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ABSTRACT

We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum-—
conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These
theories respectively posit that a Hadley circulation must span all latitudes where the radiative—convective
equilibrium (RCE) absolute angular momentum M, satisfies M, > Qa*> or M., <0 or where the RCE
absolute vorticity 7, satisfies f7,.. <0; all latitudes where the RCE zonal wind exceeds the AMC zonal wind;
and over a range such that depth-averaged potential temperature is continuous and that energy is conserved.
The AMC model requires knowledge of the ascent latitude ¢,, which needs not equal the RCE forcing
maximum latitude ¢,,. Whatever the value of ¢,, we demonstrate that an AMC cell must extend at least as far
into the winter hemisphere as the summer hemisphere. The equal-area model predicts ¢,, always placing it
poleward of ¢,,. As ¢,, is moved poleward (at a given thermal Rossby number), the equal-area-predicted
Hadley circulation becomes implausibly large, while both ¢,, and ¢, become increasingly displaced poleward
of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general
circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All ho-
mogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in
extent controlled by the span of supercritical forcing.

1. Introduction nearly at the summer pole on Venus (Gierasch 1975)
and Titan (Mitchell and Lora 2016). Nevertheless, each
spans at least as far into the winter hemisphere as the
summer hemisphere. This paper seeks minimal, prog-
nostic, qualitatively accurate theoretical arguments that
account for these features.

The inviability of gradient balance at the equator is
one manifestation of the well-known Hide’s theorem—a
set of conditions determining if the distributions of ab-
solute angular momentum M, and absolute vorticity
M 10 the hypothetical RCE state are physically re-
alizable (Hide 1969; Schneider 1977). Any latitude
where the RCE state violates the conditions of Hide’s
theorem is said to be supercritically forced, and an
overturning circulation must span at minimum all su-
Corresponding author: Spencer Hill, shill@atmos.ucla.edu percritical latitudes. Of particular note is the condition

Except during equinox, insolation always has a nonzero
meridional derivative spanning the equator, precluding a
state of latitude-by-latitude radiative—convective equilib-
rium (RCE). The resulting thermal- or gradient-balanced
wind would asymptotically approach +< on the winter
side of the equator and —o on the summer side. An
overturning circulation must emerge that removes this
physically impossible feature by redistributing heat
and angular momentum. The resulting solstitial cross-
equatorial Hadley cells in our solar system, however,
differ dramatically in scale—ascending at relatively low
latitudes in the summer hemisphere on Earth versus
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(expanded upon below) that the RCE absolute vorticity
cannot take the opposite sign of the local Coriolis pa-
rameter: fn,. <0 is forbidden (Plumb and Hou 1992,
hereafter PH92; Emanuel 1995, hereafter E95), making
the poleward extent of supercritical forcing in the sum-
mer hemisphere bounded by the latitude where 7,.,. =0
in most cases.

In axisymmetric atmospheres in which viscosity is
weak above the boundary layer, the cross-equatorial
Hadley cell is usefully described by the angular
momentum-—conserving (AMC) model. In this frame-
work, ascent concentrated at a single latitude ¢, imparts
that latitude’s planetary angular momentum to the free
troposphere, which the Hadley circulation then homoge-
nizes throughout its confines (Held and Hou 1980, here-
after HH80; Lindzen and Hou 1988, hereafter LH88); ¢,, is
also the boundary separating the cross-equatorial cell
and the smaller summer cell. To satisfy Hide’s theorem,
such an AMC circulation must span all latitudes wherein
the angular momentum value of the RCE state exceeds
the AMC value.

A well-known theory for ¢, in an AMC Hadley circu-
lation comes from the equal-area model, which assumes
Newtonian relaxation of temperatures toward a specified
RCE distribution, continuity of column-integrated
temperature at each cell edge, and conservation of en-
ergy integrated over each cell. Given these, it predicts
¢, as well as the poleward edges of both the cross-
equatorial winter cell and the summer cell and the
column-integrated temperature at ¢, (HH80; LHSS).
The equal-area solution for the cross-equatorial Had-
ley cell grows rapidly as the latitude of the RCE ther-
mal maximum ¢,, is moved poleward. For the largest
value shown by LHS8S, ¢, =~ 8°, the cross-equatorial
cell spans ~45°S-28°N or ~41°S-23°N depending on
the value of the imposed fractional meridional equi-
librium temperature drop factor (A, = 1/3 or 1/6, re-
spectively; cf. their Fig. 4). In addition, it always predicts
¢, = ¢,, and is agnostic to the extent of supercritical
forcing.

Yet, under solstitial forcing, insolation maximizes
at the summer pole, and thus the effective RCE ¢,
should also. Faulk et al. (2017) and Singh (2019) perform
perpetual solstitial forcing simulations in an ideal-
ized aquaplanet GCM, finding that the resulting cross-
equatorial cell is confined to the tropics, as on Earth,
unless the rotation rate is decreased. These studies also
demonstrate that the latitude at which 7, =0 predicts
¢, with qualitative accuracy both at Earth’s rotation
rate (Faulk et al. 2017) and as the rotation rate is varied
over a wide range (Singh 2019). Moreover, while the
traditional AMC model dictates that the circulation
and column-integrated equivalent potential temperature
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6. fields mutually evolve such that ¢, coincides with a
local maximum in 6, (LHS88; E95; Privé and Plumb
2007), in the Faulk et al. and Singh simulations the
near-surface moist static energy (a good indicator of
6.) always maximizes at the summer pole—nearly a
hemisphere away from ¢, in the highest-rotation-rate
cases.

In what follows, we demonstrate using a dry, axi-
symmetric GCM that the 7, =0 latitude predicts ¢,
with qualitative accuracy—and the equal-area model
does not—both under conventional forcings and in exoti-
cally forced cases that generate planetary-scale Hadley
circulations while remaining at Earth’s rotation rate. We
also show without appeal to the equal-area model that a
cross-equatorial AMC cell must extend as far or farther
into the winter hemisphere as into the summer hemi-
sphere. Hide’s theorem is reviewed and its various pre-
vious manifestations are synthesized in section 2. Section 3
reviews AMC theory and the equal-area model and
compares their predictions for the cross-equatorial cell’s
edges with those stemming directly from Hide’s theorem.
Section 4 presents the results of the numerical simulations,
after which we conclude with a summary and discussion in
sections 5 and 6, respectively.

Before proceeding, we note that, even in axisymmet-
ric cases where the complicating factors of eddy stresses
can be neglected, simulated Hadley cells never truly
approach the AMC limit (HH80; LH88; Adam and
Paldor 2009). In eddying atmospheres, the AMC as-
sumption becomes even more problematic, although
in observations and simulations the solstitial, cross-
equatorial cell is more nearly AMC than are the sum-
mer, equinoctial, or annual-mean cells (e.g., Schneider
2006). We expand upon these and other caveats, including
the complicating effects of moisture, in concluding sub-
sections within sections 2 and 3. Additional subtleties
discussed in footnotes and the appendixes may be
skipped by casual readers. We otherwise proceed using
the original dry, axisymmetric framework.

2. Hide’s theorem

After presenting the governing equations, this section
reviews fundamental properties of the gradient-balanced
RCE state, synthesizes the various forms Hide’s theorem
has taken in past literature, and notes some important
caveats.

We consider dry, axisymmetric, Boussinesq atmo-
spheres under time-invariant radiative forcing, with
radiative transfer represented as Newtonian cooling of
potential temperature 6 toward an RCE potential tem-
perature field 6, that is known analytically. The cor-
responding governing equations are
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Here, v = (v, w) with v the meridional velocity and w the
vertical velocity, u is zonal velocity, f = 2Q sing is the
Coriolis parameter with () the planetary rotation rate
and ¢ latitude, a is planetary radius, v is the kinematic
viscosity, ® = gz is geopotential height, 7 is the New-
tonian cooling time scale, 6, is the Boussinesq reference
potential temperature, and other terms have their
standard meaning. Note that the Boussinesq equations
are isomorphic to the fully compressible equations in
pressure coordinates (e.g., Vallis 2017).

a. Gradient wind balance in radiative—convective
equilibrium

By definition, latitude-by-latitude RCE requires
v=w =0, in which case combining the meridional mo-
mentum and hydrostatic balance equations [(1b) and
(1e)] leads to RCE zonal wind and potential temper-
atures (U and 0., respectively) in gradient wind
balance:

J stan a0
_( q) ufce +fu ) = —i — rce‘
azZ\ a ree ab, op

(2a)
Assuming drag in the boundary layer is large enough
that the surface zonal wind is negligible,' the integral of
(2a) from the surface to some height z yields

tang gz 00,
l&&ﬂ*ﬁ%w@)+a;j§?:0’
0

p (2b)

where 0 is the average of 6 between the surface and z.
Equation (2b) is a quadratic equation for u, that can
be solved directly. Choosing the positive root that
corresponds to u,.. =0 at the surface as required,
this is

! More formally, assuming lower boundary conditions of vd,u =
Cu and vd,v = Cv, where C is a constant drag coefficient; cf. (3)
of HH80.
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u ., = Qacosp

(3a)

Away from the equator, if awém =0, then u,. =0. At
the equator, if 9,6, =0, then lim,,_ oty is indetermi-
nate. L’Hopital’s rule then gives

o

~ gz 0970
=0,9,0 1- e _

(0 Va2, 09

rce ¢ rce

=0)=Qa

(3b)

Accordingly, any equatorial maximum in potential tem-
perature with nonzero second derivative generates equa-
torial westerlies.?

b. Hide’s theorem: Existing forms and synthesis

Provided v#0 and that the effect of transients is
negligible, in steady state the zonal momentum equation
[(1a)] may be written

v~VM=i<
d9z

%) , @)

v
0z

where M =acosp(Qacosp +u) is absolute angular
momentum per unit mass, and recall that all values are
steady-state averages. Equation (4) precludes isolated
extrema in M. Mathematically, at any such an extre-
mum, VM =0, so that the left-hand side of (4) must
vanish but not the right-hand side. Physically, viscous dif-
fusion that acts to flatten out the extremum would have to
be balanced by momentum flux convergence for a maxi-
mum (divergence for a minimum), which would require
time-mean mass convergence (divergence for a minimum),
violating conservation of mass (see appendix A of PH92
for a formal proof). Only at the surface, where frictional
stress can balance the diffusive term, can an extremum
occur. In particular, the extremal values of planetary an-
gular momentum (M = Qa’ at the equator and M = 0 at
either pole) must bound M at all latitudes.

2If the second derivative is also zero, zonal flow at the equator
will remain zero (as is the case for the AMC solutions described
below), but this is unlikely for the RCE state in the annual mean for
Earth-like orbits [as argued more formally by Schneider (2006)].
Flatter annual-mean profiles become more relevant for planets
with larger orbital obliquities (with the poles receiving more
annual-mean insolation than the equator for orbits with obliquities
=55°% e.g., Linsenmeier et al. 2015), although in those cases the
annual-mean Hadley cells are likely the small residual of very
strong, seasonally reversing cells that rarely approach cross-
equatorial symmetry.
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Early expressions of Hide’s theorem amount to the
application of this result to maxima in the angular mo-
mentum field of the hypothetical RCE state M;
namely, if M. >Qa’ away from the surface at any
latitude, a Hadley circulation must emerge (Hide 1969;
Schneider 1977). It follows from (3a) and (3b) that any
nonzero first or second meridional derivative in 6, at
the equator is supercritical. By the same arguments ap-
plied to an angular momentum minima, M. <0 is also
forbidden, but interestingly negative angular momen-
tum values are also forbidden for another reason: a real-
valued solution to (3a) does not exist if the quantity
within the square root operator is negative, and the

minimum real solution is u,.e = —a cose, which yields
M, = 0 at all latitudes (Fang and Tung 1996; Adam and
Paldor 2009).

Away from the equator, local absolute angular
momentum extrema are readily identified from the
absolute vorticity distribution. The meridional de-
rivative of absolute angular momentum is propor-
tional to the vertical component of absolute vorticity
. Specifically, 9,M = —(a* cosp)n, where n=f+¢,
with (= —(a cos<p)7la(,,(u cosgp) the relative vorticity
(n is referred to without confusion as absolute vorticity).
Accordingly, 7, =0 at any local extremum in M.
Because i = f in the absence of flow, this vorticity-based
sufficient condition for supercriticality may be com-
pactly expressed as f7,.. <0 (PH92; E95).

Figure 1 visualizes this f7,.. <0 condition by showing
the potential temperature, zonal wind, angular momen-
tum, and absolute vorticity fields corresponding to the
depth-averaged forcing of PH92 [their (9)], which
comprises uniform (9rce everywhere except for a local
maximum centered at 25°N dropping off as cos’>¢ in a
30°-wide region, for successively larger values of the
forcing maximum. With no maximum present (dashed
black curves), u,. =0 everywhere, and M, and 7,
take their planetary values. Introducing a weak forcing
maximum (blue curves) generates easterlies on the maxi-
mum’s equatorward side and westerlies on the poleward
side. The easterlies bend down, and the westerlies bend
up, the M, curve, but not enough to generate any extrema
in My 1, retains its original sign everywhere, and the
forcing is subcritical. Increasing the magnitude of the
forcing maximum causes the easterlies and westerlies to
intensify, eventually enough to generate 7, =0 at a
point slightly equatorward of ¢,, (gray curves). A forc-
ing maximum that is any stronger is supercritical (red
curves). The M, curve shows a minimum equatorward
and a maximum poleward of ¢,,, between which 7, has
changed sign.

E95 shows that the f7,.. < 0 condition also applies at the
tropopause in nonaxisymmetric and/or purely inviscid
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FIG. 1. RCE profiles corresponding to the forcing used by PH92
[their (9)], which comprises uniform 6, at all latitudes other than a
“bump” centered on 25°N (vertical gray dotted line) and 30° wide,
of (a) column-averaged potential temperature (K), (b) zonal wind
(ms™1), (c) absolute angular momentum normalized by the plan-
etary angular momentum at the equator, and (d) absolute vorticity
normalized by twice the planetary rotation rate, for different
magnitudes of the forcing maximum as indicated by the legend in
(a). The horizontal dotted gray line in (d) marks the zero line.
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atmospheres, the derivation of which is provided in
appendix A along with two additional physical
interpretations.

The fn,. <0 condition may be expressed in terms of
Oree as (cf. PH92)

. H o 3p 90
= 402a% cos’psing + 57 <COS ¢ m) NG))

C -
0, dp\ sing J¢p

PH92

Here, Cppg, > 0 corresponds to superecritical forcing in the
Northern Hemisphere and subcritical forcing in the South-
ern Hemisphere (signs that are the same as for 7, itself).
Note that this can be reexpressed in terms of the planetary
Burger number (gH/Q%a?) by dividing both sides by (Qa)”.

In summary, any latitude in an axisymmetric atmo-
sphere with nonzero free-tropospheric viscosity that sat-
isfies any of the following three conditions is supercritical:

1) M. > Qa? (global maximum in M)

2) M. <0 (global minimum in M. and complex-
valued uce)

3) fNe <O (local extrema in M, and unrealizable sign
change in 7,.)

And Hide’s theorem states that the existence of any su-
percritical latitude makes the RCE state physically im-
possible, meaning that a Hadley circulation must emerge.

c. Caveats

We are utilizing the thin-shell limit, wherein vertical
variations in the moment arm are taken as negligible
compared to meridional variations. This is appropriate
for terrestrial bodies but not the gas giants. See, for
example, O’Neill and Kaspi (2016) for consideration of
angular momentum dynamics in deep atmospheres.

Neglected in (4) is the divergence of eddy momentum
fluxes, V- M'v', where primes denote deviations from
the time mean and the overbar a temporal average. In
nonaxisymmetric atmospheres, zonally asymmetric eddies
can generate interior extrema in the angular momentum
field, the most notorious example being a westerly,
“superrotating” jet in the equatorial troposphere,
through a variety of mechanisms (e.g., Schneider and
Liu 2009; Caballero and Huber 2010; Mitchell and Vallis
2010; Wang and Mitchell 2014). In simulations of axi-
symmetric atmospheres (including those we present in
section 4), propagating symmetric instabilities are
ubiquitous (e.g., Satoh 1994) and can, in principle, effect
nontrivial momentum flux divergences.

Another striking example of the influence of eddy mo-
mentum flux divergences is the emergence of Hadley cells
in simulations with uniform insolation and other boundary
conditions, which by the axisymmetric arguments we
presented should have u,.. = 0 everywhere and thus no
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Hadley circulation; instead, transient eddies (both in
axisymmetric and zonally varying simulations) transport
momentum meridionally, necessitating compensating
Hadley cell angular momentum transports to attain a
balanced budget (e.g., Kirtman and Schneider 2000; Shi
and Bretherton 2014; Merlis et al. 2016).

We lack at present a satisfying explanation for the
coincidence of the M. <0 manifestation of Hide’s
theorem (which derives from the zonal momentum
equation) with the transition to nonreal values of the
gradient-balanced wind (which derives from the continu-
ity, hydrostatic, and meridional momentum equations). In
contrast, the u.. value corresponding to the M., = Qa’
condition does not coincide with any mathematically
unique property of ;.

3. Hadley cell extent and ascent branch location

Supposing that one or more of the conditions at Hide’s
theorem is met somewhere, over what latitudes does the
resulting overturning circulation extend, and where does
it ascend? This section considers a series of arguments
yielding progressively farther-poleward predictions: those
stemming directly from Hide’s theorem, from the AMC
model, and from the equal-area model. We consider each
for general Bce profiles and as applied to the canonical éme
profiles of LH8S,

GTZH“ =1+ % [1-3(sing —sing, )’],  (6)

where A, is an imposed fractional equator-to-pole
temperature contrast, and the forcing maximizes at the

latitude ¢,,. Using (6) in (3a), the corresponding .
fields are

urce,LH88 =Qa Coso |:\/1 +2R (1 - SSIIIT([;T) - 1:| 5 (7)

where

R= gHA,
0’a?
is the thermal Rossby number (Fang and Tung 1996;

Adam and Paldor 2009). For ¢,, = 0°, (6) and (7) reduce
to the original expressions of HHS0.

a. Constraints from Hide’s theorem

At the very least, the Hadley circulation must span all
latitudes satisfying one or more of the conditions of Hide’s
theorem. But this lower bound in not always especially
useful, for example, in the PH92 case. Compare Fig. 1,
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where forcing is supercritical only within ~18°-26°N,
whereas the corresponding PH92 simulation features a
Hadley circulation spanning ~25°S-30°N (cf. their Fig. 5a;
their forcing is slightly stronger, yielding a slightly larger
supercritical region of ~12°-29°N).

Under the HH80 forcing, neither the M, <0 nor
e <O criteria are met at any latitude. This is dem-
onstrated by the solid red curves in Fig. 2, which show
(Fig. 2a) e, (Fig. 2b) tiyee, (Fig. 2¢) My, and (Fig. 2d) m,,
for (6) with ¢,, = 0°, with Earth’s values of g, ), and a, H =
10km, and A;, = 1/3, yielding R =~ 0.15 [the other plotted
elements will be discussed further below]. The values of .
and M, are maximal at the equator and decrease mono-
tonically toward zero at either pole; the resulting meridional
shear makes fn,, more positive than it would be in a resting
atmosphere (shown as the pink dashed curve in Fig. 2d).?

For the LHS8S forcing, Fig. 3 repeats Fig. 2 but with
¢,, =6°. Westerlies are sufficiently strong from the
winter subtropics to the equator and in the ~10°-wide span
just poleward of ¢,, to generate M. > Qa® (unlike the
HHBSO0 case, this span is not identical to that from the AMC
criteria, as discussed below). Moving across the equator
toward the summer pole, a(ﬂéwe >0 causes U, to flip to
nonreal values, though only very near the equator. But the
meridional shear is sufficiently large poleward thereof to
generate an f),.. <0 region spanning another ~10°. These
spans are indicated by the three lowermost horizontal lines
at the top of Fig. 3a as indicated by the legend (likewise for
Fig. 2 but with the unsatisfied M, <0 and f7,.. <0 con-
ditions omitted). A formal treatment of the n = 0 transi-
tion under LHS8S forcing is provided in appendix B.

Figure 4 repeats Fig. 3a but with ¢,, = 23.5°. Now, the
M. = 0 transition in the summer hemisphere occurs at
18.0°, equatorward of ¢,. As ¢, is moved farther
poleward, 7,.. = 0 becomes increasingly equatorward of
¢,,; for example, for ¢,, = 30°, the n,.. = 0 point occurs
at ~20° (not shown).

b. Constraints from the AMC Hadley cell model

1) CONCEPTUAL BASIS FOR THE AMC HADLEY
CELL MODEL

The AMC model for the Hadley cells (HH80; LHSS)
assumes that ascent out of the boundary layer occurs

3This in fact holds for the more general forcing of
9rce/00 = ¢ + ¢, cos”" @, where ¢; and ¢, are constants and n =2 is a
positive integer [of which (6) with ¢,, =0° is a special case with
1 =1-=2A4/3, c;=Ay, and n=2]. Applying (5) to this yields
Cproz.comnp = —Sing cos> p[4Q%a® + n(n + 2)c,gH cos"2¢].  All of
the terms within the square brackets are positive, which combined
with the leading —sin¢ term corresponds to fn,.. =0 at all latitudes.
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FIG. 2. Values of (a) column-averaged potential temperature
(K), (b) zonal wind (ms™ "), (c) absolute angular momentum nor-
malized by Qa?, and (d) absolute vorticity normalized by 2(), each
corresponding to the RCE state (solid red), the AMC solution (solid
blue), the equal-area solution (dotted purple), and the planetary value
[dashed pink; (c) and (d) only], as a function of latitude (horizontal
axis, with sing spacing), where the RCE forcing is given by (6) with
¢,, = 0. Horizontal lines at the top of (a) signify Hadley cell extent
markers according to the legend in (a), with the three black dots
corresponding to the cell edges of the equal-area solution.
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FIG. 3. As in Fig. 2, but with the RCE forcing given by (6) with
¢,, = 6°, and (a) with two additional cell extent metrics, as noted in
the legend (neither was met at any latitude in the ¢,, = 0° case).
Note that, except for (d), the vertical axis spans differ from the
corresponding ones of Fig. 2.

at a single latitude ¢, where u~0 and hence
M(p = ¢,) = Qa? cos’p,. Because viscosity is weak in
the free troposphere, this angular momentum value
is then homogenized over the circulation’s whole
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The blue curves in Figs. 2b and 3b show u,y, for ¢, = 0°
and ¢, = 21.2°N, respectively (with ¢, determined using
the equal-area model as discussed below). For any ¢,,
U,me vanishes at ¢,, is mirror symmetric about the
equator, and increases monotonically toward either pole
from a minimum value at the equator, approaching +o
at the poles unless ¢, itself is one of the poles. For
@, 7 0°, Uy 1s also zero at — ¢, easterly between — g,
and ¢,, and westerly poleward thereof. Blue curves in
Figs. 2c, 2d, 3c, and 3d show that M is indeed constant
and thus n =0 when u = .

The troposphere-averaged potential temperature field
of the AMC circulation 6, is in gradient balance with
Uyme. The ¢, =0° case was solved by HH80 and was
generalized to ¢, # 0° by LHS88. The latter is

0(p)—6, _Q’a? (cos’o, — cos?p)’
6,  2gH

, )

b cos2¢
where 6, is the value of 6 at ¢,. Blue curves in Figs. 2a
and 3a show these for ¢, = 0° and ¢, =21.2° (with O,y
determined from the equal-area model). In both cases,
@, corresponds to a local thermal maximum, since then
u = 0 throughout the column as assumed in deriving t4,mc
and, in turn, (9). But importantly, it does not follow that
Pa= P
2) DIRECT u;ce VERSUS Uypme COMPARISON

The AMC model is made globally complete by
jumping at the Hadley circulation outer edges from the
AMC to the RCE profile. This is shown in the dotted
purple curves of Figs. 2 and 3 (again with the cell edge
latitudes determined using the equal-area model). The
jump from tsmc to Uy at the cell outer edges must occur
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where e = Uamc, as a cell terminating where u;ce > tyme
would yield an isolated local maximum in M, at the cell
edge, thereby still violating Hide’s theorem—that is, if in
Fig. 2c or Fig. 3c the jump from the AMC to RCE curves
was upward. It follows that the span between the two
Urce = Uame points farthest from each other constitutes a
lower bound on the circulation extent (HHS80).

For ¢,=0° equating (7) with (8) yields ¢*=
arccos[(1 +2R) "], where ¢* is the cell edge, or
equivalently ¢* = arctan([(1 +2R)"* —1]"?) as ex-
pressed by HHS80. For ¢, # 0°, uyme = 0 at both ¢, and
—¢@,. Provided érce decreases monotonically from the
equator to the winter pole (however modestly), then
Uree > 0 throughout the winter hemisphere. It follows
that u;ee > Uyme from the equator to some latitude pole-
ward of —¢,,. Even if the meridional slope of éme vanishes
in the winter hemisphere (as it does in the simulations we
present in section 4), then u,. =0, which is still more
westerly than the AMC easterlies spanning from the
equator to — @,. In short, an AMC cell must span at least as
far into the winter hemisphere as the summer hemisphere.

c¢. Equal-area solutions

Using the AMC model prognostically requires a the-
ory for ¢, given the RCE state. As noted above, it is not
generally the case that ¢, ~ ¢,,. Even for ¢,, = 0°, off-
equatorial, double ITCZs can emerge in numerical
simulations such that ¢, #0° (e.g., Satoh 1994).

The equal-area model (introduced by HHS80 for
¢, = ¢, = 0°and extended to ¢,, #0°, ¢, # 0° by LH88)
predicts ¢,, @)amc, and the circulation’s two poleward
edges via two assumptions regarding the thermody-
namic structure of the cells. First, column-averaged
potential temperature is continuous at each cell edge;
second, flow within each cell conserves energy. If Orce 18
symmetric about the equator and ¢, = 0°, the two cells
are mirror symmetric, yielding two equations to solve
for the two unknowns. See (8)—(11) of LHSS.

In the small-angle limit, the HH80 equal-area solution
terminates at ¢, = (5R/3)"?, a factor of (5/3')1/2 pole-
ward of where u;ce = Uame. Without the small-angle as-
sumption, an analytical solution is no longer attainable,
but the resulting expression [(17) of HH80] is readily
solvable numerically and always yields a cell terminating
poleward of the uce = Uam line.

Purple dotted curves in Figs. 2—4 show the equal-area
solutions for the given forcing. Also overlaid as gray
horizontal lines are the spans of the various extent
metrics—from the equal-area solution (with dots de-
noting the three cell edges), urce > Uame With the ¢, value
taken from the equal-area model, and the conditions of
Hide’s theorem. In the HHS80 case (Fig. 2), because
¢, = 0°, the M value being homogenized by uy, is the
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equatorial value, M = Qa?, such that the M., > Qa? and
Urce > Uame criteria are identical. The fn,. <0 and
M, <0 conditions are omitted, because they do not
occur at any latitude as described above.

In the LHS88 case with ¢,, =6° (Fig. 3), because
@,, 7 0°, Uy is no longer symmetric about the equator,
and now regions of M. <0 and f7,.. <0 emerge in the
summer hemisphere. In addition, ¢, # ¢,,, such that the
Uce > Uame and M > Qa? spans are no longer identical,
with the former yielding a larger minimum circulation
extent, and the value of M being homogenized depends
on the solution for ¢,. Notice that the equal-area ¢,
prediction is appreciably poleward of ¢,, and of the
Tyee = 0 transition.

For ¢, =23.5° (Fig. 4), the equal-area model
predicts a circulation spanning 61.7°S—-44.8°N—implau-
sibly large for Earth, despite all parameters taking
Earth-like values and ¢,, sitting far equatorward of
where it would for a true solstitial RCE solution, namely
at the summer pole. And as ¢,, is moved farther poleward,
the separation between ¢,, and the equal-area ¢, con-
tinues to grow. Although the equal-area solution never
truly becomes pole to pole at Earth’s rotation rate
(Guendelman and Kaspi 2018), these properties are clearly
inadequate for Earth’s solstitial Hadley circulation.

d. Caveats

Hide’s theorem holds for any nonzero viscosity, and in
atmospheres with sufficiently large v, the appropriate
model of the Hadley cells is the viscous, linear one
(Schneider and Lindzen 1977; Fang and Tung 1994). But
as a model for most terrestrial planets including Earth, the
nearly inviscid, angular momentum—conserving model is
more appropriate; see Fang and Tung (1994) for a formal
treatment of this regime separation based on the relative
values of the Ekman and Rossby numbers. And the non-
linear, nearly inviscid solution is not equal to the linear,
viscous solution in the limit as v — 0% (HHS80).

On Earth, baroclinic eddies modulate the Hadley
cells’ extent and overturning strength (e.g., Walker and
Schneider 2005; Korty and Schneider 2008; Levine and
Schneider 2015; Singh and Kuang 2016; Singh et al.
2017) and decelerate the zonal wind of the annual-mean
Hadley cells well below the AMC limit (Held and
Hoskins 1985; Walker and Schneider 2006). Neverthe-
less, large expanses of cross-equatorial, zonally confined
monsoons and zonal-mean Hadley cells during solstitial
seasons do approximately behave as in the AMC re-
gime, with local Rossby numbers Ro= —{/f~0.6
compared to Ro=1 for the true AMC solution and
Ro=0 for the purely eddy-dominated case (e.g.,
Schneider and Bordoni 2008; Bordoni and Schneider
2008, 2010). Accordingly, axisymmetric theory (in its
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modern ‘“‘convective quasi equilibrium” form appropri-
ate for moist, convecting atmospheres; cf. E95) remains
of value in—and is the dominant existing theoretical par-
adigm for—these contexts (e.g., Nie et al. 2010). The
importance of baroclinic eddies diminishes as either
planetary rotation rate or radius decrease, leading to a
“global tropics” regime once the Rossby radius of de-
formation exceeds the planetary scale (Williams and
Holloway 1982; Mitchell et al. 2006; Faulk et al. 2017). In
addition to the solar system’s slow rotators of Venus and
Titan, in all likelihood this characterizes many ‘‘habitable
zone” exoplanets identified already or likely to be identi-
fiable by existing and planned telescope missions, due to
orbital dynamical constraints (e.g., Showman et al. 2014).

Even in axisymmetric atmospheres, multiple pro-
cesses prevent the Hadley cells from ever actually
reaching the AMC limit, as has been noted by many
authors (e.g., HH80; LH8S8). Ascent always occurs over
some finite latitudinal width, leading to different
streamlines leaving the boundary layer with different M
values. Within the ascending branch, convective mo-
mentum mixing may be nonnegligible (Schneider and
Lindzen 1977; Schneider 1977), although typically weak
vertical shear there makes it not obviously a large term
(cf. Held and Hoskins 1985; Zheng 1998). Once beyond
the ascending branch, nonzero viscosity, however small,
then generates mixing across tightly packed horizontal
streamlines in the cell’s upper branch where d.u is large
and in the descending branch. Fang and Tung (1996)
derive an analytic ““viscous correction’ to their other-
wise inviscid solution that accounts for this, which acts to
smear out the otherwise step changes in temperature
and zonal velocity at their cell edges (see their Fig. 4).

Separately, motionless air advected into the upper
branch retards the upper-level flow, and this has been
compactly addressed in the “1.5-layer shallow-water
models of Shell and Held (2004) and Adam and Paldor
(2009). These yield an equinoctial Hadley cell with
nearly uniform height in the ascending branch con-
nected to an AMC subsiding branch, and arguably they
more accurately capture the momentum structure of the
HHS80 numerical solutions than does the standard AMC
solution. Moreover, the circulation in this 1.5-layer
model spans farther into the winter hemisphere than
the summer hemisphere (Adam and Paldor 2010), as in
the unmodified AMC model as described above.

4. Results from sub- and supercritically forced
simulations

We have argued that the span of supercritical forcing
is a lower bound on the cross-equatorial cell extent in the
summer hemisphere, and that cross-equatorial, AMC cells
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are bound to be relatively symmetric in extent about the
equator. This section presents evidence for those claims via
simulations in an idealized GCM in which 7, = 0 is made
to occur either near ¢,, or well equatorward thereof.

a. Description of the idealized dry GCM

We use the dry idealized GCM of Schneider (2004),
which solves the primitive equations on the sphere with
no topography using a spectral dynamical core.* All
parameters take Earth-like values except as otherwise
noted. The simulations are axisymmetric by way of exactly
axisymmetric initial conditions and boundary conditions.

Convective adjustment relaxes temperatures in stati-
cally unstable columns toward the dry adiabatic lapse rate,
I'y=gl/c,, as would hold in a state of dry RCE, over a
globally uniform 4-day time scale. Radiative transfer is
approximated by Newtonian cooling, wherein tempera-
tures are relaxed toward a prescribed field (described in
the next subsection) over a time scale that is 50 days
throughout the free troposphere and decreases linearly in
o from that value at the PBL top to 7 days at the surface.
The treatment of dissipative processes is standard, but
given the potential nuances relating to the nearly inviscid
assumptions, is described in full in appendix C.

b. Imposed RCE temperature profiles

The equilibrium temperature fields at the lowest
model level (which we refer to as the surface values) are
based on (9), modified as described below, with a dry
adiabatic lapse rate from the surface to a specified tro-
popause temperature. The atmosphere is isothermal
from the tropopause upward. The dry adiabatic strati-
fication, along with the dry adiabatic convective ad-
justment, ensures little distinction between the imposed
equilibrium temperatures and a true RCE solution. This
is confirmed via computing RCE solutions for a subset of
our cases by repeating them with all advective terms
suppressed (not shown); the temperature structure is
always almost exactly dry adiabatic from the surface to
the tropopause.

Because our model is not Boussinesq, rather than
using (9) we use the analogous expression derived by E95
appropriate for (dry or moist) atmospheres obeying con-
vective quasi equilibrium (CQE; Emanuel et al. 1994):

0*a?
ZCP(TS -T)

(cos’p, — cos’p)’

0,=0,,exp|— ,  (10)

cos2¢p

4 As noted by Adam and Paldor (2009), spectral solvers are not
ideal for cases such as the axisymmetric Hadley cells in which the
solutions are expected to have discontinuities.
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where 6, is boundary layer potential temperature (re-
placed in moist atmospheres by 6., the subcloud equiva-
lent potential temperature), 8,, is the value of 6, at ¢,, T
is the surface temperature, 7, is the temperature at the
tropopause, and Ty — T}, has been assumed constant. Al-
though (10) is an expression for the dynamically equili-
brated AMC state, here we use it (modified as described
below) as the RCE state toward which the model is being
relaxed. Therefore, in the context of these simulations
only, it should be interpreted as a forcing, with ¢, replaced
by ¢,,; the simulations will generate their own ¢, that in
general need not be the same as the imposed ¢,,,.

To generate cells that extend either to the vicinity of
¢,, or well equatorward thereof, we insert a multiplicative
factor « into the exponential, set to 0.5 or 2.0, respectively.
Temperatures are uniform beginning 10° past the forc-
ing maximum ¢,,, since otherwise except for ¢,, = 90°
the profile would drop toward absolute zero. To break
hemispheric symmetry, at 10°N we switch from the
original profile to its local tangent, following this to 10°S,
and then setting temperatures uniformly to their value at
10°S farther south.

c¢. Simulations performed

We perform one @ = 0.5 and one « =2.0 simulation
for each of ¢,, = 23.5° 45°, and 90° and for each of
Q=1XQg (1/2) X Qp, and (1/4) X Qg, where Q is
Earth’s rotation rate. Table 1 lists the forcing parame-
ters for each simulation, and Fig. 5 shows the imposed
equilibrium surface temperature profiles, as well as the
spans where the fmn,., <0, M. <0, and M. > Qa?
conditions for cell extent are met. The linear increase in
temperature spanning the equator in all cases ensures
M. > Qa? on the winter side of the equator and M., <0
on the summer side. In the a =2.0, ¢,, = 90° cases, the
M, <0 region extends all the way to the pole. In all
other cases, poleward of the M. <0 region there
exists a finite region where fn,. <0 in the summer
hemisphere. The combined range of these extent condi-
tions spans ~10°S-10°N in the a = 0.5 cases (i.e., those
latitudes with the linear temperature profile), compared to
©,, or somewhat poleward thereof in the & = 2.0 cases.

Parameter values were chosen on an ad hoc basis for
each (Q, ¢,,) pair in order to generate supercritical
forcing from the equator to ¢,, in the a =2.0 case with
the minimal meridional temperature variation possible,
and with surface temperatures near the equator ~300 K
in all cases (so that the tropospheric depth is similar
across simulations, at least away from ¢,,). For forcing
maxima well removed from the tropics at Earth’s rota-
tion rate, it is difficult to generate f1,.. < Onear ¢,, while
keeping a realistic tropopause depth. For this reason, the
tropopause is set to 100 K in our forcing profiles in some
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TABLE 1. Forcing parameters of each simulation performed.
From left to right, columns indicate the ratio of planetary rotation
rate to Earth’s rotation rate, where )y is Earth’s rotation rate
(s™Y); latitude of forcing maximum (°); value of « (dimensionless);
tropopause temperature (K); difference between the surface and
tropopause temperatures used in the expression to generate the
forcing (K); temperature at the forcing maximum (K); largest
fractional temperature variation (dimensionless); and diagnosed
thermal Rossby number (dimensionless). Parameter values were
chosen so that 6, ~ 300K at the equator in all cases.

Q/QE D o T, TS - T1 Tmax Ah R

1 235 05 200 100 303.1 0.01 0.01
2.0 310.9 0.07 0.05

45 05 100 250 317.5 0.07 0.08

2.0 371.6 027 0.32

9 05 400 344.1 0.15 0.67

2.0 512.2 0.28 1.25

12 235 05 200 100 30,1 6x107°  0.01
2.0 304.0 0.03 0.05

45 05 310.5 0.04 0.08

2.0 342.7 0.17 0.32

9 05 200 3212 0.07 0.28

2.0 392.1 031 1.16

174 235 05 200 100 3003 2x107° 001
2.0 301.0 6x107°  0.05

45 05 302.6 0.01 0.08

2.0 310.2 0.04 0.32

9 05 310.3 0.04 0.28

2.0 342.9 0.15 1.13

of the 1 X Qf cases, in which the forcing surface tem-
perature at the maximum can exceed 500 K. Under dry
adiabatic stratification, this yields an effective tropo-
pause height of ~40km. Stated another way, if we re-
quire that the tropospheric depth remains roughly
Earth-like, we are unable to violate Hide’s theorem near
¢,, at Earth’s rotation rate or faster for high-latitude ¢,,.
Table 1 also lists diagnosed values of A, computed as
the global maximum minus the global minimum of the
surface forcing temperature divided by its global mean,
and the corresponding diagnosed value of R. These were
diagnosed after the simulations were complete (i.e., they
were not tuned for), so it is interesting that the R values
are quite similar across ) values, particularly for & = 2.0.
For example, R =~ 0.1-1.2 in all three ¢,, =90°, « =2.0
cases. Also note that these R values are much less than
the critical values required for the f7,.. <0 condition to
be satisfied in the case of LH8S8 forcing shown in Fig. 6.
This is because the 7 distribution depends not just on the
total magnitude of meridional temperature variations
but on the shape of those variations—as discussed pre-
viously, the @rce profiles in Fig. 5 ““ramp up” with positive
meridional curvature from the equator nearly to ¢,,,
rather than the LH88 cases (Fig. 3a) in which the me-
ridional curvature is negative throughout the domain.
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FIG. 5. Equilibrium surface temperature distribution (K) that is relaxed toward in each simulation for (left to right) increasing forcing
maximum latitude ¢,,, (top to bottom) decreasing planetary rotation rate, and different values of « (thick blue for @ = 0.5, thick red for
a = 2.0). Horizontal lines at the top of each panel correspond to the extent metrics as indicated by the legend in (b), with blue shades for
the @ = 0.5 case and red shades for « = 2.0. Note different vertical axis spans in each panel.

All simulations are run for 1200 days starting from
an isothermal, resting state, with results presented as
averages over the last 1000 days. Though a statisti-
cally steady state is achieved throughout the domain
generally within 100 days, regular transient sym-
metric instabilities persist throughout the integra-
tion over much of the extent of the Hadley cells (not
shown). As one example, in the simulation at Earth’s
rotation rate with ¢,, = 45° and « = 2.0, equatorward-
propagating features are prominent from roughly 35°
to 10°S.

d. Results

Figure 6 shows the meridional overturning stream-
functions in each @ = 2.0 case, and Fig. 7 shows the same
for the a = 0.5 cases, with angular momentum contours,
the computed Hadley cell edge latitudes, and ¢,, over-
laid. The cell edges are computed using the standard
metric of where the streamfunction at the sigma level
of its maximum decreases to 10% of that maximum
(Walker and Schneider 2006), but weighted as in Singh
(2019) to account for the weakening influence on the

streamfunction of meridians converging toward the
pole. Symbolically,

N4

max

\P(goh’ Umax)
COS([)h

“cos (1)
where V¥ is the Eulerian-mean streamfunction, ¢, is the
cell edge, and W, is the streamfunction global maxi-
mum magnitude, which occurs at latitude ¢,,, and
sigma level o pax.

A few features are consistent across all simulations.
First, the nonzero forcing gradient spanning the equator
necessitates an overturning cell in all cases. Second, the
streamlines of those cells are nearly coincident in the
free troposphere with angular momentum contours. Third,
the Hadley circulations all comprise a single cross-
equatorial cell, with no discernible summer cell. And
fourth, the cross-equatorial cells extend to nearly the same
latitudes in the winter and summer hemispheres, typically
somewhat farther into the winter hemisphere.

Notable in the a = 2.0 cases are very strong equato-
rial jumps as described by Pauluis (2004), with some
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FIG. 6. Meridional overturning streamfunction (filled contours) and absolute angular momentum fields (gray contours) in the simu-
lations with & = 2.0 (see text for explanation of the experimental setup) with the forcing maximum at (left to right) 23.5°,45°, and 90°N, and
planetary rotation rates of (a)-(c) 1, (d)—(f) 1/2, and (g)—(i) 1/4 times Earth’s rotation rate. In each panel, the contour interval for the
streamfunction is 10% of the value at the cell center, labeled by the red star and adjacent value (X10°kgs '), with red shades denoting
positive values and blue shades negative values, and the contour interval for the angular momentum is 10% of the planetary angular
momentum at the equator. The red vertical lines denote the cross-equatorial Hadley cell’s edges in the winter (solid) and summer (dashed)
hemisphere, based on where the streamfunction reduces to 10% of its maximum at the same level. The purple solid line denotes the
effective ¢,, computed as described in the text. The blue dotted lines correspond to the location of the forcing maximum ¢,,. The dotted

horizontal line marks the planetary boundary layer top of o =0.7.

streamlines bending up out of the boundary layer
near =10° and rising by as much as ~0.4 in o. This
jumping does not appear to affect the features of our in-
terest; simulations in which the jump is suppressed via a
stronger cross-equatorial temperature gradient do not
differ qualitatively outside the deep tropics (not shown).
Also overlaid are the ranges where any of the
M. > Qa?, My <0, and fn,,. <0 conditions for cell
extent are met, and separately where the ue > tyme
condition is met. The value of ¢, used to compute ¢
is diagnosed from the minimum value of angular
momentum at the equator in the simulations My min-
Given that value, then ¢,~ arccos(y/Meqmin/2a?).
Roughly speaking, this amounts to finding the angular
momentum contour coincident with the circulation’s
topmost streamline at the equator and tracing it back
to the surface in the summer hemisphere (Singh 2019).
This value (shown as a vertical purple line) is generally

close to the edge diagnosed from the streamfunction and
for the o = 2.0 cases is near ¢,, also.

This rough coincidence of ¢, and ¢,, for @ = 2.0 leads
to a single, nearly pole-to-pole cell in the polar maximal
forcing cases. The biggest offsets of ¢, and the cell edge
from ¢,, occur in the ) =1 X Qf and ¢,, = 90°, for which
the computed cell edge metric sits at ~69°. However, the
streamfunction retains its sign all the way to the pole,
and the cell is nevertheless global in scale (zonal winds
near the equator approach 400ms ™' in the stratosphere
in this case; not shown). This is a remarkable contrast to
Earth’s present-day cross-equatorial Hadley cell, whose
summer hemisphere edge never extends beyond ~15°
in either hemisphere (based on the zero crossings of
the overturning streamfunction shown in Fig. 4 of
Adam et al. 2016).

For the o =0.5 cases, the cells typically terminate
well equatorward of the forcing maximum—in the most
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FIG. 7. As in Fig. 7, but for the & = 0.5 simulations.

extreme case, with ) = (1/2) X Qg and ¢,, = 90°, ¢, and
the cell edge are near 20°. The poleward extent of su-
percritical forcing is typically equatorward of the cell
edge and ¢, by =10°, but nevertheless across all @ = 0.5
simulations is a more accurate predictor of cell extent
thanis ¢,,.

Figure 8 shows 6,, which we diagnose as the value of
0 at 0 ~ 0.851in all cases. The a = 0.5 cell terminates near
where 9,0, ~ 0, but sits just poleward of an inflection
point rather than just equatorward of a maximum as
suggested by Privé and Plumb (2007). The flattening of
0, equatorward of the ascent branch can be interpreted
(cf. Schneider and Bordoni 2008) as caused by the
southerly flow in the cell’s lower branch advecting 6,
upgradient. This flattens 6, up to where the meridional
flow diminishes, at which point 6, begins increasing
sharply with latitude moving farther poleward. Con-
versely, with « = 2.0 temperatures are minimum near
the equator and increase moving into either hemisphere
as needed to generate the strong easterlies necessary for
the AMC cell.

Because we are not using the HH80 or LH8S forcing
profiles in these simulations, we cannot explicitly com-
pare to the equal-area model predictions. But Fig. 8
shows that equal-area-like behavior is occurring (cf. the

thick dark lines to the corresponding thin pale lines, the
latter being 6y..). The dynamically equilibrated 6 fields
intersect the 6, fields at low latitudes where the former
are flat and the latter are quite steep, in the winter
hemisphere from below, and in the summer hemisphere
from above, yielding areas between the two curves that,
at least by eye, roughly cancel. But importantly, in all
simulations ¢, < ¢,,, in contradiction to the equal-area
prediction. Comparison to the equal-area model is fur-
ther hindered by the fact that, especially for the global-
scale cells, the ascending branch is sufficiently wide that
the AMC assumption of a single M value throughout
the cell becomes problematic.

5. Summary

We have presented theoretical arguments and nu-
merical modeling results pertaining to the extent of the
cross-equatorial Hadley cell under solstitial forcing,
utilizing steady, dry, axisymmetric, nearly inviscid the-
ory. By Hide’s theorem, a state of latitude-by-latitude
radiative—convective equilibrium (RCE) is impossible if
its distribution of absolute angular momentum M,
exhibits any local extrema away from the surface, which
occurs if My <0 or M., > Qa? at any latitude or if the
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FIG. 8. Potential temperature (thick solid curves; K) at the o~ 0.85 level in the « = 0.5 (blue) and @ = 2.0 (red) cases and the corre-
sponding forcing values (thin solid curves), with panels oriented as in Fig. 5. As indicated by the legend in (c), vertical dotted lines are the
effective ascent latitude for & = 0.5 (blue) and a = 2.0 (red) and the forcing maximum latitude (gray). Note different vertical axis spans in

each panel.

corresponding absolute vorticity 7, exhibits fr,.. <0
at any latitude. A more general form of the fn, ., <0
condition holds even in zonally varying and/or purely
inviscid atmospheres (E95; see our appendix A), and a
Hadley circulation must span all latitudes that meet one
of these conditions. But in the winter hemisphere, typ-
ically only the M,.. > Qa? condition is met, and only very
near the equator, making Hide’s theorem by itself a poor
predictor of how far a cross-equatorial cell will extend
into the winter hemisphere.

The angular momentum-—conserving (AMC) Hadley
cell models yield cells that must span all latitudes where
the RCE zonal wind u,.. exceeds the AMC zonal wind
Uame. ThiS Uree > Uame lower bound on the circulation
extent provides a simple heuristic argument for why
cross-equatorial cells typically extend at least as far into
the winter hemisphere as into the summer hemisphere in
axisymmetric atmospheres. However, using the AMC
model prognostically requires a prediction for the lati-
tude at which ascent is concentrated ¢, and thus where
the planetary angular momentum value gets imparted to
the free troposphere.

The equal-area model combines the AMC assump-
tions with assumptions of energy conservation by the
cells and continuity of potential temperature at their
edges and generate predictions given the RCE state for
the edges of each overturning cell, unlike the u;cc > tame
condition that sets a lower bound for the extent across
all cells. However, it can be solved analytically only in
the on-equatorial forcing, small-angle case. Much more
problematic, as the latitude where the forcing maximizes
¢,, 1s moved poleward, the predicted Hadley circulation
extent becomes implausibly large for Earth, even when
all parameters are Earth-like.

Simulations in an idealized, dry GCM in which tem-
peratures are relaxed at each time step toward a speci-
fied RCE field that is either subcritical or supercritical in
the summer hemisphere up to a specified ¢,, show the
utility of Hide’s theorem. When the forcing is subcritical
outside the deep tropics, Hadley cells terminate typi-
cally within ~25° of the equator and often well equa-
torward of ¢,,, in which cases the cell edge sits slightly
poleward of an inflection point between flat tempera-
tures equatorward and sharply increasing temperatures
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poleward. Conversely, when the forcing is supercriti-
cal from the equator to ¢,,, the cells extend always into
the direct vicinity of ¢,,, yielding under polar maximal
forcing a single, global-scale (though not quite pole
to pole) cell even at Earth’s rotation rate. In all cases,
the cells span roughly as far into either hemisphere,
in reasonable agreement with the u;cc > tyme condition
given values of ¢, and u,y fields diagnosed from the
simulation output.

6. Discussion

How relevant are these results based on dry models to
moist atmospheres? Insofar as convective quasi equi-
librium holds, (10) is valid in moist atmospheres. But, as
noted by E95, the irreversible fallout of precipitation in
convecting towers creates an asymmetry between the
ascending and descending branches of the circulation;
the dry adiabatic lapse rate in the dry, descending
branch due to radiative cooling—generated descent
generates a stable cap over the underlying boundary
layer, such that the free troposphere and boundary layer
quantities decouple (Zheng 1998). This cannot be ad-
dressed simply via a change of variables, and (10) can
only hold for those columns wherein such decoupling
does not occur.

Recently, Singh (2019) has presented a diagnostic
relating the cross-equatorial cell edge to the condition
of neutrality to slantwise convection (cf. Emanuel 1986)
that is quantitatively accurate across simulations with
differing planetary rotation rates. And Colyer and Vallis
(2018) have analyzed the scalings that emerge when the
opposite assumptions as usual in the AMC model are
made regarding continuity at the cell edge (i.e., that
wind is continuous while temperature is discontinuous);
they find this new variant to be preferable in some ways
for large-R cases with planetary-scale cells.

Under purely adiabatic stratification as in the RCE
state, the cells would transport no heat as they overturn,
implying that the cells always generate their own posi-
tive static stability via some mechanism. Caballero et al.
(2008) cites two mechanisms: first, penetration of the
cells into the positively stratified stratosphere and, sec-
ond, horizontal homogenization of the upper-branch
temperature, which is equal to the surface temperature
value within the ascending branch. Another theory that
seems worth pursuing is that presented by Emanuel and
Rotunno (2011) for tropical cyclones: as tightly packed
streamlines in the eyewall tilt from vertical to horizon-
tal, small-scale turbulence sets in until enough static
stability has been generated to relax the Richardson
number to some critical value. This same mechanism
could apply to, and the corresponding formalism of

HILL ET AL.

1561

Emanuel and Rotunno (2011) adapted for, axisymmet-
ric Hadley cells. In addition to its influence on the static
stability, this could potentially form a minimal theoret-
ical model for the angular momentum mixing across
upper-branch streamlines noted by many authors (e.g.,
HHBS80; LH88; Adam and Paldor 2009).

In our simulations, the Hadley cells roughly conserve
angular momentum in the sense that individual stream-
lines are nearly parallel with individual angular mo-
mentum contours in the free troposphere. But the true
theoretical AMC circulation has a single value of M,
namely the planetary value at ¢,, whereas the simulated
cells feature steadily decreasing M values moving pole-
ward. Undoubtedly this nonuniformity relates to the finite
width of the simulated ascending branch and resulting
turbulent momentum mixing, as well as to momentum
advection within the ascent branch. It could be useful to
use an alternative 6 profile that gives rise to such behavior,
such as the solution from the “1.5”-layer model of Adam
and Paldor (2010), and use it in the place of the true fp.
field in the equal-area model.
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APPENDIX A

Derivation of Hide’s Theorem in Zonally
Varying Atmospheres

Consider the vorticity equation

%_ 4. O
E— u VhOC‘i‘g) Waz

+k- (‘l“xvhw) -D,
0z

f+oV,-u
(A1)

where u = (u, v), V, is the horizontal divergence oper-
ator, D is a damping term whose functional form is ir-
relevant insofar as it vanishes when ¢ vanishes (as it
should), and in zonally varying atmospheres a +d,v term
is added to {. Suppose there exists some level at which
vertical velocity vanishes at all latitudes and longitudes
[the tropopause being a plausible candidate, insofar as it

Unauthenticated | Downloaded 08/01/22 05:16 PM UTC



1562

occurs at a fixed level in RCE as argued by Caballero
et al. (2008)]. At that level, all terms of (A1) featuring w
are zero, and the remaining terms on the right-hand side
also vanish if n=f+ ¢ =0. In that case, 9,n=09,{ =0,
and n = 0 is a stationary point, making it impossible for
absolute vorticity to evolve in time from one sign to
another. Thus, given an initial resting state (or one with
sufficiently weak horizontal shears that n everywhere
takes the sign of f), a subsequent state with fn <0 is
impossible.

The fn <0 condition has two additional physical im-
plications. First, it marks the onset of symmetric in-
stability (Stevens 1983). Second, in a purely inviscid
atmosphere, it is impossible to change the sign of the Ertel
potential vorticity an - V6, where a is specific volume,
nis the absolute vorticity vector, and the V operator is
three-dimensional. Accordingly, absolute vorticity cannot
change signs (unless the flow was to generate unstable
stratification). Finally, note that the fn,,. <0 condition,
since it refers to the RCE state, is distinct from the argu-
ment by Tomas and Webster (1997) that inertial instability
controls the location of the ITCZ, since the latter refers to
the dynamically equilibrated state.

APPENDIX B

Derivation of 1 = 0 Location under LH88 Forcing

Equation (7) implies M. <0 where

2R . Sing

1+2R (B1)

sing,
The left-hand side of (B1) is at most unity, while the
right-hand side is <1 for 0 < ¢ < ¢,,, guaranteeing some
finite latitude range in the summer hemisphere for which
no RCE solution exists. For very large R, the left-hand
side approaches unity, such that the M,.. <0 constraint
is violated essentially all the way to ¢,,, and the circu-
lation is certain to extend at least to the vicinity of ¢,,.

For the fn,. <0 condition, the absolute vorticity field
corresponding to (7) is

sing,,
Mrce,LHSS — Q4 /1+2R( 1~ sing

2 Rsin
X |2sing — 2P ‘p;"in(p
SIEQ +2R<1 —,7'")
sing

(B2)

Evaluated at ¢,,, this becomes

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 76
_ 10 1
g o
T 81
S 74
E 6
=}
c 5_
3 44
o -
o 3-
£ 21
2 1
|_
0 10 20 30 40 50 60 70

FIG. B1. Values of ¢,, (horizontal axis) and thermal Rossby
number (vertical axis) for which the RCE absolute vorticity at ¢,,
corresponding to the LH88 forcing profile is zero. The solid black
curve is the full solution, and the dotted black curve is the small-
angle limit. Values above and to the left of the solid curve corre-
spond to fn,.. <0 at ¢,,, thereby ensuring a circulation that extends
to at least ¢,,.

R cos’o,,

nrce,LHSS(qD = q)m) = ZQ Sin(pm (1 - E Sil’lz(pm

). @

which shows that fn,..(¢ = @,,) <0 if tan?¢,, < R/2, or
®,, <VR/2 in the small-angle limit. For the original
LH88 case with ¢,, = 6°~0.1rad and R ~ 0.1, it follows
that v/R/2~ 0.2, and thus the f7,.. <0 condition is met
at ¢,,, as shown in Fig. 3. Figure B1 shows (B3) as a
function of ¢,,, both with and without the small-angle
approximation. As the forcing maximum moves
poleward, a larger R is required to ensure the circulation
extends at least to ¢,, (Guendelman and Kaspi 2018).

APPENDIX C

Dissipative Processes in the Idealized Dry GCM

The three dissipative processes are V® hyperdiffusion
to represent subgrid-scale dissipation, quadratic damp-
ing of winds within the planetary boundary layer to
represent surface drag, and vertical diffusion in the free
atmosphere to suppress symmetric instabilities that
otherwise cause the model to crash. The quadratic drag
formulation is du= --- —k(o)|uju, where u= (u, v) is
the horizontal wind vector, |u| = (1 +v*)""? is the hori-
zontal wind speed, and k(o) is the drag coefficient, which
takes its maximal value at the surface and decreases line-
arly in the model’s vertical sigma coordinate (o = p/p;,
where p; is the spatiotemporally varying surface pressure)
to a value of zero at o 0p, the prescribed boundary layer
top. The planetary boundary layer top is at 0.85 to 0.7 and
its drag coefficient is 5 X 10"°m~'. Free-atmospheric
viscosity is formulated as standard as vertical diffusion,
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such that g,u= --- + 9,(vd,u) for zonal and meridional
momentum and analogously for temperature with Prandtl
number unity. This is turned on only at model levels
above a fixed height of 2500m, a slightly different
boundary layer top criterion than the fixed sigma level
used by the boundary layer drag scheme.

Rather than the commonly used uniform v (e.g.,
HHS80; LH88; PH92; Bordoni and Schneider 2010), the
model uses a mixing-length formulation:

Ri \?|Au]
= 2. — —_—
v=1 (1 - ) A7

where /i is the mixing length (a global constant), Ri is
the bulk Richardson number, Rig; =0.25 is a critical
Richardson number above which free-atmospheric dif-
fusion does not occur, A denotes differences between
adjacent model levels, and |Au| = [(Au)* + (Av)*]"*. The
bulk Richardson number is defined conventionally:
Ri = gA0Az/(6|Au|*). Under this formulation, the diffu-
sivity increases with the vertical shear of the horizontal
wind speed and decreases with the static stability d,6.
We have experimented with a range of mixing length
values in a subset of the simulations in order to find the
lowest value in which the model integration runs suc-
cessfully; that value is 15 m in all simulations except the
most strongly forced simulation at Earth’s rotation rate,
which required a value of 30 m.
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