
Performance and Revenue Analysis of
Hybrid Cloud Federations with QoS Requirements

Bowen Song
Department of Computer Science
University of Southern California

941 Bloom Walk, Los Angeles, USA
bowenson@usc.edu

Marco Paolieri
Department of Computer Science
University of Southern California

941 Bloom Walk, Los Angeles, USA
paolieri@usc.edu

Leana Golubchik
Department of Computer Science
University of Southern California

941 Bloom Walk, Los Angeles, USA
leana@usc.edu

Abstract—Hybrid cloud architectures, where private clouds
or data centers forward part of their workload to public cloud
providers to satisfy quality of service (QoS) requirements, are
increasingly common due to the availability of on-demand
cloud resources that can be provisioned automatically through
programming APIs. In this paper, we analyze performance and
revenue in federations of hybrid clouds, where private clouds
agree to share part of their local computing resources with
other members of the federation. Through resource sharing,
underprovisioned members can save on public cloud costs, while
overprovisioned members can put their idle resources to work.
To reward all hybrid clouds for their contributions (computing
resources or workload), public cloud savings due to the federation
are distributed among members according to Shapley value.

We model this cloud architecture with a continuous-time
Markov chain and prove that, if all hybrid clouds have the same
QoS requirements, their profits are maximized when they join the
federation and share all resources. We also show that this result
does not hold when hybrid clouds have different QoS requirements,
and we provide a solution to evaluate profit for different resource
sharing decisions. Finally, our experimental evaluation compares
the distribution of public cloud savings according to Shapley value
with alternative approaches, illustrating its ability to discourage
free riders of the federation.

Index Terms—Hybrid Clouds, Data Centers, Cloud Federations,
Markov Chains, Performance, Shapley Value.

I. INTRODUCTION

Over the past 15 years, cloud computing has radically
transformed the IT industry by removing the need for upfront
commitments to acquire hardware resources and expertise
to operate them. In the Infrastructure-as-a-Service (IaaS)
market, public cloud providers (Amazon AWS, Google Cloud,
Microsoft Azure) offer a multitude of hardware resources
(CPUs, GPUs, FPGAs, machine learning accelerators) remotely
accessible through virtual machines (VMs). Similarly to other
utilities, application developers can pay for these resources by
usage time (e.g., CPU cores paid by the second) and quickly
allocate them on demand to meet changes in their workloads,
alleviating the risk of underprovisioning or overprovisioning
to satisfy quality of service (QoS) requirements [5].
Such flexibility has had a profound impact on the design

and operation of private clouds and data centers of large
organizations: instead of acquiring enough hardware resources

Work supported in part by NSF Grants CCF-1763747 and CNS-1816887.

to satisfy QoS requirements during predicted peaks of their
workloads, private clouds can forward part of the workload
to public clouds when needed. This cloud architecture, called
hybrid cloud [23], [25], is also common for organizations that
decide to avoid investing in on-premise data centers altogether
and choose instead to commit to a certain amount of cloud
resources for fixed periods of time, obtaining discounts with
respect to on-demand prices; for example, Amazon AWS
reserved instances offer up to 72% discounts on VM instances
in case of 1-year or 3-year commitments. Given the difficulty of
workload prediction, organizations can reserve an underprovi-
sioned pool of resources at a discounted price, allocating more
resources on-demand during peak loads. Software platforms for
private clouds, such as OpenStack [3], Apache CloudStack [1],
and OpenNebula [2], facilitate these hybrid architectures by
implementing APIs compatible with those of public clouds.
In addition to hybrid architectures, cloud federations [20],

[17] provide another appealing strategy to operate under
uncertain and variable workloads: private clouds agree to
share part of their computing resources to serve requests from
other members of the federation. In so doing, underprovisioned
private clouds can satisfy their QoS requirements during peak
loads, while overprovisioned private clouds can put their
resources to work instead of leaving them idle. Different
policies have been investigated to reward members of the
federation that provide resources or workload [16], [9]: at one
extreme, business operations are shared entirely (e.g., members
of the federation become one business organization) and
resource sharing is optimized to maximize the total profit,
which is then distributed according to solution concepts for
cooperative games (e.g., Shapley value); at the other extreme,
members are non-cooperative players maximizing their profit by
sharing part of their resources or workload, while the federation
is self-enforced by a pricing mechanism used for its services.
Resources can be shared with the entire federation [16] or with
individual members [9], and resource owners may have priority
over the use of shared resources [16].

In this paper, we focus on IaaS cloud architectures including
both hybrid clouds and cloud federations. As illustrated in
Fig. 1, when local queues are too large to satisfy QoS
requirements (in our setting, the maximum mean waiting
times allowed by service level agreements), private clouds

1

Federation Servers

Cloud 1 Servers Cloud 2 Servers

Queued Requests
for Cloud 1

Queued requests
for Cloud 2

Public
Cloud

Queued Requests for
Federation

Request
Ove

rflo
w

Cloud 1’s User
Requests (Customers)

Cloud 2’s User
Requests (Customers)

Figure 1: Federation of Hybrid Clouds

None A,B A,C B,C A,B,C
Members of the Federation

0

2

4

6

8

10

12

14

16

18

20

22

R
eq
ue
st
s/
s
F
or
w
ar
de
d
to

P
ub

lic
C
lo
ud

s

7.6
5.4

10.3

7.6
6.6

7.6

5.4

7.6

10.3

6.6

0.9

0.9

Cloud A

Cloud B

Cloud C

Figure 2: Forward rates to public clouds for different federations

forward user requests for VM instances (i.e., their overflow
traffic) to a shared pool of resources contributed by members
of the federation; if the queue at the shared federation pool
is also too large, requests are forwarded to public clouds.
Through the federation, underprovisioned hybrid clouds save
on public cloud costs, while overprovisioned hybrid clouds can
put their resources to work. To reward all members for their
contributions (computing resources to serve overflow traffic,
or workload to put idle resources to use), in our proposed
mechanism hybrid clouds pay the same public cloud costs as
before joining the federation, and then public cloud savings
due to the shared server pool are distributed among members
according to Shapley value [21].

A challenging problem for hybrid clouds is to decide whether
to join a federation, and to determine the amount of resources
to share in order to maximize profit; this problem is particularly
difficult when each hybrid cloud has different QoS requirements
for its users. Fig. 2 illustrates forwarding rates to public

clouds for different federations among hybrid clouds A, B,
C where: (1) each hybrid cloud has 100 servers processing
requests with service times exponentially distributed with rate 1
and interarrival times exponentially distributed with rate 100;
(2) all resources of a member are shared with the federation;
(3) requests of C can tolerate mean waiting time equal to 1,
while requests of A and B must begin service immediately,
without queueing. When A and B form a federation, their
cumulative forwarding rate to public clouds is reduced from
15.2 to 10.8, and Shapley value splits these savings equally;
in contrast, when A and C (or, similarly, B and C) form a
federation, their cumulative forwarding rate to public clouds
increases from 8.5 to 10.3 (the forwarding rate of C becomes 0,
while the forwarding rate of A becomes 10.3). This negative
effect is due to the different QoS requirements of A and C:
requests from C can accumulate at the shared federation pool,
forcing A to use the public cloud during peak loads. A similar,
but less evident effect is also present when all hybrid clouds A,
B, C join the federation: in this case, the cumulative forwarding
rate to public clouds (13.2) is higher than that of a federation
including only A and B, and leaving C on its own (11.7).

Contributions. Our work provides a solution to evaluate the
effects of different sharing strategies in federations of hybrid
clouds, which we model as a network of queues [13], each with
a finite number of servers and capacity determined by QoS
requirements (maximum mean waiting time, as in [8], [16]).
By analyzing the underlying continuous-time Markov chain
(CTMC), we leverage existing results for resource sharing in
queueing networks [22] to prove that, if all hybrid clouds have
the same QoS requirements, profit is maximized when each
hybrid cloud shares all of its resources (without priority over
their use). Next, we show that this result does not hold when
hybrid clouds have different QoS requirements, and we provide
a solution to evaluate profit for different resource sharing
decisions. Finally, we compare our profit sharing mechanism
(assigning public cloud savings according to Shapley value)
with alternative approaches, illustrating its ability to discourage
“free riders” of the federation.

II. PERFORMANCE MODEL

In this section, we present a performance model to evaluate
the stationary rate of requests that cannot be served by a
federation of private clouds without violating their individual
QoS requirements, thus requiring to be forwarded to a public
cloud provider. We prove that, if each private cloud has the same
QoS requirements, this rate of “rejected requests” is minimized
when all resources are shared with the federation; in contrast,
for private clouds with heterogeneous QoS requirements, we
provide counterexamples showing that sharing all resources
may increase rejected traffic for some clouds, and in some
cases for the entire federation.

A. System Description and Notation
We consider the federation of N private clouds illustrated in

Fig. 3, where each private cloud i = 1, . . . , N receives requests
according to a Poisson process with rate λi and owns ni servers:

2

Figure 3: Queueing Model of a Hybrid Cloud Federation

mi servers are contributed to the shared federation pool (which
has a total of sF =

∑N
i mi servers), while si = ni − mi

servers are used exclusively by i.
When all si local servers are busy, requests received by i

are queued locally (and processed according to a FCFS policy)
as long as the queue size qi is such that qi/(siµ) ! Qi, i.e.,
the expected waiting time of the last request in the queue (the
sum of qi i.i.d. exponential random variables with rate siµ) is
lower than Qi, the QoS requirement for users of private cloud i.
Similarly, a request rejected locally at private cloud i can be
served by the pool of sF servers contributed to the federation
as long as its queue size qF is such that qF /(sFµ) ! Qi.
Note that this type of QoS requirements corresponds to a

maximum capacity ci := C(si, µ,Qi) for each private cloud i,
where

C(si, µ,Qi) = "siµQi#+ si = "si(µQi + 1)#

is the maximum number of requests queued ("siµQi#) or in
service (si) at private cloud i. For example, no queueing is
allowed when Qi = 0, since ci is equal to the number of
servers si. The maximum capacity of the shared federation
pool is equal to cF := maxi=1,...,N C(sF , µ,Qi), i.e., to the
maximum capacity allowed by the QoS requirements of any
private cloud. A large class of QoS requirements (such as
bounds on percentiles of waiting time or service time of
a request) can be defined similarly from the distribution of
waiting times (Erlang with shape qi and rate siµ) and service
time (exponential with rate µ); these QoS requirements also
result in restrictions on the capacity of each private cloud, and
they are supported by our model.

Our goal is to evaluate the stationary (i.e., steady-state) rate
β(#λ,#n, #m,µ, #Q) of requests cumulatively rejected by all the

private clouds of the federation for the given arrival rates λi,
shared servers 0 ! mi ! ni, service rate µ, and maximum
mean waiting times Qi, for i = 1, . . . , N . Since the overflow
traffic in Fig. 3 is not a Poisson process, we need a joint CTMC
model of the private clouds and shared server pool to evaluate
β(#λ,#n, #m,µ, #Q).

B. CTMC Model

Figure 4: Transition rates for the CTMC model

Given our assumptions, the evolution of a hybrid cloud
federation is described by a CTMC with state vector
(x1, . . . , xN , xF) where 0 ! xi ! C(si, µ,Qi) represents the
number of requests (queued or in service) at each private cloud
i = 1, . . . , N , while 0 ! xF ! maxi=1,...,N C(sF , µ,Qi) is
the number of requests (queued or in service) at the shared
server pool.

From state (x1, . . . , xi, . . . , xN , xF), the CTMC can transi-
tion to the following states, for all i = 1, . . . , N (Fig. 4):

• If xi < C(si, µ,Qi), to (x1, . . . , xi+1, . . . , xN , xF) with
rate λi (an arrival to private cloud i can be served locally
while satisfying QoS requirements).

• If xi = C(si, µ,Qi) and xF < C(sF , µ,Qi), to state
(x1, . . . , xi, . . . , xN , xF + 1) with rate λi (an arrival to
private cloud i cannot be served locally, but it can be
served by the shared federation pool while satisfying QoS
requirements of private cloud i).

• To (x1, . . . , xi − 1, . . . , xN , xF) with rate min(xi, si)µ
(service of a request completes at private cloud i).

• To (x1, . . . , xi, . . . , xN , xF − 1) with rate min(xF , sF)µ
(service of a request completes at the pool of servers
shared by members of the federation).

The rate β(#λ,#n, #m,µ, #Q) of requests rejected by the federa-
tion of hybrid clouds can be evaluated from the steady-state
probabilities p(#x) for each #x in the state space X of the CMTC
model: β(#λ,#n, #m,µ, #Q) is equal to the sum of the arrival rate
of each private cloud, multiplied by the probability of being

3

in a state where arrivals are rejected by the private cloud and
by the federation (and thus forwarded to the public cloud):

β(#λ,#n, #m,µ, #Q) =
N∑

i=1

λi

(
∑

!x∈X :xi=C(si,µ,Qi)
∧xF!C(sF ,µ,Qi)

p(#x)

)
. (1)

C. Optimal Sharing Strategy with Homogeneous QoS

Each private cloud i can choose to share 0 ! mi ! ni

servers with the federation pool, which receives overflow traffic
from all the private clouds, each with different arrival rate,
number of servers, and QoS requirements. We are interested
in the strategy #m = (m1, . . . ,mN) that is the most efficient
for the entire federation, i.e., the strategy that minimizes the
stationary rate of rejected requests in Eq. (1). We prove that
sharing all servers is the most efficient strategy when private
clouds have the same QoS requirements Q1, . . . , QN .

Theorem 1. Let i = 1, . . . , N be a set of M/M/si/ci queues,
each with Poisson arrival rate λi, service rate µ, si servers
and total capacity (requests queued or in service) ci := C(si),
where C(x + y) " C(x) + C(y) ∀x, y. When these queues
send their overflow traffic to a shared G/M/sF /cF queue
(without external arrivals) with sF :=

∑N
i=1(ni − si) servers

and capacity cF := C(sF), the stationary rate of rejected
requests is minimized with respect to si if si = 0 for all
i = 1, . . . , N (i.e., when sF =

∑N
i=1 ni).

Proof. First, we leverage Theorem 7 of [22], which states that
the cumulative rejection rate of a set of M/M/si/ci queues for
i = 1, . . . , N is greater or equal to the rejection rate of a single
M/M/s/c queue with combined arrival rate λ =

∑N
i=1 λi,

servers s =
∑N

i=1 si and capacity c =
∑N

i=1 ci. This means
that the system in Fig. 5 has lower overflow traffic than the
one in Fig. 3.

Figure 5: Queueing model after combining the private clouds

Next, we show that the rejection rate of an M/M/s/c queue
forwarding its overflow traffic to a G/M/sF /cF queue without
other external arrivals (Fig. 5) is greater or equal to the rejection
rate of a single M/M/(s + sF)/(c + cF) queue with the
same arrival rate. Our argument hinges on the comparison
of transition rates between states of the two systems. The

underlying stochastic process of the combined M/M/(s +
sF)/(c + cF) queue (Fig. 6) is a birth-death CTMC where
state j + 1 is reached from j = 0, . . . , c+ cF − 1 with rate λ,
while state j − 1 is reached from j = 1, . . . , c+ cF with rate
min(j, s+ sF)µ. In the system with separate queues (Fig. 7),
state j + 1 is still reached from j = 0, . . . , c + cF − 1 with
the same rate λ; in contrast, state j − 1 is reached from j =
1, . . . , c + cF with rate [min(j1, s) + min(j2, sF)]µ, which
depends not only on the total number of requests j, but also
on the number of requests j1 and j2 in each subsystem (and
thus on the past history of transitions that led to j = j1 + j2).

Figure 6: Transition rates of an M/M/(s+sF)/(c+cF) queue

Figure 7: Transition rates after combining the private clouds

Since min(j1, s) + min(j2, sF) ! min(j, s + sF) for all
j1, j2 such that j1 + j2 = j, the transition rate from j to j − 1
is always lower or equal for the system with separate queues,
while the transition rate from j to j + 1 is the same. As a
consequence, the steady-state probability of state j = s+ sF
(the only state where requests are rejected, with rate λ) is
greater or equal in the system with separate queues.

Thus, the combined system with s+ sF servers (i.e., where
all servers are shared by the private clouds) has a lower rate of
rejected requests than the one with separate queues with s and
sF servers, which, in turn, has a lower rate of rejected requests
than the original system ∀s1, . . . , sN such that

∑N
i=1 si = s.

Since C(x + y) " C(x) + C(y) ∀x, y, the capacity of the
combined system is in fact greater or equal to the sum of
individual capacities, i.e., C

(∑N
i=1 si

)
" ∑N

i=1 C(si); this
increases the number of queueing slots, further reducing the
rejection rate when all servers are shared.

Corollary 1.1. If Qi = Q for all i, the rate β(#λ,#n, #m,µ, #Q)
of requests rejected by the private clouds and federation
server pool in Eq. (1) is minimized when mi = ni for all
i = 1, . . . , N .

Proof. Each private cloud is an M/M/si/ci queue with si =
ni − mi and ci = C(si, µ,Q) sending its overflow traffic
to the server pool of the federation, a G/M/sF /cF queue

4

with sF =
∑N

i=1 mi =
∑N

i=1(ni − si) servers and capacity
cF = C(sF , µ,Q). Since C(s, µ,Q) := "s(1 + µQ)# satisfies

C(x+ y, µ,Q) " C(x, µ,Q) + C(y, µ,Q)

for all x, y, µ,Q, by Theorem 1 the rate β(#λ,#n, #m,µ, #Q) of
rejected requests is minimized when all servers are shared.

Note that, when all servers are shared (mi = ni for all i =
1, . . . , N), the system reduces to an M/M/sF /cF queue with
sF =

∑N
i=1 ni servers and arrival rate λ =

∑N
i=1 λi. In this

case, the stationary rate of rejected requests can be evaluated as
β(#λ,#n, #m,µ, #Q) = λB(sF , cF ,λ/µ), where B(sF , cF ,λ/µ)
is the blocking probability of an M/M/sF /cF queue [13]:

B(sF , cF ,λ/µ) (2)

=
(λ/µ)cF /(sF ! sF cF−sF)∑sF

j=0(λ/µ)
j/j! +

∑cF
j=sF+1(λ/µ)

j/(sF ! sF j−sF)
.

D. Optimal Sharing Strategy with Heterogeneous QoS

When the private clouds i = 1, . . . , N have different QoS
requirements Qi (i.e., maximum mean waiting times), the
CTMC model presented in Section II-B uses different capacity
bounds C(si, µ,Qi) at their local queues and different criteria
to reject incoming requests at the shared server pool: requests
from private cloud i are rejected at the shared server pool if
xF " C(sF , µ,Qi); i.e., depending on the number of requests
xF at the shared server pool, private clouds with less stringent
QoS requirements Qi can add their requests to its queue, while
other private clouds with more stringent QoS may be forced to
forward their requests to the public cloud. In this case, when
private clouds share all of their servers, the federation does not
reduce to an M/M/sF /cF queue, and it can incur a higher
rejection rate (i.e., forwarding rate to the public cloud) with
respect to other sharing strategies.

As an example, we consider a federation where #λ = (50, 50),
#n = (50, 50), µ = 1, and #Q = (0, 1); due to the difference in
QoS requirements, for a given sharing strategy #m = (m1,m2),
only cloud 2 can queue up to sFµQ2 = m1 +m2 requests at
the shared server pool of sF = m1 +m2 servers. Using our
CTMC model and Eq. (1), we evaluate the rate of requests
rejected by the federation and forwarded to public clouds for
different sharing strategies, as depicted in Fig. 8. Here, we
observe that, for any sharing strategy m2 > 0 of cloud 2, as
we increase the number of servers m1 shared by cloud 1, the
rate of requests forwarded to public clouds first decreases (as
cloud 1 gains access to shared servers of cloud 2) and then
noticeably increases (as cloud 2 is able to queue its requests
at the shared server pool and to force cloud 1 to forward
requests to public clouds). In contrast with our theoretical result
for hybrid clouds with homogeneous QoS (where sharing all
servers, i.e., (m1,m2) = (50, 50) in this example, is always
optimal), the optimal sharing strategy is (m1,m2) = (10, 2),
a partial sharing of resources. While a theoretical result is
not available for hybrid clouds with heterogeneous QoS, their
policies can be evaluated using our CTMC model.

0 10 20 30 40 50

Number of Servers Shared by Cloud 1 (m1)

5.50

5.75

6.00

6.25

6.50

6.75

7.00

T
ot
al

R
eq
/s

F
or
w
ar
de
d
to

P
ub

lic
C
lo
ud

s

m2 = 0

m2 = 2

m2 = 25

m2 = 50

Figure 8: Sharing Strategies with Heterogeneous QoS

III. REVENUE MODEL

Our proposed federation mechanism does not require setting
a price for resources shared by members: servers of the shared
pool are available to the federation members at no cost. To
avoid situations where some members of the federation take
advantage of shared servers to the detriment of their owners,
we establish that, as part of the federation agreement, each
member is charged the same public cloud costs as previously
paid, i.e., before joining the federation. When the shared server
pool results in savings of public cloud costs (as demonstrated
in Section II-C, this is always the case with homogeneous QoS
requirements when sharing all resources), we distribute savings
among federation members according to Shapley value.

In so doing, we favor resource sharing without more complex
policies like granting priority over shared resources to the
members who own and operate them [16]. At the same time,
through the use of Shapley value, we are able to reward
overprovisioned members who share idle resources with the
federation, as well as underprovisioned members who share
part of their workload; as discussed in Section IV, both types
of members are necessary to produce public cloud savings, and
thus both should be rewarded in the federation.

A. Sharing Public Cloud Savings using Shapley Value
Given a subset S = {i1, . . . , iK} of K private clouds, i.e.,

S ⊆ {1, . . . , N}, we indicate by

#λS := (λi1 , . . . ,λiK)

#nS := (ni1 , . . . , niK)

#mS := (mi1 , . . . ,miK)

#QS := (Qi1 , . . . , QiK)

the vectors of arrival rates #λS , number of servers #nS , shared
servers #mS , and maximum mean waiting times #QS , respec-
tively, for the private clouds in S, and by β(#λS ,#nS , #mS , #QS)
the rate of requests sent to the public cloud when they form
a federation and share servers #mS (β can be evaluated using
the CTMC model presented in Section II-B).

5

Then, the savings of public cloud costs obtained by the
federation S are given by

R(S) = P
(
η0(S)− ηF (S)

)
(3)

where

η0(S) :=
∑

i∈S

β(#λ{i},#n{i},#0{i}, #Q{i}) (4)

ηF (S) := β(#λS ,#nS , #mS , #QS) (5)

i.e., by the difference between the rate of requests forwarded
before joining the federation (by individual private clouds)
and after (when the queue at the federation pool is too large),
multiplied by P , the public cloud cost per request. Note that, by
Corollary 1.1, Eq. (5) is minimized under homogeneous QoS
when all servers are shared with the federation, maximizing
R(S) and thus the profit of the federation.

We distribute the public cloud savings R(S) of a federation
using Shapley value (SV) [21]; each member i ∈ S receives
RSV

i (S), which is the increase in savings due to i, averaged
over all possible subsets of other members (i.e., all alternative
federations including i):

RSV
i (S) =

∑

S′⊆S\{i}

|S′|!(|S|− |S′|− 1)!

|S|!
(
R(S′∪{i})−R(S′)

)
.

Shapley value has many desirable properties for our application:
the sum of Shapley values is equal to the total savings, i.e.,∑

i∈S RSV
i (S) = R(S); if i ∈ S and j ∈ S produce the same

increase in savings, i.e., R(S′ ∪ {i}) = R(S′ ∪ {j}) for all
S′ ⊆ S \ {i, j}, then RSV

i (S) = RSV
j (S), i.e., they have the

same Shapley value; RSV
i (S) scales linearly with respect to R

(and thus with respect to the public cloud price P); if i ∈ S
does not increase savings in any federation, RSV

i (S) = 0.
In particular, the last property implies that “free riders,”

the members that do not contribute to public cloud savings,
are not rewarded by Shapley value. Note that a member can
contribute by providing either resources (servers) or workload
(overflow traffic of requests); for example, in a federation with
two private clouds where one is overprovisioned and the other
is underprovisioned, both members are necessary to generate
public cloud savings, and their Shapley values are the same
(specifically, R(S)/2, half of the generated savings).

Our analysis assumes that idle and busy servers have the
same operational costs. If busy servers incur additional costs
Pbusy−Pidle per request, then P can be replaced in Eq. (3) with
P − (Pbusy − Pidle): in this case, additional per-request costs
are paid to the owners of the shared servers before calculating
the public cloud savings to distribute among members of the
federation (Pidle is already accounted for in Eq. (6) below).
Note that when P ! (Pbusy−Pidle), i.e., the public cloud price
is lower than the additional cost sustained by private clouds to
put their resources to work, private clouds have no incentive to
use their local resources (public cloud providers are cheaper);
in the following, we assume that P > (Pbusy −Pidle) and also
P > Pbusy , so that savings can be obtained by using local
resources owned by private clouds.

B. Overall Reduction in Operating Costs
Public cloud costs are only a fraction of the operational

costs of a private cloud. To assess the significance of public
cloud savings, we consider the relative cost reduction of each
private cloud i:

δi =
RSV

i (S)

Pβ(#λ{i},#n{i}, #0{i}, #Q{i}) + niξ
(6)

where RSV
i (S) is the Shapley value distributed to i after

joining the federation (due to public cloud savings), while
Pβ(#λ{i},#n{i}, #0{i}, #Q{i}) and niξ are the public cloud cost
and private operation cost, respectively (these costs are sus-
tained both before and after joining the federation). Based
on [10], we assume that ξ ≈ 0.7Pµ, i.e., serving a request
with local servers is 30% less expensive than using cloud
resources (after accounting for all operational costs such as
energy, cooling, management).

C. Alternative Reward Policies
In this section, we consider alternative policies to share

public cloud savings of the federation among private clouds
S = {i1, . . . , iK}, S ⊆ {1, . . . , N}, with vectors of arrival
rates #λS , number of servers #nS , shared servers #mS , and
maximum mean waiting times #QS .

Shared Resources (SR). This policy distributes public cloud
savings proportionally to the amount of resources shared by
each private cloud:

RSR
i (S) :=

mi∑K
j=1 mj

R(S)

Note that this policy does not take into account the utilization
of shared resources before or after joining the federation.

Shared Idle Resources (SIR). This policy distributes public
cloud savings proportionally to the amount of shared resources
and to their utilization before joining the federation:

RSIR
i (S) :=

mi(1− ρi)∑K
j=1 mj(1− ρj)

R(S)

where

ρi =
λi − β(#λ{i},#n{i}, #0{i}, #Q{i})

niµ

is the utilization of the servers of private cloud i before joining
the federation. With this policy, a higher fraction of cloud
savings is received if shared servers had lower utilization ρi
before joining the federation.

Shared Idle Resources and Workload (SIRW). This policy
distributes public cloud savings proportionally to the amount
of shared idle resources and overflow traffic:

RSIRW
i (S) :=

1

2

(
RSIR

i (S) +
λi − ρiniµ∑K

j=1 λj − ρjnjµ
R(S)

)

where λi − ρiniµ = β(#λ{i},#n{i}, #0{i}, #Q{i}) is the overflow
traffic of private cloud i. With this policy, a higher fraction

6

20 40 60 80 100 120 140

Arrival Rate at C2 (λ2)

0

20

40

60

80

100

120

140

160

T
ot
al

R
eq
/s

F
or
w
ar
de
d
to

P
ub

lic
C
lo
ud

s

η0,λ1 = 30

ηF ,λ1 = 30

η0,λ1 = 50

ηF ,λ1 = 50

η0,λ1 = 100

ηF ,λ1 = 100

Figure 9: Rate of requests sent to public clouds by a federation
of two clouds with n1 = n2 = m1 = m2 = 50 servers and
Q1 = Q2 = 0, for different arrival rates λ1 and λ2.

of cloud savings is received if shared servers had lower
utilization ρi before joining the federation, or if the private
cloud was forwarding many requests to the public cloud.
Note that, while sharing policies SV and SIRW reward

members of the federation contributing servers or workload,
policies SR and SIR distribute public cloud savings only to
members sharing servers. With SR or SIR, members are not
rewarded for sharing workload: in particular, when mi = 0 (no
shared servers), private cloud i has no incentive to stay in the
federation (since cloud costs are the same and no cloud savings
are distributed to it, its profit would be the same without the
federation). Nonetheless, we use policies SR and SIR in cases
where mi > 0 as additional baselines to illustrate the drawback
of not considering workload contributions.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the effects of our federation
mechanism on public cloud savings and analyze whether these
savings are shared fairly among members of the federation.
All results presented in this section were obtained using

PRISM [14] to solve our CTMC model through an iterative
method (specifically, the power method with up to 200, 000
iterations and absolute threshold ε = 10−6 to detect conver-
gence); results are thus exact (up to a numerical error). In our
federations, we use µ = 1 and vary #λ, #n, and #Q.

A. Public Cloud Savings and Operating Cost Reduction
Sharing All Servers. First, we evaluate the savings in public
cloud costs achieved by a federation where two private clouds,
C1 and C2, have no queueing of requests (i.e., Q1 = Q2 = 0)
and share all of their n1 = n2 = 50 servers (m1 = m2 = 50).
Fig. 9 shows the rate of requests forwarded to the public
cloud before (dashed lines) and after (solid lines) forming
the federation, i.e., η0 and ηF as defined in Eqs. (4) and (5),
respectively, for different arrival rates at C1: λ1 = 30 (blue
lines), λ1 = 50 (orange lines), λ1 = 100 (green lines); the
arrival rate at C2 varies from λ2 = 10 to λ2 = 150.

• For λ1 = 30, C1 is overprovisioned and, when λ2 > 50,
it is able to serve part of the workload of C2, which

(λ1,λ2) η0 ηF δ1 δ2

(30, 150) 100.5 81.2 27.6% 7.1%
(50, 150) 105.7 101.0 5.9% 1.8%
(100, 150) 151.4 150.7 0.4% 0.3%

Table I: Forwarding rate to public clouds before (η0) and after
(ηF) joining the federation and relative cost reduction (δ1, δ2)
for different arrival rates when #n = #m = (50, 50), #Q = (0, 0).

0 10 20 30 40 50

Number of Servers Shared by C1 (m1)

0

5

10

15

20

25

30

35

40

R
ed
uc
ti
on

of
F
or
w
ar
de
d
R
eq
ue
st
s

η
0
−
η
F

η
0

%

m2 = 0

m2 = 25

m2 = 50

Figure 10: Reduction of requests sent to public clouds by two
federated clouds with n1 = n2 = 50 servers, Q1 = Q2 = 0,
λ1 = 10, λ2 = 150 for different sharing strategies m1 and m2.

is underprovisioned. The federation achieves a reduction
of the rate of requests forwarded to public clouds from
η0 = 100.5 to ηF = 81.2 (19.2%) when λ2 = 150. Note
that, as λ2 increases, ηF grows linearly after λ2 = 75
because the federation is overloaded, while the reduction
in public cloud usage (the difference between η0 and ηF)
converges to a constant value.

• For λ1 = 50, C1 is close to underprovisioning: when
λ2 < 50, C2 is overprovisioned, and it can serve some of
C1’s overflow traffic; for λ2 > 50, both C1 and C2 are
underprovisioned, but some savings are still achieved by
the federation (at λ2 = 150, the rate of requests forwarded
to public clouds is reduced by 4.5%, from η0 = 105.7 to
ηF = 101.0).

• For λ1 = 100, C1 is underprovisioned: when λ2 < 50,
C2 is overprovisioned and can serve a large fraction of
C1’s overflow traffic; for example, at λ2 = 10, the rate of
requests forwarded to public clouds is reduced by 70.6%,
from η0 = 50.9 to ηF = 15.0. When λ2 > 50, the
federation of C1 and C2 is heavily underprovisioned; the
reduction in forwarding rate to public cloud is negligible
(0.5% at λ2 = 150, from η0 = 151.4 to ηF = 150.7).

Table I reports the relative cost reduction from Eq. (6) for these
scenarios where all servers are shared with the federation.

Sharing a Fraction of the Servers. Next, we evaluate the
increase in public cloud savings with respect to the amount of
resources shared by the two private clouds, C1 and C2, with the
same number of servers n1 = n2 = 50 and QoS Q1 = Q2 = 0.

7

0 10 20 30 40 50

Number of Servers Shared by C1 (m1)

0.00

0.05

0.10

0.15

0.20

0.25

R
ed
uc
ti
on

of
F
or
w
ar
de
d
R
eq
ue
st
s

η
0
−
η
F

η
0

%

m2 = 0

m2 = 25

m2 = 50

Figure 11: Reduction of requests sent to public clouds by two
federated clouds with n1 = n2 = 50 servers, Q1 = Q2 = 0,
λ1 = λ2 = 150 for different sharing strategies m1 and m2.

Fig. 10 illustrates that, since C1 is overprovisioned (λ1 = 10)
and C2 is heavily underprovisioned (λ2 = 150), the amount
of servers shared by C2, m2, has no effect on the savings in
public cloud costs (these resources have very high utilization);
instead, the percentage reduction of the rate of requests sent
to public clouds increases linearly with m1, the servers shared
by C1 (which is overprovisioned), until converging to 38.7%
savings when the shared server pool becomes highly utilized.
Fig. 11 shows that, when both clouds are underprovisioned
(λ1 = λ2 = 150), public cloud savings are still monotonic
with respect to the amount of resources shared, but almost
negligible (at most 0.24%, when all resources are shared).

Heterogeneous QoS Requirements. Fig. 12a presents the for-
warding rates to the public cloud before (solid line) and after
(dashed line) two private clouds C1 and C2 with heterogeneous
QoS #Q = (0, 1) share all of their resources; in this scenario,
µ = 1 and λ1 = n1 = 50, while λ2 varies from 30 to 100
and n2 = λ2 (so that the load λ2/(n2µ) = λ1/(n1µ) = 1
is always the same for both private clouds). We observe that
while C2 no longer forwards requests to the public cloud
after joining the federation (orange line), the forwarding rate
increases for C1 (blue line). Notably, the cumulative forwarding
rate is greater after sharing resources in the federation and,
as the workload of C2 increases, a larger fraction of requests
of C1 (which cannot be queued at the shared server pool)
is forwarded to the public cloud. Fig. 12b shows that, for
#λ = #n = (50, 50), the disadvantage of C1 (i.e., the increase
in requests forwarded to the public cloud after joining the
federation) is greater as Q2 increases, allowing more requests
of C2 to queue at the shared server pool; when C2’s forwarding
rate reaches 0, C2 does not need additional resources and C1’s
forwarding rate stops increasing. Finally, Fig. 12c considers
a scenario with an increasing number N of hybrid clouds,
where λ1 = n1 = m1 = 1000 and Q1 = 1 for C1, while
λi = ni = mi = 10 and Qi = 0 for i = 2, . . . , N . In this
case, while the federation is initially inefficient (the average
rate of requests sent to the public cloud is greater than it would
be without the federation) because of C1 (which is able to

queue requests at the shared pool), it becomes advantageous
when N > 10 hybrid clouds with Qi = 0 are present.

To evaluate the impact of heterogeneous QoS requirements
on operating costs of private clouds sharing their resources,
we show in Table II that the relative cost reductions δ1 and δ2
can be negative (i.e., public cloud costs can increase) when
two private clouds C1 and C2 have significantly different QoS
requirements. In the example, C2 has greater workload (λ2),
number of servers (n2), and allowed mean waiting time for its
requests (Q2); when C1 and C2 share all of their resources,
C1 is not able use the shared server pool, where requests of
C2 can wait in a queue but requests of C1 must be served
immediately. As a result, most requests of C1 are forwarded to
the public cloud, increasing public cloud costs. While Shapley
value distributes additional costs equally, the relative increase
in operating costs is greater for C1 (a smaller private cloud).

(λ1,λ2) (n1, n2) (Q1, Q2) δ1 δ2

(50, 100) (50, 100) (0, 10) −3.7% −2.1%
(50, 100) (50, 100) (0, 50) −3.8% −2.2%
(50, 1000) (50, 1000) (0, 50) −14.8% −0.8%
(7, 10000) (10, 10000) (0, 1000) −37.4% −0.05%

Table II: Relative cost reduction with heterogeneous QoS

B. Reward Policies
To motivate the use of Shapley value (SV) in our system,

we evaluate the effects of alternative policies defined in
Section III-C: shared resources (SR), shared idle resources
(SIR), and shared idle resources and workload (SIRW). First,
in Fig. 13, we compare the rewards assigned in three federation
scenarios, each with three private clouds C1, C2 and C3.

Federation 1. In this federation, #λ = (10, 70, 140), #n =
(30, 50, 100), #m = #n (all servers are shared), #Q = (0, 0, 0) (no
queueing is allowed): C1 is overprovisioned (contributing most
idle servers), while C2 and C3 are similarly underprovisioned;
notably, C3 contributes more servers and workload. SV assigns
most cloud savings to C1, the only provider of idle servers; C2

and C3 are rewarded similarly, with higher reward assigned to
C3 due to its higher shared workload. In contrast, SR unfairly
rewards C3 for sharing most servers, although its servers have
very high utilization and cannot serve workload from other
members of the federation. SIR addresses this issue by taking
resource utilization into account: most of the reward goes to
C1 for sharing idle servers. This assignment is also unfair,
since the workload shared by C2 and C3 is necessary to obtain
public cloud savings; SIRW accounts for shared workload,
obtaining a more balanced reward distribution.

Federation 2. In this federation, #λ = (30, 30, 150), #n =
(50, 100, 50), #m = #n (all servers are shared), #Q = (0, 0, 0) (no
queueing is allowed): C1 and C2 are overprovisioned, while
C3 is heavily underprovisioned. SV assigns most cloud savings
to C3 (for sharing its workload) and to C2 (for sharing more
servers than C1, and with lower utilization). SR rewards C2

8

30 40 50 60 70 80 90 100

Arrival Rate and Servers at C2 (λ2 = n2)

0

2

4

6

8

10
R
eq
/s

F
or
w
ar
de
d
to

P
ub

lic
C
lo
ud

s η01 (C1 before federation)

ηF1 (C1 after federation)

η02 (C2 before federation)

ηF2 (C2 after federation)

(a) Increasing C2’s arrivals and servers

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

QoS Requirement at C2 (Q2)

0

2

4

6

8

R
eq
/s

F
or
w
ar
de
d
to

P
ub

lic
C
lo
ud

s

η01 (C1 before federation)

ηF1 (C1 after federation)

η02 (C2 before federation)

ηF2 (C2 after federation)

(b) Increasing C2’s QoS

2 4 6 8 10 12

Number of Clouds (N)

1.5

2.0

2.5

3.0

3.5

A
ve
ra
ge

R
eq
/s

F
or
w
ar
de
d
to

P
ub

lic
C
lo
ud

s

η0/N (Before Federation)

ηF /N (After Federation)

(c) Increasing number of clouds

Figure 12: Forwarding to public cloud before (dashed lines) and after (solid lines) clouds with different QoS share all resources

RSV
i RSR

i RSIR
i RSIRW

i

0

2

4

6

8

10

12

14

16

R
X i

Federation 1

C1

C2

C3

RSV
i RSR

i RSIR
i RSIRW

i

0

10

20

30

40

50

60

Federation 2

C1

C2

C3

RSV
i RSR

i RSIR
i RSIRW

i

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

Federation 3

C1

C2

C3

Figure 13: Comparison of different reward policies

for sharing most servers, and C2’s reward is even greater with
SIR, since its shared servers have low utilization; instead, the
reward of C3 (providing workload) is much lower, especially
with SIR. SIRW achieves a reward distribution very similar to
SV, illustrating that Shapley value is rewarding members of
the federation for both shared workload and servers.

Federation 3. In this federation, #λ = (50, 50, 200), #n =
(50, 50, 200), #m = #n (all servers are shared), #Q = (0, 0, 1): all
private clouds have similar loads (close to underprovisioning),
but C3 can queue requests, with a buffer of up to sFµQ = 300
requests. The shared federation pool will not be available
to serve traffic of private clouds C1 and C2, which will
forward most of their requests to the public cloud, resulting
in an increase of public cloud costs. In contrast, a federation
including only C1 and C2 results in public cloud savings. For
this reason, SV assigns negative reward to C3 (its presence
reduces the profit of the federation) and positive reward to C1

and C2 (their presence increases the profit of the federation).
Other policies are not able to distinguish between the negative
contribution of C3 and the positive contributions of C1 and C2.

Next, we analyze profit when public cloud savings are
distributed according to Shapley value and up to 5 private
clouds C1, C2, . . . , C5 join the federation. In this setting, we
have #λ = (10, 50, 30, 50, 100), #n = (30, 30, 30, 50, 100), and
#Q = (0, 0, 0, 0, 1); we assume that all servers are shared after

C1,C2 C1,C2,C3 C1,C2,C3,C4 C1,C2,C3,C4,C5

Members of the Federation

−2

0

2

4

6

8

10

12

14

16

18

20

22

R
ec
ei
ve
d
P
ub

lic
C
lo
ud

S
av
in
gs

R
S
V

i

7.7 8.3 8.8 8.8

7.7
7.8

7.6 7.2

2.0
2.3

2.2

2.7
2.6

-1.0

Cloud 1 (C1)

Cloud 2 (C1)

Cloud 3 (C1)

Cloud 4 (C1)

Cloud 5 (C1)

Figure 14: Reward distributed for different federations

joining the federation (#n = #m). The results, illustrated in
Fig. 14, show that, as we add more clouds to the federation, C1

and C2 are still responsible for most of the public cloud savings,
since C1 is overprovisioned while C2 is underprovisioned.
Instead, clouds C3 and C4 have similar loads before joining
the federation, and they are responsible for a lower fraction
of public cloud savings, thus receiving lower rewards from
Shapley value. In contrast, cloud C5 has negative reward (i.e.,
it is charged to be part of the federation): due to its higher
allowed mean waiting time Q5 = 1, requests of C5 can use
servers from the shared pool more frequently; this reduces the
ability of C1 and C2 to share their resources and workload,
respectively, and hence C5 is penalized by Shapley value.

V. RELATED WORK

A fairly large literature on hybrid clouds and their charac-
teristics exists; as representative examples, [23] describes the
operation of hybrid cloud architectures, while [25] analyzes
their advantages in reducing cost under high workload variabil-
ity. Similarly, a number of works consider cloud federations,
with representative examples including [20], [17].

9

Different models of private cloud federations are presented in
[9], where members of the federation are modeled as M/M/1
queues sharing either requests or capacity; “reward-driven”
or “joint-business” mechanisms of cooperation are considered
to evaluate the effects on the profit of federation members.
A model of federated small clouds similar to federations of
hybrid clouds is presented in [16], where a CTMC model is
adopted to evaluate performance metrics used in a repeated
game among federation members. Notably, our work proposes
a more detailed model with a simpler cooperation mechanism:
we model private clouds as M/M/n/m queues (in contrast
with M/M/1 queues of [9]) where members do not need
priority over their shared resources (in contrast with [16]); our
cooperation mechanism is based on sharing of cloud savings,
while [9], [16] assume either a joint business or a pricing
model for services offered to members of the federation, or
to external customers. Shapley value [21] is adopted as in [9]
and in many works on coalitions.
Another notable difference is that a number of papers

(for example [15]) do not consider QoS, while others (for
example [4]) do not consider hybrid clouds, thus leading to
different models of cooperation within the federation (e.g.,
borrowing resources at a price from individual members instead
of optimizing the amount of shared resources).

While several works propose CTMC models to evaluate the
performance of hybrid or federated cloud systems [16], [8],
[18], [7], [11], our work, by leveraging theoretical results [22],
provides proofs on the advantage of hybrid cloud federations
(with homogeneous QoS), together with their optimal policies.

Finally, while many works [6], [12], [24], [19] present
analytical models of performance and revenue in cloud
federations to maximize profit of their members, we focus
on stochastic models accounting for workload variability.

VI. CONCLUSIONS

In this paper, we proposed a CTMC model to predict the
rate of requests forwarded to public cloud providers by a
federation of hybrid clouds, where each member can share
workload or resources to generate cost savings while satisfying
QoS requirements. When all members have the same QoS
requirements, we provided theoretical results showing that
sharing all resources is the best strategy. For heterogeneous
QoS requirements, we provided a solution to evaluate different
sharing strategies, illustrating how sharing all resource can be,
in fact, counterproductive for the members of the federation.
As a cooperation mechanism, we proposed sharing of

public cloud savings according to Shapley value. Through
our experimental evaluation, we compared Shapley value with
alternative sharing policies rewarding members of the federation
for the amount of shared resources and workload. The results
illustrate the ability of Shapley value to reward both, and
to discourage (through negative payoffs) members of the
federation reducing its cloud savings.
As future work, we plan to extend our theoretical results

to characterize optimal policies with heterogeneous workloads
(e.g., where requests can require different amounts of work) and

resources (e.g., different classes of VM instances, each with
different tradeoff between performance, cost, and availability
in the federation).

REFERENCES

[1] CloudStack: Open Source Cloud Computing. cloudstack.apache.org.
[2] OpenNebula: Open Source Cloud and Edge Computing. opennebula.io.
[3] OpenStack: Open Source Cloud Computing Infrastructure. openstack.org.
[4] R. Abozariba, A. Amjad, and M. Patwary. Optimized resource sharing

for federated cloud services with desired performance and limited opex.
In IEEE Global Communications Conference (GLOBECOM), 2017.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view
of cloud computing. Commun. ACM, 53(4):50–58, 2010.

[6] M. R. M. Assis and L. F. Bittencourt. Multicloud tournament: A
cloud federation approach to prevent free-riders by encouraging resource
sharing. J. Netw. Comput. Appl., 166:102694, 2020.

[7] J. Bi, Z. Zhu, R. Tian, and Q. Wang. Dynamic provisioning modeling for
virtualized multi-tier applications in cloud data center. In IEEE CLOUD
2010, pages 370–377. IEEE Computer Society, 2010.

[8] D. Bruneo. A stochastic model to investigate data center performance and
qos in iaas cloud computing systems. IEEE Trans. Parallel Distributed
Syst., 25(3):560–569, 2014.

[9] G. Darzanos, I. Koutsopoulos, and G. D. Stamoulis. Cloud federations:
Economics, games and benefits. IEEE/ACM Trans. Netw., 27(5):2111–
2124, 2019.

[10] C. Fisher et al. Cloud versus on-premise computing. American Journal
of Industrial and Business Management, 8(09):1991, 2018.

[11] R. Ghosh, F. Longo, R. Xia, V. K. Naik, and K. S. Trivedi. Stochastic
model driven capacity planning for an infrastructure-as-a-service cloud.
IEEE Trans. Serv. Comput., 7(4):667–680, 2014.

[12] T. Halabi, M. Bellaiche, and A. Abusitta. A cooperative game for online
cloud federation formation based on security risk assessment. In 2018 5th
IEEE International Conference on Cyber Security and Cloud Computing
(CSCloud)/2018 4th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom), pages 83–88. IEEE, 2018.

[13] L. Kleinrock. Queueing Systems, Vol. 1: Theory. Wiley and Sons, 1975.
[14] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification of

probabilistic real-time systems. In Computer Aided Verification, volume
6806, pages 585–591, 2011.

[15] K. Li. Profit maximization in a federated cloud by optimal workload
management and server speed setting. IEEE Trans. Sustain. Comput.,
(01):1–1, 2021.

[16] S. Lin, R. Pal, M. Paolieri, and L. Golubchik. Performance driven
resource sharing markets for the small cloud. In ICDCS 2017, pages
241–251. IEEE Computer Society, 2017.

[17] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente. Iaas
cloud architecture: From virtualized datacenters to federated cloud
infrastructures. Computer, 45(12):65–72, 2012.

[18] D. Niyato, A. V. Vasilakos, and Z. Kun. Resource and revenue sharing
with coalition formation of cloud providers: Game theoretic approach.
In 2011 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pages 215–224. IEEE, 2011.

[19] B. K. Ray, A. Saha, S. Khatua, and S. Roy. Toward maximization
of profit and quality of cloud federation: solution to cloud federation
formation problem. Journal of Supercomputing, 75(2):885–929, 2019.

[20] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. S. Montero, Y. Wolfsthal, E. Elmroth, J. A. Cáceres, M. Ben-Yehuda,
W. Emmerich, and F. Galán. The reservoir model and architecture for
open federated cloud computing. IBM J. Res. Dev., 53(4):4, 2009.

[21] A. E. Roth. The Shapley value: essays in honor of Lloyd S. Shapley.
Cambridge University Press, 1988.

[22] D. R. Smith and W. Whitt. Resource sharing for efficiency in traffic
systems. Bell System Technical Journal, 60(1):39–55, 1981.

[23] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T. Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet
Comput., 13(5):14–22, 2009.

[24] Y. Wang and H. Chen. Dynamic resource arrangement in cloud federation.
In 2012 IEEE Asia-Pacific Services Computing Conference, pages 50–57.
IEEE, 2012.

[25] J. Weinman. Hybrid cloud economics. IEEE Cloud Comput., 3(1):18–22,
2016.

10

https://cloudstack.apache.org
https://opennebula.io
https://www.openstack.org

	Introduction
	Performance Model
	System Description and Notation
	CTMC Model
	Optimal Sharing Strategy with Homogeneous QoS
	Optimal Sharing Strategy with Heterogeneous QoS

	Revenue Model
	Sharing Public Cloud Savings using Shapley Value
	Overall Reduction in Operating Costs
	Alternative Reward Policies

	Experimental Evaluation
	Public Cloud Savings and Operating Cost Reduction
	Reward Policies

	Related Work
	Conclusions
	References

