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Mathematics Clusters Reveal Strengths and Weaknesses in 
Adolescents’ Mathematical Competencies, Spatial Abilities, and 
Mathematics Attitudes
John E. Scofield, Mary K. Hoard, Lara Nugent, Joseph LaMendola V, and David C. Geary

University of Missouri

ABSTRACT
Pre-algebra mathematical competencies were assessed for a large and 
diverse sample of sixth graders (n = 1,926), including whole number and 
fractions arithmetic, conceptual understanding of equality and fractions 
magnitudes, and the fractions number line. The goal was to determine if 
there were clusters of students with similar patterns of pre-algebra 
strengths and weaknesses and if variation between clusters was related 
to mathematics attitudes, anxiety, or for a subsample (n = 342) some 
combination of intelligence, working memory, or spatial abilities. 
Critically, strengths and weaknesses were not uniform across the three 
identified clusters. Lower-performing students had pronounced deficits 
in their understanding of mathematical equality, fractions magnitudes, 
and the fractions number line. Higher-performing students had particu
lar advantages in whole number and fractions arithmetic, and the frac
tions number line. Students could be reliably placed into clusters based 
on their mathematics self-efficacy and a combination of intelligence and 
spatial abilities. The results contribute to our understanding of key 
aspects of students’ mathematical development, highlight areas in 
need of intervention for at-risk students, and identify cognitive areas 
in which scaffolds might be incorporated into these interventions.

Introduction

Students’ mathematical competencies provide a gateway to well-paying mathematics- 
intensive careers and contribute to ease of coping with important life decisions (Bynner, 
1997; Reyna, Nelson, Han, & Dieckmann, 2009). Unfortunately, there is substantial varia
tion in the extent to which students develop these competencies, differences that persist into 
adulthood (Mamedova, Sparks, & Hoyer, 2017). Most of these studies have examined the 
relation between early mathematical competencies and later mathematics achievement or 
economic outcomes based on composite achievement scores (Duncan et al., 2007; Ritchie & 
Bates, 2013). These studies confirm the importance of overall mathematical competencies 
but do not capture the variation existing within groups of students, especially those who 
have difficulties learning mathematics (Bartelet, Ansari, Vaessen, & Blomert, 2014; Geary, 
Hoard, Nugent, & Bailey, 2012; Vanbinst, Ceulemans, Ghesquière, & De Smedt, 2015). 
Elementary school children have relative mathematical strengths as well as weaknesses 
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(Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Geary et al., 2012), but much less is 
known about patterns of development in middle-school students.

Performance in middle school (grades 6 to 8, 11- to 13-year-olds) mathematics is critical 
because it lays the foundation for success in high school (grades 9 to 12, 14- to 18-year-olds) 
algebra, and provides an opportunity to identify and remediate deficits beforehand. 
Remedial interventions are typically focused on specific competencies, such as the fractions 
number line or mathematical word problems (e.g., Barbieri, Rodrigues, Dyson, & Jordan, 
2020; Fuchs et al., 2020), and would be most beneficial if they targeted the most pronounced 
deficits of at-risk students. Accordingly, one goal here was to determine if lower-achieving 
students showed uniform deficits in pre-algebra competencies or strengths and weaknesses 
in these competencies. Identifying the latter would be useful for the development of focused 
remedial interventions. A second goal was to determine if clusters of students with different 
mathematical strengths and weaknesses differed in their mathematics attitudes, anxiety, and 
cognitive abilities. We were particularly interested in any relation between profiles of 
strengths and weaknesses and spatial abilities, as a consistent relation between the latter 
and mathematics is found but not fully understood (Hawes & Ansari, 2020; Kell, Lubinski, 
Benbow, & Steiger, 2013; Mix, 2019).

The study here is part of an on-going longitudinal project that is focused on individual 
differences in preparation for and success in high school algebra, as related (in part) to mathe
matics attitudes, anxiety, and spatial abilities. A novel feature of the study is the broad assessment 
of pre-algebra competencies and mathematics attitudes and anxiety in a large (n = 1,926) and 
diverse group of sixth graders, and the integration of measures of intelligence, working memory, 
and spatial abilities of a subsample of them in seventh grade (n = 342). We used state-of-the-art 
clustering techniques to identify groups of sixth graders with different patterns of strengths and 
weaknesses in pre-algebra arithmetic and multivariate pattern analyses to identify attitudinal and 
cognitive differences across these clusters.

Mathematical competencies

It has been shown that success in mathematics is dependent, in part, on the adequate develop
ment of prerequisite skills (Geary, Nicholas, Li, & Sun, 2017; Lee & Bull, 2016). As noted, the 
larger study was designed to, among other things, identify the most important prerequisite 
competencies needed for later success in high school algebra and the selection of prerequisite 
measures was based on recommendations from the National Mathematics Advisory Panel 
(NMAP, 2008) and results of cognitive studies of mathematical development (e.g., Alibali, 
Knuth, Hattikudur, McNeil, & Stephens, 2007; Braithwaite, Leib, Siegler, & McMullen, 2019; 
Braithwaite, Tian, & Siegler, 2018; Siegler, Thompson, & Schneider, 2011). Competence with 
whole number arithmetic was identified by the NMAP as foundational to the preparation for 
algebra and is predictive of concurrent (Tolar, Lederberg, & Fletcher, 2009) and longitudinal 
algebraic outcomes (Casey, Lombardi, Pollock, Fineman, & Pezaris, 2017; Siegler et al., 2012). 
We thus included a measure of fluency with whole number arithmetic.

Fractions were highlighted by the NMAP (2008) and empirical studies support their 
importance for preparation for algebra. For instance, elementary students’ competence with 
fractions predicts their later competence in high school algebra, controlling domain-general 
abilities and family background (Siegler et al., 2012). In the United States, students typically 
begin to learn fractions by fourth grade (sometimes earlier). Nevertheless, about half of 
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them struggle with correctly ordering a series of fractions in eighth grade (Martin, 
Strutchens, & Elliott, 2007), and many of them do not understand that the sum of 12/13 
and 7/8 is closer to 2 than 19 or 21 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; 
Hecht & Vagi, 2010; Mazzocco & Devlin, 2008). In other words, there is substantive 
variation in middle school students’ understanding of fractions and this variation is likely 
to predict variation in later algebra outcomes. Thus, we included measures of fractions 
arithmetic and measures that assess students’ understanding of fractions magnitudes (e.g., 
the fractions number line).

Eventual competence with algebra is also dependent on an understanding of several core 
concepts (Booth, Barbieri, Eyer, & Paré-Blagoev, 2014). In an analysis of algebra errors 
committed by high school students, Booth and colleagues identified several persistent 
categories of conceptual error that predicted end of year performance. Difficulties with 
mathematical equality, variables (e.g., a belief they represent a single value), and mathema
tical properties (e.g., confusing order of operation) were the strongest predictors of later 
algebra performance (see also Booth & Koedinger, 2008). We were not able to assess all of 
these and focused on equivalence, as students’ difficulties here have been extensively studied 
(Knuth, Alibali, McNeil, Weinberg, & Stephens, 2005). Middle-school students who do not 
understand equivalence typically interpret the “=” as a signal that the preceding numbers 
need to be operated on, such as added, rather than an indicator of the relation between the 
values to the left and right of it. Students who have an operational conception of equivalence 
have difficulties solving problems presented in a nonstandard format, such as 6 + 3 = _ – 1, 
and will often indicate that the “=” means that they should solve the problem (Alibali et al., 
2007; McNeil, Fyfe, Petersen, Dunwiddie, & Brletic-Shipley, 2011; McNeil et al., 2019). We 
included nonstandard format equivalence problems to assess this misconception.

Mathematics attitudes and anxiety

Eventual success in algebra and beyond can also be influenced by confidence or efficacy 
about one’s abilities (i.e., a personal judgment of one’s ability to perform well in future 
endeavors, see Talsma, Schüz, Schwarzer, & Norris, 2018) and by beliefs about the later 
usefulness or utility of mathematics (e.g., as related to future occupation; Eccles et al., 2016). 
Several meta-analyses have revealed small but reliable relations between students’ academic 
efficacy and their later grades or achievement (Talsma et al., 2018; Valentine, DuBois, & 
Cooper, 2004), however cause-and-effect are unclear. Older students’ and adults’ academic 
achievement contributes to subsequent attitudes, and these contribute to later achievement. 
Similar bidirectional effects are sometimes (Gunderson, Park, Maloney, Beilock, & Levine, 
2018) but not always (Geary et al., 2019) found in younger students. In any event, 
Lauermann, Tsai, and Eccles (2017) found reciprocal relations between mathematics self- 
efficacy, utility beliefs, and math-intensive career plans throughout high school, which in 
turn predicted employment in a mathematics-intensive profession 15 years later.

Mathematical competencies are also correlated with mathematics anxiety, although 
cause-and-effect relations are again not fully understood (Carey, Hill, Devine, & Szücs, 
2016; Devine, Hill, Carey, & Szűcs, 2017; Hill et al., 2016). Mathematics anxiety is appre
hension or fear associated with thoughts about engagement in mathematical activities 
(Dowker, Sarkar, & Looi, 2016). One possibility is that anxiety undermines students’ 
mathematical performance by the intrusion of performance-related thoughts during 
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pr o bl e m  s ol vi n g  t h at  i n  t ur n  r e d u c e  w or ki n g  m e m or y  c a p a cit y  a n d  i n cr e as e  pr o bl e m- 
s ol vi n g  err ors  ( As h cr aft  &  Kir k, 2 0 0 1 ;  M al o n e y  &  B eil o c k, 2 0 1 2 ).  M at h e m ati cs  a n xi et y 
c a n  als o  r es ult  i n  a n  a v oi d a n c e  of  m at h e m ati cs  a n d  r e d u c e d  o p p ort u niti es  t o  l e ar n 
( H e m br e e, 1 9 9 0 ;  M e e c e,  Wi g fi el d,  &  E c cl es, 1 9 9 0 ).  M at h e m ati cs  a n xi et y  a p p e ars  t o  b e 
c o m p os e d  of  s e v er al  c o m p o n e nts  t h at  c o ul d  i n fl u e n c e  m at h e m ati c al  d e v el o p m e nt  a n d 
p erf or m a n c e  i n  di ff er e nt  w a ys.  T h e  c or e  c o m p o n e nts  i n cl u d e  a n xi et y  a b o ut  m at h e m ati cs 
l e ar ni n g g e n er all y ( e. g., r e a di n g a m at h t e xt b o o k) a n d a n xi et y d uri n g m at h e m ati cs e v al u a-
ti o ns ( B al o gl u & K o ç a k, 2 0 0 6 ). T h e f or m er c o ul d p ot e nti all y r es ult i n a g e n er al a v oi d a n c e of 
m at h e m ati cs a n d t h e l att er u n d er p erf or m a n c e o n hi g h-st a k es t ests.

If  m at h e m ati cs  attit u d es  or  a n xi et y  ar e  ass o ci at e d  wit h  s p e ci fi c  cl ust ers  of  pr e- al g e br a 
str e n gt hs a n d w e a k n ess es, t h e y c o ul d e x a c er b at e or a m eli or at e at-ris k st u d e nts’ e n g a g e m e nt 
i n mi d dl e-s c h o ol m at h e m ati cs a n d t h us t h eir pr e p ar ati o n f or al g e br a. T o ass ess if t h er e is 
s u c h  a  r el ati o n,  w e  i n cl u d e d  m e as ur es  of  m at h e m ati cs  utilit y  b eli efs,  s elf- e ffi c a c y,  a n d 
a n xi et y  as  r el at e d  t o  m at h e m ati cs  l e ar ni n g  a n d  e v al u ati o ns.  W e  als o  i n cl u d e d  a  m e as ur e 
of st u d e nts’ attit u d es a b o ut E n glis h as a c o ntr ast t o t h eir m at h e m ati cs attit u d es, t h at is, t o 
d et er mi n e if t h e r e p ort e d attit u d es w er e s p e ci fi c t o m at h e m ati cs.

C o g niti v e  m e c h a ni s m s

T h e  m ost  c o nsist e nt  c o g niti v e  pr e di ct ors  of  o v er all  m at h e m ati cs  a c hi e v e m e nt  or  l o n g -
it u di n al  g ai ns  i n  a c hi e v e m e nt  ar e  i nt elli g e n c e  a n d  c o m p o n e nts  of  e x e c uti v e  f u n cti o n 
( D e ar y, Str a n d, S mit h, & F er n a n d es, 2 0 0 7 ; G e ar y, 2 0 1 1 ; G e ar y et al., 2 0 1 7 ; V a n d e W eij er- 
B er gs m a, Kr o es b er g e n, & V a n L uit, 2 0 1 5 ). T h e l att er i n cl u d es u p d ati n g or h ol di n g s o m e-
t hi n g  i n  mi n d  ( oft e n  c all e d  w or ki n g  m e m or y),  i n hi biti o n  of  t as k-irr el e v a nt  i nf or m ati o n, 
a n d s hifti n g fr o m o n e t as k t o a n ot h er a n d t h e n a p pr o pri at el y r et ur ni n g t o t h e first ( Mi y a k e 
et al., 2 0 0 0 ). Of t h es e, t h e m ost c o nsist e nt pr e di ct or of m at h e m ati cs a c hi e v e m e nt is u p d at -
i n g or w or ki n g m e m or y ( B ull & L e e, 2 0 1 4 ; Fris o- v a n d e n B os et al., 2 0 1 3 ). T h es e c o g niti v e 
a biliti es ar e p arti c ul arl y i m p ort a nt f or m at h e m ati cs l e ar ni n g b e c a us e of t h e hi g hl y a bstr a ct 
n at ur e  of  t h e  m at eri al  a n d  t h e  c o nti n u al  i ntr o d u cti o n  of  n e w  m at eri al  d uri n g  s c h o oli n g. 
Alt h o u g h  t h e  f o c us  of  t h e  l ar g er  pr oj e ct  is  o n  s p ati al  a biliti es,  w e  i n cl u d e d  m e as ur es  of 
w or ki n g m e m or y a n d i nt elli g e n c e as c o ntr ols.

O n e g o al, as n ot e d, of t h e l ar g er pr oj e ct is t o e x a mi n e t h e r el ati o n b et w e e n s p ati al a biliti es 
a n d  e as e  of  l e ar ni n g  s p ati al-r el at e d  as p e cts  of  al g e br a  ( e. g.,  r e c o g ni zi n g  h o w  c o m m o n 
f u n cti o ns  m a p  t o  c o or di n at e  s p a c e)  i n  hi g h  s c h o ol.  O n  t h e  b asis  of  t his  g o al  a n d 
a c o nsist e nt fi n di n g of a r el ati o n b et w e e n s p ati al a n d m at h e m ati c al a biliti es ( G e er, Q ui n n, 
& G a nl e y, 2 0 1 9 ; H a w es & A ns ari, 2 0 2 0 ; Mi x, 2 0 1 9 ; Mi x et al., 2 0 1 6 , 2 0 1 7 ), w e i n cl u d e d t hr e e 
m e as ur es of s p ati al c o m p et e n c e – vis u os p ati al w or ki n g m e m or y, vis u os p ati al att e nti o n, a n d 
m e nt al r ot ati o n – i n t h e st u d y. W e i n cl u d e d t hr e e m e as ur es b e c a us e t h e r el ati v e i m p ort a n c e 
of di ff er e nt c o m p o n e nts of s p ati al a bilit y c o ul d v ar y wit h t h e c o m pl e xit y a n d c o nt e nt of t h e 
m at h e m ati cs  ass ess m e nts  ( B ull,  E ps y,  &  Wi e b e, 2 0 0 8 ;  G e ar y  et  al., 2 0 0 7 ).  F or  i nst a n c e, 
Gilli g a n,  T h o m as, a n d  F arr a n ( 2 0 2 0 )  f o u n d t h at a  s h ort-t er m i nt er v e nti o n t h at  e n h a n c e d 
s kill at r ot ati n g o bj e cts i m pr o v e d p erf or m a n c e o n missi n g it e m pr o bl e ms ( e. g., 2 +  = 7), 
w h er e as e n h a n c e m e nt of s e nsiti vit y t o pr o p orti o n al r el ati o ns i m pr o v e d a c c ur a c y i n pl a ci n g 
n u m er als o n t h e n u m b er li n e.

Vis u os p ati al  s h ort-t er m  m e m or y  a p p e ars  t o  b e  i n v ol v e d  i n  a n  arr a y  of  m at h e m ati c al 
d o m ai ns, es p e ci all y i n l at er gr a d es, b ut t h es e s p e ci fi c r el ati o ns ar e n ot f ull y u n d erst o o d ( D e 
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Smedt et al., 2009; Li & Geary, 2017; Swanson, Jerman, & Zheng, 2008). Visuospatial 
attention contributes to the ability to represent and compare the relative magnitude of 
numerals (Longo & Lourenco, 2007; Zorzi et al., 2012) and is more strongly related to 
performance on the fractions number line than are other spatial abilities, such as visuos
patial working memory (Geary, Scofield, Hoard, & Nugent, 2021). The latter finding 
appears to be consistent with the results of Gilligan et al. (2020); specifically, focusing 
students’ attention on proportional distance improved number line performance. More 
complex spatial abilities (including mental rotation) are related to some aspects of math
ematical abilities (Mix & Cheng, 2012), and may become increasingly important as math
ematical development shifts from number/arithmetic to algebra/geometry (Casey, Nuttall, 
Pezaris, & Benbow, 1995; Kyttälä & Lehto, 2008).

Current study

The current study extends prior work with the inclusion of multiple mathematical compe
tencies in a single assessment and in doing so enabled an examination of patterns of 
strengths and weaknesses in a large and diverse sample of lower- and higher-achieving 
students. The study also contributes to prior work by simultaneously identifying the 
attitudinal, anxiety, and cognitive strengths and weaknesses that emerge in different 
achievement clusters. More precisely, we used state-of-the-art clustering procedures to 
identify groups of students with different patterns of pre-algebra mathematical strengths 
and weaknesses and multivariate pattern analysis to identify attitudinal and cognitive 
predictors of cluster membership.

An assessment of whether intelligence, working memory, or one or several forms of 
spatial ability are associated with weaknesses in pre-algebra competencies could have 
implications for the development of remedial interventions. This is because interventions 
that include scaffolds that accommodate cognitive weaknesses are more successful in 
remediating at-risk students’ mathematical deficits than are interventions that do not 
include them (e.g., Fuchs et al., 2020). Information on the cognitive correlates of students 
with an at-risk profile of pre-algebra competencies would identify both areas of potential 
intervention and provide insights into the type of scaffold that might enhance remediation 
efforts. Similarly, the identification of attitudes or anxiety that predict cluster membership 
could indicate additional areas of remediation.

Method

Participants

The original sample included 2,027 sixth graders who were assessed across two cohorts 
(ns = 1,157, 870) conducted in collaboration with the Columbia Public Schools in 
Columbia, MO. Data were missing for 101 of these students (e.g., no information on 
student sex), leaving 1,926 of them for the analyses of mathematics performance and 
attitudes. The first cohort included approximately 86% of all sixth-grade students enrolled 
the district. The remaining 14% of students were absent the day of the assessment or unable 
to participate. The second cohort included 83% of invited sixth graders. The sampling for 
the two cohorts occurred in consecutive academic years and were otherwise identical, with 
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the exception that one school was omitted for the second cohort because of over- 
representation of students from this school (from the first cohort) in the longitudinal 
sample. As part of an on-going longitudinal study, 342 students from the sixth-grade 
sample were tested again in seventh grade.

Demographic information was not available for the sixth-grade sample but should be 
very similar to that of the district as a whole. For the district, sixth-graders were 61% white, 
20% black, 5% Asian, 7% Hispanic, and 6% multiracial, and 43% qualified for free or 
reduced lunch. Demographic information was obtained through a parent survey 
(n = 281) for the longitudinal sample. Eighty-eight percent of the students were non- 
Hispanic, 6% Hispanic or Latino, with the remaining unknown. The racial composition 
of the sample was 70% White, 14% Black, 3% Asian, 1% Native American, 10% multi-racial, 
and the remaining unknown. Self-reported annual household income was as follows: 0 
USD-$24,999 (12%); 25,000 USD-$49,999 (18%); 50,000 USD-$74,999 (12%); 75,000 USD- 
$99,999 (22%); 100,000 USD-$149,999 (19%); and 150,000 USD+ (17%). Seventy-one 
percent of the students had at least one parent with a college degree. Sixteen percent of 
families received food assistance, and six percent housing assistance.

Mathematics tests

The tests, detailed instructions, and raw data for the key analyses are available on OSF 
(https://osf.io/qwfk6/). The assessment included an Exponents and Radical Rules Test 
that is not reported here because of a high nonresponse rate, and an Equal Sign task due 
to a low number of trials. All tests were administered using paper-and-pencil for the 
first cohort, and the Equality Problems, Fractions Comparison Test, Fractions Number 
Line, and Academic Attitudes and Mathematics Anxiety were assessed using iPads for 
the second cohort. There were only 2 significant cohort effects (all other p’s > .07), 
whereby students in the first cohort scored higher on the arithmetic fluency (p = .002, 
d = .14) and fractions comparison test (p = .0003, d = .17). Given the null effects for all 
other measures and the small difference for the arithmetic fluency and fractions com
parison test, the two cohorts were combined.

Arithmetic fluency
The test included 24 whole-number addition (e.g., 87 + 5), 24 subtraction (e.g., 35– 8), and 
24 multiplication (e.g., 48 × 2) problems. Students had 2 min to solve as many problems as 
possible. A composite arithmetic fluency score was based on the number correct across the 
three operations (M = 18.94, SD = 6.25; α = .57). Despite the relatively low reliability, 
performance on this measure is more strongly correlated with mathematics (r = .62) than 
reading achievement (r = .32), indicating the measure shows both convergent and discri
minant validity.

Equality problems
Students who struggle with mathematical equality have difficulties with problems in non
standard formats, such as 8 = __ + 2– 3. Thus, we created a 10-item test in multiple choice 
format (4 options) to assess competence at solving such problems. 3.7% of the items were 
unanswered and scored as incorrect. A composite was the mean percent correct for the 10 
items (M = 79.99, SD = 23.89, α = .80).
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Fractions arithmetic
The items were sets of 12 addition (e.g., 1/3 + 1/6), 12

multiplication (e.g., 1/4 x 1/8), and 10 division (e.g., 2 ÷ 1/4) problems. Students had 
1 min for each operation. The score was the number of correctly solved problems 
(M = 10.33, SD = 6.91; α = .62). Despite the relatively low reliability, performance on this 
measure is more strongly correlated with mathematics (r = .70) than reading achievement 
(r = .41), indicating the measure shows both convergent and discriminant validity.

Fractions comparison
For each of 48 pairs, students circled the larger of two fractions, within 90 sec. There were four 
item types that reflect common problem-solving errors and strategies (see Geary, Hoard, 
Nugent, & Bailey, 2013). In the first type the numerator is constant, but the denominator differs 
(e.g., 2/4 2/5), which assesses students’ understanding of the inverse relation between the value of 
the denominator and the quantity represented by the fraction. In the second type numerators 
have a ratio of 1.5 and denominators a ratio between 1.1 and 1.25 (e.g., 3/10 2/12), making 
identification of the larger magnitude easier using numerators (correct) than denominators 
(incorrect). Numerators and denominators in the third type are reversed (e.g., 5/6 6/5), which 
requires students to choose the fraction with the larger numerator and smaller denominator. The 
final type involves skill at using 1/2 as an anchor for estimating fraction values (e.g., 20/40 8/9). 
The foils are always close to one but contain smaller numerals than the 1/2 fraction. A composite 
was based on performance (correct – incorrect; M = 16.70, SD = 15.32) across the four item 
types (α = .87).

Fractions number line
Students sequentially placed 10 fractions (10/3, 1/19, 7/5, 9/2, 13/9, 4/7, 8/3, 7/2, 17/4, 11/4) 
that were centrally presented in large font onto the 0-to-5 number line (Siegler et al., 2011), 
and 94.4% of the lines were completed within a 4 min time limit. The data for the remaining 
5.6% of lines were estimated using a multiple imputations procedure in SAS (2014). 
Individual items were scored as the absolute percent deviation between the placement 
and the correct location, which were averaged across the 10 items (M = 20.50, 
SD = 14.09, α = .85), and then multiplied by −1 so that higher scores represent more 
accurate placements.

Academic attitudes and anxiety

The grade-appropriate mathematics and English language attitudes measures were from the 
Michigan Study of Adolescent and Adult Transitions (http://garp.education.uci.edu/msalt. 
html) and are designed to assess students’ self-evaluated efficacy and their beliefs about the 
long-term utility of competence in these areas (Eccles & Wigfield, 2002; Meece et al., 1990). 
The mathematics attitudes measure included seven items on a 1-to-7 Likert scale; e.g., “How 
much do you like doing math?” rated from 1 (“a little”) to 7 (“a lot”), with six similar English 
items. We used three approaches to determine their factor structure, including an explora
tory principle component analysis (PCA) with promax rotation (SAS, 2014), as well as 
parallel and MAP analyses (R Core Team, 2017).
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Mathematics and English attitudes
The MAP analysis suggested one component, but the eigenvalues from the PCA and the 
parallel analysis suggested two mathematics factors. The factor loadings were consistent 
with distinct utility (Items 1 to 4, inclusive) and self-efficacy (Items 5 to 7, inclusive) 
dimensions. The scores were the mean of the corresponding items (α = .77 for utility; 84 
for self-efficacy). All of the procedures indicated a single factor for English Attitudes, which 
was scored as the mean of the six items (α = .85).

Mathematics anxiety
The 10 items were adapted from Hopko, Mahadevan, Bare, and Hunt (2003). Each item 
(e.g., “Taking an examination in a math course”) was rated on a 1 (induces low anxiety) to 5 
(induces high anxiety) scale. All three analyses indicated two factors. The first was defined 
by five items that involved learning mathematics (e.g., “Having to use the tables in the back 
of a math book”). The second factor was defined by four items that involved some type of 
evaluation (e.g., “Taking an examination in a math course”), and one other item (i.e., “In 
general, how anxious are you about math?”). Composite scores were based on the mean of 
the five learning anxiety items (α = .78) and the five evaluation anxiety items (α = .84).

Standardized measures

Intelligence
Students in the longitudinal component were administered the Vocabulary and Matrix 
Reasoning subtests of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 
1999). Based on standard procedures, subscale scores were used to generate an estimated 
full-scale IQ. The intelligence of the longitudinal sample was average (M = 105, SD = 13).

Achievement
For the longitudinal cohort, mathematics and reading achievement was assessed with the 
age-appropriate Numerical Operations (NO) and Word Reading (WR) subtests from the 
Wechsler Individual Achievement Test–Third Edition (Wechsler, 2009), respectively. The 
NO included basic arithmetic and continued through fractions, algebra, geometry and 
calculus. The WR assessed single word reading, beginning with 1-syllable words and 
progressing to more complex vowel, consonant, and morphology types. The mathematics 
(M = 100, SD = 19) and reading (M = 104, SD = 13) achievement of the students in the 
longitudinal sample was average.

Cognitive measures

The cognitive tasks were administered using iPads using customized programs developed 
through Inquisit by Millisecond (https://www.millisecond.com) or through Qualtrics 
(https://www.qualtrics.com). Manuals and detailed descriptions of these tasks are available 
at Open Science Framework (https://osf.io/qwfk6/) and are all standard measures of work
ing- and short-term memory, and spatial ability. A verbal memory task was assessed 
(described in the SOM) but not reported here as we focused a-priori of working memory 
and spatial abilities.
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Digit span
Forward and backward digit span measures were administered, following Woods et al. 
(2011). Digits were auditorily (using the iPad) and sequentially presented at 1s intervals, 
beginning with 3 digits for the forward task and 2 digits for the backward task. Students 
were asked to tap the digits on a circular display after the sequence in forward/backward 
order. Correct responses increased the sequence length for the following trial, and two 
consecutive errors reduced the sequence length. Each task terminated after 14 trials. The 
longest digit sequence correctly recalled before two consecutive errors at the same length 
was scored as the span (M = 5.71, 4.59, SD = 1.12, 1.20 for the forward and backward, 
respectively).

N-back
Following Jaeggi et al. (2010), a similar version of a single n-back task with letters was 
administered. A “target” letter and then a sequence of 20 stimulus letters was presented (all 
consonants; 6 are target; 14 are not; randomly determined), Students indicated whether the 
currently presented letter is a target by tapping a key within a 3,000 ms response period 
(500 ms + 2,500 ms blank ITI), otherwise withholding a response. Target letters were either 
the very first stimuli of the sequence (N = 0), the same as the one immediately preceding it 
(N = 1), or as the one in the two (N = 2) or three (N = 3) preceding trials. After several 
practice items, students began on level N = 0. Across five blocks, students either moved up, 
down, or remained at a level (<3 errors – move up; 3–5 errors – repeat level; >5 errors – 
move down). Feedback (% correct) was displayed after each block. The score (M = 3.80, 
SD = 0.76) was calculated as (Hits – False Alarms)/(total blocks).

Spatial span
The Corsi Block Tapping Task was administered (Kessels, van Zandvoort, Postma, Kappelle, & 
de Haan, 2000). Students viewed a display of nine squares (appearing randomly arranged) that 
“lit up” in a predetermined sequence and tapped on the squares in the same order they were lit. 
Sequences started at two squares and increased up to nine squares. Students had two attempts at 
each sequence length. Correct responses were followed by an increase in sequence length, and 
two incorrect responses at a given level terminated the task. The score is the total number of 
correctly recalled sequences across the entire task (M = 8.34, SD = 1.83).

Spatial ability
The first spatial measure was the Judgment of Line Angle and Position Test (JLAP; Collaer, 
Reimers, & Manning, 2007). Here, students matched the angle of a single presented line to one of 
15-line options in an array at the bottom of the screen. There were 20 test items sequentially 
presented. Stimuli were presented for a maximum of 10s, with the trial terminating when the 
student made a selection. The JLAP was scored as the number correct (M = 13.33, SD = 3.03).

The second measure used was the Mental Rotation Task (MRT-A; Peters et al., 1995). On each 
of 24 trials, students viewed 3D images of 10 connected cubes. On each trial, there was one target 
and four response options, requiring students to select the two options that were the same figure, 
only rotated to various degrees. After four practice problems, students completed two blocks of 
12 problems each with a 3 min per block time limit. The MRT was scored as the number of 
problems on which both correct responses were chosen (M = 8.75, SD = 4.13).
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Procedure

During a 45 min assessment, groups of 14 to 32 students were administered the mathe
matics tests and academic attitudes measures in their classroom (Age: M = 146.88 months, 
SD = 4.51). For the longitudinal component, tasks were individually administered in 45 min 
sessions in a quiet location in their school. The cognitive measures were administered in the 
fall semester (Age: M = 152.63 months, SD = 4.45) and the achievement and attitudes 
measures in the spring (Age: M = 156.79 months, SD = 4.41). Tasks were administered in 
a fixed order across participants. Parents provided informed written consent, and assent was 
obtained from adolescents for all assessments. The University of Missouri Institutional 
Review Board (IRB; Approval # 2002634, “Algebraic Learning and Cognition”) approved all 
methods included in this study.

Analyses

Individual continuous mathematics measures were standardized (M = 0, SD = 1), and the 
attitudes and anxiety measures were standardized to M = 100 (SD = 15). Hierarchical cluster 
analyses (Ward’s method) were used to identify subsets of students with different math 
competence profiles. The stability of the cluster solution was validated using the 
Bootstrapped Jaccard similarity coefficient (shortened to J; see Hennig, 2007 for details), 
with values above 0.6 interpreted as acceptable. Between-subjects ANOVAs (and Bayes 
Factor ANOVA equivalents) were used to test differences across clusters. A “leave-one-out” 
(LOO) cross-validation approach was also used for testing cluster differences in each 
mathematics measure. For example, to test cluster differences between performance on 
the fractions number line, the cluster analysis was re-estimated using every measure except 
for the fractions number line. This ensures that cluster differences on a given test reflects 
a novel, out-of-sample test, thus avoiding issues of circularity.

For the sixth-grade attitudes and anxiety measures and cognitive measures from the 
longitudinal component, multivariate pattern analyses (MVPA; logistic regression classifier, 
L2 penalty, C = 0.5) using the scikit-learn module in python was used to predict students’ 
identified math cluster. A similar LOO cross-validation was used for model training and 
testing to ensure each students’ prediction was a novel out-of-sample case left out of model 
training. Classifier accuracy is reported here, with chance being 33.3% (three possible 
cluster labels). Model significance was tested through permutation testing, which entails 
randomly shuffling the cluster labels of students and re-training the classifier 500 times on 
the shuffled data. Significance is reported as the proportion of times the shuffled data 
accuracies exceeded the true observed accuracy.

To further elucidate the relative contributions of each specific predictor, a Bayesian 
model comparison approach was used (Rouder, Engelhardt, McCabe, & Morey, 2016). 
Cluster labels were used as the dependent measure, with the six cognitive measures and IQ, 
or the five attitude/anxiety measures, as predictors. To assess evidence for the inclusion/ 
exclusion of a certain predictor (e.g., digit span), ratios of Bayes Factors (BFs) were taken 
from the best model that included a certain predictor (e.g., digit span, MRT, and JLAP) to 
the model that excluded it (only MRT and JLAP). All analyses were performed using 
R (v.3.5.1) and python (v.3.7.4). Main statistical interpretations are based on Bayesian 
statistics (Bayes Factor package using default priors), where BFs < 1 indicate evidence for 
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the null hypothesis, 1–3 weak/ambiguous evidence, and >3 as evidence for the alternative 
hypothesis (Kass & Raftery, 1995). As a supplement, frequentist statistics are also presented 
alongside each analysis, as using multiple estimates can often be informative in model 
evaluation (Valentine, Buchanan, Scofield, & Beauchamp, 2019).

Results

Correlations among the sixth-grade mathematics variables and the cognitive, attitudes, and 
achievement measures are shown in Table 1; correlations among the seventh-grade cogni
tive and achievement measures are in the SOM and data used in the analyses are available in 
OSF (https://osf.io/wqjv7/).

Clusters

Table 2 presents descriptive statistics for the sixth-grade and longitudinal sample variables; 
code for the full statistical analyses are available in the SOM. The clustering analysis was 
applied to the standardized scores for individual mathematics measures. Two main clusters 
were first identified, segregating students into high (n = 1,429; J = .758) and low (n = 497; 
J = .608) groups. Figure 1(a) shows a radar chart for the two main clusters (high and low), 
where values closer to the center indicate lower performance and values closer to the 
perimeter of the circle indicate higher performance. For all five mathematics measures, 
clear high-low differences emerged (BF10’s ≥ 1.3e+98, p’s < .001), and were maintained when 
using the left-out validation test measures (BF10’s ≥ 2.2e+65, p’s < .001). More interestingly, 
from inspection of the cluster solution (visual inspection of the cluster dendrogram; see 
supplemental materials) and examining cluster stability, it was apparent that the high group 
was further divided into two higher subgroups, creating a total of three groups overall. For 
the remainder of the analyses, we discuss these as low (n = 497; J = .683), medium 
(n = 1,001; J = .649), and high (n = 428; J = .692) groups.

Table 1. Correlations between the mathematics variables and cognitive and attitudes variables.
Sixth Grade Mathematics

Variable
Arithmetic 

Fluency
Equality 

Problems
Fractions 

Arithmetic
Fractions 

Comparison
Fractions Number 

Line

Intelligence .30 .56 .47 .41 .51
Digit Span Forward .17 .30 .28 .21 .28
Digit Span Backward .22 .40 .38 .26 .31
N-back .16 .29 .34 .25 .36
Spatial Span .31 .30 .35 .32 .28
Judgment Line Angle 

Position
.22 .26 .30 .19 .34

Mental Rotation Test .23 .35 .29 .25 .33
Mathematics Utility .28 .17 .24 .11 .15
Mathematics Self-Efficacy .38 .36 .39 .20 .30
Math Anxiety – 

Evaluation
−.04 −.12 −.10 −.09 −.11

Math Anxiety – Learning −.05 −.26 −.20 −.27 −.23
English Attitudes .08 .05 .04 −.06 .01
Numerical Operations .62 .61 .70 .39 .59
Word Reading .32 .46 .41 .33 .42

Correlations >|.11| are significant, p < .05.
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When analyzing differences among the three clusters, we observed strong main effects 
across all five measures; Arithmetic fluency, BF10 = 6.8e+218, F(2,1923) = 676.35, p < .001; 
Equality problems, BF10 = 3.3e+428, F(2,1923) = 1746.59, p < .001; Fractions arithmetic, BF10 
= 7.8e+376, F(2,1923) = 1431.61, p < .001; Fractions comparison, BF10 = 3.1e+180, F 
(2,1923) = 532.09, p < .001; and, Fractions number line, BF10 = 9.7e+234, F 
(2,1923) = 741.08, p < .001. Post-hoc independent-samples t-tests (Tukey’s HSD) revealed 
significant differences across all clusters and measures (p’s < .001; Low < Medium < High). 
While students composing the clusters showed the same graded pattern among measures, 
their strengths and weaknesses were not uniform. As shown in Table 1, the low group (as 
compared to the medium and high groups combined) had especially pronounced deficits 
for the equality problems, fractions comparison, and the fractions number line. Higher 
performing students (as compared to the medium and low groups combined) had especially 
high performance in fractions arithmetic, arithmetic fluency, and the fractions number line. 
Figure 1(b–f) shows mean differences across clusters for the mathematics measures. 
Importantly, we validated these patterns of strengths and weaknesses and overall cluster 
differences using a LOO cross-validation approach, and main effects for all measures 
remained strong (BF10’s ≥ 2.9e+66, p’s < .001).

Attitudes and mathematics anxiety

Next, we tested how self-reported attitudes and anxiety measures related to the clear 
differences found in the objective mathematics measures. We found strong evidence for 
a main effect of cluster for mathematics utility, BF10 = 2.0e+7, F(2,1922) = 22.54, p < .001, 

Table 2. Descriptive statistics for the low, medium, and high groups.

Measure
Low 

M(SD)
Medium 

M(SD)
High 

M(SD) Low Deficits (d) High Advantages (d)

Arithmetic Fluency −0.79(0.69) −0.07(0.63) 1.06(1.08) 1.19 1.66
Equality Problems −1.34(0.76) 0.36(0.61) 0.71(0.24) 2.95 0.99
Fractions Arithmetic −0.78(0.43) −0.20(0.61) 1.37(0.86) 1.19 2.60
Fractions Comparison −0.99(1.03) 0.25(0.78) 0.56(0.50) 1.64 0.76
Fractions Number Line −0.95(0.67) 0.07(0.91) 0.95(0.28) 1.55 1.41
Mathematics Utility 4.62(1.29) 4.86(1.23) 5.16(1.15) 0.27 0.31
Mathematics Efficacy 3.96(1.38) 4.71(1.18) 5.20(0.98) 0.75 0.60
English Attitudes 4.99(1.27) 4.98(1.22) 5.21(1.08) 0.04 0.19
Math Anxiety – Eval 3.17(1.02) 2.91(1.00) 2.73(0.97) 0.32 0.27
Math Anxiety – Learn 2.37(0.91) 1.94(0.78) 1.68(0.66) 0.63 0.50
Digit Span Forward 5.03(0.83) 5.62(1.11) 6.10(1.14) 0.72 0.59
Digit Span Backward 3.69(1.05) 4.58(1.01) 5.00(1.17) 0.94 0.57
N-back 3.30(0.71) 3.80(0.73) 4.11(0.62) 0.90 0.62
Spatial Span 7.36(1.58) 8.15(1.90) 9.14(1.65) 0.66 0.68
Judgment Line Angle Position 11.94(2.98) 12.97(3.01) 14.62(2.73) 0.57 0.66
Mental Rotations Test 6.26(2.91) 8.74(4.17) 10.25(4.13) 0.77 0.54
Intelligence 90.77(9.56) 104.61(11.61) 111.96(10.53) 1.48 0.93
Numerical Operations 78.65(9.59) 97.20(13.58) 115.33(16.13) 1.62 1.50
Word Reading 91.48(14.25) 104.63(11.73) 110.74(9.22) 1.33 0.78

The individual mathematics variables are centered (M = 0, SD = 1), and the intelligence and numerical operations are 
standardized (M = 100, SD = 15). Effect sizes (Cohen’s d) are presented in two ways. First, to highlight deficits in the lowest 
groups, Cohen’s d is calculated comparing the low group versus the medium and high group together (one vs. rest 
approach). Likewise, the high group advantages highlight the relative differences between the high group and both the 
low and medium groups.
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and an even larger effect for mathematics efficacy, BF10 = 2.8e+50, F(2,1922) = 130.91, 
p < .001. In a graded fashion, attitudes about mathematics utility and efficacy increased 
across cluster groups (p’s ≤ .001; Low > Medium > High; Figure 2(a-c)). This was not the 
case, however, with attitudes about English. While still significant using frequentist statistics 
[F(2,1922) = 5.87, p = .003], Bayesian evidence revealed a severely dampened effect of 
English attitudes (BF10 = 2.1) compared to the strong effects found in mathematics 
attitudes. Both mathematics anxiety measures showed significant cluster effects: Evaluation, 
BF10 = 5.0e+7, F(2,1922) = 23.47, p < .001; Learning, BF10 = 2.0e+35, F(2,1922) = 91.68, 
p < .001. Post-hoc comparisons showed that in both measures, there were decreases in 
anxiety from the low- to high-cluster groups (p’s ≤ .004; High < Medium < Low), which are 
visualized in Figure 2(d-e).

As an alternative to the mass univariate analyses presented above, MVPA classifiers were 
used to predict students’ cluster labels from the multivariate relationships of the five 
attitudes and anxiety measures. This is an especially useful approach when analyzing factors 
that are external to the clustering analysis. Using a LOO cross-validated logistic regression 
classifier, a model using these five measures was able to predict cluster membership with 
55.0% accuracy (see Figure 3). Permutation testing confirmed this to be above chance 
accuracy, p < .001 (with chance performance at 33.3%). Bayesian model comparisons clearly 
identified mathematics efficacy as the measure contributing the most to cluster differences 
(see Table 3). BF10’s for mathematics utility, anxiety for evaluation, anxiety for learning, and 

Figure 1. (a) Radar chart of sixth grade mathematics measures from the two (high, low) cluster solution; 
lower scores are near the center and higher near the periphery. Clear high (dashed) and low (solid) 
groups are evident across all measures. 1 = Fractions comparison; 2 = Fractions number line; 
3 = Arithmetic fluency; 4 = Equality problems; 5 = Fractions arithmetic. (b-f) Boxplots depicting the 
median and first and third quartiles across the three clusters for each mathematics measure. To the left of 
each boxplot is a density plot showing the distribution of scores.
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English attitudes were all <1 (evidence for the null hypothesis) compared to models 
including mathematics efficacy. Indeed, the best overall model was for efficacy alone, 
BF10 = 445.44 against an intercept only model. Comparing the model including all five 
predictors to one excluding efficacy showed the importance of efficacy (BF10 = 30.52) while 
controlling for all other predictors.

Cognitive measures

The last set of analyses sought to test the prediction that students’ cognitive performance in 
seventh grade was related to and can predict mathematics competence from the end of the 
previous year. Univariate analyses showed strong main effects of cluster across all cognitive 
variables: Digit span forward, BF10 = 2.4e+6, F(2,339) = 20.56, p < .001; Digit span backward, 
BF10 = 8.7e+8, F(2,339) = 27.69, p < .001; N-back, BF10 = 8.3e+8, F(2,339) = 27.61, p < .001; 
Spatial span, BF10 = 1.2e+7, F(2,339) = 22.45, p < .001;Judgment of Line Angle and Position, 
BF10 = 1.1e+6, F(2,339) = 19.58, p < .001; Mental Rotations Test, BF10 = 2.3e+6, F 
(2,339) = 20.55, p < .001. Intelligence was additionally assessed in the longitudinal component, 
BF10 = 4.1e+24, F(2,339) = 75.98, p < .001. With intelligence showing strong effects across the 
different clusters, we re-assessed the cognitive differences while controlling for intelligence, 
and all predictors retained their effects (BF10’s ranging from 13.15 to 347, p’s ≤ .05) with the 
exception of the Mental Rotations Test (BF10 = 0.421, p = .089). As seen in Figure 4(a-i), 
graded effects of cognitive differences are evident, similar to the attitudes and anxiety 
measures, (all p’s ≤ .007; Low < Medium < High).

Figure 2. Boxplots illustrating the median and first and third quartiles across the three clusters for (a-c) 
mathematics and English attitudes, and (d-e) mathematics anxiety. To the left of each boxplot is a density 
plot showing the distribution of scores.
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Next, a similar logistic regression classifier was trained and validated to predict cluster 
membership, this time solely using the six cognitive measures. We were able to predict cluster 
membership with a classification accuracy of 53.51%, which was significantly above chance, 
p < .001. As strong IQ differences were seen across clusters, IQ scores were added to the 
cognitive measures, which improved classification accuracy to 56.4%. While post-hoc com
parisons may have indicated larger deficits and strengths in measures of working memory 

Figure 3. Accuracy of classifying students into their respective clusters (with standard error of the mean) 
using the variables noted on the x-axis (see text). The darker gray for the attitudes and anxiety indicates 
this model was trained using the sixth-grade sample. All other models were trained using the long
itudinal data. All predictors indicates that the model was trained using the six cognitive measures, IQ, 
Numerical Operations, Word Reading, and the attitudes and anxiety measures. Cog. = the working 
memory and spatial measures; NO = Numerical Operations; WR = Word Reading; Att./Anx. = mathematics 
attitudes, anxiety, and English attitudes. The dashed horizontal bar indicates chance performance at 
33.33%. All models were significantly above chance performance from permutation testing.

Table 3. Bayes Factors for individual and combined predictors.
Sample Measure BF10

Mathematics Efficacy 30.52
Mathematics Utility 0.17

Sixth grade English Attitudes 0.19
Mathematics Anxiety – Evaluation 0.16
Mathematics Anxiety – Learning 0.25
Intelligence 1.80
Digit Span Forward 1.32
Digit Span Backward 0.22
N-back 0.26

Seventh grade Spatial Span 3.62
Judgment Line Angle Position 4.06
Mental Rotations Test 0.21
Spatial Span & JLAP 54.45
Spatial Span & IQ 24.10
JLAP & IQ 39.23

Bayes Factors for a given predictor, controlling for the contributions of each 
other predictor in the model.
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before controlling for IQ, Bayesian model comparisons (Table 2) showed that individually, 
both spatial span and performance on the JLAP contributed the most to cluster differences 
(BF10’s of 3.62 and 4.06, respectively). However, the overall best model was one that included 
JLAP, spatial span, as well as IQ. Thus, a combination of measures resulted in above chance 
accuracies, above the contribution of any single predictor. Spatial span with JLAP (BF10 
= 54.45) appeared to contribute more than either spatial span with IQ (BF10 = 24.10), or 
JLAP with IQ (39.23).

For completeness, Numerical Operations and Word Reading scores in seventh grade 
were also considered. Numerical Operations showed large across-cluster differences in the 
expected direction (Low < Medium < High), BF10 = 9.1e+42, F(2,339) = 146.48, p < .001, as 
did Word Reading scores, BF10 = 5.7e+18, F(2,339) = 56.82, p < .001. Indeed, adding 
Numerical Operations scores to the cognitive predictors and IQ increased cluster classifica
tion accuracy to 66.7%, p < .001, and to a lesser extent with the addition of Word Reading 
scores, 58.2%, p < .001 (see Figure 3). Notably, adding the sixth-grade attitudes/anxiety 

Figure 4. Boxplots illustrating the median and first and third quartiles across the three clusters for (a-f) 
the six cognitive measures, and (g-i) intelligence, Numerical Operations, and Word Reading. To the left of 
each boxplot is a density plot showing the distribution of scores.
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variables to the model including the cognitive measures, IQ, Numerical Operations, and 
Word Reading minimally improved classification accuracy (67.5%, p < .001) compared to 
the alternative models. However, these results show that later cognitive performance of 
students can reliably predict across-grade mathematical competencies, underscoring the 
importance of mathematical differences in its relation across different domains.

Discussion

The primary contributions of the current study include a broad assessment of pre-algebra 
competencies and the identification of clusters of students with similar patterns of strengths 
and weaknesses in these competencies, as well as identifying the attitudes and cognitive 
abilities that best discriminate the clusters. Moreover, we applied state-of-the-art clustering 
techniques and multivariate pattern analyses to the performance of students in a larger and 
more diverse sample than is typical in these types of studies. As the reader knows, the use of 
these methods resulted in the identification of three clusters of students with different 
patterns of pre-algebra strengths and weaknesses. The results make theoretical and practical 
contributions to our understanding of mathematical development, but the focus here is on 
the lowest performing students This is because their patterns of strengths and weaknesses 
provide useful information on where to best focus intervention efforts. The cognitive 
abilities that best classify students into groups provide potentially useful information on 
the types of scaffolds that might be included in any such interventions.

Mathematics competencies

The lower-performing students had deficits across mathematical areas, but critically these 
were not uniform, in keeping with studies of younger students who have difficulties with 
mathematics learning (Geary et al., 2012). In support of recent work by Siegler and colleagues 
(Braithwaite et al., 2019; Siegler et al., 2011) and McNeil and colleagues (e.g., McNeil et al., 
2019), the lower-performing students had particularly large deficits in their understanding of 
fractions magnitudes and mathematical equality. If early deficits in these areas predict later 
performance in algebra – a planned assessment for the current project once data collection is 
completed – controlling other factors (e.g., intelligence, parental education), then they could 
be used as a quick screening measure to identify at-risk students before they enter middle 
school. This would not mean that these are their only deficits but would indicate a broader 
assessment of their strengths and weaknesses is warranted. Whatever their performance in 
other areas, targeted interventions in these domains would be an important component of 
better preparing them for success in algebra. This is because an understanding of fractions and 
mathematical equality have been found to predict later performance in algebra (Booth et al., 
2014; Booth & Koedinger, 2008; Siegler et al., 2012).

The fraction deficits of these lower-performing students were evident with the simple 
comparison of the magnitudes of two fractions and in terms of their skill at situating 
fractions magnitudes on the number line. A strikingly (d = 2.95) poor understanding of 
mathematic equivalence also stood out among the lower-performing students. The magni
tude of these students’ deficits here was roughly double their relative deficits on the fraction 
measures and more than double their relative cognitive deficits. We did not have informa
tion on how they were approaching these problems, but the results are in keeping with 
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a rigid operational view of the “=” (Alibali et al., 2007; McNeil et al., 2011, 2019). Whatever 
they were doing, the results here add substantial weight to the argument that mathematical 
equivalence is a key part of students’ conceptual understanding of mathematics and that 
a poor understanding of this concept slows mathematical development.

The higher-achieving students had particularly large advantages in computational fluency 
with whole number and fractions arithmetic, that is, larger advantages than might be expected 
based on their cognitive performance and intelligence. Fluency is dependent on the memor
ization of basic facts and procedures and for fractions arithmetic is dependent on a conceptual 
understanding of these procedures (e.g., that multiplying proper fractions results in smaller 
magnitudes; Braithwaite et al., 2019, 2018). A relatively better understanding of fractions is 
also indicated by their strong performance on the fractions number line that in turn may have 
been facilitated by their ability to transform fractions (e.g., 17/4 = 4 1/4; Siegler et al., 2011). 
These advantages in number development and computational fluency are very likely to result 
in later advantages in learning algebra above and beyond the contributions of cognitive 
abilities (National Mathematics Advisory Panel, 2008; Siegler et al., 2012). Moreover, these 
results suggest that achieving computational fluency is an important part of mathematical 
development, likely because fluency will reduce the working memory demands associated 
with solving more complex problems in which basic facts and procedures are embedded 
(Geary & Widaman, 1992; Sweller, van Merriënboer, & Paas, 2019).

The important point is that the results from our large and diverse sample are consistent 
with previous studies and confirm that a poor understanding of fractions magnitudes and 
mathematical equivalence are core deficits of low-achieving students. A unique contribu
tion here is that these deficits are evident above and beyond their more general mathematics 
deficits. The pattern of results shown here is useful not only in identifying and targeting 
specific deficits, but in identifying areas in which higher-performing students especially 
excel. The latter was most evident on the measures of fluency of solving whole number and 
fractions problems, which was highlighted by the National Mathematics Advisory Panel 
(2008) as foundational to preparation to algebra. The implication is that any interventions 
that focus on at-risk students’ conceptual understanding of fractions and mathematical 
equivalence should not do so at the expense of building procedural fluency. The relative 
importance of these different pre-algebra skills in predicting later algebra outcomes is not 
currently known but will be assessed in the on-going longitudinal component of the study.

Academic attitudes and anxiety

Students’ performance in mathematics, whether it was toward the low- or high-end, had little 
relation to their attitudes about English. The result indicates that students were differentiating 
between English and mathematics and that difficulties with mathematics might not be asso
ciated with negative attitudes about schooling more broadly, at least for sixth graders. In keeping 
with many previous studies, the lower-performing students had a lower mathematics self- 
efficacy, lower beliefs in the utility of mathematics, and higher levels of mathematics anxiety 
for both learning and evaluation than did their higher-performing peers (Ashcraft & Kirk, 2001; 
Carey et al., 2016; Dowker et al., 2016; Hill et al., 2016; Maloney & Beilock, 2012). However, 
when controlling for these various attitudes and anxiety measures instead of analyzing them 
individually, mathematics self-efficacy stood out in terms of predicting cluster membership. 
A striking result of this is the weaker relation between mathematical competencies and all other 
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attitudes and anxiety once controlling for self-efficacy, in support of results found by Devine 
et al. (2017), that is, that many students struggling with mathematics do not show particularly 
high levels of mathematics anxiety.

The disconnect between the lower-performing students’ attitudes and their actual compe
tencies is illustrated by a contrast of the differences between them and their typically-achieving 
(middle cluster) peers. Differences in mathematics ranged from d = 1.19 to 2.95 (M = 1.7), but 
group differences for mathematics self-efficacy, the best predictor of cluster membership, 
showed a Cohen’s d of 0.75 (Cohen, 1988). The latter is less than half the size of their actual 
mathematics deficits, with even starker disconnects for the anxiety measures. These patterns are 
consistent with the broader Kruger-Dunning effect, whereby lower-performing individuals 
significantly over-estimate their relative competencies in many domains (Kruger & Dunning, 
1999). The reasons for the disconnect between actual performance and estimates of relative 
performance are widely debated and include statistical regression, poor meta-cognition, and 
insensitivity to the commission of errors, among others (Gignac & Zajenkowski, 2020; Jansen, 
Rafferty, & Griffiths, 2021; McIntosh, Fowler, Lyu, & Della Sala, 2019). The Kruger-Dunning 
effect is not generally integrated within studies of children’s academic development, but our 
results suggest that such an integration might be fruitful.

It is not clear what is underlying the effect in this sample, but one potential contributing 
factor is that these students are receiving inaccurate feedback about their mathematical devel
opment and thus might not fully appreciate the difficulties they will face in high school algebra. 
At the same time, whatever is maintaining their self-efficacy and keeping their anxiety in check 
could serve as a protective mechanism as they move forward in their mathematics education.

Cognitive performance

Students in the lowest performing group had general deficits in mathematics that were 
related to intelligence, but above and beyond the effects of intelligence, we observed reliable 
cognitive differences across clusters. Students in the lowest-performing group had an 
achievement and cognitive profile that is very similar to that of students identified as having 
mathematical learning difficulties in the broader literature (Geary et al., 2007; Murphy, 
Mazzocco, Hanich, & Early, 2007). More precisely, their cognitive profile was characterized 
by lower intelligence and working memory span (e.g., n-back) than students in other 
groups, as well as spatial deficits. Interestingly, through Bayesian model comparisons, 
even though digit span and n-back showed significant main effects, their contribution 
was mitigated when the effects of other cognitive factors were taken-into-account. This is 
surprising, as Geary et al. (2012) found especially poor working memory for fifth-graders 
with a mathematical learning disability, as is commonly found (Bull & Lee, 2014; Mazzocco 
& Kover, 2007; McLean & Hitch, 1999). We included a more extensive assessment of 
cognitive abilities than in most previous studies, including various spatial abilities and 
spatial working memory. The inclusion of these measures is the most likely explanation for 
the mitigated contributions of standard working memory measures (e.g., digit span) in 
differentiating lower-achieving students from their higher achieving peers (Miyake, 
Friedman, Rettinger, Shah, & Hegarty, 2001).

The deficits of the lower-performing group, and differences across clusters broadly, were 
best explained through the combination of intelligence and specific spatial abilities; speci
fically, visuospatial working memory and visuospatial attention (JLAP). The relationship 
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between mathematics achievement and spatial processing has long been of interest (see 
Bishop, 1980 for review), and multiple lines of evidence have implicated visuospatial 
processing in the development of mathematics skills (Geary, 2004; Geer et al., 2019; 
Hawes & Ansari, 2020; Mix, 2019; Mix et al., 2016, 2017; Reuhkala, 2001). This might be 
due to the use of the visuospatial system for representing numerical and mathematical 
knowledge and implementing certain types of problem-solving strategies, but this is still 
uncertain (Hawes & Ansari, 2020; Mix, 2019).

In any case, Li and Geary (2017) found that the relation between visuospatial working 
memory and mathematics achievement increases across grades. These types of patterns do 
not mean there is a casual relationship but if there is (see Gilligan et al., 2020), additional deficits 
in mathematics areas that are influenced by spatial abilities may emerge as students move 
through middle school and into high school. The results also suggest that incorporating more 
spatial information into remediation programs could be helpful for struggling students. These 
could involve short spatial activities that might prime visuospatial attention before the presenta
tion of the mathematical information, as was done by Gilligan and colleagues. Instruction on the 
use of visuospatial representations to aid in mathematical problem solving, such as word 
problems, is often helpful (Hord & Xin, 2013). And interventions to improve students’ fractions 
knowledge and their understanding of equivalence often have spatial components built into 
them (Barbieri et al., 2020; McNeil et al., 2019).

The issue that remains to be determined is whether there is an interaction between 
student’s spatial abilities and the use of spatial interventions in learning key mathematical 
concepts. It could be that student’s with strong spatial abilities do not need the same level of 
spatial scaffolding as their peers which in turn could lead to an underestimate of the 
importance of these scaffolds in general classroom settings.

Limitations

The correlational nature of the data precludes strong causal statements, and even though all 
mathematics, attitudinal, and cognitive measures were validated during analysis, the results are 
largely descriptive. Moreover, students were administered many tasks in an attempt to achieve 
assessment breadth, but one potential cost is fatigue during the assessments that might have 
resulted in less-than-optimal performance. Despite these limitations, the assessment of a very 
large and diverse sample of adolescents across core pre-algebra mathematical competencies and 
academic attitudes and anxiety provided a broader assessment of mathematical strengths and 
weaknesses for different subgroups of adolescents than is typical in this literature. Against 
a background of relatively poor achievement, lower-performing students have an especially poor 
understanding of mathematical equality and do not fully understand fractions comparisons and 
how fractions magnitudes map onto the number line. The contribution of the spatial measures 
to the classification of students into clusters suggests that direct spatial interventions (e.g., 
Gilligan et al., 2020) or the use spatial scaffolds might be useful for the remediation of lower- 
achieving students’ difficulties with equality and fractions.
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