these scaffolds in general classroom settings.

### ***Limitations***

The correlational nature of the data precludes strong causal statements, and even though all mathematics, attitudinal, and cognitive measures were validated during analysis, the results are largely descriptive. Moreover, students were administered many tasks in an attempt to achieve assessment breadth, but one potential cost is fatigue during the assessments that might have resulted in less-than-optimal performance. Despite these limitations, the assessment of a very large and diverse sample of adolescents across core pre-algebra mathematical competencies and academic attitudes and anxiety provided a broader assessment of mathematical strengths and weaknesses for different subgroups of adolescents than is typical in this literature. Against a background of relatively poor achievement, lower-performing students have an especially poor understanding of mathematical equality and do not fully understand fractions comparisons and how fractions magnitudes map onto the number line. The contribution of the spatial measures to the classification of students into clusters suggests that direct spatial interventions (e.g., Gilligan et al., 2020) or the use spatial scaffolds might be useful for the remediation of lower-achieving students' difficulties with equality and fractions.

### ***Acknowledgments***

The study was supported by grants DRL-1659133 from the National Science Foundation and R01 HD087231 from the Eunice Kennedy Shriver National Institute of Child Health and Human

Development. We thank Dana Hibbard of Columbia Public Schools, as well as the staff, faculty, students and families of Columbia Public Schools for their assistance with the logistics of the study. We thank Kristin Balentine, Mandar Bhoyar, Amanda Campbell, Maria Ceriotti, Felicia Chu, Anastasia Compton, Danielle Cooper, Alexis Currie, Kaitlynn Dutzy, Amanda Evans, James Farley, Amy Jordan, Bradley Lance, Kate Leach, Joshua McEwen, Kelly Mebruer, Heather Miller, Natalie Miller, Sarah Peterson, Nicole Reimer, Laura Roider, Brandon Ryffe, Logan Schmidt, Jonathan Thacker, Zehra Unal, and Melissa Willoughby for their assistance with data collection and processing.

## Disclosure statement

No potential conflict of interest was reported by the author(s).

## Funding

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development [R01 HD087231]; National Science Foundation [DRL-1659133].

## References

Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C. (2007). A longitudinal examination of middle school students' understanding of the equal sign and equivalent equations. *Mathematical Thinking and Learning*, 9(3), 221–247. doi:10.1080/10986060701360902

Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. *Journal of Experimental Psychology: General*, 130(2), 224–237. doi:10.1037/0096-3445.130.2.224

Baloglu, M., & Koçak, R. (2006). A multivariate investigation of the differences in mathematics anxiety. *Personality and Individual Differences*, 40(7), 1325–1335. doi:10.1016/j.paid.2005.10.009

Barbieri, C. A., Rodrigues, J., Dyson, N., & Jordan, N. C. (2020). Improving fraction understanding in sixth graders with mathematics difficulties: Effects of a number line approach combined with cognitive learning strategies. *Journal of Educational Psychology*, 112(3), 628–648. doi:10.1037/edu0000384

Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. *Research in Developmental Disabilities*, 35(3), 657–670. doi:10.1016/j.ridd.2013.12.010

Bishop, A. J. (1980). Spatial abilities and mathematics education – A review. *Educational Studies in Mathematics*, 11(3), 257–269. doi:10.1007/BF00697739

Booth, J. L., Barbieri, C., Eyer, F., & Paré-Bagloev, E. J. (2014). Persistent and pernicious errors in algebraic problem solving. *The Journal of Problem Solving*, 7(1), 10–23. doi:10.7771/1932-6246.1161

Booth, J. L., & Koedinger, K. R. (2008). Key misconceptions in algebraic problem solving. *Proceedings of the Annual Meeting of the Cognitive Science Society*, 30, 30. Permalink <https://escholarship.org/content/qt5n28t12n/qt5n28t12n.pdf>

Braithwaite, D. W., Leib, E. R., Siegler, R. S., & McMullen, J. (2019). Individual differences in fraction arithmetic learning. *Cognitive Psychology*, 112, 81–98. doi:10.1016/j.cogpsych.2019.04.002

Braithwaite, D. W., Tian, J., & Siegler, R. S. (2018). Do children understand fraction addition? *Developmental Science*, 21(4), e12601. doi:10.1111/desc.12601

Bull, R., Epsy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functions in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. *Developmental Neuropsychology*, 33(3), 205–228. doi:10.1080/87565640801982312

Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. *Child Development Perspectives*, 8(1), 36–41. doi:10.1111/cdep.12059

Bynner, J. (1997). Basic skills in adolescents' occupational preparation. *The Career Development Quarterly*, 45(4), 305–321. doi:10.1002/j.2161-0045.1997.tb00536.x

Carey, E., Hill, F., Devine, A., & Szűcs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. *Frontiers in Psychology*, 6, 1987. doi:10.3389/fpsyg.2015.01987

Carpenter, T. P., Corbitt, M. K., Kepner, H., Jr., Lindquist, M. M., & Reys, R. (1981). *Results from the second mathematics assessment of the National Assessment of Educational Progress*. Washington, DC: National Council of Teachers of Mathematics.

Casey, B. M., Lombardi, C. M., Pollock, A., Fineman, B., & Pezaris, E. (2017). Girls' spatial skills and arithmetic strategies in first grade as predictors of fifth-grade analytical math reasoning. *Journal of Cognition and Development*, 18(5), 530–555. doi:10.1080/15248372.2017.1363044

Casey, M. B., Nuttal, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. *Developmental Psychology*, 31(4), 697–705. doi:10.1037/0012-1649.31.4.697

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Erlbaum.

Collaer, M., Reimers, L., & Manning, S. (2007). Visuospatial performance on an internet line judgment task and potential hormonal markers: Sex, sexual orientation, and 2D:4D. *Archives of Sexual Behavior*, 36(2), 177–192. doi:10.1007/s10508-006-9152-1

De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. *Journal of Experimental Child Psychology*, 103(2), 186–201. doi:10.1016/j.jecp.2009.01.004

Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. *Intelligence*, 35(1), 13–21. doi:10.1016/j.intell.2006.02.001

Devine, A., Hill, F., Carey, E., & Szűcs, D. (2017). Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. *Journal of Educational Psychology*, 110(3), 431–444. doi:10.1037/edu0000222

Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? *Frontiers in Psychology*, 7, 508. doi:10.3389/fpsyg.2016.00508

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... Sexton, H. (2007). School readiness and later achievement. *Developmental Psychology*, 43(6), 1428–1446. doi:10.1037/0012-1649.43.6.1428

Eccles, J. S., & Wang, M. T. (2016). What motivates females and males to pursue careers in mathematics and science? *International Journal of Behavioral Development*, 40(2), 100–106. doi:10.1177/0165025415616201

Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. *Annual Review of Psychology*, 53(1), 109–132. doi:10.1146/annurev.psych.53.100901.135153

Frisco-van den Bos, I., Van Der Ven, S. H., Kroesbergen, E. H., & van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. *Educational Research Review*, 10, 29–44. doi:10.1111/jcpp.12296

Fuchs, L. S., Seethaler, P. M., Sterba, S. K., Craddock, C., Fuchs, D., Compton, D. L., ... Changas, P. (2020). Closing the word-problem achievement gap in first grade: Schema-based word-problem intervention with embedded language comprehension instruction. *Journal of Educational Psychology*. Advance online. doi:10.1037/edu000046

Geary, D. C. (2004). Mathematics and learning disabilities. *Journal of Learning Disabilities*, 37(1), 4–15. doi:10.1177/00222194040370010201

Geary, D. C. (2011). Cognitive predictors of individual differences in achievement growth in mathematics: A five-year longitudinal study. *Developmental Psychology*, 47(6), 1539–1552. doi:10.1037/a0025510

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. *Child Development*, 78(4), 1343–1359. doi:10.1111/j.1467-8624.2007.01069.x

Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2012). Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. *Journal of Educational Psychology, 104*(1), 206–223. doi:10.1037/a0025398

Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, H. D. (2013). Adolescents' functional numeracy is predicted by their school entry number system knowledge. *PLoS ONE, 8*(1), e54651. doi:10.1371/journal.pone.0054651

Geary, D. C., Hoard, M. K., Nugent, L., Chu, F. W., Scofield, J. E., & Hibbard, D. F. (2019). Sex differences in mathematics anxiety and attitudes: Concurrent and longitudinal relations to mathematical competence. *Journal of Educational Psychology, 111*(8), 1447–1461. doi:10.1037/edu0000355.

Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. *Journal of Educational Psychology, 109*(5), 680–693. doi:10.1037/edu0000159

Geary, D. C., Scofield, J. E., Hoard, M. K., & Nugent, L. (2021). Boys' advantage on the fractions number line is mediated by visuospatial attention: Evidence for a parietal-spatial contribution to number line learning. *Developmental Science, 24*, e13063. doi:10.1111/desc.13063

Geary, D. C., & Widaman, K. F. (1992). Numerical cognition: On the convergence of componential and psychometric models. *Intelligence, 16*(1), 47–80. doi:10.1016/0160-2896(92)90025-M

Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and math performance in elementary school children: A longitudinal investigation. *Developmental Psychology, 55*(3), 637–652. doi:10.1037/dev0000649

Gignac, G. E., & Zajenkowski, M. (2020). The Dunning-Kruger effect is (mostly) a statistical artefact: Valid approaches to testing the hypothesis with individual differences data. *Intelligence, 80*, 101449. doi:10.1016/j.intell.2020.101449

Gilligan, K. A., Thomas, M. S., & Farran, E. K. (2020). First demonstration of effective spatial training for near transfer to spatial performance and far transfer to a range of mathematics skills at 8 years. *Developmental Science, 23*(4), e12909. doi:10.1111/desc.12909

Gunderson, E. A., Park, D., Maloney, E. A., Beilock, S. L., & Levine, S. C. (2018). Reciprocal relations among motivational frameworks, math anxiety, and math achievement in early elementary school. *Journal of Cognition and Development, 19*(1), 21–46. doi:10.1080/15248372.2017.1421538

Hawes, Z., & Ansari, D. (2020). What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. *Psychonomic Bulletin & Review, 27*(3), 465–482. doi:10.3758/s13423-019-01694-7

Hecht, S. A., & Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skills. *Journal of Educational Psychology, 102*(4), 843–859. doi:10.1037/a0019824

Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. *Journal for Research in Mathematics Education, 21*(1), 33–46. doi:10.2307/749455

Hennig, C. (2007). Cluster-wise assessment of cluster stability. *Computational Statistics & Data Analysis, 52*(1), 258–271. doi:10.1016/j.csda.2006.11.025

Hill, F., Mammarella, I. C., Devine, A., Caviola, S., Passolunghi, M. C., & Szűcs, D. (2016). Maths anxiety in primary and secondary school students: Gender differences, developmental changes and anxiety specificity. *Learning and Individual Differences, 48*, 45–53. doi:10.1016/j.lindif.2016.02.006

Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. *Assessment, 10*(2), 178–182. doi:10.1177/1073191103010002008

Hord, C., & Xin, Y. P. (2013). Intervention research for helping elementary school students with math learning difficulties understand and solve word problems: 1996–2010. *Learning Disabilities, 19*, 3–17. doi:10.18666/LDMJ-2013-V19-11-4789

Jaeggi, S. M., Studer-Luethi, B., Buschkuhl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning—Implications for training and transfer. *Intelligence, 38*(6), 625–635. doi:10.1016/j.intell.2010.09.001

Jansen, R. A., Rafferty, A. N., & Griffiths, T. L. (2021). A rational model of the Dunning–Kruger effect supports insensitivity to evidence in low performers. *Nature Human Behaviour*, 1–8. doi:10.1038/s41562-021-01057-0

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. *Journal of the American Statistical Association*, 90 (430), 773–795. doi:10.1080/01621459.1995.10476572

Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability's unique role. *Psychological Science*, 24(9), 1831–1836. doi:10.1177/0956797613478615

Kessels, R. P. C., van Zandvoort, M. J. E., Postma, A., Kappelle, L. J., & de Haan, E. H. F. (2000). The Corsi block-tapping task: Standardization and normative data. *Applied Neuropsychology*, 7(4), 252–258. doi:10.1207/S15324826AN0704\_8

Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle school students' understanding of core algebraic concepts: Equivalence & variable. *Zentralblatt Für Didaktik Der Mathematik (International Reviews on Mathematics Education)*, 37(1), 68–76. doi:10.1007/BF02655899.ris

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. *Journal of Personality and Social Psychology*, 77(6), 1121–1134. doi:10.1037/0022-3514.77.6.1121

Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. *European Journal of Psychology of Education*, 23(1), 77–94. doi:10.1007/BF03173141

Lauermann, F., Tsai, Y. M., & Eccles, J. S. (2017). Math-related career aspirations and choices within Eccles et al.'s expectancy–value theory of achievement-related behaviors. *Developmental Psychology*, 53(8), 1540–1559. doi:10.1037/dev0000367

Lee, K., & Bull, R. (2016). Developmental changes in working memory, updating, and math achievement. *Journal of Educational Psychology*. doi:10.1037/edu0000090

Li, Y., & Geary, D. C. (2017). Children's visuospatial memory predicts mathematics achievement through early adolescence. *PLoS ONE*, 12(2), e0172046. doi:10.1371/journal.pone.0172046

Longo, M. R., & Lourenco, S. F. (2007). Spatial attention and the mental number line: Evidence for characteristic biases and compression. *Neuropsychologia*, 45(7), 1400–1407. doi:10.1016/j.neuropsychologia.2006.11.002

Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: Who has it, why it develops, and how to guard against it. *Trends in Cognitive Sciences*, 16(8), 404–406. doi:10.1016/j.tics.2012.06.008

Mamedova, S., Sparks, D., & Hoyer, K. M. (2017). *Adult education attainment and assessment scores: A cross-national comparison* (NCES 2018-007). Washington, DC: National Center for Education Statistics.

Martin, W. G., Strutchens, M. E., & Elliott, P. C. (2007). *The learning of mathematics*. Reston, VA: National Council of Teachers of Mathematics.

Mazzocco, M., & Devlin, K. T. (2008). Parts and holes: Gaps in rational number sense in children with vs. without mathematical learning disability. *Developmental Science*, 11(5), 681–691. doi:10.1111/j.1467-7687.2008.00717.x

Mazzocco, M. M. M., & Kover, S. T. (2007). A longitudinal assessment of executive function skills and their association with math performance. *Child Neuropsychology*, 13(1), 18–45. doi:10.1080/09297040600611346

McIntosh, R. D., Fowler, E. A., Lyu, T., & Della Sala, S. (2019). Wise up: Clarifying the role of metacognition in the Dunning–Kruger effect. *Journal of Experimental Psychology: General*, 148(11), 1882–1897. doi:10.1037/xge0000579

McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. *Journal of Experimental Child Psychology*, 74(3), 240–260. doi:10.1006/jecp.1999.2516

McNeil, N. M., Fyfe, E. R., Petersen, L. A., Dunwiddie, A. E., & Brletic-Shipley, H. (2011). Benefits of practicing  $4 = 2 + 2$ : Nontraditional problem formats facilitate children's understanding of mathematical equivalence. *Child Development*, 82(5), 1620–1633. doi:10.1111/j.1467-8624.2011.01622.x



McNeil, N. M., Hornburg, C. B., Devlin, B. L., Carrazza, C., & McKeever, M. O. (2019). Consequences of individual differences in children's formal understanding of mathematical equivalence. *Child Development*, 90(3), 940–956. doi:10.1111/cdev.12948

Meece, J. L., Wigfield, A., & Eccles, J. S. (1990). Predictors of math anxiety and its influence on young adolescents' course enrollment intentions and performance in mathematics. *Journal of Educational Psychology*, 82(1), 60–70. doi:10.1037/0022-0663.82.1.60

Mix, K. S. (2019). Why are spatial skill and mathematics related? *Child Development Perspectives*, 13 (2), 121–126. doi:10.1111/cdep12323

Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. *Advances in Child Development and Behavior*, 42, 197–243. doi:10.1016/B978-0-12-394388-0.00006-X

Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, K. R., (2016). Separate but correlated: The latent structure of space and mathematics across development. *Journal of Experimental Psychology: General*, 120(6), 1227–492. doi:10.1037/xge0000182

Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. (2017). The latent structure of spatial skills and mathematics: A replication of the two-factor model. *Journal of Cognition and Development*, 18(4), 465–492. doi:10.1080/15248372.2017.1346658

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. *Cognitive Psychology*, 41(1), 49–100. doi:10.1006/cogp.1999.0734

Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. *Journal of Experimental Psychology: General*, 130(4), 621–640. doi:10.1037/0096-3445.130.4.621

Murphy, M. M., Mazzocco, M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. *Journal of Learning Disabilities*, 40(5), 458–478. doi:10.1177/0022194070400050901

National Mathematics Advisory Panel. (2008). *Foundations for success: Final report of the national mathematics advisory panel*. Washington, DC: United States Department of Education. <http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf>

Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test: Different versions and factors that affect performance. *Brain and Cognition*, 28(1), 39–58. doi:10.1006/brcg.1995.1032

R Core Team. (2017). *R: A language and environment for statistical computing*. Retrieved from <https://www.R-project.org/>

Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. *Educational Psychology*, 21(4), 387–399. doi:10.1080/01443410120090786

Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. *Psychological Bulletin*, 135(6), 943–973. doi:10.1037/a0017327

Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. *Psychological Science*, 24(7), 1301–1308. doi:10.1177/0956797612466268

Rouder, J. N., Engelhardt, C. R., McCabe, S., & Morey, R. D. (2016). Model comparison in ANOVA. *Psychonomic Bulletin & Review*, 23(6), 1779–1786. doi:10.3758/s13423-016-1026-5

SAS Institute. (2014). *Statistical analysis system 9.2*. Cary, NC: Author.

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., ... Chen, M. (2012). Early predictors of high school mathematics achievement. *Psychological Science*, 23(7), 691–697. doi:10.1177/0956797612440101

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. *Cognitive Psychology*, 62(4), 273–296. doi:10.1016/j.cogpsych.2011.03.001

Swanson, H. L., Jerman, O., & Zheng, X. (2008). Growth in working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. *Journal of Educational Psychology*, 100(2), 343–379. doi:10.1037/0022-0663.100.2.343

Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. *Educational Psychology Review*, 31(2), 261–292. doi:[10.1007/s10648-019-09465-5](https://doi.org/10.1007/s10648-019-09465-5)

Talsma, K., Schüz, B., Schwarzer, R., & Norris, K. (2018). I believe, therefore I achieve (and vice versa): A meta-analytic cross-lagged panel analysis of self-efficacy and academic performance. *Learning and Individual Differences*, 61, 136–150. doi:[10.1016/j.lindif.2017.11.015](https://doi.org/10.1016/j.lindif.2017.11.015)

Tolar, T. D., Lederberg, A. R., & Fletcher, J. M. (2009). A structural model of algebra achievement: Computational fluency and spatial visualisation as mediators of the effect of working memory on algebra achievement. *Educational Psychology*, 29(2), 239–266. doi:[10.1080/01443410802708903](https://doi.org/10.1080/01443410802708903)

Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: A meta-analytic review. *Educational Psychologist*, 39(2), 111–133. doi:[10.1207/s15326985ep3902\\_3](https://doi.org/10.1207/s15326985ep3902_3)

Valentine, K. D., Buchanan, E. M., Scofield, J. E., & Beauchamp, M. T. (2019). Beyond p values: Utilizing multiple methods to evaluate evidence. *Behaviormetrika*, 46(1), 121–144. doi:[10.1007/s41237-019-00078-4](https://doi.org/10.1007/s41237-019-00078-4)

Van de Weijer-Bergsma, E., Kroesbergen, E. H., & Van Luit, J. E. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. *Memory & Cognition*, 43(3), 367–378. doi:[10.3758/s13421-014-0480-4](https://doi.org/10.3758/s13421-014-0480-4)

Vanbinst, K., Ceulemans, E., Ghesquière, P., & De Smedt, B. (2015). Profiles of children's arithmetic fact development: A model-based clustering approach. *Journal of Experimental Child Psychology*, 133, 29–46. doi:[10.1016/j.jecp.2015.01.003](https://doi.org/10.1016/j.jecp.2015.01.003)

Wechsler, D. (1999). *Wechsler abbreviated scale of intelligence*. San Antonio, TX: PsychCorp, Harcourt Assessment, Inc.

Wechsler, D. (2009). *Wechsler individual achievement test* (3rd ed.). San Antonio, TX: Psychological Corporation.

Woods, D. L., Kishiyama, M. M., Yund, E. W., Herron, T. J., Edwards, B., Poliva, O., ... Reed, B. (2011). Improving digit span assessment of short-term verbal memory. *Journal of Clinical and Experimental Neuropsychology*, 33(1), 101–111. doi:[10.1080/13803395.2010.493149](https://doi.org/10.1080/13803395.2010.493149)

Zorzi, M., Bonato, M., Treccani, B., Scalabrin, G., Marenzi, R., & Priftis, K. (2012). Neglect impairs explicit processing of the mental number line. *Frontiers in Human Neuroscience*, 6, 125. doi:[10.3389/fnhum.2012.00125](https://doi.org/10.3389/fnhum.2012.00125)