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ABSTRACT

We study streaming algorithms for two fundamental geometric
problems: computing the cost of a Minimum Spanning Tree (MST)
ofann-pointset X c {1,2,..., A}d, and computing the Earth Mover
Distance (EMD) between two multi-sets A, B C {1,2,...,A}4 of
size n. We consider the turnstile model, where points can be added
and removed. We give a one-pass streaming algorithm for MST
and a two-pass streaming algorithm for EMD, both achieving an
approximation factor of O(log n) and using polylog(n, d, A)-space
only. Furthermore, our algorithm for EMD can be compressed to a
single pass with a small additive error. Previously, the best known
sublinear-space streaming algorithms for either problem achieved
an approximation of O(min{logn,log(Ad)}logn). For MST, we
also prove that any constant space streaming algorithm can only
achieve an approximation of Q(log n), analogous to the Q(log n)
lower bound for EMD.

Our algorithms are based on an improved analysis of a recur-
sive space partitioning method known generically as the Quadtree.
Specifically, we show that the Quadtree achieves an O(log n) ap-
proximation for both EMD and MST, improving on the
O(min{log n,log(Ad)} log n) approximation.
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1 INTRODUCTION

We study two fundamental geometric problems in high-dimensional
spaces: the Earth Mover’s distance and minimum spanning tree.
Let (X, dx) be a metric space. Given two (multi-)sets A, B € X of
size |A| = |B| = n, the Earth Mover’s distance (EMD) between A

and B is
EMDx(A,B) = min Z dx(ab).
matching
Mcaxp (ab)eM

Given a single multi-set X C X of size n, the cost of the minimum
spanning tree (MST) of X is

min dx(a,b).
tree Z X ( )

spanning (a.b)€T
X

MSTx(X) =

Computational aspects of EMD and MST consistently arise in mul-
tiple areas of computer science [19, 36, 37], such as in computer
vision [12, 41], image retrieval [38], biology [34], document simi-
larity [28], machine learning [7, 16, 32], among other areas. Their
centrality in both theory and practice has motivated the theoret-
ical study of approximate and sublinear algorithms [1-3, 5, 6, 8,
10, 11, 13, 17, 18, 20, 23, 26, 29, 39, 40, 42, 43] in both low- and
high-dimensional settings.

As an illustrative example, an important application for high-
dimensional EMD comes from natural language processing, par-
ticularly document retrieval and classification. A document can
be represented as a collection of vectors in Euclidean space by
applying word embeddings [30, 35] to each of its words; these em-
beddings have the property that semantically similar words map to
geometrically close vectors. In this context, computing the EMD be-
tween the embeddings of two documents yields a natural measure
of similarity, aptly termed the Word Mover’s Distance [28].

In this paper, we study streaming and sketching algorithms for
computing EMD and MST. Specifically, we consider the turnstile
geometric streaming model, introduced by [20], where the algorithm
receives the input set X C X via an arbitrarily ordered sequence of
insertions and deletions of points p € X. The goal is for the algo-
rithm to approximate a fixed function of the implicit set of points X
in small space, without storing X; ideally, one would hope for space
polylogarithmic in the number of points in |X|. We focus on the high-
dimensional Euclidean space, where X = {1,2,.. .,A}9, and the
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distance between points is given by an £, norm for p € [1,2]. One
can always reduce from the case of RY to {1,..., A}d/ via standard
embeddings. For p > 2, there are is a Q(d'~2/?) lower bounds on
the space required to estimate the £, norm [9]. Therefore, estimating
EMDy, ({0}, {b}) and MST,, ({0, b}) already requires polynomial-
in-d space. In this work, our sketches will use polylog(n, d) bits.

Prior Work on Sketching and Streaming EMD and MST. We briefly
survey what is known for streaming and sketching EMD and MST.
We emphasize that many aspects of the sketchability and streama-
bility of EMD and MST remain open, and obtaining tight bounds
for these tasks, as well as related geometric graph problems, still
remains elusive.!

Indyk [20], building on work of [13], was the first to formulate
dynamic geometric streams and give algorithms for EMD and MST
which achieved an O(d log A)-approximation. The result for MST
was improved to a (1 + €)-approximation in [17], however, the re-
sulting space complexity is exponential in the dimension, making
the algorithm suitable only in low-dimensional spaces. For EMD
on the plane, [2] gave a O(1/¢) approximation at the cost of a
A€ dependence in the space complexity. The best lower bound on
sketching EMD on the plane is due to [5], where they show that
one cannot have both a constant bit and constant approximation
sketch. If the sketch proceeds by an embedding into ¢, [33] show
the approximation must be Q(+/log A). Parametrizing the approxi-
mation in terms of n, [11] gave embeddings of EMD on the plane
into #; with distortion O(log n).

For the high-dimensional regime, Andoni, Indyk, and Krauthgamer
[3] gave an algorithm for EMD (in fact, an embedding into ;) with
approximation O(log nlog(dA)). Furthermore, building on an ¢ -
embedding lower bound of [27], they show that any s-bit sketch
with approximation a > 1 must have sa = Q(log n). For sketching,
the approximation of [3] may be improved to
O(log n min{log n,log(dA)}) by the techniques in [8, 11]. MST has
not been formally considered in the high-dimensional regime, al-
though we note that an O(log n min{log n,log(dA)})-approximate
streaming algorithm readily applies here as well. For lower bounds
on streaming high-dimensional MST, nothing was known, and
(prior to this work) a constant-bit stream achieving a constant
approximation was possible.

1.1 Our Results

In this work, we develop new algorithms and lower bounds for
approximating EMD and MST in a stream. Specifically, we show
that the approximation factor for these problems can be improved
from O(log n - min{log n,log(Ad)}) to (j(log n). We now state the
main results of this paper. In the theorem statements which follow,
we consider a fixed setting of n, d and A. The metric space consists
of points in (A4 = {1,...,A} with {p distance for any fixed
p € [1,2]. We state the theorems in the random-oracle model, i.e.,
any random bits stored by the algorithm do not factor into the space
complexity — we show that storing the random bits would incur at
most an additive d - polylog(n, A) bits of space..?

!See Open Problems 7 and 49 for sketching EMD in https://sublinear.info/
2Also note that to even store a single update p € [A]¢, one requires Q(d log A) bits
of space.
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THEOREM 1.1 (MST STREAMING ALGORITHM). There exists a turn-
stile streaming algorithm using at most polylog(n, d, A) bits of space
which, given a set X C [A]? of size n, outputs fj € R satisfying

MST,, (X) <7 < O(logn) - MST,, (X)
with high probability.

For EMD, our algorithm achieving an O(log n)-approximation
requires two passes over the data. This arises from a technical issue
in the approach for EMD which is not present in MST. We state
the theorem in terms of two-pass streaming algorithms, and then
show how to compress the two passes into one, at the cost of an
additive error in the approximation.

THEOREM 1.2 (EMD Two-PASs STREAMING ALGORITHM). Given
two multi-sets A,B C [A]? of size n there exists a two-pass turn-
stile streaming algorithm using polylog(n, d, A) bits of space which
outputs 1 € R satisfying

EMDy, (A, B) <7 < O(logn) - EMDy, (A, B)
with high probability.

THEOREM 1.3 (EMD ONE-PASS STREAMING ALGORITHM). Given
two multi-sets A,B C [A]d of size n and any € > 0, there exists a
turnstile streaming algorithm using O(1/€) - polylog(n, d, A) bits of
space which outputs i € R satisfying

EMDy, (A, B) <7 < O(logn) - EMDy, (A, B) + edAn.
with high probability.

We encourage the reader to think of instances where A and B are
size-n subsets of the hypercube {0, 1}¢ with ¢; distance (i.e., A = 2
and p = 1). This setting captures all the complexity encountered in
this work. For A > 2 and p € (1, 2], the algorithm first applies an
embedding into {0, 1}4 with .

Regarding the additive error in Theorem 1.3, while an appropri-
ate setting of € may absorb the additive error into relative error, we
leave as an open problem whether this additive error may be re-
moved completely in one-pass algorithms. For instance, if the points
do not overlap almost always, i.e., when |[ANB|/|[AUB| < 1 — €,
then EMDy, (A, B) > €on, and € may be set to €9/dA in order to ab-
sorb the additive error into the relative error by increasing the space
by a factor of dA, and keeping a poly-logarithmic dependence on
n. From a practical perspective, the fact that points do not overlap
may be a reasonable assumption to make.

All of our streaming algorithms are linear sketches, meaning
that they store only the matrix-vector product Sf for some ran-
domized S € R¥*" where f = fx € RA is the indicator vector
(with multiplicity) of X for the case of MST, and f = fyp € R2A
is the indicator vector (with multiplicity) of A, B for EMD. Linear
sketches are an important class of turnstile streaming algorithms,
and have many well-known and studied advantages. For instance,
such sketches directly resulted in algorithms for distributed compu-
tation such as the MPC model, as well as algorithms for multi-party
communication. Our results, therefore, can be applied in a natural
way to these models as well.
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Improved Analysis of the Quadtree. The prior sketching algo-
rithms are based on a hierarchical partitioning method known as
the Quadtree.? Here, we refer to quadtrees as a generic class of meth-
ods that embed points from X into a randomized tree by recursively
partitioning the space. At a high level, the Quadtree algorithm re-
cursively and randomly partitions the space X, which results in a
rooted (randomized) tree. Each point in the set X for the case of
MST, or A U B for EMD, is sent down to a leaf of the tree. From
there, a spanning tree or a matching, is constructed in a bottom-up
fashion. Each point “walks up the tree” and is greedily connected (in
the case of MST), or matched (in the case of EMD) as it encounters
other points. This results in a very efficient offline (non-sketching)
algorithm. The recent work of [8] study the quadtree algorithm
explicitly, where they call it “Flowtree,” and showed it has favorable
practical properties. From a theoretical point-of-view, the approx-
imation incurred by these methods were the bottleneck in prior
works for sketching and streaming EMD and MST, here, we im-
prove this analysis of [3, 8] from O(log n min{logn,log(dA)}) to
O(logn).

THEOREM 1.4 (QUADTREE METHODS (INFORMAL)). Given two multi-
sets A, B C [A]4 of size n, the “Flowtree” algorithm of [8] outputs an
O(log n)-approximation to EMDy, (A, B) with probability at least 0.9.
Similarly, given a multi-set X C [A]¢ of size n, the greedy, bottom-
up spanning tree is an O(log n)-approximation to MSTy, (X) with
probability at least 0.9.

Lower bounds for MST.. For lower bounds, [3] shows that any ran-
domized ¢-bit streaming algorithm distinguishing EMDy, (4, B) > r
and EMDy, (A, B) < r/a with probability at least 2/3 must sat-
isfy af = Q(d), where the instances used have d = logn. For a
qualitative comparison, estimating #; norm does admit such O(1)-
approximation, O(1)-bit space streaming algorithms (with public
randomness), implying that EMD is a harder problem. We show an
analogous lower bound for MST in the streaming model.

THEOREM 1.5. Any randomized €-bit streaming algorithm which
can distinguish whether a size-n set X C {0, 1} has MST,, (X) >
nd/3 or MSTy, (X) < nd/a with probability at least 2/3 must satisfy
t+log a = Q(log n/a). Moreover, this holds even in the insertion-only
model, where points are only added to X in the stream.

We emphasize that, prior to Theorem 1.5, there were no lower
bounds known for streaming MST — not even an Q(1) lower bound
was known on the approximation of a constant-bit algorithm. We
note that [3] actually considers the (stronger) two-party communi-
cation setting for EMD, where each player receives one of the sets.
The two-party communication game for MST where each player
receives half of the set X is insufficient, as there is simple O(1)-
approximation, constant-bit protocol. Therefore, our theorem will
crucially involve the streaming nature of the algorithm.

3The name Quadtree is an artifact of the study of the algorithm originally in the planar
(two-dimensional) case, in which the algorithm recursively partitions the plane into
quadrants. Our Quadtrees, being in high dimensions, will partition space into more
than 4 parts at a time. However, since they are the natural generalization of the planar
case, it is common to refer to the generic method as Quadtree regardless of dimension.
“Intuitively, the players may compute the cost of their MST locally, and compute the
distance between two arbitrary points. The sum of these quantities is a 3-approximation
to the MST of the entire set.
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1.2 Technical Overview

1.2.1  The Main Idea: Tree Embeddings with Data-Dependent Edge
Weights. In [20], Indyk described an approach for streaming a vari-
ety of graph problems (including MST and EMD) in discrete geomet-
ric spaces, leading to O(d log A)-approximations for these problems
in the metric space [A]? with £ distance. This approach, later re-
fined in 3], forms the basis of our work, so we give a very high
level overview in order to highlight the new ideas. For simplicity,
we describe it for EMD, as the high-level picture for MST is similar.

A streaming algorithm for EMD with sets A, B C [A]¢ of size n
may proceed in the following way:

(1) Sample a recursive random partition of the space, broadly
referred to as a quadtree, which specifies an embedding of the
original space [A]? into a rooted tree. For example, when d =
2, one may sample log, A randomly shifted, nested square
grids of side length A/2,A/4,...,1 and arrange them into a
rooted tree of depth log, A + 1. Each node corresponds to a
region of the space, where the root contains the entire space,
and the children of a node have regions which partition the
region of the parent. The points in A and B are assigned to
leaves of this tree, according the regions where points fall,
and the quadtree implicitly defines a matching M between
A and B given by the natural bottom-up greedy procedure.
Having implicitly specified a matching M, the goal of the
streaming algorithm will be to approximate the cost of M.

In order to do so, [3, 20] maintains a high-dimensional vector
which implicitly encodes the matching M. Specifically, the
vector has a coordinate for each edge of the quadtree, and
the entry in each coordinate is the number of points from A
falling within the region of the child minus the number of
points in B falling within the region of the child. Furthermore,
the £1-norm of the vector, where each coordinate of an edge
is scaled by some edge weight (for example, by the size of
the parent region) gives an approximation of the cost of M.
Thus, this gives an #;-embedding for EMD over [A]d, and
known algorithms for streaming the £;-norm can be applied.

—
S
~

With the above approach in mind, there are two steps involved in
showing the approximation guarantee: (i) showing the matching
M in Step 1 has approximately optimal cost, and (ii) showing that
the appropriate scalings of coordinates reduce approximating the
cost of the matching M to an #;-computation. We note that even
though the above presentation is a two-step procedure, [3, 20] do
not present it this way. In fact, de-coupling the matching M from
the method to approximate the cost of M is an important conceptual
contribution which is made explicit in [8], which led us to revisit
the EMD problem.

Prior to our work, (i) proceeded by the method of tree embed-
dings. One assigns the edge weights to the quadtree and inter-
prets it as a tree embedding of the metric ([A]?, £). By studying
the distortion of this embedding, one bounds the cost of M. The
edge weights chosen in [20] (building on work of [13]) embed
([A]4, &) with distortion O(d log A), which will become the ap-
proximation. Refining the approach, [3] show that another choice
of edge weights (better suited for high-dimensional spaces) embeds
subsets of ([A]9, ;) with bounded average distortion which suffices
for an O(log nlog(dA)) bound on the cost of M. Given the bound



STOC ’22, June 20-24, 2022, Rome, Italy

on M with respect to a fixed tree metric, (ii) is straight-forward:
since the fixed tree metric specifies the scalings of the vector, and
approximating the cost of M amounts to an #;-norm computation.

Our main contribution is two-fold. First, we show how to go
beyond the distortion argument in (i) to show that the cost of M is a
©(log n)-approximation to EMD with probability 0.9. To do so, we
study a data-dependent notion: instead of fixing the edge weights as
in [3, 20], we allow the edge weights to depend on the input A U B.
The use of data-dependent edge weights implies M is actually a
better quality matching than what the method of tree embeddings
specified. The data-dependent edge weights are (relatively) simple:
the weight of an edge (u, v), where u is the parent of v, is the average
distance between a randomly sampled point of A U B within the
region of u and a randomly sampled point of AUB within the region
of v. However, the fact these data-dependent edge weights yield an
improved upper bound on the cost of M constitutes the bulk of the
work.

Unfortunately, the introduction of data-dependent edge weights
breaks Step 2. Now, approximating the cost of M with the data-
dependent weights is no longer as simple as an ¢;-computation. The
coordinates of the vector remain the same, however, the scaling
of each coordinate depends on additional structure of the points.
Importantly, data-dependent edge weights do not result in an #;-
embedding, and we cannot use known ¢; -sketching algorithns. This
takes us to our algorithmic contribution, where we design the
sketching algorithms for Step 2 with data-dependent edge weights.
More generally, we introduce a two-step template for transforming
data-dependent costs in the Quadtree into streaming algorithms.
Conceptually, the approach generalizes the well-known £, sampling
problem [4, 24, 25, 31] to fp—sampling with meta-data. For EMD,
the high-level idea is the following: first, sample a coordinate of
the vector proportional to the ¢;-distribution (i.e., the £;-sampling
problem), and second, estimate the data-dependent edge weight for
the coordinate sampled (the meta-data), so that we can scale the
contribution of that coordinate appropriately.

1.2.2  Implementing Step 1: Quadtree Matching with Data-Dependent
Edge Weights. We begin by describing our improved analysis of the
randomized space partitioning algorithm, Quadtree. For the sake
of simplicity, we focus on its analysis in the context of approxi-
mating EMD; the same ideas work similarly for MST. We begin
by more formally introducing the Quadtree in high-dimensional
spaces. In what follows, we focus on the case when the metric space
is the hypercube with the Hamming distance, i.e. A, B C {0, 1}d and
d(p,q) = |lp — gll1 for p,q € {0,1}%. For the approximation, this
is without loss of generality: one may embed (R, £p) into {0, 1}4
by increasing the dimension. The new dimensionality is propor-
tional to the dimension d, log n, and the “aspect ratio” (maximum
distance divided by minimum distance); since our space will have
poly-logarithmic dependence on the dimension, the embedding
introduces a logarithmic dependence on the aspect ratio which will
also be incurred in the additive error of Theorem 1.3.

Quadtree. The Quadtree algorithm creates a randomized tree
T with depth h := log, 2d by recursively sub-dividing the hyper-
cube {0, 1}<. Therefore, each node u in T will be associated with a
subcube S, C {0, 1}4, where the root r has S, = {0, 1}<. To create
these subcubes, each internal node u of T at depth j < h is labeled
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with an ordered tuple of 2/ coordinates (i, .. ., i,;) € [d] (which
are not necessarily distinct), and has 22’ children. Each of the 22’
children of u will uniquely correspond to one of the 22/ fixings of
the coordinates (iy, ..., iy) € {0, 1}2j. Specifically, each child v of
u is assigned a unique bit-string (b1, ..., b,;) € {0, 1}2j. The child
v then corresponds to the subcube S, C S, obtained by fixing the
i;-th coordinate to by, for each t = 1,...,2/. We now describe the
procedure for generating a random Quadtree T:

(1) Uniformly sampling a tuple (i1, ..., iy) € [d] 2 of 2J
coordinates independently for each node u at depth
j€A{0,1,...,h— 2} to use as its label.

(2) Setting (1,...,d) as the label of every node at depth h — 1.

A Quadtree T defines a map ¢ from {0, 1} to leaves of T: o(p) =
vif p € Sp. Given A and B, we write A, and B, to denote AN S,
and BN S, for eachnode v in T.

Quadtrees in [3, 8]. Both works of [3, 8] use a tree structure that
is very similar to the Quadtree used in this paper. In particular, they
consider a slightly different algorithm which at depth i, samples
2! coordinates from [d] and divides into 22 branches according
to settings of {0, 1} to these 2! coordinates (instead of each vertex
independently sampling 2 coordinates). For the sake of the analysis
in Section 3, there will be no difference between independently
sampling coordinates for each vertex in a level, and using the same
sampled coordinates for each level. Thus, our analysis apply to trees
of [3, 8] as well as the Quadtrees defined here.

Depth-greedy Matching from Quadtree. Given a random
Quadtree T, one obtains a natural depth-greedy matching as follows:
We first map all points in C = A U B to leaves of T using ¢. Then,
we greedily match points between A and B in a bottom up fashion,
by walking each point up the tree level-by-level, and at each node
one arbitrarily matches as many of the unmatched points from A
and B as possible. Let M be any depth-greedy matching obtained
from T in this fashion. The goal of our improved analysis of the
Quadtree for EMD is to show that

EMD(A, B) < Cost(M) <

> lla=bl;

(ab)eM
< O(logn) - EMD(A, B)

with high probability (over the randomness of T). Note that the
first inequality is trivial.

Analysis of Quadtree via Tree Embeddings. Before present-
ing an overview of our new techniques, it will be helpful to begin
with a recap of the analysis of [3] which can be used to show that
Cost(M) < O(lognlogd) - EMD(A, B). The analysis of [3] starts
by assigning a weight of d/2! to each edge from a node at depth
i to a node at depth i + 1 in T. This defines a metric embedding
¢ : AUB — T by mapping each point to a leaf of T. The choice
of edge weights is motivated by the observation that two points
x,y € {0,1}¢ with ||x —y||; = d/2 are expected to have their paths
diverge for the first time at depth i. If this is indeed the case then
dr(¢(x), ¢(y)) would capture ||x — y||; up to a constant.

To upperbound Cost(M), one studies the distortion of this em-
bedding, Firstly, for any A > 1 and x,y € {0, 1}9, it is easy to verify
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that distances in the tree metric do not contract much:

P dr(o0).0(w) < 1 - il

{

Thus by a union bound, for all x,y € AU B we have

Ad
1 —0e
142+ -+2{ ogz( =yl )J

< <2790,

k=l
d

(1)
with probability at least 1 — 1/poly(n), which essentially means
that we can assume (1) in the worst case. As a result, we have
Cost(M)= > [lx-yli <O(ogn) » dr(p(x).0(y)
(x.y)eM (x.y)eM

<O(logn) )" dr(p(x). o).

(x,y)eM*

llx = yll1 < O(logn) - dr(¢(x), v(y))

where the last inequality holds for any matching M* between A and
B given that the depth-greedy matching is optimal under the tree
metric. Setting M* to be the optimal matching between A and B
under the original #; metric, we finish the proof by upperbounding
dr(p(x), ¢(y)) using O(logd) ||x — y||1. To see this, when ||x —
yll1 = ©(d/27), the probability that paths of x, y diverge at level
j—kis @(Z_k) for each k, and when it does, dr(¢(x), ¢(y)) =
llx — yll1 - ©(2). Since j < h = O(logd),

J
E[dr(p(x), p(y)] < llx—ylli + Y. ©(27F) - Ix - yll1 - ©(2F)
k=0

= 0(logd) - Ix - yll1. @)

Together they yield the aforementioned O(log nlogd) - EMD(A, B)
upper bound for CosT(M).

Tree Embeddings with Data-dependent Edge Weights. We
show how to go beyond the distortion arguments of [3] by studying
a tree embedding with data-dependent edge weights. In what fol-
lows, for any vertex u € T, let C;, = A, U By, be the set of all points
which map through u (recall C = A U B). The weight we assign to
each edge (u,0)° of T will no longer be a fixed number d/2! but

def
anu,z) = C~EC [”C—C/”l],
u
c/~C,

i.e., the average distance between a point drawn randomly from
Cy and a point drawn randomly from Cy; when Cy, = 0 we define
avg, , = 0 by default. Let d}. denote the tree metric under this new
set of weights. Again, the depth-greedy matching M we are inter-
ested in is optimal and the cost of M under the new tree embedding
can be expressed as

def

Valuer(A,B) = Z “Au| - |Bv” CaAvgy o

(u,0)€ET

5The reason that this analysis can achieve approximation O(min{log n, log d} log n),
as opposed to O(log nlogd) is that with probability 1 — 1/n, every x,y € AUB
with ||x — y|l; = ©(d/2/) diverges at depth after j — O(logn).

SWe always use u in (1, v) to denote the parent and v to denote the child.
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where E7 is the set of edges of T.” On the one hand, Valuer(A, B)
is at least CosT(M) given that for any x,y € C, we always have
[lx —yll1 < d;(qo(x), ¢(y)) by triangle inequality. On the other
hand, Valuer(4, B) is at most ¥ (4 p)em- d{.((p(a), @(b)) for any
matching M and in particular, the optimal matching M* under the
£1 metric. As a result, it suffices to upperbound the cost of M* under
the data-dependent tree embedding by O(log n) - CosT(M*) given
that CosT(M*) = EMD(A, B). To this end it suffices to show that
the expectation of dif(qo(a), @(b)) for any a, b € C can be bounded
from above by é(log n)-|la-"bl.

Inspector Payment. Fix a,b € C. We introduce the follow-
ing quantity as the inspector payment of (a,b) with respect to
the Quadtree T. (We imagine the process as first drawing the
Quadtree and then an “inspector” who examines the tree to track
down a and b, making payments accordingly.) Formally we let
(vo(x),v1(x),...,vp(x)) denote the root-to-leaf path of x in a
Quadtree T. Then

Pavr(ab) € " 1{vi(a) £ vi(h)}
i€[h]
PN (Y () R

Intuitively, this payment scheme corresponds to an inspector who
tracks down a and b from the root of T, and whenever a and b
first diverge in the tree at node u, pays for a the average distance
between a and a random point drawn from C, for every node along
the u-to-leaf path (including u); the inspector pays for b similarly. It
again follows from triangle inequality that 2 - Payr(a, b) is at least
df;((p(a), @(b)). So it suffices to bound the expectation of PaYT(a, b)
by O(logn) - la - bll1.

Before giving a sketch of this proof, which is the most challenging
part of our Quadtree analysis, we note that the inspector payment
(3) depends on the data A and B, as well as the Quadtree T in two
ways. The first is the depth when a and b first diverge, captured by
the indicator 1{v;(a) # v;(b)}. The second is the average distance
between a and Cy, which not only depends on a, but also on global
properties of C = A U B. At a high level, incorporating this second
aspect is the main novelty, since the average distance between a
and Cy is an average notion of radii at v. Therefore, if the inspector
pays a large amount, then an average point in Cj is far from a (as
opposed to the farthest point implied by worst-case radii).

Bounding Inspector Payments. Consider fixed a,b € C at
distance ||a - b||; = ©(d/2’), and we give some intuition behind
our upper bound on the expectation of the a-part of the payment:

Z 1{vi(a) # vi(b)} -avg,; ;. where
i€[h]

def
avggi-1 =

E —cll1].
e [lla—cli]

We will ignore the indicator random variable l{vi(a) # vi(b)}
and use linearity of expectation to focus on Et[avg, ;]. (With the

"We remark that one can define an analogous quantity for the case of MST, where
given a single set X C [A]?, we set Valuer(X) = Z(u‘v)EET 1(1Xo|) - avg,
where 1: R — {0, 1} is the indicator function (i.e., 1(x) = 0 if and only if x = 0). It
is this quantity that we will analyze in our results for MST.
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indicator random variable, we need to consider the expectation
of avg, ; conditioning on the event that a, b have diverged. The
conditioning will not heavily influence the geometric intuition, so
we will ignore this for the rest of this overview).

Let v; = v;(a). Similar to worst-case bounds on radii, Et[avg, ;]
can still be d/2¢ - Q(log n). As an example, let i; be a relatively large
depth and for some small ¢ ~ 107°, consider a set P; of n€ many
points at distance €logn - d/2"t around a. Then, at depth i1 of a
random Quadtree T, a point in P; traverses down to node v;, with
non-negligible probability, roughly 1/n~¢€. If no other points lie
closer to a than those in Py, then Et[avg,; | = d/2h - Q(elogn),
since it is likely that some points of P; make it to v;, and significantly
increase the average distance between a and Cy, . If this happened
on a for every depth i, the inspector would be in trouble, as there
are O(logd) levels and a similar argument to that of worst-case
radii would mean a payment of O(logdlogn) - ||la — b||1.

However, we claim if the arrangement of P; resulted in
Erlavg,; ] = d/2" - Q(elogn), the same situation will be a lot
more difficult to orchestrate for depth iz < i; — O(loglogn). In par-
ticular, at depth iz, in order to have ET[avgaJ-2 ]1= d/2i2 -Q(elogn),

there must be a set of points P, at distance d/2% - Q(e log n) which
cause avg, ;, to be large. However, it is no longer enough to have
|P2| = n€. The reason is that points of P; in v;, will help bring down
the average distance. Since points in P; are at distance elogn -
d/2h < d/2" from a, there will oftentimes be Q(n€) points from
P1 in v;,. In order to significantly increase the average distance, v;,
must oftentimes have at least n®/polylog(n) points from Py; oth-
erwise, avg, ;, will be mostly the average distance between a and
points in P;. Since any given point from P; traverses down to v;,
with probability roughly 1/n€, we must have |P;| > n?¢ /polylog(n).
This argument can only proceed for at most O(1/¢) depths before
[Po(1/¢)| > 2n, in which case we obtain a contradiction, since all
points are in A U B.

Generally, in order to increase the average distance between a
and Cy; multiple times as the depth i goes down, the number of
points around a at increasing distances must grow very rapidly.
More specifically, we show that if a depth i is “bad,” meaning that
Erlavg,;] > a- d/2! for some a = w(loglogn), then the number
of points within a ball of radius d/(2! log n) around a and within a
larger ball of radius O(log n - d/2) around a must have increased
by a factor of exp(Q(«)); this means the number of such depths
i is at most ((logn)/a) - poly(loglogn). Combining this analysis
and the fact that a and b must diverge in order to incur payment
from the inspector, we obtain our upper bound that the expectation
of Pavr(a, b) is at most é(log n) - |la—bl.

1.2.3  Implementing Step 2: From Quadtree to Sketching Algorithms.
By the prior discussion, after sampling a Quadtree T, we know that
the quantity Valuey (4, B) is a O(log n) approximation of the true
cost EMD(A, B). Specifically, we have:

EMD(A, B) < Valuer(A, B) < O(logn) - EMD(A,B)  (4)

Thus, the approach of our sketching algorithm is simply to approxi-
mate Valuer (A, B). We will decompose Valuer (A, B) based on its
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level: Valuer (A, B) = Zl}.’zl Valuer ; (A, B), where

2

(u,0)€ET
depth(u,0)=i

def

ValueT’,-(A, B) = “AU| - |BU” CaAvVEy

where depth(e) for an edge e € T is the depth of the child vertex in
e. We will attempt to estimate each Valuer ; (A, B) independently
for each i, so in what follows we now fix any level i € [h].

We start with some notation. For any (non-root) vertex v € T, let
7(v) be the parent of v in T. We then define the discrepancy vector
for level i, denoted A, by AL = |A,| — |B,| for every vertex v at
depth i of the tree (i.e., A’ has a coordinate AL for each vertex v
at depth i). Next, for any vector x € RN and any p =0, we define
the £, distribution D, (x) over the coordinates of x via Dy (x) =

[x1? x|
llxllp ™ Nxlip”
to be the uniform distribution over the support of x. Now observe:

lxn [P
o
115

for p > 0, and for p = 0 we define Dy(x)
8

. — i .
Valuer,(4.5)= 8- B [avgrio]

Thus, we can write Valuer ; (4, B) as the ¢; norm of AL multiplied
by the expected value of avg, () , taken over drawing a vertex v
in level i with probability proportional to |Ay| = ||AV| - |BV||, Note
that the norm || A?||; can be easily estimated using the # sketches of
Indyk [21]. Thus, this simple manipulation motivates the following
approach: (1) sample a vertex v from level i from the distribution
D1 (AY), (2) recover the value avg,(v),y> (3) repeat enough times
so that the empirical mean of the variables avg, (), is a good

approximation of the expectation Ey_ ¢, (1) [avgﬂ(v)’v].

For the last step, we note that it will be straightforward to bound
the standard deviation of the variable avg, (), by O(dlogn/ 2),
which is within a O(log n) factor of the error to which we will need
to estimate the expectation. Thus, if we can carry out steps (1) and
(2) which sample avg, () ,, from the correct distribution, we need
only repeat them polylog(n) times to estimate Valuer ;(A, B) to
sufficiently small error.

Two-Pass Streaming Algorithms. We first describe how the
above two steps can be carried out in two-passes over the data-
stream. Perhaps unsurprisingly, our approach will be to carry out
(1) on the first pass, obtaining a set of vertices v sampled from the
correct distribution D1 (Af), and carry out (2) on the second pass,
where we recover the actual value of avg, (. , for the vertices v
that were sampled.

More formally, our two-pass streaming algorithm proceeds as
follows. First we draw a Quadtree T (for which we may assume
(4) holds) and then for each i € [h], we estimate Valuer ;(A, B)
as follows. In the first pass we can estimate ||A’]|; to error (1 +
1/2) with an # -sketch [22], and we also can sample v ~ D;(A)
via known algorithms for #;-sampling [4, 24, 25]. Furthermore,
once a vertex v is fixed, we may estimate ave . (v)v in the second
round by a point in Cp(,) and in Cy (via standard sub-sampling

8We remark that for the case of MST, the relevant quantity Valuer,; (X) below can
be written as || Af]|o - Ey 0(af) [avg”(v)'v]. Namely, we simply replace the £; norm
in both the scaling and the distribution by the £, norm. Thus, the high-level approach
to sketching MST will be similar. However, due to using the £ instead of the ¢; norm,
an entirely different set of techniques will be required to implement each of the steps.
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techniques) and approximating their distance using #; sketches. By
concurrently repeating this process polylog(n) times, we obtain
our desired approximation

The remaining challenge, however, is to produce v ~ D; (A?)
and an estimate of avg,(y) , simultaneously in a single pass over
the data. This task is a special case of a problem we call sampling
with meta-data, since the quantity avg, (), will be the meta-data
of the sample v ~ D1 (A) needed to estimate Valuer ; (A, B).

Sampling with Meta-Data and One-Pass Streaming The
key task of sampling with meta-data is the following: for n,k € N,
we are given a vector x € R" and collection of meta-data vectors
A, Ao, ... Ay € Rk, and the goal is to sample i € [n] with proba-
bility |x;|/]|x||1 (or more generally, |x; |P/||x||§), and output both i

and an approximation ;fi € R¥ of the vector A;. The challenge is
to solve this problem with a small-space linear sketches of x and
the meta-data vectors Ay, ..., A,. It is not hard to see that sampling
with meta-data is exactly the problem we seek to solve for linear
sketching of EMD.’

Our algorithm builds on a powerful sketching technique known
as precision sampling [4, 24, 25] for sampling an index i € [n]
proportional to |x;|/||x]|1 for a vector x € R” (or more generally, for
|xi|p/||x||§, but we focus on p = 1). The idea is to produce, for each
i € [n] an independent exponential random variable t; ~ Exp(1),
and construct a “scaled vector” z € R™ with coordinates z; = x;/t;.
One then attempts to return the index imay = argmax;, [n] Zi> since

_xl

Pr = .
1, tn~Exp(1) (B3R

o] }
argmax —— =1

ie[n] v

To find the index imax with a linear sketch, we can use a “heavy-
hitters” algorithm, such as the Count-Sketch of [14].10 Specifically,
Count-Sketch with error € € (0, 1) allows us to recover an estimate
Z to z satisfying (roughly) ||z — 2|l < €||2||2. Then one can show
that argmax; ¢, |zi| is close to being distributed as |x;|/||x]|:.
In order to sample with meta-data, our sketch similarly samples
independent exponential t1, . .., t, ~ Exp(1) and applies a Count-
Sketch data structure on z € R”, where z; = x;/t;, and obtains an
estimate z of z. In addition, we apply a Count-Sketch data structure
with error € for the vector w with coordinates given by the values
Ai/ti, namely w; = A;/t; (recall that we are assuming that the
meta-data A; are scalars for this discussion). From this we obtain an
estimate w of w. The insight is the following: suppose the sample
produced is i* € [n], which means it satisfies z;+ ~ max;e[,) |xil/t;.
Then the value t;+ should be relatively small: in particular, one
can show that we expect ¢;+ to be ©(|x;+|/||x||1), so that z;+ =~
O(||x]l1) = O(||A!||1). When this occurs, for each ¢ € [k], the

“Namely, x is the vector A’, and the meta-data vectors A, are k = polylog(n)-
dimensional #; sketches of the values of avg, (4 ,- In the following discussion, for
simplicity we omit the details on the ¢; sketches for avg,, ,, ,, since they proceed via
somewhat standard techniques, and instead assume that the meta-data is exactly given
by the scalars Ay ~ avg () o

1OWe do not explicitly use count-sketch in our one-pass algorithms, and instead apply
a sketching procedure closely inspired by Count-Sketch.
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guarantees of Count-Sketch imply that the estimate #;+ ~ﬁ/f* satisfies

[t Wi — Ai=| =ty [Wir —wis |

lIAll
llx[l2

IA

eti|w]l2 (: o (e|xi*| . ) in expectation)

where A € R" is the vector with coordinates given by the meta-data
A, ..., Ap. In other words, if the size of A;+ is comparable to |x;«|,
and if the ratio ||A||1/||x||1 of the meta-data norms to the norm of
x is bounded, then ti*ﬁ/f* is a relatively good approximation to A;«.

Unfortunately, in our application, the above will not always be
the case. In particular, the norm of the meta-data ||A||; may be
much, even poly(n), larger than ||x||; = ||A!|;. Intuitively, the
issue is that each coordinate 4, is a sketch of avg,(,) ,, whichis a
function both of the points in C(,) and Cy. Thus, the size of the
sketch of avg, ;) , depends on all the points in Cy(,). Moreover,
for every other sibling v’ of v (meaning that 7(v’) = 7(v)), the
sketch of avg,, () ,» will also have to take into account the same
information from Cy (). Thus, this information is duplicated in
the sketches of the meta-data, by a number of times equal to the
number of children of 7 (v). This duplication, or repetition of the
same information in the sketch, results in a blow-up of the norm
of A so that ||A]|; = Q(x - ||A}||1), where « is the maximum number
of non-empty children of any parent in level i — 1. Since k can be
poly(n), this is an non-trivial challenge.

Our solution to this, at a high level, is to develop a two-step
precision sampling with meta-data algorithm to avoid duplication
of meta-data. Instead of sampling the vertex v* directly, we first
sample a parent u* from level i — 1 with probability proportional
to the £;-norm of A’ restricted to coordinates corresponding to the
children of u*; namely, we sample u™ with probability proportional
t0 Yo (v)=ut |AL|. Then, we use the precision sampling sketch
which recovered u* to recover a sketch of the a randomly selected
point in Cy=. Next, once we have u*, we apply precision sampling
with meta-data once more, to sample a child v* of u™ proportional
to |A£7* |, and then recover a sketch of a randomly selected point in
Cy+. One can then put the two sketches from Cy,+, Cy+ together to
estimate avg,,: y«.

To accomplish this two-part precision sampling scheme, we must
generate a second set of exponentials {¢,},, one for each child node
v at depth i. In order to ensure that the sample produced by the
second sketch actually returns a child v* of u*, and not a child of
some other node, we crucially must scale the vector A? by both
the child exponentials {t,}, as well as the parent exponentials
{ty }y from the first sketch. Thus, in the second sketch we analyze
the twice-scale vector z with coordinates z, = AZ/(tﬂ(u)tv), and
attempt to find the largest coordinate of z. Importantly, notice that
this makes the scaling factors in z, no longer independent: two
children of the same parent share one of their scaling factors. Thus,
executing this plan requires a careful analysis of the behavior of
norms of vectors scaled by several non-independent variables with
heavy-tailed distributions.

The advantage of this two-part scheme is that now there is no
duplication of meta-data, since in the first step there is only one
Ay for each parent u, and in the second step, by conditioning on
the parent exponential t,+ being sufficiently small, we ensure that
the only meta-data that contributes non-trivially to the error of the
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sketch are the A, for children v of u*. This allows us, ultimately, to
obtain our guarantees for one-pass streaming algorithms for EMD.
The case of MST is similar at a high-level, however implementing
the two-part precision sampling scheme requires an entirely differ-
ent set of sketching tools, resulting from the fact that we now need
to sample a vertex v from the £ distribution Dg(A?).

1.3 Organization

Due to space constraints, we focus on the analysis of quadtrees for
EMD and MST in the conference version of the paper (i.e., Step 1 as
sketched in Section 1.2.2. Proofs of our main results can be found
in the full version [15].

2 PRELIMINARIES

Given n > 1 we write [n] to denote {1,...,n}. Given a vector
x € R" and areal number t > 0, we define x_; € R" to be the vector
obtained by setting the largest | t] coordinates of x in magnitude
equal to 0 (breaking ties by using coordinates with smaller indices).
For a,b € R and € € (0,1), we use the notation a = (1 + €)b to
denote the containment of a € [(1 — €)b, (1 +€)b].

For convenience, we will assume without loss of generality that
d is always a power of 2 and write h := log, 2d = log, d + 1. Given
a node v in a rooted tree T, when v is not the root we use 7(v) to
denote the parent node of v in T.

Next we give a formal definition of Quadtrees used in this paper:

Definition 2.1 (Quadtrees). Fix d € N. A quadtree is a rooted
tree T of depth h := log, 2d. We say a node v of T is at depth j if
there are j + 1 nodes on the root-to-v path in T (so the root is at
depth 0 and its leaves are at depth k). Each internal node v of T
at depth j < h is labelled with an ordered tuple of 2/ coordinates
i1,...,iy; € [d] (which are not necessarily distinct), and has 2%
children, each of which we refer to as the (b1, ..., by;)-child of v
with by, ..., by € {0,1}. Every node at depth h — 1 is labelled with
(1,...,d). We write ET to denote the edge set of T. Whenever we
refer to an edge (u,v) € Er, u is always the parent and v is the
child. A random quadtree T is drawn by (1) sampling a tuple of 2/
coordinates uniformly and independently from [d] for each node
at depth j < h — 1 as its label; and (2) use (1,2,...,d) as the label
of every node at depth h — 1. We use 7~ to denote this distribution
of random quadtrees.

Given a quadtree T, each point x € {0, 1}d induces a root-to-leaf
path by starting at the root and repeatedly going down the tree as
follows: If the current node v is at depth j < h and is labelled with
(i1, ..., iy5), then we go down to the (x;,,.. .,xizj)—child of v. We
write

VO,T(X)’ Vl,T(x)) e Vh,T(x)

to denote this root-to-leaf path, where each v; 1 is a map from
{0,1}9 to nodes of T at depth j. We usually drop T from the subscript
when it is clear from the context.

Alternatively we define a subcube S, 7 C {0, 1}4 for each v: The
set of the root is {0, 1}%; If (u,v) is an edge, u is at depth j and is
labelled with iy, ..., iy, and v is the (b1, ..., by;)-child of u, then

SoT = {x ESyuT: (xil""’xizj) = (bl,...,sz)}.
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Note that S, 7’s of nodes v at the same depth form a partition of
{0,1}". The root-to-leaf path for x € {0, 1}¢ can be equivalently
defined as the sequence of nodes v that have x € S, 1.

3 ANALYSIS OF QUADTREES FOR EMD AND
MST
Our goal in this section is to obtain expressions based on quadtrees

that are good approximations of EMD and MST. They will serve as
the starting point of our sketches for EMD and MST later.

3.1 Approximation of EMD using Quadtrees

Fix n,d € N and let T be a quadtree of depth h = log, 2d. Let A and
B be two multisets of points from {0, 1}9 of size n each. For each
node v in T, we define

def

ApT def {a€A:vir(a)=v} and B,7 = {beB:v;r(b) =0}

Equivalently we have A, 7 = ANS, 7 and B, 7 = BNS, 7. Let Cy 1 =
Ay U B, 1. We give the definition of depth-greedy matchings.

Definition 3.1. Let T be a quadtree. For any a € A and b € B, let

depthy(a, b) dgfdepth of the least-common

ancestor of leaves of ¢, b in T.

The class of depth-greedy matchings, denoted by Mt (A, B), is the set
of all matchings M € AxB which maximize the sum of depth(a, b)
over all pairs (a,b) € M. We write

Cost(M)= > fla=blx

(ab)eM

to denote the cost of a matching M between A and B. Recall that
EMD(A, B) is defined as the minimum of CosT(M) over all match-
ings between A and B.

For each edge (u,0) € ET, we use avg,, ,, 1 to denote the average

distance between points of C;, 7 and C, 1:

def
av8uoT = o~

C,"Cu,T

gu,r [lle=<ll1].

where both ¢ and ¢’ are drawn uniformly at random; we set avg,, ,
to be 0 by default when C,, 7 is empty. For notational simplicity, we
will suppress T from the subscript when it is clear from the context.
We are now ready to define the value of (A, B) in a quadtree T:

Definition 3.2. Let T be a quadtree. The value of (A, B) in T is
defined as

def

Valuer(A,B) = > Aol = IBol|- avg,,. (5

(u,0)€Er

We note that the right-hand side of (5) is data-dependent in two
respects: the discrepancy between |A,| and |B,| and the average
distance avg,, , between points in Cy and Cy.

Our main lemma for EMD shows that the value of (A, B) in a
randomly chosen quadtree T ~ 7~ and the cost of any depth-greedy
matching are all O(log n)-approximations to EMD(A4, B).
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LEMMA 3.3 (QUADTREE LEMMA FOR EMD). Let (A, B) be a pair of
multisets of points from {0, 134 of sizen each. Let T ~ 7. Then with
probability at least 0.99, every M € Mt (A, B) satisfies we have

EMD(A4, B) < Cost(M) < Valuey(A, B) < O(logn) - EMD(A, B).
(6)

We start with the left-most inequality in (6). Indeed we will show
that EMD(A, B) < Valuer (A, B) for any quadtree T (Lemma 3.4).
To this end we prove that CosT(M) < Valuer (A, B) for any depth-
greedy matching between A and B obtained from T; the latter by
definition is at least EMD(A, B).

LEmMMA 3.4. LetT be any quadtree. Then CosT(M) < Valuer (A, B)
for any M € Mt (A, B).

Proof: Given an M € M7 (A, B) and a pair (a,b) € M, we write v

and w to denote the leaves of a and b and use v = uj,up, ..., up =w

to denote the path from v to w in T. By triangle inequality,
la=blli < E |lla—cilli+llet —calls +--- +llcx = blls
i’“cui

=avgy 4t T ave,

where the equation follows from the fact the label of every node
atdepth h — 11is (1,2,...,d) and thus, all points at a leaf must be
identical. Summing up these inequalities over all (a, b) € M gives
exactly Value7 (A, B) on the right hand side. For this, observe that
every M in Mt (A, B) has the property that, for any edge (u,0) in
T, the number of (a,b) € M such that the path between their leaves
contains (u,v) is exactly ||Ay| — |Bo||- |
Now it suffices to upperbound Valuer (A, B) by
é(log n) - EMD(A, B) with probability at least 0.9 for a random
quadtree T ~ 7. For this purpose we let C = A U B and define
an inspector payment for any pair of points a, b € C!! based on a
quadtree. Given a,b € C, we let

Pavr(ab) € ) 1{vi(a) #vi(b)} - (avegi 1 +avepia) ()

ie[h]
where
def
avg,;1 = E  [la—cl1] and
? CNCvi,l(a)
def
avgy ;g = E [lb—cl].
’ e~y 1(d)

Intuitively Payr(a, b) pays for the average distance between a (or
b) and points in C,, (4) (or Cy,(p)) along its root-to-leaf path but the
payment only starts at the least-common ancestor of leaves of a
and b. Note that Payr(a, b) = 0 trivially if a = b.

We show that for any matching M between A and B, the total in-
spector payment from (a, b) € M is enough to cover Valuer (A, B):

LEMMA 3.5. LetT be any quadtree and M be any matching between
A and B. Then we have

Valuer (A, B) < 2 Z Payr(a,b). (8)

(a,b)eM

\While we will always have a € A and b € B in this subsection, this more general
setting allows us to apply what we prove in this subsection to work on MST later.
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Proof: Using the definition of Valuer (A, B), it suffices to show
that

Z 140l — IBol| - avg, , < 2 Z Pavr(a,b).

(uv)€ET (a,b)eM

By triangle inequality (and avg,, , = 0 because every pointin C, (4)
is identical to a)

2 -Payr(a,b)

\%

Z l{vi(a) * vl-(b)} . (avga’i_1 +avg,; +avgy;_ |+ avgb’i)
ie[h]

Z 1{Vi(a) * Vi(b)} : (anvi_l(a),vi(a) + anvi-1(b),Vi(b))’
i€[h]

ie, 2-Payr(ab) is enough to cover avg, , for every edge (u,v)
along the path between the leaf of u and the leaf of v. The lemma
then follows from the following claim: For every edge (u,v) in T,
[|As| — |Bo|| is at most the number of points a € A, such that its
matched point in M is not in B, plus the number of points b € B,
such that its matched point in M is not in A,. This follows from the
simple fact that every (a,b) € M with a € A, and b € B, would get
cancelled in |Ay| — |Bo|. This finishes the proof of the lemma. Il

By Lemma 3.5 the goal now is to upperbound the total inspector
payment by O(log n) - EMD (A, B) with probability at least 0.9 over
a randomly picked quadtree T. We consider a slight modification of
the payment scheme given in (7) which we define next; the purpose
is that the latter will be easier to bound in expectation, and most
often exactly equal to (7).

Specifically, given any (a,b) with a,b € Candip € [0: h—1],
we let

h
def
PAY:.‘O’T(a, b) € Z 1{vi(a) # vi(b)} - (avg:;,i_l + anZ,i—l)’
i>ip
)
where
def def
avgy,; < C~E‘* [lla=clli] and avgz’i < ng* (15 = cll1]
a,i bii

and CZ! ; contains all points in Cy,(4) that is not too far away from

}A

The set C;;’i is defined similarly. Roughly speaking, points in C that
share the same node at depth i are expected to have distance around
d /2" (given they have agreed on 2’ — 1 random coordinates sampled
so far); this is why we refer to points in Cz’i as those that are not
too far away from a.

The following is the crucial lemma for upperbounding the total
expected payment according to an optimal matching M*. Its proof
can be found in the full version [15]. We use it to prove Lemma 3.3.

def

10d logn
o

Coi < { € Cuiay : lla=cll <

LEMMA 3.6. Forany (a,b) witha,b € C,a # b andip € [0: h—1]

that satisfies
. def d
i0 < hap = {k)gz (m)J (10)
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we have
*
IET [PAYiO’T(a, b)]

< (é(log n) + O(loglog n) (hg, - io)) a-bll.

Proof of Lemma 3.3 assuming Lemma 3.6: Let M* be an optimal

matching between A and B that achieves EMD(A,B). Let T ~ 7.

Then we have from Lemma 3.5 that

Valuer(A,B) <2 Z Pavyr(a,b)

(a,b)eM*
a+b

(11)

given that Payr(a,b) = 0 when a = b. Below we focus on the
subset M” of M* with (g, b) € M* and a # b. For each (a,b) € M’,
let
def
0<{,p = max {O, hqap — 2[log, n]} < hgp.

We show that with probability at least 1 — 0(1) over the draw of T,
every (a,b) € M’ satisfies

Pavr(a,b) = PAYZb 1(ab). (12)

Combining (11) and (12), we have that with probability at least
1 —0(1) over the draw of T,

Valuer(A,B) <2 Z PAYZ'I)’T(G, b).
(abyem’

(13)

By applying Lemma 3.6 to every (a,b) € M’ with iy = £, 5, as well
as Markov’s inequality, we have that with probability at least 0.99
over T, the right hand side of (13) is at most

O(logn) Z lla - bll; = O(log n) - EMD(A, B).
(ab)eM’

By a union bound, Valuer(A,B) < O(logn) - EMD(A, B) with
probability at least .99 — 0(1) > 0.9.

It suffices to define an event that implies (12) and then bound its
probability. The first part of the event requires that for every pair
(a,b) € M, vi(a) = vi(b) for every i : 1 < i < £, The second
part requires that for any two distinct points x,y € A U B (not
necessarily as a pair in M* and not even necessarily in the same

set), we have v;(x) # v;(y) for all i with
10dlogn

T llx =yl
By the definition of PAY r(a,b) in (9), the first part of the event
makes sure that we don ' miss any term in the sum; the second
part of the event makes sure that every C* is exactly the same as

Cy;(a) so that avg; i = aVgy; (and the same holds for b) . It follows
that this event implies (12).

Finally we show that the event occurs with probability at least
1 — o(1). First, for every (a,b) € M’, if £, = 0 then the first part

i

(14)

of the event trivially holds. If £, 5, > 0 then £, = h, ), — 2[logn].

The probability of v;(a) # v;(b) for some i : 1 < i < £, is at most

fab _1
lla—bll1\* o lla=bll
1-1- —— < 2lab . ———
( d - d

Hence, by a union bound over the at most n pairs (a,b) € M’,

1
< —.
3

the first part of the event holds with probability at least 1 — o(1).
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Furthermore, for any two distinct points x,y € A U B, let

. 10d logn
£ P"gz (ux—yul)J

Then v;(x) = v;(y) for some i that satisfies (14) would imply
vee(x) = v (y) and £* < logd (since vy (x) # vi(y) given x # y).
The event above happens with probability

I—M 2tl<ex (=510 n)—i
d = P g _ns

Via a union bound over at most (2n)? many pairs of x, y, we have
that the second part of the event also happens with probability at
least 1 — 0(1). This finishes the proof of the lemma.

3.2 Approximation of MST using Quadtrees

We will follow a similar strategy as we took in the previous subsec-
tion for EMD. Given a quadtree T of depth h = log, 2d, we define
similarly vo (x), . . ., v (x) as the root-to-leaf path of x € {0, 1}9 and
write S, for each node v at depth i to denote the set of x € {0, 1}4
with v;(x) = 0.

Let X € {0,1}9 be a set of n points. We define X, for each node
vin T as X N Sy, and write L; for each depth i to denote the set
of nodes v at depth i such that X, # 0 and will refer to them as
nonempty nodes.

We give the definition of depth-greedy spanning trees.

Definition 3.7. Let T be a quadtree, and X c {0,1}<. For any
DFS walk of the quadtree T starting at the root, let o: [n] — X
denote the order of points in X encountered during the walk, so
that vy, (o (i)) appears before v, (o(i + 1)) for every i € [n—1]. A
depth-greedy spanning tree G obtained from a DFS walk is given
by the edges {(c(i), o(i + 1)) };e[n—1]- The class of depth-greedy
spanning trees, denoted by G7(X), is the set of all spanning trees
G of X obtained from a DFS walks down the quadtree T. For any
spanning tree G, we write

2

(a,b)€E(G)

Cost(G) = lla - bllx

to denote the cost of a tree G (with n — 1 edges) spanning points in
X. Recall MST(X) is defined as the minimum of CosT(G) over all
spanning trees G of X.

Similar to the previous subsection, for each edge (u,v) € ET, we
write
vguo S E [le=clh].
c'~X,
when X, # 0, and avg, , =0 when X, = 0. Recall 7(v) denotes the
parent node of v in T. We are now ready to define the value of X in
a quadtree T and then state the main lemma:

Definition 3.8. Let T be a quadtree. The value of X in T is defined

Valuer(X) = def Z l{lLi| > 1}' Z V8 (v),0°

i€[h] vel;

as

The main lemma for MST shows that the value of X for a random
quadtree T ~ 7 and the cost of any depth-greedy spanning tree
G € Gr(X) are O(log n)-approximations of MST(X).
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LEMMA 3.9 (QUADTREE LEMMA FOR MST). Let X C {0, 1} bea
set of size n, and let T ~ 7. Then with probability at least 0.99, for

any G € Gr(X), we have that
MST(X) < Cost(G)

2 2
We start with the lower bound:

< Valuer(X) < O(logn) - MST(X).

LEMMA 3.10. Let T be any quadtree and any depth-greedy span-

ning treeG € Gr(X). Then Valuer (X) > Cost(G)/2 > MST(X)/2.

Proof: Let w be the least common ancestor of leaves vy (x), x € X,
and let T* denote the subtree rooted at w that consists of paths
from w to v (x), x € X. Using T* we can equivalently write

Valuer(X) = Z avgy ,-
(u,0) €Ep+

For each node v € T* (note that X, # 0), we define p, to be the
center-of-mass of points in Xp:

def 1
= X.
i &

x€Xy

Po

<

By triangle inequality we have ||py — poll1
(u,v) € E7+ and thus,

Z llpu = poll1 < Valuer(X).

(u,v) €Ep+

avg, , for every

We finish the proof by showing that any depth-greedy spanning
tree G of X satisfies

Cost(G) <2 Z lpu = poll1-
(w,0)€Ep=

To this end we take a DFS walk of T* from its root w and let
o: [n] — X be the order of points in X under which
vp(0(1)),...,vp(o(n)) appear in the walk. Then we set G to be
the spanning tree {(o(i), o(i + 1)) };e[n—1]. For each i € [n — 1],
letting uj, ..., u, be the part of DFS walk from u; = v (o(i)) to
ur = vp(o(i+ 1)), we have from triangle inequality that

lo(D)=o(i+D)ll1 = lpu; =pu, N1 < lpuy=pus I+ -+l Py =P, |11
The lemma follows from the fact that a DFS walk visits each edge
twice. |

Now it suffices to upper bound Valuer(X) by O(log n) - MST(X)
with probability at least 0.9 for a random quadtree T ~ 7. For this
purpose, we use the same inspector payment defined in the last
subsection (the only change is that the set C is now called X which
is a set and has size n instead of 2n). Recall that for any two points
x,y € X, we define

Payr(x,y) déf Z l{vi(x) + vl-(y)} . (avgx’i_1 + avgy’i_l),

ic[h]
(15)
where
def
avg, ;1 = NXE . [||x—c||1] and
vi—1(x
def
avgyi1 = c~XVE1(y) [lly —cll1].

Next we show that the total payment from any spanning tree G
is enough to cover Valuer(X).
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LEMMA 3.11. Let T be any quadtree and G be any spanning tree
of X. Then we have

(x.y)€E(G)

Valuer(X) < 2 Payr(x,y). (16)

Proof: Let w be the least common ancestor of leaves vy (x), x € X,
and let T* denote the subtree rooted at w that consists of paths
from w to vy (x), x € X. It suffices to show that

Z avg,, <2 Z

(u,0) €Eq+ (x,y)€E(G)

Payr(x,y).

By similar arguments in the proof of Lemma 3.5, 2 - PaY7(x,y) is
good enough to cover avg,, , for every edge along the path between
the leaf of x and the leaf of y. The lemma follows by summing over
all (x,y) € E(G) and noting that the avg, , of each (u,0) € Et+ is
counted at least once. |
To upperbound the total inspector payment from an optimal
spanning tree by O(logn) - MST(X), we similarly consider the
modified payment scheme PAY?O’T (x,y) as in (9), replacing C by X.
The same Lemma 3.6 applies and we use it to prove Lemma 3.9:
Proof of Lemma 3.9 assuming Lemma 3.6: The lower bound
follows from Lemma 3.10. For the upper bound, let G* be an optimal
spanning tree of X and let T ~ 7. By Lemma 3.11 we have

2,

(x,y)€E'(G*)

Valuet(X) < 2

Payr(x,y), (17)

where E’(G*) denotes the set of edges (x,y) in G* with x # y. For
each (x,y) € E'(G¥), let

0< by e nax {0, hyy — 2Mlog, n1} < hyy.

By similar arguments as in the proof of Lemma 3.3, we have with
probability at least 1 — 0(1) over the draw of T that every (x,y) €
E’(G*) satisfies

Pavy(x,y) = PaY,  1(x9) (19)
Combining (17) and (18), we have that with probability at least
1 - 0(1) over the draw of T,

Valuey(X) < 2 PAYZC . (% y). (19)

(x.y)€E’(G*)
By applying Lemma 3.6 to every (x,y) € E'(G*) with ig = £y y, as
well as Markov’s inequality, we have that with probability at least
0.99 over T, the right hand side of (19) is at most

2,

(x,y)€E'(G")

O(logn) lx = yll1 = O(log n) - MST(X).

By a union bound, Valuer(X) < O(logn) - MST(X) with probabil-
ity at least .99 — o(1) > 0.9. |
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