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ABSTRACT

We study dynamic algorithms for the problem of maximizing a
monotone submodular function over a stream of n insertions and
deletions. We show that any algorithm that maintains a (0.5 +
€)-approximate solution under a cardinality constraint, for any
constant € > 0, must have an amortized query complexity that is
polynomial in n. Moreover, a linear amortized query complexity
is needed in order to maintain a 0.584-approximate solution. This
is in sharp contrast with recent dynamic algorithms of [LMN+20,
Mon20] that achieve (0.5 — €)-approximation with a polylog(n)
amortized query complexity.

On the positive side, when the stream is insertion-only, we
present efficient algorithms for the problem under a cardinality
constraint and under a matroid constraint with approximation guar-
antee 1— 1/e — € and amortized query complexities O(log(k/€)/€?)
and kO(1/€") log n, respectively, where k denotes the cardinality
parameter or the rank of the matroid.
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1 INTRODUCTION

Initiated by the classical work of [35, 36] in the 1970s, submodular
maximization has developed into a central topic of discrete optimiza-
tion during past decades [14, 15, 19, 25, 39] (see [12] for a survey).
Capturing the natural notion of diminishing returns, submodular
functions and their optimization problems have found numerous
applications in areas such as machine learning [28, 40], data min-
ing [31], algorithmic game theory [38], social networks [29], etc.
The canonical form of the problem is to maximize a monotone sub-
modular function under a cardinality constraint k, for which the
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greedy algorithm of [36] achieves the optimal approximation ratio
of 1—1/e [24, 35]. However, despite the simplicity and optimality of
this celebrated algorithm, there has been a surge of recent research
effort to reexamine the problem under a variety of computational
models motivated by unique challenges of working with massive
datasets. These include streaming algorithms [2, 26], parallel algo-
rithms [6-8, 17, 21-23], learning algorithms [4, 5] and distributed
algorithms [10, 11, 33].

Dynamic submodular maximization. We study the power and
limitations of dynamic algorithms for submodular maximization. In
this model, the set of elements that one can choose from is subject to
changes incurred by a stream of n insertions and deletions. Letting
Vi denote the current set of elements after the first t operations,
an algorithm needs to maintain a subset S; C V; of size at most k
that achieves a certain approximation guarantee for every round ¢,
and its performance is measured by its amortized query complex-
ity (i.e., the average number of queries it makes per operation on
the underlying unknown monotone submodular function); see the
formal definition of the model in Section 2.

The dynamic model is motivated by real-world applications
of submodular maximization over massive datasets that evolve
frequently. Many of these applications arise in machine learning
and data mining tasks, including the data subset selection prob-
lem [28, 40], movie recommendation system [9], influence maxi-
mization in social networks [29], etc. As an example, in influence
maximization, one is given a social network as well as a stochastic
diffusion model, and the goal is to select a seed set of size at most
k to maximize the influence spread over the network. The spread
function is submodular for many well-studied models and therefore,
the problem becomes submodular maximization with a cardinality
constraint. Given that social networks, like Twitter or Facebook,
are involving continuously over time, an old seed set could become
outdated quickly. A natural rescue is to have an efficient dynamic
algorithm that maintains a seed set over time.

The problem of dynamic submodular maximization under a car-
dinality constraint was studied in two recent papers [30, 34], giv-
ing algorithms that achieve an (1/2 — €)-approximation guarantee
with amortized query complexities that are O(k? log? n - €~3) and
O(log® n - €7°) in a stream of length n. Compared with the 1 — 1/e
approximation guarantee of the offline greedy algorithm, however,
a natural open question posted by [30] is whether the 1/2 can be
further improved under the dynamic setting, or even under the
setting when the stream is insertion-only.

1.1 Our Results

We resolve the open question of [30] by showing that any algorithm
with an approximation ratio of 1/2 + € must have amortized query
complexity polynomial in the stream length n:
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THEOREM 1.1. For any constant € > 0, there is a constant C¢ > 0
with the following property. When k > Ce, any randomized algo-
rithm that achieves an approximation ratio of 1/2 + € for dynamic
submodular maximization under cardinality constraint k requires
amortized query complexity nf(€) /3.

Moreover, we show that any algorithm with approximation ratio
0.584 must have an amortized query complexity that is linear in n:

THEOREM 1.2. There is a constant C > 0 with the following prop-
erty. When k > Clogn, any randomized algorithm for dynamic sub-
modular maximization under cardinality constraint k that obtains
an approximation guarantee of 0.584 must have amortized query
complexity at least Q(n/k3).

In the proof of both theorems we construct a family of hard func-
tions to hide a secret matching. The main challenge is to achieve the
following two properties at the same time: The first one, which we
will refer to as the large-gap property, states that any dynamic algo-
rithm with a certain approximation guarantee can only succeed by
recovering the secret matching hidden in the function. On the other
hand, the second so-called indistinguishability property shows that
each query made by an algorithm can only reveal very little infor-
mation about the secret matching. The construction for Theorem
1.2 uses a simple bipartite structure but requires a more detailed
analysis to optimize for the constant 0.584. The construction for
Theorem 1.1, on the other hand, is based on a more sophisticated
(1/€)-level tree structure which, at a high level, can be viewed as
a novel tree extension of the path-alike construction from [26]. We
discuss in more details about our lower bound proofs in Section 1.3.

On the positive side, when the stream is insertion only, we obtain
an algorithm that achieves an approximation guarantee of 1-1/e—¢
with amortized query complexity O(log(k/e)/e?):

THEOREM 1.3. Given any € > 0, there is a deterministic algo-
rithm that achieves an approximation guarantee of 1 — 1/e — € for
dynamic submodular maximization under cardinality constraint k
over insertion-only streams. The amortized query complexity of the
algorithm is O(log(k/€)/€?).

We also obtain a randomized algorithm that achieves an approx-
imation guarantee of 1 — 1/e — € for the problem unzder a matroid
constraint, with amortized query complexity KO/e%) logn.

THEOREM 1.4. Given any € > 0, there is a randomized algorithm
that achieves an approximation guarantee of 1 — 1/e — € for dynamic
submodular maximization under matroid constraints over insertion-
only streams. The amortized query complexity of the algorithm is
O(/e?) log n, where k is the rank of the matroid.

Our algorithms are inspired by the classic greedy solution and
we turn it into a dynamic algorithm via techniques involving lazy
update, multilinear extension and accelerated continuous greedy,
together with the introduction of a O(1/¢€)-pass prune-greedy al-
gorithm that could be of independent interest. We elaborate about
the intuition behind our algorithms in Section 1.3.

Remark 1.5. The best offline algorithm for maximizing monotone
submodular function with cardinality constraints requires O(nlog(1/€))
queries [13]. Our dynamic algorithm incurs only poly-logarithmic
overheads. While for matroid constraints, even the state-of-art offline
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algorithm requires O(nVk) value queries [13]. Hence, for matroid
constraints, our focus is to design dynamic algorithms with poly (k)
amortized query complexity.

We review related work and then give a technical overview of
our results in Section 1.3.

1.2 Related Work

Dynamic submodular maximization has only been studied recently,
and the work of [30, 34] are most relavant to us. The concurrent
work of [34] and [30] give (1/2 — €)-approximation algorithm to
the dynamic submodular maximization problem under cardinality
constraints, with amortized query complexity O(k? log? n-e~3) and
O(log® n - €7°) respectively.

Our work is also closely related to the streaming setting. For
cardinality constraints, [2] give an (1/2 — €)-approximation algo-
rithm in the streaming model, The approximiation is tight, Feld-
man et al. [26] prove Q(en/k3) space is necessary for achieving
(1/2 + €) approximation. For matroid contraints, [16] give an 1/4-
approximation algorithm and the approximation ratio is improved
to 0.3178 by [27]. We remark the algorithm of [2] and [16] can
be implemented in the insertion-only dynamic setting with the
same approximation guarantee, and the amortized runing query
complexity are O(e~!log(k/e)) and O(k) respectively.

On lower bound side, our work make use of the symmetric gap
techniques of [32, 39] and the weight scheduling of [26].

1.3 Technical Overview

We provide a streamlined technique overview of our approach.

A linear lower bound for 0.584-approximation. Our lower
bound is based on the construction of a family of monotone submod-
ular functions with the following properties. They share the same
ground set V which is partitioned into 2m sets V = AjU---UA, U
B1 U --- U By, and the algorithm knows both V and the partition.
Each A; or Bj contains O(k) elements to be specified later. What
is hidden inside the function is a secret bijection =z : [m] — [m],
which is unknown to the algorithm, and we write the function as
F : 2V — [0, 1]. The three main properties we need about ¥ are:

i) For any j € [m], thereisan S C A ;) U Bj of size k that
achieves the optimal ¥ (S) = 1;

ii) Large gap: For any j € [m], every S CA; U---UAy, UB;
of size at most k has ¥ (S) < k for some (as small as
possible) parameter k > 0, unless S N A (;) # 0; and

iii) Indistinguishability: Every query made by the algorithm
reveals very little information about 7. (Looking ahead, we
show that each query on ¥ is roughly equivalent to no
more than O(k) queries on 7, each of the limited form as
“whether 7(a) is equal b or not”)

With these properties in hand, we use the following simple dynamic
stream of length ©(mk) in our lower bound proof: Ay, ..., A, are
inserted first and then we insert Bi, delete Bi, insert Bs, delete
By, ..., until By, is inserted and deleted. The large-gap property
(ii) ensures that any algorithm with an approximation guarantee
of k must recover each entry 7 (j) of the hidden = after each set
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B; is inserted.! The indistinguishability property (iii), on the other
hand, shows that Q(m?/k) queries are needed to recover the hidden
bijection 7 (by a standard calculation) and thus, the amortized query
complexity is at least Q(m/k?) = Q(n/k>) by plugging in the stream
length n = ©(mk). The main challenge is to find a construction
that satisfies (i) and (iii) and at the same time satisfies (ii) with a
parameter k that is as small as possible (optimized to be 0.584 at
the end).

We focus on minimizing k in the large-gap property (ii) in this
part, given that achieving the indistinguishability (iii) will become
more challenging in the polynomial lower bound for (0.5 + €)-
approximation later and will be what we focus on there. Our first
attempt is the following simple coverage function # (though our
final construction will not be a coverage function). Let U be a large
universe set (for intuition consider U to be arbitrarily large so that
every expectation about random sets we draw holds exactly). For
each j € [m] we randomly partition U into two parts Uj 1 and Uj »
of the same size: the union of elements of A, ;) (which correspond
to subsets of U) will be Uj,1 and the union of elements of B; will
be Uj, 2. Each B; is further partitioned into w groups Bj,1, . . ., Bj v,
where w is a large enough constant, such that each B; ¢ has size
k/2 and corresponds to an even (k/2)-way random partition of U; .
The same happens with A ;). Now imagine that the algorithm does
not know 7(j) and returns S C A; U Bj with i # 7(j) by picking
k/2 elements randomly from A; and k/2 elements randomly from
B;. Simple calculation shows that elements in S would together
cover 0.5(1 — 1/e) + 0.25(1 — 1/e?) = 0.53, which is very close to
our goal of 0.5, and splitting elements not evenly between A; and
Bj can only cover less.

However, the algorithm can deviate by (1) not picking elements
randomly from A; and B; and furthermore, (2) picking from not
just A; U B; but also the much bigger set of A; U - - - U A, For (1),
if the algorithm manages to find out all k/2 elements of group A; ,
and all k/2 elements of group B;, ¢ for some ¢, {’, then together
they would cover 3/4. For (2), the algorithm can pick one random
element each from k different A;’s to cover 1 — 1/e. In our final
construction, we overcame (1) by applying a symmetric function
constructed from [32] on top of the coverage function above. It guar-
antees that no algorithm (with a small number of queries) can ever
pick a set of elements from any of A; or B; that is non-negligibly
“unbalanced,” by having noticeably more elements from any group
Aj ¢ or B;j ¢ than the average among A; or B;j. Accordingly, the
large-gap property (ii) needed can be updated to be the following
weaker version:

ii) Large gap, updated: For any j € [m], every “balanced”
S CAjU---UAp UBj of size at most k has 7 (S) < « for
some parameter k > 0, unless SN Ay # 0;

To address the challenge of (2), we use two parameters to introduce
a different type of unbalancedness: First, U is no longer partitioned
50-50; instead Uj, 1 is f-fraction and Uj 7 is (1 — f)-fraction of U.
Second, it is no longer the case that all groups A; ¢ and B; ¢ have
size k/2; instead every A; ¢ has size ak and every Bj ¢ has size
(1—a)k. With a detailed analysis we show that k can be set to 0.584

Note that we are a bit sloppy here given that the dynamic algorithm only needs to
output a set S; after B; is inserted to overlap with A ;). But given that |S;| < k,
this can be considered almost as good as knowing 7 (j).

1687

STOC 22, June 20-24, 2022, Rome, Italy

in the updated version of the large-gap property (ii), when ¢ = 0.56
and f = 0.42.

A polynomial lower bound for (1/2+€)-approximation. Hard
instances for our linear lower bound sketched earlier reduce at the
end to a simple problem of recovering a hidden matching. To obtain
a polynomial lower bound for (1/2 + €)-approximation, we need to
further extend the idea to amplify the (hardness of) approximation
ratio by creating a depth-L tree structure with L = 1/€ to hide
multiple bijections at every level. Let my, ..., m be a sequence of
positive integers: my, = 1 but the other integers will be specified
at the end. The ground set V is then defined using a depth-L tree
T, in which each internal node at depth ¢ (¢ € [0 : L — 1]) has
mg4q children. Let Up denote the set of nodes u = (uy,...,up) €
[m1] x - -+ X [m,] at depth ¢; its children are given by (u,1),...,
(u, mpyq). The ground set is defined as V = Uy, ey, u...uu; Au, Where
each A, contains ek elements.

In the dynamic update stream, we perform a limited DFS walk
on the tree, meaning that after reaching a node u, one only explores
the first d := n€ children (u, 1), ..., (4,d) of u (except when u is at
depth L — 1 in which case we just explore the only child of u). Let
Uy [d]X1 x {1} be the set of leaves visited by the DFS walk. We
design the stream in a way such that whenever a leaf u is reached,
the current set of elements is given by

Wy, :

Au1 ..... Up_1,i»
Ce[L]i€[m]
i.e., the union of sets of nodes that are children of any node along
the path from the root to u. Let Ay = Ay, U---UAy, . 4. The
first two properties of our 7 : 2V — [0, 1] can now be stated:

i) Let S = Ay U Ay. We have |S| = k and F (S) achieves the
optimal 7 (S) = 1;
ii) Large gap: For any S C W, of size at most k, ¥ (S) < 1/2+€
unless S N Ay, # 0.
At a high level, the construction of our monotone submodular
function F can be viewed as a novel tree extension of a path-alike
construction from [26] (for one-way communication complexity
of submodular maximization). In particular, we adopted a weight
sequence {wg} from [26] to play the role of parameter § in our linear
lower bound discussed earlier, in order to achieve the large-gap
property (ii) above no matter how the S is spread among different
levels of the tree.

Now ¥ is only the base function that we use to construct the
family of hard functions. To this end, we introduce the notion of
a shuffling x of tree T, which consists of one bijection 7, at every
internal node u of T to shuffle its children. Let F; be the function
obtained after applying a hidden shuffling 7 on . Under the same
stream, at the time when a leaf u € UL* arrives, the current set of
elements remains to be W, but the A, we care about becomes

‘ﬂg = Any(ul) U Aul,nul (u2) U UAul,m,uL—z,ﬂul,, (ur-1),

UL
where 7, denotes the hidden bijection at the root, 7y, denotes the
hidden bijection at the depth-1 node uj, so on and so forth. The
two properties (i) and (ii) hold after replacing A, with A7 . So
finding S € W, of size at most k with F(S) > 1/2 + € requires the
algorithm to (essentially) identify one of the edges along the path af-

ter shuffling, i.e., one of the entries 7¢ (u1), mu, (U2), . . ., Tuy, .. ur_,
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(ur—1) in the hidden bijections. The challenge left is to establish
the indistinguishability property:

iii) Indistinguishability: Every query made by the algorithm
reveals very little information about . (More formally, we
show that each query on ¥ is roughly equivalent to no
more than O(k?) queries on 7, each of the limited form as
“whether 7, (a) for some u is equal b”

With (iii) if an algorithm tries to win by finding out 7y, .. u; , (ur—1)
every time a leaf u is reached then each hidden entry requires
Q(mr_1/k?) queries and thus, Q(mp_1dL"1/k?) queries in total.
In general if an algorithm keeps working on 7y, .. u,(u¢41), the
total number of queries needed is Q(my,;d¢*1/k?). Setting my =
n{L=C+1€ /(o) for each € leads to a lower bound of Q(n!*€/k3)
for the total query complexity in all cases, while maintaining the
stream length to be n. (It is also not difficult to show that mixing
effort among different levels does not help.)

Finally let’s discuss how the indistinguishability property (iii)
is implemented. The first trick is to cap the function and have the
final function take the form as

Fr(S) = min {F7 (S) + €lSI/k, 1}.

This simple modification changes the value of solutions S we care
about slightly, no more than e, given that |S| < k, and at the same
time guarantees no algorithm makes any query of size more than
k/e; otherwise the value returned is trivially 1 and reveals no infor-
mation. This implies that each query S made by an algorithm can
only involve no more than k/e nodes in the tree; let Us denote the
set of such nodes. A final key observation is that the function ¥
on S is uniquely determined by the structure of the tree formed by
paths of nodes in Us to the root after applying the shuffling 7. The
latter is uniquely determined by the depth of the lowest common
ancestor of every pair of nodes in Us after shuffling x, which in
turn can be obtained by making at most one query to x of the form
described in (iii) for each pair in Us. The bound O(k?) follows given
that |Us| < k/e.

Insertion-only streams: Submodular maximization with a
cardinality constraint. Our starting point is the classic (offline)
greedy approach, where in each round an element with the maxi-
mum marginal contribution is added to the solution set. We adapt
the greedy algorithm to the dynamic setting. For simplicity, let’s
assume in the overview that a value OPT is given to the algorithm
at the beginning and its goal is to maintain a set that achieves a
(1-1/e — €)-approximation when the actual optimal value reaches
OPT. While it is impossible to find the element with the maxi-
mum margin before having all of them in hands, we can instead
choose one whose margin gives a moderate improvement, i.e., add
any element that satisfies fs(e) > (OPT —f(S))/k, where S is the
current solution set. This suffices to achieve the optimal (1 — 1/e)-
approximation. A naive implementation, however, requires O(k)
amortized query complexity since the threshold (OPT —f(S))/k is
updated every time a new element is added to solution set, and
the algorithm needs to scan over all elements in the worst case.
We circumvent this with the idea of lazy update. We divide the
mariginal contribution into O(1/€) buckets, with the i-th buckets
containing marignal smaller than i - (¢ OPT/k). We don’t update
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the margin value every time the solution set is augmented. Instead,
each time a new element is inserted, the algorithm only checks the
bucket whose marginal is larger than the current threshold. One
can show either a new element is added to S, or it is pushed down
to the next level. The latter can happen at most O(1/¢) times, and
after that, the element has negligible marginal contribution that
can be ignored safely.

Insertion-only streams: Submodular maximization with a
matroid constraint. We first provide a deterministic combina-
torial algorithm that achieves a (1/2 — €)-approximation. We build
upon the previous idea, but with significant adaptations. Again,
our goal is to simulate an offline greedy algorithm but this time,
one cannot relax the condition and hope to augment the solution
set whenever the margin has a moderate improvement. The analy-
sis of the offline greedy algorithm relies crucially on picking the
maximum margin element in each step. Our first idea is to find
the element with approximate maximum margin and branch over
all possibilities. In particular, we divide the marginal gain into
L = O(e ! log(k/€)) many levels, where the £-th level corresponds
to [(1+€)~¢*1 OPT, (1+¢€)~f OPT]. When working on an insertion-
only stream, we proceed to the (¢ + 1)-th level only when there
is no element in the {-th level anymore. Of course, we still don’t
know when the ¢-th level becomes empty so that we can move to
{ + 1, but we can enumerate over all possibilities and guarantee
that there exists one branch that fits the sequence of the offline
approximate greedy algorithm. The caveat is that the total num-
ber of branch is (f), which is quasi-polynomial in k. We further
reduce this number by considering a pruned version of the offline
approximate greedy algorithm, where the algorithm prunes extra
element in each level and only keeps the majority. We prove the
algorithm still guarantees a (1/2 — €)-approximation and the total
number of branch reduces to k<9(1/€) It requires careful analysis
to make the idea work, but the very high level intuition is that one
needs to be more careful in the first few buckets (since the marginal
is large) and less careful at the end. To amplify the approximation
ratio to (1 — 1/e — €), we make use of the multi-linear extension
and use the accelerated continuous greedy framework [3]. In each
iteration, we use the above combinatorial algorithm to find the
direction of improvement of the multi-linear extension. We remark
a similar amplifying procedure has been used in the previous work
on adaptive submodular maximization [7, 17].

Organization. We begin by presenting the linear lower bound
for 0.584-approximation under fully dynamic stream in Section 3.
Section 4 is devoted to prove the polynomial lower bound on (1/2 +
€)-approximation. We then turn to the insertion-only stream and
provide our algorithms and analysis. The algorithm for a cardinality
constraint is presented in Section 5, and we provide an efficient (1 -
1/e)-approximation algorithm for a matroid constraint in Section 6.
We discuss future research directions in Section 7. All missing
proofs can be found in the full version [20].
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2 PRELIMINARY

Submodular functions. Let V be a finite ground set. A function
f: 2V = R is submodular if
FEUT) + f(SNT) < f(S) + f(T)

for all pairs of sets S, T C V. We say f is nonnegative if f(S) > 0 for
all S € V and f is monotone if f(S) < f(T) whenever SCT C V.
We study submodular functions that are both nonnegative and
monotone, and assume without loss of generality that f(0) = 0
(see Remark 2.2). We say an algorithm has query access to f if it
can adaptively pick subsets S C V to reveal the value of f(S).

Given f : 2V —» Rand S, T C V, the marginal gain of adding e
to S is defined as

fs(T) := f(SUT) = f(S).
When T = {e} is a singleton, we write fs(e) to denote fs({e})
for convenience. Monotonicity and submodularity can be defined
equivalently using marginal gains: f is monotone iff fs(e) > 0 for
alle € Vand S € V; f is submodular iff fs(e) > fr(e) for any
e¢TandSCTCV.

Dynamic submodular maximization under a cardinality con-
straint. Given V, a positive integer k and query access to a non-
negative, monotone submodular function f : V — R, the goal is
to find a y-approximate solution S; of size at most k at the end of
each round i when making a pass on a dynamic stream of inser-
tions and deletions (the stream is insertion-only if no deletions are
allowed). More formally, starting with Vy = 0, an element e; € V is
either inserted or deleted at the beginning of round i = 1,..., so
that the current ground set V; is set to be either V;_; U {e;} if e; is
inserted or V; = Vj_1 \ {e;} if ¢; is deleted. After this, the algorithm
makes queries to f to find a y-approximate solution S; of f with
respect to V;. This means that |S;| < k and

f(S;) > yOPT;, where OPT;:= max

TCV;,ITI<k f(T)
We emphasize that an algorithm remembers every query it has
made so far. Thus results of queries made in previous rounds may
help finding S; in the current round.

We will consider algorithms that are both deterministic and
randomized. We say a deterministic dynamic algorithm achieves
an approximation guarantee of y if given n and any stream of
length n, it returns a y-approximate solution S; of the i-th round for
every i € [n]. We say a randomized dynamic algorithm achieves an
approximation guarantee of y if given n and any stream of length n,
with probability at least 2/3 it returns a y-approximate solution S;
for every round i € [n] at the same time. We say an (deterministic
or randomized) algorithm has amortized query complexity Q if the
total number of queries it makes is no more than n - Q.

Remark 2.1. We discuss some details of the model behind our upper
and lower bounds:

(1) Our lower bounds hold even if the algorithm is given V and it
is allowed to query during the i-th round any set S of elements
that have appeared in V; for some j < i; our algorithms only
query sets in V; and does not need to know V initially.

(2) Our lower bounds hold even if the algorithm is given n, the
stream length; our algorithms do not need to know n and meet
the stated amortized bounds at the end of every round.
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Dynamic submodular maximization under a matroid con-
straint A set system M C 2V is a matroid if it satisfies (i) 0 € M,
(ii) the downward closed and (iii) augmentation properties. A set sys-
tem M is downward closed if T € M implies S € M forall S C T.
The augmentation property is that if S, T € M and |S| < |T|, then
there must be an element e € T\S such that S U {a} € M. When
S € M, we say S is feasible or independent. The rank of the matroid
M, denoted as rank(M), is the maximum size of an independent
set in M.

The setting of dynamic submodular maximization under a ma-
troid constraint is similar. In addition to V and query access to
f, the algorithm is given query access to a matroid M over V: it
can pick any S € V to query if S € M or not. To goal is to find
a y-approximate solution S; of f with respect to V; at the end of
every round. This mdeans that S; € V;, S; € M and

f(S;) >y-OPT;, where OPT;:= max

TeM, TCV;

f(D).

When measuring the amortized query complexity, we count queries

to both f and M.

Remark 2.2. In both problems, one can assume without loss of
generality that f(0) = 0 (since any y-approximate solution to g with
respect to Vi, where g(S) := f(S) — f(0), must be a y-approximate
solution to f with respect to V; as well). We will make this assumption
in the rest of the paper.

The multilinear extention The multilinear extension F : [0, 1]V

— R* of a function f maps a point x € [0, 1]V to the expected
value of a random set S ~ x, i.e.

Fx) = > [xe [] 0-xe)f(9)

SCVeeS ee€V\S

We write F(x) = Es-x[f(x)] for simplicity. For any x € [0, 1] v

A €[0,1],S €V, we write F(x + AS) to denote F(x”), where x| = x;
ifi ¢ Sand x] = min{x; + A, 1} if i € S.
For a continuous function F : [0, 1] vl R, we say it is mono-
2
(’)J?l ng'
When f is monotone and submodular, the multilinear extension F
is also monotone and submodular.

tone if g—xF > 0 and it is submodular if < 0 for every i, j.

3 A LINEAR LOWER BOUND FOR
0.584-APPROXIMATION

We restate the main theorem of this section:

THEOREM 1.2. There is a constant C > 0 with the following prop-
erty. When k > Clogn, any randomized algorithm for dynamic sub-
modular maximization under cardinality constraint k that obtains
an approximation guarantee of 0.584 must have amortized query
complexity at least Q(n/k3).

3.1 Construction of the Symmetric Function

Let w be a positive integer and let € > 0 be a small constant to be
fixed later. Given x € [0,1]", we let X = ¥}”| x;/w. Consider the
following function f over [0, 1]" and its symmetric version g:

fx)=1- ]_[ (1-x) and g(x):=1-(1-%".

ie[w]
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The following theorem is from [32]. We need to make some minor
changes on the choice of parameters and include a proof in the full
version of this paper for completeness.

THEOREM 3.1 ([32]). Given any positive integer w and € > 0, let
¥ = y(w, €) := w L exp(—4w®/e). There is a monotone submodular
function ]?: [0,1]" — [0, 1] with the following two properties:

(1) Whenever max; je[w] |xi — xj| <y, we have]?(x) =g(x);

(2) For any x € [0,1]", we have f(x) — e < ]?(x) < fi(x).

Let m be a positive integer. We use ]?from Theorem 3.1 to con-

struct a function F : [0,1]™" — R as follows: Writing x € [0, 1]™"
xs)and x; = (xi,1,...,%;,w) € [0,1]", we have

Fe)=1- [ ] - fx)).

i€[m]

as x = (xq,..

1)

We also define its symmetric version G : [0,1]™" — R as

Gx)=1- [ a-g)=1- [ ] a-5".

i€[m] ie[m]

Here are some basic properties we need about F. Their proofs
can be found in the full version of the paper.

Lemma 3.2. F satisfies the following properties:

e T is monotone, submodular and satisfies f(x) € [0, 1] for all
x € [0, 1]™™.

e F(x) = G(x) when x € [0,1]™Y satisfies

max

[xi,j —xijl <y
ielml.jjew] T

and in this case, F(x) depends onx1, . ..,Xm only.
e F(x) > 1— € when x satisfies x; j = 1 for some i € [m] and

Jj€wl

3.2 Construction of the Hard Functions ¥, ,

We now present the construction of the family of hard functions
that will be used in the proof.

Choice of parameters. Let n be the length of the dynamic stream.
Let € > 0 be a constant. Let & and f§ be two constants in (0, 1) that
we fix at the end of the proof.” Let

40

7)

1 + 1
ae  (1-a)e

w=10( ) and y=w_1exp(——

be two constants. Let k be the cardinality constraint parameter that
is at most n!/? (otherwise the lower bound Q(n/k?) in the main

theorem becomes trivial) and satisfies
> 10 I

>————— -logn.

eya?(1 - a)? &

Finally let m be such that n = (2 — a)mkw so we have m = Q(n?/3).
The ground set V. We start with the definition of V, where
m m
V=AUB, A=[J4; and B=| B,
i=1 i=1

?Looking ahead, we will choose & and S to minimize the quantity Q(«a, ) discussed
in Lemma 3.7; we will set them to be & = 0.56 and f§ = 0.42, respectively.
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where each A; has akw elements and each B; has (1—-a)kw elements
and they are pairwise disjoint.

The function ¢ ;. Let ¢ : V — [w]. We say c is a proper w-
coloring of V' if each A; j, the set of elements in A; with color j €
[w], has size ak and each B; j, the set of elements in B; with color
Jj, has size (1 — a)k. (So Aj 1, ..., A; w form an even partition of A;
and B; 1, . .., Bj . form an even partition of B;.) Let & : [m] — [m]
be a bijection which we will view as matching A, ;) with B; for
each i € [m]. Given any proper w-coloring c of V and any bijection
7 : [m] — [m], we define a function F¢,  : 2V = R as follows.
Forany S C V, let 45 € [0,1]™" and 25 € [0,1]™" be
s _|SﬂAi,j| s _|SﬂBi,j|
T ek T Ak

For any any I C [m], let xSh7 € [0,1]™Y be

and

S e
St _ ey HEET
Lji T ).s . ’
z ifigl

Finally we define # , : 2 — R: Forany S C V,

Fe,x(S) = min Icz[;n]ﬁm(l —pm ML FRS Iy + £|5|, 1
)

We state some basic properties of the function F¢, .

Lemma 3.3. Foranyc and r, F¢, . satisfies the following two prop-
erties:
(1) Fe,r is monotone, submodular and F¢, (S) € [0,1] for any
ScV.
(2) When |S| > k/e, Fe,x(S) = 1.
(3) Foranyi € [m] andj € [w], we have |A,(;) ;U Bi j| = k and
Fe,n(Agi),jUBij) 2 1-e€

ProoF. We start with the first claim. By Lemma 3.2, F is mono-
tone and submodular. Hence, it is easy to see that for each I C [m],
Fi (x5-1-7) is monotone and submodular in S. As addition and the
min operation keep both submodularity and monotonity, ¥, - is
both monotone and submodular.

For the second claim, since Fis nonnegative,

Fe,n(S) = min{e|S|/k, 1} =1,
when S| > k/e.

For the last claim, note that |A;(;) ;| = ak, |B;,j| = (1 — a)k and
A;r(i),j N Bi,j = (). Therefore, |A7r(i),j U Bi,jl =k.LetS = Aﬂ(i),j U
B;,j. We have x; L7~ 1 forallI C [m] since yi(i)j = zfj =1.By
Lemma 3.2, F(x ’I’”) >1-¢forall I and thus, ’

F(S) = min Icz[:‘n]ﬁm(l —pm LRSIy 4 £|5|, 1

> min

{(1 —o+ £|5|,1} >1-e.
This finishes the proof of the lemma. O

For any subset S C V, we say S is balanced with respect to c if

S S S
fies ju; —viy| < v and pies GARENIENE
Jj-j'€lw] -7 €lw]
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Define G : 2V > Ras

Gr(S) =miny >
Ic[m

Bl -pm -GSy + il 1
]

©)
Recall the function G(x) only depends on X;, i € [m]. As a result,
G (S) only depends on |SNA;| and |[SN B;|, i € [m]. The following
Lemma is a direct consequence of Lemma 3.2:

Lemma 3.4. When S C V is balanced with respect to c, we have
Fe,n(S) = Gn(S).

Given any S C V, the next lemma captures the minimal infor-
mation needed to evaluate G, (S) without full knowledge of c, 7.

Lemma 3.5. LetS C V and let &, n’ : [m] — [m] be two bijections.
Then we have G (S) = G/ (S) when the following condition holds:
For each i € [m], we have n(i) = ' (i) if 1) S N B; # 0 and 2) either
SNAzi) Z00rSNAp @y #0.

Remark 3.6. LetS C V.If(1)S is known to be balanced with respect
to ¢ and (2) we are given

{G.r@):i€[m,SNB; #0andSN Ay #0},  (4)

then one can evaluate F¢,  (S) without more information about ¢ and

7. To see this, (1) implies that it suffices to evaluate G, (S). Lemma
3.5 implies that G (S) is uniquely determined given (4).

We present proofs of Lemma 3.5 and the following lemma in
the full version. Lemma 3.7 is where we need to choose the two
parameters « and f§ carefully to minimize the constant 0.584.

Lemma 3.7. Fix anyi* € [m]. Let S € AU Bj+ be a set such that
S is balanced with respect to ¢ and S N Ay (j+) = 0. Then we have
Fe.n(S) < 0.5839 + 3e.

3.3 Lower Bound for Dynamic Submodular
Maximization

Hard streams. The ground set is V, which is known to the algo-
rithm; the monotone submodular function ¥* : 2V — R is Fe, x>
where ¢ is a proper w-coloring of V and  : [m] — [m] is a bijection,
both of which are unknown to the algorithm. In the stream we first
insert all elements of A, which takes amkw insertions. We then
divide the rest of the stream into m batches: For the t-th batch, we
first insert all elements of B; and then delete them. So the total
length is n = (2 — a)mkw. This is the only stream we will use in
the proof but the function is determined by the unknown ¢ and 7.

We will focus on the 0.1m rounds when elements of B;, for each
t = 1,...,0.1m, has just been inserted. To ease the presentation
we consider the following dynamic problem that consists of 0.1m
stages. During the ¢-th stage, an algorithm can query * : 2V —» R
aboutany S € AU B; U - U By and can choose to start the next
stage at any time by outputting a set S; € AU B; of size at most k.
The algorithm succeeds after 0.1m stages if F*(S;) > 0.5839 + 3¢
for every t € [0.1m]. We prove that any randomized algorithm
that succeeds with probability at least 2/3 must have total query
complexity of at least Q(n?/k%). It then follows from Lemma 3.3
(part 3) that any randomized algorithm for dynamic submodular
maximization with an approximation guarantee of 0.5839 + 4 must
have amortized query complexity Q(n/k3).
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ProoF oF THEOREM 1.2. Let ALG be a randomized algorithm for
the 0.1m-stage problem described above that succeeds with proba-
bility at least 2/3. By Lemma 3.3, we may assume that ALG never
queries a set of size more than k/e. To bound the query complexity
of ALG we consider the following simple 0.1m-stage game.

In the game there is a hidden proper w-coloring ¢ of V and a
hidden bijection 7 : [m] — [m]. The game similarly consists of
0.1m stages. During each round of stage t, the algorithm can make
a query by either (1) picking a subset S of V of size at most k/e
or (2) picking a number i € [m]. In case (1) the c-oracle returns
“balanced” or “unbalanced,” as whether S is balanced with respect
to ¢ or not; when receiving “unbalanced” the algorithm wins the
whole game. In case (2) the r-oracle returns “matched” or “not
matched,” as whether 7(¢) = i or not; after receiving “matched,” the
algorithm can choose to proceed to the next stage, and it wins the
game if it passes all 0.1m stages.

We show that any randomized algorithm that wins the game
with probability at least 2/3 must use at least Q(m?) queries. To this
end, we consider the distribution of (c, 7r) where ¢ and & are drawn
uniformly and independently, and show that any deterministic
algorithm that wins the game with probability at least 2/3 must use
Q(m?) queries.

Showing this distributional Q(m?) lower bound for each sub-
game is easy. For the subgame of finding an unbalanced set with
respect to ¢, we have for any set S of size at most k/e that

Pr [yfj—yﬁj, > y] =Pr[|5rnA,~,j| —ISNA; | > yak]

|

Pr(z};~2, >y]=Pr ['5 NBijl=ISN Byl >y(1- a)k]

1

E
for any fixed i and j # j’, given our choice of k. Therefore, any de-
terministic algorithm that finds an unbalanced set with probability
at least 1/3 requires Q(n°) queries. For the subgame about 7, at the
beginning of each stage t, any of the remaining m — (¢ — 1) indices
(other than n(1),...,n(t — 1)) is equally likely to be n(t). Given
m— (t — 1) > 0.9m, it takes Q(m) queries to pass each of the 0.1m
stages and thus, any deterministic algorithm that wins the subgame
about st with probability at least 1/3 requires Q(m?) queries.

Back to the original game, if a deterministic algorithm A can
win with probability at least 2/3, then it can either win the first
or the second subgame with probability at least 1/3. Assuming for
example it is the latter case, we get a randomized algorithm for
winning the second subgame over s with probability at least 1/3 by
first drawing c and then simulating A on the original game. Given
that the number of queries is at most that of A, we have that query
complexity of A is Q(m?).

To finish the proof we show how to use ALG to play the game.
Let ¢ be the hidden coloring and x be the hidden bijection. We
simulate the execution of ALG on ¥ * = ¥, as follows:

ey?a’k?
2k

<

1
< exp (— < ;, and

ey?(1 — a)?k?

< _
_exp( "

(1) During the first stage (of both the dynamic problem of
maximizing F* over AU Bj and the game), letting
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S € AU By of size at most k/e be any query made by ALG,
we make one query S on the c-oracle (to see if S is balanced
or not) and make one query i on the z-oracle for each
i € [m]with SN A; # 0 (to see if (1) = i). If S is not
balanced, we already won the game; otherwise, we know
F*(S) = G (S) and the latter can be computed (see Remark
3.6) using information returned by the x-oracle, so that we
can continue the simulation of ALG. When ALG decides to
output S € AU Bj of size at most k, we query S on the
c-oracle and query each i on the s-oracle with S; N A; # 0.
If S; is unbalanced, we won the game; if 7(1) = i for some i
queried, we move to stage 2 (in both the dynamic problem
and the game); if S; is balanced and 7 (1) # i for any
i:51 NA; #0,it follows from Lemma 3.7 that ALG has
failed so we terminate the simulation and fail the game.

(2) During the t-th stage (of both the dynamic problem and the
game), we similarly simulate each query
S CAUB; U---UB; of ALG. The only difference is that,
given that we have passed the first (t — 1) stages of the
game, we already know 7(1),...,7(¢t — 1) and thus,
information returned by the 7-oracle would be enough for
us to evaluate F*(S). When ALG returns S;, we query S;
and each i with S; N A; # 0, and act according to results
similarly.

To summarize, the simulation has three possible outcomes: (1) we
won the game because an unbalanced set has been found; (2) we
won the game because we have passed all 0.1m stages; or (3) ALG
fails to find S; with % (S¢) > 0.5839+ 3¢ for some ¢. Given that (3)
only happens with probability at most 1/3, we obtain an algorithm
for the game that succeeds with probability at least 2/3 and thus,
must use Q(m?) queries. To finish the proof, we note that if ALG
has total query complexity g then the algorithm we obtain for the
game has total query complexity at most

q-(1+k)+0.1m-(l+k),
€

which implies ¢ = Q(m?/k) and thus, the amortized complexity of
ALG is Q(m/k?) = Q(n/k?). Taking € = 3 X 107>, we get the lower
bound on approximation ratio. o

4 A POLYNOMIAL LOWER BOUND FOR
1/2 + e APPROXIMATION

We restate the main theorem of this section:

THEOREM 1.1. For any constant € > 0, there is a constant C¢ > 0
with the following property. When k > Ce, any randomized algo-
rithm that achieves an approximation ratio of 1/2 + € for dynamic
submodular maximization under cardinality constraint k requires
amortized query complexity nf(€) /3.

4.1 The Construction

Let € > 0 be a positive constant. We assume that both 1/e and
ek are positive integers. Our goal is to show that any randomized
algorithm for dynamic submodular maximization under a cardi-
nality constraint of k with approximation 1/2 + O(e) must have
amortized query complexity Q(n€/k3).
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Algorithm 1 Sample

: Input: A node v of T at depth ¢ € [0 : L]
: Let pg be given as below:

€ [0,1].

: With probability pg, return v.
happen when ¢ = L

: Otherwise, run Sample(v;) independently on each child v; of
v in the tree and return the union

> Since py, = 1, this always

We start with the construction of a monotone submodular func-
tion ¥ : V — R. The family of functions used in our lower bound
proof will be obtained from # by carefully shuffling elements of
V.LetL = 1/e € Nand let m = (my,...,mr) be a tuple of positive
integers to be fixed later, with my set to be 1. Let T be a tree of
depth L, where the root is at depth 0 and its leaves are at depth
L. Each internal node of T at depth £ € [0 : L — 1] has mg, chil-
dren; the number of nodes at depth ¢ € [L] is mj - - - my. We use
y to refer to the root of T and write Uy = {y}; for each ¢ € [L],
we use Vp = [mq] X - -+ X [mg] to refer to nodes of T at depth ¢.
So the set of nodes is Uy U Uy U --- U Ur and whenever we re-
fer to a node u of T at depth ¢, it should be considered as a tuple
(u1,...,up) € Up. Children of u € Up, ¢ < L — 1, are given by
Uty up, 1)y, (UL, oo s Up, Mpgq).

The ground set V of ¥ is defined as follows. For each node
ueU:=U U---UUr, we introduce a set A, = {ay,1,.. }
of w := ek new elements. We define V as the union of A, for all
u € U. To construct ¥ : 2V — R, we will utilize a weight sequence
{weleefo:L) from [26] to define a probability distribution D over
subsets of nodes of T. We specify the sequence later in Lemma 4.5;
for now it suffices to know that wy = 0, wy’s are nonnegative, and
they sum to 1.

We define the distribution of D over 2V as follows. Drawing a
sample from R ~ D can be done by calling the recursive procedure
Sample in Algorithm 1 on the root of T. Informally, starting with
R = 0, Sample performs a DFS walk on T. Whenever reaching a
node v at depth ¢, it adds v to R and does not explore any of its
children with probability p, (see Algorithm 1; note that po = 0 and
pr = 1); otherwise, it continues the DFS walk to visit each of its
children. Because py = 0, the root is never included in the set and
thus, R is always a subset of U.

We need the following properties about R; the proof can be found
in the full version of the paper.

< Au,w

Lemma 4.1. LetR ~ D, we need have the following properties

o For any node u of T at depth {, the probability of u € R with
R~ D iswg.

e For any root-to-leaf path of T, every R in the support of D has
exactly one node in the path.

Let P; C U and P, C U be two subsets of nodes of T and let
7 be a bijection from P; to P; such that (1) u and 7(u) are at the
same depth for every u € Py; and (2) for any u,v € Py, the depth
of the lowest common ancestor (LCA) of u and v is the same as
that of 7(u) and 7 (v). The following lemma follows from how the
procedure Sample works; the proof can be found in the full version:
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Lemma 4.2. The distribution of P, N R, R ~ D, is distributed the
same as first drawing R ~ D, taking Py NR and applying T on Py NR.

We use D to define ¥. Given S C V, we define x° € [0, 1]V as
the vector indexed by u € U with
s ISNAY]
Yu T T
For any R in the support of D we define g : [0,1]Y — [0,1] and
G :[0,11Y > [0,1] as

() =1-[[(1-x) and G(0)= E [mx)]. ©)

u€eR

e [0,1].

We are now ready to define 7 over 2V as
F(S) = min {g(xs) + %lSl, l} , foranysetSCV. (6)
We state some basic properties of F .

Lemma 4.3. ¥ is monotone submodular and ¥ (S) € [0, 1] for any
S C V. Moreover, ¥ (S) = 1 whenever |S| > k/e.

For each leaf u € U, we define two important subsets of V. The
first set, Ay, is the union of A’s along the path from u’s parent to
the root (not including the root):

Ay =Ay, VA, V-~ UAy up -
The other set W, is the union of A’s of nodes that are children of
nodes along the root-to-u path:
Wy = U U Aul,...,u[,l,j-
Ce[L] je[me]
The following lemma shows that ¥ (A, U A,) is large:

Lemma 4.4. For any leafu € Ur, we have |A, U Ayl = k and
F(A,UAY) =1.

We would like to show in the next lemma that any set S € W,
that has size at most k and does not overlap with A, must have a
small 7 (S). For this we need to specify the weight sequence {wg}
that we will use from [26] (recall that wg = 0).

Definition 4.5 (Weight sequence). Define {S¢}ee[r], (ac}ec[r] and
the weight sequence {w¢}ec[r] inductively as follow. We set 5 = 1
and for{ =L—-1,L—-2,...,1, let

) 841

<1+\/1+4/5g+1
Sp=14—"———

2

and

1
the weight sequence {welee[r] is defined as we = ag/Y.ee[1] a¢-

The proof of the following lemma is adapted from Lemma 5.3 in
[26] with some generalizations, and the proof can be found in the
full version of the paper.

Lemma 4.6. For any leafu € Uy and S C W,, with |S| < k and
SNA, =0, we have

F(S) < 0.5+ 0 (elog?(1/e)).
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As it will become clear soon at the beginning of the next sub-
section, our goal behind the family of hard streams is to have the
dynamic algorithm solve repeatedly the question of finding an
S € W, with |S| < kand S N A, # 0, for a large number of leafs u
of T. These questions are, however, only interesting after we shuffle
nodes of T in the fashion to be described next.

A shuffling & of T consists of a bijection my, : [mei1] = [Me41]
for every u € Up, £ € [0 : L — 1]. We use 7 to shuffle each node
u € U to n(u) as follows: 7(y) = y; for each u of depth ¢ € [L], set

() = (w1, upog Ty, g, (ug))-

A shuffling 7 induces a bijection p, : V' — V:For each element a,, ;
for some u € U and i € [w], we set pyr(au,i) = ay-1(y) ;- Finally
we define for each shuffling 7 of T,

Fr (5) = T (px (9)).

It is clear that Lemma 4.3 holds for ¥ for any shuffling 7.
Given a leaf u € Uy of T and a shuflling , let

T .
Ay = Auh---suL72s7[u1,.A.,uL,2 ()Y 'Aul,fful (uz) Y A (uy)-

We get the following corollary of Lemma 4.4 and Lemma 4.6:

Corollary 4.7. For any shuffling = of T, we have
e For any leafu € Ur, we have | A}, U Ay| =k and
Fr(ALF UAy) = 1.
e Forany leafu and S C W, with|S| <k andSN A =0,

(7)

We need a corollary of Lemma 4.2. Similar to Lemma 3.5, it
captures the minimal information needed about 7 to evaluate
atagivensetS C V:

Fr(S) < 0.5+ 0 (elog’(1/e)) .

Corollary 4.8. LetS C V and let &, n’ be two shufflings of T. We
have F (S) = F+(S) when the following condition holds: For every
two nodes u,v of T such that S N A, and S N Ay, are nonempty, the
LCA of 1Y (u) and n~1(v) is at the same depth as the LCA of '~ (u)
and 7'~ 1(v), both in T.

Remark 4.9. To evaluate ¥ (S), it suffices to know the LCA of
771 (u) and 77 1(v) for everyu,v withSN Ay, # 0 and SN A, # 0.
The LCA of n~1(u) and 7~1(v) can be determined as follows.

(1) First consider the case when u is a prefix of v or v is a prefix
ofu.Letu = (uy,...,ug) andv = (U1, ..., Up, Vptt, .. .)-
(The case when v is a prefix is similar.) Then the depth of LCA
of m(u) and n~(v) is either € if my,, .. u,_, (ug) = ug, or
€ — 1 otherwise.

(2) Assume thatu = (uq,...,up,Upsq,--.) and
v=(V1,...,00,Vp41,-..) Withuy = v1,...,up = vp but
Upyq # Upy1. We have three subcases. If both u and v have
length strictly longer than € + 1, then the depth of LCA of of
77 (w) and 771 (v) is €. If both u and v have length € + 1,
then the depth of LCA of 1~ 1 (u) and 7~ (v) is also £. (So in
these two subcases we we do not need to know anything about
7.) Finally, ifu has length € + 1 and v has length longer than
€+ 1, then the depth of LCA of 7~ ' (u) and x~'(v) is € + 1 if
Toy,...,0,(Ves1) = Upsq, and is € otherwise. The case when u
has length longer than € + 1 and v has length € + 1 is similar.
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To summarize, to determine the depth we only need to know whether
a particular entry of 7 is equal to a certain value or not. Moreover,
the entry is either my,, .. u,_, (Ug) or o, .. v, (Vg) for some €.

4.2 Lower Bound for Dynamic Submodular
Maximization

Choices of parameters. Let L = 1/€ be a positive integer. Let k be
a positive integer such that k? < n€ (as otherwise the lower bound
we aim for becomes trivial) and w = €k is a positive integer. Let n
be the length of dynamic streams and d = n®. Set mp = 1 and

pL—t+1)e

TR for each ¢ € [L —1].

me =
Hard streams. The ground set is V, which is known to the algo-
rithm; the monotone submodular function ¥* : 2V — R is Frs
where 7 is a shuffling of T, which is unknown to the algorithm.
The stream is constructed by running TRANVERSE in Algorithm 2,
and is independent of 7. It can be viewed as a DFS over the tree T,
starting at the root, except that every time it reaches a node v, it
inserts all children of v but only explores the first d children, and
deletes all children of v at the end of the exploration.
We first bound the total number of operations by n. For each
£ € [0 : L — 2], TRANVERSE visits d’ nodes and creates 2ms,; - w
operations for each of them. TRANVERSE visits d-~! nodes at depth
L — 1 and creates 2w operations for each of them. Hence, the total
number of operations is

L-2 L-2
Zd[~mg+1 2w+di 2w < Zen+en <n.
=0 =0

To gain some intuition behind the stream, we note that leafs of T
that appear in the stream are exactly those in U} := [d]F1x{1},and
they appear in the stream under the lexicographical order (which we
will denote by <). For each such leafu € U, at the time when the set
A, was inserted, the current set of elements is Wj,. Inspired by Corol-
lary 4.7 we will consider the following simplified dZ~!-stage dy-
namic problem, where stages are indexed using leaves in U} under
the lexicographical order. During the u-th stage, an algorithm can
query F * about any subset S C Uu’EUL*:u’ﬁuWu’ and can choose to
start the next stage at any time by returning an S;, € W, of size at
most k. We say an algorithm succeeds if ¥ *(S,) > 0.5 + O(e) as on
the RHS of (7) for every stage. We show below that any randomized
algorithm that succeeds with probability at least 2/3 must have total
query complexity Q(n!*€/k3). It follows from Corollary 4.7 that
any randomized algorithm for dynamic submodular maximization
with an approximation guarantee of 0.5+ Q(e) must have amortized
query complexity Q(n€/k3).

Proor oF THEOREM 1.1. Let & be a shuffling of T drawn uni-
formly at random (i.e., every bijection in s is drawn independently
and uniformly). Consider any deterministic algorithm ALG that
succeeds with probability 2/3 on the dL_l—stage dynamic problem
described above with ¥* = ¥,. By Lemma 4.3 we assume without
loss of generality that ALG only queries sets of size at most k/e.
When ALG succeeds on ¥ * = ¥ for some shuffling 7, we have
from Corollary 4.7 that the S, it outputs during the u-th stage must
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Algorithm 2 TRANVERSE

1: Input: Anode u of T at depth £ € [0: L — 1]
2. if { = L — 1 then
Insert all elements of Ay, ... 4;_;,1 and then delete them
else
Insert all elements in Ay, ... 4,,; for each i € [mpiq]
for i from 1 to d do
Call TRANVERSE on (u1, . .
end for
Delete all elements in Ay, ... y,,; for each i € [mgy4]
10: end if

Lup, i)

satisfy S, N AZ # 0, which implies (using the definition of A7)
SunNAy,. )y #0 3)

for some ¢ € [0 : L — 2]. By an averaging argument, we have that
there exists an € € [0 : L — 2] such that with probability at least
2/(3L) over s, at least (1/L)-fraction of S, returned by ALG satisfy
(8) for this ¢. Fix such an ¢ and this inspires us to introduce the
following simple game.

In the game there are d’ hidden bijections 7y, ... v, : [Mer1] =
d€+1

s Ul Ty, . up (ues1

[mes1], foreach vy, ..., v € [d]. The game consists of stages;
each stage is indexed by a v = (v1,...,vp41) € [d]7*! and ordered
by the lexicographical order. During the v-th stage of the game,
an algorithm can send a number i € [mg,1] to the oracle and the
latter reveals if 77y, .. o, (vg41) = i. We say the algorithm wins the
v-th stage if it queries an i that matches o, .. o, (ve41) during
the v-th stage. At any time it can choose to give up and move
forward to the next stage, in which case 75, ..., v, (Vg4+1) is revealed
to the algorithm. We say an algorithm succeeds if it wins at least
(1/L)-fraction of the df*! stages.

We prove the following lower bound for this game in the full
version of the paper.

Claim 4.10. When the hidden bijections are drawn independently
and uniformly, any deterministic algorithm that succeeds with proba-
bility at least 2/(3L) has total query complexity Q(myp,df+Y).

To finish the proof, we show that ALG can be used to play the
game as follows:

(1) We start by drawing a random bijection for every node in
the tree T except for those at (v1,...,v¢) € [d]¢. Let 7 be
the shuffling when they are combined with hidden
bijections 7y, .. o, in the game. We simulate ALG on 5
over the stream TRANVERSE and maintain the following
invariant. During the v-th stage of the game, with
v=(v1,...,0041) € [d]F+!, we simulate ALG through its
stages for leaves u € U} that have v as a prefix and assume
that we already know 7y, .. w, (wp4q) for all
w=(wi,...,wee1) <vandw e [d]F+L

During the u-th stage of the simulation of ALG for some
leaf u € U}, we are in the v-th stage of the game with
v=(uy,... upsq) € [d]f*). For each query

Sc Uu’eUL*:u’SuWu’ (of size at most k/€) made by ALG, it
follows from Remark 4.9 that, to evaluate S at F, we only
need to know the depth of LCA of 77! (¢"") and 7! (v"’) in
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T for no more than (k/€)? many pairs of u”’, v"/ with
SNAy» #0and SN A, # 0. For each such pair, it follows
from Remark 4.9 again that either we know the answer
already or we need to compare 7y, 7 (uy,,) or

Mo, ol (vy,,) with a certain value. Given thatu” < v
and v”’ < v, either the answer is already known or we just
need to make a query to the game oracle. So we only need
to make at most (k/€)? queries to continue the simulation
of ALG. At the end of the u-th stage of ALG, let S, be the
set that ALG returns. For every i such that

SuN Ay, .. upi # 0 (note that there are at most k such i
given that |S| < k), we query i on the game oracle. Note
that we would have won the v-th stage of the game by now
if (8) holds for S;,. We then continue to simulate ALG on the
next stage of the dynamic problem. If the next stage of ALG
is about a new leaf u with v < (uy,...,up41), then we also
move to the next stage in the game.

It is clear from the simulation that for any 7, if ALG running on %
satisfies (8) for at least (1/L)-fraction of leaves in Uz, then we win
the game when 7 is the shuffling we get by combining our own
random samples at the beginning with hidden bijections in the game.
Using the promise about ALG at the beginning, we get a randomized
algorithm that succeeds in the game with probability at least 2/(3L)
when the hidden bijections are drawn independently and uniformly
at random. On the other hand, if the query complexity of ALG is g,
then our simulation uses

K\2
B e Lt
Combining with Claim 4.10 we have g = Q(n'*€/k3).

5 INSERTION-ONLY STREAMS UNDER A
CARDINALITY CONSTRAINT

We consider insertion-only streams and give a deterministic (1 —
1/e — €)-approximation algorithm with O(log(k/e)/e?) amortized
query complexity. As discussed in Remark 2.1, our algorithm does
not need to know the ground set V or the number of rounds n at
the beginning.

THEOREM 1.3. Given any € > 0, there is a deterministic algo-
rithm that achieves an approximation guarantee of 1 — 1/e — € for
dynamic submodular maximization under cardinality constraint k
over insertion-only streams. The amortized query complexity of the

algorithm is O(log(k/€)/€?).

To prove Theorem 1.3, we give a deterministic algorithm (pseu-
docode in Algo 3 ) with the following performance guarantees. We
follow standard arguments to finish the proof of Theorem 1.3 and
the proof can be found in the full version of the paper.

Lemma 5.1. There is a deterministic algorithm that satisfies the
following performance guarantees. Given a positive integer k, € > 0
and OPT > 0, the algorithm runs on an insertion-only stream and
outputs a set Sy C V; of size at most k at the end of each round t
such that (1)S1 € Sz C -+ and (2) when OPT; > OPT for the first
time, Sy must satisfy f(Sy) > (1—1/e—¢€) OPT. The amortized query
complexity of the algorithm is O(1/e€).
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Algorithm 3 Dynamic submodular maximization with a cardinal-
ity constraint.

: procedure INITIALIZE(K, €, OPT)
SetS=0,A=¢OPT /kand By =0 for{ =0,1,...,|1/€]
: end procedure

procedure INSERT(e)
if fs(e) > (OPT —f(S))/k — A and |S| < k then
Update S < S U {e} and call REVOKE
else
Update By < By U {e} with € = | fs(e)/A]
(Note that ¢ < | 1/€e] given that fs(e) < OPT /k)
end if
end procedure

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
: procedure REVOKE
Letr = [(OPT —f(S))/(kA)].
if |S| < k and there exists an index £ > r with By # 0 then
Let € be any such index and let ¢’ be any element in Bg.
if fs(e’) > (OPT-f(S))/k — A then
Update S « S U {e’} and By < Bp\{e’}

20: else

21 Update By « By\{e’} and By < By U {e’} with
U= fs(e')/A]

22: (Note that0 < ¢’ <r < ¢)

23: end if

24: Go to Line 15.

25: end if

26: end procedure

6 INSERTION-ONLY STREAM: EFFICIENT

ALGORITHM FOR MATROID CONSTAINTS
We present an efficient (1 — 1/e — €)-approximation algorithm
under the general matroid constraint. We first give a (1/2 — €)-
approximate deterministic combinatorial algorithm (Section 6.1),
we then embed it into the accelerated continuous greedy framework
of [3] to achieve (1 — 1/e — €) approximation (Section 6.2).

6.1 The Combinatorial Algorithm
Given k as the rank of the matroid M, we define L, R and A as

- [log(k/e)l, R- [Zlog(k/e)l

€ €2
A= {(al,“' ,ap) € Z5, Z ap <R
£e[l]
We note the size of A can be upper bounded by
R

and

d+L-1 R+L-1 2¢R\L
|ﬂ|=d§( L )S(R+1)-( i )S(R+1)(T)
= k007, ©)

Both of our deterministic algorithm and randomized algorithm
use a deterministic subroutine called PRUNE-GREEDY described in
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Algorithm 4 PRUNE-GREEDY

>aeA
Initialize S « @ and ¢y < agA for each € € [L], where
_ €20PT
" log(k/e)
Let £* be the smallest £ € [L] with ¢y > 0
. end procedure

1: procedure INITIALIZE(K, OPT, a, h, M)
2:

: procedure INSERT(e)

if SUe € Mand hg(e) > (1+¢)¢ OPT then
Update cp+ « cp+ — hg(e) and S « S U {e}
if ¢y« < 0 then

Call REVOKE

end if

end if

: end procedure

: procedure REVOKE
Update ¢* to be the smallest £ with ¢, > 0
Terminate and return S if no such ¢ exists
for each e; inserted so far (in the order of insertions) do
if SUe; € M and hg(e;) > (1+¢)~¢ OPT then
Update cp» « cp+ — hg(e;) and S « S U {e;},
end if
end for
Go to line 16 if ¢ < 0
end procedure

22:
23:

Algorithm 4. The inputs of PRUNE-GREEDY include k as the rank of
the underlying matroid M, a positive number OPT, a tuple a € A,
as well as query access to both f and M. When running on an
insertion-only stream, PRUNE-GREEDY may decide to terminate at
the end of a round and output a set S. A complication due to the
application of this subroutine in the randomized algorithm is that
we will give it query access to a perturbed version of f: We say
h:V — Risax-close of fif h(S) = f(S) £ k for every S C V.
We state its performance guarantees in the following lemma:

Lemma 6.1. There is a deterministic algorithm that, given a positive
integerk, OPT > 0, a € A and query access to a matroid M overV of
rank k and a function h : V. — R that is k-close to a nonnegative and
monotone submodular function f : V — R, where x = 3 OPT /k.
The algorithm runs on insertion-only streams with amortized query
complexity O(L) and has the following performance guarantee. Given
any insertion-only stream ey, . . ., e; such that OPT < OPT; < (1 +
€) OPT, there exists an a* € A such that when given OPT and a* as
input, the algorithm terminates before the end of round t and outputs
a feasible set S C V; that satisfies

f(8) = (1-0(€)) f5(0),

Proor. The algorithm is described in Algorithm 4.

Let eq, ..., e; be the stream with OPT < OPT; < (1 + ¢) OPT.
To specify the a* € A in the statement of the lemma, we consider
the following L-pass greedy algorithm. The algorithm maintains
aset T € M.t starts with T = 0 and updates T — T U Tp at the

for any set O such that O € M and O C V;.
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end of the ¢-th pass (so we have T = T U - - - U T at the end of
the {-th pass). During the ¢-th pass, we set Sy = 0 and go through
e1,...,er. For each e;, the algorithm checks if T U Sp U {e;} € M
and htys, (ej) > (1 + €)= (=D OPT. If so, ¢; is added to Sp. At the
end of the {-th pass, we do not add all elements Sy to T. Instead,
we further prune Sy to get Ty: Let e;,, ej,, . . . be elements added to
S¢ during the ¢-th pass. Ty is set to be {ej;, ..., e;;} such that j is
the smallest integer such that
hru.-ut,, (Te) 2 A VITIU+H(SF)J ,

where Ty = (0 when the RHS above is 0. This finishes the ¢-th
pass and the algorithm updates T with T U Ty. Let (S1,...,Sr) and
(T1, ..., Tr) be the two sequences of sets obtained from this L-pass
algorithm. Let a* € Z]io be defined as aj, = |hnu...ut,_, (Se)/Al
for each £ € [L]. It is easy to see that

A ap=n ) {
Ce[L] Ce[L]

thu...UT€71 (T[) < f(T) + 2k < 20PT.

h1u.-uT,, (Se)

A

M=

<

S
1l
—_

Hence ¢e[1)4a, < R and thus, a* € A. The following lemma
connects PRUNE-GREEDY with this L-pass greedy algorithm:

Lemma 6.2. Suppose that PRUNE-GREEDY is given a* at the begin-
ning, then it terminates before the end of the t-th round and outputs
exactlyT =Ty U---UTL.

Given Lemma 6.2, it suffices to prove that

f(T) =2 (1-0(e)) fr(0),
Fix an O € M and O C V;. The following Lemma is a folklore.

for every feasible set O C V;.

Lemma 6.3. Let M be a matroid andT € M withT = T{U---UTL
such that Ty, ..., Ty, are pairwise disjoint. Then any O € M can be
partitioned into pairwise disjoint O1, ..., O such that

(1) If|O| = |T| then |O;| = |T;| for alli < L; If|O| < |T|, letting
€ be the smallest integer such that |0] < Y ;<¢ |T¢l, then
|O;| = |T;| foralli < € and |Og| = |0| = ;< |O;]. (Note
that we always have |O;| < |T;| except fori =L.)

(2) Foralli < j, T; N Oj = 0 and for everyi <L,

T1U---UT; U041 U---UOL € M.

Recall Sy, . .
every { € [L],

., St from the L-pass greedy algorithm. We have for

T1U---UTp_1 USp e M.
For the analysis we partition O into pairwise disjoint sets Eq, Ej . . .,
Er_o,P1,...,Pr as follows.

(1) Py =0Oq;

(2) For each ¢ > 2 and each o € Oy, we consider two cases. If
TyU---UTp_5USp_1 U{o} € M then we have o € Py;
otherwise, we have o € E, where r > 0 is the largest integer
suchthat Ty U---UT,—1 US, U{o} € M and
Ty U---UTrUSr+1 U{o} ¢ M. Note that r < £ —2 and
such an r > 0 always exists given that the condition when
r = 0 is just that {o} € M.
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The following claim about the size of E, follows from the definition
and its proof can be found in the full version.

Claim 6.4. |Eg| < |Spi1\Tpy1l-

Now we have

frO) < Y fru-ur,(Or)

£e[l]

< f(O1) + Z Z Sfru--ut, (O NEy)

Ce[2:L] re[0:6-2]

+ D frueur, (Po), (10)
£€[2L]
where both steps follow from the submodularity of f.
We bound the first and last terms as follow.

Lemma 6.5. We have

f(O1) + Z friueut,., (Pe) < (1+€)f(T) + 6 OPT.
£€[2L]

We bound the second term of Eq. (10) as follow.

Lemma 6.6. We have

Z Z fr,u-ut,, (O¢ NE;) < 8¢ OPT.

Ce[2:L] re[0:6-2]

Proofs of the two lemmas above can be found in the full version.

Combining Lemma 6.5, Lemma 6.6 and Eq. (10), we have fr(0O) <
(14+€)f(T) +11e OPT. Since this holds for all feasible sets, it holds
for the set O;. Taking a linear combination, we have

£(T) L ((1-11€) fr(0) + 11€f7(Or) - 11€ OPT )

1+e
—— (1110 fr(0) - 11¢(D)).

Rearranging the term, we get the desired.

Finally, we bound the amortized query complexity of the algo-
rithm. We charge the two queries made in the evaluation of hg(e)
(line 7 or 19) to e and show that the number of queries charged to e
is at most O(L). To see this, we note that e is charged twice when
it is just inserted. Every time e is charged during REVOKE, either
it is added to S so that it is never charged again, or its marginal
contribution is small and won’t be queried in the ¢-th level later.
Hence, e has been queried for at most O(L) times. We conclude the
proof here. O

\%

v

By standard argument, we conclude

THEOREM 6.7. Given any matroid M, for any € > 0, there is a
combinatorial algorithm that maintains a feasible set S with (1/2—¢)-
approximation at each iteration. Moreover, the amortized number of

queries per update is kO/e).

6.2 Amplification via Accelerated Continuous
Greedy

We amplify the approximation ratio of the combinatorial algorithm
via the accelerated continuous greedy framework [3]. Let m =

O(1/e€) and
D ={OPT,(1+¢) ' OPT,--- , (1 + ¢)~[*108(1/€)/€1 opT} U {0}.
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Algorithm 5 Amplification via accelerated continuous greedy

: Input:d e D"™,a e A™
: Initialize x « 0
:forr=1,2,--- ,mdo
Define ¢g(S) = F(x + %S) —F(x)forallSCV
Invoke PRUNE-GREEDY(d:, dr, g), and wait until it returns
a solution S;
6: X — X+ %ST
7: end for

G W =

We run a separate branch for each d € D™ and a € A™. Intuitively,
dr € D should be seen as an estimate on the progress of optimal
solution in the r-th iteration, and a; € A is a guess on the greedy
sequence. Our algorithm segragates answer from all branches and
outputs the one with the maximum value. In order to return an
integral solution, the algorithm rounds the fractional solution via
the swap rounding approach [18]. The algorithm description is
presented in Algorithm 5.

We need the following lemma in our analysis. The proof idea
follows from [3] and it appears in [7]. It has some minor difference
with previous work and we provide a proof in the full version for
completeness.

Lemma 6.8. Let OPT < OPT; < (1 + €) OPT. Suppose in each

iteration of Algorithm 5, PRUNE-GREEDY returns a set S that satisfies

9(8) = (1-0(6)) )" gs\(0,u--u0,)(01) —€* OPT, (11
i€[L]
for some partition O = O1 U --- U Or of O and some partition S =
S1U---USy of S such thatVi € [L], S1U---S;UO0;j41 U---UO0L € M
and S; N (Oj41 U ---UOL) = 0. Then the final solution x satisfies

F(x) > (1—-1/e—0(e)) OPT.

We use Lemma 6.8 to finish the proof of Theorem 1.4 in the full
version of the paper.

7 CONCLUSIONS

We study the power and limitations of dynamic algorithms for
submodular maximization. On the lower bound side, we prove a
polynomial lower bound on the amortized query complexity for
achieving a (1/2 + €)-approximation, together with a linear lower
bound for 0.584-approximation, under fully dynamic streams with
insertions and deletions. On the algorithmic side, we develop effi-
cient (1—1/e)-approximation algorithms for insertion-only streams
under both cardinality and matroid constraints. There are many
interesting directions for further investigations:

e Many submodular functions important in practice can be
accessed in white box models instead of query models, e.g.,
the MAX-k coverage problem, influence maxmization (see
[37] for an example). Can ideas in this paper be extended to
obtain upper/lower bounds on amortized time complexity
for these problems?

e Can we extend results (algorithm or hardness) to
non-monotone submodular maximization? As far as we
know, there is no known constant-factor approximation
algorithm with poly(k) amortized query complexity for the
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non-monotone setting under fully dynamic streams. How
does the dynamic model compare to the streaming model
[1] under this setting?

e For matroid constraints, can one improve the query
complexity to O(Vk) over insertion-only streams? Also, for
fully dynamic streams, there is no known constant-factor
approximation algorithm with poly(k) amortized queries
for matroid constraints.
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