2900

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Predicting Throughput of Distributed
Stochastic Gradient Descent

Zhuojin Li*, Marco Paolieri*”, Leana Golubchik™, Sung-Han Lin, and Wumo Yan

Abstract—Training jobs of deep neural networks (DNNs) can be accelerated through distributed variants of stochastic gradient descent
(SGD), where multiple nodes process training examples and exchange updates. The total throughput of the nodes depends not only on
their computing power, but also on their networking speeds and coordination mechanism (synchronous or asynchronous, centralized or
decentralized), since communication bottlenecks and stragglers can result in sublinear scaling when additional nodes are provisioned. In
this paper, we propose two classes of performance models to predict throughput of distributed SGD: fine-grained models, representing
many elementary computation/communication operations and their dependencies; and coarse-grained models, where SGD steps at
each node are represented as a sequence of high-level phases without parallelism between computation and communication. Using a
PyTorch implementation, real-world DNN models and different cloud environments, our experimental evaluation illustrates that, while
fine-grained models are more accurate and can be easily adapted to new variants of distributed SGD, coarse-grained models can provide
similarly accurate predictions when augmented with ad hoc heuristics, and their parameters can be estimated with profiling information

that is easier to collect.

Index Terms—Distributed machine learning, stochastic gradient descent, performance prediction, scalability, PyTorch

1 INTRODUCTION

N recent years, deep learning [17] has achieved break-

through results in many domains, including computer
vision, speech recognition, and natural language process-
ing; notably, to improve accuracy on increasingly difficult
tasks, deep neural networks (DNNs) with more parameters
and with computationally expensive training have been
proposed [10], [12], [32], [33], [34]. At the same time, to
reduce training times, deep learning has embraced hard-
ware accelerators (including GPUs, FPGAs and ASICs [16])
to “scale up” and distributed training algorithms to “scale
out”. However, finding the best configuration (e.g., number
of workers) for scale-out usually requires exhaustively pro-
filing on the performance of every possible scenario, which
is extremely time-consuming and not scalable for a large
number of jobs.

One difficulty in estimating performance of distributed
machine learning is that each training algorithm and architec-
ture can exhibit distinct scalability. The prevalent approach
for distributed training is data-parallel stochastic gradient descent
(SGD), where multiple worker nodes train a local copy of the
same DNN model using different shards of data; model

e Zhuojin Li, Marco Paolieri, Leana Golubchik, and Wumo Yan are with
the University of Southern California, Department of Computer Science,
Los Angeles, CA 90089 USA. E-mail: {zhuojinl, paolieri, leana, wumoyan}
@usc.edu.

e Sung-Han Lin is with Meta, Menlo Park, CA 94025 USA.

E-mail: sunghanl@fb.com.

Manuscript received 23 Aug. 2021; revised 13 Nov. 2021; accepted 10 Feb. 2022.
Date of publication 16 Feb. 2022; date of current version 23 May 2022.

This work was supported in part by NSF under Grants CCF-1763747 and
CNS-1816887.

(Corresponding author: Zhuojin Li.)

Recommended for acceptance by A. |. Peria, M. Si and]. Zhai.

Digital Object Identifier no. 10.1109/TPDS.2022.3151739

updates are then shared between workers, using either a cen-
tralized or decentralized architecture, as illustrated in Fig. 1.
To coordinate workers, two main strategies exist: in Sync-
SGD, a worker can proceed to the next SGD step only after
all other workers have completed the current step and
exchanged model updates (i.e., workers start each step syn-
chronously, using up-to-date copies of the model); in Async-
SGD, workers can start local SGD steps independently of each
other, using copies of the DNN model where only some of the
updates have been applied. Async-SGD can achieve higher
job throughput (total examples processed, per second, by all
workers assigned to a training job) than Sync-SGD, because
workers are never idle while waiting for stragglers [5]; none-
theless, accuracy of trained DNN models is more reliable for
Sync-SGD, which is equivalent to single-worker training with
larger batch size [3], [9], [11].

Both Sync-SGD and Async-SGD can be implemented
using either a centralized or decentralized architecture [2]. A
popular centralized architecture is the parameter server archi-
tecture of Fig. 1a, where one or multiple parameter server
nodes hold the global version of the DNN model: before each
SGD step, workers pull the latest model parameters (down-
link phase), independently run SGD on a batch of training
examples (computation phase), and send gradients back to
the parameter server (uplink phase); then, the parameter
server updates the global model with the received gradients
(update phase). In contrast, decentralized architectures com-
monly use the ring network topology illustrated in Fig. 1b:
after an SGD step, workers perform an AllReduce operation
to exchange and aggregate their updates.

Fig. 2a shows the throughput measured for a training job
of the ResNet-152 image classification DNN [10], using
one parameter server and an increasing number of AWS
p3.2xlarge worker instances, each equipped with an Nvi-
dia V100 GPU and 10Gbps network. For both Sync-5GD and

1045-9219 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8308-0231
https://orcid.org/0000-0002-8308-0231
https://orcid.org/0000-0002-8308-0231
https://orcid.org/0000-0002-8308-0231
https://orcid.org/0000-0002-8308-0231
https://orcid.org/0000-0001-5110-203X
https://orcid.org/0000-0001-5110-203X
https://orcid.org/0000-0001-5110-203X
https://orcid.org/0000-0001-5110-203X
https://orcid.org/0000-0001-5110-203X
https://orcid.org/0000-0001-8353-5040
https://orcid.org/0000-0001-8353-5040
https://orcid.org/0000-0001-8353-5040
https://orcid.org/0000-0001-8353-5040
https://orcid.org/0000-0001-8353-5040
https://orcid.org/%200000-0002-4506-795X
https://orcid.org/%200000-0002-4506-795X
https://orcid.org/%200000-0002-4506-795X
https://orcid.org/%200000-0002-4506-795X
https://orcid.org/%200000-0002-4506-795X
mailto:zhuojinl@usc.edu
mailto:paolieri@usc.edu
mailto:leana@usc.edu
mailto:wumoyan@usc.edu
mailto:sunghanl@fb.com

LI ET AL.: PREDICTING THROUGHPUT OF DISTRIBUTED STOCHASTIC GRADIENT DESCENT

Parameter Server

TR
i \ / i
| Worker | -
i
(b) Decentralized
(Ring AllReduce)

g

Training Examples / s

(a) Centralized
(Parameter Server)

Fig. 1. Centralized and Decentralized Architectures.

160
140 —=— Sync-SGD 129 — Sync-SGD
2 —4— Async-SGD 101 —— Async-seD
8120 "
=
£
§ 100 £08
480 =
2 5
'% 60 K04
= 40
0.2
20
1.2 3 4 5 6 7 1. 2 3 4 5 6 7
Workers # Workers
(a) Throughput (b) Downlink Time

Fig. 2. Training ResNet-152 (batch size of 32 examples) on AWS
p3.2xlarge with PS architecture.

Async-SGD, throughput initially scales linearly but then starts
saturating at 5 workers (Sync-5GD) and 6 workers (Async-
SGD) due to a network bottleneck at the parameter server:
Fig. 2b shows that the average time to transmit the up-to-date
model (in each training step) increases with the number
of workers; as expected, Async-SGD can achieve higher thro-
ughput. In contrast, with the decentralized architecture of
Fig. 1b, workers using an AllReduce operation can balance
network traffic across links: Fig. 3a shows that the throughput
of decentralized Sync-SGD can scale linearly as the number of
worker nodes grows, since the transmission time of Ring All-
Reduce operations (i.e., the time to exchange data among all
workers) converges to a constant [24], as shown in Fig. 3b':
while introduced in [20], decentralized Async-SGD is not pre-
sented because most decentralized architectures use Sync-
SGD [4], [8], [13].

To predict scaling characteristics of distributed SGD, most
existing works [21], [26], [27], [37] propose coarse-grained ana-
lytical models, which partition each SGD step into a strict
sequence of communication and computation phases (downlink,
compute, uplink, update). In fact, machine learning frame-
works such as TensorFlow and PyTorch define communica-
tion and computation operations at a much lower level of
granularity, with dependencies that allow, once satisfied, to
overlap their execution. For example, Fig. 4a shows the trace of
an SGD step with overlaps between communication and
computation: the worker starts the feedforward phase of the
computation (red) as soon as it receives the first DNN layer
during the downlink operation from the parameter server
(yellow); similarly, as soon as the backward phase of the
computation (cyan) is completed for a DNN layer, its uplink
transmission to the parameter server (green) is initiated.
To capture parallelism within an SGD step, our preliminary

1. We observe higher-than-expected transmission time with 7 work-
ers, due to the significant influence from background traffic on the
cloud; this does not, however, substantially affect the job throughput.

2901

3001 —— Ring AllReduce 0.40{ —— Ring AllReduce

z
2 0.35

£
£ 0.30
<
2025
2
£0.20
100 8
ZSo1s
50 0.10

2 3 4 5 6 7 2 3 4 5 6 7
Workers # Workers

(a) Throughput (b) Transmission Time

Fig. 3. Training ResNet-152 (batch size of 32 examples) on AWS
p3.2xlarge with Ring AllReduce architecture.

—=— Measurement
5004 —— Ours (fine)
—&— Linetal
400 Cynthia
—4— Ours (coarse)

Downlink

Computation

Noow
S
3

Uplink

Training Examples / s

Update

0 50 100 150 200 250 300 1 2 3 4 5 6 7
Time (ms) # Workers

(a) Timeline of a Training Step (b) Comparison of Approaches

Fig. 4. Training ResNet-50 (batch size of 64 examples) on AWS
p3.2xlarge with Async-SGD.

work [19] proposes a fine-grained model where tensor opera-
tions are executed as soon as their dependencies are satisfied,
and the gradients of a tensor can be transmitted in parallel
with the computation of other tensors.

Fig. 4b compares our throughput predictions with exist-
ing approaches for a training job of ResNet-50 (batch size
64) on AWS p3.2xlarge. As illustrated, existing coarse-
grained models (yellow, purple) can noticeably mispredict
job throughput. Our fine-grained model of Async-SGD
introduced in [19] (red) analyzes dependencies between ten-
sor operations (i.e., GPU events such as computation and
data transmission) in the computation graph: profiling
traces collected on a single worker are then used for a dis-
crete-event simulation estimating throughput with multiple
workers. While more accurate than coarse-grained models,
this approach is computationally more expensive and
requires fine-grained profiling data, which can be difficult
to obtain with some ML frameworks (e.g., currently
TensorFlow v2.4 [1] and PyTorch v1.7 [23] provide no sup-
port for profiling distributed training) and may incur mea-
suring errors due to profiling overhead of GPUs and other
hardware accelerators.

To summarize, performance prediction on distributed
SGD is challenging, because a diversity of distributed
training scenarios (e.g., DNNs, hardware platforms, opti-
mized algorithm implementations) can exhibit distinct
scalability. Existing coarse-grained models ignore the par-
allelism within a training step, resulting in poor predic-
tions when communication and computation overlap; the
fine-grained model in our preliminary work [19] is compu-
tationally expensive and only targets a specific implemen-
tation in TensorFlow. A detailed review of related work is
given in Section 5.

In this paper, we conduct a comprehensive study on both
coarse-grained and fine-grained performance models for dis-
tributed SGD, and systematically evaluate their extendabil-
ity across a broad range of scenarios. Specifically, we make
the following contributions.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

2902

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

TABLE 1
Overview: Average (Maximum) Errors of Coarse-Grained and Fine-Grained Models on AWS GPU Clusters
Async-SGD Sync-SGD
Basic Overlap Heterogeneous Heterogeneous with overlap Basic Overlap Decentralized

Coarse 4.7% (11.1%) 4.7% (15.2%)
Fine 54% (15.0%) 4.4% (11.4%)

4.8% (16.0%)
3.5% (11.1%)

3.8% (11.4%)
3.0% (9.6%)

3.2% (10.0%) 4.1% (10.5%) 5.0% (11.6%)
52% (11.9%) 4.7% (10.2%) 2.5% (9.3%)

e We propose heuristics to address the loss of infor-
mation in our coarse-grained model of Async-SGD
[21] due to ignoring parallelism between computa-
tion and communication operations. Our improved
coarse-grained models (blue curve in Fig. 4b) produce
throughput predictions with accuracy similar to fine-
grained models, but they require only limited profiling
information and can be evaluated very quickly.

e We apply our fine-grained Async-SGD model of [19]
to the machine learning framework PyTorch. Our
evaluation shows that this fine-grained model can be
successfully adapted to different underlying com-
munication libraries (Gloo and NCCL), achieving
predictions with average errors from 2.8% to 5.8%.

e We propose new models, coarse-grained and fine-
grained, for Sync-SGD with centralized and decen-
tralized architectures. These models account for
stragglers due to the unequal split of network band-
width among workers, and they can predict job
throughput with average errors from 2.7% to 4.8%.

e We perform an extensive evaluation of coarse-
grained and fine-grained prediction models using a
PyTorch implementation of Sync-SGD and Async-
SGD, for several real-world DNNs, and on multiple
cloud environments (CloudLab [6] and AWS) with
heterogeneous computing units (Xeon E5-2630 CPUs,
Nvidia V100 GPUs, and Nvidia T4 GPUs). We high-
light the results for GPU clusters in Table 1 to illus-
trate that both approaches can achieve low errors in
throughput predictions, once they account for paral-
lelism between computation and communication.

2 ASYNCHRONOUS SGD

In this section, we present coarse-grained and fine-grained
models for Async-SGD with parameter server architecture.
In Async-SGD, each worker independently pulls the global
model from the parameter server, performs a local SGD
step, and pushes the resulting gradients of each DNN layer
back to the parameter server, where they are applied to the
global model. Workers compete for downlink and uplink
networking with the parameter server, through an inter-
mittent communication pattern: to predict network trans-
mission rates, our models estimate the mean number of
workers concurrently transmitting or receiving data from
the parameter server. In addition, we account for heteroge-
neous processing rates at the workers, which can be provi-
sioned independently and with different types of hardware
accelerators.

Notably, through a heuristic correction, our coarse-
grained model can also address distributed SGD implemen-
tations where fine-grained communication and computation

operations overlap; this occurs in several real-world imple-
mentations, where a worker can start the feedforward com-
putation of a DNN layer as soon as the downlink of that
layer and the feedforward of the previous layer have com-
pleted; similarly, a worker can start the uplink of the gra-
dients of a layer as soon as its backpropagation computation
has completed, as illustrated in Fig. 4a.

2.1 Coarse-Grained Model
In our coarse-grained model of Async-SGD with parameter
server architecture, each SGD step completed by a worker
includes a simple sequence of operations: downlink, compute,
uplink, update. While compute operations use local resources,
the rest of the operations use resources shared with other
workers. To model resource sharing, we adopt the queueing
model illustrated in Fig. 5, where each worker k € {1, ..., K}
has exactly one task circulating through the queueing stations:
after a local computation on a dedicated station (modeled as a
G/G />0 queue, since it serves at most one task), the task is
routed to the uplink, update, and downlink stations (modeled as
G/G/1 queues), which are shared with tasks of other workers.
While the scheduling model at the update station is always
processor sharing (PS, i.e., n tasks are served in parallel with
rate 1/n), we solve the model using either a First Come First
Serve (FCFS) or PS model at the downlink and uplink stations:
when network utilization is low, FCFS is an appropriate
model because transmissions of different workers tend to use
the links exclusively until completion (TCP congestion control
mechanisms favor the node that is already transmitting);
when network utilization is high, multiple workers share the
network long enough to reach similar bandwidth proportions,
and this is accurately modeled by a PS model.

The notation for our queueing model is summarized in

Table 2. Let 7, and 7" “** denote the mean response times

atstation! € {k, U, S, D} calculated with a PS or FCFS model,
respectively, for the task of worker k. For this queueing

model, the response times T,i’PS and T,i’FCFS can be obtained

G/G [
FCFS

G/G/l—{ s y:.\ G/G/l_{Fggs

Class 2
—

R
& Ss 4
Downlink ., —
Computation

G/G/1

Uplink

Update
Fig. 5. Queueing Model of Async-SGD.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: PREDICTING THROUGHPUT OF DISTRIBUTED STOCHASTIC GRADIENT DESCENT

TABLE 2
Notation

K Number of workers

Workers (task classes of queueing model)
Stations visited by class k:

kth worker node, uplink (U),

parameter server (S), downlink (D)

St Service time of class k at station [

= (ni,...,nK) Number of tasks, for each class

Ni(i7) Mean number of tasks of class k at station
X7 Mean throughput of class & at station /
T}(7) Mean response time of class k at station [
oL (1) Class k utilization at station [

recursively from the mean service times S| using exact or
approximate mean value analysis [28], [29], respectively. The
recursion is on the population vector 7 = (n4, ..., ng), where
ny € {0,1} is the population of each class k = 1,..., K

K
T () = St (1 +)N - 5k)) 1)
j=1

K
B} B
TEOS) = S+ Y S (N - a) -5 el - @) @
j=1

In these equations, ,02- and N J’ are the utilization and mean
number of tasks of worker j at station /, and €}, is a vector
with kth component equal to 1 and other components equal
to 0. The solution starts with n, = 1 for all k£ and evaluates
T,i‘PS(ﬁ) or T,i‘FCFS (70) for all @ € {0,1}"; at each step of the
recursion, N(77 — &) and p(7i — &) are evaluated through
the identities (from Little’s Law)

Ni(7) = X () Ty (77)
(@) = XL() 8|
using the mean throughput X (77) = ni/(3 e Th(77))- In

our queueing model, the transmission times 7% and 77
increase as the number of workers K in the system grows.

Finally, once we evaluate T}i’PS and Tli’FCFS in Egs. (1) and
(2), the throughput of a distributed SGD job using K workers
is given by

K
1
XFCFS(K) — i i ‘ (3)
; T+ TP 4 TP 4 TP
- 1
o= @
(K) ;ﬁ+ﬁm+ﬁm+ﬁm

where X™(K) and X" (K) are the job throughput calcu-
lated with a PS or FCFS model, respectively. Our PS and
FCFS models (for high and low network utilization, respec-
tively), are combined as

Kotk = { X270

When network utilization p""™ is less than the threshold pr,
the FCFS solution X"**(K) is used; when p"”*® is greater
than p;, the PS solution X™(K) is used.

if o < pr,
otherwise.

(5)

2903

2.1.1 Correction for Overlapping Operations

In many real-world implementations of Async-SGD, there
are fine-grained computation and communication opera-
tions, e.g., one operation for each DNN layer or for each
DNN tensor within a layer. These fine-grained operations
have dependencies on each other, but they can often be exe-
cuted in parallel, as illustrated by Fig. 4a: for example,
downlink and computation stages can overlap because the
feedforward computation of a DNN layer can start as soon
as its downlink and previous feedforward operations have
completed, while other downlink operations are still in
progress; similarly, the gradient uplink of a DNN layer can
start as soon as its backpropagation has completed, while
the backpropagation of other layers is still in progress.
These overlaps are more noticeable when many workers
share network resources to communicate with the parame-
ter server: in this case, workers transmit at reduced rates
and downlink/uplink operations take longer, so that an
increased fraction of the computation overlaps with com-
munication operations. When these overlaps are ignored,
job throughput can be severely mispredicted.

To account for overlaps between downlink and feedfor-
ward computation, and between backpropagation and
uplink, we propose a heuristic correction to our model: we
profile feedforward and backpropagation times S} and S7,
respectively; we solve our hybrid model in Eq. (5) to esti-
mate the response times of downlink and uplink queues
(TP and TY, respectively); then, we replace the computation
time S}" = S + SP in our model with

Sy = max (0, Sp —TP) + max (0, Sy = T"b) ©

and we solve our model again to evaluate job throughput.
This corrected model assumes that the entire downlink and
uplink operations (with durations 7}” and T}) overlap with
feedforward and backpropagation, respectively.

2.1.2 Profiling

In our preliminary work [21], the durations of downlink and
uplink operations were measured directly, by monitoring
network traffic in a profiling job with a single parameter
server and a single worker node; in turn, the duration of
computation and update operations were estimated as the
time between transmissions. However, these estimated can
be inaccurate due to overlaps in communication and com-
putation, and to intermittent gradient transmissions, as
illustrated in Fig. 4a.

To address this problem, we estimate the mean service
time of downlink and uplink stations (without contention
with other workers) as

M
where M is the size of the DNN model and B is the total net-
work bandwidth.

For the computation time S}", we separately profile the
feedforward SY and backpropagation SP times for each
type of worker k, to apply the correction of Eq. (6). Note
that our model allows workers with heterogeneous comput-
ing power, since we individually profile computation times

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

2904

for each type of worker node; instead, the downlink/uplink
times SP and SY, and the mean service time S; at the
parameter server, are the same for all workers (i.e., they are
independent of k).

2.2 Fine-Grained Model

Instead of modeling centralized Async-SGD as a sequence
of four phases, our fine-grained model represents an SGD
step as a directed acyclic graph where nodes denote the exe-
cution of communication or computation operations, and
directed edges are dependencies between operations. The
granularity of individual operations depends on the type of
profiling information: for example, using low-level GPU
profiling, computation operations correspond to the execu-
tion of GPU kernels (e.g., a GEMM function); if profiling col-
lects execution times for each DNN layer, a computation
operation represents the time for forward or backward
propagation of a layer. Similarly, communication operations
can represent individual tensors (weights during downlink
and gradients during uplink), or entire DNN layers.

This fine-grained model provides an abstraction for sim-
ulating SGD steps with multiple workers, by accounting for
reduced transmission rates due to the sharing of network
resources. We adopt a PS model to share network resources
among multiple workers: when n workers are sending or
receiving data from the parameter server, transmission
times recorded during single-worker profiling are multi-
plied by n.

Our earlier work [19] applied this approach to the distrib-
uted SGD implementation of TensorFlow 1.13, collecting
low-level GPU profiling information. In this paper, we adapt
the approach to predict throughput for the PyTorch frame-
work; since the current PyTorch (v1.7) does not support the
collection of profiling traces for distributed SGD, we built
our own profiler to record, for each DNN layer, the execution
times of communication and computation operations. Nota-
bly, our work shows that a fine-grained approach can be
applied to a broader class of machine learning frameworks,
including those without support for distributed profiling; in
addition, we confirm that profiling information collected for
each layer has sufficient granularity to characterize overlaps
between communication and computation, and that low-
level GPU profiling is not required.

2.2.1 Profiling

Using traces collected on a single worker, we profile two
types of operations: (1) computation operations, namely for-
ward or backward propagation of DNN layers at a worker,
or the aggregation of gradients at the parameter server;
(2) communication operations, which include transmission of
parameters (during downlink) or gradients (during uplink)
between the worker and the parameter server. For each pro-
filed operation op, we record:

e op.res € {DOWNLINK, WORKER, UPLINK, Ps}, the resource
used by op: DOWNLINK represents the network link
used to transmit the DNN parameters from the param-
eter server to workers; WORKER represents the compute
resources at workers, used for the forward or back-
ward propagation; UPLINK represents the network link

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

35
23
© 25
£

Transmission Ti
o s
o o o

o

Measurement

o

15 20 25 30 35 40

Data size (MB)

0 5 10

Fig. 6. Point-to-point transmission time for different data sizes on AWS
10Gbps network.

used to transmit the gradients from the workers to the
parameter server; ps represents resources at the
parameter server, used to update the global model
with the received gradients.

e For each communication operation op (i.e.,, when
op.res € {DOWNLINK, UPLINK}), we record the size of
the transmitted data as op.size.

e For each computation operation op (i.e., when
op.res € {WORKER, Ps}), we record the measured
duration as op.dur.

e For each operation op, we record the operations that
it depends on, as op.waiting_for, and the operations
that depend on op, as op.dependent_ops. For example,
the feedforward computation operation of a DNN
layer depends on: (1) the communication operation
transmitting that layer, and (2) the feedforward com-
putation operation of the previous layer.

The current PyTorch v1.7 supports point-to-point com-
munication through the Gloo backend [7]. We benchmarked
the performance of this backend on AWS EC2 instances
with 10Gbps networking; the results in Fig. 6 show that
transmission time is a linear function of data size, for a wide
range of input sizes. Therefore, in the following we use a
simple linear model (data size divided by network band-
width) to estimate transmission times.

2.2.2 Simulation Algorithm

We present a simulation algorithm (Algorithm 1) to gener-
ate N-step synthetic traces with W workers from the S-step
profiling trace collected using a single worker. For each
operation, op.remaining represents the remaining amount
of work to complete the operation: for communication oper-
ations, op.remaining is initialized as op.size/B; for computa-
tion operations, it is initialized as op.dur. For each worker
weW and resource r € {DOWNLINK, WORKER, UPLINK, PS},
we use a queue scheduler|w,] to store all operations ready
to run (i.e., without pending dependencies).) refers to the
queue of operations in progress: for each worker w and
resource 7, only one operation can be in () at a time. During
each iteration, we remove from () the operation op with
minimum remaining time (Line 11), subtract its remaining
time from other operations in @) (Line 15), and update the
dependencies of operations waiting for op (Line 18). Finally,
we add another operation to @ (Line 28), if the same worker
has other operations requesting the same resource and with-
out unsatisfied dependencies.

This algorithm supports heterogeneous compute nodes,
provided that we collect profiling traces on each type of com-
pute nodes to estimate op.dur. Overlaps of communication

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: PREDICTING THROUGHPUT OF DISTRIBUTED STOCHASTIC GRADIENT DESCENT 2905

Algorithm 1. Simulation

S

1
2
3
4.
5
6
7

TARTRANDOMSTEP(S, Q, w, active)

: step = SAMPLEWITHREPLACEMENT(.S)

for op in step.copy() // each step starts with downlinks
if op.res == DOWNLINK
scheduler[w, powNLINk].add (op)
// scheduler stores worker operations, which are ready to run
Q).add(scheduler[w, powNLINK].remove_op())

: active[powNLINK].append(w)

GENERATETRACE(S, W)

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:
40:

Q =10 // set of operations in progress
trace = TRACE() // empty simulated trace
active = {DOWNLINK : [], UPLINK : [|}
: forwin W // setup for each worker
completed_steps[w] =0
for r in {DOWNLINK, WORKER, UPLINK, PS }
scheduler[w, r] = Scheduler(r) // empty scheduler
STARTRANDOMSTEP(S, @, w,active) // first downlink
while Q # 0
sort () by x.remaining / SHARE(z.worker, z.res, active)
next = Q).remove_min()
w, 7 = next.worker, next.res
eta = next.remaining / SHARE(w, r, active)
trace.add(w, r, next, eta)
for operation z in Q // update remaining work
z.remaining -= eta x SHARE(z.worker, x.res, active)
/ / dependent ops can be assigned to scheduler if ready
for d in next.dependent_ops
d.waiting_for.remove(next)
if d.waiting_for == () // no other dependency
if scheduler[w, d.res] !=0 // w already using d.res
scheduler[w, d.res].add(d) // just queue d
else // start running operation d
scheduler[w, d.res].add(d)
active[d.res].append(w)// w becomes active
Q.add(scheduler[w, d.res].remove_op())
if scheduler[w, r]'=0 // w has more ops to run on r
Q.add(scheduler[w, r].remove_op())
else // no more operations of w to run on r
active[r].remove(w) // become inactive
if scheduler[w, il == 0; Vi // no more pending ops

completed_steps[w] +=1 // step is over
if completed_steps[w] < N
if MODE == ASYNC
STARTRANDOMSTEP(S, @, w,active)
else if MODE == syncand Q == ()
// start next step after all workers complete
for w" in W

STARTRANDOMSTEP(S, @, w’,active)
return trace

SHARE(W, 1, active) // fraction of r assigned to worker w

1:

2
3
4
5:
6
7
8
9

if r in {DOWNLINK, UPLINK }

if LINK_MODEL == FCFS

// the first worker obtains full bandwidth

if active[r].front() == w return 1 else return 0
else if LINK_MODEL == P§

return 1/active[r]length // equally sharing
else if LINK_MODEL == ALL_REDUCE

return 1 // full bandwidth

: elsereturn 1 // processing is independent for each worker

Downlink i Forward Backward Uplink [Jll Update Idle

Worker 2 - |
Worker e .
[

Worker 0

| e e e e e e e IS B e e e e e e e
0 100 200 300 400 500

Time (ms)

Fig. 7. Trace of Sync-SGD with 3 workers.

and computation are simulated by executing operations in
parallel once their dependencies are satisfied. For example,
forward propagation of a layer can start when the worker
has received its parameters (from a downlink operation) and
forward propagation of the previous layer has completed;
similarly, an uplink communication can start as soon as
backward propagation of a layer has completed.

3 SYNCHRONOUS SGD

In this section, we present coarse-grained and fine-grained
models for Sync-SGD, where all workers start each SGD step at
the same time, using an up-to-date copy of the DNN model.
When a parameter server architecture is used, the parameter
server transmits the current DNN model to the workers (in par-
allel) and waits to receive gradients; only after gradients from
all workers have been received and applied to the DNN model,
the parameter server starts the next SGD step. When a decen-
tralized architecture is used, workers compute gradients and
then exchange them with each other, usually through an AllRe-
duce operation on a ring topology (to reduce network traffic).
After each worker has received and applied updates from all
the other workers, it proceeds to the next SGD step.

A problem common to both of the above architectures is that
of straggler workers: an SGD step can take longer for a worker
due to the variability in the performance of computation and
communication resources. For example, heterogeneous work-
ers process training examples at different rates; or, in a parame-
ter server architecture, uplink and downlink operations can
receive varying and unequal shares of network bandwidth to
the parameter server. Fig. 7 illustrates this phenomenon with a
trace where the downlink operation starts at the same time for
all the workers, but terminates earlier for worker 1; similarly,
uplink phases of workers 0 and 2 start at a similar time, but the
uplink of worker 2 is faster, even though the same amount of
data is transmitted by each worker. As a consequence, workers
1 and 2 must wait for worker 0 before starting the next SGD
step. It is also worth noting that, similarly to Fig. 4a, downlink
and uplink operations of Sync-SGD can also overlap with the
forward and backward propagation, respectively. All of these
aspects are addressed by our models of Sync-SGD.

3.1 Coarse-Grained Model

We now describe the details of our coarse-grained analytical
model for Sync-SGD, under both centralized and decentral-
ized architectures. The notation for our coarse-grained
model is summarized in Table 3.

3.1.1 Parameter Server Architecture

In Sync-SGD, workers start each SGD step at the same time,
with the same sequence of downlink, compute, uplink, and

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

2906

TABLE 3
Notation
K Number of workers
M Model size
B Network Bandwidth
Tp Duration of Downlink phase
Ty Duration of Uplink phase
Tr Duration of Feed-forward
Tp Duration of Back-propagation
Tc Duration of Computation phase, including Tr and T
Ts Duration of Update phase on parameter server

model update phases. With a parameter server architecture,
as the number of workers increases, the duration of the
compute phase is the same, but downlink and uplink take
longer because more workers share the network resources
to/from the parameter server. Assuming a uniform split of
network resources (PS model), a simple model for the dura-
tion Tps of a Sync-SGD step with one parameter server and
K workers is then

Tps =Tp+To+ 1Ty +Ts
M

M
= (K~§) + (Tr +Tp) + (K-§> +Ts ()

where M is the model size, B is the total network bandwith
to/from the parameter server, and T, 15, Ts are the com-
putation times for the forward, backward, and model
update phases. With this model, illustrated in Fig. 8a, the
execution of each phase proceeds synchronously at the dif-
ferent workers.

In fact, in cloud environments with background traffic, net-
work bandwidth can be split unevenly among workers, and
this model can severely underestimate job throughput; this is
illustrated in Fig. 9a, where we compare the predictions of
this model (red line) with actual measurements (green line) in
a cluster of AWS p3. 2xlarge instances training ResNet-152.
Fig. 8b shows an extreme case of uneven sharing, where dif-
ferent workers have continuous access to the entire network
bandwidth for the duration of their transmissions (FCFS
model): the downlink phase “offsets” the execution of SGD
phases at the different workers, which can then transmit their
gradients at different times, without contention for net-
work resources. In this case, a model for the duration
Trers of a Sync-SGD step with one parameter server and
K workers is

M M
Trops = <K . E) + (TF + TB) + <§> +Ts. (8

This extreme case is also unlikely to happen in practice, and
leads to overestimating job throughput, as illustrated in
Fig. 9a (blue line). Instead, we find that a linear combination
of these models provides reliable estimates of job

[Jpownlink [E computation [[] Uplink [ll Update [] 1dle [Joowniink [F] computation [[] Uplink [ll Update [] Idle

S S E— Y S S E—

I S B | I I N
I S E— | I — —
(@) PS (b) FCFS

Fig. 8. Bandwidth sharing models in Sync-SGD.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

220
1201 —=— Measurement R —=— Measurement
» -4- PS a » 200 -a- Hybrid /—-/"
% 1004 -4 FCFs /,.—*‘ g 180 Hybrid (w/ heuristic) N
= —4- Hybrid T a 2 160 T
: A :
g 80 £ 140 o
2 - 2120 A,/
S § 100 “
= = /
40 807 4
60
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Workers # Workers

(a) Non-overlap (b) Overlap

Fig. 9. Training ResNet-152 (batch size of 32 examples) on AWS
p3.2x1large with centralized Sync-SGD.

throughput; in particular, we adopt a simple average

Tps + Trors
TH_Vhrid = w
KM (K + 1)M
= (25 (14T RSl il O 8
(B)-l-(p-l- B)-I-(2B)-l— s 9

Fig. 9a illustrates that this model (purple line) is very close
to the measured throughput (green line).

Finally, to account for the effects of overlapping commu-
nication and computation, we follow a similar approach to
Section 2.1.1, where a maximum overlap of communication
and computation is assumed; for Sync-SGD, from Eq. (9) we
obtain our final model for the duration of each SGD step

KM K+ 1M
Jovey _ maX(,TF> + max <(+7) , TB) + Ts

Hybrid B 2 B (1 0)

Fig. 9b shows that this modified model (yellow line)
achieves more accurate predictions than the basic model of
Eq. (9) (purple line) for Sync-SGD with overlapping com-
munication and computation.

3.1.2 Decentralized Architecture

For Ring AllReduce update operations over homogeneous
networks, communication time is estimated in [24] as 2(K —
1)T /K, where K is the number of participants and 7" repre-
sents the time required to transmit data between two workers.
The intuition behind the formula is that each Ring Allreduce
operation of data size M on K processors consists of (1) a
ReduceScatter operation, which requires each processor to
send data of size M /K for (K — 1) times, and (2) an AllGather
operation, which requires another transmissions of A//K data
for (K — 1) times on each processor. As the number of partici-
pants K increases, communication time approaches the upper
bound 27. We validate the performance of the Ring AllRe-
duce implementation using two different backends available
in PyTorchZ: Gloo [7] in our CPU cluster (Fig. 10a), and NCCL
[22] in our GPU cluster (Fig. 10b). In both cases, we find this
model to be an accurate estimate of transmission times.

Since workers exchange and combine gradients with an
AllReduce operation at the end of each training step, AllRe-
duce implements the uplink, update and downlink phases
in Sync-SGD with a decentralized architecture. A model of
the duration 7" of each SGD step is then

2. MPI [31] is another optional backend which requires rebuilding
PyTorch from source; here we choose Gloo and NCCL as they are rec-
ommended by the PyTorch documentation for communication between
CPUs and GPUs, respectively.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: PREDICTING THROUGHPUT OF DISTRIBUTED STOCHASTIC GRADIENT DESCENT

=== Upper Bound
601 ___ 6workers
600 504 --- 5Workers
z -~ 4 Workers
500 E 409 -~ 3workers
é ué 304 "7 2Workers
o 400 =
£ 20
300 s
10
—=— Measurement ﬁ:’:r"‘
200 —=— Theory 5 10 15 20 25 30 35
Data Size (MB)

2 3 4 5 6 7 8
Workers

(b) NCCL AllReduce for Dif-
(a) Gloo AllReduce for 40MB ferent Data Sizes on 10Gbps
Data on 1Gbps Network Network

Fig. 10. Performance of AllReduce with different backends.

T = (Tr +Tg) + 2(K — 1)M/(KB). (11)

3.2 Fine-Grained Model

We now extend our fine-grained model of Async-SGD to
Sync-SGD for both centralized and decentralized architec-
tures, by modifying the communication mechanism and
link sharing models.

3.2.1 Parameter Server Architecture

For the parameter server architecture, we include a synchroni-
zation barrier in the simulation (Line 36) to ensure that the next
step starts only when all pending operations of the current step
have completed (i.e., when () is empty). In addition, similarly
to Section 3.1.1, we repeat the simulation using two network
sharing models: PS, where all workers share the network band-
width equally (Line 5); and FCFS, where the next worker trans-
mission receives the entire bandwidth, until completion (Line
2). After running the simulation with both sharing models, we
use the average of their throughput estimates as our prediction.

3.2.2 Decentralized Architecture

In Sync-SGD with a decentralized architecture, all workers
exchange gradients at the end of each training step with a
Ring AllReduce operation. To predict throughput of this
architecture, we modify our fine-grained simulation of Sec-
tion 2.2: in addition to the synchronization barrier at Line 36,
we skip all downlink operations (using op.remaining equal
to 0) and replace the duration of each uplink operation with
that of an AllReduce operation with

. 2(K —1) op.size
op-remaining = ———= - —p—

where K is the number of workers and B is the network
bandwidth, which is entirely available to the worker
(Line 8) due to the ring topology.

4 RESULTS

In this section, we validate the accuracy of the Async-SGD
and Sync-SGD models described in Sections 2 and 3, respec-
tively, using our implementation of distributed SGD based
on PyTorch 1.7.

4.1 Experimental Setup

Table 4 summarizes our experimental setup: (1) CPU
cluster with CloudLab d430 instances, (2) GPU cluster
with AWS p3.2xlarge instances, (3) GPU cluster with
AWS g4dn.4xlarge instances, and (4) GPU cluster with

2907
TABLE 4
Experimental Setup
Cluster 1 Cluster 2 Cluster 3 Cluster 4
Type CPU-only single GPU single GPU multi-GPU
Node CloudLab AWS AWS AWS
d430 p3.2xlarge g4dn.4xlarge p3.16xlarge
Intel Xeon Intel Xeon custom Intel Intel Xeon
CPU E5-2630v3 E5-2686 v4 Cascade Lake E5-2686 v4
(8-core) (8 vCPUs) (16 vCPUs) (64 vCPUs)
GPU o NVIDIA NVIDIA Tesla 8x NVIDIA
Tesla V100 T4 Tesla V100
Network 1 Gbps 10 Gbps 10 Gbps 25Gbps?
300
g o ResNet-152

o EfficientNet-B5

o DenseNet-161
o Inception-v3 © ResNet-101
S 150
o GoogleNet ® ResNet-50

0 50 100 150 200 250
Size (MB)

Fig. 11. Performance benchmark of neural network models with batch
size 32 on Nvidia tesla V100 GPUs.

AWS p3.1l6xlarge instances. To validate our methods
across a variety of DNNs, we select neural networks from a
set of model families, including Inception networks [32],
[33], ResNets [10], DenseNets [12] and EfficientNets [34].
Fig. 11 reports the model sizes and computation times (in a
SGD step with batch size 32 on an Nvidia V100 GPU) of the
neural networks in our experiments. For each scenario of dis-
tributed SGD, we train these neural network models using
different batch sizes (indicated as L in Figs. 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, and 22) for 100 steps, and we measure job
throughput as the total number of examples per second
across all workers assigned to the training job.

For the fine-grained model, we collect layer-level traces
from 100 single-worker steps for each scenario (DNN
model, batch size, node instance), inserting timestamps
before and after the computation and transmission of every
layer to denote its operation and to track dependencies
between operations. In addition, we record the size of the
parameters in each neural network layer in order to evalu-
ate the communication time in the simulation (Section 2.2.1).
For the coarse-grained model, we measure the time of feed-
forward and backpropagation stages, and the size of entire
neural network models (Section 2.1.2).

4.2 Async-SGD
We now evaluate the prediction errors of our fine-grained
and coarse-grained models of Async-SGD in three scenarios:
homogeneous nodes without and with overlaps between
communication and computation operations, as well as het-
erogeneous nodes.

3. Bandwidth for single-flow traffic is limited to 10Gbps.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

£ so o Measuroment | £ 50

X
Training Examples /s
Training Examples /s

Fine
—+— Coarse (rybrid)

(] 7 T3 7

EN
Workers

(b) ResNet-50, L=16

]
Workers

(a) Inception-v3, L=16 (c) ResNet-101, L=16

L
#Workers.

(d) ResNet-152, L=16

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

ples /s

—— Measuromont

Training Examples / s

Training Examy

—— Fine
—+— Coarse (hybie)

7 7

N
Workers

(e) GoogleNet, L=8

Fig. 12. Async-SGD without Overlapping Communication and Computation on Homogeneous CPUs.

£

Training Exa
Training Examples /s

7 7

55 3 EO] I
Workers # Workers # Workers

(a) Inception-v3, L=16 (b) ResNet-50, L=32 (c) ResNet-101, L=32

iod s
#Workers

(d) ResNet-152, L=32

7

7 7

ENE] E
Workers #Workers

(f) EfficientNetB5, L=16 (g) DenseNet-161, L=16

N
Workers

(e) GoogleNet, L=16

Fig. 13. Async-SGD without Overlapping communication and computation on homogeneous GPUs.

g &
ples /s

Training Examples /s
Training Examples /s
Training Examy

50 (rybrd i houritc)
- Course (hyord)

- Coarss (nyorid)

k ENNE] 7 i 5 7 k EIR] 5 T 7 3
#Workers # Workers. # Workers

(a) Inception-v3, L=32 (b) ResNet-50, L=32 (c) ResNet-101, L=32

—— Measurement

- Coarse (ryoric)

3 a8
#Workers.

(d) ResNet-152, L=32

¥R 88

Training Examples /s
Training Examples /s

o (hybrid i bourisc)

-~ (rybidwi hourisc)
- Coarss (nybric)

rse (nyorid i
- Coarsa ryorc) - Coarse (rybic)

7 i E) 7 E P TN 7 7 I T]
#Workers. # Workers

(f) EfficientNetB5, L=32 (g) DenseNet-161, L=32

NG
Workers

(e) GoogleNet, L=16

Fig. 14. Async-SGD with overlapping communication and computation on homogeneous CPUs.

@30,

B

Exo
“;‘150

£

rybrc i heursic)
arso (i)

Training Examples /s

Training Examples / s

= 50

- Coarso hyoie)

5oy i
- Coarso (hybrc)

1600- 350
@ 1400

8 1200-
£
e
2

£ a0

5 (bt wi hourisic) i
= 20 - Coarse (ybrid) - Coarso (hybic) - Goarso rybrc)

T 7 T3 7 T 7 T3

N EDRI N
Workers # Workers # Workers

(a) Inception-v3, L=32 (b) ResNet-50, L=64 (c) ResNet-101, L=64

R
Workers

(d) ResNet-152, L=64

7 T3 7 Tz 5 i 3
#Workers

] N
Workers # Workers

(e) GoogleNet, L=32 (f) EfficientNetB5, L=32 (g) DenseNet-161, L=32

Fig. 15. Async-SGD with overlapping communication and computation on homogeneous GPUs.

4.2.1 Basic Model

First, we evaluate fine-grained and coarse-grained models of
Async-SGD without overlapping communication and com-
putation. Here, we set the threshold p; of our coarse-grained
model to 0.5 for the CloudLab CPU cluster and 0.6 for the
AWS GPU clusters. The selection of p; was carried out
through a one-time preliminary profiling. For each platform
(AWS and CloudLab), we ran a job with 1 to 7 workers to
select the value of py from {0.1,0.2,..., 1.0} with best predic-
tion accuracy on the preliminary profiling. Intuitively, we use
a larger p, for the GPU clusters on AWS because their back-
ground traffic can prevent the equal share of network band-
width (modeled by the PS discipline), while we find
networking to be more stable on CloudLab.

Fig. 12 depicts our predictions for Async-SGD on a CPU
cluster (i.e., CloudLab d430 instances), where the fine-
grained model achieves an average (maximum) error of
52% (10.8%), and the coarse-grained model achieves an
average (maximum) error of 3.9% (11.8%). In addition,
Fig. 13 shows the corresponding results on a GPU cluster
(i.e., AWS p3.2xlarge), where the average (maximum)
error is 5.4% (15.0%) for the fine-grained model and 4.7%
(11.1%) for the coarse-grained model.

In this scenario, both coarse-grained and fine-grained
models achieve similarly accurate predictions across all
neural networks and batch sizes on CPU and GPU plat-
forms. The worst case for the fine-grained model is in
Fig. 13e for 6 and 7 workers, where we observe that data

transmissions interleave with each other, while they overlap
in our simulations, increasing the contention for network
bandwidth and resulting in lower predicted throughput.
This discrepancy is due to small model size of GoogleNet,
which can be transmitted in just 17 ms using the AWS 10
Gbps network, a time interval too short for TCP/IP conges-
tion control to adjust bandwidth sharing among workers.

4.2.2 Overlapping Communication and Computation

Next, we validate fine-grained and coarse-grained models
of Async-SGD with overlapping communication and com-
putation, and highlight the importance of applying the pro-
posed heuristic in the case of the coarse-grained model. In
the CPU cluster experiment depicted in Fig. 14, the average
(maximum) error is 4.3% (11.9%) for the fine-grained model
and 4.0% (13.7%) for the coarse-grained model. In the GPU
cluster experiment depicted in Fig. 15, the average (maxi-
mum) error is 4.4% (11.4%) for the fine-grained model and
4.7% (15.2%) for the coarse-grained model.

Note that, when using the coarse-grained model without
the proposed heuristic (curve “Coarse (hybrid)” in Figs. 14 and
15), the average (maximum) error increases to 9.5% (24.6%) in
the CPU-based experiments and to 11.6% (21.4%) in the GPU-
based experiments. For most mispredictions, the model
underestimates throughput because, when the number of
workers increases, communication operations are longer and
overlap with a more significant portion of computations; since
the model assumes a sequential execution of these operations,
predicted throughput is lower than our measures in the real

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: PREDICTING THROUGHPUT OF DISTRIBUTED STOCHASTIC GRADIENT DESCENT

s
B0
s
S
275
€ s
g

T3 7 RS T 7 3

N EI N E
Workers # Workers # Workers #Workers.

(a) Inception-v3, L=16 (b) ResNet-50, L=32 (c) ResNet-101, L=32 (d) ResNet-152, L=32 (e) GoogleNet, L=16

Fig. 16. Async-SGD without overlapping communication and computation on heterogeneous GPUs.

w00
a0
400 @700 » "
5 350- " - 2 1200-
z Zeo g0 .
£ 300 %sm S0 £ 1000
oo § § § wo
& 20 g w0 @10 8 g0
2150 gwo £ 100 2
£ £ - £ £ 4o
& 10 Goare (o winoutsic | 8 oo Conrso i hurist) £ Couso (oprgwihaursic) | & Jsn—
g [Puptipe—— [DER S r— fa 2 Coare bt wihaursi o SIeT——
50- 4~ Coarse (hybrid) 100 -~ Coarse (hybrid) -~ Coarse (hybrid) = - rse (hybrid)
T3 7 T3 g T3 7 T3 T 7 7

NI EDNR N N EE]
Workers # Workers # Workers # Workers # Workers

(a) Inception-v3, L=32 (b) ResNet-50, L=64 (c) ResNet-101, L=64 (d) ResNet-152, L=64 (e) GoogleNet, L=32

Fig. 17. Async-SGD with overlapping communication and computation on heterogeneous GPUs.

(f) EfficientNetB5, L=32 (g) DenseNet-161, L=32

120 0 o 0
2 2w = | 2= = | — | 20
3 0 3 — 3 3 = 3
H H == fo s H guo
g w £ g £ om0
2w a 2. a o
;N 2 S 2 B0
£] o Wossuoment | £ 40 o Weasomont || £ o essoment | E o Vaasesrot
g . g % = Fne g . = Fie g o = Fne g = Fe
= = I Come e | " T ooty | " I Cometmiy | I oo ot

£

2

8

Training Examples / s

Training Examples /s

3

Tz 3 5 & 7 T 5 33 5§ 7 T : 3§ 5 & 7 T3 53 5 & 7 T : 3§ 5 & 7
Workers #Workers #Workers #Workers # Workers

(a) Inception-v3, L=16 (b) ResNet-50, L=32 (c) ResNet-101, L=32 (d) ResNet-152, L=32 (e) GoogleNet, L=16

Fig. 18. Centralized Sync-SGD without overlapping communication and computation on GPUs.

a0 . .
K g 3 P
fuo i, fu i
g g g oo
a0 g g g
e, E R R
g gn £
§ & g 5 200
£ 100 £ s £ (s g

(e

H]

g

Training Examples / s
B

[T S S R LA T N S S N [T S T R R LA T S S B I S T
Workers # Workers # Workers # Workers # Workers

(a) Inception-v3, L=32 (b) ResNet-50, L=64 (c) ResNet-101, L=64 (d) ResNet-152, L=64 (e) GoogleNet, L=32

Fig. 19. Centralized Sync-SGD with overlapping communication and computation on GPUs.

(f) EfficientNetB5, L=32 (g) DenseNet-161, L=32

3% 0 o »? W o2 -
K - 24 K 24 K LI
g® g5) g g g g
a. 330 a2 a 5 50- a -3
g £ g s g ge g1
L H g] g]]
x

D15 E ‘o1 En Ee ‘o1 91
2 215 2 2 2 2 2
0 £ — Hesssement | E 10 £ T | fw W | £ £
g g —— Fine g, g5 —— Fne g0 g g
s —+— Coarse (hybrid) 5 —&— Coarse (hybrid) —&— Coarse (hybrid) i

3 7 T3 T 3 7 T3 7 3 7

i3 8 i3 i3 L
#Workers #Workers. # Workers #Workers. # Workers

(a) Inception-v3, L=16 (b) ResNet-50, L=16 (c) ResNet-101, L=32 (d) ResNet-152, L=32 (e) GoogleNet, L=8

Fig. 20. Decentralized Sync-SGD with Gloo AllIReduce operations on CPUs.

(f) EfficientNetB5, L=16 (g) DenseNet-161, L=16

v v v v w 500 B
o 600 2200 | 2u 230 £ 0o K4 500
Fuo I] g] S0 P
E o Bsw £ 0 Eamo g% £ 30 §
]]] g g] £ 30
a0

‘g% 500 ‘g0 5% g0 ™ E)
£ g £ g £ 2 220
£ — boaswenont | € 200 — wosonan | E — Wessromon | £ 100 ~ wosonan | € o o |] omen

e & [y & e g e s ke o0 8 0

00 P
= —+— Coarse (hybrid) =100 —+— Coarse (hybrid) = —+— Coarse (hybrid) = —+— Coarse (hybrid) = —+— Coarse (hybrid) = =
3 T3 7 I S T I R 7 F I R S 7 I R S 7
#Workers #Workers #Workers #Workers #Workers

(a) Inception-v3, L=16 (b) ResNet-50, L=32 (c) ResNet-101, L=32 (d) ResNet-152, L=32 (e) GoogleNet, L=16

Fig. 21. Decentralized Sync-SGD with PyTorch DistributedDataParallel on GPUs.

(f) EfficientNetB5, L=32 (g) DenseNet-161, L=32

2 2 3500 24750 2 2
o 3000 @ @ @ 5 o0
£ oo o0 £mo g0 £ oo
E o & - E
& 5 2000 5 1000 o]]
2150 21500 2 750 21000 g
L —a— Coarse (hybrid) = s —s— Coarse (hybrid) = 250 —a— Coarse (hybrid) = —s— Coarse (hybrid) = 500
#GPUs #GPUs #GPUs #GPUs
(a) Inception-v3, L=128, (b) VGG-11, L=128, (c) Inception-v3, L=128, (d) VGG-11, L=128, (e) ResNet152, L=128, (f) VGG-19, L=128,

Centralized Async-SGD Centralized Async-SGD Centralized Sync-SGD Centralized Sync-SGD Decentralized Sync-SGD

Fig. 22. Multi-GPU Experiments on AWS p3.16xlarge.

Decentralized Sync-SGD

system. After applying Eq. (6), the coarse-grained model than the threshold p; = 0.6 for the AWS GPU cluster, so a
achieves similar accuracy to the fine-grained model. FCFS model is adopted. However, measurements show that

In contrast, the coarse-grained model shows lower accu- data transmissions partially overlap rather than interleave,
racy in Fig. 15c for 2 workers: in this case, the estimated net- and thus the network behaves more similarly to a PS disci-

work utilization " in our model is 0.53, which is lower pline in the real system.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

2910

4.2.3 Heterogeneous Nodes

We validate our models of Async-SGD on heterogeneous
compute nodes with AWS p3.2xlarge (V100 GPUs)
and g4dn.4xlarge (T4 GPUs) instances, where V100
achieves approximately twice the performance (in FLOPS) of
T4 [14], [15]. As shown in Fig. 16, without overlap between
communication and computation, the average (maximum)
error of the fine-grained model is 3.5% (11.1%) and that of the
coarse-grained model is 4.8% (16.0%). Also, as depicted in
Fig. 17, in the scenario with overlapping communication and
computation, the average (maximum) error is 3.0% (9.6%) for
the fine-grained model and 3.8% (11.4%) for the coarse-
grained model. As before, the coarse-grained model not
accounting for the overlap underestimates throughput, result-
ing in an average (maximum) error of 10.5% (23.0%). These
results indicate that our coarse-grained and fine-grained
models are both extendable to heterogeneous computing
environments and achieve similarly accurate predictions
across different neural network models.

In Fig. 16e, the coarse-grained model shows lower accu-
racy for 6 and 7 heterogeneous workers (11.0% and 16.1%
error). Similarly to the case of homogeneous workers
(Fig. 13e, 15.0% and 13.8% error for 6 and 7 workers, respec-
tively), we observed that data transmissions interleave in the
measurements, while our models incorrectly adopt the PS
model. We attribute these mispredictions to the short trans-
mission time of GoogleNet, which is not sufficient for the
TCP/IP congestion control to adjust bandwidth sharing
among workers. To motivate our interpretation, Fig. 16e
includes predictions of the coarse-grained model with FCFS
discipline (yellow), which achieves better accuracy.

4.3 Sync-SGD

We next evaluate the prediction errors of our fine-grained
and coarse-grained models of Sync-SGD on both centralized
and decentralized settings.

4.3.1 Centralized Setting

Figs. 18 and 19 depict predictions for centralized Sync-SGD on
AWS p3.2xlarge instances. Both models achieve similarly
accurate predictions: without overlapping communication and
computation, the average (maximum) error is 5.2% (11.9%) for
the fine-grained model and 3.2% (10.0%) for the coarse-grained
model. In the case of overlapping communication and computa-
tion, the average (maximum) error is 4.7% (10.2%) for the fine-
grained model and 4.1% (10.5%) for the coarse-grained model.
Moreover, our heuristic significantly improve predictions in the
case of overlaps, from an average (maximum) error of 18.3%
(28.2%) as depicted by the curve “Coarse (hybrid)” in Fig. 19.

4.3.2 Decentralized Setting

For the setting of decentralized Sync-SGD, we first evaluate our
implementation using the Gloo backend on the CPU cluster, as
shown in Fig. 20. Compared to the centralized setting where a
network bottleneck can occur at the parameter server, the
decentralized setting balances network traffic due to the AllRe-
duce collective operations. Thus, the throughput of decentral-
ized Sync-S5GD grows almost linearly as the number of worker
increases. In this case, the average (maximum) error of the fine-
grained model is 2.3% (8.8%) and that of the coarse-grained
model is 2.7% (12.8%).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

W Bandwidth 350
—e— Downlink Time

Downlink Time (ms)

o
S

Measured Available Bandwidth (Gbps)

1 3 5 7 9 1
Workers

Fig. 23. Available bandwidth and downlink time on AWS 25Gbps net-
work of the experiment in Fig. 22c.

Next, we evaluate the performance of the DistributedData-
Parallel [18] library of PyTorch v1.7 with the NCCL backend
on the GPU cluster, without overlapping communication and
computation. Results in Fig. 21 illustrate that the average
(maximum) prediction error of the fine-grained model is 2.5%
(9.3%) and that of the coarse-grained model is 5.0% (11.6%).
Both models achieve accurate throughput predictions across
all neural networks on the CPU and the GPU platforms.

4.4 Multi-GPU Experiments

We also evaluate the prediction error of our models on AWS
p3.1l6xlarge multi-GPU instances, which are configured
with 8 Nvidia Tesla V100 GPUs and 25 Gbps network. Fol-
lowing [8], after all GPUs on a machine complete a training
step, we first perform an AllReduce operation to aggregate
gradients across all GPUs on the machine; then one GPU on
the machine either pushes the aggregated gradients to the
parameter server (centralized setting) or performs another
AllReduce operation with other machines (decentralized
setting); later, the GPU receiving the updated model broad-
casts it to other GPUs on the same machine.

For the Parameter Server architecture, since AWS limits
the bandwidth of each flow to 10 Gbps on p3.1l6xlarge
instances, we observe that the downlink times of one and two
workers in Sync-SGD remain the same, because network
bandwidth is not fully utilized (Fig. 23); as we deploy more
than three workers, the downlink time increases because
multiple transmissions overlap, sharing the available band-
width of 25 Gbps. In Figs. 22a, 22b, 22¢, and 22d, our coarse-
grained models overestimate throughput by assuming that
the entire bandwidth of 25 Gbps is available to individual
flows (under either a PS or FCFS model); as a result, predic-
tion errors can be significant, with average (maximum) 19.3%
(65.7%) for Async-SGD and 13.6% (27.8%) for Sync-SGD.
However, inaccurate predictions in Fig. 22b occur only with a
small number of workers; in these cases, our traces show that
data transmissions almost interleave, but each transmission
uses only 10 Gbps (instead of the entire 25 Gbps assumed by
our model) due to the bandwidth limitation of single flows
on AWS. As the number of workers grows, prediction accu-
racy improves. In the case of fine-grained models, after we
modify the SHARE procedure of Algorithm 1 to limit the band-
width of individual transmission flows to 10 Gbps, we
achieve accurate predictions, with average (maximum) errors
1.8% (4.8%) for Async-SGD and 3.0% (7.4%) for Sync-SGD.
The results highlight that fine-grained models can be adapted
more easily to new networking platforms, by adjusting the
bandwidth assignment used in the simulation.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

LI ET AL.: PREDICTING THROUGHPUT OF DISTRIBUTED STOCHASTIC GRADIENT DESCENT

For decentralized Sync-SGD, since the NCCL backend can
open a number of sockets to fully utilize the network capac-
ity, both coarse-grained and fine-grained models obtain
good predictions in Figs. 22e and 22f, with average (maxi-
mum) errors of 1.9% (7.9%) and 1.7% (4.3%), respectively.

5 RELATED WORK

Several performance models of ML jobs exist in the literature.
Learning-based models like Optimus [26] and Ernest [36] pro-
pose blackbox models for performance prediction of large-scale
ML jobs. Their blackbox models substantially rely on historical
information of ML jobs to learn model parameters, and thus their
performance is significantly affected when training data is lim-
ited. In contrast, our approach only uses profiling information
from a single worker, and produces predictions for an arbitrary
number of workers. Moreover, learning-based models mainly
focus on a specific scenario (where their training data was col-
lected), without providing insights on how to adapt the model
when the system or coordination mechanism change (e.g., in the
case of overlapping communication and computation).

In addition to learning-based models, analytical models for
Sync-SGD have been proposed in the literature with different
levels of granularity. Coarse-grained analytical models of
Sync-SGD in Paleo [27] and [25] predict computation time
based on FLOP counts or instruction cycles of neural network
layers, respectively. Even when these analytical models accu-
rately describe specific algorithms for convolutional layers
(e.g., GEMM, FFT), they may not be applicable to new distrib-
uted SGD algorithms of the constantly evolving ML frame-
works. On the other hand, an accurate analytical model of the
computation time can be easily integrated into our coarse-
grained and fine-grained models, by replacing the profiled
computation time with the analytical estimate. In addition,
these coarse-grained models omit layer-level behavior, result-
ing in less accurate predictions in the case of overlapping com-
munication and computation.

Ref. [30] adopts comprehensive measurements on every
component of a Sync-SGD step, with the purpose of identi-
fying bottlenecks in an SGD step under various settings,
such as multiple ML frameworks and inter-node connec-
tions (e.g., TCP over InfiniBand or NCCL on GPUDirect).
Similarly to our fine-grained model, the authors compare
the communication time of every layer with the backward
computation time of the previous layer, to estimate the
overlap of communication and computation; however, they
measure the duration of every activity of the model, instead
of predicting job throughput with respect to the number of
workers, which is the focus of our work.

While the majority of analytical approaches focus on Sync-
SGD, modeling Async-SGD is more difficult because commu-
nication patterns between parameter servers and workers are
more complex and can change over time. Cynthia [37], the
closest work to our paper, discusses both Sync-SGD with
overlaps between communication and computation, and
Async-SGD without overlaps. However, for the estimation of
communication time, it assumes a PS model for Sync-SGD,
while we illustrate the necessity of combining FCFS and PS
disciplines in the case of unequal network bandwidth shares
in Section 3.1; furthermore, the assumption of constant com-
munication time for Async-SGD only works for lower

2911

network utilization, where transmissions by multiple workers
tend to completely interleave with each other (Section 2.1).
Fig. 4b compares Cynthia with our models for a training job
of ResNet-50 on AWS p3 . 2x1arge instances, where Cynthia
mispredicts throughput after network saturation.

Some works propose performance models for other commu-
nication mechanisms; for example, [35] studies the scalability of
machine learning algorithms based on MapReduce framework
Apache Spark. The authors present a coarse-grained model for
Sync-SGD with two communication protocols for gradient dis-
tribution and aggregation in Spark. Gradient distribution uses
a tree topology, where communication time is estimated from
the logarithm of the number of workers; gradient aggregation
is performed on a square root number of nodes at first, and
then extended to the remaining nodes. However, the proposed
models are restricted to MapReduce, which is rarely used for
DNN training. Notably, our models can be extended to MapRe-
duce computations by using a modified estimate of communi-
cation time.

6 CONCLUSION

We proposed both coarse-grained and fine-grained models to
predict the scaling characteristics of distributed SGD. Fine-
grained models can be adapted more easily to variants of
communication mechanisms used by workers to exchange
model updates, but they require ML framework profilers and
may incur profiling overhead when measuring low-level
GPU information. In contrast, parameters of coarse-grained
models can be obtained more easily through simple profiling,
but these models are less accurate in some scenarios due to
missing layer-level information.

We thoroughly validated our models in various scenarios
of distributed SGD, including synchronous and asynchro-
nous strategies, centralized and decentralized architectures,
overlapping communication and computation, unequal net-
work bandwidth distribution and heterogeneous platforms.
Experimental results highlight that our heuristics effectively
improve the accuracy of coarse-grained models in the case
of overlapping communication and computation, and that
both fine-grained and coarse-grained models can achieve
accurate predictions in all distributed SGD scenarios.

As future directions, we plan to extend our models to other
implementations of distributed SGD, using dedicated inter-
connect technologies such as GPUDirect and NVLink, as well
as other communication backends such as MPL. We also plan
to explore multi-NIC configurations to increase bandwidth
and improve scalability of centralized approaches.

Supplemental material available on Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2022.3151739.

REFERENCES

[1] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Oper. Syst. Des. Implementa-
tion, 2016, pp. 265-283.

[2] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distrib-
uted deep learning: An in-depth concurrency analysis,” ACM
Comput. Surv., vol. 52, no. 4, pp. 1-43, 2019.

[3] J. Chen, R. Monga, S. Bengio, and R. Jézefowicz, “Revisiting dis-
tributed synchronous SGD,” CoRR, vol. abs/1604.00981, 2016.

[4] M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, and D. Sreed-
har, “PowerAl DDL,” 2017, arXiv:1708.02188.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPDS.2022.3151739.
http://doi.ieeecomputersociety.org/10.1109/TPDS.2022.3151739.

2912

[5]
[6]
(7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74-80, 2013.

D. Duplyakin et al., “The design and operation of CloudLab,” in
Proc. Conf. USENIX Annu. Tech. Conf., 2019, pp. 1-14.

Gloo, Collective communications library, 2017. [Online]. Avail-
able: https://github.com/facebookincubator/gloo

P. Goyal et al., “Accurate, large minibatch SGD: Training imagenet
in 1 hour,” 2017, arXiv:1706.02677.

S. Hadjis, C. Zhang, I. Mitliagkas, and C. Ré, “Omnivore: An opti-
mizer for multi-device deep learning on CPUs and GPUs,” CoRR,
vol. abs/1606.04487, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

Q. Ho et al., “More effective distributed ML via a stale synchro-
nous parallel parameter server,” in Proc. 26th Int. Conf. Adv. Neural
Inf. Process. Syst., 2013, pp. 1223-1231.

G. Huang, Z. Liu, L. Van Der Maaten , and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 4700-4708.

X. Jia et al., “Highly scalable deep learning training system with
mixed-precision: Training imagenet in four minutes,” 2018,
arXiv:1807.11205.

Z. Jia, M. Maggioni,]. Smith, and D. P. Scarpazza, “Dissecting the NVi-
dia turing T4 GPU via microbenchmarking,” 2019, arXiv:1903.07486.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting
the NVIDIA volta GPU architecture via microbenchmarking,”
2018, arXiv:1804.06826.

N. P. Jouppi et al., “In-datacenter performance analysis of a tensor proc-
essing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit., 2017, pp. 1-12.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature,
vol. 521, no. 7553, pp. 436—444, 2015.

S. Li et al., “PyTorch distributed: Experiences on accelerating data
parallel training,” 2020, arXiv:2006.15704.

Z.Li, W. Yan, M. Paolieri, and L. Golubchik, “Throughput predic-
tion of asynchronous SGD in TensorFlow,” in Proc. ACM/SPEC
Int. Conf. Perform. Eng., 2020, pp. 76-87.

X. Lian, W. Zhang, C. Zhang, and]. Liu, “Asynchronous decen-
tralized parallel stochastic gradient descent,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 3043-3052.

S.-H. Lin, M. Paolieri, C.-F. Chou, and L. Golubchik, “A model-
based approach to streamlining distributed training for asynchro-
nous SGD,” in Proc. IEEE 26th Int. Symp. Model. Anal. Simul. Com-
put. Telecommun. Syst., 2018, pp. 306-318.

NCCL, Nvidia collective communication library. 2016, [Online].
Available: https://developer.nvidia.com/nccl.

A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” 2019, arXiv:1912.01703.

P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algo-
rithms for clusters of workstations,” . Parallel Distrib, Comput.,
vol. 69, no. 2, pp. 117-124, 2009.

Z. Pei, C. Li, X. Qin, X. Chen, and G. Wei, “Iteration time predic-
tion for CNN in multi-GPU platform: Modeling and analysis,”
IEEE Access, vol. 7, pp. 64788-64797, 2019.

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An effi-
cient dynamic resource scheduler for deep learning clusters,” in
Proc. 13th EuroSys Conf., 2018, pp. 3:1-3:14.

H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance
model for deep neural networks,” in Proc. 5th Int. Conf. Learn.
Representations, 2017. [Online]. Available: https://openreview.
net/forum?id=SyVV]85lg

M. Reiser, “A queueing network analysis of computer commu-
nication networks with window flow control,” IEEE Trans.
Commun., vol. 27, no. 8, pp. 1199-1209, Aug. 1979.

M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed
multichain queuing networks,” J. ACM, vol. 27, no. 2, pp. 313-322,
1980.

S. Shi, Q. Wang, and X. Chu, “Performance modeling and evalua-
tion of distributed deep learning frameworks on GPUs,” in Proc.
IEEE 16th Int. Conf. Dependable, Autonomic Secure Comput., 16th Int.
Conf. Pervasive Intell. Comput., 4th Int. Conf. Big Data Intell. Comput.
Cyber Sci. Technol. Congr., 2018, pp. 949-957.

M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and D.
Walker, MPI-the Complete Reference, Cambridge, MA, USA: MIT
press, 1998.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

[33]

[34]

[35]

[36]

[371]

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2818-2826.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105-6114.

A. Ulanov, A. Simanovsky, and M. Marwah, “Modeling scalabil-
ity of distributed machine learning,” in Proc. IEEE 33rd Int. Conf.
Data Eng., 2017, pp. 1249-1254.

S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced
analytics,” in Proc. 13th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2016, pp. 363-378.

H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, “Cynthia: Cost-effi-
cient cloud resource provisioning for predictable distributed deep
neural network training,” in Proc. 48th Int. Conf. Parallel Process.,
2019, pp. 86:1-86:11.

Zhuojin Li received the BS degree in computer
science from Peking University, China, in 2018,
and the MS degree in computer engineering in
2002 from the University of Southern California,
Los Angeles, USA, where he is currently working
toward the PhD degree. His research interests
include performance evaluation and modeling of
large-scale machine learning systems.

Marco Paolieri received the MS degree in com-
puter engineering and the PhD degree in com-
puter science, systems, and telecommunications
from the University of Florence, ltaly, in 2011 and
2015, respectively. He is currently a senior resea-
rch associate with the University of Southern
California, Los Angeles, USA. His research inter-
ests include stochastic modeling and quantitative
evaluation of performance and reliability in con-
current and distributed systems.

Leana Golubchik is currently a stephen and etta
varra professor of computer science and ECE sys-
tems with the University of Southern California, Los
Angeles, CA. Prior to that, she was with the University
of Maryland and Columbia University. Her research
interests include the design and evaluation of large
scale distributed systems, including hybrid clouds
and their applications in data analytics, QoS-based
design of P2P and multimedia systems, and reliability
of software architectures. She is a past chair of ACM
SIGMETRICS and a member of the IFIP WG 7.3.

Sung-Han Lin received the PhD degree from the
University of Southern California, Los Angeles, CA,
in 2017. From October 2017 to January 2021, he
was a performance analyst with NetApp, USA. He
is currently a performance and capacity engineer
with Facebook. His main research interests include
the performance modeling, analysis, and design of
large-scale distributed systems, including cloud
computing systems, peer-to-peer networking, and
multimedia systems. He is a member of the ACM.

Wumo Yan received the BS degree in electrical
engineering and computer science from National
Tsing Hua University in 2017. He is currently
working toward the PhD degree in computer sci-
ence with the University of Southern California,
Los Angeles, CA. His current research focuses
on distributed machine learning systems.

> For more information on this or any other computing topic,

please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Southern California. Downloaded on July 11,2022 at 09:21:36 UTC from IEEE Xplore. Restrictions apply.

https://github.com/facebookincubator/gloo
https://developer.nvidia.com/nccl.
https://openreview.net/forum?id=SyVVJ85lg
https://openreview.net/forum?id=SyVVJ85lg

