
On the Complexity of Dynamic Submodular Maximization

Xi Chen
xichen@cs.columbia.edu
Columbia University

New York, United States

Binghui Peng
bp2601@columbia.edu
Columbia University

New York, United States

ABSTRACT

We study dynamic algorithms for the problem of maximizing a
monotone submodular function over a stream of n insertions and
deletions. We show that any algorithm that maintains a (0.5 +
ϵ)-approximate solution under a cardinality constraint, for any
constant ϵ > 0, must have an amortized query complexity that is
polynomial in n. Moreover, a linear amortized query complexity
is needed in order to maintain a 0.584-approximate solution. This
is in sharp contrast with recent dynamic algorithms of [LMN+20,
Mon20] that achieve (0.5 − ϵ)-approximation with a polylog(n)
amortized query complexity.

On the positive side, when the stream is insertion-only, we
present efficient algorithms for the problem under a cardinality
constraint and under a matroid constraint with approximation guar-
antee 1− 1/e − ϵ and amortized query complexitiesO (log(k/ϵ)/ϵ2)
and kÕ (1/ϵ 2) logn, respectively, where k denotes the cardinality
parameter or the rank of the matroid.

CCS CONCEPTS

· Theory of computation → Submodular optimization and

polymatroids.

KEYWORDS

Submodular maximization, Dynamic algorithm, Query complexity

ACM Reference Format:

Xi Chen and Binghui Peng. 2022. On the Complexity of Dynamic Submodu-
lar Maximization. In Proceedings of the 54th Annual ACM SIGACT Symposium

on Theory of Computing (STOC ’22), June 20ś24, 2022, Rome, Italy. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3519935.3519951

1 INTRODUCTION

Initiated by the classical work of [35, 36] in the 1970s, submodular
maximization has developed into a central topic of discrete optimiza-
tion during past decades [14, 15, 19, 25, 39] (see [12] for a survey).
Capturing the natural notion of diminishing returns, submodular
functions and their optimization problems have found numerous
applications in areas such as machine learning [28, 40], data min-
ing [31], algorithmic game theory [38], social networks [29], etc.
The canonical form of the problem is to maximize a monotone sub-
modular function under a cardinality constraint k , for which the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
STOC ’22, June 20ś24, 2022, Rome, Italy

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00
https://doi.org/10.1145/3519935.3519951

greedy algorithm of [36] achieves the optimal approximation ratio
of 1−1/e [24, 35]. However, despite the simplicity and optimality of
this celebrated algorithm, there has been a surge of recent research
effort to reexamine the problem under a variety of computational
models motivated by unique challenges of working with massive
datasets. These include streaming algorithms [2, 26], parallel algo-
rithms [6ś8, 17, 21ś23], learning algorithms [4, 5] and distributed
algorithms [10, 11, 33].

Dynamic submodular maximization. We study the power and
limitations of dynamic algorithms for submodular maximization. In
this model, the set of elements that one can choose from is subject to
changes incurred by a stream of n insertions and deletions. Letting
Vt denote the current set of elements after the first t operations,
an algorithm needs to maintain a subset St ⊆ Vt of size at most k
that achieves a certain approximation guarantee for every round t ,
and its performance is measured by its amortized query complex-
ity (i.e., the average number of queries it makes per operation on
the underlying unknown monotone submodular function); see the
formal definition of the model in Section 2.

The dynamic model is motivated by real-world applications
of submodular maximization over massive datasets that evolve
frequently. Many of these applications arise in machine learning
and data mining tasks, including the data subset selection prob-
lem [28, 40], movie recommendation system [9], influence maxi-
mization in social networks [29], etc. As an example, in influence
maximization, one is given a social network as well as a stochastic
diffusion model, and the goal is to select a seed set of size at most
k to maximize the influence spread over the network. The spread
function is submodular for many well-studied models and therefore,
the problem becomes submodular maximization with a cardinality
constraint. Given that social networks, like Twitter or Facebook,
are involving continuously over time, an old seed set could become
outdated quickly. A natural rescue is to have an efficient dynamic
algorithm that maintains a seed set over time.

The problem of dynamic submodular maximization under a car-
dinality constraint was studied in two recent papers [30, 34], giv-
ing algorithms that achieve an (1/2 − ϵ)-approximation guarantee
with amortized query complexities that are O (k2 log2 n · ϵ−3) and
O (log8 n · ϵ−6) in a stream of length n. Compared with the 1 − 1/e
approximation guarantee of the offline greedy algorithm, however,
a natural open question posted by [30] is whether the 1/2 can be
further improved under the dynamic setting, or even under the
setting when the stream is insertion-only.

1.1 Our Results

We resolve the open question of [30] by showing that any algorithm
with an approximation ratio of 1/2 + ϵ must have amortized query
complexity polynomial in the stream length n:

1685

STOC ’22, June 20ś24, 2022, Rome, Italy Xi Chen and Binghui Peng

Theorem 1.1. For any constant ϵ > 0, there is a constant Cϵ > 0
with the following property. When k ≥ Cϵ , any randomized algo-

rithm that achieves an approximation ratio of 1/2 + ϵ for dynamic

submodular maximization under cardinality constraint k requires

amortized query complexity nΩ̃(ϵ)/k3.

Moreover, we show that any algorithm with approximation ratio
0.584 must have an amortized query complexity that is linear in n:

Theorem 1.2. There is a constant C > 0 with the following prop-

erty. When k ≥ C logn, any randomized algorithm for dynamic sub-

modular maximization under cardinality constraint k that obtains

an approximation guarantee of 0.584 must have amortized query

complexity at least Ω(n/k3).

In the proof of both theorems we construct a family of hard func-
tions to hide a secret matching. The main challenge is to achieve the
following two properties at the same time: The first one, which we
will refer to as the large-gap property, states that any dynamic algo-
rithm with a certain approximation guarantee can only succeed by
recovering the secret matching hidden in the function. On the other
hand, the second so-called indistinguishability property shows that
each query made by an algorithm can only reveal very little infor-
mation about the secret matching. The construction for Theorem
1.2 uses a simple bipartite structure but requires a more detailed
analysis to optimize for the constant 0.584. The construction for
Theorem 1.1, on the other hand, is based on a more sophisticated
(1/ϵ)-level tree structure which, at a high level, can be viewed as
a novel tree extension of the path-alike construction from [26]. We
discuss in more details about our lower bound proofs in Section 1.3.

On the positive side, when the stream is insertion only, we obtain
an algorithm that achieves an approximation guarantee of 1−1/e−ϵ
with amortized query complexity O (log(k/ϵ)/ϵ2):

Theorem 1.3. Given any ϵ > 0, there is a deterministic algo-

rithm that achieves an approximation guarantee of 1 − 1/e − ϵ for

dynamic submodular maximization under cardinality constraint k

over insertion-only streams. The amortized query complexity of the

algorithm is O (log(k/ϵ)/ϵ2).

We also obtain a randomized algorithm that achieves an approx-
imation guarantee of 1 − 1/e − ϵ for the problem under a matroid
constraint, with amortized query complexity kÕ (1/ϵ 2) logn.

Theorem 1.4. Given any ϵ > 0, there is a randomized algorithm

that achieves an approximation guarantee of 1 − 1/e − ϵ for dynamic

submodular maximization under matroid constraints over insertion-

only streams. The amortized query complexity of the algorithm is

kÕ (1/ϵ 2) logn, where k is the rank of the matroid.

Our algorithms are inspired by the classic greedy solution and
we turn it into a dynamic algorithm via techniques involving lazy
update, multilinear extension and accelerated continuous greedy,
together with the introduction of a O (1/ϵ)-pass prune-greedy al-
gorithm that could be of independent interest. We elaborate about
the intuition behind our algorithms in Section 1.3.

Remark 1.5. The best offline algorithm for maximizing monotone

submodular functionwith cardinality constraints requiresO (n log(1/ϵ))
queries [13]. Our dynamic algorithm incurs only poly-logarithmic

overheads. While for matroid constraints, even the state-of-art offline

algorithm requires O (n
√
k) value queries [13]. Hence, for matroid

constraints, our focus is to design dynamic algorithms with poly(k)
amortized query complexity.

We review related work and then give a technical overview of
our results in Section 1.3.

1.2 Related Work

Dynamic submodular maximization has only been studied recently,
and the work of [30, 34] are most relavant to us. The concurrent
work of [34] and [30] give (1/2 − ϵ)-approximation algorithm to
the dynamic submodular maximization problem under cardinality
constraints, with amortized query complexityO (k2 log2 n ·ϵ−3) and
O (log8 n · ϵ−6) respectively.

Our work is also closely related to the streaming setting. For
cardinality constraints, [2] give an (1/2 − ϵ)-approximation algo-
rithm in the streaming model, The approximiation is tight, Feld-
man et al. [26] prove Ω(ϵn/k3) space is necessary for achieving
(1/2 + ϵ) approximation. For matroid contraints, [16] give an 1/4-
approximation algorithm and the approximation ratio is improved
to 0.3178 by [27]. We remark the algorithm of [2] and [16] can
be implemented in the insertion-only dynamic setting with the
same approximation guarantee, and the amortized runing query
complexity are O (ϵ−1 log(k/ϵ)) and O (k) respectively.

On lower bound side, our work make use of the symmetric gap
techniques of [32, 39] and the weight scheduling of [26].

1.3 Technical Overview

We provide a streamlined technique overview of our approach.

A linear lower bound for 0.584-approximation. Our lower
bound is based on the construction of a family of monotone submod-
ular functions with the following properties. They share the same
ground setV which is partitioned into 2m setsV = A1 ∪ · · · ∪Am ∪
B1 ∪ · · · ∪ Bm and the algorithm knows both V and the partition.
Each Ai or Bj contains O (k) elements to be specified later. What
is hidden inside the function is a secret bijection π : [m] → [m],
which is unknown to the algorithm, and we write the function as
Fπ : 2V → [0, 1]. The three main properties we need about F are:

i) For any j ∈ [m], there is an S ⊆ Aπ (j) ∪ Bj of size k that
achieves the optimal Fπ (S) = 1;

ii) Large gap: For any j ∈ [m], every S ⊆ A1 ∪ · · · ∪Am ∪ Bj
of size at most k has Fπ (S) ≤ κ for some (as small as
possible) parameter κ > 0, unless S ∩Aπ (j) , ∅; and

iii) Indistinguishability: Every query made by the algorithm
reveals very little information about π . (Looking ahead, we
show that each query on Fπ is roughly equivalent to no
more than O (k) queries on π , each of the limited form as
łwhether π (a) is equal b or not.ž)

With these properties in hand, we use the following simple dynamic
stream of length Θ(mk) in our lower bound proof: A1, . . . ,Am are
inserted first and then we insert B1, delete B1, insert B2, delete
B2, . . ., until Bm is inserted and deleted. The large-gap property
(ii) ensures that any algorithm with an approximation guarantee
of κ must recover each entry π (j) of the hidden π after each set

1686

On the Complexity of Dynamic Submodular Maximization STOC ’22, June 20ś24, 2022, Rome, Italy

Bj is inserted.1 The indistinguishability property (iii), on the other
hand, shows that Ω(m2/k) queries are needed to recover the hidden
bijection π (by a standard calculation) and thus, the amortized query
complexity is at leastΩ(m/k2) = Ω(n/k3) by plugging in the stream
length n = Θ(mk). The main challenge is to find a construction
that satisfies (i) and (iii) and at the same time satisfies (ii) with a
parameter κ that is as small as possible (optimized to be 0.584 at
the end).

We focus on minimizing κ in the large-gap property (ii) in this
part, given that achieving the indistinguishability (iii) will become
more challenging in the polynomial lower bound for (0.5 + ϵ)-
approximation later and will be what we focus on there. Our first
attempt is the following simple coverage function F (though our
final construction will not be a coverage function). LetU be a large
universe set (for intuition considerU to be arbitrarily large so that
every expectation about random sets we draw holds exactly). For
each j ∈ [m] we randomly partitionU into two partsUj,1 andUj,2
of the same size: the union of elements of Aπ (j) (which correspond
to subsets of U) will be Uj,1 and the union of elements of Bj will
beUj,2. Each Bj is further partitioned intow groups Bj,1, . . . ,Bj,w ,
where w is a large enough constant, such that each Bj, ℓ has size
k/2 and corresponds to an even (k/2)-way random partition ofUi,2.
The same happens withAπ (j) . Now imagine that the algorithm does
not know π (j) and returns S ⊂ Ai ∪ Bj with i , π (j) by picking
k/2 elements randomly from Ai and k/2 elements randomly from
Bj . Simple calculation shows that elements in S would together
cover 0.5(1 − 1/e) + 0.25(1 − 1/e2) ≈ 0.53, which is very close to
our goal of 0.5, and splitting elements not evenly between Ai and
Bj can only cover less.

However, the algorithm can deviate by (1) not picking elements
randomly from Ai and Bj and furthermore, (2) picking from not
just Ai ∪ Bj but also the much bigger set of A1 ∪ · · · ∪Am . For (1),
if the algorithm manages to find out all k/2 elements of group Ai, ℓ
and all k/2 elements of group Bj, ℓ′ for some ℓ, ℓ′, then together
they would cover 3/4. For (2), the algorithm can pick one random
element each from k different Ai ’s to cover 1 − 1/e . In our final
construction, we overcame (1) by applying a symmetric function
constructed from [32] on top of the coverage function above. It guar-
antees that no algorithm (with a small number of queries) can ever
pick a set of elements from any of Ai or Bj that is non-negligibly
łunbalanced,ž by having noticeably more elements from any group
Ai, ℓ or Bj, ℓ than the average among Ai or Bj . Accordingly, the
large-gap property (ii) needed can be updated to be the following
weaker version:

ii) Large gap, updated: For any j ∈ [m], every łbalancedž
S ⊆ A1 ∪ · · · ∪Am ∪ Bj of size at most k has Fπ (S) ≤ κ for
some parameter κ > 0, unless S ∩Aπ (j) , ∅;

To address the challenge of (2), we use two parameters to introduce
a different type of unbalancedness: First, U is no longer partitioned
50-50; instead Uj,1 is β-fraction and Uj,2 is (1 − β)-fraction of U .
Second, it is no longer the case that all groups Ai, ℓ and Bj, ℓ have
size k/2; instead every Ai, ℓ has size αk and every Bj, ℓ has size
(1−α)k . With a detailed analysis we show that κ can be set to 0.584

1Note that we are a bit sloppy here given that the dynamic algorithm only needs to
output a set Sj after Bj is inserted to overlap with Aπ (j) . But given that |Sj | ≤ k ,
this can be considered almost as good as knowing π (j).

in the updated version of the large-gap property (ii), when α = 0.56
and β = 0.42.

A polynomial lower bound for (1/2+ϵ)-approximation.Hard
instances for our linear lower bound sketched earlier reduce at the
end to a simple problem of recovering a hidden matching. To obtain
a polynomial lower bound for (1/2 + ϵ)-approximation, we need to
further extend the idea to amplify the (hardness of) approximation
ratio by creating a depth-L tree structure with L = 1/ϵ to hide
multiple bijections at every level. Letm1, . . . ,mL be a sequence of
positive integers:mL = 1 but the other integers will be specified
at the end. The ground set V is then defined using a depth-L tree
T , in which each internal node at depth ℓ (ℓ ∈ [0 : L − 1]) has
mℓ+1 children. Let Uℓ denote the set of nodes u = (u1, . . . ,uℓ) ∈
[m1] × · · · × [mℓ] at depth ℓ; its children are given by (u, 1), . . . ,
(u,mℓ+1). The ground set is defined asV = ∪u ∈U1∪···∪ULAu , where
each Au contains ϵk elements.

In the dynamic update stream, we perform a limited DFS walk
on the tree, meaning that after reaching a nodeu, one only explores
the first d := nϵ children (u, 1), . . . , (u,d) of u (except when u is at
depth L − 1 in which case we just explore the only child of u). Let
U ∗
L
:= [d]L−1 × {1} be the set of leaves visited by the DFS walk. We

design the stream in a way such that whenever a leaf u is reached,
the current set of elements is given by

Wu :=
⋃

ℓ∈[L]

⋃

i ∈[mℓ]

Au1, ...,uℓ−1,i ,

i.e., the union of sets of nodes that are children of any node along
the path from the root to u. Let Au = Au1 ∪ · · · ∪Au1, ...,uL−1 . The
first two properties of our F : 2V → [0, 1] can now be stated:

i) Let S = Au ∪ Au . We have |S | = k and F (S) achieves the
optimal F (S) = 1;

ii) Large gap: For any S ⊆Wu of size at most k , F (S) < 1/2+ϵ
unless S ∩ Au , ∅.

At a high level, the construction of our monotone submodular
function F can be viewed as a novel tree extension of a path-alike
construction from [26] (for one-way communication complexity
of submodular maximization). In particular, we adopted a weight
sequence {wℓ } from [26] to play the role of parameter β in our linear
lower bound discussed earlier, in order to achieve the large-gap
property (ii) above no matter how the S is spread among different
levels of the tree.

Now F is only the base function that we use to construct the
family of hard functions. To this end, we introduce the notion of
a shuffling π of tree T , which consists of one bijection πu at every
internal node u of T to shuffle its children. Let Fπ be the function
obtained after applying a hidden shuffling π on F . Under the same
stream, at the time when a leaf u ∈ U ∗

L
arrives, the current set of

elements remains to beWu but the Au we care about becomes

Aπ
u := Aπγ (u1) ∪Au1,πu1 (u2) ∪ · · · ∪Au1, ...,uL−2,πu1, . . .,uL−2 (uL−1),

where πγ denotes the hidden bijection at the root, πu1 denotes the
hidden bijection at the depth-1 node u1, so on and so forth. The
two properties (i) and (ii) hold after replacing Au with Aπ

u . So
finding S ⊆Wu of size at most k with F (S) ≥ 1/2 + ϵ requires the
algorithm to (essentially) identify one of the edges along the path af-
ter shuffling, i.e., one of the entries πϵ (u1),πu1 (u2), . . . ,πu1, ...,uL−2

1687

STOC ’22, June 20ś24, 2022, Rome, Italy Xi Chen and Binghui Peng

(uL−1) in the hidden bijections. The challenge left is to establish
the indistinguishability property:

iii) Indistinguishability: Every query made by the algorithm
reveals very little information about π . (More formally, we
show that each query on Fπ is roughly equivalent to no
more than O (k2) queries on π , each of the limited form as
łwhether πu (a) for some u is equal b.ž

With (iii) if an algorithm tries towin by finding outπu1, ...,uL−2 (uL−1)
every time a leaf u is reached then each hidden entry requires
Ω(mL−1/k2) queries and thus, Ω(mL−1dL−1/k2) queries in total.
In general if an algorithm keeps working on πu1, ...,uℓ

(uℓ+1), the
total number of queries needed is Ω(mℓ+1d

ℓ+1/k2). Settingmℓ =

n(L−ℓ+1)ϵ /(2k) for each ℓ leads to a lower bound of Ω(n1+ϵ /k3)

for the total query complexity in all cases, while maintaining the
stream length to be n. (It is also not difficult to show that mixing
effort among different levels does not help.)

Finally let’s discuss how the indistinguishability property (iii)
is implemented. The first trick is to cap the function and have the
final function take the form as

F ∗π (S) = min
{
Fπ (S) + ϵ |S |/k, 1

}
.

This simple modification changes the value of solutions S we care
about slightly, no more than ϵ , given that |S | ≤ k , and at the same
time guarantees no algorithm makes any query of size more than
k/ϵ ; otherwise the value returned is trivially 1 and reveals no infor-
mation. This implies that each query S made by an algorithm can
only involve no more than k/ϵ nodes in the tree; letUS denote the
set of such nodes. A final key observation is that the function Fπ
on S is uniquely determined by the structure of the tree formed by
paths of nodes inUS to the root after applying the shuffling π . The
latter is uniquely determined by the depth of the lowest common
ancestor of every pair of nodes in US after shuffling π , which in
turn can be obtained by making at most one query to π of the form
described in (iii) for each pair inUS . The boundO (k2) follows given
that |US | ≤ k/ϵ .

Insertion-only streams: Submodular maximization with a

cardinality constraint. Our starting point is the classic (offline)
greedy approach, where in each round an element with the maxi-
mum marginal contribution is added to the solution set. We adapt
the greedy algorithm to the dynamic setting. For simplicity, let’s
assume in the overview that a value OPT is given to the algorithm
at the beginning and its goal is to maintain a set that achieves a
(1 − 1/e − ϵ)-approximation when the actual optimal value reaches
OPT. While it is impossible to find the element with the maxi-
mum margin before having all of them in hands, we can instead
choose one whose margin gives a moderate improvement, i.e., add
any element that satisfies fS (e) ≥ (OPT−f (S))/k , where S is the
current solution set. This suffices to achieve the optimal (1 − 1/e)-
approximation. A naive implementation, however, requires O (k)

amortized query complexity since the threshold (OPT−f (S))/k is
updated every time a new element is added to solution set, and
the algorithm needs to scan over all elements in the worst case.
We circumvent this with the idea of lazy update. We divide the
mariginal contribution into O (1/ϵ) buckets, with the i-th buckets
containing marignal smaller than i · (ϵ OPT/k). We don’t update

the margin value every time the solution set is augmented. Instead,
each time a new element is inserted, the algorithm only checks the
bucket whose marginal is larger than the current threshold. One
can show either a new element is added to S , or it is pushed down
to the next level. The latter can happen at most O (1/ϵ) times, and
after that, the element has negligible marginal contribution that
can be ignored safely.

Insertion-only streams: Submodular maximization with a

matroid constraint. We first provide a deterministic combina-
torial algorithm that achieves a (1/2 − ϵ)-approximation. We build
upon the previous idea, but with significant adaptations. Again,
our goal is to simulate an offline greedy algorithm but this time,
one cannot relax the condition and hope to augment the solution
set whenever the margin has a moderate improvement. The analy-
sis of the offline greedy algorithm relies crucially on picking the
maximum margin element in each step. Our first idea is to find
the element with approximate maximum margin and branch over
all possibilities. In particular, we divide the marginal gain into
L = O (ϵ−1 log(k/ϵ)) many levels, where the ℓ-th level corresponds
to [(1+ϵ)−ℓ+1 OPT, (1+ϵ)−ℓ OPT]. When working on an insertion-
only stream, we proceed to the (ℓ + 1)-th level only when there
is no element in the ℓ-th level anymore. Of course, we still don’t
know when the ℓ-th level becomes empty so that we can move to
ℓ + 1, but we can enumerate over all possibilities and guarantee
that there exists one branch that fits the sequence of the offline
approximate greedy algorithm. The caveat is that the total num-

ber of branch is
(

k
L

)

, which is quasi-polynomial in k . We further
reduce this number by considering a pruned version of the offline
approximate greedy algorithm, where the algorithm prunes extra
element in each level and only keeps the majority. We prove the
algorithm still guarantees a (1/2 − ϵ)-approximation and the total
number of branch reduces to kÕ (1/ϵ) . It requires careful analysis
to make the idea work, but the very high level intuition is that one
needs to be more careful in the first few buckets (since the marginal
is large) and less careful at the end. To amplify the approximation
ratio to (1 − 1/e − ϵ), we make use of the multi-linear extension
and use the accelerated continuous greedy framework [3]. In each
iteration, we use the above combinatorial algorithm to find the
direction of improvement of the multi-linear extension. We remark
a similar amplifying procedure has been used in the previous work
on adaptive submodular maximization [7, 17].

Organization. We begin by presenting the linear lower bound
for 0.584-approximation under fully dynamic stream in Section 3.
Section 4 is devoted to prove the polynomial lower bound on (1/2+
ϵ)-approximation. We then turn to the insertion-only stream and
provide our algorithms and analysis. The algorithm for a cardinality
constraint is presented in Section 5, and we provide an efficient (1−
1/e)-approximation algorithm for a matroid constraint in Section 6.
We discuss future research directions in Section 7. All missing
proofs can be found in the full version [20].

1688

On the Complexity of Dynamic Submodular Maximization STOC ’22, June 20ś24, 2022, Rome, Italy

2 PRELIMINARY

Submodular functions. Let V be a finite ground set. A function
f : 2V → R is submodular if

f (S ∪T) + f (S ∩T) ≤ f (S) + f (T)

for all pairs of sets S,T ⊆ V . We say f is nonnegative if f (S) ≥ 0 for
all S ⊆ V and f is monotone if f (S) ≤ f (T) whenever S ⊆ T ⊆ V .
We study submodular functions that are both nonnegative and
monotone, and assume without loss of generality that f (∅) = 0
(see Remark 2.2). We say an algorithm has query access to f if it
can adaptively pick subsets S ⊆ V to reveal the value of f (S).

Given f : 2V → R and S,T ⊆ V , the marginal gain of adding e
to S is defined as

fS (T) := f (S ∪T) − f (S).

When T = {e} is a singleton, we write fS (e) to denote fS ({e})
for convenience. Monotonicity and submodularity can be defined
equivalently using marginal gains: f is monotone iff fS (e) ≥ 0 for
all e ∈ V and S ⊆ V ; f is submodular iff fS (e) ≥ fT (e) for any
e < T and S ⊆ T ⊆ V .

Dynamic submodularmaximizationunder a cardinality con-

straint. Given V , a positive integer k and query access to a non-
negative, monotone submodular function f : V → R, the goal is
to find a γ -approximate solution Si of size at most k at the end of
each round i when making a pass on a dynamic stream of inser-
tions and deletions (the stream is insertion-only if no deletions are
allowed). More formally, starting with V0 = ∅, an element ei ∈ V is
either inserted or deleted at the beginning of round i = 1, . . . , so
that the current ground set Vi is set to be either Vi−1 ∪ {ei } if ei is
inserted orVi = Vi−1 \ {ei } if ei is deleted. After this, the algorithm
makes queries to f to find a γ -approximate solution Si of f with

respect to Vi . This means that |Si | ≤ k and

f (Si) ≥ γ OPTi , where OPTi := max
T ⊆Vi , |T | ≤k

f (T)

We emphasize that an algorithm remembers every query it has
made so far. Thus results of queries made in previous rounds may
help finding Si in the current round.

We will consider algorithms that are both deterministic and
randomized. We say a deterministic dynamic algorithm achieves
an approximation guarantee of γ if given n and any stream of
length n, it returns a γ -approximate solution Si of the i-th round for
every i ∈ [n]. We say a randomized dynamic algorithm achieves an
approximation guarantee of γ if given n and any stream of length n,
with probability at least 2/3 it returns a γ -approximate solution Si
for every round i ∈ [n] at the same time. We say an (deterministic
or randomized) algorithm has amortized query complexity Q if the
total number of queries it makes is no more than n ·Q .

Remark 2.1. We discuss some details of the model behind our upper

and lower bounds:

(1) Our lower bounds hold even if the algorithm is given V and it

is allowed to query during the i-th round any set S of elements

that have appeared in Vj for some j ≤ i ; our algorithms only

query sets in Vi and does not need to know V initially.

(2) Our lower bounds hold even if the algorithm is given n, the

stream length; our algorithms do not need to know n and meet

the stated amortized bounds at the end of every round.

Dynamic submodular maximization under a matroid con-

straint A set systemM ⊆ 2V is amatroid if it satisfies (i) ∅ ∈ M,
(ii) the downward closed and (iii) augmentation properties. A set sys-
temM is downward closed if T ∈ M implies S ∈ M for all S ⊆ T .
The augmentation property is that if S,T ∈ M and |S | < |T |, then
there must be an element e ∈ T \S such that S ∪ {a} ∈ M. When
S ∈ M, we say S is feasible or independent. The rank of the matroid
M, denoted as rank(M), is the maximum size of an independent
set inM.

The setting of dynamic submodular maximization under a ma-
troid constraint is similar. In addition to V and query access to
f , the algorithm is given query access to a matroidM over V : it
can pick any S ⊆ V to query if S ∈ M or not. To goal is to find
a γ -approximate solution Si of f with respect to Vi at the end of
every round. This mdeans that Si ⊆ Vi , Si ∈ M and

f (Si) ≥ γ · OPTi , where OPTi := max
T ∈M,T ⊆Vi

f (T).

When measuring the amortized query complexity, we count queries
to both f andM.

Remark 2.2. In both problems, one can assume without loss of

generality that f (∅) = 0 (since any γ -approximate solution to д with

respect to Vi , where д(S) := f (S) − f (∅), must be a γ -approximate

solution to f with respect toVi as well). We will make this assumption

in the rest of the paper.

Themultilinear extention Themultilinear extension F : [0, 1] |V |

→ R+ of a function f maps a point x ∈ [0, 1] |V | to the expected
value of a random set S ∼ x, i.e.

F (x) =
∑

S ⊆V

∏

e ∈S
xe

∏

e ′∈V \S
(1 − xe ′) f (S)

We write F (x) = ES∼x[f (x)] for simplicity. For any x ∈ [0, 1] |V | ,
λ ∈ [0, 1], S ⊆ V , we write F (x+λS) to denote F (x′), where x ′i = xi
if i < S and x ′i = min{xi + λ, 1} if i ∈ S .

For a continuous function F : [0, 1] |V | → R, we say it is mono-

tone if ∂F
∂xi
≥ 0 and it is submodular if ∂2F

∂xi ∂x j
≤ 0 for every i, j.

When f is monotone and submodular, the multilinear extension F

is also monotone and submodular.

3 A LINEAR LOWER BOUND FOR

0.584-APPROXIMATION

We restate the main theorem of this section:

Theorem 1.2. There is a constant C > 0 with the following prop-

erty. When k ≥ C logn, any randomized algorithm for dynamic sub-

modular maximization under cardinality constraint k that obtains

an approximation guarantee of 0.584 must have amortized query

complexity at least Ω(n/k3).

3.1 Construction of the Symmetric Function

Letw be a positive integer and let ϵ > 0 be a small constant to be
fixed later. Given x ∈ [0, 1]w , we let x = ∑w

i=1 xi/w . Consider the
following function f over [0, 1]w and its symmetric version д:

f (x) := 1 −
∏

i ∈[w]

(1 − xi) and д(x) := 1 − (1 − x)w .

1689

STOC ’22, June 20ś24, 2022, Rome, Italy Xi Chen and Binghui Peng

The following theorem is from [32]. We need to make some minor
changes on the choice of parameters and include a proof in the full
version of this paper for completeness.

Theorem 3.1 ([32]). Given any positive integerw and ϵ > 0, let
γ = γ (w, ϵ) := w−1 exp(−4w6/ϵ). There is a monotone submodular

function f̂ : [0, 1]w → [0, 1] with the following two properties:

(1) Whenever maxi, j ∈[w] |xi − x j | ≤ γ , we have f̂ (x) = д(x);

(2) For any x ∈ [0, 1]w , we have f (x) − ϵ ≤ f̂ (x) ≤ f (x).

Letm be a positive integer. We use f̂ from Theorem 3.1 to con-
struct a function F̂ : [0, 1]mw → R as follows: Writing x ∈ [0, 1]mw

as x = (x1, . . . ,xs) and xi = (xi,1, . . . ,xi,w) ∈ [0, 1]w , we have

F̂ (x) := 1 −
∏

i ∈[m]

(1 − f̂ (xi)). (1)

We also define its symmetric version G : [0, 1]mw → R+ as

G (x) := 1 −
∏

i ∈[m]

(1 − д(xi)) = 1 −
∏

i ∈[m]

(1 − xi)w .

Here are some basic properties we need about F̂ . Their proofs
can be found in the full version of the paper.

Lemma 3.2. F̂ satisfies the following properties:

• F̂ is monotone, submodular and satisfies F̂ (x) ∈ [0, 1] for all
x ∈ [0, 1]mw .

• F̂ (x) = G (x) when x ∈ [0, 1]mw satisfies

max
i ∈[m], j, j′∈[w]

|xi, j − xi, j′ | ≤ γ

and in this case, F̂ (x) depends on x1, . . . ,xm only.

• F̂ (x) ≥ 1 − ϵ when x satisfies xi, j = 1 for some i ∈ [m] and
j ∈ [w],

3.2 Construction of the Hard Functions Fc,π
We now present the construction of the family of hard functions
that will be used in the proof.

Choice of parameters. Let n be the length of the dynamic stream.
Let ϵ > 0 be a constant. Let α and β be two constants in (0, 1) that
we fix at the end of the proof.2 Let

w = 10

(

1

αϵ
+

1

(1 − α)ϵ

)

and γ = w−1 exp
(

−4w
6

ϵ

)

be two constants. Let k be the cardinality constraint parameter that
is at most n1/3 (otherwise the lower bound Ω(n/k3) in the main
theorem becomes trivial) and satisfies

k ≥ 10

ϵγα2 (1 − α)2
· logn.

Finally letm be such that n = (2−α)mkw so we havem = Ω(n2/3).

The ground set V .We start with the definition of V , where

V = A ∪ B, A =

m
⋃

i=1

Ai and B =

m
⋃

i=1

Bi ,

2Looking ahead, we will choose α and β to minimize the quantity Q (α, β) discussed
in Lemma 3.7; we will set them to be α = 0.56 and β = 0.42, respectively.

where eachAi hasαkw elements and eachBj has (1−α)kw elements
and they are pairwise disjoint.

The function Fc,π . Let c : V → [w]. We say c is a proper w-
coloring of V if each Ai, j , the set of elements in Ai with color j ∈
[w], has size αk and each Bi, j , the set of elements in Bi with color
j , has size (1 − α)k . (So Ai,1, . . . ,Ai,w form an even partition of Ai
and Bi,1, . . . ,Bi,w form an even partition of Bi .) Let π : [m]→ [m]
be a bijection which we will view as matching Aπ (i) with Bi for
each i ∈ [m]. Given any properw-coloring c ofV and any bijection
π : [m]→ [m], we define a function Fc,π : 2V → R as follows.

For any S ⊆ V , let yS ∈ [0, 1]mw and zS ∈ [0, 1]mw be

ySi, j =
|S ∩Ai, j |

αk
and zSi, j =

|S ∩ Bi, j |
(1 − α)k .

For any any I ⊆ [m], let xS, I,π ∈ [0, 1]mw be

x
S, I,π
i, j =


yS
π (i), j

if i ∈ I

zSi, j if i < I
.

Finally we define Fc,π : 2V → R: For any S ⊆ V ,

Fc,π (S) = min


∑

I ⊆[m]

β |I | (1 − β)m−|I | · F̂ (xS, I,π) + ϵ

k
|S |, 1

 .
(2)

We state some basic properties of the function Fc,π .

Lemma 3.3. For any c and π , Fc,π satisfies the following two prop-

erties:

(1) Fc,π is monotone, submodular and Fc,π (S) ∈ [0, 1] for any
S ⊆ V .

(2) When |S | ≥ k/ϵ , Fc,π (S) = 1.
(3) For any i ∈ [m] and j ∈ [w], we have |Aπ (i), j ∪ Bi, j | = k and

Fc,π (Aπ (i), j ∪ Bi, j) ≥ 1 − ϵ .

Proof. We start with the first claim. By Lemma 3.2, F̂ is mono-
tone and submodular. Hence, it is easy to see that for each I ⊆ [m],
F̂ (xS, I,π) is monotone and submodular in S . As addition and the
min operation keep both submodularity and monotonity, Fc,π is
both monotone and submodular.

For the second claim, since F̂ is nonnegative,

Fc,π (S) ≥ min{ϵ |S |/k, 1} = 1,

when |S | ≥ k/ϵ .
For the last claim, note that |Aπ (i), j | = αk , |Bi, j | = (1 − α)k and

Aπ (i), j ∩ Bi, j = ∅. Therefore, |Aπ (i), j ∪ Bi, j | = k . Let S = Aπ (i), j ∪
Bi, j . We have xS, I,πi, j = 1 for all I ⊆ [m] since yS

π (i), j
= zSi, j = 1. By

Lemma 3.2, F̂ (xS, I,π) ≥ 1 − ϵ for all I and thus,

F (S) = min


∑

I ⊆[m]

β |I | (1 − β)m−|I | · F̂ (xS, I,π) + ϵ

k
|S |, 1


≥ min

{

(1 − ϵ) + ϵ

k
|S |, 1

}

≥ 1 − ϵ .

This finishes the proof of the lemma. □

For any subset S ⊆ V , we say S is balanced with respect to c if

max
i ∈[m]
j, j′∈[w]

���ySi, j − ySi, j′ ��� ≤ γ and max
i ∈[m]
j, j′∈[w]

���zSi, j − zSi, j′ ��� ≤ γ .

1690

On the Complexity of Dynamic Submodular Maximization STOC ’22, June 20ś24, 2022, Rome, Italy

Define Gπ : 2V → R as

Gπ (S) = min


∑

I ⊆[m]

β |I | (1 − β)m−|I | ·G (xS, I,π) +
ϵ

k
|S |, 1

 .
(3)

Recall the function G (x) only depends on xi , i ∈ [m]. As a result,
Gπ (S) only depends on |S ∩Ai | and |S ∩Bi |, i ∈ [m]. The following
Lemma is a direct consequence of Lemma 3.2:

Lemma 3.4. When S ⊆ V is balanced with respect to c , we have

Fc,π (S) = Gπ (S).
Given any S ⊆ V , the next lemma captures the minimal infor-

mation needed to evaluate Gπ (S) without full knowledge of c,π .
Lemma 3.5. Let S ⊆ V and let π ,π ′ : [m]→ [m] be two bijections.
Then we have Gπ (S) = Gπ ′ (S) when the following condition holds:

For each i ∈ [m], we have π (i) = π ′(i) if 1) S ∩ Bi , ∅ and 2) either
S ∩Aπ (i) , ∅ or S ∩Aπ ′ (i) , ∅.
Remark 3.6. Let S ⊆ V . If (1) S is known to be balanced with respect

to c and (2) we are given{
(i,π (i)) : i ∈ [m], S ∩ Bi , ∅ and S ∩Aπ (i) , ∅

}
, (4)

then one can evaluate Fc,π (S) without more information about c and

π . To see this, (1) implies that it suffices to evaluate Gπ (S). Lemma

3.5 implies that Gπ (S) is uniquely determined given (4).

We present proofs of Lemma 3.5 and the following lemma in
the full version. Lemma 3.7 is where we need to choose the two
parameters α and β carefully to minimize the constant 0.584.

Lemma 3.7. Fix any i∗ ∈ [m]. Let S ⊆ A ∪ Bi∗ be a set such that

S is balanced with respect to c and S ∩ Aπ (i∗) = ∅. Then we have

Fc,π (S) ≤ 0.5839 + 3ϵ .

3.3 Lower Bound for Dynamic Submodular

Maximization

Hard streams. The ground set is V , which is known to the algo-
rithm; the monotone submodular function F ∗ : 2V → R is Fc,π ,
where c is a properw-coloring ofV and π : [m]→ [m] is a bijection,
both of which are unknown to the algorithm. In the stream we first
insert all elements of A, which takes αmkw insertions. We then
divide the rest of the stream intom batches: For the t-th batch, we
first insert all elements of Bt and then delete them. So the total
length is n = (2 − α)mkw . This is the only stream we will use in
the proof but the function is determined by the unknown c and π .

We will focus on the 0.1m rounds when elements of Bt , for each
t = 1, . . . , 0.1m, has just been inserted. To ease the presentation
we consider the following dynamic problem that consists of 0.1m
stages. During the t-th stage, an algorithm can query F ∗ : 2V → R
about any S ⊆ A ∪ B1 ∪ · · · ∪ Bt and can choose to start the next
stage at any time by outputting a set St ⊆ A ∪ Bt of size at most k .
The algorithm succeeds after 0.1m stages if F ∗ (St) > 0.5839 + 3ϵ
for every t ∈ [0.1m]. We prove that any randomized algorithm
that succeeds with probability at least 2/3 must have total query
complexity of at least Ω(n2/k3). It then follows from Lemma 3.3
(part 3) that any randomized algorithm for dynamic submodular
maximization with an approximation guarantee of 0.5839+4ϵ must
have amortized query complexity Ω(n/k3).

Proof of Theorem 1.2. Let ALG be a randomized algorithm for
the 0.1m-stage problem described above that succeeds with proba-
bility at least 2/3. By Lemma 3.3, we may assume that ALG never
queries a set of size more than k/ϵ . To bound the query complexity
of ALG we consider the following simple 0.1m-stage game.

In the game there is a hidden proper w-coloring c of V and a
hidden bijection π : [m] → [m]. The game similarly consists of
0.1m stages. During each round of stage t , the algorithm can make
a query by either (1) picking a subset S of V of size at most k/ϵ
or (2) picking a number i ∈ [m]. In case (1) the c-oracle returns
łbalancedž or łunbalanced,ž as whether S is balanced with respect
to c or not; when receiving łunbalancedž the algorithm wins the
whole game. In case (2) the π -oracle returns łmatchedž or łnot
matched,ž as whether π (t) = i or not; after receiving łmatched,ž the
algorithm can choose to proceed to the next stage, and it wins the
game if it passes all 0.1m stages.

We show that any randomized algorithm that wins the game
with probability at least 2/3 must use at least Ω(m2) queries. To this
end, we consider the distribution of (c,π) where c and π are drawn
uniformly and independently, and show that any deterministic
algorithm that wins the game with probability at least 2/3 must use
Ω(m2) queries.

Showing this distributional Ω(m2) lower bound for each sub-
game is easy. For the subgame of finding an unbalanced set with
respect to c, we have for any set S of size at most k/ϵ that

Pr
[
ySi, j − y

S
i, j′ > γ

]
= Pr

[
|S ∩Ai, j | − |S ∩Ai, j′ | > γαk

]

≤ exp

(

−ϵγ
2α2k2

2k

)

≤ 1

n5
, and

Pr
[
zSi, j − z

S
i, j′ > γ

]
= Pr

[
|S ∩ Bi, j | − |S ∩ Bi, j′ | > γ (1 − α)k

]

≤ exp

(

−ϵγ
2 (1 − α)2k2

2k

)

≤ 1

n5

for any fixed i and j , j ′, given our choice of k . Therefore, any de-
terministic algorithm that finds an unbalanced set with probability
at least 1/3 requires Ω(n5) queries. For the subgame about π , at the
beginning of each stage t , any of the remainingm − (t − 1) indices
(other than π (1), . . . ,π (t − 1)) is equally likely to be π (t). Given
m − (t − 1) ≥ 0.9m, it takes Ω(m) queries to pass each of the 0.1m
stages and thus, any deterministic algorithm that wins the subgame
about π with probability at least 1/3 requires Ω(m2) queries.

Back to the original game, if a deterministic algorithm A can
win with probability at least 2/3, then it can either win the first
or the second subgame with probability at least 1/3. Assuming for
example it is the latter case, we get a randomized algorithm for
winning the second subgame over π with probability at least 1/3 by
first drawing c and then simulating A on the original game. Given
that the number of queries is at most that ofA, we have that query
complexity of A is Ω(m2).

To finish the proof we show how to use ALG to play the game.
Let c be the hidden coloring and π be the hidden bijection. We
simulate the execution of ALG on F ∗ = Fc,π as follows:

(1) During the first stage (of both the dynamic problem of
maximizing F ∗ over A ∪ B1 and the game), letting

1691

STOC ’22, June 20ś24, 2022, Rome, Italy Xi Chen and Binghui Peng

S ⊆ A ∪ B1 of size at most k/ϵ be any query made by ALG,
we make one query S on the c-oracle (to see if S is balanced
or not) and make one query i on the π -oracle for each
i ∈ [m] with S ∩Ai , ∅ (to see if π (1) = i). If S is not
balanced, we already won the game; otherwise, we know
F ∗ (S) = Gπ (S) and the latter can be computed (see Remark
3.6) using information returned by the π -oracle, so that we
can continue the simulation of ALG. When ALG decides to
output S1 ⊆ A ∪ B1 of size at most k , we query S1 on the
c-oracle and query each i on the π -oracle with S1 ∩Ai , ∅.
If S1 is unbalanced, we won the game; if π (1) = i for some i
queried, we move to stage 2 (in both the dynamic problem
and the game); if S1 is balanced and π (1) , i for any
i : S1 ∩Ai , ∅, it follows from Lemma 3.7 that ALG has
failed so we terminate the simulation and fail the game.

(2) During the t-th stage (of both the dynamic problem and the
game), we similarly simulate each query
S ⊆ A ∪ B1 ∪ · · · ∪ Bt of ALG. The only difference is that,
given that we have passed the first (t − 1) stages of the
game, we already know π (1), . . . ,π (t − 1) and thus,
information returned by the π -oracle would be enough for
us to evaluate F ∗ (S). When ALG returns St , we query St
and each i with St ∩Ai , ∅, and act according to results
similarly.

To summarize, the simulation has three possible outcomes: (1) we
won the game because an unbalanced set has been found; (2) we
won the game because we have passed all 0.1m stages; or (3) ALG
fails to find St with Fc,π (St) ≥ 0.5839+3ϵ for some t . Given that (3)
only happens with probability at most 1/3, we obtain an algorithm
for the game that succeeds with probability at least 2/3 and thus,
must use Ω(m2) queries. To finish the proof, we note that if ALG
has total query complexity q then the algorithm we obtain for the
game has total query complexity at most

q ·
(

1 +
k

ϵ

)

+ 0.1m · (1 + k),

which implies q = Ω(m2/k) and thus, the amortized complexity of
ALG is Ω(m/k2) = Ω(n/k3). Taking ϵ = 3 × 10−5, we get the lower
bound on approximation ratio. □

4 A POLYNOMIAL LOWER BOUND FOR

1/2 + ϵ APPROXIMATION

We restate the main theorem of this section:

Theorem 1.1. For any constant ϵ > 0, there is a constant Cϵ > 0
with the following property. When k ≥ Cϵ , any randomized algo-

rithm that achieves an approximation ratio of 1/2 + ϵ for dynamic

submodular maximization under cardinality constraint k requires

amortized query complexity nΩ̃(ϵ)/k3.

4.1 The Construction

Let ϵ > 0 be a positive constant. We assume that both 1/ϵ and
ϵk are positive integers. Our goal is to show that any randomized
algorithm for dynamic submodular maximization under a cardi-
nality constraint of k with approximation 1/2 + Õ (ϵ) must have
amortized query complexity Ω(nϵ /k3).

Algorithm 1 Sample

1: Input: A node v of T at depth ℓ ∈ [0 : L]
2: Let pℓ be given as below:

pℓ =
wℓ

1 −∑ℓ−1
i=0 wi

∈ [0, 1].

3: With probability pℓ , return v . ▷ Since pL = 1, this always
happen when ℓ = L

4: Otherwise, run Sample(vi) independently on each child vi of
v in the tree and return the union

We start with the construction of a monotone submodular func-
tion F : V → R. The family of functions used in our lower bound
proof will be obtained from F by carefully shuffling elements of
V . Let L = 1/ϵ ∈ N and letm = (m1, . . . ,mL) be a tuple of positive
integers to be fixed later, with mL set to be 1. Let T be a tree of
depth L, where the root is at depth 0 and its leaves are at depth
L. Each internal node of T at depth ℓ ∈ [0 : L − 1] hasmℓ+1 chil-
dren; the number of nodes at depth ℓ ∈ [L] ism1 · · ·mℓ . We use
γ to refer to the root of T and write U0 = {γ }; for each ℓ ∈ [L],
we use Vℓ = [m1] × · · · × [mℓ] to refer to nodes of T at depth ℓ.
So the set of nodes is U0 ∪ U1 ∪ · · · ∪ UL and whenever we re-
fer to a node u of T at depth ℓ, it should be considered as a tuple
(u1, . . . ,uℓ) ∈ Uℓ . Children of u ∈ Uℓ , ℓ ≤ L − 1, are given by
(u1, . . . ,uℓ , 1), . . . , (u1, . . . ,uℓ ,mℓ+1).

The ground set V of F is defined as follows. For each node
u ∈ U := U1 ∪ · · · ∪UL , we introduce a set Au = {au,1, . . . ,au,w }
of w := ϵk new elements. We define V as the union of Au for all
u ∈ U . To construct F : 2V → R, we will utilize a weight sequence
{wℓ }ℓ∈[0:L] from [26] to define a probability distribution D over
subsets of nodes of T . We specify the sequence later in Lemma 4.5;
for now it suffices to know thatw0 = 0,wℓ ’s are nonnegative, and
they sum to 1.

We define the distribution of D over 2U as follows. Drawing a
sample from R ∼ D can be done by calling the recursive procedure
Sample in Algorithm 1 on the root of T . Informally, starting with
R = ∅, Sample performs a DFS walk on T . Whenever reaching a
node v at depth ℓ, it adds v to R and does not explore any of its
children with probability pℓ (see Algorithm 1; note that p0 = 0 and
pL = 1); otherwise, it continues the DFS walk to visit each of its
children. Because p0 = 0, the root is never included in the set and
thus, R is always a subset ofU .

We need the following properties about R; the proof can be found
in the full version of the paper.

Lemma 4.1. Let R ∼ D, we need have the following properties

• For any node u of T at depth ℓ, the probability of u ∈ R with

R ∼ D iswℓ .

• For any root-to-leaf path ofT , every R in the support of D has

exactly one node in the path.

Let P1 ⊆ U and P2 ⊆ U be two subsets of nodes of T and let
τ be a bijection from P1 to P2 such that (1) u and τ (u) are at the
same depth for every u ∈ P1; and (2) for any u,v ∈ P1, the depth
of the lowest common ancestor (LCA) of u and v is the same as
that of τ (u) and τ (v). The following lemma follows from how the
procedure Sample works; the proof can be found in the full version:

1692

On the Complexity of Dynamic Submodular Maximization STOC ’22, June 20ś24, 2022, Rome, Italy

Lemma 4.2. The distribution of P2 ∩ R, R ∼ D, is distributed the

same as first drawing R ∼ D, taking P1∩R and applying τ on P1∩R.

We use D to define F . Given S ⊆ V , we define xS ∈ [0, 1]U as
the vector indexed by u ∈ U with

xSu =
|S ∩Au |

ϵk
∈ [0, 1].

For any R in the support of D we define дR : [0, 1]U → [0, 1] and
G : [0, 1]U → [0, 1] as

дR (x) := 1 −
∏

u ∈R
(1 − xu) and G (x) = E

R∼D

[
дR (x)

]
. (5)

We are now ready to define F over 2V as

F (S) = min
{

G (xS) + ϵ

k
|S |, 1

}

, for any set S ⊆ V . (6)

We state some basic properties of F .

Lemma 4.3. F is monotone submodular and F (S) ∈ [0, 1] for any
S ⊆ V . Moreover, F (S) = 1 whenever |S | ≥ k/ϵ .

For each leaf u ∈ UL , we define two important subsets of V . The
first set, Au , is the union of A’s along the path from u’s parent to
the root (not including the root):

Au := Au1 ∪Au1,u2 ∪ · · · ∪Au1, ...,uL−1 .

The other setWu is the union of A’s of nodes that are children of
nodes along the root-to-u path:

Wu :=
⋃

ℓ∈[L]

⋃

j ∈[mℓ]

Au1, ...,uℓ−1, j .

The following lemma shows that F (Au ∪Au) is large:

Lemma 4.4. For any leaf u ∈ UL , we have |Au ∪ Au | = k and

F (Au ∪Au) = 1.

We would like to show in the next lemma that any set S ⊆Wu

that has size at most k and does not overlap with Au must have a
small F (S). For this we need to specify the weight sequence {wℓ }
that we will use from [26] (recall thatw0 = 0).

Definition 4.5 (Weight sequence). Define {δℓ }ℓ∈[L], {aℓ }ℓ∈[L] and
the weight sequence {wℓ }ℓ∈[L] inductively as follow. We set δL = 1
and for ℓ = L − 1,L − 2, . . . , 1, let

δℓ = 1 + *,
1 +

√

1 + 4/δℓ+1
2

+- · δℓ+1
and

aℓ =

ℓ−1
∏

i=1

(

δi − 1
δi+1

)

=

ℓ−1
∏

i=1

1

1 − 1/δi
,

the weight sequence {wℓ }ℓ∈[L] is defined aswℓ = aℓ/
∑

ℓ∈[L] aℓ .

The proof of the following lemma is adapted from Lemma 5.3 in
[26] with some generalizations, and the proof can be found in the
full version of the paper.

Lemma 4.6. For any leaf u ∈ UL and S ⊆ Wu with |S | ≤ k and

S ∩ Au = ∅, we have

F (S) ≤ 0.5 +O
(

ϵ log2 (1/ϵ)
)

.

As it will become clear soon at the beginning of the next sub-
section, our goal behind the family of hard streams is to have the
dynamic algorithm solve repeatedly the question of finding an
S ⊆Wu with |S | ≤ k and S ∩ Au , ∅, for a large number of leafs u
ofT . These questions are, however, only interesting after we shuffle
nodes of T in the fashion to be described next.

A shuffling π of T consists of a bijection πu : [mℓ+1]→ [mℓ+1]
for every u ∈ Uℓ , ℓ ∈ [0 : L − 1]. We use π to shuffle each node
u ∈ U to π (u) as follows: π (γ) = γ ; for each u of depth ℓ ∈ [L], set

π (u) =
(

u1, . . . ,uℓ−1,πu1, ...,uℓ−1 (uℓ)
)

.

A shuffling π induces a bijection ρπ : V → V : For each element au,i
for some u ∈ U and i ∈ [w], we set ρπ (au,i) = aπ −1 (u),i . Finally
we define for each shuffling π of T ,

Fπ (S) := F
(

ρπ (S)
)

.

It is clear that Lemma 4.3 holds for Fπ for any shuffling π .
Given a leaf u ∈ UL of T and a shuffling π , let

Aπ
u := Au1, ...,uL−2,πu1, . . .,uL−2 (uL−1)

∪ · · ·Au1,πu1 (u2) ∪Aπϵ (u1) .

We get the following corollary of Lemma 4.4 and Lemma 4.6:

Corollary 4.7. For any shuffling π of T , we have

• For any leaf u ∈ UL , we have |Aπ
u ∪Au | = k and

Fπ (Aπ
u ∪Au) = 1.

• For any leaf u and S ⊆Wu with |S | ≤ k and S ∩ Aπ
u = ∅,

Fπ (S) ≤ 0.5 +O
(

ϵ log2 (1/ϵ)
)

. (7)

We need a corollary of Lemma 4.2. Similar to Lemma 3.5, it
captures the minimal information needed about π to evaluate Fπ
at a given set S ⊆ V :

Corollary 4.8. Let S ⊆ V and let π ,π ′ be two shufflings of T . We

have Fπ (S) = Fπ ′ (S) when the following condition holds: For every

two nodes u,v of T such that S ∩Au and S ∩Av are nonempty, the

LCA of π−1 (u) and π−1 (v) is at the same depth as the LCA of π ′−1 (u)
and π ′−1 (v), both in T .

Remark 4.9. To evaluate Fπ (S), it suffices to know the LCA of

π−1 (u) and π−1 (v) for every u,v with S ∩Au , ∅ and S ∩Av , ∅.
The LCA of π−1 (u) and π−1 (v) can be determined as follows.

(1) First consider the case when u is a prefix of v or v is a prefix

of u. Let u = (u1, . . . ,uℓ) and v = (u1, . . . ,uℓ ,vℓ+1, . . .).

(The case when v is a prefix is similar.) Then the depth of LCA

of π (u) and π−1 (v) is either ℓ if πu1, ...,uℓ−1 (uℓ) = uℓ , or

ℓ − 1 otherwise.
(2) Assume that u = (u1, . . . ,uℓ ,uℓ+1, . . .) and

v = (v1, . . . ,vℓ ,vℓ+1, . . .) with u1 = v1, . . . ,uℓ = vℓ but

uℓ+1 , vℓ+1. We have three subcases. If both u and v have

length strictly longer than ℓ + 1, then the depth of LCA of of

π−1 (u) and π−1 (v) is ℓ. If both u and v have length ℓ + 1,
then the depth of LCA of π−1 (u) and π−1 (v) is also ℓ. (So in
these two subcases we we do not need to know anything about

π .) Finally, if u has length ℓ + 1 and v has length longer than

ℓ + 1, then the depth of LCA of π−1 (u) and π−1 (v) is ℓ + 1 if
πv1, ...,vℓ

(vℓ+1) = uℓ+1, and is ℓ otherwise. The case when u

has length longer than ℓ + 1 and v has length ℓ + 1 is similar.

1693

STOC ’22, June 20ś24, 2022, Rome, Italy Xi Chen and Binghui Peng

To summarize, to determine the depth we only need to know whether

a particular entry of π is equal to a certain value or not. Moreover,

the entry is either πu1, ...,uℓ−1 (uℓ) or πv1, ...,vℓ−1 (vℓ) for some ℓ.

4.2 Lower Bound for Dynamic Submodular

Maximization

Choices of parameters. Let L = 1/ϵ be a positive integer. Let k be
a positive integer such that k2 ≤ nϵ (as otherwise the lower bound
we aim for becomes trivial) andw = ϵk is a positive integer. Let n
be the length of dynamic streams and d = nϵ . SetmL = 1 and

mℓ =
n(L−ℓ+1)ϵ

2k
, for each ℓ ∈ [L − 1].

Hard streams. The ground set is V , which is known to the algo-
rithm; the monotone submodular function F ∗ : 2V → R is Fπ ,
where π is a shuffling of T , which is unknown to the algorithm.
The stream is constructed by running Tranverse in Algorithm 2,
and is independent of π . It can be viewed as a DFS over the tree T ,
starting at the root, except that every time it reaches a node v , it
inserts all children of v but only explores the first d children, and
deletes all children of v at the end of the exploration.

We first bound the total number of operations by n. For each
ℓ ∈ [0 : L − 2], Tranverse visits dℓ nodes and creates 2mℓ+1 ·w
operations for each of them. Tranverse visits dL−1 nodes at depth
L − 1 and creates 2w operations for each of them. Hence, the total
number of operations is

L−2
∑

ℓ=0

dℓ ·mℓ+1 · 2w + dL−1 · 2w ≤
L−2
∑

ℓ=0

ϵn + ϵn ≤ n.

To gain some intuition behind the stream, we note that leafs ofT
that appear in the stream are exactly those inU ∗

L
:= [d]L−1×{1}, and

they appear in the stream under the lexicographical order (whichwe
will denote by ≺). For each such leafu ∈ U ∗

L
, at the timewhen the set

Au was inserted, the current set of elements isWu . Inspired byCorol-
lary 4.7 we will consider the following simplified dL−1-stage dy-
namic problem, where stages are indexed using leaves inU ∗

L
under

the lexicographical order. During the u-th stage, an algorithm can
query F ∗ about any subset S ⊆ ∪u′∈U ∗

L
:u′⪯uWu′ and can choose to

start the next stage at any time by returning an Su ⊆Wu of size at
most k . We say an algorithm succeeds if F ∗ (Su) ≥ 0.5 + Õ (ϵ) as on
the RHS of (7) for every stage. We show below that any randomized
algorithm that succeeds with probability at least 2/3 must have total
query complexity Ω(n1+ϵ /k3). It follows from Corollary 4.7 that
any randomized algorithm for dynamic submodular maximization
with an approximation guarantee of 0.5+Ω̃(ϵ) must have amortized
query complexity Ω(nϵ /k3).

Proof of Theorem 1.1. Let π be a shuffling of T drawn uni-
formly at random (i.e., every bijection in π is drawn independently
and uniformly). Consider any deterministic algorithm ALG that
succeeds with probability 2/3 on the dL−1-stage dynamic problem
described above with F ∗ = Fπ . By Lemma 4.3 we assume without
loss of generality that ALG only queries sets of size at most k/ϵ .
When ALG succeeds on F ∗ = Fπ for some shuffling π , we have
from Corollary 4.7 that the Su it outputs during the u-th stage must

Algorithm 2 Tranverse

1: Input: A node u of T at depth ℓ ∈ [0 : L − 1]
2: if ℓ = L − 1 then
3: Insert all elements of Au1, ...,uL−1,1 and then delete them
4: else

5: Insert all elements in Au1, · · · ,uℓ,i for each i ∈ [mℓ+1]
6: for i from 1 to d do

7: Call Tranverse on (u1, . . . ,uℓ , i)

8: end for

9: Delete all elements in Au1, · · · ,uℓ,i for each i ∈ [mℓ+1]
10: end if

satisfy Su ∩ Aπ
u , ∅, which implies (using the definition of Aπ

u)

Su ∩Au1, ...,uℓ,πu1, . . .,uℓ (uℓ+1) , ∅ (8)

for some ℓ ∈ [0 : L − 2]. By an averaging argument, we have that
there exists an ℓ ∈ [0 : L − 2] such that with probability at least
2/(3L) over π , at least (1/L)-fraction of Su returned by ALG satisfy
(8) for this ℓ. Fix such an ℓ and this inspires us to introduce the
following simple game.

In the game there are dℓ hidden bijections πv1, ...,vℓ
: [mℓ+1]→

[mℓ+1], for eachv1, . . . ,vℓ ∈ [d]. The game consists of dℓ+1 stages;
each stage is indexed by a v = (v1, . . . ,vℓ+1) ∈ [d]ℓ+1 and ordered
by the lexicographical order. During the v-th stage of the game,
an algorithm can send a number i ∈ [mℓ+1] to the oracle and the
latter reveals if πv1, ...,vℓ

(vℓ+1) = i . We say the algorithm wins the
v-th stage if it queries an i that matches πv1, ...,vℓ

(vℓ+1) during
the v-th stage. At any time it can choose to give up and move
forward to the next stage, in which case πv1, ...,vℓ

(vℓ+1) is revealed
to the algorithm. We say an algorithm succeeds if it wins at least
(1/L)-fraction of the dℓ+1 stages.

We prove the following lower bound for this game in the full
version of the paper.

Claim 4.10. When the hidden bijections are drawn independently

and uniformly, any deterministic algorithm that succeeds with proba-

bility at least 2/(3L) has total query complexity Ω(mℓ+1d
ℓ+1).

To finish the proof, we show that ALG can be used to play the
game as follows:

(1) We start by drawing a random bijection for every node in
the tree T except for those at (v1, . . . ,vℓ) ∈ [d]ℓ . Let π be
the shuffling when they are combined with hidden
bijections πv1, ...,vℓ

in the game. We simulate ALG on Fπ
over the stream Tranverse and maintain the following
invariant. During the v-th stage of the game, with
v = (v1, . . . ,vℓ+1) ∈ [d]ℓ+1, we simulate ALG through its
stages for leaves u ∈ U ∗

L
that have v as a prefix and assume

that we already know πw1, ...,wℓ
(wℓ+1) for all

w = (w1, . . . ,wℓ+1) ≺ v andw ∈ [d]ℓ+1.
(2) During the u-th stage of the simulation of ALG for some

leaf u ∈ U ∗
L
, we are in the v-th stage of the game with

v = (u1, . . . ,uℓ+1) ∈ [d]ℓ+1. For each query
S ⊆ ∪u′∈U ∗

L
:u′⪯uWu′ (of size at most k/ϵ) made by ALG, it

follows from Remark 4.9 that, to evaluate S at Fπ , we only
need to know the depth of LCA of π−1 (u ′′) and π−1 (v ′′) in

1694

On the Complexity of Dynamic Submodular Maximization STOC ’22, June 20ś24, 2022, Rome, Italy

T for no more than (k/ϵ)2 many pairs of u ′′,v ′′ with
S ∩Au′′ , ∅ and S ∩Av ′′ , ∅. For each such pair, it follows
from Remark 4.9 again that either we know the answer
already or we need to compare πu′′1 , ...,u

′′
ℓ
(u ′′

ℓ+1) or
πv ′′1 , ...,v

′′
ℓ
(v ′′

ℓ+1) with a certain value. Given that u ′′ ⪯ v

and v ′′ ⪯ v , either the answer is already known or we just
need to make a query to the game oracle. So we only need
to make at most (k/ϵ)2 queries to continue the simulation
of ALG. At the end of the u-th stage of ALG, let Su be the
set that ALG returns. For every i such that
Su ∩Au1, ...,uℓ,i , ∅ (note that there are at most k such i
given that |S | ≤ k), we query i on the game oracle. Note
that we would have won the v-th stage of the game by now
if (8) holds for Su . We then continue to simulate ALG on the
next stage of the dynamic problem. If the next stage of ALG
is about a new leaf u with v ≺ (u1, . . . ,uℓ+1), then we also
move to the next stage in the game.

It is clear from the simulation that for any π , if ALG running on Fπ
satisfies (8) for at least (1/L)-fraction of leaves inU ∗

L
, then we win

the game when π is the shuffling we get by combining our own
random samples at the beginningwith hidden bijections in the game.
Using the promise aboutALG at the beginning, we get a randomized
algorithm that succeeds in the game with probability at least 2/(3L)
when the hidden bijections are drawn independently and uniformly
at random. On the other hand, if the query complexity of ALG is q,
then our simulation uses

q ·
(

k

ϵ

)2

+ dL−1 · k

Combining with Claim 4.10 we have q = Ω(n1+ϵ /k3). □

5 INSERTION-ONLY STREAMS UNDER A

CARDINALITY CONSTRAINT

We consider insertion-only streams and give a deterministic (1 −
1/e − ϵ)-approximation algorithm with O (log(k/ϵ)/ϵ2) amortized
query complexity. As discussed in Remark 2.1, our algorithm does
not need to know the ground set V or the number of rounds n at
the beginning.

Theorem 1.3. Given any ϵ > 0, there is a deterministic algo-

rithm that achieves an approximation guarantee of 1 − 1/e − ϵ for

dynamic submodular maximization under cardinality constraint k

over insertion-only streams. The amortized query complexity of the

algorithm is O (log(k/ϵ)/ϵ2).

To prove Theorem 1.3, we give a deterministic algorithm (pseu-
docode in Algo 3) with the following performance guarantees. We
follow standard arguments to finish the proof of Theorem 1.3 and
the proof can be found in the full version of the paper.

Lemma 5.1. There is a deterministic algorithm that satisfies the

following performance guarantees. Given a positive integer k , ϵ > 0
and OPT > 0, the algorithm runs on an insertion-only stream and

outputs a set St ⊆ Vt of size at most k at the end of each round t

such that (1) S1 ⊆ S2 ⊆ · · · and (2) when OPTt ≥ OPT for the first

time, St must satisfy f (St) ≥ (1−1/e−ϵ) OPT. The amortized query

complexity of the algorithm is O (1/ϵ).

Algorithm 3 Dynamic submodular maximization with a cardinal-
ity constraint.

1: procedure Initialize(k, ϵ,OPT)
2: Set S = ∅, ∆ = ϵ OPT /k and Bℓ = ∅ for ℓ = 0, 1, . . . , ⌊1/ϵ⌋
3: end procedure

4:

5: procedure Insert(e)
6: if fS (e) ≥ (OPT−f (S))/k − ∆ and |S | < k then

7: Update S ← S ∪ {e} and call Revoke
8: else

9: Update Bℓ ← Bℓ ∪ {e} with ℓ = ⌊ fS (e)/∆⌋
10: (Note that ℓ ≤ ⌊1/ϵ⌋ given that fS (e) < OPT /k)
11: end if

12: end procedure

13:

14: procedure Revoke

15: Let r = ⌊(OPT−f (S))/(k∆)⌋.
16: if |S | < k and there exists an index ℓ ≥ r with Bℓ , ∅ then
17: Let ℓ be any such index and let e ′ be any element in Bℓ .
18: if fS (e

′) ≥ (OPT−f (S))/k − ∆ then

19: Update S ← S ∪ {e ′} and Bℓ ← Bℓ\{e ′}
20: else

21: Update Bℓ ← Bℓ\{e ′} and Bℓ′ ← Bℓ′ ∪ {e ′} with
ℓ′ = ⌊ fS (e ′)/∆⌋

22: (Note that 0 ≤ ℓ′ < r ≤ ℓ)
23: end if

24: Go to Line 15.
25: end if

26: end procedure

6 INSERTION-ONLY STREAM: EFFICIENT

ALGORITHM FOR MATROID CONSTAINTS

We present an efficient (1 − 1/e − ϵ)-approximation algorithm
under the general matroid constraint. We first give a (1/2 − ϵ)-
approximate deterministic combinatorial algorithm (Section 6.1),
we then embed it into the accelerated continuous greedy framework
of [3] to achieve (1 − 1/e − ϵ) approximation (Section 6.2).

6.1 The Combinatorial Algorithm

Given k as the rank of the matroidM, we define L,R and A as

L =

⌈
log(k/ϵ)

ϵ

⌉
, R =

⌈
2 log(k/ϵ)

ϵ2

⌉

and

A =
(a1, · · · ,aL) ∈ Z

L
≥0 :

∑

ℓ∈[L]
aℓ ≤ R

 .
We note the size of A can be upper bounded by

|A| =
R

∑

d=0

(

d + L − 1
L − 1

)

≤ (R + 1) ·
(

R + L − 1
L − 1

)

≤ (R + 1)
(2eR

L

)L

= kÕ (1/ϵ) . (9)

Both of our deterministic algorithm and randomized algorithm
use a deterministic subroutine called Prune-greedy described in

1695

STOC ’22, June 20ś24, 2022, Rome, Italy Xi Chen and Binghui Peng

Algorithm 4 Prune-greedy

1: procedure Initialize(k,OPT,a,h,M) ▷ a ∈ A
2: Initialize S ← ∅ and cℓ ← aℓ∆ for each ℓ ∈ [L], where

∆ :=
ϵ2 OPT

log(k/ϵ)
.

3: Let ℓ∗ be the smallest ℓ ∈ [L] with cℓ > 0
4: end procedure

5:

6: procedure Insert(e)
7: if S ∪ e ∈ M and hS (e) ≥ (1 + ϵ)−ℓ

∗
OPT then

8: Update cℓ∗ ← cℓ∗ − hS (e) and S ← S ∪ {e}
9: if cℓ∗ ≤ 0 then
10: Call Revoke
11: end if

12: end if

13: end procedure

14:

15: procedure Revoke

16: Update ℓ∗ to be the smallest ℓ with cℓ > 0
17: Terminate and return S if no such ℓ exists
18: for each ei inserted so far (in the order of insertions) do
19: if S ∪ ei ∈ M and hS (ei) ≥ (1 + ϵ)−ℓ

∗
OPT then

20: Update cℓ∗ ← cℓ∗ − hS (ei) and S ← S ∪ {ei },
21: end if

22: end for

23: Go to line 16 if c∗
ℓ
≤ 0

24: end procedure

Algorithm 4. The inputs of Prune-greedy include k as the rank of
the underlying matroidM, a positive number OPT, a tuple a ∈ A,
as well as query access to both f andM. When running on an
insertion-only stream, Prune-greedy may decide to terminate at
the end of a round and output a set S . A complication due to the
application of this subroutine in the randomized algorithm is that
we will give it query access to a perturbed version of f : We say
h : V → R is a κ-close of f if h(S) = f (S) ± κ for every S ⊆ V .

We state its performance guarantees in the following lemma:

Lemma 6.1. There is a deterministic algorithm that, given a positive

integer k ,OPT > 0, a ∈ A and query access to a matroidM overV of

rank k and a function h : V → R that is κ-close to a nonnegative and

monotone submodular function f : V → R, where κ = ϵ3 OPT /k .
The algorithm runs on insertion-only streams with amortized query

complexityO (L) and has the following performance guarantee. Given

any insertion-only stream e1, . . . , et such that OPT ≤ OPTt ≤ (1 +
ϵ) OPT, there exists an a∗ ∈ A such that when given OPT and a∗ as
input, the algorithm terminates before the end of round t and outputs

a feasible set S ⊆ Vt that satisfies

f (S) ≥ (1−O (ϵ)) fS (O), for any set O such that O ∈ M and O ⊆ Vt .

Proof. The algorithm is described in Algorithm 4.
Let e1, . . . , et be the stream with OPT ≤ OPTt ≤ (1 + ϵ) OPT.

To specify the a∗ ∈ A in the statement of the lemma, we consider
the following L-pass greedy algorithm. The algorithm maintains
a set T ∈ M. It starts with T = ∅ and updates T → T ∪Tℓ at the

end of the ℓ-th pass (so we have T = T1 ∪ · · · ∪ Tℓ at the end of
the ℓ-th pass). During the ℓ-th pass, we set Sℓ = ∅ and go through
e1, . . . , et . For each ei , the algorithm checks if T ∪ Sℓ ∪ {ei } ∈ M
and hT∪Sℓ (ei) ≥ (1 + ϵ)−(ℓ−1) OPT. If so, ei is added to Sℓ . At the
end of the ℓ-th pass, we do not add all elements Sℓ to T . Instead,
we further prune Sℓ to get Tℓ : Let ei1 , ei2 , . . . be elements added to
Sℓ during the ℓ-th pass. Tℓ is set to be {ei1 , . . . , ei j } such that j is
the smallest integer such that

hT1∪···∪Tℓ−1 (Tℓ) ≥ ∆

⌊
hT1∪···∪Tℓ−1 (Sℓ)

∆

⌋
,

where Tℓ = ∅ when the RHS above is 0. This finishes the ℓ-th
pass and the algorithm updates T with T ∪Tℓ . Let (S1, . . . , SL) and
(T1, . . . ,TL) be the two sequences of sets obtained from this L-pass
algorithm. Let a∗ ∈ ZL≥0 be defined as a∗

ℓ
= ⌊hT1∪···∪Tℓ−1 (Sℓ)/∆⌋

for each ℓ ∈ [L]. It is easy to see that

∆

∑

ℓ∈[L]
a∗
ℓ
= ∆

∑

ℓ∈[L]

⌊
hT1∪···∪Tℓ−1 (Sℓ)

∆

⌋

≤
L

∑

ℓ=1

hT1∪···∪Tℓ−1 (Tℓ) ≤ f (T) + 2κ < 2OPT .

Hence
∑

ℓ∈[L] a∗ℓ ≤ R and thus, a∗ ∈ A. The following lemma
connects Prune-Greedy with this L-pass greedy algorithm:

Lemma 6.2. Suppose that Prune-Greedy is given a∗ at the begin-
ning, then it terminates before the end of the t-th round and outputs

exactly T = T1 ∪ · · · ∪TL .

Given Lemma 6.2, it suffices to prove that

f (T) ≥ (1 −O (ϵ)) fT (O), for every feasible set O ⊆ Vt .

Fix an O ∈ M and O ⊆ Vt . The following Lemma is a folklore.

Lemma 6.3. LetM be a matroid andT ∈ M withT = T1∪· · ·∪TL
such that T1, . . . ,TL are pairwise disjoint. Then any O ∈ M can be

partitioned into pairwise disjoint O1, . . . ,OL such that

(1) If |O | ≥ |T | then |Oi | = |Ti | for all i < L; If |O | < |T |, letting
ℓ be the smallest integer such that |O | ≤ ∑

i≤ℓ |Tℓ |, then
|Oi | = |Ti | for all i < ℓ and |Oℓ | = |O | −

∑

i<ℓ |Oi |. (Note
that we always have |Oi | ≤ |Ti | except for i = L.)

(2) For all i < j, Ti ∩O j = ∅ and for every i < L,

T1 ∪ · · · ∪Ti ∪Oi+1 ∪ · · · ∪OL ∈ M .

Recall S1, . . . , SL from the L-pass greedy algorithm. We have for
every ℓ ∈ [L],

T1 ∪ · · · ∪Tℓ−1 ∪ Sℓ ∈ M .
For the analysis we partitionO into pairwise disjoint sets E0,E1 . . . ,
EL−2, P1, . . . , PL as follows.

(1) P1 = O1;
(2) For each ℓ ≥ 2 and each o ∈ Oℓ , we consider two cases. If

T1 ∪ · · · ∪Tℓ−2 ∪ Sℓ−1 ∪ {o} ∈ M then we have o ∈ Pℓ ;
otherwise, we have o ∈ Er where r ≥ 0 is the largest integer
such that T1 ∪ · · · ∪Tr−1 ∪ Sr ∪ {o} ∈ M and
T1 ∪ · · · ∪Tr ∪ Sr+1 ∪ {o} <M. Note that r ≤ ℓ − 2 and
such an r ≥ 0 always exists given that the condition when
r = 0 is just that {o} ∈ M.

1696

On the Complexity of Dynamic Submodular Maximization STOC ’22, June 20ś24, 2022, Rome, Italy

The following claim about the size of Eℓ follows from the definition
and its proof can be found in the full version.

Claim 6.4. |Eℓ | ≤ |Sℓ+1\Tℓ+1 |.

Now we have

fT (O) ≤
∑

ℓ∈[L]
fT1∪···∪Tℓ−1 (Oℓ)

≤ f (O1) +
∑

ℓ∈[2:L]

∑

r ∈[0:ℓ−2]
fT1∪···∪Tℓ−1 (Oℓ ∩ Er)

+

∑

ℓ∈[2:L]
fT1∪···∪Tℓ−1 (Pℓ), (10)

where both steps follow from the submodularity of f .
We bound the first and last terms as follow.

Lemma 6.5. We have

f (O1) +
∑

ℓ∈[2:L]
fT1∪···∪Tℓ−1 (Pℓ) ≤ (1 + ϵ) f (T) + 6ϵ OPT .

We bound the second term of Eq. (10) as follow.

Lemma 6.6. We have
∑

ℓ∈[2:L]

∑

r ∈[0:ℓ−2]
fT1∪···∪Tℓ−1 (Oℓ ∩ Er) ≤ 8ϵ OPT .

Proofs of the two lemmas above can be found in the full version.
Combining Lemma 6.5, Lemma 6.6 and Eq. (10), we have fT (O) ≤

(1+ϵ) f (T) + 11ϵ OPT . Since this holds for all feasible sets, it holds
for the set Ot . Taking a linear combination, we have

f (T) ≥ 1

1 + ϵ

(

(1 − 11ϵ) fT (O) + 11ϵ fT (Ot) − 11ϵ OPT
)

≥ 1

1 + ϵ

(

(1 − 11ϵ) fT (O) − 11ϵ f (T)
)

.

Rearranging the term, we get the desired.
Finally, we bound the amortized query complexity of the algo-

rithm. We charge the two queries made in the evaluation of hS (e)
(line 7 or 19) to e and show that the number of queries charged to e
is at most O (L). To see this, we note that e is charged twice when
it is just inserted. Every time e is charged during Revoke, either
it is added to S so that it is never charged again, or its marginal
contribution is small and won’t be queried in the ℓ-th level later.
Hence, e has been queried for at most O (L) times. We conclude the
proof here. □

By standard argument, we conclude

Theorem 6.7. Given any matroidM, for any ϵ > 0, there is a
combinatorial algorithm that maintains a feasible set S with (1/2−ϵ)-
approximation at each iteration. Moreover, the amortized number of

queries per update is kÕ (1/ϵ) .

6.2 Amplification via Accelerated Continuous

Greedy

We amplify the approximation ratio of the combinatorial algorithm
via the accelerated continuous greedy framework [3]. Let m =
O (1/ϵ) and

D = {OPT, (1 + ϵ)−1 OPT, · · · , (1 + ϵ)−⌈4 log(1/ϵ)/ϵ ⌉ OPT} ∪ {0}.

Algorithm 5 Amplification via accelerated continuous greedy

1: Input: d ∈ Dm , a ∈ Am

2: Initialize x← 0

3: for τ = 1, 2, · · · ,m do

4: Define д(S) = F (x + 1
m S) − F (x) for all S ⊆ V

5: Invoke Prune-greedy(dτ ,aτ , g), and wait until it returns
a solution Sτ

6: x← x +
1
m Sτ

7: end for

We run a separate branch for each d ∈ Dm and a ∈ Am . Intuitively,
dτ ∈ D should be seen as an estimate on the progress of optimal
solution in the τ -th iteration, and aτ ∈ A is a guess on the greedy
sequence. Our algorithm segragates answer from all branches and
outputs the one with the maximum value. In order to return an
integral solution, the algorithm rounds the fractional solution via
the swap rounding approach [18]. The algorithm description is
presented in Algorithm 5.

We need the following lemma in our analysis. The proof idea
follows from [3] and it appears in [7]. It has some minor difference
with previous work and we provide a proof in the full version for
completeness.

Lemma 6.8. Let OPT ≤ OPTt ≤ (1 + ϵ) OPT. Suppose in each

iteration of Algorithm 5, Prune-greedy returns a set S that satisfies

д(S) ≥ (1 −O (ϵ))
∑

i ∈[L]
дS\(Oi∪···∪OL) (Oi) − ϵ2 OPT, (11)

for some partition O = O1 ∪ · · · ∪OL of O and some partition S =

S1∪· · ·∪SL of S such that ∀i ∈ [L], S1∪· · · Si ∪Oi+1∪· · ·∪OL ∈ M
and Si ∩ (Oi+1 ∪ · · · ∪OL) = ∅. Then the final solution x satisfies

F (x) ≥ (1 − 1/e −O (ϵ)) OPT .

We use Lemma 6.8 to finish the proof of Theorem 1.4 in the full
version of the paper.

7 CONCLUSIONS

We study the power and limitations of dynamic algorithms for
submodular maximization. On the lower bound side, we prove a
polynomial lower bound on the amortized query complexity for
achieving a (1/2 + ϵ)-approximation, together with a linear lower
bound for 0.584-approximation, under fully dynamic streams with
insertions and deletions. On the algorithmic side, we develop effi-
cient (1−1/e)-approximation algorithms for insertion-only streams
under both cardinality and matroid constraints. There are many
interesting directions for further investigations:

• Many submodular functions important in practice can be
accessed in white box models instead of query models, e.g.,
the MAX-k coverage problem, influence maxmization (see
[37] for an example). Can ideas in this paper be extended to
obtain upper/lower bounds on amortized time complexity
for these problems?
• Can we extend results (algorithm or hardness) to
non-monotone submodular maximization? As far as we
know, there is no known constant-factor approximation
algorithm with poly(k) amortized query complexity for the

1697

STOC ’22, June 20ś24, 2022, Rome, Italy Xi Chen and Binghui Peng

non-monotone setting under fully dynamic streams. How
does the dynamic model compare to the streaming model
[1] under this setting?
• For matroid constraints, can one improve the query
complexity to O (

√
k) over insertion-only streams? Also, for

fully dynamic streams, there is no known constant-factor
approximation algorithm with poly(k) amortized queries
for matroid constraints.

ACKNOWLEDGEMENT

Research of X.C. and B.P. were supported in part by NSF grants CCF-
1703925, IIS-1838154, CCF-2106429, CCF-2107187, CCF-1763970,
CCF-1910700 and DMS-2134059. We would like to thank Paul Liu
for pointing out a mistake in an earlier version of the paper.

REFERENCES
[1] Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh. 2020.

Optimal Streaming Algorithms for Submodular Maximization with Cardinal-
ity Constraints. In 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020). 6:1ś6:19.

[2] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and An-
dreas Krause. 2014. Streaming submodular maximization: Massive data summa-
rization on the fly. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. 671ś680.

[3] Ashwinkumar Badanidiyuru and Jan Vondrák. 2014. Fast algorithms for maximiz-
ing submodular functions. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 1497ś1514.

[4] Maria-Florina Balcan and Nicholas JA Harvey. 2011. Learning submodular func-
tions. In Proceedings of the forty-third annual ACM symposium on Theory of
computing. 793ś802.

[5] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2017. The limitations of
optimization from samples. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. 1016ś1027.

[6] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2019. An exponential speedup
in parallel running time for submodular maximization without loss in approxi-
mation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 283ś302.

[7] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2019. An optimal approxi-
mation for submodular maximization under a matroid constraint in the adaptive
complexity model. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing. 66ś77.

[8] Eric Balkanski and Yaron Singer. 2018. The adaptive complexity of maximizing a
submodular function. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing. 1138ś1151.

[9] Eric Balkanski and Yaron Singer. 2018. Approximation guarantees for adaptive
sampling. In International Conference on Machine Learning. PMLR, 384ś393.

[10] Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. 2015. The power of
randomization: Distributed submodular maximization on massive datasets. In
International Conference on Machine Learning. PMLR, 1236ś1244.

[11] Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward. 2016. A new
framework for distributed submodular maximization. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS). Ieee, 645ś654.

[12] Niv Buchbinder and Moran Feldman. 2018. Submodular Functions Maximization
Problems.

[13] Niv Buchbinder, Moran Feldman, and Roy Schwartz. 2017. Comparing apples and
oranges: Query trade-off in submodular maximization. Mathematics of Operations
Research 42, 2 (2017), 308ś329.

[14] Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. 2015. A tight
linear time (1/2)-approximation for unconstrained submodular maximization.
SIAM J. Comput. 44, 5 (2015), 1384ś1402.

[15] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. 2011. Maximiz-
ing a monotone submodular function subject to a matroid constraint. SIAM J.
Comput. 40, 6 (2011), 1740ś1766.

[16] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. 2015. Streaming algorithms
for submodular function maximization. In International Colloquium on Automata,
Languages, and Programming. Springer, 318ś330.

[17] Chandra Chekuri and Kent Quanrud. 2019. Parallelizing greedy for submodular
set function maximization in matroids and beyond. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing. 78ś89.

[18] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2010. Dependent randomized
rounding via exchange properties of combinatorial structures. In 2010 IEEE 51st
Annual Symposium on Foundations of Computer Science. IEEE, 575ś584.

[19] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2014. Submodular function
maximization via the multilinear relaxation and contention resolution schemes.
SIAM J. Comput. 43, 6 (2014), 1831ś1879.

[20] Xi Chen and Binghui Peng. 2021. On the Complexity of Dynamic Submodular
Maximization. arXiv: 2111.03198 (2021).

[21] Alina Ene and Huy L Nguyen. 2019. Submodular maximization with nearly-
optimal approximation and adaptivity in nearly-linear time. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 274ś282.

[22] Alina Ene, Huy L Nguyen, and Adrian Vladu. 2019. Submodular maximization
with matroid and packing constraints in parallel. In Proceedings of the 51st annual
ACM SIGACT symposium on theory of computing. 90ś101.

[23] Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. 2019. Sub-
modular maximization with nearly optimal approximation, adaptivity and query
complexity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 255ś273.

[24] Uriel Feige. 1998. A threshold of lnn for approximating set cover. J. ACM 45, 4
(1998), 634ś652.

[25] Moran Feldman, Joseph Naor, and Roy Schwartz. 2011. A unified continuous
greedy algorithm for submodular maximization. In 2011 IEEE 52nd Annual Sym-
posium on Foundations of Computer Science. IEEE, 570ś579.

[26] Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. 2020.
The one-way communication complexity of submodular maximization with
applications to streaming and robustness. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing. 1363ś1374.

[27] Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. 2021.
Streaming Submodular Maximization with Matroid and Matching Constraints.
arXiv preprint arXiv:2107.07183 (2021).

[28] Daniel Golovin and Andreas Krause. 2011. Adaptive submodularity: Theory and
applications in active learning and stochastic optimization. Journal of Artificial
Intelligence Research 42 (2011), 427ś486.

[29] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. 137ś146.

[30] Silvio Lattanzi, Slobodan Mitrović, Ashkan Norouzi-Fard, Jakub Tarnawski, and
Morteza Zadimoghaddam. 2020. Fully dynamic algorithm for constrained sub-
modular optimization. Advances in Neural Information Processing Systems (2020).

[31] Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document
summarization. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies. 510ś520.

[32] Vahab Mirrokni, Michael Schapira, and Jan Vondrák. 2008. Tight information-
theoretic lower bounds for welfare maximization in combinatorial auctions. In
Proceedings of the 9th ACM conference on Electronic commerce. 70ś77.

[33] Vahab Mirrokni and Morteza Zadimoghaddam. 2015. Randomized composable
core-sets for distributed submodular maximization. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. 153ś162.

[34] Morteza Monemizadeh. 2020. Dynamic Submodular Maximization. Advances in
Neural Information Processing Systems 33 (2020).

[35] George L Nemhauser and Laurence A Wolsey. 1978. Best algorithms for approxi-
mating the maximum of a submodular set function. Mathematics of operations
research 3, 3 (1978), 177ś188.

[36] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis
of approximations for maximizing submodular set functions. Mathematical
programming 14, 1 (1978), 265ś294.

[37] Binghui Peng. 2021. Dynamic influence maximization. Advances in Neural
Information Processing Systems 34 (2021).

[38] Tim Roughgarden. 2010. Algorithmic game theory. Commun. ACM 53, 7 (2010),
78ś86.

[39] Jan Vondrák. 2013. Symmetry and approximability of submodular maximization
problems. SIAM J. Comput. 42, 1 (2013), 265ś304.

[40] Kai Wei, Rishabh Iyer, and Jeff Bilmes. 2015. Submodularity in data subset
selection and active learning. In International Conference on Machine Learning.
PMLR, 1954ś1963.

1698

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Technical Overview

	2 Preliminary
	3 A linear lower bound for 0.584-approximation
	3.1 Construction of the Symmetric Function
	3.2 Construction of the Hard Functions Fc,
	3.3 Lower bound for dynamic submodular maximization

	4 A Polynomial Lower Bound for 1/2+ Approximation
	4.1 The Construction
	4.2 Lower Bound for Dynamic Submodular Maximization

	5 Insertion-only streams under a cardinality constraint
	6 Insertion-only stream: efficient algorithm for matroid constaints
	6.1 The Combinatorial Algorithm
	6.2 Amplification via Accelerated Continuous Greedy

	7 Conclusions
	References

